1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55
56 struct qed_pi_info {
57 qed_int_comp_cb_t comp_cb;
58 void *cookie;
59 };
60
61 struct qed_sb_sp_info {
62 struct qed_sb_info sb_info;
63
64 /* per protocol index data */
65 struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67
68 enum qed_attention_type {
69 QED_ATTN_TYPE_ATTN,
70 QED_ATTN_TYPE_PARITY,
71 };
72
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
76 struct aeu_invert_reg_bit {
77 char bit_name[30];
78
79 #define ATTENTION_PARITY (1 << 0)
80
81 #define ATTENTION_LENGTH_MASK (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT (4)
83 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
84 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
88 ATTENTION_PARITY)
89
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT (12)
93
94 #define ATTENTION_BB_MASK (0x00700000)
95 #define ATTENTION_BB_SHIFT (20)
96 #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT BIT(23)
98
99 unsigned int flags;
100
101 /* Callback to call if attention will be triggered */
102 int (*cb)(struct qed_hwfn *p_hwfn);
103
104 enum block_id block_index;
105 };
106
107 struct aeu_invert_reg {
108 struct aeu_invert_reg_bit bits[32];
109 };
110
111 #define MAX_ATTN_GRPS (8)
112 #define NUM_ATTN_REGS (9)
113
114 /* Specific HW attention callbacks */
qed_mcp_attn_cb(struct qed_hwfn * p_hwfn)115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119 /* This might occur on certain instances; Log it once then mask it */
120 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 tmp);
122 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 0xffffffff);
124
125 return 0;
126 }
127
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
qed_pswhst_attn_cb(struct qed_hwfn * p_hwfn)141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 u32 addr, data, length;
148
149 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 PSWHST_REG_INCORRECT_ACCESS_DATA);
153 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156 DP_INFO(p_hwfn->cdev,
157 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 addr, length,
159 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 (u8) GET_FIELD(data,
162 ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 (u8) GET_FIELD(data,
164 ATTENTION_INCORRECT_ACCESS_CLIENT),
165 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 (u8) GET_FIELD(data,
167 ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 data);
169 }
170
171 return 0;
172 }
173
174 #define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177 #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK (0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT (24)
180 #define QED_GRC_ATTENTION_PF_MASK (0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT (0)
182 #define QED_GRC_ATTENTION_VF_MASK (0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT (4)
184 #define QED_GRC_ATTENTION_PRIV_MASK (0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT (14)
186 #define QED_GRC_ATTENTION_PRIV_VF (0)
attn_master_to_str(u8 master)187 static const char *attn_master_to_str(u8 master)
188 {
189 switch (master) {
190 case 1: return "PXP";
191 case 2: return "MCP";
192 case 3: return "MSDM";
193 case 4: return "PSDM";
194 case 5: return "YSDM";
195 case 6: return "USDM";
196 case 7: return "TSDM";
197 case 8: return "XSDM";
198 case 9: return "DBU";
199 case 10: return "DMAE";
200 default:
201 return "Unknown";
202 }
203 }
204
qed_grc_attn_cb(struct qed_hwfn * p_hwfn)205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 u32 tmp, tmp2;
208
209 /* We've already cleared the timeout interrupt register, so we learn
210 * of interrupts via the validity register
211 */
212 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 goto out;
216
217 /* Read the GRC timeout information */
218 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223 DP_INFO(p_hwfn->cdev,
224 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 tmp2, tmp,
226 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234 out:
235 /* Regardles of anything else, clean the validity bit */
236 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 return 0;
239 }
240
241 #define PGLUE_ATTENTION_VALID (1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID (1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
255 #define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID (1 << 23)
qed_pglub_rbc_attn_cb(struct qed_hwfn * p_hwfn)258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260 u32 tmp;
261
262 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263 PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264 if (tmp & PGLUE_ATTENTION_VALID) {
265 u32 addr_lo, addr_hi, details;
266
267 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 PGLUE_B_REG_TX_ERR_WR_DETAILS);
273
274 DP_INFO(p_hwfn,
275 "Illegal write by chip to [%08x:%08x] blocked.\n"
276 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278 addr_hi, addr_lo, details,
279 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281 GET_FIELD(details,
282 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283 tmp,
284 GET_FIELD(tmp,
285 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286 GET_FIELD(tmp,
287 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288 GET_FIELD(tmp,
289 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290 }
291
292 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293 PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 u32 addr_lo, addr_hi, details;
296
297 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304 DP_INFO(p_hwfn,
305 "Illegal read by chip from [%08x:%08x] blocked.\n"
306 " Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 " Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 addr_hi, addr_lo, details,
309 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 GET_FIELD(details,
312 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 tmp,
314 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315 : 0,
316 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317 GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318 : 0);
319 }
320
321 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322 PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 DP_INFO(p_hwfn, "ICPL error - %08x\n", tmp);
325
326 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328 if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329 u32 addr_hi, addr_lo;
330
331 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335
336 DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337 tmp, addr_hi, addr_lo);
338 }
339
340 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342 if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343 u32 addr_hi, addr_lo, details;
344
345 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351
352 DP_INFO(p_hwfn,
353 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354 details, tmp, addr_hi, addr_lo);
355 }
356
357 /* Clear the indications */
358 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359 PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360
361 return 0;
362 }
363
364 #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
qed_dorq_attn_cb(struct qed_hwfn * p_hwfn)368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370 u32 reason;
371
372 reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373 QED_DORQ_ATTENTION_REASON_MASK;
374 if (reason) {
375 u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 DORQ_REG_DB_DROP_DETAILS);
377
378 DP_INFO(p_hwfn->cdev,
379 "DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380 qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382 (u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384 reason);
385 }
386
387 return -EINVAL;
388 }
389
390 /* Instead of major changes to the data-structure, we have a some 'special'
391 * identifiers for sources that changed meaning between adapters.
