• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sonic.c
3  *
4  * (C) 2005 Finn Thain
5  *
6  * Converted to DMA API, added zero-copy buffer handling, and
7  * (from the mac68k project) introduced dhd's support for 16-bit cards.
8  *
9  * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
10  *
11  * This driver is based on work from Andreas Busse, but most of
12  * the code is rewritten.
13  *
14  * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
15  *
16  *    Core code included by system sonic drivers
17  *
18  * And... partially rewritten again by David Huggins-Daines in order
19  * to cope with screwed up Macintosh NICs that may or may not use
20  * 16-bit DMA.
21  *
22  * (C) 1999 David Huggins-Daines <dhd@debian.org>
23  *
24  */
25 
26 /*
27  * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
28  * National Semiconductors data sheet for the DP83932B Sonic Ethernet
29  * controller, and the files "8390.c" and "skeleton.c" in this directory.
30  *
31  * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
32  * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
33  * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
34  */
35 
36 static unsigned int version_printed;
37 
38 static int sonic_debug = -1;
39 module_param(sonic_debug, int, 0);
40 MODULE_PARM_DESC(sonic_debug, "debug message level");
41 
sonic_msg_init(struct net_device * dev)42 static void sonic_msg_init(struct net_device *dev)
43 {
44 	struct sonic_local *lp = netdev_priv(dev);
45 
46 	lp->msg_enable = netif_msg_init(sonic_debug, 0);
47 
48 	if (version_printed++ == 0)
49 		netif_dbg(lp, drv, dev, "%s", version);
50 }
51 
52 /*
53  * Open/initialize the SONIC controller.
54  *
55  * This routine should set everything up anew at each open, even
56  *  registers that "should" only need to be set once at boot, so that
57  *  there is non-reboot way to recover if something goes wrong.
58  */
sonic_open(struct net_device * dev)59 static int sonic_open(struct net_device *dev)
60 {
61 	struct sonic_local *lp = netdev_priv(dev);
62 	int i;
63 
64 	netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
65 
66 	spin_lock_init(&lp->lock);
67 
68 	for (i = 0; i < SONIC_NUM_RRS; i++) {
69 		struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
70 		if (skb == NULL) {
71 			while(i > 0) { /* free any that were allocated successfully */
72 				i--;
73 				dev_kfree_skb(lp->rx_skb[i]);
74 				lp->rx_skb[i] = NULL;
75 			}
76 			printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
77 			       dev->name);
78 			return -ENOMEM;
79 		}
80 		/* align IP header unless DMA requires otherwise */
81 		if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
82 			skb_reserve(skb, 2);
83 		lp->rx_skb[i] = skb;
84 	}
85 
86 	for (i = 0; i < SONIC_NUM_RRS; i++) {
87 		dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
88 		                                  SONIC_RBSIZE, DMA_FROM_DEVICE);
89 		if (dma_mapping_error(lp->device, laddr)) {
90 			while(i > 0) { /* free any that were mapped successfully */
91 				i--;
92 				dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
93 				lp->rx_laddr[i] = (dma_addr_t)0;
94 			}
95 			for (i = 0; i < SONIC_NUM_RRS; i++) {
96 				dev_kfree_skb(lp->rx_skb[i]);
97 				lp->rx_skb[i] = NULL;
98 			}
99 			printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
100 			       dev->name);
101 			return -ENOMEM;
102 		}
103 		lp->rx_laddr[i] = laddr;
104 	}
105 
106 	/*
107 	 * Initialize the SONIC
108 	 */
109 	sonic_init(dev);
110 
111 	netif_start_queue(dev);
112 
113 	netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
