1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53 TX_QUEUE_PRIO_HIGH,
54 TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
105 {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
230 .probe = igb_probe,
231 .remove = igb_remove,
232 #ifdef CONFIG_PM
233 .driver.pm = &igb_pm_ops,
234 #endif
235 .shutdown = igb_shutdown,
236 .sriov_configure = igb_pci_sriov_configure,
237 .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251 u32 ofs;
252 char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289 };
290
291 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 int n = 0;
295 char rname[16];
296 u32 regs[8];
297
298 switch (reginfo->ofs) {
299 case E1000_RDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_RDLEN(n));
302 break;
303 case E1000_RDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDH(n));
306 break;
307 case E1000_RDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDT(n));
310 break;
311 case E1000_RXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RXDCTL(n));
314 break;
315 case E1000_RDBAL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDBAL(n));
318 break;
319 case E1000_RDBAH(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAH(n));
322 break;
323 case E1000_TDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_TDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_TDBAH(n));
330 break;
331 case E1000_TDLEN(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDLEN(n));
334 break;
335 case E1000_TDH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDH(n));
338 break;
339 case E1000_TDT(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDT(n));
342 break;
343 case E1000_TXDCTL(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TXDCTL(n));
346 break;
347 default:
348 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 return;
350 }
351
352 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 struct net_device *netdev = adapter->netdev;
361 struct e1000_hw *hw = &adapter->hw;
362 struct igb_reg_info *reginfo;
363 struct igb_ring *tx_ring;
364 union e1000_adv_tx_desc *tx_desc;
365 struct my_u0 { u64 a; u64 b; } *u0;
366 struct igb_ring *rx_ring;
367 union e1000_adv_rx_desc *rx_desc;
368 u32 staterr;
369 u16 i, n;
370
371 if (!netif_msg_hw(adapter))
372 return;
373
374 /* Print netdevice Info */
375 if (netdev) {
376 dev_info(&adapter->pdev->dev, "Net device Info\n");
377 pr_info("Device Name state trans_start\n");
378 pr_info("%-15s %016lX %016lX\n", netdev->name,
379 netdev->state, dev_trans_start(netdev));
380 }
381
382 /* Print Registers */
383 dev_info(&adapter->pdev->dev, "Register Dump\n");
384 pr_info(" Register Name Value\n");
385 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 reginfo->name; reginfo++) {
387 igb_regdump(hw, reginfo);
388 }
389
390 /* Print TX Ring Summary */
391 if (!netdev || !netif_running(netdev))
392 goto exit;
393
394 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
396 for (n = 0; n < adapter->num_tx_queues; n++) {
397 struct igb_tx_buffer *buffer_info;
398 tx_ring = adapter->tx_ring[n];
399 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 (u64)dma_unmap_addr(buffer_info, dma),
403 dma_unmap_len(buffer_info, len),
404 buffer_info->next_to_watch,
405 (u64)buffer_info->time_stamp);
406 }
407
408 /* Print TX Rings */
409 if (!netif_msg_tx_done(adapter))
410 goto rx_ring_summary;
411
412 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414 /* Transmit Descriptor Formats
415 *
416 * Advanced Transmit Descriptor
417 * +--------------------------------------------------------------+
418 * 0 | Buffer Address [63:0] |
419 * +--------------------------------------------------------------+
420 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
421 * +--------------------------------------------------------------+
422 * 63 46 45 40 39 38 36 35 32 31 24 15 0
423 */
424
425 for (n = 0; n < adapter->num_tx_queues; n++) {
426 tx_ring = adapter->tx_ring[n];
427 pr_info("------------------------------------\n");
428 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 pr_info("------------------------------------\n");
430 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
431
432 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 const char *next_desc;
434 struct igb_tx_buffer *buffer_info;
435 tx_desc = IGB_TX_DESC(tx_ring, i);
436 buffer_info = &tx_ring->tx_buffer_info[i];
437 u0 = (struct my_u0 *)tx_desc;
438 if (i == tx_ring->next_to_use &&
439 i == tx_ring->next_to_clean)
440 next_desc = " NTC/U";
441 else if (i == tx_ring->next_to_use)
442 next_desc = " NTU";
443 else if (i == tx_ring->next_to_clean)
444 next_desc = " NTC";
445 else
446 next_desc = "";
447
448 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
449 i, le64_to_cpu(u0->a),
450 le64_to_cpu(u0->b),
451 (u64)dma_unmap_addr(buffer_info, dma),
452 dma_unmap_len(buffer_info, len),
453 buffer_info->next_to_watch,
454 (u64)buffer_info->time_stamp,
455 buffer_info->skb, next_desc);
456
457 if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
459 DUMP_PREFIX_ADDRESS,
460 16, 1, buffer_info->skb->data,
461 dma_unmap_len(buffer_info, len),
462 true);
463 }
464 }
465
466 /* Print RX Rings Summary */
467 rx_ring_summary:
468 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 pr_info("Queue [NTU] [NTC]\n");
470 for (n = 0; n < adapter->num_rx_queues; n++) {
471 rx_ring = adapter->rx_ring[n];
472 pr_info(" %5d %5X %5X\n",
473 n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 }
475
476 /* Print RX Rings */
477 if (!netif_msg_rx_status(adapter))
478 goto exit;
479
480 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482 /* Advanced Receive Descriptor (Read) Format
483 * 63 1 0
484 * +-----------------------------------------------------+
485 * 0 | Packet Buffer Address [63:1] |A0/NSE|
486 * +----------------------------------------------+------+
487 * 8 | Header Buffer Address [63:1] | DD |
488 * +-----------------------------------------------------+
489 *
490 *
491 * Advanced Receive Descriptor (Write-Back) Format
492 *
493 * 63 48 47 32 31 30 21 20 17 16 4 3 0
494 * +------------------------------------------------------+
495 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
496 * | Checksum Ident | | | | Type | Type |
497 * +------------------------------------------------------+
498 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 * +------------------------------------------------------+
500 * 63 48 47 32 31 20 19 0
501 */
502
503 for (n = 0; n < adapter->num_rx_queues; n++) {
504 rx_ring = adapter->rx_ring[n];
505 pr_info("------------------------------------\n");
506 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 pr_info("------------------------------------\n");
508 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
509 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511 for (i = 0; i < rx_ring->count; i++) {
512 const char *next_desc;
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
515 rx_desc = IGB_RX_DESC(rx_ring, i);
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519 if (i == rx_ring->next_to_use)
520 next_desc = " NTU";
521 else if (i == rx_ring->next_to_clean)
522 next_desc = " NTC";
523 else
524 next_desc = "";
525
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
528 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
529 "RWB", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 next_desc);
533 } else {
534 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
535 "R ", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 (u64)buffer_info->dma,
539 next_desc);
540
541 if (netif_msg_pktdata(adapter) &&
542 buffer_info->dma && buffer_info->page) {
543 print_hex_dump(KERN_INFO, "",
544 DUMP_PREFIX_ADDRESS,
545 16, 1,
546 page_address(buffer_info->page) +
547 buffer_info->page_offset,
548 igb_rx_bufsz(rx_ring), true);
549 }
550 }
551 }
552 }
553
554 exit:
555 return;
556 }
557
558 /**
559 * igb_get_i2c_data - Reads the I2C SDA data bit
560 * @hw: pointer to hardware structure
561 * @i2cctl: Current value of I2CCTL register
562 *
563 * Returns the I2C data bit value
564 **/
igb_get_i2c_data(void * data)565 static int igb_get_i2c_data(void *data)
566 {
567 struct igb_adapter *adapter = (struct igb_adapter *)data;
568 struct e1000_hw *hw = &adapter->hw;
569 s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571 return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575 * igb_set_i2c_data - Sets the I2C data bit
576 * @data: pointer to hardware structure
577 * @state: I2C data value (0 or 1) to set
578 *
579 * Sets the I2C data bit
580 **/
igb_set_i2c_data(void * data,int state)581 static void igb_set_i2c_data(void *data, int state)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 if (state)
588 i2cctl |= E1000_I2C_DATA_OUT;
589 else
590 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592 i2cctl &= ~E1000_I2C_DATA_OE_N;
593 i2cctl |= E1000_I2C_CLK_OE_N;
594 wr32(E1000_I2CPARAMS, i2cctl);
595 wrfl();
596
597 }
598
599 /**
600 * igb_set_i2c_clk - Sets the I2C SCL clock
601 * @data: pointer to hardware structure
602 * @state: state to set clock
603 *
604 * Sets the I2C clock line to state
605 **/
igb_set_i2c_clk(void * data,int state)606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state) {
613 i2cctl |= E1000_I2C_CLK_OUT;
614 i2cctl &= ~E1000_I2C_CLK_OE_N;
615 } else {
616 i2cctl &= ~E1000_I2C_CLK_OUT;
617 i2cctl &= ~E1000_I2C_CLK_OE_N;
618 }
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621 }
622
623 /**
624 * igb_get_i2c_clk - Gets the I2C SCL clock state
625 * @data: pointer to hardware structure
626 *
627 * Gets the I2C clock state
628 **/
igb_get_i2c_clk(void * data)629 static int igb_get_i2c_clk(void *data)
630 {
631 struct igb_adapter *adapter = (struct igb_adapter *)data;
632 struct e1000_hw *hw = &adapter->hw;
633 s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635 return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 .setsda = igb_set_i2c_data,
640 .setscl = igb_set_i2c_clk,
641 .getsda = igb_get_i2c_data,
642 .getscl = igb_get_i2c_clk,
643 .udelay = 5,
644 .timeout = 20,
645 };
646
647 /**
648 * igb_get_hw_dev - return device
649 * @hw: pointer to hardware structure
650 *
651 * used by hardware layer to print debugging information
652 **/
igb_get_hw_dev(struct e1000_hw * hw)653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 struct igb_adapter *adapter = hw->back;
656 return adapter->netdev;
657 }
658
659 /**
660 * igb_init_module - Driver Registration Routine
661 *
662 * igb_init_module is the first routine called when the driver is
663 * loaded. All it does is register with the PCI subsystem.
664 **/
igb_init_module(void)665 static int __init igb_init_module(void)
666 {
667 int ret;
668
669 pr_info("%s - version %s\n",
670 igb_driver_string, igb_driver_version);
671 pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674 dca_register_notify(&dca_notifier);
675 #endif
676 ret = pci_register_driver(&igb_driver);
677 return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683 * igb_exit_module - Driver Exit Cleanup Routine
684 *
685 * igb_exit_module is called just before the driver is removed
686 * from memory.
687 **/
igb_exit_module(void)688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 dca_unregister_notify(&dca_notifier);
692 #endif
693 pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700 * igb_cache_ring_register - Descriptor ring to register mapping
701 * @adapter: board private structure to initialize
702 *
703 * Once we know the feature-set enabled for the device, we'll cache
704 * the register offset the descriptor ring is assigned to.
705 **/
igb_cache_ring_register(struct igb_adapter * adapter)706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 int i = 0, j = 0;
709 u32 rbase_offset = adapter->vfs_allocated_count;
710
711 switch (adapter->hw.mac.type) {
712 case e1000_82576:
713 /* The queues are allocated for virtualization such that VF 0
714 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 * In order to avoid collision we start at the first free queue
716 * and continue consuming queues in the same sequence
717 */
718 if (adapter->vfs_allocated_count) {
719 for (; i < adapter->rss_queues; i++)
720 adapter->rx_ring[i]->reg_idx = rbase_offset +
721 Q_IDX_82576(i);
722 }
723 /* Fall through */
724 case e1000_82575:
725 case e1000_82580:
726 case e1000_i350:
727 case e1000_i354:
728 case e1000_i210:
729 case e1000_i211:
730 /* Fall through */
731 default:
732 for (; i < adapter->num_rx_queues; i++)
733 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 for (; j < adapter->num_tx_queues; j++)
735 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 break;
737 }
738 }
739
igb_rd32(struct e1000_hw * hw,u32 reg)740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 u32 value = 0;
745
746 if (E1000_REMOVED(hw_addr))
747 return ~value;
748
749 value = readl(&hw_addr[reg]);
750
751 /* reads should not return all F's */
752 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 struct net_device *netdev = igb->netdev;
754 hw->hw_addr = NULL;
755 netdev_err(netdev, "PCIe link lost\n");
756 }
757
758 return value;
759 }
760
761 /**
762 * igb_write_ivar - configure ivar for given MSI-X vector
763 * @hw: pointer to the HW structure
764 * @msix_vector: vector number we are allocating to a given ring
765 * @index: row index of IVAR register to write within IVAR table
766 * @offset: column offset of in IVAR, should be multiple of 8
767 *
768 * This function is intended to handle the writing of the IVAR register
769 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
770 * each containing an cause allocation for an Rx and Tx ring, and a
771 * variable number of rows depending on the number of queues supported.
772 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 int index, int offset)
775 {
776 u32 ivar = array_rd32(E1000_IVAR0, index);
777
778 /* clear any bits that are currently set */
779 ivar &= ~((u32)0xFF << offset);
780
781 /* write vector and valid bit */
782 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783
784 array_wr32(E1000_IVAR0, index, ivar);
785 }
786
787 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 struct igb_adapter *adapter = q_vector->adapter;
791 struct e1000_hw *hw = &adapter->hw;
792 int rx_queue = IGB_N0_QUEUE;
793 int tx_queue = IGB_N0_QUEUE;
794 u32 msixbm = 0;
795
796 if (q_vector->rx.ring)
797 rx_queue = q_vector->rx.ring->reg_idx;
798 if (q_vector->tx.ring)
799 tx_queue = q_vector->tx.ring->reg_idx;
800
801 switch (hw->mac.type) {
802 case e1000_82575:
803 /* The 82575 assigns vectors using a bitmask, which matches the
804 * bitmask for the EICR/EIMS/EIMC registers. To assign one
805 * or more queues to a vector, we write the appropriate bits
806 * into the MSIXBM register for that vector.
807 */
808 if (rx_queue > IGB_N0_QUEUE)
809 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 if (tx_queue > IGB_N0_QUEUE)
811 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 msixbm |= E1000_EIMS_OTHER;
814 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 q_vector->eims_value = msixbm;
816 break;
817 case e1000_82576:
818 /* 82576 uses a table that essentially consists of 2 columns
819 * with 8 rows. The ordering is column-major so we use the
820 * lower 3 bits as the row index, and the 4th bit as the
821 * column offset.
822 */
823 if (rx_queue > IGB_N0_QUEUE)
824 igb_write_ivar(hw, msix_vector,
825 rx_queue & 0x7,
826 (rx_queue & 0x8) << 1);
827 if (tx_queue > IGB_N0_QUEUE)
828 igb_write_ivar(hw, msix_vector,
829 tx_queue & 0x7,
830 ((tx_queue & 0x8) << 1) + 8);
831 q_vector->eims_value = BIT(msix_vector);
832 break;
833 case e1000_82580:
834 case e1000_i350:
835 case e1000_i354:
836 case e1000_i210:
837 case e1000_i211:
838 /* On 82580 and newer adapters the scheme is similar to 82576
839 * however instead of ordering column-major we have things
840 * ordered row-major. So we traverse the table by using
841 * bit 0 as the column offset, and the remaining bits as the
842 * row index.
843 */
844 if (rx_queue > IGB_N0_QUEUE)
845 igb_write_ivar(hw, msix_vector,
846 rx_queue >> 1,
847 (rx_queue & 0x1) << 4);
848 if (tx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 tx_queue >> 1,
851 ((tx_queue & 0x1) << 4) + 8);
852 q_vector->eims_value = BIT(msix_vector);
853 break;
854 default:
855 BUG();
856 break;
857 }
858
859 /* add q_vector eims value to global eims_enable_mask */
860 adapter->eims_enable_mask |= q_vector->eims_value;
861
862 /* configure q_vector to set itr on first interrupt */
863 q_vector->set_itr = 1;
864 }
865
866 /**
867 * igb_configure_msix - Configure MSI-X hardware
868 * @adapter: board private structure to initialize
869 *
870 * igb_configure_msix sets up the hardware to properly
871 * generate MSI-X interrupts.
872 **/
igb_configure_msix(struct igb_adapter * adapter)873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 u32 tmp;
876 int i, vector = 0;
877 struct e1000_hw *hw = &adapter->hw;
878
879 adapter->eims_enable_mask = 0;
880
881 /* set vector for other causes, i.e. link changes */
882 switch (hw->mac.type) {
883 case e1000_82575:
884 tmp = rd32(E1000_CTRL_EXT);
885 /* enable MSI-X PBA support*/
886 tmp |= E1000_CTRL_EXT_PBA_CLR;
887
888 /* Auto-Mask interrupts upon ICR read. */
889 tmp |= E1000_CTRL_EXT_EIAME;
890 tmp |= E1000_CTRL_EXT_IRCA;
891
892 wr32(E1000_CTRL_EXT, tmp);
893
894 /* enable msix_other interrupt */
895 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 adapter->eims_other = E1000_EIMS_OTHER;
897
898 break;
899
900 case e1000_82576:
901 case e1000_82580:
902 case e1000_i350:
903 case e1000_i354:
904 case e1000_i210:
905 case e1000_i211:
906 /* Turn on MSI-X capability first, or our settings
907 * won't stick. And it will take days to debug.
908 */
909 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 E1000_GPIE_NSICR);
912
913 /* enable msix_other interrupt */
914 adapter->eims_other = BIT(vector);
915 tmp = (vector++ | E1000_IVAR_VALID) << 8;
916
917 wr32(E1000_IVAR_MISC, tmp);
918 break;
919 default:
920 /* do nothing, since nothing else supports MSI-X */
921 break;
922 } /* switch (hw->mac.type) */
923
924 adapter->eims_enable_mask |= adapter->eims_other;
925
926 for (i = 0; i < adapter->num_q_vectors; i++)
927 igb_assign_vector(adapter->q_vector[i], vector++);
928
929 wrfl();
930 }
931
932 /**
933 * igb_request_msix - Initialize MSI-X interrupts
934 * @adapter: board private structure to initialize
935 *
936 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
937 * kernel.
938 **/
igb_request_msix(struct igb_adapter * adapter)939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 struct net_device *netdev = adapter->netdev;
942 int i, err = 0, vector = 0, free_vector = 0;
943
944 err = request_irq(adapter->msix_entries[vector].vector,
945 igb_msix_other, 0, netdev->name, adapter);
946 if (err)
947 goto err_out;
948
949 for (i = 0; i < adapter->num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952 vector++;
953
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else
966 sprintf(q_vector->name, "%s-unused", netdev->name);
967
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
970 q_vector);
971 if (err)
972 goto err_free;
973 }
974
975 igb_configure_msix(adapter);
976 return 0;
977
978 err_free:
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982 vector--;
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
986 }
987 err_out:
988 return err;
989 }
990
991 /**
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
995 *
996 * This function frees the memory allocated to the q_vector.
997 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002 adapter->q_vector[v_idx] = NULL;
1003
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1006 */
1007 if (q_vector)
1008 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1015 *
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1025 */
1026 if (!q_vector)
1027 return;
1028
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035 netif_napi_del(&q_vector->napi);
1036
1037 }
1038
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 int v_idx = adapter->num_q_vectors;
1042
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1047
1048 while (v_idx--)
1049 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1055 *
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1059 **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 int v_idx = adapter->num_q_vectors;
1063
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1067
1068 while (v_idx--) {
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1071 }
1072 }
1073
1074 /**
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1077 *
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1080 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1091 *
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1094 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 int err;
1098 int numvecs, i;
1099
1100 if (!msix)
1101 goto msi_only;
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1108 else
1109 adapter->num_tx_queues = adapter->rss_queues;
1110
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1113
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1117
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1120
1121 /* add 1 vector for link status interrupts */
1122 numvecs++;
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1125
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1128 numvecs,
1129 numvecs);
1130 if (err > 0)
1131 return;
1132
1133 igb_reset_interrupt_capability(adapter);
1134
1135 /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1144 msleep(500);
1145
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 wrfl();
1152 msleep(100);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 }
1155 #endif
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1168 {
1169 head->ring = ring;
1170 head->count++;
1171 }
1172
1173 /**
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1182 *
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1184 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1189 {
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1192 int ring_count, size;
1193
1194 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195 if (txr_count > 1 || rxr_count > 1)
1196 return -ENOMEM;
1197
1198 ring_count = txr_count + rxr_count;
1199 size = sizeof(struct igb_q_vector) +
1200 (sizeof(struct igb_ring) * ring_count);
1201
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1204 if (!q_vector) {
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 kfree_rcu(q_vector, rcu);
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 } else {
1210 memset(q_vector, 0, size);
1211 }
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 ring->cbs_enable = false;
1264 ring->idleslope = 0;
1265 ring->sendslope = 0;
1266 ring->hicredit = 0;
1267 ring->locredit = 0;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
igb_request_irq(struct igb_adapter * adapter)1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
igb_free_irq(struct igb_adapter * adapter)1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
igb_irq_disable(struct igb_adapter * adapter)1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
igb_irq_enable(struct igb_adapter * adapter)1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
igb_update_mng_vlan(struct igb_adapter * adapter)1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
igb_release_hw_control(struct igb_adapter * adapter)1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
igb_get_hw_control(struct igb_adapter * adapter)1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
enable_fqtss(struct igb_adapter * adapter,bool enable)1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 struct net_device *netdev = adapter->netdev;
1599 struct e1000_hw *hw = &adapter->hw;
1600
1601 WARN_ON(hw->mac.type != e1000_i210);
1602
1603 if (enable)
1604 adapter->flags |= IGB_FLAG_FQTSS;
1605 else
1606 adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608 if (netif_running(netdev))
1609 schedule_work(&adapter->reset_task);
1610 }
1611
is_fqtss_enabled(struct igb_adapter * adapter)1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 enum tx_queue_prio prio)
1619 {
1620 u32 val;
1621
1622 WARN_ON(hw->mac.type != e1000_i210);
1623 WARN_ON(queue < 0 || queue > 4);
1624
1625 val = rd32(E1000_I210_TXDCTL(queue));
1626
1627 if (prio == TX_QUEUE_PRIO_HIGH)
1628 val |= E1000_TXDCTL_PRIORITY;
1629 else
1630 val &= ~E1000_TXDCTL_PRIORITY;
1631
1632 wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 u32 val;
1638
1639 WARN_ON(hw->mac.type != e1000_i210);
1640 WARN_ON(queue < 0 || queue > 1);
1641
1642 val = rd32(E1000_I210_TQAVCC(queue));
1643
1644 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 val |= E1000_TQAVCC_QUEUEMODE;
1646 else
1647 val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649 wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651
is_any_cbs_enabled(struct igb_adapter * adapter)1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 int i;
1655
1656 for (i = 0; i < adapter->num_tx_queues; i++) {
1657 if (adapter->tx_ring[i]->cbs_enable)
1658 return true;
1659 }
1660
1661 return false;
1662 }
1663
is_any_txtime_enabled(struct igb_adapter * adapter)1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 int i;
1667
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 if (adapter->tx_ring[i]->launchtime_enable)
1670 return true;
1671 }
1672
1673 return false;
1674 }
1675
1676 /**
1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 * @adapter: pointer to adapter struct
1679 * @queue: queue number
1680 *
1681 * Configure CBS and Launchtime for a given hardware queue.
1682 * Parameters are retrieved from the correct Tx ring, so
1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 * for setting those correctly prior to this function being called.
1685 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 struct igb_ring *ring = adapter->tx_ring[queue];
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 u32 tqavcc, tqavctrl;
1692 u16 value;
1693
1694 WARN_ON(hw->mac.type != e1000_i210);
1695 WARN_ON(queue < 0 || queue > 1);
1696
1697 /* If any of the Qav features is enabled, configure queues as SR and
1698 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 * as SP.
1700 */
1701 if (ring->cbs_enable || ring->launchtime_enable) {
1702 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 } else {
1705 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 }
1708
1709 /* If CBS is enabled, set DataTranARB and config its parameters. */
1710 if (ring->cbs_enable || queue == 0) {
1711 /* i210 does not allow the queue 0 to be in the Strict
1712 * Priority mode while the Qav mode is enabled, so,
1713 * instead of disabling strict priority mode, we give
1714 * queue 0 the maximum of credits possible.
1715 *
1716 * See section 8.12.19 of the i210 datasheet, "Note:
1717 * Queue0 QueueMode must be set to 1b when
1718 * TransmitMode is set to Qav."
1719 */
1720 if (queue == 0 && !ring->cbs_enable) {
1721 /* max "linkspeed" idleslope in kbps */
1722 ring->idleslope = 1000000;
1723 ring->hicredit = ETH_FRAME_LEN;
1724 }
1725
1726 /* Always set data transfer arbitration to credit-based
1727 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 * the queues.
1729 */
1730 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733
1734 /* According to i210 datasheet section 7.2.7.7, we should set
1735 * the 'idleSlope' field from TQAVCC register following the
1736 * equation:
1737 *
1738 * For 100 Mbps link speed:
1739 *
1740 * value = BW * 0x7735 * 0.2 (E1)
1741 *
1742 * For 1000Mbps link speed:
1743 *
1744 * value = BW * 0x7735 * 2 (E2)
1745 *
1746 * E1 and E2 can be merged into one equation as shown below.
1747 * Note that 'link-speed' is in Mbps.
1748 *
1749 * value = BW * 0x7735 * 2 * link-speed
1750 * -------------- (E3)
1751 * 1000
1752 *
1753 * 'BW' is the percentage bandwidth out of full link speed
1754 * which can be found with the following equation. Note that
1755 * idleSlope here is the parameter from this function which
1756 * is in kbps.
1757 *
1758 * BW = idleSlope
1759 * ----------------- (E4)
1760 * link-speed * 1000
1761 *
1762 * That said, we can come up with a generic equation to
1763 * calculate the value we should set it TQAVCC register by
1764 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 *
1766 * value = idleSlope * 0x7735 * 2 * link-speed
1767 * ----------------- -------------- (E5)
1768 * link-speed * 1000 1000
1769 *
1770 * 'link-speed' is present in both sides of the fraction so
1771 * it is canceled out. The final equation is the following:
1772 *
1773 * value = idleSlope * 61034
1774 * ----------------- (E6)
1775 * 1000000
1776 *
1777 * NOTE: For i210, given the above, we can see that idleslope
1778 * is represented in 16.38431 kbps units by the value at
1779 * the TQAVCC register (1Gbps / 61034), which reduces
1780 * the granularity for idleslope increments.
1781 * For instance, if you want to configure a 2576kbps
1782 * idleslope, the value to be written on the register
1783 * would have to be 157.23. If rounded down, you end
1784 * up with less bandwidth available than originally
1785 * required (~2572 kbps). If rounded up, you end up
1786 * with a higher bandwidth (~2589 kbps). Below the
1787 * approach we take is to always round up the
1788 * calculated value, so the resulting bandwidth might
1789 * be slightly higher for some configurations.
1790 */
1791 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792
1793 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 tqavcc |= value;
1796 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797
1798 wr32(E1000_I210_TQAVHC(queue),
1799 0x80000000 + ring->hicredit * 0x7735);
1800 } else {
1801
1802 /* Set idleSlope to zero. */
1803 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806
1807 /* Set hiCredit to zero. */
1808 wr32(E1000_I210_TQAVHC(queue), 0);
1809
1810 /* If CBS is not enabled for any queues anymore, then return to
1811 * the default state of Data Transmission Arbitration on
1812 * TQAVCTRL.
1813 */
1814 if (!is_any_cbs_enabled(adapter)) {
1815 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 }
1819 }
1820
1821 /* If LaunchTime is enabled, set DataTranTIM. */
1822 if (ring->launchtime_enable) {
1823 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 * for any of the SR queues, and configure fetchtime delta.
1825 * XXX NOTE:
1826 * - LaunchTime will be enabled for all SR queues.
1827 * - A fixed offset can be added relative to the launch
1828 * time of all packets if configured at reg LAUNCH_OS0.
1829 * We are keeping it as 0 for now (default value).
1830 */
1831 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 } else {
1836 /* If Launchtime is not enabled for any SR queues anymore,
1837 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 * effectively disabling Launchtime.
1839 */
1840 if (!is_any_txtime_enabled(adapter)) {
1841 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 }
1846 }
1847
1848 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 * CBS are not configurable by software so we don't do any 'controller
1850 * configuration' in respect to these parameters.
1851 */
1852
1853 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d \
1854 idleslope %d sendslope %d hiCredit %d \
1855 locredit %d\n",
1856 (ring->cbs_enable) ? "enabled" : "disabled",
1857 (ring->launchtime_enable) ? "enabled" : "disabled", queue,
1858 ring->idleslope, ring->sendslope, ring->hicredit,
1859 ring->locredit);
1860 }
1861
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 bool enable)
1864 {
1865 struct igb_ring *ring;
1866
1867 if (queue < 0 || queue > adapter->num_tx_queues)
1868 return -EINVAL;
1869
1870 ring = adapter->tx_ring[queue];
1871 ring->launchtime_enable = enable;
1872
1873 return 0;
1874 }
1875
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 bool enable, int idleslope, int sendslope,
1878 int hicredit, int locredit)
1879 {
1880 struct igb_ring *ring;
1881
1882 if (queue < 0 || queue > adapter->num_tx_queues)
1883 return -EINVAL;
1884
1885 ring = adapter->tx_ring[queue];
1886
1887 ring->cbs_enable = enable;
1888 ring->idleslope = idleslope;
1889 ring->sendslope = sendslope;
1890 ring->hicredit = hicredit;
1891 ring->locredit = locredit;
1892
1893 return 0;
1894 }
1895
1896 /**
1897 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898 * @adapter: pointer to adapter struct
1899 *
1900 * Configure TQAVCTRL register switching the controller's Tx mode
1901 * if FQTSS mode is enabled or disabled. Additionally, will issue
1902 * a call to igb_config_tx_modes() per queue so any previously saved
1903 * Tx parameters are applied.
1904 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 struct net_device *netdev = adapter->netdev;
1908 struct e1000_hw *hw = &adapter->hw;
1909 u32 val;
1910
1911 /* Only i210 controller supports changing the transmission mode. */
1912 if (hw->mac.type != e1000_i210)
1913 return;
1914
1915 if (is_fqtss_enabled(adapter)) {
1916 int i, max_queue;
1917
1918 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 * so SP queues wait for SR ones.
1921 */
1922 val = rd32(E1000_I210_TQAVCTRL);
1923 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 wr32(E1000_I210_TQAVCTRL, val);
1926
1927 /* Configure Tx and Rx packet buffers sizes as described in
1928 * i210 datasheet section 7.2.7.7.
1929 */
1930 val = rd32(E1000_TXPBS);
1931 val &= ~I210_TXPBSIZE_MASK;
1932 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 wr32(E1000_TXPBS, val);
1935
1936 val = rd32(E1000_RXPBS);
1937 val &= ~I210_RXPBSIZE_MASK;
1938 val |= I210_RXPBSIZE_PB_32KB;
1939 wr32(E1000_RXPBS, val);
1940
1941 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 * register should not exceed the buffer size programmed in
1943 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 * 4kB / 64.
1946 *
1947 * However, when we do so, no frame from queue 2 and 3 are
1948 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1949 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 */
1952 val = (4096 - 1) / 64;
1953 wr32(E1000_I210_DTXMXPKTSZ, val);
1954
1955 /* Since FQTSS mode is enabled, apply any CBS configuration
1956 * previously set. If no previous CBS configuration has been
1957 * done, then the initial configuration is applied, which means
1958 * CBS is disabled.
1959 */
1960 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962
1963 for (i = 0; i < max_queue; i++) {
1964 igb_config_tx_modes(adapter, i);
1965 }
1966 } else {
1967 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970
1971 val = rd32(E1000_I210_TQAVCTRL);
1972 /* According to Section 8.12.21, the other flags we've set when
1973 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 * don't set they here.
1975 */
1976 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 wr32(E1000_I210_TQAVCTRL, val);
1978 }
1979
1980 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 "enabled" : "disabled");
1982 }
1983
1984 /**
1985 * igb_configure - configure the hardware for RX and TX
1986 * @adapter: private board structure
1987 **/
igb_configure(struct igb_adapter * adapter)1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 struct net_device *netdev = adapter->netdev;
1991 int i;
1992
1993 igb_get_hw_control(adapter);
1994 igb_set_rx_mode(netdev);
1995 igb_setup_tx_mode(adapter);
1996
1997 igb_restore_vlan(adapter);
1998
1999 igb_setup_tctl(adapter);
2000 igb_setup_mrqc(adapter);
2001 igb_setup_rctl(adapter);
2002
2003 igb_nfc_filter_restore(adapter);
2004 igb_configure_tx(adapter);
2005 igb_configure_rx(adapter);
2006
2007 igb_rx_fifo_flush_82575(&adapter->hw);
2008
2009 /* call igb_desc_unused which always leaves
2010 * at least 1 descriptor unused to make sure
2011 * next_to_use != next_to_clean
2012 */
2013 for (i = 0; i < adapter->num_rx_queues; i++) {
2014 struct igb_ring *ring = adapter->rx_ring[i];
2015 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 }
2017 }
2018
2019 /**
2020 * igb_power_up_link - Power up the phy/serdes link
2021 * @adapter: address of board private structure
2022 **/
igb_power_up_link(struct igb_adapter * adapter)2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 igb_reset_phy(&adapter->hw);
2026
2027 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 igb_power_up_phy_copper(&adapter->hw);
2029 else
2030 igb_power_up_serdes_link_82575(&adapter->hw);
2031
2032 igb_setup_link(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_power_down_link - Power down the phy/serdes link
2037 * @adapter: address of board private structure
2038 */
igb_power_down_link(struct igb_adapter * adapter)2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 igb_power_down_phy_copper_82575(&adapter->hw);
2043 else
2044 igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046
2047 /**
2048 * Detect and switch function for Media Auto Sense
2049 * @adapter: address of the board private structure
2050 **/
igb_check_swap_media(struct igb_adapter * adapter)2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 struct e1000_hw *hw = &adapter->hw;
2054 u32 ctrl_ext, connsw;
2055 bool swap_now = false;
2056
2057 ctrl_ext = rd32(E1000_CTRL_EXT);
2058 connsw = rd32(E1000_CONNSW);
2059
2060 /* need to live swap if current media is copper and we have fiber/serdes
2061 * to go to.