392 */
393 enum aeu_invert_reg_special_type {
394 AEU_INVERT_REG_SPECIAL_CNIG_0,
395 AEU_INVERT_REG_SPECIAL_CNIG_1,
396 AEU_INVERT_REG_SPECIAL_CNIG_2,
397 AEU_INVERT_REG_SPECIAL_CNIG_3,
398 AEU_INVERT_REG_SPECIAL_MAX,
399 };
400
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411 {
412 { /* After Invert 1 */
413 {"GPIO0 function%d",
414 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415 }
416 },
417
418 {
419 { /* After Invert 2 */
420 {"PGLUE config_space", ATTENTION_SINGLE,
421 NULL, MAX_BLOCK_ID},
422 {"PGLUE misc_flr", ATTENTION_SINGLE,
423 NULL, MAX_BLOCK_ID},
424 {"PGLUE B RBC", ATTENTION_PAR_INT,
425 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426 {"PGLUE misc_mctp", ATTENTION_SINGLE,
427 NULL, MAX_BLOCK_ID},
428 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
430 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432 (1 << ATTENTION_OFFSET_SHIFT),
433 NULL, MAX_BLOCK_ID},
434 {"PCIE glue/PXP VPD %d",
435 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436 }
437 },
438
439 {
440 { /* After Invert 3 */
441 {"General Attention %d",
442 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443 }
444 },
445
446 {
447 { /* After Invert 4 */
448 {"General Attention 32", ATTENTION_SINGLE,
449 NULL, MAX_BLOCK_ID},
450 {"General Attention %d",
451 (2 << ATTENTION_LENGTH_SHIFT) |
452 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453 {"General Attention 35", ATTENTION_SINGLE,
454 NULL, MAX_BLOCK_ID},
455 {"NWS Parity",
456 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458 NULL, BLOCK_NWS},
459 {"NWS Interrupt",
460 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462 NULL, BLOCK_NWS},
463 {"NWM Parity",
464 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466 NULL, BLOCK_NWM},
467 {"NWM Interrupt",
468 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470 NULL, BLOCK_NWM},
471 {"MCP CPU", ATTENTION_SINGLE,
472 qed_mcp_attn_cb, MAX_BLOCK_ID},
473 {"MCP Watchdog timer", ATTENTION_SINGLE,
474 NULL, MAX_BLOCK_ID},
475 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476 {"AVS stop status ready", ATTENTION_SINGLE,
477 NULL, MAX_BLOCK_ID},
478 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479 {"MSTAT per-path", ATTENTION_PAR_INT,
480 NULL, MAX_BLOCK_ID},
481 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482 NULL, MAX_BLOCK_ID},
483 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488 }
489 },
490
491 {
492 { /* After Invert 5 */
493 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509 }
510 },
511
512 {
513 { /* After Invert 6 */
514 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527 {"DORQ", ATTENTION_PAR_INT,
528 qed_dorq_attn_cb, BLOCK_DORQ},
529 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531 }
532 },
533
534 {
535 { /* After Invert 7 */
536 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553 }
554 },
555
556 {
557 { /* After Invert 8 */
558 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559 NULL, BLOCK_PSWRQ2},
560 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561 {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562 NULL, BLOCK_PSWWR2},
563 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564 {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565 NULL, BLOCK_PSWRD2},
566 {"PSWHST", ATTENTION_PAR_INT,
567 qed_pswhst_attn_cb, BLOCK_PSWHST},
568 {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569 NULL, BLOCK_PSWHST2},
570 {"GRC", ATTENTION_PAR_INT,
571 qed_grc_attn_cb, BLOCK_GRC},
572 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582 NULL, BLOCK_PGLCS},
583 {"PERST_B assertion", ATTENTION_SINGLE,
584 NULL, MAX_BLOCK_ID},
585 {"PERST_B deassertion", ATTENTION_SINGLE,
586 NULL, MAX_BLOCK_ID},
587 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588 NULL, MAX_BLOCK_ID},
589 }
590 },
591
592 {
593 { /* After Invert 9 */
594 {"MCP Latched memory", ATTENTION_PAR,
595 NULL, MAX_BLOCK_ID},
596 {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597 NULL, MAX_BLOCK_ID},
598 {"MCP Latched ump_tx", ATTENTION_PAR,
599 NULL, MAX_BLOCK_ID},
600 {"MCP Latched scratchpad", ATTENTION_PAR,
601 NULL, MAX_BLOCK_ID},
602 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603 NULL, MAX_BLOCK_ID},
604 }
605 },
606 };
607
608 static struct aeu_invert_reg_bit *
qed_int_aeu_translate(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610 struct aeu_invert_reg_bit *p_bit)
611 {
612 if (!QED_IS_BB(p_hwfn->cdev))
613 return p_bit;
614
615 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616 return p_bit;
617
618 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619 ATTENTION_BB_SHIFT];
620 }
621
qed_int_is_parity_flag(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_bit)622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623 struct aeu_invert_reg_bit *p_bit)
624 {
625 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626 ATTENTION_PARITY);
627 }
628
629 #define ATTN_STATE_BITS (0xfff)
630 #define ATTN_BITS_MASKABLE (0x3ff)
631 struct qed_sb_attn_info {
632 /* Virtual & Physical address of the SB */
633 struct atten_status_block *sb_attn;
634 dma_addr_t sb_phys;
635
636 /* Last seen running index */
637 u16 index;
638
639 /* A mask of the AEU bits resulting in a parity error */
640 u32 parity_mask[NUM_ATTN_REGS];
641
642 /* A pointer to the attention description structure */
643 struct aeu_invert_reg *p_aeu_desc;
644
645 /* Previously asserted attentions, which are still unasserted */
646 u16 known_attn;
647
648 /* Cleanup address for the link's general hw attention */
649 u32 mfw_attn_addr;
650 };
651
qed_attn_update_idx(struct qed_hwfn * p_hwfn,struct qed_sb_attn_info * p_sb_desc)652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653 struct qed_sb_attn_info *p_sb_desc)
654 {
655 u16 rc = 0, index;
656
657 /* Make certain HW write took affect */
658 mmiowb();
659
660 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661 if (p_sb_desc->index != index) {
662 p_sb_desc->index = index;
663 rc = QED_SB_ATT_IDX;
664 }
665
666 /* Make certain we got a consistent view with HW */
667 mmiowb();
668
669 return rc;
670 }
671
672 /**
673 * @brief qed_int_assertion - handles asserted attention bits
674 *
675 * @param p_hwfn
676 * @param asserted_bits newly asserted bits
677 * @return int
678 */
qed_int_assertion(struct qed_hwfn * p_hwfn,u16 asserted_bits)679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682 u32 igu_mask;
683
684 /* Mask the source of the attention in the IGU */
685 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690
691 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692 "inner known ATTN state: 0x%04x --> 0x%04x\n",
693 sb_attn_sw->known_attn,
694 sb_attn_sw->known_attn | asserted_bits);
695 sb_attn_sw->known_attn |= asserted_bits;
696
697 /* Handle MCP events */
698 if (asserted_bits & 0x100) {
699 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700 /* Clean the MCP attention */
701 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702 sb_attn_sw->mfw_attn_addr, 0);
703 }
704
705 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706 GTT_BAR0_MAP_REG_IGU_CMD +
707 ((IGU_CMD_ATTN_BIT_SET_UPPER -
708 IGU_CMD_INT_ACK_BASE) << 3),
709 (u32)asserted_bits);
710
711 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712 asserted_bits);
713
714 return 0;
715 }
716
qed_int_attn_print(struct qed_hwfn * p_hwfn,enum block_id id,enum dbg_attn_type type,bool b_clear)717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718 enum block_id id,
719 enum dbg_attn_type type, bool b_clear)
720 {
721 struct dbg_attn_block_result attn_results;
722 enum dbg_status status;
723
724 memset(&attn_results, 0, sizeof(attn_results));
725
726 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727 b_clear, &attn_results);
728 if (status != DBG_STATUS_OK)
729 DP_NOTICE(p_hwfn,
730 "Failed to parse attention information [status: %s]\n",
731 qed_dbg_get_status_str(status));
732 else
733 qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735
736 /**
737 * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738 * cause of the attention
739 *
740 * @param p_hwfn
741 * @param p_aeu - descriptor of an AEU bit which caused the attention
742 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743 * this bit to this group.