114 
115 	return 0;
116 }
117 
118 /* Wait for the SONIC to become idle. */
sonic_quiesce(struct net_device * dev,u16 mask)119 static void sonic_quiesce(struct net_device *dev, u16 mask)
120 {
121 	struct sonic_local * __maybe_unused lp = netdev_priv(dev);
122 	int i;
123 	u16 bits;
124 
125 	for (i = 0; i < 1000; ++i) {
126 		bits = SONIC_READ(SONIC_CMD) & mask;
127 		if (!bits)
128 			return;
129 		if (irqs_disabled() || in_interrupt())
130 			udelay(20);
131 		else
132 			usleep_range(100, 200);
133 	}
134 	WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
135 }
136 
137 /*
138  * Close the SONIC device
139  */
sonic_close(struct net_device * dev)140 static int sonic_close(struct net_device *dev)
141 {
142 	struct sonic_local *lp = netdev_priv(dev);
143 	int i;
144 
145 	netif_dbg(lp, ifdown, dev, "%s\n", __func__);
146 
147 	netif_stop_queue(dev);
148 
149 	/*
150 	 * stop the SONIC, disable interrupts
151 	 */
152 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
153 	sonic_quiesce(dev, SONIC_CR_ALL);
154 
155 	SONIC_WRITE(SONIC_IMR, 0);
156 	SONIC_WRITE(SONIC_ISR, 0x7fff);
157 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
158 
159 	/* unmap and free skbs that haven't been transmitted */
160 	for (i = 0; i < SONIC_NUM_TDS; i++) {
161 		if(lp->tx_laddr[i]) {
162 			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
163 			lp->tx_laddr[i] = (dma_addr_t)0;
164 		}
165 		if(lp->tx_skb[i]) {
166 			dev_kfree_skb(lp->tx_skb[i]);
167 			lp->tx_skb[i] = NULL;
168 		}
169 	}
170 
171 	/* unmap and free the receive buffers */
172 	for (i = 0; i < SONIC_NUM_RRS; i++) {
173 		if(lp->rx_laddr[i]) {
174 			dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
175 			lp->rx_laddr[i] = (dma_addr_t)0;
176 		}
177 		if(lp->rx_skb[i]) {
178 			dev_kfree_skb(lp->rx_skb[i]);
179 			lp->rx_skb[i] = NULL;
180 		}
181 	}
182 
183 	return 0;
184 }
185 
sonic_tx_timeout(struct net_device * dev)186 static void sonic_tx_timeout(struct net_device *dev)
187 {
188 	struct sonic_local *lp = netdev_priv(dev);
189 	int i;
190 	/*
191 	 * put the Sonic into software-reset mode and
192 	 * disable all interrupts before releasing DMA buffers
193 	 */
194 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
195 	sonic_quiesce(dev, SONIC_CR_ALL);
196 
197 	SONIC_WRITE(SONIC_IMR, 0);
198 	SONIC_WRITE(SONIC_ISR, 0x7fff);
199 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
200 	/* We could resend the original skbs. Easier to re-initialise. */
201 	for (i = 0; i < SONIC_NUM_TDS; i++) {
202 		if(lp->tx_laddr[i]) {
203 			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
204 			lp->tx_laddr[i] = (dma_addr_t)0;
205 		}
206 		if(lp->tx_skb[i]) {
207 			dev_kfree_skb(lp->tx_skb[i]);
208 			lp->tx_skb[i] = NULL;
209 		}
210 	}
211 	/* Try to restart the adaptor. */
212 	sonic_init(dev);
213 	lp->stats.tx_errors++;
214 	netif_trans_update(dev); /* prevent tx timeout */
215 	netif_wake_queue(dev);
216 }
217 
218 /*
219  * transmit packet
220  *
221  * Appends new TD during transmission thus avoiding any TX interrupts
222  * until we run out of TDs.
223  * This routine interacts closely with the ISR in that it may,
224  *   set tx_skb[i]
225  *   reset the status flags of the new TD
226  *   set and reset EOL flags
227  *   stop the tx queue
228  * The ISR interacts with this routine in various ways. It may,
229  *   reset tx_skb[i]
230  *   test the EOL and status flags of the TDs
231  *   wake the tx queue
232  * Concurrently with all of this, the SONIC is potentially writing to
233  * the status flags of the TDs.
