• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32 
33 #include <asm/div64.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 	"ch0", /* RAVB_BE */
45 	"ch1", /* RAVB_NC */
46 };
47 
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 	"ch18", /* RAVB_BE */
50 	"ch19", /* RAVB_NC */
51 };
52 
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 		 u32 set)
55 {
56 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58 
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 	int i;
62 
63 	for (i = 0; i < 10000; i++) {
64 		if ((ravb_read(ndev, reg) & mask) == value)
65 			return 0;
66 		udelay(10);
67 	}
68 	return -ETIMEDOUT;
69 }
70 
ravb_config(struct net_device * ndev)71 static int ravb_config(struct net_device *ndev)
72 {
73 	int error;
74 
75 	/* Set config mode */
76 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 	/* Check if the operating mode is changed to the config mode */
78 	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 	if (error)
80 		netdev_err(ndev, "failed to switch device to config mode\n");
81 
82 	return error;
83 }
84 
ravb_set_rate(struct net_device * ndev)85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 	struct ravb_private *priv = netdev_priv(ndev);
88 
89 	switch (priv->speed) {
90 	case 100:		/* 100BASE */
91 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 		break;
93 	case 1000:		/* 1000BASE */
94 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 		break;
96 	}
97 }
98 
ravb_set_buffer_align(struct sk_buff * skb)99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102 
103 	if (reserve)
104 		skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106 
107 /* Get MAC address from the MAC address registers
108  *
109  * Ethernet AVB device doesn't have ROM for MAC address.
110  * This function gets the MAC address that was used by a bootloader.
111  */
ravb_read_mac_address(struct net_device * ndev,const u8 * mac)112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 	if (mac) {
115 		ether_addr_copy(ndev->dev_addr, mac);
116 	} else {
117 		u32 mahr = ravb_read(ndev, MAHR);
118 		u32 malr = ravb_read(ndev, MALR);
119 
120 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
123 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
124 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
125 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
126 	}
127 }
128 
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 						 mdiobb);
133 
134 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136 
137 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142 
143 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148 
149 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154 
155 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 						 mdiobb);
160 
161 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163 
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 	.owner = THIS_MODULE,
167 	.set_mdc = ravb_set_mdc,
168 	.set_mdio_dir = ravb_set_mdio_dir,
169 	.set_mdio_data = ravb_set_mdio_data,
170 	.get_mdio_data = ravb_get_mdio_data,
171 };
172 
173 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 	struct ravb_private *priv = netdev_priv(ndev);
177 	struct net_device_stats *stats = &priv->stats[q];
178 	struct ravb_tx_desc *desc;
179 	int free_num = 0;
180 	int entry;
181 	u32 size;
182 
183 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
184 		bool txed;
185 
186 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
187 					     NUM_TX_DESC);
188 		desc = &priv->tx_ring[q][entry];
189 		txed = desc->die_dt == DT_FEMPTY;
190 		if (free_txed_only && !txed)
191 			break;
192 		/* Descriptor type must be checked before all other reads */
193 		dma_rmb();
194 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
195 		/* Free the original skb. */
196 		if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
197 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
198 					 size, DMA_TO_DEVICE);
199 			/* Last packet descriptor? */
200 			if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
201 				entry /= NUM_TX_DESC;
202 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
203 				priv->tx_skb[q][entry] = NULL;
204 				if (txed)
205 					stats->tx_packets++;
206 			}
207 			free_num++;
208 		}
209 		if (txed)
210 			stats->tx_bytes += size;
211 		desc->die_dt = DT_EEMPTY;
212 	}
213 	return free_num;
214 }
215 
216 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)217 static void ravb_ring_free(struct net_device *ndev, int q)
218 {
219 	struct ravb_private *priv = netdev_priv(ndev);
220 	int ring_size;
221 	int i;
222 
223 	if (priv->rx_ring[q]) {
224 		for (i = 0; i < priv->num_rx_ring[q]; i++) {
225 			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
226 
227 			if (!dma_mapping_error(ndev->dev.parent,
228 					       le32_to_cpu(desc->dptr)))
229 				dma_unmap_single(ndev->dev.parent,
230 						 le32_to_cpu(desc->dptr),
231 						 priv->rx_buf_sz,
232 						 DMA_FROM_DEVICE);
233 		}
234 		ring_size = sizeof(struct ravb_ex_rx_desc) *
235 			    (priv->num_rx_ring[q] + 1);
236 		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
237 				  priv->rx_desc_dma[q]);
238 		priv->rx_ring[q] = NULL;
239 	}
240 
241 	if (priv->tx_ring[q]) {
242 		ravb_tx_free(ndev, q, false);
243 
244 		ring_size = sizeof(struct ravb_tx_desc) *
245 			    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
246 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
247 				  priv->tx_desc_dma[q]);
248 		priv->tx_ring[q] = NULL;
249 	}
250 
251 	/* Free RX skb ringbuffer */
252 	if (priv->rx_skb[q]) {
253 		for (i = 0; i < priv->num_rx_ring[q]; i++)
254 			dev_kfree_skb(priv->rx_skb[q][i]);
255 	}
256 	kfree(priv->rx_skb[q]);
257 	priv->rx_skb[q] = NULL;
258 
259 	/* Free aligned TX buffers */
260 	kfree(priv->tx_align[q]);
261 	priv->tx_align[q] = NULL;
262 
263 	/* Free TX skb ringbuffer.
264 	 * SKBs are freed by ravb_tx_free() call above.
265 	 */
266 	kfree(priv->tx_skb[q]);
267 	priv->tx_skb[q] = NULL;
268 }
269 
270 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)271 static void ravb_ring_format(struct net_device *ndev, int q)
272 {
273 	struct ravb_private *priv = netdev_priv(ndev);
274 	struct ravb_ex_rx_desc *rx_desc;
275 	struct ravb_tx_desc *tx_desc;
276 	struct ravb_desc *desc;
277 	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
278 	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
279 			   NUM_TX_DESC;
280 	dma_addr_t dma_addr;
281 	int i;
282 
283 	priv->cur_rx[q] = 0;
284 	priv->cur_tx[q] = 0;
285 	priv->dirty_rx[q] = 0;
286 	priv->dirty_tx[q] = 0;
287 
288 	memset(priv->rx_ring[q], 0, rx_ring_size);
289 	/* Build RX ring buffer */
290 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
291 		/* RX descriptor */
292 		rx_desc = &priv->rx_ring[q][i];
293 		rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
294 		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
295 					  priv->rx_buf_sz,
296 					  DMA_FROM_DEVICE);
297 		/* We just set the data size to 0 for a failed mapping which
298 		 * should prevent DMA from happening...