744 * @param bit_index - index of this bit in the aeu_en_reg
745 *
746 * @return int
747 */
748 static int
qed_int_deassertion_aeu_bit(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,const char * p_bit_name,u32 bitmask)749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750 struct aeu_invert_reg_bit *p_aeu,
751 u32 aeu_en_reg,
752 const char *p_bit_name, u32 bitmask)
753 {
754 bool b_fatal = false;
755 int rc = -EINVAL;
756 u32 val;
757
758 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759 p_bit_name, bitmask);
760
761 /* Call callback before clearing the interrupt status */
762 if (p_aeu->cb) {
763 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764 p_bit_name);
765 rc = p_aeu->cb(p_hwfn);
766 }
767
768 if (rc)
769 b_fatal = true;
770
771 /* Print HW block interrupt registers */
772 if (p_aeu->block_index != MAX_BLOCK_ID)
773 qed_int_attn_print(p_hwfn, p_aeu->block_index,
774 ATTN_TYPE_INTERRUPT, !b_fatal);
775
776
777 /* If the attention is benign, no need to prevent it */
778 if (!rc)
779 goto out;
780
781 /* Prevent this Attention from being asserted in the future */
782 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785 p_bit_name);
786
787 out:
788 return rc;
789 }
790
791 /**
792 * @brief qed_int_deassertion_parity - handle a single parity AEU source
793 *
794 * @param p_hwfn
795 * @param p_aeu - descriptor of an AEU bit which caused the parity
796 * @param aeu_en_reg - address of the AEU enable register
797 * @param bit_index
798 */
qed_int_deassertion_parity(struct qed_hwfn * p_hwfn,struct aeu_invert_reg_bit * p_aeu,u32 aeu_en_reg,u8 bit_index)799 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800 struct aeu_invert_reg_bit *p_aeu,
801 u32 aeu_en_reg, u8 bit_index)
802 {
803 u32 block_id = p_aeu->block_index, mask, val;
804
805 DP_NOTICE(p_hwfn->cdev,
806 "%s parity attention is set [address 0x%08x, bit %d]\n",
807 p_aeu->bit_name, aeu_en_reg, bit_index);
808
809 if (block_id != MAX_BLOCK_ID) {
810 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
811
812 /* In BB, there's a single parity bit for several blocks */
813 if (block_id == BLOCK_BTB) {
814 qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815 ATTN_TYPE_PARITY, false);
816 qed_int_attn_print(p_hwfn, BLOCK_MCP,
817 ATTN_TYPE_PARITY, false);
818 }
819 }
820
821 /* Prevent this parity error from being re-asserted */
822 mask = ~BIT(bit_index);
823 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826 p_aeu->bit_name);
827 }
828
829 /**
830 * @brief - handles deassertion of previously asserted attentions.
831 *
832 * @param p_hwfn
833 * @param deasserted_bits - newly deasserted bits
834 * @return int
835 *
836 */
qed_int_deassertion(struct qed_hwfn * p_hwfn,u16 deasserted_bits)837 static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
838 u16 deasserted_bits)
839 {
840 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
842 u8 i, j, k, bit_idx;
843 int rc = 0;
844
845 /* Read the attention registers in the AEU */
846 for (i = 0; i < NUM_ATTN_REGS; i++) {
847 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848 MISC_REG_AEU_AFTER_INVERT_1_IGU +
849 i * 0x4);
850 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851 "Deasserted bits [%d]: %08x\n",
852 i, aeu_inv_arr[i]);
853 }
854
855 /* Find parity attentions first */
856 for (i = 0; i < NUM_ATTN_REGS; i++) {
857 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858 u32 parities;
859
860 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862
863 /* Skip register in which no parity bit is currently set */
864 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865 if (!parities)
866 continue;
867
868 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870
871 if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
872 !!(parities & BIT(bit_idx)))
873 qed_int_deassertion_parity(p_hwfn, p_bit,
874 aeu_en, bit_idx);
875
876 bit_idx += ATTENTION_LENGTH(p_bit->flags);
877 }
878 }
879
880 /* Find non-parity cause for attention and act */
881 for (k = 0; k < MAX_ATTN_GRPS; k++) {
882 struct aeu_invert_reg_bit *p_aeu;
883
884 /* Handle only groups whose attention is currently deasserted */
885 if (!(deasserted_bits & (1 << k)))
886 continue;
887
888 for (i = 0; i < NUM_ATTN_REGS; i++) {
889 u32 bits;
890
891 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892 i * sizeof(u32) +
893 k * sizeof(u32) * NUM_ATTN_REGS;
894
895 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896 bits = aeu_inv_arr[i] & en;
897
898 /* Skip if no bit from this group is currently set */
899 if (!bits)
900 continue;
901
902 /* Find all set bits from current register which belong
903 * to current group, making them responsible for the
904 * previous assertion.
905 */
906 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
907 long unsigned int bitmask;
908 u8 bit, bit_len;
909
910 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
911 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
912
913 bit = bit_idx;
914 bit_len = ATTENTION_LENGTH(p_aeu->flags);
915 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
916 /* Skip Parity */
917 bit++;
918 bit_len--;
919 }
920
921 bitmask = bits & (((1 << bit_len) - 1) << bit);
922 bitmask >>= bit;
923
924 if (bitmask) {
925 u32 flags = p_aeu->flags;
926 char bit_name[30];
927 u8 num;
928
929 num = (u8)find_first_bit(&bitmask,
930 bit_len);
931
932 /* Some bits represent more than a
933 * a single interrupt. Correctly print
934 * their name.
935 */
936 if (ATTENTION_LENGTH(flags) > 2 ||
937 ((flags & ATTENTION_PAR_INT) &&
938 ATTENTION_LENGTH(flags) > 1))
939 snprintf(bit_name, 30,
940 p_aeu->bit_name, num);
941 else
942 strlcpy(bit_name,
943 p_aeu->bit_name, 30);
944
945 /* We now need to pass bitmask in its
946 * correct position.
947 */
948 bitmask <<= bit;
949
950 /* Handle source of the attention */
951 qed_int_deassertion_aeu_bit(p_hwfn,
952 p_aeu,
953 aeu_en,
954 bit_name,
955 bitmask);
956 }
957
958 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959 }
960 }
961 }
962
963 /* Clear IGU indication for the deasserted bits */
964 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
965 GTT_BAR0_MAP_REG_IGU_CMD +
966 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967 IGU_CMD_INT_ACK_BASE) << 3),
968 ~((u32)deasserted_bits));
969
970 /* Unmask deasserted attentions in IGU */
971 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
972 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974
975 /* Clear deassertion from inner state */
976 sb_attn_sw->known_attn &= ~deasserted_bits;
977
978 return rc;
979 }
980
qed_int_attentions(struct qed_hwfn * p_hwfn)981 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982 {
983 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985 u32 attn_bits = 0, attn_acks = 0;
986 u16 asserted_bits, deasserted_bits;
987 __le16 index;
988 int rc = 0;
989
990 /* Read current attention bits/acks - safeguard against attentions
991 * by guaranting work on a synchronized timeframe
992 */
993 do {
994 index = p_sb_attn->sb_index;
995 /* finish reading index before the loop condition */
996 dma_rmb();
997 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
998 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
999 } while (index != p_sb_attn->sb_index);
1000 p_sb_attn->sb_index = index;
1001
1002 /* Attention / Deassertion are meaningful (and in correct state)
1003 * only when they differ and consistent with known state - deassertion
1004 * when previous attention & current ack, and assertion when current
1005 * attention with no previous attention
1006 */
1007 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1008 ~p_sb_attn_sw->known_attn;
1009 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1010 p_sb_attn_sw->known_attn;
1011
1012 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1013 DP_INFO(p_hwfn,
1014 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1015 index, attn_bits, attn_acks, asserted_bits,
1016 deasserted_bits, p_sb_attn_sw->known_attn);
1017 } else if (asserted_bits == 0x100) {
1018 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1019 "MFW indication via attention\n");
1020 } else {
1021 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1022 "MFW indication [deassertion]\n");
1023 }
1024
1025 if (asserted_bits) {
1026 rc = qed_int_assertion(p_hwfn, asserted_bits);
1027 if (rc)
1028 return rc;
1029 }
1030
1031 if (deasserted_bits)
1032 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1033
1034 return rc;
1035 }
1036
qed_sb_ack_attn(struct qed_hwfn * p_hwfn,void __iomem * igu_addr,u32 ack_cons)1037 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1038 void __iomem *igu_addr, u32 ack_cons)
1039 {
1040 struct igu_prod_cons_update igu_ack = { 0 };
1041
1042 igu_ack.sb_id_and_flags =
1043 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1044 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1045 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1046 (IGU_SEG_ACCESS_ATTN <<
1047 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1048
1049 DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1050
1051 /* Both segments (interrupts & acks) are written to same place address;
1052 * Need to guarantee all commands will be received (in-order) by HW.