2062 */
2063
2064 if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 swap_now = true;
2067 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2068 !(connsw & E1000_CONNSW_SERDESD)) {
2069 /* copper signal takes time to appear */
2070 if (adapter->copper_tries < 4) {
2071 adapter->copper_tries++;
2072 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073 wr32(E1000_CONNSW, connsw);
2074 return;
2075 } else {
2076 adapter->copper_tries = 0;
2077 if ((connsw & E1000_CONNSW_PHYSD) &&
2078 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079 swap_now = true;
2080 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081 wr32(E1000_CONNSW, connsw);
2082 }
2083 }
2084 }
2085
2086 if (!swap_now)
2087 return;
2088
2089 switch (hw->phy.media_type) {
2090 case e1000_media_type_copper:
2091 netdev_info(adapter->netdev,
2092 "MAS: changing media to fiber/serdes\n");
2093 ctrl_ext |=
2094 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096 adapter->copper_tries = 0;
2097 break;
2098 case e1000_media_type_internal_serdes:
2099 case e1000_media_type_fiber:
2100 netdev_info(adapter->netdev,
2101 "MAS: changing media to copper\n");
2102 ctrl_ext &=
2103 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105 break;
2106 default:
2107 /* shouldn't get here during regular operation */
2108 netdev_err(adapter->netdev,
2109 "AMS: Invalid media type found, returning\n");
2110 break;
2111 }
2112 wr32(E1000_CTRL_EXT, ctrl_ext);
2113 }
2114
2115 /**
2116 * igb_up - Open the interface and prepare it to handle traffic
2117 * @adapter: board private structure
2118 **/
igb_up(struct igb_adapter * adapter)2119 int igb_up(struct igb_adapter *adapter)
2120 {
2121 struct e1000_hw *hw = &adapter->hw;
2122 int i;
2123
2124 /* hardware has been reset, we need to reload some things */
2125 igb_configure(adapter);
2126
2127 clear_bit(__IGB_DOWN, &adapter->state);
2128
2129 for (i = 0; i < adapter->num_q_vectors; i++)
2130 napi_enable(&(adapter->q_vector[i]->napi));
2131
2132 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133 igb_configure_msix(adapter);
2134 else
2135 igb_assign_vector(adapter->q_vector[0], 0);
2136
2137 /* Clear any pending interrupts. */
2138 rd32(E1000_TSICR);
2139 rd32(E1000_ICR);
2140 igb_irq_enable(adapter);
2141
2142 /* notify VFs that reset has been completed */
2143 if (adapter->vfs_allocated_count) {
2144 u32 reg_data = rd32(E1000_CTRL_EXT);
2145
2146 reg_data |= E1000_CTRL_EXT_PFRSTD;
2147 wr32(E1000_CTRL_EXT, reg_data);
2148 }
2149
2150 netif_tx_start_all_queues(adapter->netdev);
2151
2152 /* start the watchdog. */
2153 hw->mac.get_link_status = 1;
2154 schedule_work(&adapter->watchdog_task);
2155
2156 if ((adapter->flags & IGB_FLAG_EEE) &&
2157 (!hw->dev_spec._82575.eee_disable))
2158 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159
2160 return 0;
2161 }
2162
igb_down(struct igb_adapter * adapter)2163 void igb_down(struct igb_adapter *adapter)
2164 {
2165 struct net_device *netdev = adapter->netdev;
2166 struct e1000_hw *hw = &adapter->hw;
2167 u32 tctl, rctl;
2168 int i;
2169
2170 /* signal that we're down so the interrupt handler does not
2171 * reschedule our watchdog timer
2172 */
2173 set_bit(__IGB_DOWN, &adapter->state);
2174
2175 /* disable receives in the hardware */
2176 rctl = rd32(E1000_RCTL);
2177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178 /* flush and sleep below */
2179
2180 igb_nfc_filter_exit(adapter);
2181
2182 netif_carrier_off(netdev);
2183 netif_tx_stop_all_queues(netdev);
2184
2185 /* disable transmits in the hardware */
2186 tctl = rd32(E1000_TCTL);
2187 tctl &= ~E1000_TCTL_EN;
2188 wr32(E1000_TCTL, tctl);
2189 /* flush both disables and wait for them to finish */
2190 wrfl();
2191 usleep_range(10000, 11000);
2192
2193 igb_irq_disable(adapter);
2194
2195 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196
2197 for (i = 0; i < adapter->num_q_vectors; i++) {
2198 if (adapter->q_vector[i]) {
2199 napi_synchronize(&adapter->q_vector[i]->napi);
2200 napi_disable(&adapter->q_vector[i]->napi);
2201 }
2202 }
2203
2204 del_timer_sync(&adapter->watchdog_timer);
2205 del_timer_sync(&adapter->phy_info_timer);
2206
2207 /* record the stats before reset*/
2208 spin_lock(&adapter->stats64_lock);
2209 igb_update_stats(adapter);
2210 spin_unlock(&adapter->stats64_lock);
2211
2212 adapter->link_speed = 0;
2213 adapter->link_duplex = 0;
2214
2215 if (!pci_channel_offline(adapter->pdev))
2216 igb_reset(adapter);
2217
2218 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2219 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220
2221 igb_clean_all_tx_rings(adapter);
2222 igb_clean_all_rx_rings(adapter);
2223 #ifdef CONFIG_IGB_DCA
2224
2225 /* since we reset the hardware DCA settings were cleared */
2226 igb_setup_dca(adapter);
2227 #endif
2228 }
2229
igb_reinit_locked(struct igb_adapter * adapter)2230 void igb_reinit_locked(struct igb_adapter *adapter)
2231 {
2232 WARN_ON(in_interrupt());
2233 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 usleep_range(1000, 2000);
2235 igb_down(adapter);
2236 igb_up(adapter);
2237 clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241 *
2242 * @adapter: adapter struct
2243 **/
igb_enable_mas(struct igb_adapter * adapter)2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 struct e1000_hw *hw = &adapter->hw;
2247 u32 connsw = rd32(E1000_CONNSW);
2248
2249 /* configure for SerDes media detect */
2250 if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 (!(connsw & E1000_CONNSW_SERDESD))) {
2252 connsw |= E1000_CONNSW_ENRGSRC;
2253 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 wr32(E1000_CONNSW, connsw);
2255 wrfl();
2256 }
2257 }
2258
igb_reset(struct igb_adapter * adapter)2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261 struct pci_dev *pdev = adapter->pdev;
2262 struct e1000_hw *hw = &adapter->hw;
2263 struct e1000_mac_info *mac = &hw->mac;
2264 struct e1000_fc_info *fc = &hw->fc;
2265 u32 pba, hwm;
2266
2267 /* Repartition Pba for greater than 9k mtu
2268 * To take effect CTRL.RST is required.
2269 */
2270 switch (mac->type) {
2271 case e1000_i350:
2272 case e1000_i354:
2273 case e1000_82580:
2274 pba = rd32(E1000_RXPBS);
2275 pba = igb_rxpbs_adjust_82580(pba);
2276 break;
2277 case e1000_82576:
2278 pba = rd32(E1000_RXPBS);
2279 pba &= E1000_RXPBS_SIZE_MASK_82576;
2280 break;
2281 case e1000_82575:
2282 case e1000_i210:
2283 case e1000_i211:
2284 default:
2285 pba = E1000_PBA_34K;
2286 break;
2287 }
2288
2289 if (mac->type == e1000_82575) {
2290 u32 min_rx_space, min_tx_space, needed_tx_space;
2291
2292 /* write Rx PBA so that hardware can report correct Tx PBA */
2293 wr32(E1000_PBA, pba);
2294
2295 /* To maintain wire speed transmits, the Tx FIFO should be
2296 * large enough to accommodate two full transmit packets,
2297 * rounded up to the next 1KB and expressed in KB. Likewise,
2298 * the Rx FIFO should be large enough to accommodate at least
2299 * one full receive packet and is similarly rounded up and
2300 * expressed in KB.
2301 */
2302 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303
2304 /* The Tx FIFO also stores 16 bytes of information about the Tx
2305 * but don't include Ethernet FCS because hardware appends it.
2306 * We only need to round down to the nearest 512 byte block
2307 * count since the value we care about is 2 frames, not 1.
2308 */
2309 min_tx_space = adapter->max_frame_size;
2310 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312
2313 /* upper 16 bits has Tx packet buffer allocation size in KB */
2314 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315
2316 /* If current Tx allocation is less than the min Tx FIFO size,
2317 * and the min Tx FIFO size is less than the current Rx FIFO
2318 * allocation, take space away from current Rx allocation.
2319 */
2320 if (needed_tx_space < pba) {
2321 pba -= needed_tx_space;
2322
2323 /* if short on Rx space, Rx wins and must trump Tx
2324 * adjustment
2325 */
2326 if (pba < min_rx_space)
2327 pba = min_rx_space;
2328 }
2329
2330 /* adjust PBA for jumbo frames */
2331 wr32(E1000_PBA, pba);
2332 }
2333
2334 /* flow control settings
2335 * The high water mark must be low enough to fit one full frame
2336 * after transmitting the pause frame. As such we must have enough
2337 * space to allow for us to complete our current transmit and then
2338 * receive the frame that is in progress from the link partner.
2339 * Set it to:
2340 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341 */
2342 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343
2344 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2345 fc->low_water = fc->high_water - 16;
2346 fc->pause_time = 0xFFFF;
2347 fc->send_xon = 1;
2348 fc->current_mode = fc->requested_mode;
2349
2350 /* disable receive for all VFs and wait one second */
2351 if (adapter->vfs_allocated_count) {
2352 int i;
2353
2354 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356
2357 /* ping all the active vfs to let them know we are going down */
2358 igb_ping_all_vfs(adapter);
2359
2360 /* disable transmits and receives */
2361 wr32(E1000_VFRE, 0);
2362 wr32(E1000_VFTE, 0);
2363 }
2364
2365 /* Allow time for pending master requests to run */
2366 hw->mac.ops.reset_hw(hw);
2367 wr32(E1000_WUC, 0);
2368
2369 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370 /* need to resetup here after media swap */
2371 adapter->ei.get_invariants(hw);
2372 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373 }
2374 if ((mac->type == e1000_82575) &&
2375 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376 igb_enable_mas(adapter);
2377 }
2378 if (hw->mac.ops.init_hw(hw))
2379 dev_err(&pdev->dev, "Hardware Error\n");
2380
2381 /* RAR registers were cleared during init_hw, clear mac table */
2382 igb_flush_mac_table(adapter);
2383 __dev_uc_unsync(adapter->netdev, NULL);
2384
2385 /* Recover default RAR entry */
2386 igb_set_default_mac_filter(adapter);
2387
2388 /* Flow control settings reset on hardware reset, so guarantee flow
2389 * control is off when forcing speed.
2390 */
2391 if (!hw->mac.autoneg)
2392 igb_force_mac_fc(hw);
2393
2394 igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396 /* Re-initialize the thermal sensor on i350 devices. */
2397 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399 /* If present, re-initialize the external thermal sensor
2400 * interface.
2401 */
2402 if (adapter->ets)
2403 mac->ops.init_thermal_sensor_thresh(hw);
2404 }
2405 }
2406 #endif
2407 /* Re-establish EEE setting */
2408 if (hw->phy.media_type == e1000_media_type_copper) {
2409 switch (mac->type) {
2410 case e1000_i350:
2411 case e1000_i210:
2412 case e1000_i211:
2413 igb_set_eee_i350(hw, true, true);
2414 break;
2415 case e1000_i354:
2416 igb_set_eee_i354(hw, true, true);
2417 break;
2418 default:
2419 break;
2420 }
2421 }
2422 if (!netif_running(adapter->netdev))
2423 igb_power_down_link(adapter);
2424
2425 igb_update_mng_vlan(adapter);
2426
2427 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429
2430 /* Re-enable PTP, where applicable. */
2431 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432 igb_ptp_reset(adapter);
2433
2434 igb_get_phy_info(hw);
2435 }
2436
igb_fix_features(struct net_device * netdev,netdev_features_t features)2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438 netdev_features_t features)
2439 {
2440 /* Since there is no support for separate Rx/Tx vlan accel
2441 * enable/disable make sure Tx flag is always in same state as Rx.
2442 */
2443 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444 features |= NETIF_F_HW_VLAN_CTAG_TX;
2445 else
2446 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447
2448 return features;
2449 }
2450
igb_set_features(struct net_device * netdev,netdev_features_t features)2451 static int igb_set_features(struct net_device *netdev,
2452 netdev_features_t features)
2453 {
2454 netdev_features_t changed = netdev->features ^ features;
2455 struct igb_adapter *adapter = netdev_priv(netdev);
2456
2457 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458 igb_vlan_mode(netdev, features);
2459
2460 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461 return 0;
2462
2463 if (!(features & NETIF_F_NTUPLE)) {
2464 struct hlist_node *node2;
2465 struct igb_nfc_filter *rule;
2466
2467 spin_lock(&adapter->nfc_lock);
2468 hlist_for_each_entry_safe(rule, node2,
2469 &adapter->nfc_filter_list, nfc_node) {
2470 igb_erase_filter(adapter, rule);
2471 hlist_del(&rule->nfc_node);
2472 kfree(rule);
2473 }
2474 spin_unlock(&adapter->nfc_lock);
2475 adapter->nfc_filter_count = 0;
2476 }
2477
2478 netdev->features = features;
2479
2480 if (netif_running(netdev))
2481 igb_reinit_locked(adapter);
2482 else
2483 igb_reset(adapter);
2484
2485 return 0;
2486 }
2487
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags)2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489 struct net_device *dev,
2490 const unsigned char *addr, u16 vid,
2491 u16 flags)
2492 {
2493 /* guarantee we can provide a unique filter for the unicast address */
2494 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495 struct igb_adapter *adapter = netdev_priv(dev);
2496 int vfn = adapter->vfs_allocated_count;
2497
2498 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499 return -ENOMEM;
2500 }
2501
2502 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504
2505 #define IGB_MAX_MAC_HDR_LEN 127
2506 #define IGB_MAX_NETWORK_HDR_LEN 511
2507
2508 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510 netdev_features_t features)
2511 {
2512 unsigned int network_hdr_len, mac_hdr_len;
2513
2514 /* Make certain the headers can be described by a context descriptor */
2515 mac_hdr_len = skb_network_header(skb) - skb->data;
2516 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517 return features & ~(NETIF_F_HW_CSUM |
2518 NETIF_F_SCTP_CRC |
2519 NETIF_F_HW_VLAN_CTAG_TX |
2520 NETIF_F_TSO |
2521 NETIF_F_TSO6);
2522
2523 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2525 return features & ~(NETIF_F_HW_CSUM |
2526 NETIF_F_SCTP_CRC |
2527 NETIF_F_TSO |
2528 NETIF_F_TSO6);
2529
2530 /* We can only support IPV4 TSO in tunnels if we can mangle the
2531 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532 */
2533 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534 features &= ~NETIF_F_TSO;
2535
2536 return features;
2537 }
2538
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541 if (!is_fqtss_enabled(adapter)) {
2542 enable_fqtss(adapter, true);
2543 return;
2544 }
2545
2546 igb_config_tx_modes(adapter, queue);
2547
2548 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549 enable_fqtss(adapter, false);
2550 }
2551
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553 struct tc_cbs_qopt_offload *qopt)
2554 {
2555 struct e1000_hw *hw = &adapter->hw;
2556 int err;
2557
2558 /* CBS offloading is only supported by i210 controller. */
2559 if (hw->mac.type != e1000_i210)
2560 return -EOPNOTSUPP;
2561
2562 /* CBS offloading is only supported by queue 0 and queue 1. */
2563 if (qopt->queue < 0 || qopt->queue > 1)
2564 return -EINVAL;
2565
2566 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567 qopt->idleslope, qopt->sendslope,
2568 qopt->hicredit, qopt->locredit);
2569 if (err)
2570 return err;
2571
2572 igb_offload_apply(adapter, qopt->queue);
2573
2574 return 0;
2575 }
2576
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579
igb_parse_cls_flower(struct igb_adapter * adapter,struct tc_cls_flower_offload * f,int traffic_class,struct igb_nfc_filter * input)2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581 struct tc_cls_flower_offload *f,
2582 int traffic_class,
2583 struct igb_nfc_filter *input)
2584 {
2585 struct netlink_ext_ack *extack = f->common.extack;
2586
2587 if (f->dissector->used_keys &
2588 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2589 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2590 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2591 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2592 NL_SET_ERR_MSG_MOD(extack,
2593 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2594 return -EOPNOTSUPP;
2595 }
2596
2597 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2598 struct flow_dissector_key_eth_addrs *key, *mask;
2599
2600 key = skb_flow_dissector_target(f->dissector,
2601 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2602 f->key);
2603 mask = skb_flow_dissector_target(f->dissector,
2604 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2605 f->mask);
2606
2607 if (!is_zero_ether_addr(mask->dst)) {
2608 if (!is_broadcast_ether_addr(mask->dst)) {
2609 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2610 return -EINVAL;
2611 }
2612
2613 input->filter.match_flags |=
2614 IGB_FILTER_FLAG_DST_MAC_ADDR;
2615 ether_addr_copy(input->filter.dst_addr, key->dst);
2616 }
2617
2618 if (!is_zero_ether_addr(mask->src)) {
2619 if (!is_broadcast_ether_addr(mask->src)) {
2620 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2621 return -EINVAL;
2622 }
2623
2624 input->filter.match_flags |=
2625 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2626 ether_addr_copy(input->filter.src_addr, key->src);
2627 }
2628 }
2629
2630 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2631 struct flow_dissector_key_basic *key, *mask;
2632
2633 key = skb_flow_dissector_target(f->dissector,
2634 FLOW_DISSECTOR_KEY_BASIC,
2635 f->key);
2636 mask = skb_flow_dissector_target(f->dissector,
2637 FLOW_DISSECTOR_KEY_BASIC,
2638 f->mask);
2639
2640 if (mask->n_proto) {
2641 if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2642 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2643 return -EINVAL;
2644 }
2645
2646 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2647 input->filter.etype = key->n_proto;
2648 }
2649 }
2650
2651 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2652 struct flow_dissector_key_vlan *key, *mask;
2653
2654 key = skb_flow_dissector_target(f->dissector,
2655 FLOW_DISSECTOR_KEY_VLAN,
2656 f->key);
2657 mask = skb_flow_dissector_target(f->dissector,
2658 FLOW_DISSECTOR_KEY_VLAN,
2659 f->mask);
2660
2661 if (mask->vlan_priority) {
2662 if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2663 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2664 return -EINVAL;
2665 }
2666
2667 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2668 input->filter.vlan_tci = key->vlan_priority;
2669 }
2670 }
2671
2672 input->action = traffic_class;
2673 input->cookie = f->cookie;
2674
2675 return 0;
2676 }
2677
igb_configure_clsflower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2678 static int igb_configure_clsflower(struct igb_adapter *adapter,
2679 struct tc_cls_flower_offload *cls_flower)
2680 {
2681 struct netlink_ext_ack *extack = cls_flower->common.extack;
2682 struct igb_nfc_filter *filter, *f;
2683 int err, tc;
2684
2685 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2686 if (tc < 0) {
2687 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2688 return -EINVAL;
2689 }
2690
2691 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2692 if (!filter)
2693 return -ENOMEM;
2694
2695 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2696 if (err < 0)
2697 goto err_parse;
2698
2699 spin_lock(&adapter->nfc_lock);
2700
2701 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2702 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703 err = -EEXIST;
2704 NL_SET_ERR_MSG_MOD(extack,
2705 "This filter is already set in ethtool");
2706 goto err_locked;
2707 }
2708 }
2709
2710 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2711 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2712 err = -EEXIST;
2713 NL_SET_ERR_MSG_MOD(extack,
2714 "This filter is already set in cls_flower");
2715 goto err_locked;
2716 }
2717 }
2718
2719 err = igb_add_filter(adapter, filter);
2720 if (err < 0) {
2721 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2722 goto err_locked;
2723 }
2724
2725 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2726
2727 spin_unlock(&adapter->nfc_lock);
2728
2729 return 0;
2730
2731 err_locked:
2732 spin_unlock(&adapter->nfc_lock);
2733
2734 err_parse:
2735 kfree(filter);
2736
2737 return err;
2738 }
2739
igb_delete_clsflower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2740 static int igb_delete_clsflower(struct igb_adapter *adapter,
2741 struct tc_cls_flower_offload *cls_flower)
2742 {
2743 struct igb_nfc_filter *filter;
2744 int err;
2745
2746 spin_lock(&adapter->nfc_lock);
2747
2748 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2749 if (filter->cookie == cls_flower->cookie)
2750 break;
2751
2752 if (!filter) {
2753 err = -ENOENT;
2754 goto out;
2755 }
2756
2757 err = igb_erase_filter(adapter, filter);
2758 if (err < 0)
2759 goto out;
2760
2761 hlist_del(&filter->nfc_node);
2762 kfree(filter);
2763
2764 out:
2765 spin_unlock(&adapter->nfc_lock);
2766
2767 return err;
2768 }
2769
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct tc_cls_flower_offload * cls_flower)2770 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2771 struct tc_cls_flower_offload *cls_flower)
2772 {
2773 switch (cls_flower->command) {
2774 case TC_CLSFLOWER_REPLACE:
2775 return igb_configure_clsflower(adapter, cls_flower);
2776 case TC_CLSFLOWER_DESTROY:
2777 return igb_delete_clsflower(adapter, cls_flower);
2778 case TC_CLSFLOWER_STATS:
2779 return -EOPNOTSUPP;
2780 default:
2781 return -EOPNOTSUPP;
2782 }
2783 }
2784
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2785 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2786 void *cb_priv)
2787 {
2788 struct igb_adapter *adapter = cb_priv;
2789
2790 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2791 return -EOPNOTSUPP;
2792
2793 switch (type) {
2794 case TC_SETUP_CLSFLOWER:
2795 return igb_setup_tc_cls_flower(adapter, type_data);
2796
2797 default:
2798 return -EOPNOTSUPP;
2799 }
2800 }
2801
igb_setup_tc_block(struct igb_adapter * adapter,struct tc_block_offload * f)2802 static int igb_setup_tc_block(struct igb_adapter *adapter,
2803 struct tc_block_offload *f)
2804 {
2805 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2806 return -EOPNOTSUPP;
2807
2808 switch (f->command) {
2809 case TC_BLOCK_BIND:
2810 return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2811 adapter, adapter, f->extack);
2812 case TC_BLOCK_UNBIND:
2813 tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2814 adapter);
2815 return 0;
2816 default:
2817 return -EOPNOTSUPP;
2818 }
2819 }
2820
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2821 static int igb_offload_txtime(struct igb_adapter *adapter,
2822 struct tc_etf_qopt_offload *qopt)
2823 {
2824 struct e1000_hw *hw = &adapter->hw;
2825 int err;
2826
2827 /* Launchtime offloading is only supported by i210 controller. */
2828 if (hw->mac.type != e1000_i210)
2829 return -EOPNOTSUPP;
2830
2831 /* Launchtime offloading is only supported by queues 0 and 1. */
2832 if (qopt->queue < 0 || qopt->queue > 1)
2833 return -EINVAL;
2834
2835 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2836 if (err)
2837 return err;
2838
2839 igb_offload_apply(adapter, qopt->queue);
2840
2841 return 0;
2842 }
2843
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2844 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2845 void *type_data)
2846 {
2847 struct igb_adapter *adapter = netdev_priv(dev);
2848
2849 switch (type) {
2850 case TC_SETUP_QDISC_CBS:
2851 return igb_offload_cbs(adapter, type_data);
2852 case TC_SETUP_BLOCK:
2853 return igb_setup_tc_block(adapter, type_data);
2854 case TC_SETUP_QDISC_ETF:
2855 return igb_offload_txtime(adapter, type_data);
2856
2857 default:
2858 return -EOPNOTSUPP;
2859 }
2860 }
2861
2862 static const struct net_device_ops igb_netdev_ops = {
2863 .ndo_open = igb_open,
2864 .ndo_stop = igb_close,
2865 .ndo_start_xmit = igb_xmit_frame,
2866 .ndo_get_stats64 = igb_get_stats64,
2867 .ndo_set_rx_mode = igb_set_rx_mode,
2868 .ndo_set_mac_address = igb_set_mac,
2869 .ndo_change_mtu = igb_change_mtu,
2870 .ndo_do_ioctl = igb_ioctl,
2871 .ndo_tx_timeout = igb_tx_timeout,
2872 .ndo_validate_addr = eth_validate_addr,
2873 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2874 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2875 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2876 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2877 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2878 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2879 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2880 .ndo_get_vf_config = igb_ndo_get_vf_config,
2881 .ndo_fix_features = igb_fix_features,
2882 .ndo_set_features = igb_set_features,
2883 .ndo_fdb_add = igb_ndo_fdb_add,
2884 .ndo_features_check = igb_features_check,
2885 .ndo_setup_tc = igb_setup_tc,
2886 };
2887
2888 /**
2889 * igb_set_fw_version - Configure version string for ethtool
2890 * @adapter: adapter struct
2891 **/
igb_set_fw_version(struct igb_adapter * adapter)2892 void igb_set_fw_version(struct igb_adapter *adapter)
2893 {
2894 struct e1000_hw *hw = &adapter->hw;
2895 struct e1000_fw_version fw;
2896
2897 igb_get_fw_version(hw, &fw);
2898
2899 switch (hw->mac.type) {
2900 case e1000_i210:
2901 case e1000_i211:
2902 if (!(igb_get_flash_presence_i210(hw))) {
2903 snprintf(adapter->fw_version,
2904 sizeof(adapter->fw_version),
2905 "%2d.%2d-%d",
2906 fw.invm_major, fw.invm_minor,
2907 fw.invm_img_type);
2908 break;
2909 }
2910 /* fall through */
2911 default:
2912 /* if option is rom valid, display its version too */
2913 if (fw.or_valid) {
2914 snprintf(adapter->fw_version,
2915 sizeof(adapter->fw_version),
2916 "%d.%d, 0x%08x, %d.%d.%d",
2917 fw.eep_major, fw.eep_minor, fw.etrack_id,
2918 fw.or_major, fw.or_build, fw.or_patch);
2919 /* no option rom */
2920 } else if (fw.etrack_id != 0X0000) {
2921 snprintf(adapter->fw_version,
2922 sizeof(adapter->fw_version),
2923 "%d.%d, 0x%08x",
2924 fw.eep_major, fw.eep_minor, fw.etrack_id);
2925 } else {
2926 snprintf(adapter->fw_version,
2927 sizeof(adapter->fw_version),
2928 "%d.%d.%d",
2929 fw.eep_major, fw.eep_minor, fw.eep_build);
2930 }
2931 break;
2932 }
2933 }
2934
2935 /**
2936 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2937 *
2938 * @adapter: adapter struct
2939 **/
igb_init_mas(struct igb_adapter * adapter)2940 static void igb_init_mas(struct igb_adapter *adapter)
2941 {
2942 struct e1000_hw *hw = &adapter->hw;
2943 u16 eeprom_data;
2944
2945 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2946 switch (hw->bus.func) {
2947 case E1000_FUNC_0:
2948 if (eeprom_data & IGB_MAS_ENABLE_0) {
2949 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2950 netdev_info(adapter->netdev,
2951 "MAS: Enabling Media Autosense for port %d\n",
2952 hw->bus.func);
2953 }
2954 break;
2955 case E1000_FUNC_1:
2956 if (eeprom_data & IGB_MAS_ENABLE_1) {
2957 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2958 netdev_info(adapter->netdev,
2959 "MAS: Enabling Media Autosense for port %d\n",
2960 hw->bus.func);
2961 }
2962 break;
2963 case E1000_FUNC_2:
2964 if (eeprom_data & IGB_MAS_ENABLE_2) {
2965 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2966 netdev_info(adapter->netdev,
2967 "MAS: Enabling Media Autosense for port %d\n",
2968 hw->bus.func);
2969 }
2970 break;
2971 case E1000_FUNC_3:
2972 if (eeprom_data & IGB_MAS_ENABLE_3) {
2973 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2974 netdev_info(adapter->netdev,
2975 "MAS: Enabling Media Autosense for port %d\n",
2976 hw->bus.func);
2977 }
2978 break;
2979 default:
2980 /* Shouldn't get here */
2981 netdev_err(adapter->netdev,
2982 "MAS: Invalid port configuration, returning\n");
2983 break;
2984 }
2985 }
2986
2987 /**
2988 * igb_init_i2c - Init I2C interface
2989 * @adapter: pointer to adapter structure
2990 **/
igb_init_i2c(struct igb_adapter * adapter)2991 static s32 igb_init_i2c(struct igb_adapter *adapter)
2992 {
2993 s32 status = 0;
2994
2995 /* I2C interface supported on i350 devices */
2996 if (adapter->hw.mac.type != e1000_i350)
2997 return 0;
2998
2999 /* Initialize the i2c bus which is controlled by the registers.
3000 * This bus will use the i2c_algo_bit structue that implements
3001 * the protocol through toggling of the 4 bits in the register.
3002 */
3003 adapter->i2c_adap.owner = THIS_MODULE;
3004 adapter->i2c_algo = igb_i2c_algo;
3005 adapter->i2c_algo.data = adapter;
3006 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3007 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3008 strlcpy(adapter->i2c_adap.name, "igb BB",
3009 sizeof(adapter->i2c_adap.name));
3010 status = i2c_bit_add_bus(&adapter->i2c_adap);
3011 return status;
3012 }
3013
3014 /**
3015 * igb_probe - Device Initialization Routine
3016 * @pdev: PCI device information struct
3017 * @ent: entry in igb_pci_tbl
3018 *
3019 * Returns 0 on success, negative on failure
3020 *
3021 * igb_probe initializes an adapter identified by a pci_dev structure.
3022 * The OS initialization, configuring of the adapter private structure,
3023 * and a hardware reset occur.
3024 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3025 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3026 {
3027 struct net_device *netdev;
3028 struct igb_adapter *adapter;
3029 struct e1000_hw *hw;
3030 u16 eeprom_data = 0;
3031 s32 ret_val;
3032 static int global_quad_port_a; /* global quad port a indication */
3033 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3034 int err, pci_using_dac;
3035 u8 part_str[E1000_PBANUM_LENGTH];
3036
3037 /* Catch broken hardware that put the wrong VF device ID in
3038 * the PCIe SR-IOV capability.
3039 */
3040 if (pdev->is_virtfn) {
3041 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3042 pci_name(pdev), pdev->vendor, pdev->device);
3043 return -EINVAL;
3044 }
3045
3046 err = pci_enable_device_mem(pdev);
3047 if (err)
3048 return err;
3049
3050 pci_using_dac = 0;
3051 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3052 if (!err) {
3053 pci_using_dac = 1;
3054 } else {
3055 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3056 if (err) {
3057 dev_err(&pdev->dev,
3058 "No usable DMA configuration, aborting\n");
3059 goto err_dma;
3060 }
3061 }
3062
3063 err = pci_request_mem_regions(pdev, igb_driver_name);
3064 if (err)
3065 goto err_pci_reg;
3066
3067 pci_enable_pcie_error_reporting(pdev);
3068
3069 pci_set_master(pdev);
3070 pci_save_state(pdev);
3071
3072 err = -ENOMEM;
3073 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3074 IGB_MAX_TX_QUEUES);
3075 if (!netdev)
3076 goto err_alloc_etherdev;
3077
3078 SET_NETDEV_DEV(netdev, &pdev->dev);
3079
3080 pci_set_drvdata(pdev, netdev);
3081 adapter = netdev_priv(netdev);
3082 adapter->netdev = netdev;
3083 adapter->pdev = pdev;
3084 hw = &adapter->hw;
3085 hw->back = adapter;
3086 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3087
3088 err = -EIO;
3089 adapter->io_addr = pci_iomap(pdev, 0, 0);
3090 if (!adapter->io_addr)
3091 goto err_ioremap;
3092 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3093 hw->hw_addr = adapter->io_addr;
3094
3095 netdev->netdev_ops = &igb_netdev_ops;
3096 igb_set_ethtool_ops(netdev);
3097 netdev->watchdog_timeo = 5 * HZ;
3098
3099 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3100
3101 netdev->mem_start = pci_resource_start(pdev, 0);
3102 netdev->mem_end = pci_resource_end(pdev, 0);
3103
3104 /* PCI config space info */
3105 hw->vendor_id = pdev->vendor;
3106 hw->device_id = pdev->device;
3107 hw->revision_id = pdev->revision;
3108 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3109 hw->subsystem_device_id = pdev->subsystem_device;
3110
3111 /* Copy the default MAC, PHY and NVM function pointers */
3112 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3113 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3114 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3115 /* Initialize skew-specific constants */
3116 err = ei->get_invariants(hw);
3117 if (err)
3118 goto err_sw_init;
3119
3120 /* setup the private structure */
3121 err = igb_sw_init(adapter);
3122 if (err)
3123 goto err_sw_init;
3124
3125 igb_get_bus_info_pcie(hw);
3126
3127 hw->phy.autoneg_wait_to_complete = false;
3128
3129 /* Copper options */
3130 if (hw->phy.media_type == e1000_media_type_copper) {
3131 hw->phy.mdix = AUTO_ALL_MODES;
3132 hw->phy.disable_polarity_correction = false;
3133 hw->phy.ms_type = e1000_ms_hw_default;
3134 }
3135
3136 if (igb_check_reset_block(hw))
3137 dev_info(&pdev->dev,
3138 "PHY reset is blocked due to SOL/IDER session.\n");
3139
3140 /* features is initialized to 0 in allocation, it might have bits
3141 * set by igb_sw_init so we should use an or instead of an
3142 * assignment.