234  */
235 
sonic_send_packet(struct sk_buff * skb,struct net_device * dev)236 static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
237 {
238 	struct sonic_local *lp = netdev_priv(dev);
239 	dma_addr_t laddr;
240 	int length;
241 	int entry;
242 	unsigned long flags;
243 
244 	netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
245 
246 	length = skb->len;
247 	if (length < ETH_ZLEN) {
248 		if (skb_padto(skb, ETH_ZLEN))
249 			return NETDEV_TX_OK;
250 		length = ETH_ZLEN;
251 	}
252 
253 	/*
254 	 * Map the packet data into the logical DMA address space
255 	 */
256 
257 	laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
258 	if (!laddr) {
259 		pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
260 		dev_kfree_skb_any(skb);
261 		return NETDEV_TX_OK;
262 	}
263 
264 	spin_lock_irqsave(&lp->lock, flags);
265 
266 	entry = lp->next_tx;
267 
268 	sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
269 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
270 	sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
271 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
272 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
273 	sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
274 	sonic_tda_put(dev, entry, SONIC_TD_LINK,
275 		sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
276 
277 	wmb();
278 	lp->tx_len[entry] = length;
279 	lp->tx_laddr[entry] = laddr;
280 	lp->tx_skb[entry] = skb;
281 
282 	wmb();
283 	sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
284 				  sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
285 	lp->eol_tx = entry;
286 
287 	lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
288 	if (lp->tx_skb[lp->next_tx] != NULL) {
289 		/* The ring is full, the ISR has yet to process the next TD. */
290 		netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
291 		netif_stop_queue(dev);
292 		/* after this packet, wait for ISR to free up some TDAs */
293 	} else netif_start_queue(dev);
294 
295 	netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
296 
297 	SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
298 
299 	spin_unlock_irqrestore(&lp->lock, flags);
300 
301 	return NETDEV_TX_OK;
302 }
303 
304 /*
305  * The typical workload of the driver:
306  * Handle the network interface interrupts.
307  */
sonic_interrupt(int irq,void * dev_id)308 static irqreturn_t sonic_interrupt(int irq, void *dev_id)
309 {
310 	struct net_device *dev = dev_id;
311 	struct sonic_local *lp = netdev_priv(dev);
312 	int status;
313 	unsigned long flags;
314 
315 	/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
316 	 * with sonic_send_packet() so that the two functions can share state.
317 	 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
318 	 * by macsonic which must use two IRQs with different priority levels.
319 	 */
320 	spin_lock_irqsave(&lp->lock, flags);
321 
322 	status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
323 	if (!status) {
324 		spin_unlock_irqrestore(&lp->lock, flags);
325 
326 		return IRQ_NONE;
327 	}
328 
329 	do {
330 		SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
331 
332 		if (status & SONIC_INT_PKTRX) {
333 			netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
334 			sonic_rx(dev);	/* got packet(s) */
335 		}
336 
337 		if (status & SONIC_INT_TXDN) {
338 			int entry = lp->cur_tx;
339 			int td_status;
340 			int freed_some = 0;
341 
342 			/* The state of a Transmit Descriptor may be inferred
343 			 * from { tx_skb[entry], td_status } as follows.
344 			 * { clear, clear } => the TD has never been used
345 			 * { set,   clear } => the TD was handed to SONIC
346 			 * { set,   set   } => the TD was handed back
347 			 * { clear, set   } => the TD is available for re-use
348 			 */
349 
350 			netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
351 
352 			while (lp->tx_skb[entry] != NULL) {
353 				if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
354 					break;
355 
356 				if (td_status & SONIC_TCR_PTX) {
357 					lp->stats.tx_packets++;
358 					lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
359 				} else {
360 					if (td_status & (SONIC_TCR_EXD |
361 					    SONIC_TCR_EXC | SONIC_TCR_BCM))
362 						lp->stats.tx_aborted_errors++;
363 					if (td_status &
364 					    (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
365 						lp->stats.tx_carrier_errors++;
366 					if (td_status & SONIC_TCR_OWC)
367 						lp->stats.tx_window_errors++;
368 					if (td_status & SONIC_TCR_FU)
369 						lp->stats.tx_fifo_errors++;
370 				}
371 
372 				/* We must free the original skb */
373 				dev_kfree_skb_irq(lp->tx_skb[entry]);
374 				lp->tx_skb[entry] = NULL;