1053 */
1054 mmiowb();
1055 barrier();
1056 }
1057
qed_int_sp_dpc(unsigned long hwfn_cookie)1058 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1059 {
1060 struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1061 struct qed_pi_info *pi_info = NULL;
1062 struct qed_sb_attn_info *sb_attn;
1063 struct qed_sb_info *sb_info;
1064 int arr_size;
1065 u16 rc = 0;
1066
1067 if (!p_hwfn->p_sp_sb) {
1068 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1069 return;
1070 }
1071
1072 sb_info = &p_hwfn->p_sp_sb->sb_info;
1073 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1074 if (!sb_info) {
1075 DP_ERR(p_hwfn->cdev,
1076 "Status block is NULL - cannot ack interrupts\n");
1077 return;
1078 }
1079
1080 if (!p_hwfn->p_sb_attn) {
1081 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1082 return;
1083 }
1084 sb_attn = p_hwfn->p_sb_attn;
1085
1086 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1087 p_hwfn, p_hwfn->my_id);
1088
1089 /* Disable ack for def status block. Required both for msix +
1090 * inta in non-mask mode, in inta does no harm.
1091 */
1092 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1093
1094 /* Gather Interrupts/Attentions information */
1095 if (!sb_info->sb_virt) {
1096 DP_ERR(p_hwfn->cdev,
1097 "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1098 } else {
1099 u32 tmp_index = sb_info->sb_ack;
1100
1101 rc = qed_sb_update_sb_idx(sb_info);
1102 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1103 "Interrupt indices: 0x%08x --> 0x%08x\n",
1104 tmp_index, sb_info->sb_ack);
1105 }
1106
1107 if (!sb_attn || !sb_attn->sb_attn) {
1108 DP_ERR(p_hwfn->cdev,
1109 "Attentions Status block is NULL - cannot check for new attentions!\n");
1110 } else {
1111 u16 tmp_index = sb_attn->index;
1112
1113 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1114 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1115 "Attention indices: 0x%08x --> 0x%08x\n",
1116 tmp_index, sb_attn->index);
1117 }
1118
1119 /* Check if we expect interrupts at this time. if not just ack them */
1120 if (!(rc & QED_SB_EVENT_MASK)) {
1121 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1122 return;
1123 }
1124
1125 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1126 if (!p_hwfn->p_dpc_ptt) {
1127 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1128 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1129 return;
1130 }
1131
1132 if (rc & QED_SB_ATT_IDX)
1133 qed_int_attentions(p_hwfn);
1134
1135 if (rc & QED_SB_IDX) {
1136 int pi;
1137
1138 /* Look for a free index */
1139 for (pi = 0; pi < arr_size; pi++) {
1140 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1141 if (pi_info->comp_cb)
1142 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1143 }
1144 }
1145
1146 if (sb_attn && (rc & QED_SB_ATT_IDX))
1147 /* This should be done before the interrupts are enabled,
1148 * since otherwise a new attention will be generated.
1149 */
1150 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1151
1152 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1153 }
1154
qed_int_sb_attn_free(struct qed_hwfn * p_hwfn)1155 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1156 {
1157 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1158
1159 if (!p_sb)
1160 return;
1161
1162 if (p_sb->sb_attn)
1163 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1164 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1165 p_sb->sb_attn, p_sb->sb_phys);
1166 kfree(p_sb);
1167 p_hwfn->p_sb_attn = NULL;
1168 }
1169
qed_int_sb_attn_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1170 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1171 struct qed_ptt *p_ptt)
1172 {
1173 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1174
1175 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1176
1177 sb_info->index = 0;
1178 sb_info->known_attn = 0;
1179
1180 /* Configure Attention Status Block in IGU */
1181 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1182 lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1183 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1184 upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1185 }
1186
qed_int_sb_attn_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * sb_virt_addr,dma_addr_t sb_phy_addr)1187 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1188 struct qed_ptt *p_ptt,
1189 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1190 {
1191 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1192 int i, j, k;
1193
1194 sb_info->sb_attn = sb_virt_addr;
1195 sb_info->sb_phys = sb_phy_addr;
1196
1197 /* Set the pointer to the AEU descriptors */
1198 sb_info->p_aeu_desc = aeu_descs;
1199
1200 /* Calculate Parity Masks */
1201 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1202 for (i = 0; i < NUM_ATTN_REGS; i++) {
1203 /* j is array index, k is bit index */
1204 for (j = 0, k = 0; k < 32; j++) {
1205 struct aeu_invert_reg_bit *p_aeu;
1206
1207 p_aeu = &aeu_descs[i].bits[j];
1208 if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1209 sb_info->parity_mask[i] |= 1 << k;
1210
1211 k += ATTENTION_LENGTH(p_aeu->flags);
1212 }
1213 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1214 "Attn Mask [Reg %d]: 0x%08x\n",
1215 i, sb_info->parity_mask[i]);
1216 }
1217
1218 /* Set the address of cleanup for the mcp attention */
1219 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1220 MISC_REG_AEU_GENERAL_ATTN_0;
1221
1222 qed_int_sb_attn_setup(p_hwfn, p_ptt);
1223 }
1224
qed_int_sb_attn_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1225 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1226 struct qed_ptt *p_ptt)
1227 {
1228 struct qed_dev *cdev = p_hwfn->cdev;
1229 struct qed_sb_attn_info *p_sb;
1230 dma_addr_t p_phys = 0;
1231 void *p_virt;
1232
1233 /* SB struct */
1234 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1235 if (!p_sb)
1236 return -ENOMEM;
1237
1238 /* SB ring */
1239 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1240 SB_ATTN_ALIGNED_SIZE(p_hwfn),
1241 &p_phys, GFP_KERNEL);
1242
1243 if (!p_virt) {
1244 kfree(p_sb);
1245 return -ENOMEM;
1246 }
1247
1248 /* Attention setup */
1249 p_hwfn->p_sb_attn = p_sb;
1250 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1251
1252 return 0;
1253 }
1254
1255 /* coalescing timeout = timeset << (timer_res + 1) */
1256 #define QED_CAU_DEF_RX_USECS 24
1257 #define QED_CAU_DEF_TX_USECS 48
1258
qed_init_cau_sb_entry(struct qed_hwfn * p_hwfn,struct cau_sb_entry * p_sb_entry,u8 pf_id,u16 vf_number,u8 vf_valid)1259 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1260 struct cau_sb_entry *p_sb_entry,
1261 u8 pf_id, u16 vf_number, u8 vf_valid)
1262 {
1263 struct qed_dev *cdev = p_hwfn->cdev;
1264 u32 cau_state;
1265 u8 timer_res;
1266
1267 memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1268
1269 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1270 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1271 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1272 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1273 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1274
1275 cau_state = CAU_HC_DISABLE_STATE;
1276
1277 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1278 cau_state = CAU_HC_ENABLE_STATE;
1279 if (!cdev->rx_coalesce_usecs)
1280 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1281 if (!cdev->tx_coalesce_usecs)
1282 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1283 }
1284
1285 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1286 if (cdev->rx_coalesce_usecs <= 0x7F)
1287 timer_res = 0;
1288 else if (cdev->rx_coalesce_usecs <= 0xFF)
1289 timer_res = 1;
1290 else
1291 timer_res = 2;
1292 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1293
1294 if (cdev->tx_coalesce_usecs <= 0x7F)
1295 timer_res = 0;
1296 else if (cdev->tx_coalesce_usecs <= 0xFF)
1297 timer_res = 1;
1298 else
1299 timer_res = 2;
1300 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1301
1302 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1303 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1304 }
1305