3143 */
3144 netdev->features |= NETIF_F_SG |
3145 NETIF_F_TSO |
3146 NETIF_F_TSO6 |
3147 NETIF_F_RXHASH |
3148 NETIF_F_RXCSUM |
3149 NETIF_F_HW_CSUM;
3150
3151 if (hw->mac.type >= e1000_82576)
3152 netdev->features |= NETIF_F_SCTP_CRC;
3153
3154 if (hw->mac.type >= e1000_i350)
3155 netdev->features |= NETIF_F_HW_TC;
3156
3157 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3158 NETIF_F_GSO_GRE_CSUM | \
3159 NETIF_F_GSO_IPXIP4 | \
3160 NETIF_F_GSO_IPXIP6 | \
3161 NETIF_F_GSO_UDP_TUNNEL | \
3162 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3163
3164 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3165 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3166
3167 /* copy netdev features into list of user selectable features */
3168 netdev->hw_features |= netdev->features |
3169 NETIF_F_HW_VLAN_CTAG_RX |
3170 NETIF_F_HW_VLAN_CTAG_TX |
3171 NETIF_F_RXALL;
3172
3173 if (hw->mac.type >= e1000_i350)
3174 netdev->hw_features |= NETIF_F_NTUPLE;
3175
3176 if (pci_using_dac)
3177 netdev->features |= NETIF_F_HIGHDMA;
3178
3179 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3180 netdev->mpls_features |= NETIF_F_HW_CSUM;
3181 netdev->hw_enc_features |= netdev->vlan_features;
3182
3183 /* set this bit last since it cannot be part of vlan_features */
3184 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3185 NETIF_F_HW_VLAN_CTAG_RX |
3186 NETIF_F_HW_VLAN_CTAG_TX;
3187
3188 netdev->priv_flags |= IFF_SUPP_NOFCS;
3189
3190 netdev->priv_flags |= IFF_UNICAST_FLT;
3191
3192 /* MTU range: 68 - 9216 */
3193 netdev->min_mtu = ETH_MIN_MTU;
3194 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3195
3196 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3197
3198 /* before reading the NVM, reset the controller to put the device in a
3199 * known good starting state
3200 */
3201 hw->mac.ops.reset_hw(hw);
3202
3203 /* make sure the NVM is good , i211/i210 parts can have special NVM
3204 * that doesn't contain a checksum
3205 */
3206 switch (hw->mac.type) {
3207 case e1000_i210:
3208 case e1000_i211:
3209 if (igb_get_flash_presence_i210(hw)) {
3210 if (hw->nvm.ops.validate(hw) < 0) {
3211 dev_err(&pdev->dev,
3212 "The NVM Checksum Is Not Valid\n");
3213 err = -EIO;
3214 goto err_eeprom;
3215 }
3216 }
3217 break;
3218 default:
3219 if (hw->nvm.ops.validate(hw) < 0) {
3220 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3221 err = -EIO;
3222 goto err_eeprom;
3223 }
3224 break;
3225 }
3226
3227 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3228 /* copy the MAC address out of the NVM */
3229 if (hw->mac.ops.read_mac_addr(hw))
3230 dev_err(&pdev->dev, "NVM Read Error\n");
3231 }
3232
3233 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3234
3235 if (!is_valid_ether_addr(netdev->dev_addr)) {
3236 dev_err(&pdev->dev, "Invalid MAC Address\n");
3237 err = -EIO;
3238 goto err_eeprom;
3239 }
3240
3241 igb_set_default_mac_filter(adapter);
3242
3243 /* get firmware version for ethtool -i */
3244 igb_set_fw_version(adapter);
3245
3246 /* configure RXPBSIZE and TXPBSIZE */
3247 if (hw->mac.type == e1000_i210) {
3248 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3249 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3250 }
3251
3252 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3253 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3254
3255 INIT_WORK(&adapter->reset_task, igb_reset_task);
3256 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3257
3258 /* Initialize link properties that are user-changeable */
3259 adapter->fc_autoneg = true;
3260 hw->mac.autoneg = true;
3261 hw->phy.autoneg_advertised = 0x2f;
3262
3263 hw->fc.requested_mode = e1000_fc_default;
3264 hw->fc.current_mode = e1000_fc_default;
3265
3266 igb_validate_mdi_setting(hw);
3267
3268 /* By default, support wake on port A */
3269 if (hw->bus.func == 0)
3270 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3271
3272 /* Check the NVM for wake support on non-port A ports */
3273 if (hw->mac.type >= e1000_82580)
3274 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3275 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3276 &eeprom_data);
3277 else if (hw->bus.func == 1)
3278 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3279
3280 if (eeprom_data & IGB_EEPROM_APME)
3281 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3282
3283 /* now that we have the eeprom settings, apply the special cases where
3284 * the eeprom may be wrong or the board simply won't support wake on
3285 * lan on a particular port
3286 */
3287 switch (pdev->device) {
3288 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3289 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3290 break;
3291 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3292 case E1000_DEV_ID_82576_FIBER:
3293 case E1000_DEV_ID_82576_SERDES:
3294 /* Wake events only supported on port A for dual fiber
3295 * regardless of eeprom setting
3296 */
3297 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3298 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3299 break;
3300 case E1000_DEV_ID_82576_QUAD_COPPER:
3301 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3302 /* if quad port adapter, disable WoL on all but port A */
3303 if (global_quad_port_a != 0)
3304 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3305 else
3306 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3307 /* Reset for multiple quad port adapters */
3308 if (++global_quad_port_a == 4)
3309 global_quad_port_a = 0;
3310 break;
3311 default:
3312 /* If the device can't wake, don't set software support */
3313 if (!device_can_wakeup(&adapter->pdev->dev))
3314 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3315 }
3316
3317 /* initialize the wol settings based on the eeprom settings */
3318 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3319 adapter->wol |= E1000_WUFC_MAG;
3320
3321 /* Some vendors want WoL disabled by default, but still supported */
3322 if ((hw->mac.type == e1000_i350) &&
3323 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3324 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3325 adapter->wol = 0;
3326 }
3327
3328 /* Some vendors want the ability to Use the EEPROM setting as
3329 * enable/disable only, and not for capability
3330 */
3331 if (((hw->mac.type == e1000_i350) ||
3332 (hw->mac.type == e1000_i354)) &&
3333 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3334 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3335 adapter->wol = 0;
3336 }
3337 if (hw->mac.type == e1000_i350) {
3338 if (((pdev->subsystem_device == 0x5001) ||
3339 (pdev->subsystem_device == 0x5002)) &&
3340 (hw->bus.func == 0)) {
3341 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3342 adapter->wol = 0;
3343 }
3344 if (pdev->subsystem_device == 0x1F52)
3345 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3346 }
3347
3348 device_set_wakeup_enable(&adapter->pdev->dev,
3349 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3350
3351 /* reset the hardware with the new settings */
3352 igb_reset(adapter);
3353
3354 /* Init the I2C interface */
3355 err = igb_init_i2c(adapter);
3356 if (err) {
3357 dev_err(&pdev->dev, "failed to init i2c interface\n");
3358 goto err_eeprom;
3359 }
3360
3361 /* let the f/w know that the h/w is now under the control of the
3362 * driver.
3363 */
3364 igb_get_hw_control(adapter);
3365
3366 strcpy(netdev->name, "eth%d");
3367 err = register_netdev(netdev);
3368 if (err)
3369 goto err_register;
3370
3371 /* carrier off reporting is important to ethtool even BEFORE open */
3372 netif_carrier_off(netdev);
3373
3374 #ifdef CONFIG_IGB_DCA
3375 if (dca_add_requester(&pdev->dev) == 0) {
3376 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3377 dev_info(&pdev->dev, "DCA enabled\n");
3378 igb_setup_dca(adapter);
3379 }
3380
3381 #endif
3382 #ifdef CONFIG_IGB_HWMON
3383 /* Initialize the thermal sensor on i350 devices. */
3384 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3385 u16 ets_word;
3386
3387 /* Read the NVM to determine if this i350 device supports an
3388 * external thermal sensor.
3389 */
3390 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3391 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3392 adapter->ets = true;
3393 else
3394 adapter->ets = false;
3395 if (igb_sysfs_init(adapter))
3396 dev_err(&pdev->dev,
3397 "failed to allocate sysfs resources\n");
3398 } else {
3399 adapter->ets = false;
3400 }
3401 #endif
3402 /* Check if Media Autosense is enabled */
3403 adapter->ei = *ei;
3404 if (hw->dev_spec._82575.mas_capable)
3405 igb_init_mas(adapter);
3406
3407 /* do hw tstamp init after resetting */
3408 igb_ptp_init(adapter);
3409
3410 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3411 /* print bus type/speed/width info, not applicable to i354 */
3412 if (hw->mac.type != e1000_i354) {
3413 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3414 netdev->name,
3415 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3416 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3417 "unknown"),
3418 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3419 "Width x4" :
3420 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3421 "Width x2" :
3422 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3423 "Width x1" : "unknown"), netdev->dev_addr);
3424 }
3425
3426 if ((hw->mac.type >= e1000_i210 ||
3427 igb_get_flash_presence_i210(hw))) {
3428 ret_val = igb_read_part_string(hw, part_str,
3429 E1000_PBANUM_LENGTH);
3430 } else {
3431 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3432 }
3433
3434 if (ret_val)
3435 strcpy(part_str, "Unknown");
3436 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3437 dev_info(&pdev->dev,
3438 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3439 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3440 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3441 adapter->num_rx_queues, adapter->num_tx_queues);
3442 if (hw->phy.media_type == e1000_media_type_copper) {
3443 switch (hw->mac.type) {
3444 case e1000_i350:
3445 case e1000_i210:
3446 case e1000_i211:
3447 /* Enable EEE for internal copper PHY devices */
3448 err = igb_set_eee_i350(hw, true, true);
3449 if ((!err) &&
3450 (!hw->dev_spec._82575.eee_disable)) {
3451 adapter->eee_advert =
3452 MDIO_EEE_100TX | MDIO_EEE_1000T;
3453 adapter->flags |= IGB_FLAG_EEE;
3454 }
3455 break;
3456 case e1000_i354:
3457 if ((rd32(E1000_CTRL_EXT) &
3458 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3459 err = igb_set_eee_i354(hw, true, true);
3460 if ((!err) &&
3461 (!hw->dev_spec._82575.eee_disable)) {
3462 adapter->eee_advert =
3463 MDIO_EEE_100TX | MDIO_EEE_1000T;
3464 adapter->flags |= IGB_FLAG_EEE;
3465 }
3466 }
3467 break;
3468 default:
3469 break;
3470 }
3471 }
3472
3473 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3474
3475 pm_runtime_put_noidle(&pdev->dev);
3476 return 0;
3477
3478 err_register:
3479 igb_release_hw_control(adapter);
3480 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3481 err_eeprom:
3482 if (!igb_check_reset_block(hw))
3483 igb_reset_phy(hw);
3484
3485 if (hw->flash_address)
3486 iounmap(hw->flash_address);
3487 err_sw_init:
3488 kfree(adapter->mac_table);
3489 kfree(adapter->shadow_vfta);
3490 igb_clear_interrupt_scheme(adapter);
3491 #ifdef CONFIG_PCI_IOV
3492 igb_disable_sriov(pdev);
3493 #endif
3494 pci_iounmap(pdev, adapter->io_addr);
3495 err_ioremap:
3496 free_netdev(netdev);
3497 err_alloc_etherdev:
3498 pci_release_mem_regions(pdev);
3499 err_pci_reg:
3500 err_dma:
3501 pci_disable_device(pdev);
3502 return err;
3503 }
3504
3505 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3506 static int igb_disable_sriov(struct pci_dev *pdev)
3507 {
3508 struct net_device *netdev = pci_get_drvdata(pdev);
3509 struct igb_adapter *adapter = netdev_priv(netdev);
3510 struct e1000_hw *hw = &adapter->hw;
3511
3512 /* reclaim resources allocated to VFs */
3513 if (adapter->vf_data) {
3514 /* disable iov and allow time for transactions to clear */
3515 if (pci_vfs_assigned(pdev)) {
3516 dev_warn(&pdev->dev,
3517 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3518 return -EPERM;
3519 } else {
3520 pci_disable_sriov(pdev);
3521 msleep(500);
3522 }
3523
3524 kfree(adapter->vf_mac_list);
3525 adapter->vf_mac_list = NULL;
3526 kfree(adapter->vf_data);
3527 adapter->vf_data = NULL;
3528 adapter->vfs_allocated_count = 0;
3529 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3530 wrfl();
3531 msleep(100);
3532 dev_info(&pdev->dev, "IOV Disabled\n");
3533
3534 /* Re-enable DMA Coalescing flag since IOV is turned off */
3535 adapter->flags |= IGB_FLAG_DMAC;
3536 }
3537
3538 return 0;
3539 }
3540
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3541 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3542 {
3543 struct net_device *netdev = pci_get_drvdata(pdev);
3544 struct igb_adapter *adapter = netdev_priv(netdev);
3545 int old_vfs = pci_num_vf(pdev);
3546 struct vf_mac_filter *mac_list;
3547 int err = 0;
3548 int num_vf_mac_filters, i;
3549
3550 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3551 err = -EPERM;
3552 goto out;
3553 }
3554 if (!num_vfs)
3555 goto out;
3556
3557 if (old_vfs) {
3558 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3559 old_vfs, max_vfs);
3560 adapter->vfs_allocated_count = old_vfs;
3561 } else
3562 adapter->vfs_allocated_count = num_vfs;
3563
3564 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3565 sizeof(struct vf_data_storage), GFP_KERNEL);
3566
3567 /* if allocation failed then we do not support SR-IOV */
3568 if (!adapter->vf_data) {
3569 adapter->vfs_allocated_count = 0;
3570 err = -ENOMEM;
3571 goto out;
3572 }
3573
3574 /* Due to the limited number of RAR entries calculate potential
3575 * number of MAC filters available for the VFs. Reserve entries
3576 * for PF default MAC, PF MAC filters and at least one RAR entry
3577 * for each VF for VF MAC.
3578 */
3579 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3580 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3581 adapter->vfs_allocated_count);
3582
3583 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3584 sizeof(struct vf_mac_filter),
3585 GFP_KERNEL);
3586
3587 mac_list = adapter->vf_mac_list;
3588 INIT_LIST_HEAD(&adapter->vf_macs.l);
3589
3590 if (adapter->vf_mac_list) {
3591 /* Initialize list of VF MAC filters */
3592 for (i = 0; i < num_vf_mac_filters; i++) {
3593 mac_list->vf = -1;
3594 mac_list->free = true;
3595 list_add(&mac_list->l, &adapter->vf_macs.l);
3596 mac_list++;
3597 }
3598 } else {
3599 /* If we could not allocate memory for the VF MAC filters
3600 * we can continue without this feature but warn user.
3601 */
3602 dev_err(&pdev->dev,
3603 "Unable to allocate memory for VF MAC filter list\n");
3604 }
3605
3606 /* only call pci_enable_sriov() if no VFs are allocated already */
3607 if (!old_vfs) {
3608 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3609 if (err)
3610 goto err_out;
3611 }
3612 dev_info(&pdev->dev, "%d VFs allocated\n",
3613 adapter->vfs_allocated_count);
3614 for (i = 0; i < adapter->vfs_allocated_count; i++)
3615 igb_vf_configure(adapter, i);
3616
3617 /* DMA Coalescing is not supported in IOV mode. */
3618 adapter->flags &= ~IGB_FLAG_DMAC;
3619 goto out;
3620
3621 err_out:
3622 kfree(adapter->vf_mac_list);
3623 adapter->vf_mac_list = NULL;
3624 kfree(adapter->vf_data);
3625 adapter->vf_data = NULL;
3626 adapter->vfs_allocated_count = 0;
3627 out:
3628 return err;
3629 }
3630
3631 #endif
3632 /**
3633 * igb_remove_i2c - Cleanup I2C interface
3634 * @adapter: pointer to adapter structure
3635 **/
igb_remove_i2c(struct igb_adapter * adapter)3636 static void igb_remove_i2c(struct igb_adapter *adapter)
3637 {
3638 /* free the adapter bus structure */
3639 i2c_del_adapter(&adapter->i2c_adap);
3640 }
3641
3642 /**
3643 * igb_remove - Device Removal Routine
3644 * @pdev: PCI device information struct
3645 *
3646 * igb_remove is called by the PCI subsystem to alert the driver
3647 * that it should release a PCI device. The could be caused by a
3648 * Hot-Plug event, or because the driver is going to be removed from
3649 * memory.
3650 **/
igb_remove(struct pci_dev * pdev)3651 static void igb_remove(struct pci_dev *pdev)
3652 {
3653 struct net_device *netdev = pci_get_drvdata(pdev);
3654 struct igb_adapter *adapter = netdev_priv(netdev);
3655 struct e1000_hw *hw = &adapter->hw;
3656
3657 pm_runtime_get_noresume(&pdev->dev);
3658 #ifdef CONFIG_IGB_HWMON
3659 igb_sysfs_exit(adapter);
3660 #endif
3661 igb_remove_i2c(adapter);
3662 igb_ptp_stop(adapter);
3663 /* The watchdog timer may be rescheduled, so explicitly
3664 * disable watchdog from being rescheduled.
3665 */
3666 set_bit(__IGB_DOWN, &adapter->state);
3667 del_timer_sync(&adapter->watchdog_timer);
3668 del_timer_sync(&adapter->phy_info_timer);
3669
3670 cancel_work_sync(&adapter->reset_task);
3671 cancel_work_sync(&adapter->watchdog_task);
3672
3673 #ifdef CONFIG_IGB_DCA
3674 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3675 dev_info(&pdev->dev, "DCA disabled\n");
3676 dca_remove_requester(&pdev->dev);
3677 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3678 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3679 }
3680 #endif
3681
3682 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3683 * would have already happened in close and is redundant.
3684 */
3685 igb_release_hw_control(adapter);
3686
3687 #ifdef CONFIG_PCI_IOV
3688 igb_disable_sriov(pdev);
3689 #endif
3690
3691 unregister_netdev(netdev);
3692
3693 igb_clear_interrupt_scheme(adapter);
3694
3695 pci_iounmap(pdev, adapter->io_addr);
3696 if (hw->flash_address)
3697 iounmap(hw->flash_address);
3698 pci_release_mem_regions(pdev);
3699
3700 kfree(adapter->mac_table);
3701 kfree(adapter->shadow_vfta);
3702 free_netdev(netdev);
3703
3704 pci_disable_pcie_error_reporting(pdev);
3705
3706 pci_disable_device(pdev);
3707 }
3708
3709 /**
3710 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3711 * @adapter: board private structure to initialize
3712 *
3713 * This function initializes the vf specific data storage and then attempts to
3714 * allocate the VFs. The reason for ordering it this way is because it is much
3715 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3716 * the memory for the VFs.
3717 **/
igb_probe_vfs(struct igb_adapter * adapter)3718 static void igb_probe_vfs(struct igb_adapter *adapter)
3719 {
3720 #ifdef CONFIG_PCI_IOV
3721 struct pci_dev *pdev = adapter->pdev;
3722 struct e1000_hw *hw = &adapter->hw;
3723
3724 /* Virtualization features not supported on i210 family. */
3725 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3726 return;
3727
3728 /* Of the below we really only want the effect of getting
3729 * IGB_FLAG_HAS_MSIX set (if available), without which
3730 * igb_enable_sriov() has no effect.
3731 */
3732 igb_set_interrupt_capability(adapter, true);
3733 igb_reset_interrupt_capability(adapter);
3734
3735 pci_sriov_set_totalvfs(pdev, 7);
3736 igb_enable_sriov(pdev, max_vfs);
3737
3738 #endif /* CONFIG_PCI_IOV */
3739 }
3740
igb_get_max_rss_queues(struct igb_adapter * adapter)3741 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3742 {
3743 struct e1000_hw *hw = &adapter->hw;
3744 unsigned int max_rss_queues;
3745
3746 /* Determine the maximum number of RSS queues supported. */
3747 switch (hw->mac.type) {
3748 case e1000_i211:
3749 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3750 break;
3751 case e1000_82575:
3752 case e1000_i210:
3753 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3754 break;
3755 case e1000_i350:
3756 /* I350 cannot do RSS and SR-IOV at the same time */
3757 if (!!adapter->vfs_allocated_count) {
3758 max_rss_queues = 1;
3759 break;
3760 }
3761 /* fall through */
3762 case e1000_82576:
3763 if (!!adapter->vfs_allocated_count) {
3764 max_rss_queues = 2;
3765 break;
3766 }
3767 /* fall through */
3768 case e1000_82580:
3769 case e1000_i354:
3770 default:
3771 max_rss_queues = IGB_MAX_RX_QUEUES;
3772 break;
3773 }
3774
3775 return max_rss_queues;
3776 }
3777
igb_init_queue_configuration(struct igb_adapter * adapter)3778 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3779 {
3780 u32 max_rss_queues;
3781
3782 max_rss_queues = igb_get_max_rss_queues(adapter);
3783 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3784
3785 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3786 }
3787
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3788 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3789 const u32 max_rss_queues)
3790 {
3791 struct e1000_hw *hw = &adapter->hw;
3792
3793 /* Determine if we need to pair queues. */
3794 switch (hw->mac.type) {
3795 case e1000_82575:
3796 case e1000_i211:
3797 /* Device supports enough interrupts without queue pairing. */
3798 break;
3799 case e1000_82576:
3800 case e1000_82580:
3801 case e1000_i350:
3802 case e1000_i354:
3803 case e1000_i210:
3804 default:
3805 /* If rss_queues > half of max_rss_queues, pair the queues in
3806 * order to conserve interrupts due to limited supply.
3807 */
3808 if (adapter->rss_queues > (max_rss_queues / 2))
3809 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3810 else
3811 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3812 break;
3813 }
3814 }
3815
3816 /**
3817 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3818 * @adapter: board private structure to initialize
3819 *
3820 * igb_sw_init initializes the Adapter private data structure.
3821 * Fields are initialized based on PCI device information and
3822 * OS network device settings (MTU size).
3823 **/
igb_sw_init(struct igb_adapter * adapter)3824 static int igb_sw_init(struct igb_adapter *adapter)
3825 {
3826 struct e1000_hw *hw = &adapter->hw;
3827 struct net_device *netdev = adapter->netdev;
3828 struct pci_dev *pdev = adapter->pdev;
3829
3830 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3831
3832 /* set default ring sizes */
3833 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3834 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3835
3836 /* set default ITR values */
3837 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3838 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3839
3840 /* set default work limits */
3841 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3842
3843 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3844 VLAN_HLEN;
3845 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3846
3847 spin_lock_init(&adapter->nfc_lock);
3848 spin_lock_init(&adapter->stats64_lock);
3849 #ifdef CONFIG_PCI_IOV
3850 switch (hw->mac.type) {
3851 case e1000_82576:
3852 case e1000_i350:
3853 if (max_vfs > 7) {
3854 dev_warn(&pdev->dev,
3855 "Maximum of 7 VFs per PF, using max\n");
3856 max_vfs = adapter->vfs_allocated_count = 7;
3857 } else
3858 adapter->vfs_allocated_count = max_vfs;
3859 if (adapter->vfs_allocated_count)
3860 dev_warn(&pdev->dev,
3861 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3862 break;
3863 default:
3864 break;
3865 }
3866 #endif /* CONFIG_PCI_IOV */
3867
3868 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3869 adapter->flags |= IGB_FLAG_HAS_MSIX;
3870
3871 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3872 sizeof(struct igb_mac_addr),
3873 GFP_KERNEL);
3874 if (!adapter->mac_table)
3875 return -ENOMEM;
3876
3877 igb_probe_vfs(adapter);
3878
3879 igb_init_queue_configuration(adapter);
3880
3881 /* Setup and initialize a copy of the hw vlan table array */
3882 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3883 GFP_KERNEL);
3884 if (!adapter->shadow_vfta)
3885 return -ENOMEM;
3886
3887 /* This call may decrease the number of queues */
3888 if (igb_init_interrupt_scheme(adapter, true)) {
3889 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3890 return -ENOMEM;
3891 }
3892
3893 /* Explicitly disable IRQ since the NIC can be in any state. */
3894 igb_irq_disable(adapter);
3895
3896 if (hw->mac.type >= e1000_i350)
3897 adapter->flags &= ~IGB_FLAG_DMAC;
3898
3899 set_bit(__IGB_DOWN, &adapter->state);
3900 return 0;
3901 }
3902
3903 /**
3904 * igb_open - Called when a network interface is made active
3905 * @netdev: network interface device structure
3906 *
3907 * Returns 0 on success, negative value on failure
3908 *
3909 * The open entry point is called when a network interface is made
3910 * active by the system (IFF_UP). At this point all resources needed
3911 * for transmit and receive operations are allocated, the interrupt
3912 * handler is registered with the OS, the watchdog timer is started,
3913 * and the stack is notified that the interface is ready.
3914 **/
__igb_open(struct net_device * netdev,bool resuming)3915 static int __igb_open(struct net_device *netdev, bool resuming)
3916 {
3917 struct igb_adapter *adapter = netdev_priv(netdev);
3918 struct e1000_hw *hw = &adapter->hw;
3919 struct pci_dev *pdev = adapter->pdev;
3920 int err;
3921 int i;
3922
3923 /* disallow open during test */
3924 if (test_bit(__IGB_TESTING, &adapter->state)) {
3925 WARN_ON(resuming);
3926 return -EBUSY;
3927 }
3928
3929 if (!resuming)
3930 pm_runtime_get_sync(&pdev->dev);
3931
3932 netif_carrier_off(netdev);
3933
3934 /* allocate transmit descriptors */
3935 err = igb_setup_all_tx_resources(adapter);
3936 if (err)
3937 goto err_setup_tx;
3938
3939 /* allocate receive descriptors */
3940 err = igb_setup_all_rx_resources(adapter);
3941 if (err)
3942 goto err_setup_rx;
3943
3944 igb_power_up_link(adapter);
3945
3946 /* before we allocate an interrupt, we must be ready to handle it.
3947 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3948 * as soon as we call pci_request_irq, so we have to setup our
3949 * clean_rx handler before we do so.
3950 */
3951 igb_configure(adapter);
3952
3953 err = igb_request_irq(adapter);
3954 if (err)
3955 goto err_req_irq;
3956
3957 /* Notify the stack of the actual queue counts. */
3958 err = netif_set_real_num_tx_queues(adapter->netdev,
3959 adapter->num_tx_queues);
3960 if (err)
3961 goto err_set_queues;
3962
3963 err = netif_set_real_num_rx_queues(adapter->netdev,
3964 adapter->num_rx_queues);
3965 if (err)
3966 goto err_set_queues;
3967
3968 /* From here on the code is the same as igb_up() */
3969 clear_bit(__IGB_DOWN, &adapter->state);
3970
3971 for (i = 0; i < adapter->num_q_vectors; i++)
3972 napi_enable(&(adapter->q_vector[i]->napi));
3973
3974 /* Clear any pending interrupts. */
3975 rd32(E1000_TSICR);
3976 rd32(E1000_ICR);
3977
3978 igb_irq_enable(adapter);
3979
3980 /* notify VFs that reset has been completed */
3981 if (adapter->vfs_allocated_count) {
3982 u32 reg_data = rd32(E1000_CTRL_EXT);
3983
3984 reg_data |= E1000_CTRL_EXT_PFRSTD;
3985 wr32(E1000_CTRL_EXT, reg_data);
3986 }
3987
3988 netif_tx_start_all_queues(netdev);
3989
3990 if (!resuming)
3991 pm_runtime_put(&pdev->dev);
3992
3993 /* start the watchdog. */
3994 hw->mac.get_link_status = 1;
3995 schedule_work(&adapter->watchdog_task);
3996
3997 return 0;
3998
3999 err_set_queues:
4000 igb_free_irq(adapter);
4001 err_req_irq:
4002 igb_release_hw_control(adapter);
4003 igb_power_down_link(adapter);
4004 igb_free_all_rx_resources(adapter);
4005 err_setup_rx:
4006 igb_free_all_tx_resources(adapter);
4007 err_setup_tx:
4008 igb_reset(adapter);
4009 if (!resuming)
4010 pm_runtime_put(&pdev->dev);
4011
4012 return err;
4013 }
4014
igb_open(struct net_device * netdev)4015 int igb_open(struct net_device *netdev)
4016 {
4017 return __igb_open(netdev, false);
4018 }
4019
4020 /**
4021 * igb_close - Disables a network interface
4022 * @netdev: network interface device structure
4023 *
4024 * Returns 0, this is not allowed to fail
4025 *
4026 * The close entry point is called when an interface is de-activated
4027 * by the OS. The hardware is still under the driver's control, but
4028 * needs to be disabled. A global MAC reset is issued to stop the
4029 * hardware, and all transmit and receive resources are freed.
4030 **/
__igb_close(struct net_device * netdev,bool suspending)4031 static int __igb_close(struct net_device *netdev, bool suspending)
4032 {
4033 struct igb_adapter *adapter = netdev_priv(netdev);
4034 struct pci_dev *pdev = adapter->pdev;
4035
4036 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4037
4038 if (!suspending)
4039 pm_runtime_get_sync(&pdev->dev);
4040
4041 igb_down(adapter);
4042 igb_free_irq(adapter);
4043
4044 igb_free_all_tx_resources(adapter);
4045 igb_free_all_rx_resources(adapter);
4046
4047 if (!suspending)
4048 pm_runtime_put_sync(&pdev->dev);
4049 return 0;
4050 }
4051
igb_close(struct net_device * netdev)4052 int igb_close(struct net_device *netdev)
4053 {
4054 if (netif_device_present(netdev) || netdev->dismantle)
4055 return __igb_close(netdev, false);
4056 return 0;
4057 }
4058
4059 /**
4060 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4061 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4062 *
4063 * Return 0 on success, negative on failure
4064 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4065 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4066 {
4067 struct device *dev = tx_ring->dev;
4068 int size;
4069
4070 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4071
4072 tx_ring->tx_buffer_info = vmalloc(size);
4073 if (!tx_ring->tx_buffer_info)
4074 goto err;
4075
4076 /* round up to nearest 4K */
4077 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4078 tx_ring->size = ALIGN(tx_ring->size, 4096);
4079
4080 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4081 &tx_ring->dma, GFP_KERNEL);
4082 if (!tx_ring->desc)
4083 goto err;
4084
4085 tx_ring->next_to_use = 0;
4086 tx_ring->next_to_clean = 0;
4087
4088 return 0;
4089
4090 err:
4091 vfree(tx_ring->tx_buffer_info);
4092 tx_ring->tx_buffer_info = NULL;
4093 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4094 return -ENOMEM;
4095 }
4096
4097 /**
4098 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4099 * (Descriptors) for all queues
4100 * @adapter: board private structure
4101 *
4102 * Return 0 on success, negative on failure
4103 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4104 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4105 {
4106 struct pci_dev *pdev = adapter->pdev;
4107 int i, err = 0;
4108
4109 for (i = 0; i < adapter->num_tx_queues; i++) {
4110 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4111 if (err) {
4112 dev_err(&pdev->dev,
4113 "Allocation for Tx Queue %u failed\n", i);
4114 for (i--; i >= 0; i--)
4115 igb_free_tx_resources(adapter->tx_ring[i]);
4116 break;
4117 }
4118 }
4119
4120 return err;
4121 }
4122
4123 /**
4124 * igb_setup_tctl - configure the transmit control registers
4125 * @adapter: Board private structure
4126 **/
igb_setup_tctl(struct igb_adapter * adapter)4127 void igb_setup_tctl(struct igb_adapter *adapter)
4128 {
4129 struct e1000_hw *hw = &adapter->hw;
4130 u32 tctl;
4131
4132 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4133 wr32(E1000_TXDCTL(0), 0);
4134
4135 /* Program the Transmit Control Register */
4136 tctl = rd32(E1000_TCTL);
4137 tctl &= ~E1000_TCTL_CT;
4138 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4139 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4140
4141 igb_config_collision_dist(hw);
4142
4143 /* Enable transmits */
4144 tctl |= E1000_TCTL_EN;
4145
4146 wr32(E1000_TCTL, tctl);
4147 }
4148
4149 /**
4150 * igb_configure_tx_ring - Configure transmit ring after Reset
4151 * @adapter: board private structure
4152 * @ring: tx ring to configure
4153 *
4154 * Configure a transmit ring after a reset.
4155 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4156 void igb_configure_tx_ring(struct igb_adapter *adapter,
4157 struct igb_ring *ring)
4158 {
4159 struct e1000_hw *hw = &adapter->hw;
4160 u32 txdctl = 0;
4161 u64 tdba = ring->dma;
4162 int reg_idx = ring->reg_idx;
4163
4164 wr32(E1000_TDLEN(reg_idx),
4165 ring->count * sizeof(union e1000_adv_tx_desc));
4166 wr32(E1000_TDBAL(reg_idx),
4167 tdba & 0x00000000ffffffffULL);
4168 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4169
4170 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4171 wr32(E1000_TDH(reg_idx), 0);
4172 writel(0, ring->tail);
4173
4174 txdctl |= IGB_TX_PTHRESH;
4175 txdctl |= IGB_TX_HTHRESH << 8;
4176 txdctl |= IGB_TX_WTHRESH << 16;
4177
4178 /* reinitialize tx_buffer_info */
4179 memset(ring->tx_buffer_info, 0,
4180 sizeof(struct igb_tx_buffer) * ring->count);
4181
4182 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4183 wr32(E1000_TXDCTL(reg_idx), txdctl);
4184 }
4185
4186 /**
4187 * igb_configure_tx - Configure transmit Unit after Reset
4188 * @adapter: board private structure
4189 *
4190 * Configure the Tx unit of the MAC after a reset.