375 				/* and unmap DMA buffer */
376 				dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
377 				lp->tx_laddr[entry] = (dma_addr_t)0;
378 				freed_some = 1;
379 
380 				if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
381 					entry = (entry + 1) & SONIC_TDS_MASK;
382 					break;
383 				}
384 				entry = (entry + 1) & SONIC_TDS_MASK;
385 			}
386 
387 			if (freed_some || lp->tx_skb[entry] == NULL)
388 				netif_wake_queue(dev);  /* The ring is no longer full */
389 			lp->cur_tx = entry;
390 		}
391 
392 		/*
393 		 * check error conditions
394 		 */
395 		if (status & SONIC_INT_RFO) {
396 			netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
397 				  __func__);
398 		}
399 		if (status & SONIC_INT_RDE) {
400 			netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
401 				  __func__);
402 		}
403 		if (status & SONIC_INT_RBAE) {
404 			netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
405 				  __func__);
406 		}
407 
408 		/* counter overruns; all counters are 16bit wide */
409 		if (status & SONIC_INT_FAE)
410 			lp->stats.rx_frame_errors += 65536;
411 		if (status & SONIC_INT_CRC)
412 			lp->stats.rx_crc_errors += 65536;
413 		if (status & SONIC_INT_MP)
414 			lp->stats.rx_missed_errors += 65536;
415 
416 		/* transmit error */
417 		if (status & SONIC_INT_TXER) {
418 			u16 tcr = SONIC_READ(SONIC_TCR);
419 
420 			netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
421 				  __func__, tcr);
422 
423 			if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
424 				   SONIC_TCR_FU | SONIC_TCR_BCM)) {
425 				/* Aborted transmission. Try again. */
426 				netif_stop_queue(dev);
427 				SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
428 			}
429 		}
430 
431 		/* bus retry */
432 		if (status & SONIC_INT_BR) {
433 			printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
434 				dev->name);
435 			/* ... to help debug DMA problems causing endless interrupts. */
436 			/* Bounce the eth interface to turn on the interrupt again. */
437 			SONIC_WRITE(SONIC_IMR, 0);
438 		}
439 
440 		status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
441 	} while (status);
442 
443 	spin_unlock_irqrestore(&lp->lock, flags);
444 
445 	return IRQ_HANDLED;
446 }
447 
448 /* Return the array index corresponding to a given Receive Buffer pointer. */
index_from_addr(struct sonic_local * lp,dma_addr_t addr,unsigned int last)449 static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
450 			   unsigned int last)
451 {
452 	unsigned int i = last;
453 
454 	do {
455 		i = (i + 1) & SONIC_RRS_MASK;
456 		if (addr == lp->rx_laddr[i])
457 			return i;
458 	} while (i != last);
459 
460 	return -ENOENT;
461 }
462 
463 /* Allocate and map a new skb to be used as a receive buffer. */
sonic_alloc_rb(struct net_device * dev,struct sonic_local * lp,struct sk_buff ** new_skb,dma_addr_t * new_addr)464 static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
465 			   struct sk_buff **new_skb, dma_addr_t *new_addr)
466 {
467 	*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
468 	if (!*new_skb)
469 		return false;
470 
471 	if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
472 		skb_reserve(*new_skb, 2);
473 
474 	*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
475 				   SONIC_RBSIZE, DMA_FROM_DEVICE);
476 	if (!*new_addr) {
477 		dev_kfree_skb(*new_skb);
478 		*new_skb = NULL;
479 		return false;
480 	}
481 
482 	return true;
483 }
484 
485 /* Place a new receive resource in the Receive Resource Area and update RWP. */
sonic_update_rra(struct net_device * dev,struct sonic_local * lp,dma_addr_t old_addr,dma_addr_t new_addr)486 static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
487 			     dma_addr_t old_addr, dma_addr_t new_addr)
488 {
489 	unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
490 	unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
491 	u32 buf;
492 
493 	/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
494 	 * scans the other resources in the RRA, those in the range [RWP, RRP).
495 	 */
496 	do {
497 		buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
498 		      sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
499 
500 		if (buf == old_addr)
501 			break;
502 
503 		entry = (entry + 1) & SONIC_RRS_MASK;
504 	} while (entry != end);
505 
506 	WARN_ONCE(buf != old_addr, "failed to find resource!\n");
507 
508 	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
509 	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
510 
511 	entry = (entry + 1) & SONIC_RRS_MASK;
512 
513 	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
514 }
515 
516 /*
517  * We have a good packet(s), pass it/them up the network stack.