qed_int_cau_conf_pi(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u32 pi_index,enum qed_coalescing_fsm coalescing_fsm,u8 timeset)1306 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1307 struct qed_ptt *p_ptt,
1308 u16 igu_sb_id,
1309 u32 pi_index,
1310 enum qed_coalescing_fsm coalescing_fsm,
1311 u8 timeset)
1312 {
1313 struct cau_pi_entry pi_entry;
1314 u32 sb_offset, pi_offset;
1315
1316 if (IS_VF(p_hwfn->cdev))
1317 return;
1318
1319 sb_offset = igu_sb_id * PIS_PER_SB_E4;
1320 memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1321
1322 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1323 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1324 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1325 else
1326 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1327
1328 pi_offset = sb_offset + pi_index;
1329 if (p_hwfn->hw_init_done) {
1330 qed_wr(p_hwfn, p_ptt,
1331 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1332 *((u32 *)&(pi_entry)));
1333 } else {
1334 STORE_RT_REG(p_hwfn,
1335 CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1336 *((u32 *)&(pi_entry)));
1337 }
1338 }
1339
qed_int_cau_conf_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t sb_phys,u16 igu_sb_id,u16 vf_number,u8 vf_valid)1340 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1341 struct qed_ptt *p_ptt,
1342 dma_addr_t sb_phys,
1343 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1344 {
1345 struct cau_sb_entry sb_entry;
1346
1347 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1348 vf_number, vf_valid);
1349
1350 if (p_hwfn->hw_init_done) {
1351 /* Wide-bus, initialize via DMAE */
1352 u64 phys_addr = (u64)sb_phys;
1353
1354 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1355 CAU_REG_SB_ADDR_MEMORY +
1356 igu_sb_id * sizeof(u64), 2, 0);
1357 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1358 CAU_REG_SB_VAR_MEMORY +
1359 igu_sb_id * sizeof(u64), 2, 0);
1360 } else {
1361 /* Initialize Status Block Address */
1362 STORE_RT_REG_AGG(p_hwfn,
1363 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1364 igu_sb_id * 2,
1365 sb_phys);
1366
1367 STORE_RT_REG_AGG(p_hwfn,
1368 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1369 igu_sb_id * 2,
1370 sb_entry);
1371 }
1372
1373 /* Configure pi coalescing if set */
1374 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1375 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1376 u8 timeset, timer_res;
1377 u8 i;
1378
1379 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1380 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1381 timer_res = 0;
1382 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1383 timer_res = 1;
1384 else
1385 timer_res = 2;
1386 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1387 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1388 QED_COAL_RX_STATE_MACHINE, timeset);
1389
1390 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1391 timer_res = 0;
1392 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1393 timer_res = 1;
1394 else
1395 timer_res = 2;
1396 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1397 for (i = 0; i < num_tc; i++) {
1398 qed_int_cau_conf_pi(p_hwfn, p_ptt,
1399 igu_sb_id, TX_PI(i),
1400 QED_COAL_TX_STATE_MACHINE,
1401 timeset);
1402 }
1403 }
1404 }
1405
qed_int_sb_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info)1406 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1407 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1408 {
1409 /* zero status block and ack counter */
1410 sb_info->sb_ack = 0;
1411 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1412
1413 if (IS_PF(p_hwfn->cdev))
1414 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1415 sb_info->igu_sb_id, 0, 0);
1416 }
1417
qed_get_igu_free_sb(struct qed_hwfn * p_hwfn,bool b_is_pf)1418 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1419 {
1420 struct qed_igu_block *p_block;
1421 u16 igu_id;
1422
1423 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1424 igu_id++) {
1425 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1426
1427 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1428 !(p_block->status & QED_IGU_STATUS_FREE))
1429 continue;
1430
1431 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1432 return p_block;
1433 }
1434
1435 return NULL;
1436 }
1437
qed_get_pf_igu_sb_id(struct qed_hwfn * p_hwfn,u16 vector_id)1438 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1439 {
1440 struct qed_igu_block *p_block;
1441 u16 igu_id;
1442
1443 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1444 igu_id++) {
1445 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1446
1447 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1448 !p_block->is_pf ||
1449 p_block->vector_number != vector_id)
1450 continue;
1451
1452 return igu_id;
1453 }
1454
1455 return QED_SB_INVALID_IDX;
1456 }
1457
qed_get_igu_sb_id(struct qed_hwfn * p_hwfn,u16 sb_id)1458 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1459 {
1460 u16 igu_sb_id;
1461
1462 /* Assuming continuous set of IGU SBs dedicated for given PF */
1463 if (sb_id == QED_SP_SB_ID)
1464 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1465 else if (IS_PF(p_hwfn->cdev))
1466 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1467 else
1468 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1469
1470 if (sb_id == QED_SP_SB_ID)
1471 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1472 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1473 else
1474 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1475 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1476
1477 return igu_sb_id;
1478 }
1479
qed_int_sb_init(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,struct qed_sb_info * sb_info,void * sb_virt_addr,dma_addr_t sb_phy_addr,u16 sb_id)1480 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1481 struct qed_ptt *p_ptt,
1482 struct qed_sb_info *sb_info,
1483 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1484 {
1485 sb_info->sb_virt = sb_virt_addr;
1486 sb_info->sb_phys = sb_phy_addr;
1487
1488 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1489
1490 if (sb_id != QED_SP_SB_ID) {
1491 if (IS_PF(p_hwfn->cdev)) {
1492 struct qed_igu_info *p_info;
1493 struct qed_igu_block *p_block;
1494
1495 p_info = p_hwfn->hw_info.p_igu_info;
1496 p_block = &p_info->entry[sb_info->igu_sb_id];
1497
1498 p_block->sb_info = sb_info;
1499 p_block->status &= ~QED_IGU_STATUS_FREE;
1500 p_info->usage.free_cnt--;
1501 } else {
1502 qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1503 }
1504 }
1505
1506 sb_info->cdev = p_hwfn->cdev;
1507
1508 /* The igu address will hold the absolute address that needs to be
1509 * written to for a specific status block
1510 */
1511 if (IS_PF(p_hwfn->cdev)) {
1512 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1513 GTT_BAR0_MAP_REG_IGU_CMD +
1514 (sb_info->igu_sb_id << 3);
1515 } else {
1516 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1517 PXP_VF_BAR0_START_IGU +
1518 ((IGU_CMD_INT_ACK_BASE +
1519 sb_info->igu_sb_id) << 3);
1520 }
1521
1522 sb_info->flags |= QED_SB_INFO_INIT;
1523
1524 qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1525
1526 return 0;
1527 }
1528
qed_int_sb_release(struct qed_hwfn * p_hwfn,struct qed_sb_info * sb_info,u16 sb_id)1529 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1530 struct qed_sb_info *sb_info, u16 sb_id)
1531 {
1532 struct qed_igu_block *p_block;
1533 struct qed_igu_info *p_info;
1534
1535 if (!sb_info)
1536 return 0;
1537
1538 /* zero status block and ack counter */
1539 sb_info->sb_ack = 0;
1540 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1541
1542 if (IS_VF(p_hwfn->cdev)) {
1543 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1544 return 0;
1545 }
1546
1547 p_info = p_hwfn->hw_info.p_igu_info;
1548 p_block = &p_info->entry[sb_info->igu_sb_id];
1549
1550 /* Vector 0 is reserved to Default SB */
1551 if (!p_block->vector_number) {
1552 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1553 return -EINVAL;
1554 }
1555
1556 /* Lose reference to client's SB info, and fix counters */
1557 p_block->sb_info = NULL;