4191 **/
igb_configure_tx(struct igb_adapter * adapter)4192 static void igb_configure_tx(struct igb_adapter *adapter)
4193 {
4194 struct e1000_hw *hw = &adapter->hw;
4195 int i;
4196
4197 /* disable the queues */
4198 for (i = 0; i < adapter->num_tx_queues; i++)
4199 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4200
4201 wrfl();
4202 usleep_range(10000, 20000);
4203
4204 for (i = 0; i < adapter->num_tx_queues; i++)
4205 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4206 }
4207
4208 /**
4209 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4210 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4211 *
4212 * Returns 0 on success, negative on failure
4213 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4214 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4215 {
4216 struct device *dev = rx_ring->dev;
4217 int size;
4218
4219 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4220
4221 rx_ring->rx_buffer_info = vmalloc(size);
4222 if (!rx_ring->rx_buffer_info)
4223 goto err;
4224
4225 /* Round up to nearest 4K */
4226 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4227 rx_ring->size = ALIGN(rx_ring->size, 4096);
4228
4229 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4230 &rx_ring->dma, GFP_KERNEL);
4231 if (!rx_ring->desc)
4232 goto err;
4233
4234 rx_ring->next_to_alloc = 0;
4235 rx_ring->next_to_clean = 0;
4236 rx_ring->next_to_use = 0;
4237
4238 return 0;
4239
4240 err:
4241 vfree(rx_ring->rx_buffer_info);
4242 rx_ring->rx_buffer_info = NULL;
4243 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4244 return -ENOMEM;
4245 }
4246
4247 /**
4248 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4249 * (Descriptors) for all queues
4250 * @adapter: board private structure
4251 *
4252 * Return 0 on success, negative on failure
4253 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4254 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4255 {
4256 struct pci_dev *pdev = adapter->pdev;
4257 int i, err = 0;
4258
4259 for (i = 0; i < adapter->num_rx_queues; i++) {
4260 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4261 if (err) {
4262 dev_err(&pdev->dev,
4263 "Allocation for Rx Queue %u failed\n", i);
4264 for (i--; i >= 0; i--)
4265 igb_free_rx_resources(adapter->rx_ring[i]);
4266 break;
4267 }
4268 }
4269
4270 return err;
4271 }
4272
4273 /**
4274 * igb_setup_mrqc - configure the multiple receive queue control registers
4275 * @adapter: Board private structure
4276 **/
igb_setup_mrqc(struct igb_adapter * adapter)4277 static void igb_setup_mrqc(struct igb_adapter *adapter)
4278 {
4279 struct e1000_hw *hw = &adapter->hw;
4280 u32 mrqc, rxcsum;
4281 u32 j, num_rx_queues;
4282 u32 rss_key[10];
4283
4284 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4285 for (j = 0; j < 10; j++)
4286 wr32(E1000_RSSRK(j), rss_key[j]);
4287
4288 num_rx_queues = adapter->rss_queues;
4289
4290 switch (hw->mac.type) {
4291 case e1000_82576:
4292 /* 82576 supports 2 RSS queues for SR-IOV */
4293 if (adapter->vfs_allocated_count)
4294 num_rx_queues = 2;
4295 break;
4296 default:
4297 break;
4298 }
4299
4300 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4301 for (j = 0; j < IGB_RETA_SIZE; j++)
4302 adapter->rss_indir_tbl[j] =
4303 (j * num_rx_queues) / IGB_RETA_SIZE;
4304 adapter->rss_indir_tbl_init = num_rx_queues;
4305 }
4306 igb_write_rss_indir_tbl(adapter);
4307
4308 /* Disable raw packet checksumming so that RSS hash is placed in
4309 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4310 * offloads as they are enabled by default
4311 */
4312 rxcsum = rd32(E1000_RXCSUM);
4313 rxcsum |= E1000_RXCSUM_PCSD;
4314
4315 if (adapter->hw.mac.type >= e1000_82576)
4316 /* Enable Receive Checksum Offload for SCTP */
4317 rxcsum |= E1000_RXCSUM_CRCOFL;
4318
4319 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4320 wr32(E1000_RXCSUM, rxcsum);
4321
4322 /* Generate RSS hash based on packet types, TCP/UDP
4323 * port numbers and/or IPv4/v6 src and dst addresses
4324 */
4325 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4326 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4327 E1000_MRQC_RSS_FIELD_IPV6 |
4328 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4329 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4330
4331 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4332 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4333 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4334 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4335
4336 /* If VMDq is enabled then we set the appropriate mode for that, else
4337 * we default to RSS so that an RSS hash is calculated per packet even
4338 * if we are only using one queue
4339 */
4340 if (adapter->vfs_allocated_count) {
4341 if (hw->mac.type > e1000_82575) {
4342 /* Set the default pool for the PF's first queue */
4343 u32 vtctl = rd32(E1000_VT_CTL);
4344
4345 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4346 E1000_VT_CTL_DISABLE_DEF_POOL);
4347 vtctl |= adapter->vfs_allocated_count <<
4348 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4349 wr32(E1000_VT_CTL, vtctl);
4350 }
4351 if (adapter->rss_queues > 1)
4352 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4353 else
4354 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4355 } else {
4356 if (hw->mac.type != e1000_i211)
4357 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4358 }
4359 igb_vmm_control(adapter);
4360
4361 wr32(E1000_MRQC, mrqc);
4362 }
4363
4364 /**
4365 * igb_setup_rctl - configure the receive control registers
4366 * @adapter: Board private structure
4367 **/
igb_setup_rctl(struct igb_adapter * adapter)4368 void igb_setup_rctl(struct igb_adapter *adapter)
4369 {
4370 struct e1000_hw *hw = &adapter->hw;
4371 u32 rctl;
4372
4373 rctl = rd32(E1000_RCTL);
4374
4375 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4376 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4377
4378 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4379 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4380
4381 /* enable stripping of CRC. It's unlikely this will break BMC
4382 * redirection as it did with e1000. Newer features require
4383 * that the HW strips the CRC.
4384 */
4385 rctl |= E1000_RCTL_SECRC;
4386
4387 /* disable store bad packets and clear size bits. */
4388 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4389
4390 /* enable LPE to allow for reception of jumbo frames */
4391 rctl |= E1000_RCTL_LPE;
4392
4393 /* disable queue 0 to prevent tail write w/o re-config */
4394 wr32(E1000_RXDCTL(0), 0);
4395
4396 /* Attention!!! For SR-IOV PF driver operations you must enable
4397 * queue drop for all VF and PF queues to prevent head of line blocking
4398 * if an un-trusted VF does not provide descriptors to hardware.
4399 */
4400 if (adapter->vfs_allocated_count) {
4401 /* set all queue drop enable bits */
4402 wr32(E1000_QDE, ALL_QUEUES);
4403 }
4404
4405 /* This is useful for sniffing bad packets. */
4406 if (adapter->netdev->features & NETIF_F_RXALL) {
4407 /* UPE and MPE will be handled by normal PROMISC logic
4408 * in e1000e_set_rx_mode
4409 */
4410 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4411 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4412 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4413
4414 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4415 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4416 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4417 * and that breaks VLANs.
4418 */
4419 }
4420
4421 wr32(E1000_RCTL, rctl);
4422 }
4423
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4424 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4425 int vfn)
4426 {
4427 struct e1000_hw *hw = &adapter->hw;
4428 u32 vmolr;
4429
4430 if (size > MAX_JUMBO_FRAME_SIZE)
4431 size = MAX_JUMBO_FRAME_SIZE;
4432
4433 vmolr = rd32(E1000_VMOLR(vfn));
4434 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4435 vmolr |= size | E1000_VMOLR_LPE;
4436 wr32(E1000_VMOLR(vfn), vmolr);
4437
4438 return 0;
4439 }
4440
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4441 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4442 int vfn, bool enable)
4443 {
4444 struct e1000_hw *hw = &adapter->hw;
4445 u32 val, reg;
4446
4447 if (hw->mac.type < e1000_82576)
4448 return;
4449
4450 if (hw->mac.type == e1000_i350)
4451 reg = E1000_DVMOLR(vfn);
4452 else
4453 reg = E1000_VMOLR(vfn);
4454
4455 val = rd32(reg);
4456 if (enable)
4457 val |= E1000_VMOLR_STRVLAN;
4458 else
4459 val &= ~(E1000_VMOLR_STRVLAN);
4460 wr32(reg, val);
4461 }
4462
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4463 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4464 int vfn, bool aupe)
4465 {
4466 struct e1000_hw *hw = &adapter->hw;
4467 u32 vmolr;
4468
4469 /* This register exists only on 82576 and newer so if we are older then
4470 * we should exit and do nothing
4471 */
4472 if (hw->mac.type < e1000_82576)
4473 return;
4474
4475 vmolr = rd32(E1000_VMOLR(vfn));
4476 if (aupe)
4477 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4478 else
4479 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4480
4481 /* clear all bits that might not be set */
4482 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4483
4484 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4485 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4486 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4487 * multicast packets
4488 */
4489 if (vfn <= adapter->vfs_allocated_count)
4490 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4491
4492 wr32(E1000_VMOLR(vfn), vmolr);
4493 }
4494
4495 /**
4496 * igb_configure_rx_ring - Configure a receive ring after Reset
4497 * @adapter: board private structure
4498 * @ring: receive ring to be configured
4499 *
4500 * Configure the Rx unit of the MAC after a reset.
4501 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4502 void igb_configure_rx_ring(struct igb_adapter *adapter,
4503 struct igb_ring *ring)
4504 {
4505 struct e1000_hw *hw = &adapter->hw;
4506 union e1000_adv_rx_desc *rx_desc;
4507 u64 rdba = ring->dma;
4508 int reg_idx = ring->reg_idx;
4509 u32 srrctl = 0, rxdctl = 0;
4510
4511 /* disable the queue */
4512 wr32(E1000_RXDCTL(reg_idx), 0);
4513
4514 /* Set DMA base address registers */
4515 wr32(E1000_RDBAL(reg_idx),
4516 rdba & 0x00000000ffffffffULL);
4517 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4518 wr32(E1000_RDLEN(reg_idx),
4519 ring->count * sizeof(union e1000_adv_rx_desc));
4520
4521 /* initialize head and tail */
4522 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4523 wr32(E1000_RDH(reg_idx), 0);
4524 writel(0, ring->tail);
4525
4526 /* set descriptor configuration */
4527 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4528 if (ring_uses_large_buffer(ring))
4529 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4530 else
4531 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4532 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4533 if (hw->mac.type >= e1000_82580)
4534 srrctl |= E1000_SRRCTL_TIMESTAMP;
4535 /* Only set Drop Enable if we are supporting multiple queues */
4536 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4537 srrctl |= E1000_SRRCTL_DROP_EN;
4538
4539 wr32(E1000_SRRCTL(reg_idx), srrctl);
4540
4541 /* set filtering for VMDQ pools */
4542 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4543
4544 rxdctl |= IGB_RX_PTHRESH;
4545 rxdctl |= IGB_RX_HTHRESH << 8;
4546 rxdctl |= IGB_RX_WTHRESH << 16;
4547
4548 /* initialize rx_buffer_info */
4549 memset(ring->rx_buffer_info, 0,
4550 sizeof(struct igb_rx_buffer) * ring->count);
4551
4552 /* initialize Rx descriptor 0 */
4553 rx_desc = IGB_RX_DESC(ring, 0);
4554 rx_desc->wb.upper.length = 0;
4555
4556 /* enable receive descriptor fetching */
4557 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4558 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4559 }
4560
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4561 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4562 struct igb_ring *rx_ring)
4563 {
4564 /* set build_skb and buffer size flags */
4565 clear_ring_build_skb_enabled(rx_ring);
4566 clear_ring_uses_large_buffer(rx_ring);
4567
4568 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4569 return;
4570
4571 set_ring_build_skb_enabled(rx_ring);
4572
4573 #if (PAGE_SIZE < 8192)
4574 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4575 return;
4576
4577 set_ring_uses_large_buffer(rx_ring);
4578 #endif
4579 }
4580
4581 /**
4582 * igb_configure_rx - Configure receive Unit after Reset
4583 * @adapter: board private structure
4584 *
4585 * Configure the Rx unit of the MAC after a reset.
4586 **/
igb_configure_rx(struct igb_adapter * adapter)4587 static void igb_configure_rx(struct igb_adapter *adapter)
4588 {
4589 int i;
4590
4591 /* set the correct pool for the PF default MAC address in entry 0 */
4592 igb_set_default_mac_filter(adapter);
4593
4594 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4595 * the Base and Length of the Rx Descriptor Ring
4596 */
4597 for (i = 0; i < adapter->num_rx_queues; i++) {
4598 struct igb_ring *rx_ring = adapter->rx_ring[i];
4599
4600 igb_set_rx_buffer_len(adapter, rx_ring);
4601 igb_configure_rx_ring(adapter, rx_ring);
4602 }
4603 }
4604
4605 /**
4606 * igb_free_tx_resources - Free Tx Resources per Queue
4607 * @tx_ring: Tx descriptor ring for a specific queue
4608 *
4609 * Free all transmit software resources
4610 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4611 void igb_free_tx_resources(struct igb_ring *tx_ring)
4612 {
4613 igb_clean_tx_ring(tx_ring);
4614
4615 vfree(tx_ring->tx_buffer_info);
4616 tx_ring->tx_buffer_info = NULL;
4617
4618 /* if not set, then don't free */
4619 if (!tx_ring->desc)
4620 return;
4621
4622 dma_free_coherent(tx_ring->dev, tx_ring->size,
4623 tx_ring->desc, tx_ring->dma);
4624
4625 tx_ring->desc = NULL;
4626 }
4627
4628 /**
4629 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4630 * @adapter: board private structure
4631 *
4632 * Free all transmit software resources
4633 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4634 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4635 {
4636 int i;
4637
4638 for (i = 0; i < adapter->num_tx_queues; i++)
4639 if (adapter->tx_ring[i])
4640 igb_free_tx_resources(adapter->tx_ring[i]);
4641 }
4642
4643 /**
4644 * igb_clean_tx_ring - Free Tx Buffers
4645 * @tx_ring: ring to be cleaned
4646 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4647 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4648 {
4649 u16 i = tx_ring->next_to_clean;
4650 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4651
4652 while (i != tx_ring->next_to_use) {
4653 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4654
4655 /* Free all the Tx ring sk_buffs */
4656 dev_kfree_skb_any(tx_buffer->skb);
4657
4658 /* unmap skb header data */
4659 dma_unmap_single(tx_ring->dev,
4660 dma_unmap_addr(tx_buffer, dma),
4661 dma_unmap_len(tx_buffer, len),
4662 DMA_TO_DEVICE);
4663
4664 /* check for eop_desc to determine the end of the packet */
4665 eop_desc = tx_buffer->next_to_watch;
4666 tx_desc = IGB_TX_DESC(tx_ring, i);
4667
4668 /* unmap remaining buffers */
4669 while (tx_desc != eop_desc) {
4670 tx_buffer++;
4671 tx_desc++;
4672 i++;
4673 if (unlikely(i == tx_ring->count)) {
4674 i = 0;
4675 tx_buffer = tx_ring->tx_buffer_info;
4676 tx_desc = IGB_TX_DESC(tx_ring, 0);
4677 }
4678
4679 /* unmap any remaining paged data */
4680 if (dma_unmap_len(tx_buffer, len))
4681 dma_unmap_page(tx_ring->dev,
4682 dma_unmap_addr(tx_buffer, dma),
4683 dma_unmap_len(tx_buffer, len),
4684 DMA_TO_DEVICE);
4685 }
4686
4687 /* move us one more past the eop_desc for start of next pkt */
4688 tx_buffer++;
4689 i++;
4690 if (unlikely(i == tx_ring->count)) {
4691 i = 0;
4692 tx_buffer = tx_ring->tx_buffer_info;
4693 }
4694 }
4695
4696 /* reset BQL for queue */
4697 netdev_tx_reset_queue(txring_txq(tx_ring));
4698
4699 /* reset next_to_use and next_to_clean */
4700 tx_ring->next_to_use = 0;
4701 tx_ring->next_to_clean = 0;
4702 }
4703
4704 /**
4705 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4706 * @adapter: board private structure
4707 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4708 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4709 {
4710 int i;
4711
4712 for (i = 0; i < adapter->num_tx_queues; i++)
4713 if (adapter->tx_ring[i])
4714 igb_clean_tx_ring(adapter->tx_ring[i]);
4715 }
4716
4717 /**
4718 * igb_free_rx_resources - Free Rx Resources
4719 * @rx_ring: ring to clean the resources from
4720 *
4721 * Free all receive software resources
4722 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4723 void igb_free_rx_resources(struct igb_ring *rx_ring)
4724 {
4725 igb_clean_rx_ring(rx_ring);
4726
4727 vfree(rx_ring->rx_buffer_info);
4728 rx_ring->rx_buffer_info = NULL;
4729
4730 /* if not set, then don't free */
4731 if (!rx_ring->desc)
4732 return;
4733
4734 dma_free_coherent(rx_ring->dev, rx_ring->size,
4735 rx_ring->desc, rx_ring->dma);
4736
4737 rx_ring->desc = NULL;
4738 }
4739
4740 /**
4741 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4742 * @adapter: board private structure
4743 *
4744 * Free all receive software resources
4745 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4746 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4747 {
4748 int i;
4749
4750 for (i = 0; i < adapter->num_rx_queues; i++)
4751 if (adapter->rx_ring[i])
4752 igb_free_rx_resources(adapter->rx_ring[i]);
4753 }
4754
4755 /**
4756 * igb_clean_rx_ring - Free Rx Buffers per Queue
4757 * @rx_ring: ring to free buffers from
4758 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4759 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4760 {
4761 u16 i = rx_ring->next_to_clean;
4762
4763 if (rx_ring->skb)
4764 dev_kfree_skb(rx_ring->skb);
4765 rx_ring->skb = NULL;
4766
4767 /* Free all the Rx ring sk_buffs */
4768 while (i != rx_ring->next_to_alloc) {
4769 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4770
4771 /* Invalidate cache lines that may have been written to by
4772 * device so that we avoid corrupting memory.
4773 */
4774 dma_sync_single_range_for_cpu(rx_ring->dev,
4775 buffer_info->dma,
4776 buffer_info->page_offset,
4777 igb_rx_bufsz(rx_ring),
4778 DMA_FROM_DEVICE);
4779
4780 /* free resources associated with mapping */
4781 dma_unmap_page_attrs(rx_ring->dev,
4782 buffer_info->dma,
4783 igb_rx_pg_size(rx_ring),
4784 DMA_FROM_DEVICE,
4785 IGB_RX_DMA_ATTR);
4786 __page_frag_cache_drain(buffer_info->page,
4787 buffer_info->pagecnt_bias);
4788
4789 i++;
4790 if (i == rx_ring->count)
4791 i = 0;
4792 }
4793
4794 rx_ring->next_to_alloc = 0;
4795 rx_ring->next_to_clean = 0;
4796 rx_ring->next_to_use = 0;
4797 }
4798
4799 /**
4800 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4801 * @adapter: board private structure
4802 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4803 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4804 {
4805 int i;
4806
4807 for (i = 0; i < adapter->num_rx_queues; i++)
4808 if (adapter->rx_ring[i])
4809 igb_clean_rx_ring(adapter->rx_ring[i]);
4810 }
4811
4812 /**
4813 * igb_set_mac - Change the Ethernet Address of the NIC
4814 * @netdev: network interface device structure
4815 * @p: pointer to an address structure
4816 *
4817 * Returns 0 on success, negative on failure
4818 **/
igb_set_mac(struct net_device * netdev,void * p)4819 static int igb_set_mac(struct net_device *netdev, void *p)
4820 {
4821 struct igb_adapter *adapter = netdev_priv(netdev);
4822 struct e1000_hw *hw = &adapter->hw;
4823 struct sockaddr *addr = p;
4824
4825 if (!is_valid_ether_addr(addr->sa_data))
4826 return -EADDRNOTAVAIL;
4827
4828 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4829 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4830
4831 /* set the correct pool for the new PF MAC address in entry 0 */
4832 igb_set_default_mac_filter(adapter);
4833
4834 return 0;
4835 }
4836
4837 /**
4838 * igb_write_mc_addr_list - write multicast addresses to MTA
4839 * @netdev: network interface device structure
4840 *
4841 * Writes multicast address list to the MTA hash table.
4842 * Returns: -ENOMEM on failure
4843 * 0 on no addresses written
4844 * X on writing X addresses to MTA
4845 **/
igb_write_mc_addr_list(struct net_device * netdev)4846 static int igb_write_mc_addr_list(struct net_device *netdev)
4847 {
4848 struct igb_adapter *adapter = netdev_priv(netdev);
4849 struct e1000_hw *hw = &adapter->hw;
4850 struct netdev_hw_addr *ha;
4851 u8 *mta_list;
4852 int i;
4853
4854 if (netdev_mc_empty(netdev)) {
4855 /* nothing to program, so clear mc list */
4856 igb_update_mc_addr_list(hw, NULL, 0);
4857 igb_restore_vf_multicasts(adapter);
4858 return 0;
4859 }
4860
4861 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4862 if (!mta_list)
4863 return -ENOMEM;
4864
4865 /* The shared function expects a packed array of only addresses. */
4866 i = 0;
4867 netdev_for_each_mc_addr(ha, netdev)
4868 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4869
4870 igb_update_mc_addr_list(hw, mta_list, i);
4871 kfree(mta_list);
4872
4873 return netdev_mc_count(netdev);
4874 }
4875
igb_vlan_promisc_enable(struct igb_adapter * adapter)4876 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4877 {
4878 struct e1000_hw *hw = &adapter->hw;
4879 u32 i, pf_id;
4880
4881 switch (hw->mac.type) {
4882 case e1000_i210:
4883 case e1000_i211:
4884 case e1000_i350:
4885 /* VLAN filtering needed for VLAN prio filter */
4886 if (adapter->netdev->features & NETIF_F_NTUPLE)
4887 break;
4888 /* fall through */
4889 case e1000_82576:
4890 case e1000_82580:
4891 case e1000_i354:
4892 /* VLAN filtering needed for pool filtering */
4893 if (adapter->vfs_allocated_count)
4894 break;
4895 /* fall through */
4896 default:
4897 return 1;
4898 }
4899
4900 /* We are already in VLAN promisc, nothing to do */
4901 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4902 return 0;
4903
4904 if (!adapter->vfs_allocated_count)
4905 goto set_vfta;
4906
4907 /* Add PF to all active pools */
4908 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4909
4910 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4911 u32 vlvf = rd32(E1000_VLVF(i));
4912
4913 vlvf |= BIT(pf_id);
4914 wr32(E1000_VLVF(i), vlvf);
4915 }
4916
4917 set_vfta:
4918 /* Set all bits in the VLAN filter table array */
4919 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4920 hw->mac.ops.write_vfta(hw, i, ~0U);
4921
4922 /* Set flag so we don't redo unnecessary work */
4923 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4924
4925 return 0;
4926 }
4927
4928 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)4929 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4930 {
4931 struct e1000_hw *hw = &adapter->hw;
4932 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4933 u32 vid_start = vfta_offset * 32;
4934 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4935 u32 i, vid, word, bits, pf_id;
4936
4937 /* guarantee that we don't scrub out management VLAN */
4938 vid = adapter->mng_vlan_id;
4939 if (vid >= vid_start && vid < vid_end)
4940 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4941
4942 if (!adapter->vfs_allocated_count)
4943 goto set_vfta;
4944
4945 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4946
4947 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4948 u32 vlvf = rd32(E1000_VLVF(i));
4949
4950 /* pull VLAN ID from VLVF */
4951 vid = vlvf & VLAN_VID_MASK;
4952
4953 /* only concern ourselves with a certain range */
4954 if (vid < vid_start || vid >= vid_end)
4955 continue;
4956
4957 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4958 /* record VLAN ID in VFTA */
4959 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4960
4961 /* if PF is part of this then continue */
4962 if (test_bit(vid, adapter->active_vlans))
4963 continue;
4964 }
4965
4966 /* remove PF from the pool */
4967 bits = ~BIT(pf_id);
4968 bits &= rd32(E1000_VLVF(i));
4969 wr32(E1000_VLVF(i), bits);
4970 }
4971
4972 set_vfta:
4973 /* extract values from active_vlans and write back to VFTA */
4974 for (i = VFTA_BLOCK_SIZE; i--;) {
4975 vid = (vfta_offset + i) * 32;
4976 word = vid / BITS_PER_LONG;
4977 bits = vid % BITS_PER_LONG;
4978
4979 vfta[i] |= adapter->active_vlans[word] >> bits;
4980
4981 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4982 }
4983 }
4984
igb_vlan_promisc_disable(struct igb_adapter * adapter)4985 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4986 {
4987 u32 i;
4988
4989 /* We are not in VLAN promisc, nothing to do */
4990 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4991 return;
4992
4993 /* Set flag so we don't redo unnecessary work */
4994 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4995
4996 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4997 igb_scrub_vfta(adapter, i);
4998 }
4999
5000 /**
5001 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5002 * @netdev: network interface device structure
5003 *
5004 * The set_rx_mode entry point is called whenever the unicast or multicast
5005 * address lists or the network interface flags are updated. This routine is
5006 * responsible for configuring the hardware for proper unicast, multicast,
5007 * promiscuous mode, and all-multi behavior.
5008 **/
igb_set_rx_mode(struct net_device * netdev)5009 static void igb_set_rx_mode(struct net_device *netdev)
5010 {
5011 struct igb_adapter *adapter = netdev_priv(netdev);
5012 struct e1000_hw *hw = &adapter->hw;
5013 unsigned int vfn = adapter->vfs_allocated_count;
5014 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5015 int count;
5016
5017 /* Check for Promiscuous and All Multicast modes */
5018 if (netdev->flags & IFF_PROMISC) {
5019 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5020 vmolr |= E1000_VMOLR_MPME;
5021
5022 /* enable use of UTA filter to force packets to default pool */
5023 if (hw->mac.type == e1000_82576)
5024 vmolr |= E1000_VMOLR_ROPE;
5025 } else {
5026 if (netdev->flags & IFF_ALLMULTI) {
5027 rctl |= E1000_RCTL_MPE;
5028 vmolr |= E1000_VMOLR_MPME;
5029 } else {
5030 /* Write addresses to the MTA, if the attempt fails
5031 * then we should just turn on promiscuous mode so
5032 * that we can at least receive multicast traffic
5033 */
5034 count = igb_write_mc_addr_list(netdev);
5035 if (count < 0) {
5036 rctl |= E1000_RCTL_MPE;
5037 vmolr |= E1000_VMOLR_MPME;
5038 } else if (count) {
5039 vmolr |= E1000_VMOLR_ROMPE;
5040 }
5041 }
5042 }
5043
5044 /* Write addresses to available RAR registers, if there is not
5045 * sufficient space to store all the addresses then enable
5046 * unicast promiscuous mode
5047 */
5048 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5049 rctl |= E1000_RCTL_UPE;
5050 vmolr |= E1000_VMOLR_ROPE;
5051 }
5052
5053 /* enable VLAN filtering by default */
5054 rctl |= E1000_RCTL_VFE;
5055
5056 /* disable VLAN filtering for modes that require it */
5057 if ((netdev->flags & IFF_PROMISC) ||
5058 (netdev->features & NETIF_F_RXALL)) {
5059 /* if we fail to set all rules then just clear VFE */
5060 if (igb_vlan_promisc_enable(adapter))
5061 rctl &= ~E1000_RCTL_VFE;
5062 } else {
5063 igb_vlan_promisc_disable(adapter);
5064 }
5065
5066 /* update state of unicast, multicast, and VLAN filtering modes */
5067 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5068 E1000_RCTL_VFE);
5069 wr32(E1000_RCTL, rctl);
5070
5071 #if (PAGE_SIZE < 8192)
5072 if (!adapter->vfs_allocated_count) {
5073 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5074 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5075 }
5076 #endif
5077 wr32(E1000_RLPML, rlpml);
5078
5079 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5080 * the VMOLR to enable the appropriate modes. Without this workaround
5081 * we will have issues with VLAN tag stripping not being done for frames
5082 * that are only arriving because we are the default pool
5083 */
5084 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5085 return;
5086
5087 /* set UTA to appropriate mode */
5088 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5089
5090 vmolr |= rd32(E1000_VMOLR(vfn)) &
5091 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5092
5093 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5094 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5095 #if (PAGE_SIZE < 8192)
5096 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5097 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5098 else
5099 #endif
5100 vmolr |= MAX_JUMBO_FRAME_SIZE;
5101 vmolr |= E1000_VMOLR_LPE;
5102
5103 wr32(E1000_VMOLR(vfn), vmolr);
5104
5105 igb_restore_vf_multicasts(adapter);
5106 }
5107
igb_check_wvbr(struct igb_adapter * adapter)5108 static void igb_check_wvbr(struct igb_adapter *adapter)
5109 {
5110 struct e1000_hw *hw = &adapter->hw;
5111 u32 wvbr = 0;
5112
5113 switch (hw->mac.type) {
5114 case e1000_82576:
5115 case e1000_i350:
5116 wvbr = rd32(E1000_WVBR);
5117 if (!wvbr)
5118 return;
5119 break;
5120 default:
5121 break;
5122 }
5123
5124 adapter->wvbr |= wvbr;
5125 }
5126
5127 #define IGB_STAGGERED_QUEUE_OFFSET 8
5128
igb_spoof_check(struct igb_adapter * adapter)5129 static void igb_spoof_check(struct igb_adapter *adapter)
5130 {
5131 int j;
5132
5133 if (!adapter->wvbr)
5134 return;
5135
5136 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5137 if (adapter->wvbr & BIT(j) ||
5138 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5139 dev_warn(&adapter->pdev->dev,
5140 "Spoof event(s) detected on VF %d\n", j);
5141 adapter->wvbr &=
5142 ~(BIT(j) |
5143 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5144 }
5145 }
5146 }
5147
5148 /* Need to wait a few seconds after link up to get diagnostic information from
5149 * the phy
5150 */
igb_update_phy_info(struct timer_list * t)5151 static void igb_update_phy_info(struct timer_list *t)
5152 {
5153 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5154 igb_get_phy_info(&adapter->hw);
5155 }
5156
5157 /**
5158 * igb_has_link - check shared code for link and determine up/down
5159 * @adapter: pointer to driver private info
5160 **/
igb_has_link(struct igb_adapter * adapter)5161 bool igb_has_link(struct igb_adapter *adapter)
5162 {
5163 struct e1000_hw *hw = &adapter->hw;
5164 bool link_active = false;
5165
5166 /* get_link_status is set on LSC (link status) interrupt or
5167 * rx sequence error interrupt. get_link_status will stay
5168 * false until the e1000_check_for_link establishes link
5169 * for copper adapters ONLY
5170 */
5171 switch (hw->phy.media_type) {
5172 case e1000_media_type_copper:
5173 if (!hw->mac.get_link_status)
5174 return true;
5175 /* fall through */
5176 case e1000_media_type_internal_serdes:
5177 hw->mac.ops.check_for_link(hw);
5178 link_active = !hw->mac.get_link_status;
5179 break;
5180 default:
5181 case e1000_media_type_unknown:
5182 break;
5183 }
5184
5185 if (((hw->mac.type == e1000_i210) ||
5186 (hw->mac.type == e1000_i211)) &&
5187 (hw->phy.id == I210_I_PHY_ID)) {
5188 if (!netif_carrier_ok(adapter->netdev)) {
5189 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5190 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5191 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5192 adapter->link_check_timeout = jiffies;
5193 }
5194 }
5195
5196 return link_active;
5197 }
5198
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5199 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5200 {
5201 bool ret = false;
5202 u32 ctrl_ext, thstat;
5203
5204 /* check for thermal sensor event on i350 copper only */
5205 if (hw->mac.type == e1000_i350) {
5206 thstat = rd32(E1000_THSTAT);
5207 ctrl_ext = rd32(E1000_CTRL_EXT);
5208
5209 if ((hw->phy.media_type == e1000_media_type_copper) &&
5210 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5211 ret = !!(thstat & event);
5212 }
5213
5214 return ret;
5215 }
5216
5217 /**
5218 * igb_check_lvmmc - check for malformed packets received
5219 * and indicated in LVMMC register
5220 * @adapter: pointer to adapter
5221 **/
igb_check_lvmmc(struct igb_adapter * adapter)5222 static void igb_check_lvmmc(struct igb_adapter *adapter)
5223 {
5224 struct e1000_hw *hw = &adapter->hw;
5225 u32 lvmmc;
5226
5227 lvmmc = rd32(E1000_LVMMC);
5228 if (lvmmc) {
5229 if (unlikely(net_ratelimit())) {
5230 netdev_warn(adapter->netdev,
5231 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5232 lvmmc);
5233 }
5234 }
5235 }
5236
5237 /**
5238 * igb_watchdog - Timer Call-back
5239 * @data: pointer to adapter cast into an unsigned long
5240 **/
igb_watchdog(struct timer_list * t)5241 static void igb_watchdog(struct timer_list *t)
5242 {
5243 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5244 /* Do the rest outside of interrupt context */
5245 schedule_work(&adapter->watchdog_task);
5246 }
5247
igb_watchdog_task(struct work_struct * work)5248 static void igb_watchdog_task(struct work_struct *work)
5249 {
5250 struct igb_adapter *adapter = container_of(work,
5251 struct igb_adapter,
5252 watchdog_task);
5253 struct e1000_hw *hw = &adapter->hw;
5254 struct e1000_phy_info *phy = &hw->phy;
5255 struct net_device *netdev = adapter->netdev;
5256 u32 link;
5257 int i;
5258 u32 connsw;
5259 u16 phy_data, retry_count = 20;
5260
5261 link = igb_has_link(adapter);
5262
5263 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5264 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5265 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5266 else
5267 link = false;
5268 }
5269
5270 /* Force link down if we have fiber to swap to */
5271 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5272 if (hw->phy.media_type == e1000_media_type_copper) {
5273 connsw = rd32(E1000_CONNSW);
5274 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5275 link = 0;
5276 }
5277 }
5278 if (link) {
5279 /* Perform a reset if the media type changed. */
5280 if (hw->dev_spec._82575.media_changed) {
5281 hw->dev_spec._82575.media_changed = false;
5282 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5283 igb_reset(adapter);
5284 }
5285 /* Cancel scheduled suspend requests. */
5286 pm_runtime_resume(netdev->dev.parent);
5287
5288 if (!netif_carrier_ok(netdev)) {
5289 u32 ctrl;
5290
5291 hw->mac.ops.get_speed_and_duplex(hw,
5292 &adapter->link_speed,
5293 &adapter->link_duplex);
5294
5295 ctrl = rd32(E1000_CTRL);
5296 /* Links status message must follow this format */
5297 netdev_info(netdev,
5298 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5299 netdev->name,
5300 adapter->link_speed,
5301 adapter->link_duplex == FULL_DUPLEX ?