299 		 */
300 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
301 			rx_desc->ds_cc = cpu_to_le16(0);
302 		rx_desc->dptr = cpu_to_le32(dma_addr);
303 		rx_desc->die_dt = DT_FEMPTY;
304 	}
305 	rx_desc = &priv->rx_ring[q][i];
306 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
307 	rx_desc->die_dt = DT_LINKFIX; /* type */
308 
309 	memset(priv->tx_ring[q], 0, tx_ring_size);
310 	/* Build TX ring buffer */
311 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
312 	     i++, tx_desc++) {
313 		tx_desc->die_dt = DT_EEMPTY;
314 		tx_desc++;
315 		tx_desc->die_dt = DT_EEMPTY;
316 	}
317 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
318 	tx_desc->die_dt = DT_LINKFIX; /* type */
319 
320 	/* RX descriptor base address for best effort */
321 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
322 	desc->die_dt = DT_LINKFIX; /* type */
323 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
324 
325 	/* TX descriptor base address for best effort */
326 	desc = &priv->desc_bat[q];
327 	desc->die_dt = DT_LINKFIX; /* type */
328 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
329 }
330 
331 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)332 static int ravb_ring_init(struct net_device *ndev, int q)
333 {
334 	struct ravb_private *priv = netdev_priv(ndev);
335 	struct sk_buff *skb;
336 	int ring_size;
337 	int i;
338 
339 	priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
340 		ETH_HLEN + VLAN_HLEN + sizeof(__sum16);
341 
342 	/* Allocate RX and TX skb rings */
343 	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
344 				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
345 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
346 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
347 	if (!priv->rx_skb[q] || !priv->tx_skb[q])
348 		goto error;
349 
350 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
351 		skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
352 		if (!skb)
353 			goto error;
354 		ravb_set_buffer_align(skb);
355 		priv->rx_skb[q][i] = skb;
356 	}
357 
358 	/* Allocate rings for the aligned buffers */
359 	priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
360 				    DPTR_ALIGN - 1, GFP_KERNEL);
361 	if (!priv->tx_align[q])
362 		goto error;
363 
364 	/* Allocate all RX descriptors. */
365 	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
366 	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
367 					      &priv->rx_desc_dma[q],
368 					      GFP_KERNEL);
369 	if (!priv->rx_ring[q])
370 		goto error;
371 
372 	priv->dirty_rx[q] = 0;
373 
374 	/* Allocate all TX descriptors. */
375 	ring_size = sizeof(struct ravb_tx_desc) *
376 		    (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
377 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
378 					      &priv->tx_desc_dma[q],
379 					      GFP_KERNEL);
380 	if (!priv->tx_ring[q])
381 		goto error;
382 
383 	return 0;
384 
385 error:
386 	ravb_ring_free(ndev, q);
387 
388 	return -ENOMEM;
389 }
390 
391 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)392 static void ravb_emac_init(struct net_device *ndev)
393 {
394 	/* Receive frame limit set register */
395 	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
396 
397 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
398 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
399 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
400 		   ECMR_TE | ECMR_RE, ECMR);
401 
402 	ravb_set_rate(ndev);
403 
404 	/* Set MAC address */
405 	ravb_write(ndev,
406 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
407 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
408 	ravb_write(ndev,
409 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
410 
411 	/* E-MAC status register clear */
412 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
413 
414 	/* E-MAC interrupt enable register */
415 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
416 }
417 
418 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)419 static int ravb_dmac_init(struct net_device *ndev)
420 {
421 	struct ravb_private *priv = netdev_priv(ndev);
422 	int error;
423 
424 	/* Set CONFIG mode */
425 	error = ravb_config(ndev);
426 	if (error)
427 		return error;
428 
429 	error = ravb_ring_init(ndev, RAVB_BE);
430 	if (error)
431 		return error;
432 	error = ravb_ring_init(ndev, RAVB_NC);
433 	if (error) {
434 		ravb_ring_free(ndev, RAVB_BE);
435 		return error;
436 	}
437 
438 	/* Descriptor format */
439 	ravb_ring_format(ndev, RAVB_BE);
440 	ravb_ring_format(ndev, RAVB_NC);
441 
442 #if defined(__LITTLE_ENDIAN)
443 	ravb_modify(ndev, CCC, CCC_BOC, 0);
444 #else
445 	ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
446 #endif
447 
448 	/* Set AVB RX */
449 	ravb_write(ndev,
450 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
451 
452 	/* Set FIFO size */
453 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
454 
455 	/* Timestamp enable */
456 	ravb_write(ndev, TCCR_TFEN, TCCR);
457 
458 	/* Interrupt init: */
459 	if (priv->chip_id == RCAR_GEN3) {
460 		/* Clear DIL.DPLx */
461 		ravb_write(ndev, 0, DIL);
462 		/* Set queue specific interrupt */
463 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
464 	}
465 	/* Frame receive */
466 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
467 	/* Disable FIFO full warning */
468 	ravb_write(ndev, 0, RIC1);
469 	/* Receive FIFO full error, descriptor empty */
470 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
471 	/* Frame transmitted, timestamp FIFO updated */
472 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
473 
474 	/* Setting the control will start the AVB-DMAC process. */
475 	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
476 
477 	return 0;
478 }
479 
ravb_get_tx_tstamp(struct net_device * ndev)480 static void ravb_get_tx_tstamp(struct net_device *ndev)