1558 p_block->status |= QED_IGU_STATUS_FREE;
1559 p_info->usage.free_cnt++;
1560
1561 return 0;
1562 }
1563
qed_int_sp_sb_free(struct qed_hwfn * p_hwfn)1564 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1565 {
1566 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1567
1568 if (!p_sb)
1569 return;
1570
1571 if (p_sb->sb_info.sb_virt)
1572 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1573 SB_ALIGNED_SIZE(p_hwfn),
1574 p_sb->sb_info.sb_virt,
1575 p_sb->sb_info.sb_phys);
1576 kfree(p_sb);
1577 p_hwfn->p_sp_sb = NULL;
1578 }
1579
qed_int_sp_sb_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1580 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1581 {
1582 struct qed_sb_sp_info *p_sb;
1583 dma_addr_t p_phys = 0;
1584 void *p_virt;
1585
1586 /* SB struct */
1587 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1588 if (!p_sb)
1589 return -ENOMEM;
1590
1591 /* SB ring */
1592 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1593 SB_ALIGNED_SIZE(p_hwfn),
1594 &p_phys, GFP_KERNEL);
1595 if (!p_virt) {
1596 kfree(p_sb);
1597 return -ENOMEM;
1598 }
1599
1600 /* Status Block setup */
1601 p_hwfn->p_sp_sb = p_sb;
1602 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1603 p_phys, QED_SP_SB_ID);
1604
1605 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1606
1607 return 0;
1608 }
1609
qed_int_register_cb(struct qed_hwfn * p_hwfn,qed_int_comp_cb_t comp_cb,void * cookie,u8 * sb_idx,__le16 ** p_fw_cons)1610 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1611 qed_int_comp_cb_t comp_cb,
1612 void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1613 {
1614 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1615 int rc = -ENOMEM;
1616 u8 pi;
1617
1618 /* Look for a free index */
1619 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1620 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1621 continue;
1622
1623 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1624 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1625 *sb_idx = pi;
1626 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1627 rc = 0;
1628 break;
1629 }
1630
1631 return rc;
1632 }
1633
qed_int_unregister_cb(struct qed_hwfn * p_hwfn,u8 pi)1634 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1635 {
1636 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1637
1638 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1639 return -ENOMEM;
1640
1641 p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1642 p_sp_sb->pi_info_arr[pi].cookie = NULL;
1643
1644 return 0;
1645 }
1646
qed_int_get_sp_sb_id(struct qed_hwfn * p_hwfn)1647 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1648 {
1649 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1650 }
1651
qed_int_igu_enable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1652 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1653 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1654 {
1655 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1656
1657 p_hwfn->cdev->int_mode = int_mode;
1658 switch (p_hwfn->cdev->int_mode) {
1659 case QED_INT_MODE_INTA:
1660 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1661 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1662 break;
1663
1664 case QED_INT_MODE_MSI:
1665 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1666 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1667 break;
1668
1669 case QED_INT_MODE_MSIX:
1670 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1671 break;
1672 case QED_INT_MODE_POLL:
1673 break;
1674 }
1675
1676 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1677 }
1678
qed_int_igu_enable_attn(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1679 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1680 struct qed_ptt *p_ptt)
1681 {
1682
1683 /* Configure AEU signal change to produce attentions */
1684 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1685 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1686 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1687 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1688
1689 /* Flush the writes to IGU */
1690 mmiowb();
1691
1692 /* Unmask AEU signals toward IGU */
1693 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1694 }
1695
1696 int
qed_int_igu_enable(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_int_mode int_mode)1697 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1698 struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1699 {
1700 int rc = 0;
1701
1702 qed_int_igu_enable_attn(p_hwfn, p_ptt);
1703
1704 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1705 rc = qed_slowpath_irq_req(p_hwfn);
1706 if (rc) {
1707 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1708 return -EINVAL;
1709 }
1710 p_hwfn->b_int_requested = true;
1711 }
1712 /* Enable interrupt Generation */
1713 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1714 p_hwfn->b_int_enabled = 1;
1715
1716 return rc;
1717 }
1718
qed_int_igu_disable_int(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1719 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1720 {
1721 p_hwfn->b_int_enabled = 0;
1722
1723 if (IS_VF(p_hwfn->cdev))
1724 return;
1725
1726 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1727 }
1728
1729 #define IGU_CLEANUP_SLEEP_LENGTH (1000)
qed_int_igu_cleanup_sb(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,bool cleanup_set,u16 opaque_fid)1730 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1731 struct qed_ptt *p_ptt,
1732 u16 igu_sb_id,
1733 bool cleanup_set, u16 opaque_fid)
1734 {
1735 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1736 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1737 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1738
1739 /* Set the data field */
1740 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1741 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1742 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1743
1744 /* Set the control register */
1745 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1746 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1747 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1748
1749 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1750
1751 barrier();
1752
1753 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1754
1755 /* Flush the write to IGU */
1756 mmiowb();
1757
1758 /* calculate where to read the status bit from */
1759 sb_bit = 1 << (igu_sb_id % 32);
1760 sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1761
1762 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1763
1764 /* Now wait for the command to complete */
1765 do {
1766 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1767
1768 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1769 break;
1770
1771 usleep_range(5000, 10000);
1772 } while (--sleep_cnt);
1773
1774 if (!sleep_cnt)
1775 DP_NOTICE(p_hwfn,
1776 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1777 val, igu_sb_id);
1778 }
1779
qed_int_igu_init_pure_rt_single(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id,u16 opaque,bool b_set)1780 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1781 struct qed_ptt *p_ptt,
1782 u16 igu_sb_id, u16 opaque, bool b_set)
1783 {
1784 struct qed_igu_block *p_block;
1785 int pi, i;
1786
1787 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1788 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1789 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1790 igu_sb_id,
1791 p_block->function_id,
1792 p_block->is_pf, p_block->vector_number);
1793
1794 /* Set */
1795 if (b_set)
1796 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1797
1798 /* Clear */
1799 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1800
1801 /* Wait for the IGU SB to cleanup */
1802 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1803 u32 val;
1804
1805 val = qed_rd(p_hwfn, p_ptt,
1806 IGU_REG_WRITE_DONE_PENDING +
1807 ((igu_sb_id / 32) * 4));
1808 if (val & BIT((igu_sb_id % 32)))
1809 usleep_range(10, 20);
1810 else
1811 break;
1812 }
1813 if (i == IGU_CLEANUP_SLEEP_LENGTH)
1814 DP_NOTICE(p_hwfn,