5302 "Full" : "Half",
5303 (ctrl & E1000_CTRL_TFCE) &&
5304 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5305 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5306 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5307
5308 /* disable EEE if enabled */
5309 if ((adapter->flags & IGB_FLAG_EEE) &&
5310 (adapter->link_duplex == HALF_DUPLEX)) {
5311 dev_info(&adapter->pdev->dev,
5312 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5313 adapter->hw.dev_spec._82575.eee_disable = true;
5314 adapter->flags &= ~IGB_FLAG_EEE;
5315 }
5316
5317 /* check if SmartSpeed worked */
5318 igb_check_downshift(hw);
5319 if (phy->speed_downgraded)
5320 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5321
5322 /* check for thermal sensor event */
5323 if (igb_thermal_sensor_event(hw,
5324 E1000_THSTAT_LINK_THROTTLE))
5325 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5326
5327 /* adjust timeout factor according to speed/duplex */
5328 adapter->tx_timeout_factor = 1;
5329 switch (adapter->link_speed) {
5330 case SPEED_10:
5331 adapter->tx_timeout_factor = 14;
5332 break;
5333 case SPEED_100:
5334 /* maybe add some timeout factor ? */
5335 break;
5336 }
5337
5338 if (adapter->link_speed != SPEED_1000)
5339 goto no_wait;
5340
5341 /* wait for Remote receiver status OK */
5342 retry_read_status:
5343 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5344 &phy_data)) {
5345 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5346 retry_count) {
5347 msleep(100);
5348 retry_count--;
5349 goto retry_read_status;
5350 } else if (!retry_count) {
5351 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5352 }
5353 } else {
5354 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5355 }
5356 no_wait:
5357 netif_carrier_on(netdev);
5358
5359 igb_ping_all_vfs(adapter);
5360 igb_check_vf_rate_limit(adapter);
5361
5362 /* link state has changed, schedule phy info update */
5363 if (!test_bit(__IGB_DOWN, &adapter->state))
5364 mod_timer(&adapter->phy_info_timer,
5365 round_jiffies(jiffies + 2 * HZ));
5366 }
5367 } else {
5368 if (netif_carrier_ok(netdev)) {
5369 adapter->link_speed = 0;
5370 adapter->link_duplex = 0;
5371
5372 /* check for thermal sensor event */
5373 if (igb_thermal_sensor_event(hw,
5374 E1000_THSTAT_PWR_DOWN)) {
5375 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5376 }
5377
5378 /* Links status message must follow this format */
5379 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5380 netdev->name);
5381 netif_carrier_off(netdev);
5382
5383 igb_ping_all_vfs(adapter);
5384
5385 /* link state has changed, schedule phy info update */
5386 if (!test_bit(__IGB_DOWN, &adapter->state))
5387 mod_timer(&adapter->phy_info_timer,
5388 round_jiffies(jiffies + 2 * HZ));
5389
5390 /* link is down, time to check for alternate media */
5391 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5392 igb_check_swap_media(adapter);
5393 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5394 schedule_work(&adapter->reset_task);
5395 /* return immediately */
5396 return;
5397 }
5398 }
5399 pm_schedule_suspend(netdev->dev.parent,
5400 MSEC_PER_SEC * 5);
5401
5402 /* also check for alternate media here */
5403 } else if (!netif_carrier_ok(netdev) &&
5404 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5405 igb_check_swap_media(adapter);
5406 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5407 schedule_work(&adapter->reset_task);
5408 /* return immediately */
5409 return;
5410 }
5411 }
5412 }
5413
5414 spin_lock(&adapter->stats64_lock);
5415 igb_update_stats(adapter);
5416 spin_unlock(&adapter->stats64_lock);
5417
5418 for (i = 0; i < adapter->num_tx_queues; i++) {
5419 struct igb_ring *tx_ring = adapter->tx_ring[i];
5420 if (!netif_carrier_ok(netdev)) {
5421 /* We've lost link, so the controller stops DMA,
5422 * but we've got queued Tx work that's never going
5423 * to get done, so reset controller to flush Tx.
5424 * (Do the reset outside of interrupt context).
5425 */
5426 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5427 adapter->tx_timeout_count++;
5428 schedule_work(&adapter->reset_task);
5429 /* return immediately since reset is imminent */
5430 return;
5431 }
5432 }
5433
5434 /* Force detection of hung controller every watchdog period */
5435 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5436 }
5437
5438 /* Cause software interrupt to ensure Rx ring is cleaned */
5439 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5440 u32 eics = 0;
5441
5442 for (i = 0; i < adapter->num_q_vectors; i++)
5443 eics |= adapter->q_vector[i]->eims_value;
5444 wr32(E1000_EICS, eics);
5445 } else {
5446 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5447 }
5448
5449 igb_spoof_check(adapter);
5450 igb_ptp_rx_hang(adapter);
5451 igb_ptp_tx_hang(adapter);
5452
5453 /* Check LVMMC register on i350/i354 only */
5454 if ((adapter->hw.mac.type == e1000_i350) ||
5455 (adapter->hw.mac.type == e1000_i354))
5456 igb_check_lvmmc(adapter);
5457
5458 /* Reset the timer */
5459 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5460 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5461 mod_timer(&adapter->watchdog_timer,
5462 round_jiffies(jiffies + HZ));
5463 else
5464 mod_timer(&adapter->watchdog_timer,
5465 round_jiffies(jiffies + 2 * HZ));
5466 }
5467 }
5468
5469 enum latency_range {
5470 lowest_latency = 0,
5471 low_latency = 1,
5472 bulk_latency = 2,
5473 latency_invalid = 255
5474 };
5475
5476 /**
5477 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5478 * @q_vector: pointer to q_vector
5479 *
5480 * Stores a new ITR value based on strictly on packet size. This
5481 * algorithm is less sophisticated than that used in igb_update_itr,
5482 * due to the difficulty of synchronizing statistics across multiple
5483 * receive rings. The divisors and thresholds used by this function
5484 * were determined based on theoretical maximum wire speed and testing
5485 * data, in order to minimize response time while increasing bulk
5486 * throughput.
5487 * This functionality is controlled by ethtool's coalescing settings.
5488 * NOTE: This function is called only when operating in a multiqueue
5489 * receive environment.
5490 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5491 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5492 {
5493 int new_val = q_vector->itr_val;
5494 int avg_wire_size = 0;
5495 struct igb_adapter *adapter = q_vector->adapter;
5496 unsigned int packets;
5497
5498 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5499 * ints/sec - ITR timer value of 120 ticks.
5500 */
5501 if (adapter->link_speed != SPEED_1000) {
5502 new_val = IGB_4K_ITR;
5503 goto set_itr_val;
5504 }
5505
5506 packets = q_vector->rx.total_packets;
5507 if (packets)
5508 avg_wire_size = q_vector->rx.total_bytes / packets;
5509
5510 packets = q_vector->tx.total_packets;
5511 if (packets)
5512 avg_wire_size = max_t(u32, avg_wire_size,
5513 q_vector->tx.total_bytes / packets);
5514
5515 /* if avg_wire_size isn't set no work was done */
5516 if (!avg_wire_size)
5517 goto clear_counts;
5518
5519 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5520 avg_wire_size += 24;
5521
5522 /* Don't starve jumbo frames */
5523 avg_wire_size = min(avg_wire_size, 3000);
5524
5525 /* Give a little boost to mid-size frames */
5526 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5527 new_val = avg_wire_size / 3;
5528 else
5529 new_val = avg_wire_size / 2;
5530
5531 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5532 if (new_val < IGB_20K_ITR &&
5533 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5534 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5535 new_val = IGB_20K_ITR;
5536
5537 set_itr_val:
5538 if (new_val != q_vector->itr_val) {
5539 q_vector->itr_val = new_val;
5540 q_vector->set_itr = 1;
5541 }
5542 clear_counts:
5543 q_vector->rx.total_bytes = 0;
5544 q_vector->rx.total_packets = 0;
5545 q_vector->tx.total_bytes = 0;
5546 q_vector->tx.total_packets = 0;
5547 }
5548
5549 /**
5550 * igb_update_itr - update the dynamic ITR value based on statistics
5551 * @q_vector: pointer to q_vector
5552 * @ring_container: ring info to update the itr for
5553 *
5554 * Stores a new ITR value based on packets and byte
5555 * counts during the last interrupt. The advantage of per interrupt
5556 * computation is faster updates and more accurate ITR for the current
5557 * traffic pattern. Constants in this function were computed
5558 * based on theoretical maximum wire speed and thresholds were set based
5559 * on testing data as well as attempting to minimize response time
5560 * while increasing bulk throughput.
5561 * This functionality is controlled by ethtool's coalescing settings.
5562 * NOTE: These calculations are only valid when operating in a single-
5563 * queue environment.
5564 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5565 static void igb_update_itr(struct igb_q_vector *q_vector,
5566 struct igb_ring_container *ring_container)
5567 {
5568 unsigned int packets = ring_container->total_packets;
5569 unsigned int bytes = ring_container->total_bytes;
5570 u8 itrval = ring_container->itr;
5571
5572 /* no packets, exit with status unchanged */
5573 if (packets == 0)
5574 return;
5575
5576 switch (itrval) {
5577 case lowest_latency:
5578 /* handle TSO and jumbo frames */
5579 if (bytes/packets > 8000)
5580 itrval = bulk_latency;
5581 else if ((packets < 5) && (bytes > 512))
5582 itrval = low_latency;
5583 break;
5584 case low_latency: /* 50 usec aka 20000 ints/s */
5585 if (bytes > 10000) {
5586 /* this if handles the TSO accounting */
5587 if (bytes/packets > 8000)
5588 itrval = bulk_latency;
5589 else if ((packets < 10) || ((bytes/packets) > 1200))
5590 itrval = bulk_latency;
5591 else if ((packets > 35))
5592 itrval = lowest_latency;
5593 } else if (bytes/packets > 2000) {
5594 itrval = bulk_latency;
5595 } else if (packets <= 2 && bytes < 512) {
5596 itrval = lowest_latency;
5597 }
5598 break;
5599 case bulk_latency: /* 250 usec aka 4000 ints/s */
5600 if (bytes > 25000) {
5601 if (packets > 35)
5602 itrval = low_latency;
5603 } else if (bytes < 1500) {
5604 itrval = low_latency;
5605 }
5606 break;
5607 }
5608
5609 /* clear work counters since we have the values we need */
5610 ring_container->total_bytes = 0;
5611 ring_container->total_packets = 0;
5612
5613 /* write updated itr to ring container */
5614 ring_container->itr = itrval;
5615 }
5616
igb_set_itr(struct igb_q_vector * q_vector)5617 static void igb_set_itr(struct igb_q_vector *q_vector)
5618 {
5619 struct igb_adapter *adapter = q_vector->adapter;
5620 u32 new_itr = q_vector->itr_val;
5621 u8 current_itr = 0;
5622
5623 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5624 if (adapter->link_speed != SPEED_1000) {
5625 current_itr = 0;
5626 new_itr = IGB_4K_ITR;
5627 goto set_itr_now;
5628 }
5629
5630 igb_update_itr(q_vector, &q_vector->tx);
5631 igb_update_itr(q_vector, &q_vector->rx);
5632
5633 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5634
5635 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5636 if (current_itr == lowest_latency &&
5637 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5638 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5639 current_itr = low_latency;
5640
5641 switch (current_itr) {
5642 /* counts and packets in update_itr are dependent on these numbers */
5643 case lowest_latency:
5644 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5645 break;
5646 case low_latency:
5647 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5648 break;
5649 case bulk_latency:
5650 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5651 break;
5652 default:
5653 break;
5654 }
5655
5656 set_itr_now:
5657 if (new_itr != q_vector->itr_val) {
5658 /* this attempts to bias the interrupt rate towards Bulk
5659 * by adding intermediate steps when interrupt rate is
5660 * increasing
5661 */
5662 new_itr = new_itr > q_vector->itr_val ?
5663 max((new_itr * q_vector->itr_val) /
5664 (new_itr + (q_vector->itr_val >> 2)),
5665 new_itr) : new_itr;
5666 /* Don't write the value here; it resets the adapter's
5667 * internal timer, and causes us to delay far longer than
5668 * we should between interrupts. Instead, we write the ITR
5669 * value at the beginning of the next interrupt so the timing
5670 * ends up being correct.
5671 */
5672 q_vector->itr_val = new_itr;
5673 q_vector->set_itr = 1;
5674 }
5675 }
5676
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5677 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5678 struct igb_tx_buffer *first,
5679 u32 vlan_macip_lens, u32 type_tucmd,
5680 u32 mss_l4len_idx)
5681 {
5682 struct e1000_adv_tx_context_desc *context_desc;
5683 u16 i = tx_ring->next_to_use;
5684 struct timespec64 ts;
5685
5686 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5687
5688 i++;
5689 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5690
5691 /* set bits to identify this as an advanced context descriptor */
5692 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5693
5694 /* For 82575, context index must be unique per ring. */
5695 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5696 mss_l4len_idx |= tx_ring->reg_idx << 4;
5697
5698 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5699 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5700 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5701
5702 /* We assume there is always a valid tx time available. Invalid times
5703 * should have been handled by the upper layers.
5704 */
5705 if (tx_ring->launchtime_enable) {
5706 ts = ns_to_timespec64(first->skb->tstamp);
5707 first->skb->tstamp = 0;
5708 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5709 } else {
5710 context_desc->seqnum_seed = 0;
5711 }
5712 }
5713
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5714 static int igb_tso(struct igb_ring *tx_ring,
5715 struct igb_tx_buffer *first,
5716 u8 *hdr_len)
5717 {
5718 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5719 struct sk_buff *skb = first->skb;
5720 union {
5721 struct iphdr *v4;
5722 struct ipv6hdr *v6;
5723 unsigned char *hdr;
5724 } ip;
5725 union {
5726 struct tcphdr *tcp;
5727 unsigned char *hdr;
5728 } l4;
5729 u32 paylen, l4_offset;
5730 int err;
5731
5732 if (skb->ip_summed != CHECKSUM_PARTIAL)
5733 return 0;
5734
5735 if (!skb_is_gso(skb))
5736 return 0;
5737
5738 err = skb_cow_head(skb, 0);
5739 if (err < 0)
5740 return err;
5741
5742 ip.hdr = skb_network_header(skb);
5743 l4.hdr = skb_checksum_start(skb);
5744
5745 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5746 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5747
5748 /* initialize outer IP header fields */
5749 if (ip.v4->version == 4) {
5750 unsigned char *csum_start = skb_checksum_start(skb);
5751 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5752
5753 /* IP header will have to cancel out any data that
5754 * is not a part of the outer IP header
5755 */
5756 ip.v4->check = csum_fold(csum_partial(trans_start,
5757 csum_start - trans_start,
5758 0));
5759 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5760
5761 ip.v4->tot_len = 0;
5762 first->tx_flags |= IGB_TX_FLAGS_TSO |
5763 IGB_TX_FLAGS_CSUM |
5764 IGB_TX_FLAGS_IPV4;
5765 } else {
5766 ip.v6->payload_len = 0;
5767 first->tx_flags |= IGB_TX_FLAGS_TSO |
5768 IGB_TX_FLAGS_CSUM;
5769 }
5770
5771 /* determine offset of inner transport header */
5772 l4_offset = l4.hdr - skb->data;
5773
5774 /* compute length of segmentation header */
5775 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5776
5777 /* remove payload length from inner checksum */
5778 paylen = skb->len - l4_offset;
5779 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5780
5781 /* update gso size and bytecount with header size */
5782 first->gso_segs = skb_shinfo(skb)->gso_segs;
5783 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5784
5785 /* MSS L4LEN IDX */
5786 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5787 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5788
5789 /* VLAN MACLEN IPLEN */
5790 vlan_macip_lens = l4.hdr - ip.hdr;
5791 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5792 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5793
5794 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5795 type_tucmd, mss_l4len_idx);
5796
5797 return 1;
5798 }
5799
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5800 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5801 {
5802 unsigned int offset = 0;
5803
5804 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5805
5806 return offset == skb_checksum_start_offset(skb);
5807 }
5808
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5809 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5810 {
5811 struct sk_buff *skb = first->skb;
5812 u32 vlan_macip_lens = 0;
5813 u32 type_tucmd = 0;
5814
5815 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5816 csum_failed:
5817 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5818 !tx_ring->launchtime_enable)
5819 return;
5820 goto no_csum;
5821 }
5822
5823 switch (skb->csum_offset) {
5824 case offsetof(struct tcphdr, check):
5825 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5826 /* fall through */
5827 case offsetof(struct udphdr, check):
5828 break;
5829 case offsetof(struct sctphdr, checksum):
5830 /* validate that this is actually an SCTP request */
5831 if (((first->protocol == htons(ETH_P_IP)) &&
5832 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5833 ((first->protocol == htons(ETH_P_IPV6)) &&
5834 igb_ipv6_csum_is_sctp(skb))) {
5835 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5836 break;
5837 }
5838 /* fall through */
5839 default:
5840 skb_checksum_help(skb);
5841 goto csum_failed;
5842 }
5843
5844 /* update TX checksum flag */
5845 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5846 vlan_macip_lens = skb_checksum_start_offset(skb) -
5847 skb_network_offset(skb);
5848 no_csum:
5849 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5850 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5851
5852 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5853 }
5854
5855 #define IGB_SET_FLAG(_input, _flag, _result) \
5856 ((_flag <= _result) ? \
5857 ((u32)(_input & _flag) * (_result / _flag)) : \
5858 ((u32)(_input & _flag) / (_flag / _result)))
5859
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)5860 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5861 {
5862 /* set type for advanced descriptor with frame checksum insertion */
5863 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5864 E1000_ADVTXD_DCMD_DEXT |
5865 E1000_ADVTXD_DCMD_IFCS;
5866
5867 /* set HW vlan bit if vlan is present */
5868 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5869 (E1000_ADVTXD_DCMD_VLE));
5870
5871 /* set segmentation bits for TSO */
5872 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5873 (E1000_ADVTXD_DCMD_TSE));
5874
5875 /* set timestamp bit if present */
5876 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5877 (E1000_ADVTXD_MAC_TSTAMP));
5878
5879 /* insert frame checksum */
5880 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5881
5882 return cmd_type;
5883 }
5884
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)5885 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5886 union e1000_adv_tx_desc *tx_desc,
5887 u32 tx_flags, unsigned int paylen)
5888 {
5889 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5890
5891 /* 82575 requires a unique index per ring */
5892 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5893 olinfo_status |= tx_ring->reg_idx << 4;
5894
5895 /* insert L4 checksum */
5896 olinfo_status |= IGB_SET_FLAG(tx_flags,
5897 IGB_TX_FLAGS_CSUM,
5898 (E1000_TXD_POPTS_TXSM << 8));
5899
5900 /* insert IPv4 checksum */
5901 olinfo_status |= IGB_SET_FLAG(tx_flags,
5902 IGB_TX_FLAGS_IPV4,
5903 (E1000_TXD_POPTS_IXSM << 8));
5904
5905 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5906 }
5907
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5908 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5909 {
5910 struct net_device *netdev = tx_ring->netdev;
5911
5912 netif_stop_subqueue(netdev, tx_ring->queue_index);
5913
5914 /* Herbert's original patch had:
5915 * smp_mb__after_netif_stop_queue();
5916 * but since that doesn't exist yet, just open code it.
5917 */
5918 smp_mb();
5919
5920 /* We need to check again in a case another CPU has just
5921 * made room available.
5922 */
5923 if (igb_desc_unused(tx_ring) < size)
5924 return -EBUSY;
5925
5926 /* A reprieve! */
5927 netif_wake_subqueue(netdev, tx_ring->queue_index);
5928
5929 u64_stats_update_begin(&tx_ring->tx_syncp2);
5930 tx_ring->tx_stats.restart_queue2++;
5931 u64_stats_update_end(&tx_ring->tx_syncp2);
5932
5933 return 0;
5934 }
5935
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)5936 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5937 {
5938 if (igb_desc_unused(tx_ring) >= size)
5939 return 0;
5940 return __igb_maybe_stop_tx(tx_ring, size);
5941 }
5942
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)5943 static int igb_tx_map(struct igb_ring *tx_ring,
5944 struct igb_tx_buffer *first,
5945 const u8 hdr_len)
5946 {
5947 struct sk_buff *skb = first->skb;
5948 struct igb_tx_buffer *tx_buffer;
5949 union e1000_adv_tx_desc *tx_desc;
5950 struct skb_frag_struct *frag;
5951 dma_addr_t dma;
5952 unsigned int data_len, size;
5953 u32 tx_flags = first->tx_flags;
5954 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5955 u16 i = tx_ring->next_to_use;
5956
5957 tx_desc = IGB_TX_DESC(tx_ring, i);
5958
5959 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5960
5961 size = skb_headlen(skb);
5962 data_len = skb->data_len;
5963
5964 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5965
5966 tx_buffer = first;
5967
5968 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5969 if (dma_mapping_error(tx_ring->dev, dma))
5970 goto dma_error;
5971
5972 /* record length, and DMA address */
5973 dma_unmap_len_set(tx_buffer, len, size);
5974 dma_unmap_addr_set(tx_buffer, dma, dma);
5975
5976 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5977
5978 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5979 tx_desc->read.cmd_type_len =
5980 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5981
5982 i++;
5983 tx_desc++;
5984 if (i == tx_ring->count) {
5985 tx_desc = IGB_TX_DESC(tx_ring, 0);
5986 i = 0;
5987 }
5988 tx_desc->read.olinfo_status = 0;
5989
5990 dma += IGB_MAX_DATA_PER_TXD;
5991 size -= IGB_MAX_DATA_PER_TXD;
5992
5993 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5994 }
5995
5996 if (likely(!data_len))
5997 break;
5998
5999 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6000
6001 i++;
6002 tx_desc++;
6003 if (i == tx_ring->count) {
6004 tx_desc = IGB_TX_DESC(tx_ring, 0);
6005 i = 0;
6006 }
6007 tx_desc->read.olinfo_status = 0;
6008
6009 size = skb_frag_size(frag);
6010 data_len -= size;
6011
6012 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6013 size, DMA_TO_DEVICE);
6014
6015 tx_buffer = &tx_ring->tx_buffer_info[i];
6016 }
6017
6018 /* write last descriptor with RS and EOP bits */
6019 cmd_type |= size | IGB_TXD_DCMD;
6020 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6021
6022 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6023
6024 /* set the timestamp */
6025 first->time_stamp = jiffies;
6026
6027 /* Force memory writes to complete before letting h/w know there
6028 * are new descriptors to fetch. (Only applicable for weak-ordered
6029 * memory model archs, such as IA-64).
6030 *
6031 * We also need this memory barrier to make certain all of the
6032 * status bits have been updated before next_to_watch is written.
6033 */
6034 dma_wmb();
6035
6036 /* set next_to_watch value indicating a packet is present */
6037 first->next_to_watch = tx_desc;
6038
6039 i++;
6040 if (i == tx_ring->count)
6041 i = 0;
6042
6043 tx_ring->next_to_use = i;
6044
6045 /* Make sure there is space in the ring for the next send. */
6046 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6047
6048 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6049 writel(i, tx_ring->tail);
6050
6051 /* we need this if more than one processor can write to our tail
6052 * at a time, it synchronizes IO on IA64/Altix systems
6053 */
6054 mmiowb();
6055 }
6056 return 0;
6057
6058 dma_error:
6059 dev_err(tx_ring->dev, "TX DMA map failed\n");
6060 tx_buffer = &tx_ring->tx_buffer_info[i];
6061
6062 /* clear dma mappings for failed tx_buffer_info map */
6063 while (tx_buffer != first) {
6064 if (dma_unmap_len(tx_buffer, len))
6065 dma_unmap_page(tx_ring->dev,
6066 dma_unmap_addr(tx_buffer, dma),
6067 dma_unmap_len(tx_buffer, len),
6068 DMA_TO_DEVICE);
6069 dma_unmap_len_set(tx_buffer, len, 0);
6070
6071 if (i-- == 0)
6072 i += tx_ring->count;
6073 tx_buffer = &tx_ring->tx_buffer_info[i];
6074 }
6075
6076 if (dma_unmap_len(tx_buffer, len))
6077 dma_unmap_single(tx_ring->dev,
6078 dma_unmap_addr(tx_buffer, dma),
6079 dma_unmap_len(tx_buffer, len),
6080 DMA_TO_DEVICE);
6081 dma_unmap_len_set(tx_buffer, len, 0);
6082
6083 dev_kfree_skb_any(tx_buffer->skb);
6084 tx_buffer->skb = NULL;
6085
6086 tx_ring->next_to_use = i;
6087
6088 return -1;
6089 }
6090
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6091 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6092 struct igb_ring *tx_ring)
6093 {
6094 struct igb_tx_buffer *first;
6095 int tso;
6096 u32 tx_flags = 0;
6097 unsigned short f;
6098 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6099 __be16 protocol = vlan_get_protocol(skb);
6100 u8 hdr_len = 0;
6101
6102 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6103 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6104 * + 2 desc gap to keep tail from touching head,
6105 * + 1 desc for context descriptor,
6106 * otherwise try next time
6107 */
6108 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6109 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6110
6111 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6112 /* this is a hard error */
6113 return NETDEV_TX_BUSY;
6114 }
6115
6116 /* record the location of the first descriptor for this packet */
6117 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6118 first->skb = skb;
6119 first->bytecount = skb->len;
6120 first->gso_segs = 1;
6121
6122 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6123 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6124
6125 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6126 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6127 &adapter->state)) {
6128 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6129 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6130
6131 adapter->ptp_tx_skb = skb_get(skb);
6132 adapter->ptp_tx_start = jiffies;
6133 if (adapter->hw.mac.type == e1000_82576)
6134 schedule_work(&adapter->ptp_tx_work);
6135 } else {
6136 adapter->tx_hwtstamp_skipped++;
6137 }
6138 }
6139
6140 if (skb_vlan_tag_present(skb)) {
6141 tx_flags |= IGB_TX_FLAGS_VLAN;
6142 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6143 }
6144
6145 /* record initial flags and protocol */
6146 first->tx_flags = tx_flags;
6147 first->protocol = protocol;
6148
6149 tso = igb_tso(tx_ring, first, &hdr_len);
6150 if (tso < 0)
6151 goto out_drop;
6152 else if (!tso)
6153 igb_tx_csum(tx_ring, first);
6154
6155 skb_tx_timestamp(skb);
6156
6157 if (igb_tx_map(tx_ring, first, hdr_len))
6158 goto cleanup_tx_tstamp;
6159
6160 return NETDEV_TX_OK;
6161
6162 out_drop:
6163 dev_kfree_skb_any(first->skb);
6164 first->skb = NULL;
6165 cleanup_tx_tstamp:
6166 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6167 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6168
6169 dev_kfree_skb_any(adapter->ptp_tx_skb);
6170 adapter->ptp_tx_skb = NULL;
6171 if (adapter->hw.mac.type == e1000_82576)
6172 cancel_work_sync(&adapter->ptp_tx_work);
6173 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6174 }
6175
6176 return NETDEV_TX_OK;
6177 }
6178
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6179 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6180 struct sk_buff *skb)
6181 {
6182 unsigned int r_idx = skb->queue_mapping;
6183
6184 if (r_idx >= adapter->num_tx_queues)
6185 r_idx = r_idx % adapter->num_tx_queues;
6186
6187 return adapter->tx_ring[r_idx];
6188 }
6189
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6190 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6191 struct net_device *netdev)
6192 {
6193 struct igb_adapter *adapter = netdev_priv(netdev);
6194
6195 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6196 * in order to meet this minimum size requirement.
6197 */
6198 if (skb_put_padto(skb, 17))
6199 return NETDEV_TX_OK;
6200
6201 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6202 }
6203
6204 /**
6205 * igb_tx_timeout - Respond to a Tx Hang
6206 * @netdev: network interface device structure
6207 **/
igb_tx_timeout(struct net_device * netdev)6208 static void igb_tx_timeout(struct net_device *netdev)
6209 {
6210 struct igb_adapter *adapter = netdev_priv(netdev);
6211 struct e1000_hw *hw = &adapter->hw;
6212
6213 /* Do the reset outside of interrupt context */
6214 adapter->tx_timeout_count++;
6215
6216 if (hw->mac.type >= e1000_82580)
6217 hw->dev_spec._82575.global_device_reset = true;
6218
6219 schedule_work(&adapter->reset_task);
6220 wr32(E1000_EICS,
6221 (adapter->eims_enable_mask & ~adapter->eims_other));
6222 }
6223
igb_reset_task(struct work_struct * work)6224 static void igb_reset_task(struct work_struct *work)
6225 {
6226 struct igb_adapter *adapter;
6227 adapter = container_of(work, struct igb_adapter, reset_task);
6228
6229 rtnl_lock();
6230 /* If we're already down or resetting, just bail */
6231 if (test_bit(__IGB_DOWN, &adapter->state) ||
6232 test_bit(__IGB_RESETTING, &adapter->state)) {
6233 rtnl_unlock();
6234 return;
6235 }
6236
6237 igb_dump(adapter);
6238 netdev_err(adapter->netdev, "Reset adapter\n");
6239 igb_reinit_locked(adapter);
6240 rtnl_unlock();
6241 }
6242
6243 /**
6244 * igb_get_stats64 - Get System Network Statistics
6245 * @netdev: network interface device structure
6246 * @stats: rtnl_link_stats64 pointer
6247 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6248 static void igb_get_stats64(struct net_device *netdev,
6249 struct rtnl_link_stats64 *stats)
6250 {
6251 struct igb_adapter *adapter = netdev_priv(netdev);
6252
6253 spin_lock(&adapter->stats64_lock);
6254 igb_update_stats(adapter);
6255 memcpy(stats, &adapter->stats64, sizeof(*stats));
6256 spin_unlock(&adapter->stats64_lock);
6257 }
6258
6259 /**
6260 * igb_change_mtu - Change the Maximum Transfer Unit
6261 * @netdev: network interface device structure
6262 * @new_mtu: new value for maximum frame size
6263 *
6264 * Returns 0 on success, negative on failure
6265 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6266 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6267 {
6268 struct igb_adapter *adapter = netdev_priv(netdev);
6269 struct pci_dev *pdev = adapter->pdev;
6270 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6271
6272 /* adjust max frame to be at least the size of a standard frame */
6273 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6274 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6275
6276 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6277 usleep_range(1000, 2000);
6278
6279 /* igb_down has a dependency on max_frame_size */
6280 adapter->max_frame_size = max_frame;
6281
6282 if (netif_running(netdev))
6283 igb_down(adapter);
6284
6285 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6286 netdev->mtu, new_mtu);
6287 netdev->mtu = new_mtu;
6288
6289 if (netif_running(netdev))
6290 igb_up(adapter);
6291 else
6292 igb_reset(adapter);
6293
6294 clear_bit(__IGB_RESETTING, &adapter->state);
6295
6296 return 0;
6297 }
6298
6299 /**
6300 * igb_update_stats - Update the board statistics counters
6301 * @adapter: board private structure
6302 **/
igb_update_stats(struct igb_adapter * adapter)6303 void igb_update_stats(struct igb_adapter *adapter)
6304 {
6305 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6306 struct e1000_hw *hw = &adapter->hw;
6307 struct pci_dev *pdev = adapter->pdev;
6308 u32 reg, mpc;
6309 int i;
6310 u64 bytes, packets;
6311 unsigned int start;
6312 u64 _bytes, _packets;
6313
6314 /* Prevent stats update while adapter is being reset, or if the pci
6315 * connection is down.