481 {
482 	struct ravb_private *priv = netdev_priv(ndev);
483 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
484 	struct skb_shared_hwtstamps shhwtstamps;
485 	struct sk_buff *skb;
486 	struct timespec64 ts;
487 	u16 tag, tfa_tag;
488 	int count;
489 	u32 tfa2;
490 
491 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
492 	while (count--) {
493 		tfa2 = ravb_read(ndev, TFA2);
494 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
495 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
496 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
497 			    ravb_read(ndev, TFA1);
498 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
499 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
500 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
501 					 list) {
502 			skb = ts_skb->skb;
503 			tag = ts_skb->tag;
504 			list_del(&ts_skb->list);
505 			kfree(ts_skb);
506 			if (tag == tfa_tag) {
507 				skb_tstamp_tx(skb, &shhwtstamps);
508 				dev_consume_skb_any(skb);
509 				break;
510 			} else {
511 				dev_kfree_skb_any(skb);
512 			}
513 		}
514 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
515 	}
516 }
517 
ravb_rx_csum(struct sk_buff * skb)518 static void ravb_rx_csum(struct sk_buff *skb)
519 {
520 	u8 *hw_csum;
521 
522 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
523 	 * appended to packet data
524 	 */
525 	if (unlikely(skb->len < sizeof(__sum16)))
526 		return;
527 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
528 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
529 	skb->ip_summed = CHECKSUM_COMPLETE;
530 	skb_trim(skb, skb->len - sizeof(__sum16));
531 }
532 
533 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int * quota,int q)534 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
535 {
536 	struct ravb_private *priv = netdev_priv(ndev);
537 	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
538 	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
539 			priv->cur_rx[q];
540 	struct net_device_stats *stats = &priv->stats[q];
541 	struct ravb_ex_rx_desc *desc;
542 	struct sk_buff *skb;
543 	dma_addr_t dma_addr;
544 	struct timespec64 ts;
545 	u8  desc_status;
546 	u16 pkt_len;
547 	int limit;
548 
549 	boguscnt = min(boguscnt, *quota);
550 	limit = boguscnt;
551 	desc = &priv->rx_ring[q][entry];
552 	while (desc->die_dt != DT_FEMPTY) {
553 		/* Descriptor type must be checked before all other reads */
554 		dma_rmb();
555 		desc_status = desc->msc;
556 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
557 
558 		if (--boguscnt < 0)
559 			break;
560 
561 		/* We use 0-byte descriptors to mark the DMA mapping errors */
562 		if (!pkt_len)
563 			continue;
564 
565 		if (desc_status & MSC_MC)
566 			stats->multicast++;
567 
568 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
569 				   MSC_CEEF)) {
570 			stats->rx_errors++;
571 			if (desc_status & MSC_CRC)
572 				stats->rx_crc_errors++;
573 			if (desc_status & MSC_RFE)
574 				stats->rx_frame_errors++;
575 			if (desc_status & (MSC_RTLF | MSC_RTSF))
576 				stats->rx_length_errors++;
577 			if (desc_status & MSC_CEEF)
578 				stats->rx_missed_errors++;
579 		} else {
580 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
581 
582 			skb = priv->rx_skb[q][entry];
583 			priv->rx_skb[q][entry] = NULL;
584 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
585 					 priv->rx_buf_sz,
586 					 DMA_FROM_DEVICE);
587 			get_ts &= (q == RAVB_NC) ?
588 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
589 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
590 			if (get_ts) {
591 				struct skb_shared_hwtstamps *shhwtstamps;
592 
593 				shhwtstamps = skb_hwtstamps(skb);
594 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
595 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
596 					     32) | le32_to_cpu(desc->ts_sl);
597 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
598 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
599 			}
600 
601 			skb_put(skb, pkt_len);
602 			skb->protocol = eth_type_trans(skb, ndev);
603 			if (ndev->features & NETIF_F_RXCSUM)
604 				ravb_rx_csum(skb);
605 			napi_gro_receive(&priv->napi[q], skb);
606 			stats->rx_packets++;
607 			stats->rx_bytes += pkt_len;
608 		}
609 
610 		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
611 		desc = &priv->rx_ring[q][entry];
612 	}
613 
614 	/* Refill the RX ring buffers. */
615 	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
616 		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
617 		desc = &priv->rx_ring[q][entry];
618 		desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
619 
620 		if (!priv->rx_skb[q][entry]) {
621 			skb = netdev_alloc_skb(ndev,
622 					       priv->rx_buf_sz +
623 					       RAVB_ALIGN - 1);
624 			if (!skb)
625 				break;	/* Better luck next round. */
626 			ravb_set_buffer_align(skb);
627 			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
628 						  le16_to_cpu(desc->ds_cc),
629 						  DMA_FROM_DEVICE);
630 			skb_checksum_none_assert(skb);
631 			/* We just set the data size to 0 for a failed mapping
632 			 * which should prevent DMA  from happening...
633 			 */
634 			if (dma_mapping_error(ndev->dev.parent, dma_addr))
635 				desc->ds_cc = cpu_to_le16(0);
636 			desc->dptr = cpu_to_le32(dma_addr);
637 			priv->rx_skb[q][entry] = skb;
638 		}
639 		/* Descriptor type must be set after all the above writes */
640 		dma_wmb();
641 		desc->die_dt = DT_FEMPTY;
642 	}
643 
644 	*quota -= limit - (++boguscnt);
645 
646 	return boguscnt <= 0;
647 }
648 
ravb_rcv_snd_disable(struct net_device * ndev)649 static void ravb_rcv_snd_disable(struct net_device *ndev)
650 {
651 	/* Disable TX and RX */
652 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
653 }
654 