1815 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1816 igu_sb_id);
1817
1818 /* Clear the CAU for the SB */
1819 for (pi = 0; pi < 12; pi++)
1820 qed_wr(p_hwfn, p_ptt,
1821 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1822 }
1823
qed_int_igu_init_pure_rt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,bool b_set,bool b_slowpath)1824 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1825 struct qed_ptt *p_ptt,
1826 bool b_set, bool b_slowpath)
1827 {
1828 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1829 struct qed_igu_block *p_block;
1830 u16 igu_sb_id = 0;
1831 u32 val = 0;
1832
1833 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1834 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1835 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1836 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1837
1838 for (igu_sb_id = 0;
1839 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1840 p_block = &p_info->entry[igu_sb_id];
1841
1842 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1843 !p_block->is_pf ||
1844 (p_block->status & QED_IGU_STATUS_DSB))
1845 continue;
1846
1847 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1848 p_hwfn->hw_info.opaque_fid,
1849 b_set);
1850 }
1851
1852 if (b_slowpath)
1853 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1854 p_info->igu_dsb_id,
1855 p_hwfn->hw_info.opaque_fid,
1856 b_set);
1857 }
1858
qed_int_igu_reset_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)1859 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1860 {
1861 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1862 struct qed_igu_block *p_block;
1863 int pf_sbs, vf_sbs;
1864 u16 igu_sb_id;
1865 u32 val, rval;
1866
1867 if (!RESC_NUM(p_hwfn, QED_SB)) {
1868 p_info->b_allow_pf_vf_change = false;
1869 } else {
1870 /* Use the numbers the MFW have provided -
1871 * don't forget MFW accounts for the default SB as well.
1872 */
1873 p_info->b_allow_pf_vf_change = true;
1874
1875 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
1876 DP_INFO(p_hwfn,
1877 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
1878 RESC_NUM(p_hwfn, QED_SB) - 1,
1879 p_info->usage.cnt);
1880 p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
1881 }
1882
1883 if (IS_PF_SRIOV(p_hwfn)) {
1884 u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
1885
1886 if (vfs != p_info->usage.iov_cnt)
1887 DP_VERBOSE(p_hwfn,
1888 NETIF_MSG_INTR,
1889 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
1890 p_info->usage.iov_cnt, vfs);
1891
1892 /* At this point we know how many SBs we have totally
1893 * in IGU + number of PF SBs. So we can validate that
1894 * we'd have sufficient for VF.
1895 */
1896 if (vfs > p_info->usage.free_cnt +
1897 p_info->usage.free_cnt_iov - p_info->usage.cnt) {
1898 DP_NOTICE(p_hwfn,
1899 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
1900 p_info->usage.free_cnt +
1901 p_info->usage.free_cnt_iov,
1902 p_info->usage.cnt, vfs);
1903 return -EINVAL;
1904 }
1905
1906 /* Currently cap the number of VFs SBs by the
1907 * number of VFs.
1908 */
1909 p_info->usage.iov_cnt = vfs;
1910 }
1911 }
1912
1913 /* Mark all SBs as free, now in the right PF/VFs division */
1914 p_info->usage.free_cnt = p_info->usage.cnt;
1915 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
1916 p_info->usage.orig = p_info->usage.cnt;
1917 p_info->usage.iov_orig = p_info->usage.iov_cnt;
1918
1919 /* We now proceed to re-configure the IGU cam to reflect the initial
1920 * configuration. We can start with the Default SB.
1921 */
1922 pf_sbs = p_info->usage.cnt;
1923 vf_sbs = p_info->usage.iov_cnt;
1924
1925 for (igu_sb_id = p_info->igu_dsb_id;
1926 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1927 p_block = &p_info->entry[igu_sb_id];
1928 val = 0;
1929
1930 if (!(p_block->status & QED_IGU_STATUS_VALID))
1931 continue;
1932
1933 if (p_block->status & QED_IGU_STATUS_DSB) {
1934 p_block->function_id = p_hwfn->rel_pf_id;
1935 p_block->is_pf = 1;
1936 p_block->vector_number = 0;
1937 p_block->status = QED_IGU_STATUS_VALID |
1938 QED_IGU_STATUS_PF |
1939 QED_IGU_STATUS_DSB;
1940 } else if (pf_sbs) {
1941 pf_sbs--;
1942 p_block->function_id = p_hwfn->rel_pf_id;
1943 p_block->is_pf = 1;
1944 p_block->vector_number = p_info->usage.cnt - pf_sbs;
1945 p_block->status = QED_IGU_STATUS_VALID |
1946 QED_IGU_STATUS_PF |
1947 QED_IGU_STATUS_FREE;
1948 } else if (vf_sbs) {
1949 p_block->function_id =
1950 p_hwfn->cdev->p_iov_info->first_vf_in_pf +
1951 p_info->usage.iov_cnt - vf_sbs;
1952 p_block->is_pf = 0;
1953 p_block->vector_number = 0;
1954 p_block->status = QED_IGU_STATUS_VALID |
1955 QED_IGU_STATUS_FREE;
1956 vf_sbs--;
1957 } else {
1958 p_block->function_id = 0;
1959 p_block->is_pf = 0;
1960 p_block->vector_number = 0;
1961 }
1962
1963 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
1964 p_block->function_id);
1965 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
1966 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
1967 p_block->vector_number);
1968
1969 /* VF entries would be enabled when VF is initializaed */
1970 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
1971
1972 rval = qed_rd(p_hwfn, p_ptt,
1973 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1974
1975 if (rval != val) {
1976 qed_wr(p_hwfn, p_ptt,
1977 IGU_REG_MAPPING_MEMORY +
1978 sizeof(u32) * igu_sb_id, val);
1979
1980 DP_VERBOSE(p_hwfn,
1981 NETIF_MSG_INTR,
1982 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
1983 igu_sb_id,
1984 p_block->function_id,
1985 p_block->is_pf,
1986 p_block->vector_number, rval, val);
1987 }
1988 }
1989
1990 return 0;
1991 }
1992
qed_int_igu_read_cam_block(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 igu_sb_id)1993 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1994 struct qed_ptt *p_ptt, u16 igu_sb_id)
1995 {
1996 u32 val = qed_rd(p_hwfn, p_ptt,
1997 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1998 struct qed_igu_block *p_block;
1999
2000 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2001
2002 /* Fill the block information */
2003 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2004 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2005 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2006 p_block->igu_sb_id = igu_sb_id;
2007 }
2008
qed_int_igu_read_cam(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2009 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2010 {
2011 struct qed_igu_info *p_igu_info;
2012 struct qed_igu_block *p_block;
2013 u32 min_vf = 0, max_vf = 0;
2014 u16 igu_sb_id;
2015
2016 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2017 if (!p_hwfn->hw_info.p_igu_info)
2018 return -ENOMEM;
2019
2020 p_igu_info = p_hwfn->hw_info.p_igu_info;
2021
2022 /* Distinguish between existent and non-existent default SB */
2023 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2024
2025 /* Find the range of VF ids whose SB belong to this PF */
2026 if (p_hwfn->cdev->p_iov_info) {
2027 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2028
2029 min_vf = p_iov->first_vf_in_pf;
2030 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
2031 }
2032
2033 for (igu_sb_id = 0;
2034 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2035 /* Read current entry; Notice it might not belong to this PF */
2036 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2037 p_block = &p_igu_info->entry[igu_sb_id];
2038
2039 if ((p_block->is_pf) &&
2040 (p_block->function_id == p_hwfn->rel_pf_id)) {
2041 p_block->status = QED_IGU_STATUS_PF |
2042 QED_IGU_STATUS_VALID |
2043 QED_IGU_STATUS_FREE;
2044
2045 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2046 p_igu_info->usage.cnt++;
2047 } else if (!(p_block->is_pf) &&
2048 (p_block->function_id >= min_vf) &&
2049 (p_block->function_id < max_vf)) {
2050 /* Available for VFs of this PF */
2051 p_block->status = QED_IGU_STATUS_VALID |
2052 QED_IGU_STATUS_FREE;
2053
2054 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2055 p_igu_info->usage.iov_cnt++;
2056 }
2057
2058 /* Mark the First entry belonging to the PF or its VFs
2059 * as the default SB [we'll reset IGU prior to first usage].