6316 */
6317 if (adapter->link_speed == 0)
6318 return;
6319 if (pci_channel_offline(pdev))
6320 return;
6321
6322 bytes = 0;
6323 packets = 0;
6324
6325 rcu_read_lock();
6326 for (i = 0; i < adapter->num_rx_queues; i++) {
6327 struct igb_ring *ring = adapter->rx_ring[i];
6328 u32 rqdpc = rd32(E1000_RQDPC(i));
6329 if (hw->mac.type >= e1000_i210)
6330 wr32(E1000_RQDPC(i), 0);
6331
6332 if (rqdpc) {
6333 ring->rx_stats.drops += rqdpc;
6334 net_stats->rx_fifo_errors += rqdpc;
6335 }
6336
6337 do {
6338 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6339 _bytes = ring->rx_stats.bytes;
6340 _packets = ring->rx_stats.packets;
6341 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6342 bytes += _bytes;
6343 packets += _packets;
6344 }
6345
6346 net_stats->rx_bytes = bytes;
6347 net_stats->rx_packets = packets;
6348
6349 bytes = 0;
6350 packets = 0;
6351 for (i = 0; i < adapter->num_tx_queues; i++) {
6352 struct igb_ring *ring = adapter->tx_ring[i];
6353 do {
6354 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6355 _bytes = ring->tx_stats.bytes;
6356 _packets = ring->tx_stats.packets;
6357 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6358 bytes += _bytes;
6359 packets += _packets;
6360 }
6361 net_stats->tx_bytes = bytes;
6362 net_stats->tx_packets = packets;
6363 rcu_read_unlock();
6364
6365 /* read stats registers */
6366 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6367 adapter->stats.gprc += rd32(E1000_GPRC);
6368 adapter->stats.gorc += rd32(E1000_GORCL);
6369 rd32(E1000_GORCH); /* clear GORCL */
6370 adapter->stats.bprc += rd32(E1000_BPRC);
6371 adapter->stats.mprc += rd32(E1000_MPRC);
6372 adapter->stats.roc += rd32(E1000_ROC);
6373
6374 adapter->stats.prc64 += rd32(E1000_PRC64);
6375 adapter->stats.prc127 += rd32(E1000_PRC127);
6376 adapter->stats.prc255 += rd32(E1000_PRC255);
6377 adapter->stats.prc511 += rd32(E1000_PRC511);
6378 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6379 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6380 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6381 adapter->stats.sec += rd32(E1000_SEC);
6382
6383 mpc = rd32(E1000_MPC);
6384 adapter->stats.mpc += mpc;
6385 net_stats->rx_fifo_errors += mpc;
6386 adapter->stats.scc += rd32(E1000_SCC);
6387 adapter->stats.ecol += rd32(E1000_ECOL);
6388 adapter->stats.mcc += rd32(E1000_MCC);
6389 adapter->stats.latecol += rd32(E1000_LATECOL);
6390 adapter->stats.dc += rd32(E1000_DC);
6391 adapter->stats.rlec += rd32(E1000_RLEC);
6392 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6393 adapter->stats.xontxc += rd32(E1000_XONTXC);
6394 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6395 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6396 adapter->stats.fcruc += rd32(E1000_FCRUC);
6397 adapter->stats.gptc += rd32(E1000_GPTC);
6398 adapter->stats.gotc += rd32(E1000_GOTCL);
6399 rd32(E1000_GOTCH); /* clear GOTCL */
6400 adapter->stats.rnbc += rd32(E1000_RNBC);
6401 adapter->stats.ruc += rd32(E1000_RUC);
6402 adapter->stats.rfc += rd32(E1000_RFC);
6403 adapter->stats.rjc += rd32(E1000_RJC);
6404 adapter->stats.tor += rd32(E1000_TORH);
6405 adapter->stats.tot += rd32(E1000_TOTH);
6406 adapter->stats.tpr += rd32(E1000_TPR);
6407
6408 adapter->stats.ptc64 += rd32(E1000_PTC64);
6409 adapter->stats.ptc127 += rd32(E1000_PTC127);
6410 adapter->stats.ptc255 += rd32(E1000_PTC255);
6411 adapter->stats.ptc511 += rd32(E1000_PTC511);
6412 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6413 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6414
6415 adapter->stats.mptc += rd32(E1000_MPTC);
6416 adapter->stats.bptc += rd32(E1000_BPTC);
6417
6418 adapter->stats.tpt += rd32(E1000_TPT);
6419 adapter->stats.colc += rd32(E1000_COLC);
6420
6421 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6422 /* read internal phy specific stats */
6423 reg = rd32(E1000_CTRL_EXT);
6424 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6425 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6426
6427 /* this stat has invalid values on i210/i211 */
6428 if ((hw->mac.type != e1000_i210) &&
6429 (hw->mac.type != e1000_i211))
6430 adapter->stats.tncrs += rd32(E1000_TNCRS);
6431 }
6432
6433 adapter->stats.tsctc += rd32(E1000_TSCTC);
6434 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6435
6436 adapter->stats.iac += rd32(E1000_IAC);
6437 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6438 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6439 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6440 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6441 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6442 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6443 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6444 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6445
6446 /* Fill out the OS statistics structure */
6447 net_stats->multicast = adapter->stats.mprc;
6448 net_stats->collisions = adapter->stats.colc;
6449
6450 /* Rx Errors */
6451
6452 /* RLEC on some newer hardware can be incorrect so build
6453 * our own version based on RUC and ROC
6454 */
6455 net_stats->rx_errors = adapter->stats.rxerrc +
6456 adapter->stats.crcerrs + adapter->stats.algnerrc +
6457 adapter->stats.ruc + adapter->stats.roc +
6458 adapter->stats.cexterr;
6459 net_stats->rx_length_errors = adapter->stats.ruc +
6460 adapter->stats.roc;
6461 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6462 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6463 net_stats->rx_missed_errors = adapter->stats.mpc;
6464
6465 /* Tx Errors */
6466 net_stats->tx_errors = adapter->stats.ecol +
6467 adapter->stats.latecol;
6468 net_stats->tx_aborted_errors = adapter->stats.ecol;
6469 net_stats->tx_window_errors = adapter->stats.latecol;
6470 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6471
6472 /* Tx Dropped needs to be maintained elsewhere */
6473
6474 /* Management Stats */
6475 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6476 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6477 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6478
6479 /* OS2BMC Stats */
6480 reg = rd32(E1000_MANC);
6481 if (reg & E1000_MANC_EN_BMC2OS) {
6482 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6483 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6484 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6485 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6486 }
6487 }
6488
igb_tsync_interrupt(struct igb_adapter * adapter)6489 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6490 {
6491 struct e1000_hw *hw = &adapter->hw;
6492 struct ptp_clock_event event;
6493 struct timespec64 ts;
6494 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6495
6496 if (tsicr & TSINTR_SYS_WRAP) {
6497 event.type = PTP_CLOCK_PPS;
6498 if (adapter->ptp_caps.pps)
6499 ptp_clock_event(adapter->ptp_clock, &event);
6500 ack |= TSINTR_SYS_WRAP;
6501 }
6502
6503 if (tsicr & E1000_TSICR_TXTS) {
6504 /* retrieve hardware timestamp */
6505 schedule_work(&adapter->ptp_tx_work);
6506 ack |= E1000_TSICR_TXTS;
6507 }
6508
6509 if (tsicr & TSINTR_TT0) {
6510 spin_lock(&adapter->tmreg_lock);
6511 ts = timespec64_add(adapter->perout[0].start,
6512 adapter->perout[0].period);
6513 /* u32 conversion of tv_sec is safe until y2106 */
6514 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6515 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6516 tsauxc = rd32(E1000_TSAUXC);
6517 tsauxc |= TSAUXC_EN_TT0;
6518 wr32(E1000_TSAUXC, tsauxc);
6519 adapter->perout[0].start = ts;
6520 spin_unlock(&adapter->tmreg_lock);
6521 ack |= TSINTR_TT0;
6522 }
6523
6524 if (tsicr & TSINTR_TT1) {
6525 spin_lock(&adapter->tmreg_lock);
6526 ts = timespec64_add(adapter->perout[1].start,
6527 adapter->perout[1].period);
6528 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6529 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6530 tsauxc = rd32(E1000_TSAUXC);
6531 tsauxc |= TSAUXC_EN_TT1;
6532 wr32(E1000_TSAUXC, tsauxc);
6533 adapter->perout[1].start = ts;
6534 spin_unlock(&adapter->tmreg_lock);
6535 ack |= TSINTR_TT1;
6536 }
6537
6538 if (tsicr & TSINTR_AUTT0) {
6539 nsec = rd32(E1000_AUXSTMPL0);
6540 sec = rd32(E1000_AUXSTMPH0);
6541 event.type = PTP_CLOCK_EXTTS;
6542 event.index = 0;
6543 event.timestamp = sec * 1000000000ULL + nsec;
6544 ptp_clock_event(adapter->ptp_clock, &event);
6545 ack |= TSINTR_AUTT0;
6546 }
6547
6548 if (tsicr & TSINTR_AUTT1) {
6549 nsec = rd32(E1000_AUXSTMPL1);
6550 sec = rd32(E1000_AUXSTMPH1);
6551 event.type = PTP_CLOCK_EXTTS;
6552 event.index = 1;
6553 event.timestamp = sec * 1000000000ULL + nsec;
6554 ptp_clock_event(adapter->ptp_clock, &event);
6555 ack |= TSINTR_AUTT1;
6556 }
6557
6558 /* acknowledge the interrupts */
6559 wr32(E1000_TSICR, ack);
6560 }
6561
igb_msix_other(int irq,void * data)6562 static irqreturn_t igb_msix_other(int irq, void *data)
6563 {
6564 struct igb_adapter *adapter = data;
6565 struct e1000_hw *hw = &adapter->hw;
6566 u32 icr = rd32(E1000_ICR);
6567 /* reading ICR causes bit 31 of EICR to be cleared */
6568
6569 if (icr & E1000_ICR_DRSTA)
6570 schedule_work(&adapter->reset_task);
6571
6572 if (icr & E1000_ICR_DOUTSYNC) {
6573 /* HW is reporting DMA is out of sync */
6574 adapter->stats.doosync++;
6575 /* The DMA Out of Sync is also indication of a spoof event
6576 * in IOV mode. Check the Wrong VM Behavior register to
6577 * see if it is really a spoof event.
6578 */
6579 igb_check_wvbr(adapter);
6580 }
6581
6582 /* Check for a mailbox event */
6583 if (icr & E1000_ICR_VMMB)
6584 igb_msg_task(adapter);
6585
6586 if (icr & E1000_ICR_LSC) {
6587 hw->mac.get_link_status = 1;
6588 /* guard against interrupt when we're going down */
6589 if (!test_bit(__IGB_DOWN, &adapter->state))
6590 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6591 }
6592
6593 if (icr & E1000_ICR_TS)
6594 igb_tsync_interrupt(adapter);
6595
6596 wr32(E1000_EIMS, adapter->eims_other);
6597
6598 return IRQ_HANDLED;
6599 }
6600
igb_write_itr(struct igb_q_vector * q_vector)6601 static void igb_write_itr(struct igb_q_vector *q_vector)
6602 {
6603 struct igb_adapter *adapter = q_vector->adapter;
6604 u32 itr_val = q_vector->itr_val & 0x7FFC;
6605
6606 if (!q_vector->set_itr)
6607 return;
6608
6609 if (!itr_val)
6610 itr_val = 0x4;
6611
6612 if (adapter->hw.mac.type == e1000_82575)
6613 itr_val |= itr_val << 16;
6614 else
6615 itr_val |= E1000_EITR_CNT_IGNR;
6616
6617 writel(itr_val, q_vector->itr_register);
6618 q_vector->set_itr = 0;
6619 }
6620
igb_msix_ring(int irq,void * data)6621 static irqreturn_t igb_msix_ring(int irq, void *data)
6622 {
6623 struct igb_q_vector *q_vector = data;
6624
6625 /* Write the ITR value calculated from the previous interrupt. */
6626 igb_write_itr(q_vector);
6627
6628 napi_schedule(&q_vector->napi);
6629
6630 return IRQ_HANDLED;
6631 }
6632
6633 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6634 static void igb_update_tx_dca(struct igb_adapter *adapter,
6635 struct igb_ring *tx_ring,
6636 int cpu)
6637 {
6638 struct e1000_hw *hw = &adapter->hw;
6639 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6640
6641 if (hw->mac.type != e1000_82575)
6642 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6643
6644 /* We can enable relaxed ordering for reads, but not writes when
6645 * DCA is enabled. This is due to a known issue in some chipsets
6646 * which will cause the DCA tag to be cleared.
6647 */
6648 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6649 E1000_DCA_TXCTRL_DATA_RRO_EN |
6650 E1000_DCA_TXCTRL_DESC_DCA_EN;
6651
6652 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6653 }
6654
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6655 static void igb_update_rx_dca(struct igb_adapter *adapter,
6656 struct igb_ring *rx_ring,
6657 int cpu)
6658 {
6659 struct e1000_hw *hw = &adapter->hw;
6660 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6661
6662 if (hw->mac.type != e1000_82575)
6663 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6664
6665 /* We can enable relaxed ordering for reads, but not writes when
6666 * DCA is enabled. This is due to a known issue in some chipsets
6667 * which will cause the DCA tag to be cleared.
6668 */
6669 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6670 E1000_DCA_RXCTRL_DESC_DCA_EN;
6671
6672 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6673 }
6674
igb_update_dca(struct igb_q_vector * q_vector)6675 static void igb_update_dca(struct igb_q_vector *q_vector)
6676 {
6677 struct igb_adapter *adapter = q_vector->adapter;
6678 int cpu = get_cpu();
6679
6680 if (q_vector->cpu == cpu)
6681 goto out_no_update;
6682
6683 if (q_vector->tx.ring)
6684 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6685
6686 if (q_vector->rx.ring)
6687 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6688
6689 q_vector->cpu = cpu;
6690 out_no_update:
6691 put_cpu();
6692 }
6693
igb_setup_dca(struct igb_adapter * adapter)6694 static void igb_setup_dca(struct igb_adapter *adapter)
6695 {
6696 struct e1000_hw *hw = &adapter->hw;
6697 int i;
6698
6699 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6700 return;
6701
6702 /* Always use CB2 mode, difference is masked in the CB driver. */
6703 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6704
6705 for (i = 0; i < adapter->num_q_vectors; i++) {
6706 adapter->q_vector[i]->cpu = -1;
6707 igb_update_dca(adapter->q_vector[i]);
6708 }
6709 }
6710
__igb_notify_dca(struct device * dev,void * data)6711 static int __igb_notify_dca(struct device *dev, void *data)
6712 {
6713 struct net_device *netdev = dev_get_drvdata(dev);
6714 struct igb_adapter *adapter = netdev_priv(netdev);
6715 struct pci_dev *pdev = adapter->pdev;
6716 struct e1000_hw *hw = &adapter->hw;
6717 unsigned long event = *(unsigned long *)data;
6718
6719 switch (event) {
6720 case DCA_PROVIDER_ADD:
6721 /* if already enabled, don't do it again */
6722 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6723 break;
6724 if (dca_add_requester(dev) == 0) {
6725 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6726 dev_info(&pdev->dev, "DCA enabled\n");
6727 igb_setup_dca(adapter);
6728 break;
6729 }
6730 /* Fall Through since DCA is disabled. */
6731 case DCA_PROVIDER_REMOVE:
6732 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6733 /* without this a class_device is left
6734 * hanging around in the sysfs model
6735 */
6736 dca_remove_requester(dev);
6737 dev_info(&pdev->dev, "DCA disabled\n");
6738 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6739 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6740 }
6741 break;
6742 }
6743
6744 return 0;
6745 }
6746
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)6747 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6748 void *p)
6749 {
6750 int ret_val;
6751
6752 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6753 __igb_notify_dca);
6754
6755 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6756 }
6757 #endif /* CONFIG_IGB_DCA */
6758
6759 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)6760 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6761 {
6762 unsigned char mac_addr[ETH_ALEN];
6763
6764 eth_zero_addr(mac_addr);
6765 igb_set_vf_mac(adapter, vf, mac_addr);
6766
6767 /* By default spoof check is enabled for all VFs */
6768 adapter->vf_data[vf].spoofchk_enabled = true;
6769
6770 /* By default VFs are not trusted */
6771 adapter->vf_data[vf].trusted = false;
6772
6773 return 0;
6774 }
6775
6776 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)6777 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6778 {
6779 struct e1000_hw *hw = &adapter->hw;
6780 u32 ping;
6781 int i;
6782
6783 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6784 ping = E1000_PF_CONTROL_MSG;
6785 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6786 ping |= E1000_VT_MSGTYPE_CTS;
6787 igb_write_mbx(hw, &ping, 1, i);
6788 }
6789 }
6790
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6791 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6792 {
6793 struct e1000_hw *hw = &adapter->hw;
6794 u32 vmolr = rd32(E1000_VMOLR(vf));
6795 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6796
6797 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6798 IGB_VF_FLAG_MULTI_PROMISC);
6799 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6800
6801 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6802 vmolr |= E1000_VMOLR_MPME;
6803 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6804 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6805 } else {
6806 /* if we have hashes and we are clearing a multicast promisc
6807 * flag we need to write the hashes to the MTA as this step
6808 * was previously skipped
6809 */
6810 if (vf_data->num_vf_mc_hashes > 30) {
6811 vmolr |= E1000_VMOLR_MPME;
6812 } else if (vf_data->num_vf_mc_hashes) {
6813 int j;
6814
6815 vmolr |= E1000_VMOLR_ROMPE;
6816 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6817 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6818 }
6819 }
6820
6821 wr32(E1000_VMOLR(vf), vmolr);
6822
6823 /* there are flags left unprocessed, likely not supported */
6824 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6825 return -EINVAL;
6826
6827 return 0;
6828 }
6829
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)6830 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6831 u32 *msgbuf, u32 vf)
6832 {
6833 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6834 u16 *hash_list = (u16 *)&msgbuf[1];
6835 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6836 int i;
6837
6838 /* salt away the number of multicast addresses assigned
6839 * to this VF for later use to restore when the PF multi cast
6840 * list changes
6841 */
6842 vf_data->num_vf_mc_hashes = n;
6843
6844 /* only up to 30 hash values supported */
6845 if (n > 30)
6846 n = 30;
6847
6848 /* store the hashes for later use */
6849 for (i = 0; i < n; i++)
6850 vf_data->vf_mc_hashes[i] = hash_list[i];
6851
6852 /* Flush and reset the mta with the new values */
6853 igb_set_rx_mode(adapter->netdev);
6854
6855 return 0;
6856 }
6857
igb_restore_vf_multicasts(struct igb_adapter * adapter)6858 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6859 {
6860 struct e1000_hw *hw = &adapter->hw;
6861 struct vf_data_storage *vf_data;
6862 int i, j;
6863
6864 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6865 u32 vmolr = rd32(E1000_VMOLR(i));
6866
6867 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6868
6869 vf_data = &adapter->vf_data[i];
6870
6871 if ((vf_data->num_vf_mc_hashes > 30) ||
6872 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6873 vmolr |= E1000_VMOLR_MPME;
6874 } else if (vf_data->num_vf_mc_hashes) {
6875 vmolr |= E1000_VMOLR_ROMPE;
6876 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6877 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6878 }
6879 wr32(E1000_VMOLR(i), vmolr);
6880 }
6881 }
6882
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)6883 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6884 {
6885 struct e1000_hw *hw = &adapter->hw;
6886 u32 pool_mask, vlvf_mask, i;
6887
6888 /* create mask for VF and other pools */
6889 pool_mask = E1000_VLVF_POOLSEL_MASK;
6890 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6891
6892 /* drop PF from pool bits */
6893 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6894 adapter->vfs_allocated_count);
6895
6896 /* Find the vlan filter for this id */
6897 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6898 u32 vlvf = rd32(E1000_VLVF(i));
6899 u32 vfta_mask, vid, vfta;
6900
6901 /* remove the vf from the pool */
6902 if (!(vlvf & vlvf_mask))
6903 continue;
6904
6905 /* clear out bit from VLVF */
6906 vlvf ^= vlvf_mask;
6907
6908 /* if other pools are present, just remove ourselves */
6909 if (vlvf & pool_mask)
6910 goto update_vlvfb;
6911
6912 /* if PF is present, leave VFTA */
6913 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6914 goto update_vlvf;
6915
6916 vid = vlvf & E1000_VLVF_VLANID_MASK;
6917 vfta_mask = BIT(vid % 32);
6918
6919 /* clear bit from VFTA */
6920 vfta = adapter->shadow_vfta[vid / 32];
6921 if (vfta & vfta_mask)
6922 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6923 update_vlvf:
6924 /* clear pool selection enable */
6925 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6926 vlvf &= E1000_VLVF_POOLSEL_MASK;
6927 else
6928 vlvf = 0;
6929 update_vlvfb:
6930 /* clear pool bits */
6931 wr32(E1000_VLVF(i), vlvf);
6932 }
6933 }
6934
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)6935 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6936 {
6937 u32 vlvf;
6938 int idx;
6939
6940 /* short cut the special case */
6941 if (vlan == 0)
6942 return 0;
6943
6944 /* Search for the VLAN id in the VLVF entries */
6945 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6946 vlvf = rd32(E1000_VLVF(idx));
6947 if ((vlvf & VLAN_VID_MASK) == vlan)
6948 break;
6949 }
6950
6951 return idx;
6952 }
6953
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)6954 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6955 {
6956 struct e1000_hw *hw = &adapter->hw;
6957 u32 bits, pf_id;
6958 int idx;
6959
6960 idx = igb_find_vlvf_entry(hw, vid);
6961 if (!idx)
6962 return;
6963
6964 /* See if any other pools are set for this VLAN filter
6965 * entry other than the PF.
6966 */
6967 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6968 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6969 bits &= rd32(E1000_VLVF(idx));
6970
6971 /* Disable the filter so this falls into the default pool. */
6972 if (!bits) {
6973 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6974 wr32(E1000_VLVF(idx), BIT(pf_id));
6975 else
6976 wr32(E1000_VLVF(idx), 0);
6977 }
6978 }
6979
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)6980 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6981 bool add, u32 vf)
6982 {
6983 int pf_id = adapter->vfs_allocated_count;
6984 struct e1000_hw *hw = &adapter->hw;
6985 int err;
6986
6987 /* If VLAN overlaps with one the PF is currently monitoring make
6988 * sure that we are able to allocate a VLVF entry. This may be
6989 * redundant but it guarantees PF will maintain visibility to
6990 * the VLAN.
6991 */
6992 if (add && test_bit(vid, adapter->active_vlans)) {
6993 err = igb_vfta_set(hw, vid, pf_id, true, false);
6994 if (err)
6995 return err;
6996 }
6997
6998 err = igb_vfta_set(hw, vid, vf, add, false);
6999
7000 if (add && !err)
7001 return err;
7002
7003 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7004 * we may need to drop the PF pool bit in order to allow us to free
7005 * up the VLVF resources.
7006 */
7007 if (test_bit(vid, adapter->active_vlans) ||
7008 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7009 igb_update_pf_vlvf(adapter, vid);
7010
7011 return err;
7012 }
7013
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7014 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7015 {
7016 struct e1000_hw *hw = &adapter->hw;
7017
7018 if (vid)
7019 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7020 else
7021 wr32(E1000_VMVIR(vf), 0);
7022 }
7023
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7024 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7025 u16 vlan, u8 qos)
7026 {
7027 int err;
7028
7029 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7030 if (err)
7031 return err;
7032
7033 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7034 igb_set_vmolr(adapter, vf, !vlan);
7035
7036 /* revoke access to previous VLAN */
7037 if (vlan != adapter->vf_data[vf].pf_vlan)
7038 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7039 false, vf);
7040
7041 adapter->vf_data[vf].pf_vlan = vlan;
7042 adapter->vf_data[vf].pf_qos = qos;
7043 igb_set_vf_vlan_strip(adapter, vf, true);
7044 dev_info(&adapter->pdev->dev,
7045 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7046 if (test_bit(__IGB_DOWN, &adapter->state)) {
7047 dev_warn(&adapter->pdev->dev,
7048 "The VF VLAN has been set, but the PF device is not up.\n");
7049 dev_warn(&adapter->pdev->dev,
7050 "Bring the PF device up before attempting to use the VF device.\n");
7051 }
7052
7053 return err;
7054 }
7055
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7056 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7057 {
7058 /* Restore tagless access via VLAN 0 */
7059 igb_set_vf_vlan(adapter, 0, true, vf);
7060
7061 igb_set_vmvir(adapter, 0, vf);
7062 igb_set_vmolr(adapter, vf, true);
7063
7064 /* Remove any PF assigned VLAN */
7065 if (adapter->vf_data[vf].pf_vlan)
7066 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7067 false, vf);
7068
7069 adapter->vf_data[vf].pf_vlan = 0;
7070 adapter->vf_data[vf].pf_qos = 0;
7071 igb_set_vf_vlan_strip(adapter, vf, false);
7072
7073 return 0;
7074 }
7075
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7076 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7077 u16 vlan, u8 qos, __be16 vlan_proto)
7078 {
7079 struct igb_adapter *adapter = netdev_priv(netdev);
7080
7081 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7082 return -EINVAL;
7083
7084 if (vlan_proto != htons(ETH_P_8021Q))
7085 return -EPROTONOSUPPORT;
7086
7087 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7088 igb_disable_port_vlan(adapter, vf);
7089 }
7090
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7091 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7092 {
7093 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7094 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7095 int ret;
7096
7097 if (adapter->vf_data[vf].pf_vlan)
7098 return -1;
7099
7100 /* VLAN 0 is a special case, don't allow it to be removed */
7101 if (!vid && !add)
7102 return 0;
7103
7104 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7105 if (!ret)
7106 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7107 return ret;
7108 }
7109
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7110 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7111 {
7112 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7113
7114 /* clear flags - except flag that indicates PF has set the MAC */
7115 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7116 vf_data->last_nack = jiffies;
7117
7118 /* reset vlans for device */
7119 igb_clear_vf_vfta(adapter, vf);
7120 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7121 igb_set_vmvir(adapter, vf_data->pf_vlan |
7122 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7123 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7124 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7125
7126 /* reset multicast table array for vf */
7127 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7128
7129 /* Flush and reset the mta with the new values */
7130 igb_set_rx_mode(adapter->netdev);
7131 }
7132
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7133 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7134 {
7135 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7136
7137 /* clear mac address as we were hotplug removed/added */
7138 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7139 eth_zero_addr(vf_mac);
7140
7141 /* process remaining reset events */
7142 igb_vf_reset(adapter, vf);
7143 }
7144
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7145 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7146 {
7147 struct e1000_hw *hw = &adapter->hw;
7148 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7149 u32 reg, msgbuf[3];
7150 u8 *addr = (u8 *)(&msgbuf[1]);
7151
7152 /* process all the same items cleared in a function level reset */
7153 igb_vf_reset(adapter, vf);
7154
7155 /* set vf mac address */
7156 igb_set_vf_mac(adapter, vf, vf_mac);
7157
7158 /* enable transmit and receive for vf */
7159 reg = rd32(E1000_VFTE);
7160 wr32(E1000_VFTE, reg | BIT(vf));
7161 reg = rd32(E1000_VFRE);
7162 wr32(E1000_VFRE, reg | BIT(vf));
7163
7164 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7165
7166 /* reply to reset with ack and vf mac address */
7167 if (!is_zero_ether_addr(vf_mac)) {
7168 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7169 memcpy(addr, vf_mac, ETH_ALEN);
7170 } else {
7171 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7172 }
7173 igb_write_mbx(hw, msgbuf, 3, vf);
7174 }
7175
igb_flush_mac_table(struct igb_adapter * adapter)7176 static void igb_flush_mac_table(struct igb_adapter *adapter)
7177 {
7178 struct e1000_hw *hw = &adapter->hw;
7179 int i;
7180
7181 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7182 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7183 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7184 adapter->mac_table[i].queue = 0;
7185 igb_rar_set_index(adapter, i);
7186 }
7187 }
7188
igb_available_rars(struct igb_adapter * adapter,u8 queue)7189 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7190 {
7191 struct e1000_hw *hw = &adapter->hw;
7192 /* do not count rar entries reserved for VFs MAC addresses */
7193 int rar_entries = hw->mac.rar_entry_count -
7194 adapter->vfs_allocated_count;
7195 int i, count = 0;
7196
7197 for (i = 0; i < rar_entries; i++) {
7198 /* do not count default entries */
7199 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7200 continue;
7201
7202 /* do not count "in use" entries for different queues */
7203 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7204 (adapter->mac_table[i].queue != queue))
7205 continue;
7206
7207 count++;
7208 }
7209
7210 return count;
7211 }
7212
7213 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7214 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7215 {
7216 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7217
7218 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7219 mac_table->queue = adapter->vfs_allocated_count;
7220 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7221
7222 igb_rar_set_index(adapter, 0);
7223 }
7224
7225 /* If the filter to be added and an already existing filter express
7226 * the same address and address type, it should be possible to only
7227 * override the other configurations, for example the queue to steer
7228 * traffic.
7229 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7230 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7231 const u8 *addr, const u8 flags)
7232 {
7233 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7234 return true;
7235
7236 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7237 (flags & IGB_MAC_STATE_SRC_ADDR))
7238 return false;
7239
7240 if (!ether_addr_equal(addr, entry->addr))
7241 return false;
7242
7243 return true;
7244 }
7245
7246 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7247 * 'flags' is used to indicate what kind of match is made, match is by
7248 * default for the destination address, if matching by source address
7249 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7250 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7251 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7252 const u8 *addr, const u8 queue,
7253 const u8 flags)
7254 {
7255 struct e1000_hw *hw = &adapter->hw;
7256 int rar_entries = hw->mac.rar_entry_count -
7257 adapter->vfs_allocated_count;
7258 int i;
7259
7260 if (is_zero_ether_addr(addr))
7261 return -EINVAL;
7262
7263 /* Search for the first empty entry in the MAC table.
7264 * Do not touch entries at the end of the table reserved for the VF MAC
7265 * addresses.
7266 */
7267 for (i = 0; i < rar_entries; i++) {
7268 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7269 addr, flags))
7270 continue;
7271
7272 ether_addr_copy(adapter->mac_table[i].addr, addr);
7273 adapter->mac_table[i].queue = queue;
7274 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7275
7276 igb_rar_set_index(adapter, i);
7277 return i;
7278 }
7279
7280 return -ENOSPC;
7281 }
7282
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7283 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7284 const u8 queue)
7285 {
7286 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7287 }
7288
7289 /* Remove a MAC filter for 'addr' directing matching traffic to
7290 * 'queue', 'flags' is used to indicate what kind of match need to be
7291 * removed, match is by default for the destination address, if
7292 * matching by source address is to be removed the flag
7293 * IGB_MAC_STATE_SRC_ADDR can be used.
7294 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7295 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7296 const u8 *addr, const u8 queue,
7297 const u8 flags)
7298 {
7299 struct e1000_hw *hw = &adapter->hw;
7300 int rar_entries = hw->mac.rar_entry_count -
7301 adapter->vfs_allocated_count;
7302 int i;
7303
7304 if (is_zero_ether_addr(addr))
7305 return -EINVAL;
7306
7307 /* Search for matching entry in the MAC table based on given address
7308 * and queue. Do not touch entries at the end of the table reserved
7309 * for the VF MAC addresses.
7310 */
7311 for (i = 0; i < rar_entries; i++) {
7312 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7313 continue;
7314 if ((adapter->mac_table[i].state & flags) != flags)
7315 continue;
7316 if (adapter->mac_table[i].queue != queue)
7317 continue;
7318 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7319 continue;
7320
7321 /* When a filter for the default address is "deleted",
7322 * we return it to its initial configuration
7323 */
7324 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7325 adapter->mac_table[i].state =
7326 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7327 adapter->mac_table[i].queue =
7328 adapter->vfs_allocated_count;
7329 } else {
7330 adapter->mac_table[i].state = 0;
7331 adapter->mac_table[i].queue = 0;
7332 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7333 }
7334
7335 igb_rar_set_index(adapter, i);
7336 return 0;
7337 }
7338
7339 return -ENOENT;
7340 }
7341
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7342 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7343 const u8 queue)
7344 {
7345 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7346 }
7347
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7348 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7349 const u8 *addr, u8 queue, u8 flags)
7350 {
7351 struct e1000_hw *hw = &adapter->hw;
7352
7353 /* In theory, this should be supported on 82575 as well, but
7354 * that part wasn't easily accessible during development.