ravb_rcv_snd_enable(struct net_device * ndev)655 static void ravb_rcv_snd_enable(struct net_device *ndev)
656 {
657 	/* Enable TX and RX */
658 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
659 }
660 
661 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)662 static int ravb_stop_dma(struct net_device *ndev)
663 {
664 	int error;
665 
666 	/* Wait for stopping the hardware TX process */
667 	error = ravb_wait(ndev, TCCR,
668 			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
669 	if (error)
670 		return error;
671 
672 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
673 			  0);
674 	if (error)
675 		return error;
676 
677 	/* Stop the E-MAC's RX/TX processes. */
678 	ravb_rcv_snd_disable(ndev);
679 
680 	/* Wait for stopping the RX DMA process */
681 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
682 	if (error)
683 		return error;
684 
685 	/* Stop AVB-DMAC process */
686 	return ravb_config(ndev);
687 }
688 
689 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)690 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
691 {
692 	struct ravb_private *priv = netdev_priv(ndev);
693 	u32 ecsr, psr;
694 
695 	ecsr = ravb_read(ndev, ECSR);
696 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
697 
698 	if (ecsr & ECSR_MPD)
699 		pm_wakeup_event(&priv->pdev->dev, 0);
700 	if (ecsr & ECSR_ICD)
701 		ndev->stats.tx_carrier_errors++;
702 	if (ecsr & ECSR_LCHNG) {
703 		/* Link changed */
704 		if (priv->no_avb_link)
705 			return;
706 		psr = ravb_read(ndev, PSR);
707 		if (priv->avb_link_active_low)
708 			psr ^= PSR_LMON;
709 		if (!(psr & PSR_LMON)) {
710 			/* DIsable RX and TX */
711 			ravb_rcv_snd_disable(ndev);
712 		} else {
713 			/* Enable RX and TX */
714 			ravb_rcv_snd_enable(ndev);
715 		}
716 	}
717 }
718 
ravb_emac_interrupt(int irq,void * dev_id)719 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
720 {
721 	struct net_device *ndev = dev_id;
722 	struct ravb_private *priv = netdev_priv(ndev);
723 
724 	spin_lock(&priv->lock);
725 	ravb_emac_interrupt_unlocked(ndev);
726 	mmiowb();
727 	spin_unlock(&priv->lock);
728 	return IRQ_HANDLED;
729 }
730 
731 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)732 static void ravb_error_interrupt(struct net_device *ndev)
733 {
734 	struct ravb_private *priv = netdev_priv(ndev);
735 	u32 eis, ris2;
736 
737 	eis = ravb_read(ndev, EIS);
738 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
739 	if (eis & EIS_QFS) {
740 		ris2 = ravb_read(ndev, RIS2);
741 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
742 			   RIS2);
743 
744 		/* Receive Descriptor Empty int */
745 		if (ris2 & RIS2_QFF0)
746 			priv->stats[RAVB_BE].rx_over_errors++;
747 
748 		    /* Receive Descriptor Empty int */
749 		if (ris2 & RIS2_QFF1)
750 			priv->stats[RAVB_NC].rx_over_errors++;
751 
752 		/* Receive FIFO Overflow int */
753 		if (ris2 & RIS2_RFFF)
754 			priv->rx_fifo_errors++;
755 	}
756 }
757 
ravb_queue_interrupt(struct net_device * ndev,int q)758 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
759 {
760 	struct ravb_private *priv = netdev_priv(ndev);
761 	u32 ris0 = ravb_read(ndev, RIS0);
762 	u32 ric0 = ravb_read(ndev, RIC0);
763 	u32 tis  = ravb_read(ndev, TIS);
764 	u32 tic  = ravb_read(ndev, TIC);
765 
766 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
767 		if (napi_schedule_prep(&priv->napi[q])) {
768 			/* Mask RX and TX interrupts */
769 			if (priv->chip_id == RCAR_GEN2) {
770 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
771 				ravb_write(ndev, tic & ~BIT(q), TIC);
772 			} else {
773 				ravb_write(ndev, BIT(q), RID0);
774 				ravb_write(ndev, BIT(q), TID);
775 			}
776 			__napi_schedule(&priv->napi[q]);
777 		} else {
778 			netdev_warn(ndev,
779 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
780 				    ris0, ric0);
781 			netdev_warn(ndev,
782 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
783 				    tis, tic);
784 		}
785 		return true;
786 	}
787 	return false;
788 }
789 
ravb_timestamp_interrupt(struct net_device * ndev)790 static bool ravb_timestamp_interrupt(struct net_device *ndev)
791 {
792 	u32 tis = ravb_read(ndev, TIS);
793 
794 	if (tis & TIS_TFUF) {
795 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
796 		ravb_get_tx_tstamp(ndev);
797 		return true;
798 	}
799 	return false;
800 }
801 
ravb_interrupt(int irq,void * dev_id)802 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
803 {
804 	struct net_device *ndev = dev_id;
805 	struct ravb_private *priv = netdev_priv(ndev);
806 	irqreturn_t result = IRQ_NONE;
807 	u32 iss;
808 
809 	spin_lock(&priv->lock);
810 	/* Get interrupt status */
811 	iss = ravb_read(ndev, ISS);
812 
813 	/* Received and transmitted interrupts */
814 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
815 		int q;
816 
817 		/* Timestamp updated */
818 		if (ravb_timestamp_interrupt(ndev))
819 			result = IRQ_HANDLED;
820 
821 		/* Network control and best effort queue RX/TX */
822 		for (q = RAVB_NC; q >= RAVB_BE; q--) {
823 			if (ravb_queue_interrupt(ndev, q))
824 				result = IRQ_HANDLED;
825 		}
826 	}
827 
828 	/* E-MAC status summary */
829 	if (iss & ISS_MS) {
830 		ravb_emac_interrupt_unlocked(ndev);
831 		result = IRQ_HANDLED;
832 	}
833 
834 	/* Error status summary */
835 	if (iss & ISS_ES) {
836 		ravb_error_interrupt(ndev);
837 		result = IRQ_HANDLED;
838 	}
839 
840 	/* gPTP interrupt status summary */
841 	if (iss & ISS_CGIS) {
842 		ravb_ptp_interrupt(ndev);
843 		result = IRQ_HANDLED;
844 	}
845 
846 	mmiowb();
847 	spin_unlock(&priv->lock);
848 	return result;
849 }
850 
851 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)852 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
853 {
854 	struct net_device *ndev = dev_id;
855 	struct ravb_private *priv = netdev_priv(ndev);
856 	irqreturn_t result = IRQ_NONE;