518  */
sonic_rx(struct net_device * dev)519 static void sonic_rx(struct net_device *dev)
520 {
521 	struct sonic_local *lp = netdev_priv(dev);
522 	int entry = lp->cur_rx;
523 	int prev_entry = lp->eol_rx;
524 	bool rbe = false;
525 
526 	while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
527 		u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
528 
529 		/* If the RD has LPKT set, the chip has finished with the RB */
530 		if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
531 			struct sk_buff *new_skb;
532 			dma_addr_t new_laddr;
533 			u32 addr = (sonic_rda_get(dev, entry,
534 						  SONIC_RD_PKTPTR_H) << 16) |
535 				   sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
536 			int i = index_from_addr(lp, addr, entry);
537 
538 			if (i < 0) {
539 				WARN_ONCE(1, "failed to find buffer!\n");
540 				break;
541 			}
542 
543 			if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
544 				struct sk_buff *used_skb = lp->rx_skb[i];
545 				int pkt_len;
546 
547 				/* Pass the used buffer up the stack */
548 				dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
549 						 DMA_FROM_DEVICE);
550 
551 				pkt_len = sonic_rda_get(dev, entry,
552 							SONIC_RD_PKTLEN);
553 				skb_trim(used_skb, pkt_len);
554 				used_skb->protocol = eth_type_trans(used_skb,
555 								    dev);
556 				netif_rx(used_skb);
557 				lp->stats.rx_packets++;
558 				lp->stats.rx_bytes += pkt_len;
559 
560 				lp->rx_skb[i] = new_skb;
561 				lp->rx_laddr[i] = new_laddr;
562 			} else {
563 				/* Failed to obtain a new buffer so re-use it */
564 				new_laddr = addr;
565 				lp->stats.rx_dropped++;
566 			}
567 			/* If RBE is already asserted when RWP advances then
568 			 * it's safe to clear RBE after processing this packet.
569 			 */
570 			rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
571 			sonic_update_rra(dev, lp, addr, new_laddr);
572 		}
573 		/*
574 		 * give back the descriptor
575 		 */
576 		sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
577 		sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
578 
579 		prev_entry = entry;
580 		entry = (entry + 1) & SONIC_RDS_MASK;
581 	}
582 
583 	lp->cur_rx = entry;
584 
585 	if (prev_entry != lp->eol_rx) {
586 		/* Advance the EOL flag to put descriptors back into service */
587 		sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
588 			      sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
589 		sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
590 			      sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
591 		lp->eol_rx = prev_entry;
592 	}
593 
594 	if (rbe)
595 		SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
596 	/*
597 	 * If any worth-while packets have been received, netif_rx()
598 	 * has done a mark_bh(NET_BH) for us and will work on them
599 	 * when we get to the bottom-half routine.
600 	 */
601 }
602 
603 
604 /*
605  * Get the current statistics.
606  * This may be called with the device open or closed.
607  */
sonic_get_stats(struct net_device * dev)608 static struct net_device_stats *sonic_get_stats(struct net_device *dev)
609 {
610 	struct sonic_local *lp = netdev_priv(dev);
611 
612 	/* read the tally counter from the SONIC and reset them */
613 	lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
614 	SONIC_WRITE(SONIC_CRCT, 0xffff);
615 	lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
616 	SONIC_WRITE(SONIC_FAET, 0xffff);
617 	lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
618 	SONIC_WRITE(SONIC_MPT, 0xffff);
619 
620 	return &lp->stats;
621 }
622 
623 
624 /*
625  * Set or clear the multicast filter for this adaptor.
626  */
sonic_multicast_list(struct net_device * dev)627 static void sonic_multicast_list(struct net_device *dev)
628 {
629 	struct sonic_local *lp = netdev_priv(dev);
630 	unsigned int rcr;
631 	struct netdev_hw_addr *ha;
632 	unsigned char *addr;
633 	int i;
634 
635 	rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
636 	rcr |= SONIC_RCR_BRD;	/* accept broadcast packets */
637 
638 	if (dev->flags & IFF_PROMISC) {	/* set promiscuous mode */
639 		rcr |= SONIC_RCR_PRO;
640 	} else {
641 		if ((dev->flags & IFF_ALLMULTI) ||
642 		    (netdev_mc_count(dev) > 15)) {
643 			rcr |= SONIC_RCR_AMC;
644 		} else {
645 			unsigned long flags;
646 
647 			netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
648 				  netdev_mc_count(dev));
649 			sonic_set_cam_enable(dev, 1);  /* always enable our own address */
650 			i = 1;
651 			netdev_for_each_mc_addr(ha, dev) {
652 				addr = ha->addr;
653 				sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
654 				sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
655 				sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
656 				sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
657 				i++;
658 			}
659 			SONIC_WRITE(SONIC_CDC, 16);
660 			SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
661 
662 			/* LCAM and TXP commands can't be used simultaneously */
663 			spin_lock_irqsave(&lp->lock, flags);
664 			sonic_quiesce(dev, SONIC_CR_TXP);
665 			SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
666 			sonic_quiesce(dev, SONIC_CR_LCAM);
667 			spin_unlock_irqrestore(&lp->lock, flags);
668 		}
669 	}
670 
671 	netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
672 
673 	SONIC_WRITE(SONIC_RCR, rcr);
674 }
675 
676 
677 /*
678  * Initialize the SONIC ethernet controller.