7355 */
7356 if (hw->mac.type != e1000_i210)
7357 return -EOPNOTSUPP;
7358
7359 return igb_add_mac_filter_flags(adapter, addr, queue,
7360 IGB_MAC_STATE_QUEUE_STEERING | flags);
7361 }
7362
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7363 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7364 const u8 *addr, u8 queue, u8 flags)
7365 {
7366 return igb_del_mac_filter_flags(adapter, addr, queue,
7367 IGB_MAC_STATE_QUEUE_STEERING | flags);
7368 }
7369
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7370 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7371 {
7372 struct igb_adapter *adapter = netdev_priv(netdev);
7373 int ret;
7374
7375 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7376
7377 return min_t(int, ret, 0);
7378 }
7379
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7380 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7381 {
7382 struct igb_adapter *adapter = netdev_priv(netdev);
7383
7384 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7385
7386 return 0;
7387 }
7388
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7389 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7390 const u32 info, const u8 *addr)
7391 {
7392 struct pci_dev *pdev = adapter->pdev;
7393 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7394 struct list_head *pos;
7395 struct vf_mac_filter *entry = NULL;
7396 int ret = 0;
7397
7398 switch (info) {
7399 case E1000_VF_MAC_FILTER_CLR:
7400 /* remove all unicast MAC filters related to the current VF */
7401 list_for_each(pos, &adapter->vf_macs.l) {
7402 entry = list_entry(pos, struct vf_mac_filter, l);
7403 if (entry->vf == vf) {
7404 entry->vf = -1;
7405 entry->free = true;
7406 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7407 }
7408 }
7409 break;
7410 case E1000_VF_MAC_FILTER_ADD:
7411 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7412 !vf_data->trusted) {
7413 dev_warn(&pdev->dev,
7414 "VF %d requested MAC filter but is administratively denied\n",
7415 vf);
7416 return -EINVAL;
7417 }
7418 if (!is_valid_ether_addr(addr)) {
7419 dev_warn(&pdev->dev,
7420 "VF %d attempted to set invalid MAC filter\n",
7421 vf);
7422 return -EINVAL;
7423 }
7424
7425 /* try to find empty slot in the list */
7426 list_for_each(pos, &adapter->vf_macs.l) {
7427 entry = list_entry(pos, struct vf_mac_filter, l);
7428 if (entry->free)
7429 break;
7430 }
7431
7432 if (entry && entry->free) {
7433 entry->free = false;
7434 entry->vf = vf;
7435 ether_addr_copy(entry->vf_mac, addr);
7436
7437 ret = igb_add_mac_filter(adapter, addr, vf);
7438 ret = min_t(int, ret, 0);
7439 } else {
7440 ret = -ENOSPC;
7441 }
7442
7443 if (ret == -ENOSPC)
7444 dev_warn(&pdev->dev,
7445 "VF %d has requested MAC filter but there is no space for it\n",
7446 vf);
7447 break;
7448 default:
7449 ret = -EINVAL;
7450 break;
7451 }
7452
7453 return ret;
7454 }
7455
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7456 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7457 {
7458 struct pci_dev *pdev = adapter->pdev;
7459 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7460 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7461
7462 /* The VF MAC Address is stored in a packed array of bytes
7463 * starting at the second 32 bit word of the msg array
7464 */
7465 unsigned char *addr = (unsigned char *)&msg[1];
7466 int ret = 0;
7467
7468 if (!info) {
7469 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7470 !vf_data->trusted) {
7471 dev_warn(&pdev->dev,
7472 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7473 vf);
7474 return -EINVAL;
7475 }
7476
7477 if (!is_valid_ether_addr(addr)) {
7478 dev_warn(&pdev->dev,
7479 "VF %d attempted to set invalid MAC\n",
7480 vf);
7481 return -EINVAL;
7482 }
7483
7484 ret = igb_set_vf_mac(adapter, vf, addr);
7485 } else {
7486 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7487 }
7488
7489 return ret;
7490 }
7491
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7492 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7493 {
7494 struct e1000_hw *hw = &adapter->hw;
7495 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7496 u32 msg = E1000_VT_MSGTYPE_NACK;
7497
7498 /* if device isn't clear to send it shouldn't be reading either */
7499 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7500 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7501 igb_write_mbx(hw, &msg, 1, vf);
7502 vf_data->last_nack = jiffies;
7503 }
7504 }
7505
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7506 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7507 {
7508 struct pci_dev *pdev = adapter->pdev;
7509 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7510 struct e1000_hw *hw = &adapter->hw;
7511 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7512 s32 retval;
7513
7514 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7515
7516 if (retval) {
7517 /* if receive failed revoke VF CTS stats and restart init */
7518 dev_err(&pdev->dev, "Error receiving message from VF\n");
7519 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7520 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7521 goto unlock;
7522 goto out;
7523 }
7524
7525 /* this is a message we already processed, do nothing */
7526 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7527 goto unlock;
7528
7529 /* until the vf completes a reset it should not be
7530 * allowed to start any configuration.
7531 */
7532 if (msgbuf[0] == E1000_VF_RESET) {
7533 /* unlocks mailbox */
7534 igb_vf_reset_msg(adapter, vf);
7535 return;
7536 }
7537
7538 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7539 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7540 goto unlock;
7541 retval = -1;
7542 goto out;
7543 }
7544
7545 switch ((msgbuf[0] & 0xFFFF)) {
7546 case E1000_VF_SET_MAC_ADDR:
7547 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7548 break;
7549 case E1000_VF_SET_PROMISC:
7550 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7551 break;
7552 case E1000_VF_SET_MULTICAST:
7553 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7554 break;
7555 case E1000_VF_SET_LPE:
7556 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7557 break;
7558 case E1000_VF_SET_VLAN:
7559 retval = -1;
7560 if (vf_data->pf_vlan)
7561 dev_warn(&pdev->dev,
7562 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7563 vf);
7564 else
7565 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7566 break;
7567 default:
7568 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7569 retval = -1;
7570 break;
7571 }
7572
7573 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7574 out:
7575 /* notify the VF of the results of what it sent us */
7576 if (retval)
7577 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7578 else
7579 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7580
7581 /* unlocks mailbox */
7582 igb_write_mbx(hw, msgbuf, 1, vf);
7583 return;
7584
7585 unlock:
7586 igb_unlock_mbx(hw, vf);
7587 }
7588
igb_msg_task(struct igb_adapter * adapter)7589 static void igb_msg_task(struct igb_adapter *adapter)
7590 {
7591 struct e1000_hw *hw = &adapter->hw;
7592 u32 vf;
7593
7594 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7595 /* process any reset requests */
7596 if (!igb_check_for_rst(hw, vf))
7597 igb_vf_reset_event(adapter, vf);
7598
7599 /* process any messages pending */
7600 if (!igb_check_for_msg(hw, vf))
7601 igb_rcv_msg_from_vf(adapter, vf);
7602
7603 /* process any acks */
7604 if (!igb_check_for_ack(hw, vf))
7605 igb_rcv_ack_from_vf(adapter, vf);
7606 }
7607 }
7608
7609 /**
7610 * igb_set_uta - Set unicast filter table address
7611 * @adapter: board private structure
7612 * @set: boolean indicating if we are setting or clearing bits
7613 *
7614 * The unicast table address is a register array of 32-bit registers.
7615 * The table is meant to be used in a way similar to how the MTA is used
7616 * however due to certain limitations in the hardware it is necessary to
7617 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7618 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7619 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7620 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7621 {
7622 struct e1000_hw *hw = &adapter->hw;
7623 u32 uta = set ? ~0 : 0;
7624 int i;
7625
7626 /* we only need to do this if VMDq is enabled */
7627 if (!adapter->vfs_allocated_count)
7628 return;
7629
7630 for (i = hw->mac.uta_reg_count; i--;)
7631 array_wr32(E1000_UTA, i, uta);
7632 }
7633
7634 /**
7635 * igb_intr_msi - Interrupt Handler
7636 * @irq: interrupt number
7637 * @data: pointer to a network interface device structure
7638 **/
igb_intr_msi(int irq,void * data)7639 static irqreturn_t igb_intr_msi(int irq, void *data)
7640 {
7641 struct igb_adapter *adapter = data;
7642 struct igb_q_vector *q_vector = adapter->q_vector[0];
7643 struct e1000_hw *hw = &adapter->hw;
7644 /* read ICR disables interrupts using IAM */
7645 u32 icr = rd32(E1000_ICR);
7646
7647 igb_write_itr(q_vector);
7648
7649 if (icr & E1000_ICR_DRSTA)
7650 schedule_work(&adapter->reset_task);
7651
7652 if (icr & E1000_ICR_DOUTSYNC) {
7653 /* HW is reporting DMA is out of sync */
7654 adapter->stats.doosync++;
7655 }
7656
7657 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7658 hw->mac.get_link_status = 1;
7659 if (!test_bit(__IGB_DOWN, &adapter->state))
7660 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7661 }
7662
7663 if (icr & E1000_ICR_TS)
7664 igb_tsync_interrupt(adapter);
7665
7666 napi_schedule(&q_vector->napi);
7667
7668 return IRQ_HANDLED;
7669 }
7670
7671 /**
7672 * igb_intr - Legacy Interrupt Handler
7673 * @irq: interrupt number
7674 * @data: pointer to a network interface device structure
7675 **/
igb_intr(int irq,void * data)7676 static irqreturn_t igb_intr(int irq, void *data)
7677 {
7678 struct igb_adapter *adapter = data;
7679 struct igb_q_vector *q_vector = adapter->q_vector[0];
7680 struct e1000_hw *hw = &adapter->hw;
7681 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7682 * need for the IMC write
7683 */
7684 u32 icr = rd32(E1000_ICR);
7685
7686 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7687 * not set, then the adapter didn't send an interrupt
7688 */
7689 if (!(icr & E1000_ICR_INT_ASSERTED))
7690 return IRQ_NONE;
7691
7692 igb_write_itr(q_vector);
7693
7694 if (icr & E1000_ICR_DRSTA)
7695 schedule_work(&adapter->reset_task);
7696
7697 if (icr & E1000_ICR_DOUTSYNC) {
7698 /* HW is reporting DMA is out of sync */
7699 adapter->stats.doosync++;
7700 }
7701
7702 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7703 hw->mac.get_link_status = 1;
7704 /* guard against interrupt when we're going down */
7705 if (!test_bit(__IGB_DOWN, &adapter->state))
7706 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7707 }
7708
7709 if (icr & E1000_ICR_TS)
7710 igb_tsync_interrupt(adapter);
7711
7712 napi_schedule(&q_vector->napi);
7713
7714 return IRQ_HANDLED;
7715 }
7716
igb_ring_irq_enable(struct igb_q_vector * q_vector)7717 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7718 {
7719 struct igb_adapter *adapter = q_vector->adapter;
7720 struct e1000_hw *hw = &adapter->hw;
7721
7722 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7723 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7724 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7725 igb_set_itr(q_vector);
7726 else
7727 igb_update_ring_itr(q_vector);
7728 }
7729
7730 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7731 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7732 wr32(E1000_EIMS, q_vector->eims_value);
7733 else
7734 igb_irq_enable(adapter);
7735 }
7736 }
7737
7738 /**
7739 * igb_poll - NAPI Rx polling callback
7740 * @napi: napi polling structure
7741 * @budget: count of how many packets we should handle
7742 **/
igb_poll(struct napi_struct * napi,int budget)7743 static int igb_poll(struct napi_struct *napi, int budget)
7744 {
7745 struct igb_q_vector *q_vector = container_of(napi,
7746 struct igb_q_vector,
7747 napi);
7748 bool clean_complete = true;
7749 int work_done = 0;
7750
7751 #ifdef CONFIG_IGB_DCA
7752 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7753 igb_update_dca(q_vector);
7754 #endif
7755 if (q_vector->tx.ring)
7756 clean_complete = igb_clean_tx_irq(q_vector, budget);
7757
7758 if (q_vector->rx.ring) {
7759 int cleaned = igb_clean_rx_irq(q_vector, budget);
7760
7761 work_done += cleaned;
7762 if (cleaned >= budget)
7763 clean_complete = false;
7764 }
7765
7766 /* If all work not completed, return budget and keep polling */
7767 if (!clean_complete)
7768 return budget;
7769
7770 /* If not enough Rx work done, exit the polling mode */
7771 napi_complete_done(napi, work_done);
7772 igb_ring_irq_enable(q_vector);
7773
7774 return 0;
7775 }
7776
7777 /**
7778 * igb_clean_tx_irq - Reclaim resources after transmit completes
7779 * @q_vector: pointer to q_vector containing needed info
7780 * @napi_budget: Used to determine if we are in netpoll
7781 *
7782 * returns true if ring is completely cleaned
7783 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)7784 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7785 {
7786 struct igb_adapter *adapter = q_vector->adapter;
7787 struct igb_ring *tx_ring = q_vector->tx.ring;
7788 struct igb_tx_buffer *tx_buffer;
7789 union e1000_adv_tx_desc *tx_desc;
7790 unsigned int total_bytes = 0, total_packets = 0;
7791 unsigned int budget = q_vector->tx.work_limit;
7792 unsigned int i = tx_ring->next_to_clean;
7793
7794 if (test_bit(__IGB_DOWN, &adapter->state))
7795 return true;
7796
7797 tx_buffer = &tx_ring->tx_buffer_info[i];
7798 tx_desc = IGB_TX_DESC(tx_ring, i);
7799 i -= tx_ring->count;
7800
7801 do {
7802 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7803
7804 /* if next_to_watch is not set then there is no work pending */
7805 if (!eop_desc)
7806 break;
7807
7808 /* prevent any other reads prior to eop_desc */
7809 smp_rmb();
7810
7811 /* if DD is not set pending work has not been completed */
7812 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7813 break;
7814
7815 /* clear next_to_watch to prevent false hangs */
7816 tx_buffer->next_to_watch = NULL;
7817
7818 /* update the statistics for this packet */
7819 total_bytes += tx_buffer->bytecount;
7820 total_packets += tx_buffer->gso_segs;
7821
7822 /* free the skb */
7823 napi_consume_skb(tx_buffer->skb, napi_budget);
7824
7825 /* unmap skb header data */
7826 dma_unmap_single(tx_ring->dev,
7827 dma_unmap_addr(tx_buffer, dma),
7828 dma_unmap_len(tx_buffer, len),
7829 DMA_TO_DEVICE);
7830
7831 /* clear tx_buffer data */
7832 dma_unmap_len_set(tx_buffer, len, 0);
7833
7834 /* clear last DMA location and unmap remaining buffers */
7835 while (tx_desc != eop_desc) {
7836 tx_buffer++;
7837 tx_desc++;
7838 i++;
7839 if (unlikely(!i)) {
7840 i -= tx_ring->count;
7841 tx_buffer = tx_ring->tx_buffer_info;
7842 tx_desc = IGB_TX_DESC(tx_ring, 0);
7843 }
7844
7845 /* unmap any remaining paged data */
7846 if (dma_unmap_len(tx_buffer, len)) {
7847 dma_unmap_page(tx_ring->dev,
7848 dma_unmap_addr(tx_buffer, dma),
7849 dma_unmap_len(tx_buffer, len),
7850 DMA_TO_DEVICE);
7851 dma_unmap_len_set(tx_buffer, len, 0);
7852 }
7853 }
7854
7855 /* move us one more past the eop_desc for start of next pkt */
7856 tx_buffer++;
7857 tx_desc++;
7858 i++;
7859 if (unlikely(!i)) {
7860 i -= tx_ring->count;
7861 tx_buffer = tx_ring->tx_buffer_info;
7862 tx_desc = IGB_TX_DESC(tx_ring, 0);
7863 }
7864
7865 /* issue prefetch for next Tx descriptor */
7866 prefetch(tx_desc);
7867
7868 /* update budget accounting */
7869 budget--;
7870 } while (likely(budget));
7871
7872 netdev_tx_completed_queue(txring_txq(tx_ring),
7873 total_packets, total_bytes);
7874 i += tx_ring->count;
7875 tx_ring->next_to_clean = i;
7876 u64_stats_update_begin(&tx_ring->tx_syncp);
7877 tx_ring->tx_stats.bytes += total_bytes;
7878 tx_ring->tx_stats.packets += total_packets;
7879 u64_stats_update_end(&tx_ring->tx_syncp);
7880 q_vector->tx.total_bytes += total_bytes;
7881 q_vector->tx.total_packets += total_packets;
7882
7883 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7884 struct e1000_hw *hw = &adapter->hw;
7885
7886 /* Detect a transmit hang in hardware, this serializes the
7887 * check with the clearing of time_stamp and movement of i
7888 */
7889 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7890 if (tx_buffer->next_to_watch &&
7891 time_after(jiffies, tx_buffer->time_stamp +
7892 (adapter->tx_timeout_factor * HZ)) &&
7893 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7894
7895 /* detected Tx unit hang */
7896 dev_err(tx_ring->dev,
7897 "Detected Tx Unit Hang\n"
7898 " Tx Queue <%d>\n"
7899 " TDH <%x>\n"
7900 " TDT <%x>\n"
7901 " next_to_use <%x>\n"
7902 " next_to_clean <%x>\n"
7903 "buffer_info[next_to_clean]\n"
7904 " time_stamp <%lx>\n"
7905 " next_to_watch <%p>\n"
7906 " jiffies <%lx>\n"
7907 " desc.status <%x>\n",
7908 tx_ring->queue_index,
7909 rd32(E1000_TDH(tx_ring->reg_idx)),
7910 readl(tx_ring->tail),
7911 tx_ring->next_to_use,
7912 tx_ring->next_to_clean,
7913 tx_buffer->time_stamp,
7914 tx_buffer->next_to_watch,
7915 jiffies,
7916 tx_buffer->next_to_watch->wb.status);
7917 netif_stop_subqueue(tx_ring->netdev,
7918 tx_ring->queue_index);
7919
7920 /* we are about to reset, no point in enabling stuff */
7921 return true;
7922 }
7923 }
7924
7925 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7926 if (unlikely(total_packets &&
7927 netif_carrier_ok(tx_ring->netdev) &&
7928 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7929 /* Make sure that anybody stopping the queue after this
7930 * sees the new next_to_clean.
7931 */
7932 smp_mb();
7933 if (__netif_subqueue_stopped(tx_ring->netdev,
7934 tx_ring->queue_index) &&
7935 !(test_bit(__IGB_DOWN, &adapter->state))) {
7936 netif_wake_subqueue(tx_ring->netdev,
7937 tx_ring->queue_index);
7938
7939 u64_stats_update_begin(&tx_ring->tx_syncp);
7940 tx_ring->tx_stats.restart_queue++;
7941 u64_stats_update_end(&tx_ring->tx_syncp);
7942 }
7943 }
7944
7945 return !!budget;
7946 }
7947
7948 /**
7949 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7950 * @rx_ring: rx descriptor ring to store buffers on
7951 * @old_buff: donor buffer to have page reused
7952 *
7953 * Synchronizes page for reuse by the adapter
7954 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)7955 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7956 struct igb_rx_buffer *old_buff)
7957 {
7958 struct igb_rx_buffer *new_buff;
7959 u16 nta = rx_ring->next_to_alloc;
7960
7961 new_buff = &rx_ring->rx_buffer_info[nta];
7962
7963 /* update, and store next to alloc */
7964 nta++;
7965 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7966
7967 /* Transfer page from old buffer to new buffer.
7968 * Move each member individually to avoid possible store
7969 * forwarding stalls.
7970 */
7971 new_buff->dma = old_buff->dma;
7972 new_buff->page = old_buff->page;
7973 new_buff->page_offset = old_buff->page_offset;
7974 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7975 }
7976
igb_page_is_reserved(struct page * page)7977 static inline bool igb_page_is_reserved(struct page *page)
7978 {
7979 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7980 }
7981
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer)7982 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7983 {
7984 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7985 struct page *page = rx_buffer->page;
7986
7987 /* avoid re-using remote pages */
7988 if (unlikely(igb_page_is_reserved(page)))
7989 return false;
7990
7991 #if (PAGE_SIZE < 8192)
7992 /* if we are only owner of page we can reuse it */
7993 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7994 return false;
7995 #else
7996 #define IGB_LAST_OFFSET \
7997 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7998
7999 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8000 return false;
8001 #endif
8002
8003 /* If we have drained the page fragment pool we need to update
8004 * the pagecnt_bias and page count so that we fully restock the
8005 * number of references the driver holds.
8006 */
8007 if (unlikely(!pagecnt_bias)) {
8008 page_ref_add(page, USHRT_MAX);
8009 rx_buffer->pagecnt_bias = USHRT_MAX;
8010 }
8011
8012 return true;
8013 }
8014
8015 /**
8016 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8017 * @rx_ring: rx descriptor ring to transact packets on
8018 * @rx_buffer: buffer containing page to add
8019 * @skb: sk_buff to place the data into
8020 * @size: size of buffer to be added
8021 *
8022 * This function will add the data contained in rx_buffer->page to the skb.
8023 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8024 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8025 struct igb_rx_buffer *rx_buffer,
8026 struct sk_buff *skb,
8027 unsigned int size)
8028 {
8029 #if (PAGE_SIZE < 8192)
8030 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8031 #else
8032 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8033 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8034 SKB_DATA_ALIGN(size);
8035 #endif
8036 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8037 rx_buffer->page_offset, size, truesize);
8038 #if (PAGE_SIZE < 8192)
8039 rx_buffer->page_offset ^= truesize;
8040 #else
8041 rx_buffer->page_offset += truesize;
8042 #endif
8043 }
8044
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8045 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8046 struct igb_rx_buffer *rx_buffer,
8047 union e1000_adv_rx_desc *rx_desc,
8048 unsigned int size)
8049 {
8050 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8051 #if (PAGE_SIZE < 8192)
8052 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8053 #else
8054 unsigned int truesize = SKB_DATA_ALIGN(size);
8055 #endif
8056 unsigned int headlen;
8057 struct sk_buff *skb;
8058
8059 /* prefetch first cache line of first page */
8060 prefetch(va);
8061 #if L1_CACHE_BYTES < 128
8062 prefetch(va + L1_CACHE_BYTES);
8063 #endif
8064
8065 /* allocate a skb to store the frags */
8066 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8067 if (unlikely(!skb))
8068 return NULL;
8069
8070 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8071 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8072 va += IGB_TS_HDR_LEN;
8073 size -= IGB_TS_HDR_LEN;
8074 }
8075
8076 /* Determine available headroom for copy */
8077 headlen = size;
8078 if (headlen > IGB_RX_HDR_LEN)
8079 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8080
8081 /* align pull length to size of long to optimize memcpy performance */
8082 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8083
8084 /* update all of the pointers */
8085 size -= headlen;
8086 if (size) {
8087 skb_add_rx_frag(skb, 0, rx_buffer->page,
8088 (va + headlen) - page_address(rx_buffer->page),
8089 size, truesize);
8090 #if (PAGE_SIZE < 8192)
8091 rx_buffer->page_offset ^= truesize;
8092 #else
8093 rx_buffer->page_offset += truesize;
8094 #endif
8095 } else {
8096 rx_buffer->pagecnt_bias++;
8097 }
8098
8099 return skb;
8100 }
8101
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,union e1000_adv_rx_desc * rx_desc,unsigned int size)8102 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8103 struct igb_rx_buffer *rx_buffer,
8104 union e1000_adv_rx_desc *rx_desc,
8105 unsigned int size)
8106 {
8107 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8108 #if (PAGE_SIZE < 8192)
8109 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8110 #else
8111 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8112 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8113 #endif
8114 struct sk_buff *skb;
8115
8116 /* prefetch first cache line of first page */
8117 prefetch(va);
8118 #if L1_CACHE_BYTES < 128
8119 prefetch(va + L1_CACHE_BYTES);
8120 #endif
8121
8122 /* build an skb around the page buffer */
8123 skb = build_skb(va - IGB_SKB_PAD, truesize);
8124 if (unlikely(!skb))
8125 return NULL;
8126
8127 /* update pointers within the skb to store the data */
8128 skb_reserve(skb, IGB_SKB_PAD);
8129 __skb_put(skb, size);
8130
8131 /* pull timestamp out of packet data */
8132 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8133 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8134 __skb_pull(skb, IGB_TS_HDR_LEN);
8135 }
8136
8137 /* update buffer offset */
8138 #if (PAGE_SIZE < 8192)
8139 rx_buffer->page_offset ^= truesize;
8140 #else
8141 rx_buffer->page_offset += truesize;
8142 #endif
8143
8144 return skb;
8145 }
8146
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8147 static inline void igb_rx_checksum(struct igb_ring *ring,
8148 union e1000_adv_rx_desc *rx_desc,
8149 struct sk_buff *skb)
8150 {
8151 skb_checksum_none_assert(skb);
8152
8153 /* Ignore Checksum bit is set */
8154 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8155 return;
8156
8157 /* Rx checksum disabled via ethtool */
8158 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8159 return;
8160
8161 /* TCP/UDP checksum error bit is set */
8162 if (igb_test_staterr(rx_desc,
8163 E1000_RXDEXT_STATERR_TCPE |
8164 E1000_RXDEXT_STATERR_IPE)) {
8165 /* work around errata with sctp packets where the TCPE aka
8166 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8167 * packets, (aka let the stack check the crc32c)
8168 */
8169 if (!((skb->len == 60) &&
8170 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8171 u64_stats_update_begin(&ring->rx_syncp);
8172 ring->rx_stats.csum_err++;
8173 u64_stats_update_end(&ring->rx_syncp);
8174 }
8175 /* let the stack verify checksum errors */
8176 return;
8177 }
8178 /* It must be a TCP or UDP packet with a valid checksum */
8179 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8180 E1000_RXD_STAT_UDPCS))
8181 skb->ip_summed = CHECKSUM_UNNECESSARY;
8182
8183 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8184 le32_to_cpu(rx_desc->wb.upper.status_error));
8185 }
8186
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8187 static inline void igb_rx_hash(struct igb_ring *ring,
8188 union e1000_adv_rx_desc *rx_desc,
8189 struct sk_buff *skb)
8190 {
8191 if (ring->netdev->features & NETIF_F_RXHASH)
8192 skb_set_hash(skb,
8193 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8194 PKT_HASH_TYPE_L3);
8195 }
8196
8197 /**
8198 * igb_is_non_eop - process handling of non-EOP buffers
8199 * @rx_ring: Rx ring being processed
8200 * @rx_desc: Rx descriptor for current buffer
8201 * @skb: current socket buffer containing buffer in progress
8202 *
8203 * This function updates next to clean. If the buffer is an EOP buffer
8204 * this function exits returning false, otherwise it will place the
8205 * sk_buff in the next buffer to be chained and return true indicating
8206 * that this is in fact a non-EOP buffer.
8207 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8208 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8209 union e1000_adv_rx_desc *rx_desc)
8210 {
8211 u32 ntc = rx_ring->next_to_clean + 1;
8212
8213 /* fetch, update, and store next to clean */
8214 ntc = (ntc < rx_ring->count) ? ntc : 0;
8215 rx_ring->next_to_clean = ntc;
8216
8217 prefetch(IGB_RX_DESC(rx_ring, ntc));
8218
8219 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8220 return false;
8221
8222 return true;
8223 }
8224
8225 /**
8226 * igb_cleanup_headers - Correct corrupted or empty headers
8227 * @rx_ring: rx descriptor ring packet is being transacted on
8228 * @rx_desc: pointer to the EOP Rx descriptor
8229 * @skb: pointer to current skb being fixed
8230 *
8231 * Address the case where we are pulling data in on pages only
8232 * and as such no data is present in the skb header.
8233 *
8234 * In addition if skb is not at least 60 bytes we need to pad it so that
8235 * it is large enough to qualify as a valid Ethernet frame.
8236 *
8237 * Returns true if an error was encountered and skb was freed.
8238 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8239 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8240 union e1000_adv_rx_desc *rx_desc,
8241 struct sk_buff *skb)
8242 {
8243 if (unlikely((igb_test_staterr(rx_desc,
8244 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8245 struct net_device *netdev = rx_ring->netdev;
8246 if (!(netdev->features & NETIF_F_RXALL)) {
8247 dev_kfree_skb_any(skb);
8248 return true;
8249 }
8250 }
8251
8252 /* if eth_skb_pad returns an error the skb was freed */
8253 if (eth_skb_pad(skb))
8254 return true;
8255
8256 return false;
8257 }
8258
8259 /**
8260 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8261 * @rx_ring: rx descriptor ring packet is being transacted on
8262 * @rx_desc: pointer to the EOP Rx descriptor
8263 * @skb: pointer to current skb being populated
8264 *
8265 * This function checks the ring, descriptor, and packet information in
8266 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8267 * other fields within the skb.
8268 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8269 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8270 union e1000_adv_rx_desc *rx_desc,
8271 struct sk_buff *skb)
8272 {
8273 struct net_device *dev = rx_ring->netdev;
8274
8275 igb_rx_hash(rx_ring, rx_desc, skb);
8276
8277 igb_rx_checksum(rx_ring, rx_desc, skb);
8278
8279 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8280 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8281 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8282
8283 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8284 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8285 u16 vid;
8286
8287 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8288 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8289 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8290 else
8291 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8292
8293 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8294 }
8295
8296 skb_record_rx_queue(skb, rx_ring->queue_index);
8297
8298 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8299 }
8300
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size)8301 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8302 const unsigned int size)
8303 {
8304 struct igb_rx_buffer *rx_buffer;
8305
8306 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8307 prefetchw(rx_buffer->page);
8308
8309 /* we are reusing so sync this buffer for CPU use */
8310 dma_sync_single_range_for_cpu(rx_ring->dev,
8311 rx_buffer->dma,
8312 rx_buffer->page_offset,
8313 size,
8314 DMA_FROM_DEVICE);
8315
8316 rx_buffer->pagecnt_bias--;
8317
8318 return rx_buffer;
8319 }
8320
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer)8321 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8322 struct igb_rx_buffer *rx_buffer)
8323 {
8324 if (igb_can_reuse_rx_page(rx_buffer)) {
8325 /* hand second half of page back to the ring */
8326 igb_reuse_rx_page(rx_ring, rx_buffer);
8327 } else {
8328 /* We are not reusing the buffer so unmap it and free
8329 * any references we are holding to it
8330 */
8331 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8332 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8333 IGB_RX_DMA_ATTR);
8334 __page_frag_cache_drain(rx_buffer->page,
8335 rx_buffer->pagecnt_bias);
8336 }
8337
8338 /* clear contents of rx_buffer */
8339 rx_buffer->page = NULL;
8340 }
8341
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8342 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8343 {
8344 struct igb_ring *rx_ring = q_vector->rx.ring;
8345 struct sk_buff *skb = rx_ring->skb;
8346 unsigned int total_bytes = 0, total_packets = 0;
8347 u16 cleaned_count = igb_desc_unused(rx_ring);
8348
8349 while (likely(total_packets < budget)) {
8350 union e1000_adv_rx_desc *rx_desc;
8351 struct igb_rx_buffer *rx_buffer;
8352 unsigned int size;
8353
8354 /* return some buffers to hardware, one at a time is too slow */
8355 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8356 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8357 cleaned_count = 0;
8358 }
8359
8360 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8361 size = le16_to_cpu(rx_desc->wb.upper.length);
8362 if (!size)
8363 break;
8364
8365 /* This memory barrier is needed to keep us from reading
8366 * any other fields out of the rx_desc until we know the
8367 * descriptor has been written back
8368 */
8369 dma_rmb();
8370
8371 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8372
8373 /* retrieve a buffer from the ring */
8374 if (skb)
8375 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8376 else if (ring_uses_build_skb(rx_ring))
8377 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8378 else
8379 skb = igb_construct_skb(rx_ring, rx_buffer,
8380 rx_desc, size);
8381
8382 /* exit if we failed to retrieve a buffer */
8383 if (!skb) {
8384 rx_ring->rx_stats.alloc_failed++;
8385 rx_buffer->pagecnt_bias++;
8386 break;
8387 }
8388
8389 igb_put_rx_buffer(rx_ring, rx_buffer);
8390 cleaned_count++;
8391
8392 /* fetch next buffer in frame if non-eop */
8393 if (igb_is_non_eop(rx_ring, rx_desc))
8394 continue;
8395
8396 /* verify the packet layout is correct */
8397 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8398 skb = NULL;
8399 continue;
8400 }
8401
8402 /* probably a little skewed due to removing CRC */
8403 total_bytes += skb->len;
8404
8405 /* populate checksum, timestamp, VLAN, and protocol */
8406 igb_process_skb_fields(rx_ring, rx_desc, skb);
8407
8408 napi_gro_receive(&q_vector->napi, skb);
8409
8410 /* reset skb pointer */
8411 skb = NULL;
8412
8413 /* update budget accounting */
8414 total_packets++;
8415 }
8416
8417 /* place incomplete frames back on ring for completion */
8418 rx_ring->skb = skb;
8419
8420 u64_stats_update_begin(&rx_ring->rx_syncp);
8421 rx_ring->rx_stats.packets += total_packets;
8422 rx_ring->rx_stats.bytes += total_bytes;
8423 u64_stats_update_end(&rx_ring->rx_syncp);
8424 q_vector->rx.total_packets += total_packets;
8425 q_vector->rx.total_bytes += total_bytes;
8426
8427 if (cleaned_count)
8428 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8429
8430 return total_packets;
8431 }
8432
igb_rx_offset(struct igb_ring * rx_ring)8433 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8434 {
8435 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8436 }
8437
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8438 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8439 struct igb_rx_buffer *bi)
8440 {
8441 struct page *page = bi->page;
8442 dma_addr_t dma;
8443
8444 /* since we are recycling buffers we should seldom need to alloc */
8445 if (likely(page))
8446 return true;
8447
8448 /* alloc new page for storage */
8449 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8450 if (unlikely(!page)) {
8451 rx_ring->rx_stats.alloc_failed++;
8452 return false;
8453 }
8454
8455 /* map page for use */
8456 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8457 igb_rx_pg_size(rx_ring),
8458 DMA_FROM_DEVICE,
8459 IGB_RX_DMA_ATTR);
8460
8461 /* if mapping failed free memory back to system since
8462 * there isn't much point in holding memory we can't use
8463 */
8464 if (dma_mapping_error(rx_ring->dev, dma)) {
8465 __free_pages(page, igb_rx_pg_order(rx_ring));
8466
8467 rx_ring->rx_stats.alloc_failed++;
8468 return false;
8469 }
8470
8471 bi->dma = dma;
8472 bi->page = page;
8473 bi->page_offset = igb_rx_offset(rx_ring);
8474 bi->pagecnt_bias = 1;
8475
8476 return true;
8477 }
8478
8479 /**
8480 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8481 * @adapter: address of board private structure
8482 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8483 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8484 {
8485 union e1000_adv_rx_desc *rx_desc;
8486 struct igb_rx_buffer *bi;
8487 u16 i = rx_ring->next_to_use;
8488 u16 bufsz;
8489
8490 /* nothing to do */
8491 if (!cleaned_count)
8492 return;
8493
8494 rx_desc = IGB_RX_DESC(rx_ring, i);
8495 bi = &rx_ring->rx_buffer_info[i];
8496 i -= rx_ring->count;
8497
8498 bufsz = igb_rx_bufsz(rx_ring);
8499
8500 do {
8501 if (!igb_alloc_mapped_page(rx_ring, bi))
8502 break;
8503
8504 /* sync the buffer for use by the device */
8505 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8506 bi->page_offset, bufsz,
8507 DMA_FROM_DEVICE);
8508
8509 /* Refresh the desc even if buffer_addrs didn't change
8510 * because each write-back erases this info.