857 	u32 iss;
858 
859 	spin_lock(&priv->lock);
860 	/* Get interrupt status */
861 	iss = ravb_read(ndev, ISS);
862 
863 	/* Timestamp updated */
864 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
865 		result = IRQ_HANDLED;
866 
867 	/* Error status summary */
868 	if (iss & ISS_ES) {
869 		ravb_error_interrupt(ndev);
870 		result = IRQ_HANDLED;
871 	}
872 
873 	/* gPTP interrupt status summary */
874 	if (iss & ISS_CGIS) {
875 		ravb_ptp_interrupt(ndev);
876 		result = IRQ_HANDLED;
877 	}
878 
879 	mmiowb();
880 	spin_unlock(&priv->lock);
881 	return result;
882 }
883 
ravb_dma_interrupt(int irq,void * dev_id,int q)884 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
885 {
886 	struct net_device *ndev = dev_id;
887 	struct ravb_private *priv = netdev_priv(ndev);
888 	irqreturn_t result = IRQ_NONE;
889 
890 	spin_lock(&priv->lock);
891 
892 	/* Network control/Best effort queue RX/TX */
893 	if (ravb_queue_interrupt(ndev, q))
894 		result = IRQ_HANDLED;
895 
896 	mmiowb();
897 	spin_unlock(&priv->lock);
898 	return result;
899 }
900 
ravb_be_interrupt(int irq,void * dev_id)901 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
902 {
903 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
904 }
905 
ravb_nc_interrupt(int irq,void * dev_id)906 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
907 {
908 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
909 }
910 
ravb_poll(struct napi_struct * napi,int budget)911 static int ravb_poll(struct napi_struct *napi, int budget)
912 {
913 	struct net_device *ndev = napi->dev;
914 	struct ravb_private *priv = netdev_priv(ndev);
915 	unsigned long flags;
916 	int q = napi - priv->napi;
917 	int mask = BIT(q);
918 	int quota = budget;
919 	u32 ris0, tis;
920 
921 	for (;;) {
922 		tis = ravb_read(ndev, TIS);
923 		ris0 = ravb_read(ndev, RIS0);
924 		if (!((ris0 & mask) || (tis & mask)))
925 			break;
926 
927 		/* Processing RX Descriptor Ring */
928 		if (ris0 & mask) {
929 			/* Clear RX interrupt */
930 			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
931 			if (ravb_rx(ndev, &quota, q))
932 				goto out;
933 		}
934 		/* Processing TX Descriptor Ring */
935 		if (tis & mask) {
936 			spin_lock_irqsave(&priv->lock, flags);
937 			/* Clear TX interrupt */
938 			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
939 			ravb_tx_free(ndev, q, true);
940 			netif_wake_subqueue(ndev, q);
941 			mmiowb();
942 			spin_unlock_irqrestore(&priv->lock, flags);
943 		}
944 	}
945 
946 	napi_complete(napi);
947 
948 	/* Re-enable RX/TX interrupts */
949 	spin_lock_irqsave(&priv->lock, flags);
950 	if (priv->chip_id == RCAR_GEN2) {
951 		ravb_modify(ndev, RIC0, mask, mask);
952 		ravb_modify(ndev, TIC,  mask, mask);
953 	} else {
954 		ravb_write(ndev, mask, RIE0);
955 		ravb_write(ndev, mask, TIE);
956 	}
957 	mmiowb();
958 	spin_unlock_irqrestore(&priv->lock, flags);
959 
960 	/* Receive error message handling */
961 	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
962 	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
963 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
964 		ndev->stats.rx_over_errors = priv->rx_over_errors;
965 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
966 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
967 out:
968 	return budget - quota;
969 }
970 
971 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)972 static void ravb_adjust_link(struct net_device *ndev)
973 {
974 	struct ravb_private *priv = netdev_priv(ndev);
975 	struct phy_device *phydev = ndev->phydev;
976 	bool new_state = false;
977 	unsigned long flags;
978 
979 	spin_lock_irqsave(&priv->lock, flags);
980 
981 	/* Disable TX and RX right over here, if E-MAC change is ignored */
982 	if (priv->no_avb_link)
983 		ravb_rcv_snd_disable(ndev);
984 
985 	if (phydev->link) {
986 		if (phydev->speed != priv->speed) {
987 			new_state = true;
988 			priv->speed = phydev->speed;
989 			ravb_set_rate(ndev);
990 		}
991 		if (!priv->link) {
992 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
993 			new_state = true;
994 			priv->link = phydev->link;
995 		}
996 	} else if (priv->link) {
997 		new_state = true;
998 		priv->link = 0;
999 		priv->speed = 0;
1000 	}
1001 
1002 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1003 	if (priv->no_avb_link && phydev->link)
1004 		ravb_rcv_snd_enable(ndev);
1005 
1006 	mmiowb();
1007 	spin_unlock_irqrestore(&priv->lock, flags);
1008 
1009 	if (new_state && netif_msg_link(priv))
1010 		phy_print_status(phydev);
1011 }
1012 
1013 static const struct soc_device_attribute r8a7795es10[] = {
1014 	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1015 	{ /* sentinel */ }
1016 };
1017 
1018 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1019 static int ravb_phy_init(struct net_device *ndev)
1020 {
1021 	struct device_node *np = ndev->dev.parent->of_node;
1022 	struct ravb_private *priv = netdev_priv(ndev);
1023 	struct phy_device *phydev;
1024 	struct device_node *pn;
1025 	int err;
1026 
1027 	priv->link = 0;
1028 	priv->speed = 0;
1029 
1030 	/* Try connecting to PHY */
1031 	pn = of_parse_phandle(np, "phy-handle", 0);
1032 	if (!pn) {
1033 		/* In the case of a fixed PHY, the DT node associated
1034 		 * to the PHY is the Ethernet MAC DT node.
1035 		 */
1036 		if (of_phy_is_fixed_link(np)) {
1037 			err = of_phy_register_fixed_link(np);
1038 			if (err)
1039 				return err;
1040 		}
1041 		pn = of_node_get(np);
1042 	}
1043 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1044 				priv->phy_interface);
1045 	of_node_put(pn);
1046 	if (!phydev) {
1047 		netdev_err(ndev, "failed to connect PHY\n");
1048 		err = -ENOENT;
1049 		goto err_deregister_fixed_link;
1050 	}
1051 
1052 	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1053 	 * at this time.