2060 */
2061 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2062 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2063 p_igu_info->igu_dsb_id = igu_sb_id;
2064 p_block->status |= QED_IGU_STATUS_DSB;
2065 }
2066
2067 /* limit number of prints by having each PF print only its
2068 * entries with the exception of PF0 which would print
2069 * everything.
2070 */
2071 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2072 (p_hwfn->abs_pf_id == 0)) {
2073 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2074 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2075 igu_sb_id, p_block->function_id,
2076 p_block->is_pf, p_block->vector_number);
2077 }
2078 }
2079
2080 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2081 DP_NOTICE(p_hwfn,
2082 "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2083 p_igu_info->igu_dsb_id);
2084 return -EINVAL;
2085 }
2086
2087 /* All non default SB are considered free at this point */
2088 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2089 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2090
2091 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2092 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2093 p_igu_info->igu_dsb_id,
2094 p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2095
2096 return 0;
2097 }
2098
2099 /**
2100 * @brief Initialize igu runtime registers
2101 *
2102 * @param p_hwfn
2103 */
qed_int_igu_init_rt(struct qed_hwfn * p_hwfn)2104 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2105 {
2106 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2107
2108 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2109 }
2110
qed_int_igu_read_sisr_reg(struct qed_hwfn * p_hwfn)2111 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2112 {
2113 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2114 IGU_CMD_INT_ACK_BASE;
2115 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2116 IGU_CMD_INT_ACK_BASE;
2117 u32 intr_status_hi = 0, intr_status_lo = 0;
2118 u64 intr_status = 0;
2119
2120 intr_status_lo = REG_RD(p_hwfn,
2121 GTT_BAR0_MAP_REG_IGU_CMD +
2122 lsb_igu_cmd_addr * 8);
2123 intr_status_hi = REG_RD(p_hwfn,
2124 GTT_BAR0_MAP_REG_IGU_CMD +
2125 msb_igu_cmd_addr * 8);
2126 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2127
2128 return intr_status;
2129 }
2130
qed_int_sp_dpc_setup(struct qed_hwfn * p_hwfn)2131 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2132 {
2133 tasklet_init(p_hwfn->sp_dpc,
2134 qed_int_sp_dpc, (unsigned long)p_hwfn);
2135 p_hwfn->b_sp_dpc_enabled = true;
2136 }
2137
qed_int_sp_dpc_alloc(struct qed_hwfn * p_hwfn)2138 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2139 {
2140 p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2141 if (!p_hwfn->sp_dpc)
2142 return -ENOMEM;
2143
2144 return 0;
2145 }
2146
qed_int_sp_dpc_free(struct qed_hwfn * p_hwfn)2147 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2148 {
2149 kfree(p_hwfn->sp_dpc);
2150 p_hwfn->sp_dpc = NULL;
2151 }
2152
qed_int_alloc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2153 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2154 {
2155 int rc = 0;
2156
2157 rc = qed_int_sp_dpc_alloc(p_hwfn);
2158 if (rc)
2159 return rc;
2160
2161 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2162 if (rc)
2163 return rc;
2164
2165 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2166
2167 return rc;
2168 }
2169
qed_int_free(struct qed_hwfn * p_hwfn)2170 void qed_int_free(struct qed_hwfn *p_hwfn)
2171 {
2172 qed_int_sp_sb_free(p_hwfn);
2173 qed_int_sb_attn_free(p_hwfn);
2174 qed_int_sp_dpc_free(p_hwfn);
2175 }
2176
qed_int_setup(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)2177 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2178 {
2179 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2180 qed_int_sb_attn_setup(p_hwfn, p_ptt);
2181 qed_int_sp_dpc_setup(p_hwfn);
2182 }
2183
qed_int_get_num_sbs(struct qed_hwfn * p_hwfn,struct qed_sb_cnt_info * p_sb_cnt_info)2184 void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
2185 struct qed_sb_cnt_info *p_sb_cnt_info)
2186 {
2187 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2188
2189 if (!info || !p_sb_cnt_info)
2190 return;
2191
2192 memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2193 }
2194
qed_int_disable_post_isr_release(struct qed_dev * cdev)2195 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2196 {
2197 int i;
2198
2199 for_each_hwfn(cdev, i)
2200 cdev->hwfns[i].b_int_requested = false;
2201 }
2202
qed_int_set_timer_res(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 timer_res,u16 sb_id,bool tx)2203 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2204 u8 timer_res, u16 sb_id, bool tx)
2205 {
2206 struct cau_sb_entry sb_entry;
2207 int rc;
2208
2209 if (!p_hwfn->hw_init_done) {
2210 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2211 return -EINVAL;
2212 }
2213
2214 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2215 sb_id * sizeof(u64),
2216 (u64)(uintptr_t)&sb_entry, 2, 0);
2217 if (rc) {
2218 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2219 return rc;
2220 }
2221
2222 if (tx)
2223 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2224 else
2225 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2226
2227 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2228 (u64)(uintptr_t)&sb_entry,
2229 CAU_REG_SB_VAR_MEMORY +
2230 sb_id * sizeof(u64), 2, 0);
2231 if (rc) {
2232 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2233 return rc;
2234 }
2235
2236 return rc;
2237 }
2238