8511 */
8512 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8513
8514 rx_desc++;
8515 bi++;
8516 i++;
8517 if (unlikely(!i)) {
8518 rx_desc = IGB_RX_DESC(rx_ring, 0);
8519 bi = rx_ring->rx_buffer_info;
8520 i -= rx_ring->count;
8521 }
8522
8523 /* clear the length for the next_to_use descriptor */
8524 rx_desc->wb.upper.length = 0;
8525
8526 cleaned_count--;
8527 } while (cleaned_count);
8528
8529 i += rx_ring->count;
8530
8531 if (rx_ring->next_to_use != i) {
8532 /* record the next descriptor to use */
8533 rx_ring->next_to_use = i;
8534
8535 /* update next to alloc since we have filled the ring */
8536 rx_ring->next_to_alloc = i;
8537
8538 /* Force memory writes to complete before letting h/w
8539 * know there are new descriptors to fetch. (Only
8540 * applicable for weak-ordered memory model archs,
8541 * such as IA-64).
8542 */
8543 dma_wmb();
8544 writel(i, rx_ring->tail);
8545 }
8546 }
8547
8548 /**
8549 * igb_mii_ioctl -
8550 * @netdev:
8551 * @ifreq:
8552 * @cmd:
8553 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8554 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8555 {
8556 struct igb_adapter *adapter = netdev_priv(netdev);
8557 struct mii_ioctl_data *data = if_mii(ifr);
8558
8559 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8560 return -EOPNOTSUPP;
8561
8562 switch (cmd) {
8563 case SIOCGMIIPHY:
8564 data->phy_id = adapter->hw.phy.addr;
8565 break;
8566 case SIOCGMIIREG:
8567 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8568 &data->val_out))
8569 return -EIO;
8570 break;
8571 case SIOCSMIIREG:
8572 default:
8573 return -EOPNOTSUPP;
8574 }
8575 return 0;
8576 }
8577
8578 /**
8579 * igb_ioctl -
8580 * @netdev:
8581 * @ifreq:
8582 * @cmd:
8583 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8584 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8585 {
8586 switch (cmd) {
8587 case SIOCGMIIPHY:
8588 case SIOCGMIIREG:
8589 case SIOCSMIIREG:
8590 return igb_mii_ioctl(netdev, ifr, cmd);
8591 case SIOCGHWTSTAMP:
8592 return igb_ptp_get_ts_config(netdev, ifr);
8593 case SIOCSHWTSTAMP:
8594 return igb_ptp_set_ts_config(netdev, ifr);
8595 default:
8596 return -EOPNOTSUPP;
8597 }
8598 }
8599
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8600 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8601 {
8602 struct igb_adapter *adapter = hw->back;
8603
8604 pci_read_config_word(adapter->pdev, reg, value);
8605 }
8606
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8607 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8608 {
8609 struct igb_adapter *adapter = hw->back;
8610
8611 pci_write_config_word(adapter->pdev, reg, *value);
8612 }
8613
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8614 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8615 {
8616 struct igb_adapter *adapter = hw->back;
8617
8618 if (pcie_capability_read_word(adapter->pdev, reg, value))
8619 return -E1000_ERR_CONFIG;
8620
8621 return 0;
8622 }
8623
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)8624 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8625 {
8626 struct igb_adapter *adapter = hw->back;
8627
8628 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8629 return -E1000_ERR_CONFIG;
8630
8631 return 0;
8632 }
8633
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)8634 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8635 {
8636 struct igb_adapter *adapter = netdev_priv(netdev);
8637 struct e1000_hw *hw = &adapter->hw;
8638 u32 ctrl, rctl;
8639 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8640
8641 if (enable) {
8642 /* enable VLAN tag insert/strip */
8643 ctrl = rd32(E1000_CTRL);
8644 ctrl |= E1000_CTRL_VME;
8645 wr32(E1000_CTRL, ctrl);
8646
8647 /* Disable CFI check */
8648 rctl = rd32(E1000_RCTL);
8649 rctl &= ~E1000_RCTL_CFIEN;
8650 wr32(E1000_RCTL, rctl);
8651 } else {
8652 /* disable VLAN tag insert/strip */
8653 ctrl = rd32(E1000_CTRL);
8654 ctrl &= ~E1000_CTRL_VME;
8655 wr32(E1000_CTRL, ctrl);
8656 }
8657
8658 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8659 }
8660
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)8661 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8662 __be16 proto, u16 vid)
8663 {
8664 struct igb_adapter *adapter = netdev_priv(netdev);
8665 struct e1000_hw *hw = &adapter->hw;
8666 int pf_id = adapter->vfs_allocated_count;
8667
8668 /* add the filter since PF can receive vlans w/o entry in vlvf */
8669 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8670 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8671
8672 set_bit(vid, adapter->active_vlans);
8673
8674 return 0;
8675 }
8676
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)8677 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8678 __be16 proto, u16 vid)
8679 {
8680 struct igb_adapter *adapter = netdev_priv(netdev);
8681 int pf_id = adapter->vfs_allocated_count;
8682 struct e1000_hw *hw = &adapter->hw;
8683
8684 /* remove VID from filter table */
8685 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8686 igb_vfta_set(hw, vid, pf_id, false, true);
8687
8688 clear_bit(vid, adapter->active_vlans);
8689
8690 return 0;
8691 }
8692
igb_restore_vlan(struct igb_adapter * adapter)8693 static void igb_restore_vlan(struct igb_adapter *adapter)
8694 {
8695 u16 vid = 1;
8696
8697 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8698 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8699
8700 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8701 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8702 }
8703
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)8704 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8705 {
8706 struct pci_dev *pdev = adapter->pdev;
8707 struct e1000_mac_info *mac = &adapter->hw.mac;
8708
8709 mac->autoneg = 0;
8710
8711 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8712 * for the switch() below to work
8713 */
8714 if ((spd & 1) || (dplx & ~1))
8715 goto err_inval;
8716
8717 /* Fiber NIC's only allow 1000 gbps Full duplex
8718 * and 100Mbps Full duplex for 100baseFx sfp
8719 */
8720 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8721 switch (spd + dplx) {
8722 case SPEED_10 + DUPLEX_HALF:
8723 case SPEED_10 + DUPLEX_FULL:
8724 case SPEED_100 + DUPLEX_HALF:
8725 goto err_inval;
8726 default:
8727 break;
8728 }
8729 }
8730
8731 switch (spd + dplx) {
8732 case SPEED_10 + DUPLEX_HALF:
8733 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8734 break;
8735 case SPEED_10 + DUPLEX_FULL:
8736 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8737 break;
8738 case SPEED_100 + DUPLEX_HALF:
8739 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8740 break;
8741 case SPEED_100 + DUPLEX_FULL:
8742 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8743 break;
8744 case SPEED_1000 + DUPLEX_FULL:
8745 mac->autoneg = 1;
8746 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8747 break;
8748 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8749 default:
8750 goto err_inval;
8751 }
8752
8753 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8754 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8755
8756 return 0;
8757
8758 err_inval:
8759 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8760 return -EINVAL;
8761 }
8762
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)8763 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8764 bool runtime)
8765 {
8766 struct net_device *netdev = pci_get_drvdata(pdev);
8767 struct igb_adapter *adapter = netdev_priv(netdev);
8768 struct e1000_hw *hw = &adapter->hw;
8769 u32 ctrl, rctl, status;
8770 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8771 bool wake;
8772
8773 rtnl_lock();
8774 netif_device_detach(netdev);
8775
8776 if (netif_running(netdev))
8777 __igb_close(netdev, true);
8778
8779 igb_ptp_suspend(adapter);
8780
8781 igb_clear_interrupt_scheme(adapter);
8782 rtnl_unlock();
8783
8784 status = rd32(E1000_STATUS);
8785 if (status & E1000_STATUS_LU)
8786 wufc &= ~E1000_WUFC_LNKC;
8787
8788 if (wufc) {
8789 igb_setup_rctl(adapter);
8790 igb_set_rx_mode(netdev);
8791
8792 /* turn on all-multi mode if wake on multicast is enabled */
8793 if (wufc & E1000_WUFC_MC) {
8794 rctl = rd32(E1000_RCTL);
8795 rctl |= E1000_RCTL_MPE;
8796 wr32(E1000_RCTL, rctl);
8797 }
8798
8799 ctrl = rd32(E1000_CTRL);
8800 ctrl |= E1000_CTRL_ADVD3WUC;
8801 wr32(E1000_CTRL, ctrl);
8802
8803 /* Allow time for pending master requests to run */
8804 igb_disable_pcie_master(hw);
8805
8806 wr32(E1000_WUC, E1000_WUC_PME_EN);
8807 wr32(E1000_WUFC, wufc);
8808 } else {
8809 wr32(E1000_WUC, 0);
8810 wr32(E1000_WUFC, 0);
8811 }
8812
8813 wake = wufc || adapter->en_mng_pt;
8814 if (!wake)
8815 igb_power_down_link(adapter);
8816 else
8817 igb_power_up_link(adapter);
8818
8819 if (enable_wake)
8820 *enable_wake = wake;
8821
8822 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8823 * would have already happened in close and is redundant.
8824 */
8825 igb_release_hw_control(adapter);
8826
8827 pci_disable_device(pdev);
8828
8829 return 0;
8830 }
8831
igb_deliver_wake_packet(struct net_device * netdev)8832 static void igb_deliver_wake_packet(struct net_device *netdev)
8833 {
8834 struct igb_adapter *adapter = netdev_priv(netdev);
8835 struct e1000_hw *hw = &adapter->hw;
8836 struct sk_buff *skb;
8837 u32 wupl;
8838
8839 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8840
8841 /* WUPM stores only the first 128 bytes of the wake packet.
8842 * Read the packet only if we have the whole thing.
8843 */
8844 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8845 return;
8846
8847 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8848 if (!skb)
8849 return;
8850
8851 skb_put(skb, wupl);
8852
8853 /* Ensure reads are 32-bit aligned */
8854 wupl = roundup(wupl, 4);
8855
8856 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8857
8858 skb->protocol = eth_type_trans(skb, netdev);
8859 netif_rx(skb);
8860 }
8861
igb_suspend(struct device * dev)8862 static int __maybe_unused igb_suspend(struct device *dev)
8863 {
8864 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8865 }
8866
igb_resume(struct device * dev)8867 static int __maybe_unused igb_resume(struct device *dev)
8868 {
8869 struct pci_dev *pdev = to_pci_dev(dev);
8870 struct net_device *netdev = pci_get_drvdata(pdev);
8871 struct igb_adapter *adapter = netdev_priv(netdev);
8872 struct e1000_hw *hw = &adapter->hw;
8873 u32 err, val;
8874
8875 pci_set_power_state(pdev, PCI_D0);
8876 pci_restore_state(pdev);
8877 pci_save_state(pdev);
8878
8879 if (!pci_device_is_present(pdev))
8880 return -ENODEV;
8881 err = pci_enable_device_mem(pdev);
8882 if (err) {
8883 dev_err(&pdev->dev,
8884 "igb: Cannot enable PCI device from suspend\n");
8885 return err;
8886 }
8887 pci_set_master(pdev);
8888
8889 pci_enable_wake(pdev, PCI_D3hot, 0);
8890 pci_enable_wake(pdev, PCI_D3cold, 0);
8891
8892 if (igb_init_interrupt_scheme(adapter, true)) {
8893 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8894 return -ENOMEM;
8895 }
8896
8897 igb_reset(adapter);
8898
8899 /* let the f/w know that the h/w is now under the control of the
8900 * driver.
8901 */
8902 igb_get_hw_control(adapter);
8903
8904 val = rd32(E1000_WUS);
8905 if (val & WAKE_PKT_WUS)
8906 igb_deliver_wake_packet(netdev);
8907
8908 wr32(E1000_WUS, ~0);
8909
8910 rtnl_lock();
8911 if (!err && netif_running(netdev))
8912 err = __igb_open(netdev, true);
8913
8914 if (!err)
8915 netif_device_attach(netdev);
8916 rtnl_unlock();
8917
8918 return err;
8919 }
8920
igb_runtime_idle(struct device * dev)8921 static int __maybe_unused igb_runtime_idle(struct device *dev)
8922 {
8923 struct pci_dev *pdev = to_pci_dev(dev);
8924 struct net_device *netdev = pci_get_drvdata(pdev);
8925 struct igb_adapter *adapter = netdev_priv(netdev);
8926
8927 if (!igb_has_link(adapter))
8928 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8929
8930 return -EBUSY;
8931 }
8932
igb_runtime_suspend(struct device * dev)8933 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8934 {
8935 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8936 }
8937
igb_runtime_resume(struct device * dev)8938 static int __maybe_unused igb_runtime_resume(struct device *dev)
8939 {
8940 return igb_resume(dev);
8941 }
8942
igb_shutdown(struct pci_dev * pdev)8943 static void igb_shutdown(struct pci_dev *pdev)
8944 {
8945 bool wake;
8946
8947 __igb_shutdown(pdev, &wake, 0);
8948
8949 if (system_state == SYSTEM_POWER_OFF) {
8950 pci_wake_from_d3(pdev, wake);
8951 pci_set_power_state(pdev, PCI_D3hot);
8952 }
8953 }
8954
8955 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)8956 static int igb_sriov_reinit(struct pci_dev *dev)
8957 {
8958 struct net_device *netdev = pci_get_drvdata(dev);
8959 struct igb_adapter *adapter = netdev_priv(netdev);
8960 struct pci_dev *pdev = adapter->pdev;
8961
8962 rtnl_lock();
8963
8964 if (netif_running(netdev))
8965 igb_close(netdev);
8966 else
8967 igb_reset(adapter);
8968
8969 igb_clear_interrupt_scheme(adapter);
8970
8971 igb_init_queue_configuration(adapter);
8972
8973 if (igb_init_interrupt_scheme(adapter, true)) {
8974 rtnl_unlock();
8975 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8976 return -ENOMEM;
8977 }
8978
8979 if (netif_running(netdev))
8980 igb_open(netdev);
8981
8982 rtnl_unlock();
8983
8984 return 0;
8985 }
8986
igb_pci_disable_sriov(struct pci_dev * dev)8987 static int igb_pci_disable_sriov(struct pci_dev *dev)
8988 {
8989 int err = igb_disable_sriov(dev);
8990
8991 if (!err)
8992 err = igb_sriov_reinit(dev);
8993
8994 return err;
8995 }
8996
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)8997 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8998 {
8999 int err = igb_enable_sriov(dev, num_vfs);
9000
9001 if (err)
9002 goto out;
9003
9004 err = igb_sriov_reinit(dev);
9005 if (!err)
9006 return num_vfs;
9007
9008 out:
9009 return err;
9010 }
9011
9012 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9013 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9014 {
9015 #ifdef CONFIG_PCI_IOV
9016 if (num_vfs == 0)
9017 return igb_pci_disable_sriov(dev);
9018 else
9019 return igb_pci_enable_sriov(dev, num_vfs);
9020 #endif
9021 return 0;
9022 }
9023
9024 /**
9025 * igb_io_error_detected - called when PCI error is detected
9026 * @pdev: Pointer to PCI device
9027 * @state: The current pci connection state
9028 *
9029 * This function is called after a PCI bus error affecting
9030 * this device has been detected.
9031 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9032 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9033 pci_channel_state_t state)
9034 {
9035 struct net_device *netdev = pci_get_drvdata(pdev);
9036 struct igb_adapter *adapter = netdev_priv(netdev);
9037
9038 netif_device_detach(netdev);
9039
9040 if (state == pci_channel_io_perm_failure)
9041 return PCI_ERS_RESULT_DISCONNECT;
9042
9043 if (netif_running(netdev))
9044 igb_down(adapter);
9045 pci_disable_device(pdev);
9046
9047 /* Request a slot slot reset. */
9048 return PCI_ERS_RESULT_NEED_RESET;
9049 }
9050
9051 /**
9052 * igb_io_slot_reset - called after the pci bus has been reset.
9053 * @pdev: Pointer to PCI device
9054 *
9055 * Restart the card from scratch, as if from a cold-boot. Implementation
9056 * resembles the first-half of the igb_resume routine.
9057 **/
igb_io_slot_reset(struct pci_dev * pdev)9058 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9059 {
9060 struct net_device *netdev = pci_get_drvdata(pdev);
9061 struct igb_adapter *adapter = netdev_priv(netdev);
9062 struct e1000_hw *hw = &adapter->hw;
9063 pci_ers_result_t result;
9064 int err;
9065
9066 if (pci_enable_device_mem(pdev)) {
9067 dev_err(&pdev->dev,
9068 "Cannot re-enable PCI device after reset.\n");
9069 result = PCI_ERS_RESULT_DISCONNECT;
9070 } else {
9071 pci_set_master(pdev);
9072 pci_restore_state(pdev);
9073 pci_save_state(pdev);
9074
9075 pci_enable_wake(pdev, PCI_D3hot, 0);
9076 pci_enable_wake(pdev, PCI_D3cold, 0);
9077
9078 /* In case of PCI error, adapter lose its HW address
9079 * so we should re-assign it here.
9080 */
9081 hw->hw_addr = adapter->io_addr;
9082
9083 igb_reset(adapter);
9084 wr32(E1000_WUS, ~0);
9085 result = PCI_ERS_RESULT_RECOVERED;
9086 }
9087
9088 err = pci_cleanup_aer_uncorrect_error_status(pdev);
9089 if (err) {
9090 dev_err(&pdev->dev,
9091 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9092 err);
9093 /* non-fatal, continue */
9094 }
9095
9096 return result;
9097 }
9098
9099 /**
9100 * igb_io_resume - called when traffic can start flowing again.
9101 * @pdev: Pointer to PCI device
9102 *
9103 * This callback is called when the error recovery driver tells us that
9104 * its OK to resume normal operation. Implementation resembles the
9105 * second-half of the igb_resume routine.
9106 */
igb_io_resume(struct pci_dev * pdev)9107 static void igb_io_resume(struct pci_dev *pdev)
9108 {
9109 struct net_device *netdev = pci_get_drvdata(pdev);
9110 struct igb_adapter *adapter = netdev_priv(netdev);
9111
9112 if (netif_running(netdev)) {
9113 if (igb_up(adapter)) {
9114 dev_err(&pdev->dev, "igb_up failed after reset\n");
9115 return;
9116 }
9117 }
9118
9119 netif_device_attach(netdev);
9120
9121 /* let the f/w know that the h/w is now under the control of the
9122 * driver.
9123 */
9124 igb_get_hw_control(adapter);
9125 }
9126
9127 /**
9128 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9129 * @adapter: Pointer to adapter structure
9130 * @index: Index of the RAR entry which need to be synced with MAC table
9131 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9132 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9133 {
9134 struct e1000_hw *hw = &adapter->hw;
9135 u32 rar_low, rar_high;
9136 u8 *addr = adapter->mac_table[index].addr;
9137
9138 /* HW expects these to be in network order when they are plugged
9139 * into the registers which are little endian. In order to guarantee
9140 * that ordering we need to do an leXX_to_cpup here in order to be
9141 * ready for the byteswap that occurs with writel
9142 */
9143 rar_low = le32_to_cpup((__le32 *)(addr));
9144 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9145
9146 /* Indicate to hardware the Address is Valid. */
9147 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9148 if (is_valid_ether_addr(addr))
9149 rar_high |= E1000_RAH_AV;
9150
9151 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9152 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9153
9154 switch (hw->mac.type) {
9155 case e1000_82575:
9156 case e1000_i210:
9157 if (adapter->mac_table[index].state &
9158 IGB_MAC_STATE_QUEUE_STEERING)
9159 rar_high |= E1000_RAH_QSEL_ENABLE;
9160
9161 rar_high |= E1000_RAH_POOL_1 *
9162 adapter->mac_table[index].queue;
9163 break;
9164 default:
9165 rar_high |= E1000_RAH_POOL_1 <<
9166 adapter->mac_table[index].queue;
9167 break;
9168 }
9169 }
9170
9171 wr32(E1000_RAL(index), rar_low);
9172 wrfl();
9173 wr32(E1000_RAH(index), rar_high);
9174 wrfl();
9175 }
9176
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9177 static int igb_set_vf_mac(struct igb_adapter *adapter,
9178 int vf, unsigned char *mac_addr)
9179 {
9180 struct e1000_hw *hw = &adapter->hw;
9181 /* VF MAC addresses start at end of receive addresses and moves
9182 * towards the first, as a result a collision should not be possible
9183 */
9184 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9185 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9186
9187 ether_addr_copy(vf_mac_addr, mac_addr);
9188 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9189 adapter->mac_table[rar_entry].queue = vf;
9190 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9191 igb_rar_set_index(adapter, rar_entry);
9192
9193 return 0;
9194 }
9195
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9196 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9197 {
9198 struct igb_adapter *adapter = netdev_priv(netdev);
9199
9200 if (vf >= adapter->vfs_allocated_count)
9201 return -EINVAL;
9202
9203 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9204 * flag and allows to overwrite the MAC via VF netdev. This
9205 * is necessary to allow libvirt a way to restore the original
9206 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9207 * down a VM.
9208 */
9209 if (is_zero_ether_addr(mac)) {
9210 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9211 dev_info(&adapter->pdev->dev,
9212 "remove administratively set MAC on VF %d\n",
9213 vf);
9214 } else if (is_valid_ether_addr(mac)) {
9215 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9216 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9217 mac, vf);
9218 dev_info(&adapter->pdev->dev,
9219 "Reload the VF driver to make this change effective.");
9220 /* Generate additional warning if PF is down */
9221 if (test_bit(__IGB_DOWN, &adapter->state)) {
9222 dev_warn(&adapter->pdev->dev,
9223 "The VF MAC address has been set, but the PF device is not up.\n");
9224 dev_warn(&adapter->pdev->dev,
9225 "Bring the PF device up before attempting to use the VF device.\n");
9226 }
9227 } else {
9228 return -EINVAL;
9229 }
9230 return igb_set_vf_mac(adapter, vf, mac);
9231 }
9232
igb_link_mbps(int internal_link_speed)9233 static int igb_link_mbps(int internal_link_speed)
9234 {
9235 switch (internal_link_speed) {
9236 case SPEED_100:
9237 return 100;
9238 case SPEED_1000:
9239 return 1000;
9240 default:
9241 return 0;
9242 }
9243 }
9244
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9245 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9246 int link_speed)
9247 {
9248 int rf_dec, rf_int;
9249 u32 bcnrc_val;
9250
9251 if (tx_rate != 0) {
9252 /* Calculate the rate factor values to set */
9253 rf_int = link_speed / tx_rate;
9254 rf_dec = (link_speed - (rf_int * tx_rate));
9255 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9256 tx_rate;
9257
9258 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9259 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9260 E1000_RTTBCNRC_RF_INT_MASK);
9261 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9262 } else {
9263 bcnrc_val = 0;
9264 }
9265
9266 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9267 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9268 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9269 */
9270 wr32(E1000_RTTBCNRM, 0x14);
9271 wr32(E1000_RTTBCNRC, bcnrc_val);
9272 }
9273
igb_check_vf_rate_limit(struct igb_adapter * adapter)9274 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9275 {
9276 int actual_link_speed, i;
9277 bool reset_rate = false;
9278
9279 /* VF TX rate limit was not set or not supported */
9280 if ((adapter->vf_rate_link_speed == 0) ||
9281 (adapter->hw.mac.type != e1000_82576))
9282 return;
9283
9284 actual_link_speed = igb_link_mbps(adapter->link_speed);
9285 if (actual_link_speed != adapter->vf_rate_link_speed) {
9286 reset_rate = true;
9287 adapter->vf_rate_link_speed = 0;
9288 dev_info(&adapter->pdev->dev,
9289 "Link speed has been changed. VF Transmit rate is disabled\n");
9290 }
9291
9292 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9293 if (reset_rate)
9294 adapter->vf_data[i].tx_rate = 0;
9295
9296 igb_set_vf_rate_limit(&adapter->hw, i,
9297 adapter->vf_data[i].tx_rate,
9298 actual_link_speed);
9299 }
9300 }
9301
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9302 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9303 int min_tx_rate, int max_tx_rate)
9304 {
9305 struct igb_adapter *adapter = netdev_priv(netdev);
9306 struct e1000_hw *hw = &adapter->hw;
9307 int actual_link_speed;
9308
9309 if (hw->mac.type != e1000_82576)
9310 return -EOPNOTSUPP;
9311
9312 if (min_tx_rate)
9313 return -EINVAL;
9314
9315 actual_link_speed = igb_link_mbps(adapter->link_speed);
9316 if ((vf >= adapter->vfs_allocated_count) ||
9317 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9318 (max_tx_rate < 0) ||
9319 (max_tx_rate > actual_link_speed))
9320 return -EINVAL;
9321
9322 adapter->vf_rate_link_speed = actual_link_speed;
9323 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9324 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9325
9326 return 0;
9327 }
9328
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9329 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9330 bool setting)
9331 {
9332 struct igb_adapter *adapter = netdev_priv(netdev);
9333 struct e1000_hw *hw = &adapter->hw;
9334 u32 reg_val, reg_offset;
9335
9336 if (!adapter->vfs_allocated_count)
9337 return -EOPNOTSUPP;
9338
9339 if (vf >= adapter->vfs_allocated_count)
9340 return -EINVAL;
9341
9342 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9343 reg_val = rd32(reg_offset);
9344 if (setting)
9345 reg_val |= (BIT(vf) |
9346 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9347 else
9348 reg_val &= ~(BIT(vf) |
9349 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9350 wr32(reg_offset, reg_val);
9351
9352 adapter->vf_data[vf].spoofchk_enabled = setting;
9353 return 0;
9354 }
9355
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9356 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9357 {
9358 struct igb_adapter *adapter = netdev_priv(netdev);
9359
9360 if (vf >= adapter->vfs_allocated_count)
9361 return -EINVAL;
9362 if (adapter->vf_data[vf].trusted == setting)
9363 return 0;
9364
9365 adapter->vf_data[vf].trusted = setting;
9366
9367 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9368 vf, setting ? "" : "not ");
9369 return 0;
9370 }
9371
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9372 static int igb_ndo_get_vf_config(struct net_device *netdev,
9373 int vf, struct ifla_vf_info *ivi)
9374 {
9375 struct igb_adapter *adapter = netdev_priv(netdev);
9376 if (vf >= adapter->vfs_allocated_count)
9377 return -EINVAL;
9378 ivi->vf = vf;
9379 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9380 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9381 ivi->min_tx_rate = 0;
9382 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9383 ivi->qos = adapter->vf_data[vf].pf_qos;
9384 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9385 ivi->trusted = adapter->vf_data[vf].trusted;
9386 return 0;
9387 }
9388
igb_vmm_control(struct igb_adapter * adapter)9389 static void igb_vmm_control(struct igb_adapter *adapter)
9390 {
9391 struct e1000_hw *hw = &adapter->hw;
9392 u32 reg;
9393
9394 switch (hw->mac.type) {
9395 case e1000_82575:
9396 case e1000_i210:
9397 case e1000_i211:
9398 case e1000_i354:
9399 default:
9400 /* replication is not supported for 82575 */
9401 return;
9402 case e1000_82576:
9403 /* notify HW that the MAC is adding vlan tags */
9404 reg = rd32(E1000_DTXCTL);
9405 reg |= E1000_DTXCTL_VLAN_ADDED;
9406 wr32(E1000_DTXCTL, reg);
9407 /* Fall through */
9408 case e1000_82580:
9409 /* enable replication vlan tag stripping */
9410 reg = rd32(E1000_RPLOLR);
9411 reg |= E1000_RPLOLR_STRVLAN;
9412 wr32(E1000_RPLOLR, reg);
9413 /* Fall through */
9414 case e1000_i350:
9415 /* none of the above registers are supported by i350 */
9416 break;
9417 }
9418
9419 if (adapter->vfs_allocated_count) {
9420 igb_vmdq_set_loopback_pf(hw, true);
9421 igb_vmdq_set_replication_pf(hw, true);
9422 igb_vmdq_set_anti_spoofing_pf(hw, true,
9423 adapter->vfs_allocated_count);
9424 } else {
9425 igb_vmdq_set_loopback_pf(hw, false);
9426 igb_vmdq_set_replication_pf(hw, false);
9427 }
9428 }
9429
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9430 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9431 {
9432 struct e1000_hw *hw = &adapter->hw;
9433 u32 dmac_thr;
9434 u16 hwm;
9435
9436 if (hw->mac.type > e1000_82580) {
9437 if (adapter->flags & IGB_FLAG_DMAC) {
9438 u32 reg;
9439
9440 /* force threshold to 0. */
9441 wr32(E1000_DMCTXTH, 0);
9442
9443 /* DMA Coalescing high water mark needs to be greater
9444 * than the Rx threshold. Set hwm to PBA - max frame
9445 * size in 16B units, capping it at PBA - 6KB.
9446 */
9447 hwm = 64 * (pba - 6);
9448 reg = rd32(E1000_FCRTC);
9449 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9450 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9451 & E1000_FCRTC_RTH_COAL_MASK);
9452 wr32(E1000_FCRTC, reg);
9453
9454 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9455 * frame size, capping it at PBA - 10KB.
9456 */
9457 dmac_thr = pba - 10;
9458 reg = rd32(E1000_DMACR);
9459 reg &= ~E1000_DMACR_DMACTHR_MASK;
9460 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9461 & E1000_DMACR_DMACTHR_MASK);
9462
9463 /* transition to L0x or L1 if available..*/
9464 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9465
9466 /* watchdog timer= +-1000 usec in 32usec intervals */
9467 reg |= (1000 >> 5);
9468
9469 /* Disable BMC-to-OS Watchdog Enable */
9470 if (hw->mac.type != e1000_i354)
9471 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9472
9473 wr32(E1000_DMACR, reg);
9474
9475 /* no lower threshold to disable
9476 * coalescing(smart fifb)-UTRESH=0
9477 */
9478 wr32(E1000_DMCRTRH, 0);
9479
9480 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9481
9482 wr32(E1000_DMCTLX, reg);
9483
9484 /* free space in tx packet buffer to wake from
9485 * DMA coal
9486 */
9487 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9488 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9489
9490 /* make low power state decision controlled
9491 * by DMA coal
9492 */
9493 reg = rd32(E1000_PCIEMISC);
9494 reg &= ~E1000_PCIEMISC_LX_DECISION;
9495 wr32(E1000_PCIEMISC, reg);
9496 } /* endif adapter->dmac is not disabled */
9497 } else if (hw->mac.type == e1000_82580) {
9498 u32 reg = rd32(E1000_PCIEMISC);
9499
9500 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9501 wr32(E1000_DMACR, 0);
9502 }
9503 }
9504
9505 /**
9506 * igb_read_i2c_byte - Reads 8 bit word over I2C
9507 * @hw: pointer to hardware structure
9508 * @byte_offset: byte offset to read
9509 * @dev_addr: device address
9510 * @data: value read
9511 *
9512 * Performs byte read operation over I2C interface at
9513 * a specified device address.
9514 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9515 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9516 u8 dev_addr, u8 *data)
9517 {
9518 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9519 struct i2c_client *this_client = adapter->i2c_client;
9520 s32 status;
9521 u16 swfw_mask = 0;
9522
9523 if (!this_client)
9524 return E1000_ERR_I2C;
9525
9526 swfw_mask = E1000_SWFW_PHY0_SM;
9527
9528 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9529 return E1000_ERR_SWFW_SYNC;
9530
9531 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9532 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9533
9534 if (status < 0)
9535 return E1000_ERR_I2C;
9536 else {
9537 *data = status;
9538 return 0;
9539 }
9540 }
9541
9542 /**
9543 * igb_write_i2c_byte - Writes 8 bit word over I2C
9544 * @hw: pointer to hardware structure
9545 * @byte_offset: byte offset to write
9546 * @dev_addr: device address
9547 * @data: value to write
9548 *
9549 * Performs byte write operation over I2C interface at
9550 * a specified device address.
9551 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9552 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9553 u8 dev_addr, u8 data)
9554 {
9555 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9556 struct i2c_client *this_client = adapter->i2c_client;
9557 s32 status;
9558 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9559
9560 if (!this_client)
9561 return E1000_ERR_I2C;
9562
9563 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9564 return E1000_ERR_SWFW_SYNC;
9565 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9566 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9567
9568 if (status)
9569 return E1000_ERR_I2C;
9570 else
9571 return 0;
9572
9573 }
9574
igb_reinit_queues(struct igb_adapter * adapter)9575 int igb_reinit_queues(struct igb_adapter *adapter)
9576 {
9577 struct net_device *netdev = adapter->netdev;
9578 struct pci_dev *pdev = adapter->pdev;
9579 int err = 0;
9580
9581 if (netif_running(netdev))
9582 igb_close(netdev);
9583
9584 igb_reset_interrupt_capability(adapter);
9585
9586 if (igb_init_interrupt_scheme(adapter, true)) {
9587 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9588 return -ENOMEM;
9589 }
9590
9591 if (netif_running(netdev))
9592 err = igb_open(netdev);
9593
9594 return err;
9595 }
9596
igb_nfc_filter_exit(struct igb_adapter * adapter)9597 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9598 {
9599 struct igb_nfc_filter *rule;
9600
9601 spin_lock(&adapter->nfc_lock);
9602
9603 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9604 igb_erase_filter(adapter, rule);
9605
9606 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9607 igb_erase_filter(adapter, rule);
9608
9609 spin_unlock(&adapter->nfc_lock);
9610 }
9611
igb_nfc_filter_restore(struct igb_adapter * adapter)9612 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9613 {
9614 struct igb_nfc_filter *rule;
9615
9616 spin_lock(&adapter->nfc_lock);
9617
9618 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9619 igb_add_filter(adapter, rule);
9620
9621 spin_unlock(&adapter->nfc_lock);
9622 }
9623 /* igb_main.c */
9624