1054 	 */
1055 	if (soc_device_match(r8a7795es10)) {
1056 		err = phy_set_max_speed(phydev, SPEED_100);
1057 		if (err) {
1058 			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1059 			goto err_phy_disconnect;
1060 		}
1061 
1062 		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1063 	}
1064 
1065 	/* 10BASE is not supported */
1066 	phydev->supported &= ~PHY_10BT_FEATURES;
1067 
1068 	phy_attached_info(phydev);
1069 
1070 	return 0;
1071 
1072 err_phy_disconnect:
1073 	phy_disconnect(phydev);
1074 err_deregister_fixed_link:
1075 	if (of_phy_is_fixed_link(np))
1076 		of_phy_deregister_fixed_link(np);
1077 
1078 	return err;
1079 }
1080 
1081 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1082 static int ravb_phy_start(struct net_device *ndev)
1083 {
1084 	int error;
1085 
1086 	error = ravb_phy_init(ndev);
1087 	if (error)
1088 		return error;
1089 
1090 	phy_start(ndev->phydev);
1091 
1092 	return 0;
1093 }
1094 
ravb_get_msglevel(struct net_device * ndev)1095 static u32 ravb_get_msglevel(struct net_device *ndev)
1096 {
1097 	struct ravb_private *priv = netdev_priv(ndev);
1098 
1099 	return priv->msg_enable;
1100 }
1101 
ravb_set_msglevel(struct net_device * ndev,u32 value)1102 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1103 {
1104 	struct ravb_private *priv = netdev_priv(ndev);
1105 
1106 	priv->msg_enable = value;
1107 }
1108 
1109 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1110 	"rx_queue_0_current",
1111 	"tx_queue_0_current",
1112 	"rx_queue_0_dirty",
1113 	"tx_queue_0_dirty",
1114 	"rx_queue_0_packets",
1115 	"tx_queue_0_packets",
1116 	"rx_queue_0_bytes",
1117 	"tx_queue_0_bytes",
1118 	"rx_queue_0_mcast_packets",
1119 	"rx_queue_0_errors",
1120 	"rx_queue_0_crc_errors",
1121 	"rx_queue_0_frame_errors",
1122 	"rx_queue_0_length_errors",
1123 	"rx_queue_0_missed_errors",
1124 	"rx_queue_0_over_errors",
1125 
1126 	"rx_queue_1_current",
1127 	"tx_queue_1_current",
1128 	"rx_queue_1_dirty",
1129 	"tx_queue_1_dirty",
1130 	"rx_queue_1_packets",
1131 	"tx_queue_1_packets",
1132 	"rx_queue_1_bytes",
1133 	"tx_queue_1_bytes",
1134 	"rx_queue_1_mcast_packets",
1135 	"rx_queue_1_errors",
1136 	"rx_queue_1_crc_errors",
1137 	"rx_queue_1_frame_errors",
1138 	"rx_queue_1_length_errors",
1139 	"rx_queue_1_missed_errors",
1140 	"rx_queue_1_over_errors",
1141 };
1142 
1143 #define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1144 
ravb_get_sset_count(struct net_device * netdev,int sset)1145 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1146 {
1147 	switch (sset) {
1148 	case ETH_SS_STATS:
1149 		return RAVB_STATS_LEN;
1150 	default:
1151 		return -EOPNOTSUPP;
1152 	}
1153 }
1154 
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1155 static void ravb_get_ethtool_stats(struct net_device *ndev,
1156 				   struct ethtool_stats *estats, u64 *data)
1157 {
1158 	struct ravb_private *priv = netdev_priv(ndev);
1159 	int i = 0;
1160 	int q;
1161 
1162 	/* Device-specific stats */
1163 	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1164 		struct net_device_stats *stats = &priv->stats[q];
1165 
1166 		data[i++] = priv->cur_rx[q];
1167 		data[i++] = priv->cur_tx[q];
1168 		data[i++] = priv->dirty_rx[q];
1169 		data[i++] = priv->dirty_tx[q];
1170 		data[i++] = stats->rx_packets;
1171 		data[i++] = stats->tx_packets;
1172 		data[i++] = stats->rx_bytes;
1173 		data[i++] = stats->tx_bytes;
1174 		data[i++] = stats->multicast;
1175 		data[i++] = stats->rx_errors;
1176 		data[i++] = stats->rx_crc_errors;
1177 		data[i++] = stats->rx_frame_errors;
1178 		data[i++] = stats->rx_length_errors;
1179 		data[i++] = stats->rx_missed_errors;
1180 		data[i++] = stats->rx_over_errors;
1181 	}
1182 }
1183 
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1184 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1185 {
1186 	switch (stringset) {
1187 	case ETH_SS_STATS:
1188 		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1189 		break;
1190 	}
1191 }
1192 
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1193 static void ravb_get_ringparam(struct net_device *ndev,
1194 			       struct ethtool_ringparam *ring)
1195 {
1196 	struct ravb_private *priv = netdev_priv(ndev);
1197 
1198 	ring->rx_max_pending = BE_RX_RING_MAX;
1199 	ring->tx_max_pending = BE_TX_RING_MAX;
1200 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1201 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1202 }
1203 
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)1204 static int ravb_set_ringparam(struct net_device *ndev,
1205 			      struct ethtool_ringparam *ring)
1206 {
1207 	struct ravb_private *priv = netdev_priv(ndev);
1208 	int error;
1209 
1210 	if (ring->tx_pending > BE_TX_RING_MAX ||
1211 	    ring->rx_pending > BE_RX_RING_MAX ||
1212 	    ring->tx_pending < BE_TX_RING_MIN ||
1213 	    ring->rx_pending < BE_RX_RING_MIN)
1214 		return -EINVAL;
1215 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1216 		return -EINVAL;
1217 
1218 	if (netif_running(ndev)) {
1219 		netif_device_detach(ndev);
1220 		/* Stop PTP Clock driver */
1221 		if (priv->chip_id == RCAR_GEN2)
1222 			ravb_ptp_stop(ndev);
1223 		/* Wait for DMA stopping */
1224 		error = ravb_stop_dma(ndev);
1225 		if (error) {
1226 			netdev_err(ndev,
1227 				   "cannot set ringparam! Any AVB processes are still running?\n");
1228 			return error;
1229 		}
1230 		synchronize_irq(ndev->irq);
1231 
1232 		/* Free all the skb's in the RX queue and the DMA buffers. */
1233 		ravb_ring_free(ndev, RAVB_BE);
1234 		ravb_ring_free(ndev, RAVB_NC);
1235 	}
1236 
1237 	/* Set new parameters */
1238 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1239 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1240 
1241 	if (netif_running(ndev)) {
1242 		error = ravb_dmac_init(ndev);
1243 		if (error) {
1244 			netdev_err(ndev,
1245 				   "%s: ravb_dmac_init() failed, error %d\n",
1246 				   __func__, error);
1247 			return error;
1248 		}
1249 
1250 		ravb_emac_init(ndev);
1251 
1252 		/* Initialise PTP Clock driver */
1253 		if (priv->chip_id == RCAR_GEN2)
1254 			ravb_ptp_init(ndev, priv->pdev);
1255 
1256 		netif_device_attach(ndev);
1257 	}
1258 
1259 	return 0;
1260 }
1261 
ravb_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)1262 static int ravb_get_ts_info(struct net_device *ndev,
1263 			    struct ethtool_ts_info *info)
1264 {
1265 	struct ravb_private *priv = netdev_priv(ndev);