679  */
sonic_init(struct net_device * dev)680 static int sonic_init(struct net_device *dev)
681 {
682 	struct sonic_local *lp = netdev_priv(dev);
683 	int i;
684 
685 	/*
686 	 * put the Sonic into software-reset mode and
687 	 * disable all interrupts
688 	 */
689 	SONIC_WRITE(SONIC_IMR, 0);
690 	SONIC_WRITE(SONIC_ISR, 0x7fff);
691 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
692 
693 	/* While in reset mode, clear CAM Enable register */
694 	SONIC_WRITE(SONIC_CE, 0);
695 
696 	/*
697 	 * clear software reset flag, disable receiver, clear and
698 	 * enable interrupts, then completely initialize the SONIC
699 	 */
700 	SONIC_WRITE(SONIC_CMD, 0);
701 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
702 	sonic_quiesce(dev, SONIC_CR_ALL);
703 
704 	/*
705 	 * initialize the receive resource area
706 	 */
707 	netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
708 		  __func__);
709 
710 	for (i = 0; i < SONIC_NUM_RRS; i++) {
711 		u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
712 		u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
713 		sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
714 		sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
715 		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
716 		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
717 	}
718 
719 	/* initialize all RRA registers */
720 	SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
721 	SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
722 	SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
723 	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
724 	SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
725 	SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
726 
727 	/* load the resource pointers */
728 	netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
729 
730 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
731 	sonic_quiesce(dev, SONIC_CR_RRRA);
732 
733 	/*
734 	 * Initialize the receive descriptors so that they
735 	 * become a circular linked list, ie. let the last
736 	 * descriptor point to the first again.
737 	 */
738 	netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
739 		  __func__);
740 
741 	for (i=0; i<SONIC_NUM_RDS; i++) {
742 		sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
743 		sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
744 		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
745 		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
746 		sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
747 		sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
748 		sonic_rda_put(dev, i, SONIC_RD_LINK,
749 			lp->rda_laddr +
750 			((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
751 	}
752 	/* fix last descriptor */
753 	sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
754 		(lp->rda_laddr & 0xffff) | SONIC_EOL);
755 	lp->eol_rx = SONIC_NUM_RDS - 1;
756 	lp->cur_rx = 0;
757 	SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
758 	SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
759 
760 	/*
761 	 * initialize transmit descriptors
762 	 */
763 	netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
764 		  __func__);
765 
766 	for (i = 0; i < SONIC_NUM_TDS; i++) {
767 		sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
768 		sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
769 		sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
770 		sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
771 		sonic_tda_put(dev, i, SONIC_TD_LINK,
772 			(lp->tda_laddr & 0xffff) +
773 			(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
774 		lp->tx_skb[i] = NULL;
775 	}
776 	/* fix last descriptor */
777 	sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
778 		(lp->tda_laddr & 0xffff));
779 
780 	SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
781 	SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
782 	lp->cur_tx = lp->next_tx = 0;
783 	lp->eol_tx = SONIC_NUM_TDS - 1;
784 
785 	/*
786 	 * put our own address to CAM desc[0]
787 	 */
788 	sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
789 	sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
790 	sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
791 	sonic_set_cam_enable(dev, 1);
792 
793 	for (i = 0; i < 16; i++)
794 		sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
795 
796 	/*
797 	 * initialize CAM registers
798 	 */
799 	SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
800 	SONIC_WRITE(SONIC_CDC, 16);
801 
802 	/*
803 	 * load the CAM
804 	 */
805 	SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
806 	sonic_quiesce(dev, SONIC_CR_LCAM);
807 
808 	/*
809 	 * enable receiver, disable loopback
810 	 * and enable all interrupts
811 	 */
812 	SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
813 	SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
814 	SONIC_WRITE(SONIC_ISR, 0x7fff);
815 	SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
816 	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
817 
818 	netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
819 		  SONIC_READ(SONIC_CMD));
820 
821 	return 0;
822 }
823 
824 MODULE_LICENSE("GPL");
825