1266 
1267 	info->so_timestamping =
1268 		SOF_TIMESTAMPING_TX_SOFTWARE |
1269 		SOF_TIMESTAMPING_RX_SOFTWARE |
1270 		SOF_TIMESTAMPING_SOFTWARE |
1271 		SOF_TIMESTAMPING_TX_HARDWARE |
1272 		SOF_TIMESTAMPING_RX_HARDWARE |
1273 		SOF_TIMESTAMPING_RAW_HARDWARE;
1274 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1275 	info->rx_filters =
1276 		(1 << HWTSTAMP_FILTER_NONE) |
1277 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1278 		(1 << HWTSTAMP_FILTER_ALL);
1279 	info->phc_index = ptp_clock_index(priv->ptp.clock);
1280 
1281 	return 0;
1282 }
1283 
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1284 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1285 {
1286 	struct ravb_private *priv = netdev_priv(ndev);
1287 
1288 	wol->supported = WAKE_MAGIC;
1289 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1290 }
1291 
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1292 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1293 {
1294 	struct ravb_private *priv = netdev_priv(ndev);
1295 
1296 	if (wol->wolopts & ~WAKE_MAGIC)
1297 		return -EOPNOTSUPP;
1298 
1299 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1300 
1301 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1302 
1303 	return 0;
1304 }
1305 
1306 static const struct ethtool_ops ravb_ethtool_ops = {
1307 	.nway_reset		= phy_ethtool_nway_reset,
1308 	.get_msglevel		= ravb_get_msglevel,
1309 	.set_msglevel		= ravb_set_msglevel,
1310 	.get_link		= ethtool_op_get_link,
1311 	.get_strings		= ravb_get_strings,
1312 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1313 	.get_sset_count		= ravb_get_sset_count,
1314 	.get_ringparam		= ravb_get_ringparam,
1315 	.set_ringparam		= ravb_set_ringparam,
1316 	.get_ts_info		= ravb_get_ts_info,
1317 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1318 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1319 	.get_wol		= ravb_get_wol,
1320 	.set_wol		= ravb_set_wol,
1321 };
1322 
ravb_hook_irq(unsigned int irq,irq_handler_t handler,struct net_device * ndev,struct device * dev,const char * ch)1323 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1324 				struct net_device *ndev, struct device *dev,
1325 				const char *ch)
1326 {
1327 	char *name;
1328 	int error;
1329 
1330 	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1331 	if (!name)
1332 		return -ENOMEM;
1333 	error = request_irq(irq, handler, 0, name, ndev);
1334 	if (error)
1335 		netdev_err(ndev, "cannot request IRQ %s\n", name);
1336 
1337 	return error;
1338 }
1339 
1340 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1341 static int ravb_open(struct net_device *ndev)
1342 {
1343 	struct ravb_private *priv = netdev_priv(ndev);
1344 	struct platform_device *pdev = priv->pdev;
1345 	struct device *dev = &pdev->dev;
1346 	int error;
1347 
1348 	napi_enable(&priv->napi[RAVB_BE]);
1349 	napi_enable(&priv->napi[RAVB_NC]);
1350 
1351 	if (priv->chip_id == RCAR_GEN2) {
1352 		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1353 				    ndev->name, ndev);
1354 		if (error) {
1355 			netdev_err(ndev, "cannot request IRQ\n");
1356 			goto out_napi_off;
1357 		}
1358 	} else {
1359 		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1360 				      dev, "ch22:multi");
1361 		if (error)
1362 			goto out_napi_off;
1363 		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1364 				      dev, "ch24:emac");
1365 		if (error)
1366 			goto out_free_irq;
1367 		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1368 				      ndev, dev, "ch0:rx_be");
1369 		if (error)
1370 			goto out_free_irq_emac;
1371 		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1372 				      ndev, dev, "ch18:tx_be");
1373 		if (error)
1374 			goto out_free_irq_be_rx;
1375 		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1376 				      ndev, dev, "ch1:rx_nc");
1377 		if (error)
1378 			goto out_free_irq_be_tx;
1379 		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1380 				      ndev, dev, "ch19:tx_nc");
1381 		if (error)
1382 			goto out_free_irq_nc_rx;
1383 	}
1384 
1385 	/* Device init */
1386 	error = ravb_dmac_init(ndev);
1387 	if (error)
1388 		goto out_free_irq_nc_tx;
1389 	ravb_emac_init(ndev);
1390 
1391 	/* Initialise PTP Clock driver */
1392 	if (priv->chip_id == RCAR_GEN2)
1393 		ravb_ptp_init(ndev, priv->pdev);
1394 
1395 	netif_tx_start_all_queues(ndev);
1396 
1397 	/* PHY control start */
1398 	error = ravb_phy_start(ndev);
1399 	if (error)
1400 		goto out_ptp_stop;
1401 
1402 	return 0;
1403 
1404 out_ptp_stop:
1405 	/* Stop PTP Clock driver */
1406 	if (priv->chip_id == RCAR_GEN2)
1407 		ravb_ptp_stop(ndev);
1408 out_free_irq_nc_tx:
1409 	if (priv->chip_id == RCAR_GEN2)
1410 		goto out_free_irq;
1411 	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1412 out_free_irq_nc_rx:
1413 	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1414 out_free_irq_be_tx:
1415 	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1416 out_free_irq_be_rx:
1417 	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1418 out_free_irq_emac:
1419 	free_irq(priv->emac_irq, ndev);
1420 out_free_irq:
1421 	free_irq(ndev->irq, ndev);
1422 out_napi_off:
1423 	napi_disable(&priv->napi[RAVB_NC]);
1424 	napi_disable(&priv->napi[RAVB_BE]);
1425 	return error;
1426 }
1427 
1428 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev)1429 static void ravb_tx_timeout(struct net_device *ndev)
1430 {
1431 	struct ravb_private *priv = netdev_priv(ndev);
1432 
1433 	netif_err(priv, tx_err, ndev,
1434 		  "transmit timed out, status %08x, resetting...\n",
1435 		  ravb_read(ndev, ISS));
1436 
1437 	/* tx_errors count up */
1438 	ndev->stats.tx_errors++;
1439 
1440 	schedule_work(&priv->work);
1441 }
1442 
ravb_tx_timeout_work(struct work_struct * work)1443 static void ravb_tx_timeout_work(struct work_struct *work)
1444 {
1445 	struct ravb_private *priv = container_of(work, struct ravb_private,
1446 						 work);
1447 	struct net_device *ndev = priv->ndev;
1448 	int error;
1449 
1450 	netif_tx_stop_all_queues(ndev);
1451 
1452 	/* Stop PTP Clock driver */
1453 	if (priv->chip_id == RCAR_GEN2)
1454 		ravb_ptp_stop(ndev);
1455 
1456 	/* Wait for DMA stopping */
1457 	if (ravb_stop_dma(ndev)) {
1458 		/* If ravb_stop_dma() fails, the hardware is still operating
1459 		 * for TX and/or RX. So, this should not call the following
1460 		 * functions because ravb_dmac_init() is possible to fail too.
1461 		 * Also, this should not retry ravb_stop_dma() again and again
1462 		 * here because it's possible to wait forever. So, this just
1463 		 * re-enables the TX and RX and skip the following
1464 		 * re-initialization procedure.
1465 		 */
1466 		ravb_rcv_snd_enable(ndev);
1467 		goto out;
1468 	}
1469 
1470 	ravb_ring_free(ndev, RAVB_BE);
1471 	ravb_ring_free(ndev, RAVB_NC);
1472 
1473 	/* Device init */
1474 	error = ravb_dmac_init(ndev);
1475 	if (error) {
1476 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1477 		 * should return here to avoid re-enabling the TX and RX in
1478 		 * ravb_emac_init().
1479 		 */
1480 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1481 			   __func__, error);
1482 		return;
1483 	}
1484 	ravb_emac_init(ndev);
1485 
1486 out:
1487 	/* Initialise PTP Clock driver */
1488 	if (priv->chip_id == RCAR_GEN2)
1489 		ravb_ptp_init(ndev, priv->pdev);
1490 
1491 	netif_tx_start_all_queues(ndev);
1492 }
1493 
1494 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)1495 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1496 {
1497 	struct ravb_private *priv = netdev_priv(ndev);
1498 	u16 q = skb_get_queue_mapping(skb);
1499 	struct ravb_tstamp_skb *ts_skb;
1500 	struct ravb_tx_desc *desc;
1501 	unsigned long flags;
1502 	u32 dma_addr;
1503 	void *buffer;
1504 	u32 entry;
1505 	u32 len;
1506 
1507 	spin_lock_irqsave(&priv->lock, flags);
1508 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1509 	    NUM_TX_DESC) {
1510 		netif_err(priv, tx_queued, ndev,
1511 			  "still transmitting with the full ring!\n");
1512 		netif_stop_subqueue(ndev, q);
1513 		spin_unlock_irqrestore(&priv->lock, flags);
1514 		return NETDEV_TX_BUSY;
1515 	}
1516 
1517 	if (skb_put_padto(skb, ETH_ZLEN))
1518 		goto exit;
1519 
1520 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1521 	priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1522 
1523 	buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1524 		 entry / NUM_TX_DESC * DPTR_ALIGN;
1525 	len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1526 	/* Zero length DMA descriptors are problematic as they seem to
1527 	 * terminate DMA transfers. Avoid them by simply using a length of
1528 	 * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
1529 	 *
1530 	 * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
1531 	 * data by the call to skb_put_padto() above this is safe with
1532 	 * respect to both the length of the first DMA descriptor (len)
1533 	 * overflowing the available data and the length of the second DMA
1534 	 * descriptor (skb->len - len) being negative.
1535 	 */
1536 	if (len == 0)
1537 		len = DPTR_ALIGN;
1538 
1539 	memcpy(buffer, skb->data, len);
1540 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1541 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1542 		goto drop;
1543 
1544 	desc = &priv->tx_ring[q][entry];
1545 	desc->ds_tagl = cpu_to_le16(len);
1546 	desc->dptr = cpu_to_le32(dma_addr);
1547 
1548 	buffer = skb->data + len;
1549 	len = skb->len - len;
1550 	dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1551 	if (dma_mapping_error(ndev->dev.parent, dma_addr))
1552 		goto unmap;
1553 
1554 	desc++;
1555 	desc->ds_tagl = cpu_to_le16(len);
1556 	desc->dptr = cpu_to_le32(dma_addr);
1557 
1558 	/* TX timestamp required */
1559 	if (q == RAVB_NC) {
1560 		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1561 		if (!ts_skb) {
1562 			desc--;
1563 			dma_unmap_single(ndev->dev.parent, dma_addr, len,
1564 					 DMA_TO_DEVICE);
1565 			goto unmap;
1566 		}
1567 		ts_skb->skb = skb_get(skb);
1568 		ts_skb->tag = priv->ts_skb_tag++;
1569 		priv->ts_skb_tag &= 0x3ff;
1570 		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1571 
1572 		/* TAG and timestamp required flag */
1573 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1574 		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1575 		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1576 	}
1577 
1578 	skb_tx_timestamp(skb);
1579 	/* Descriptor type must be set after all the above writes */
1580 	dma_wmb();
1581 	desc->die_dt = DT_FEND;
1582 	desc--;
1583 	desc->die_dt = DT_FSTART;
1584 
1585 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1586 
1587 	priv->cur_tx[q] += NUM_TX_DESC;
1588 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1589 	    (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
1590 	    !ravb_tx_free(ndev, q, true))
1591 		netif_stop_subqueue(ndev, q);
1592 
1593 exit:
1594 	mmiowb();
1595 	spin_unlock_irqrestore(&priv->lock, flags);
1596 	return NETDEV_TX_OK;
1597 
1598 unmap:
1599 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1600 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1601 drop:
1602 	dev_kfree_skb_any(skb);
1603 	priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1604 	goto exit;
1605 }
1606 
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)1607 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1608 			     struct net_device *sb_dev,
1609 			     select_queue_fallback_t fallback)
1610 {
1611 	/* If skb needs TX timestamp, it is handled in network control queue */
1612 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1613 							       RAVB_BE;
1614 
1615 }
1616 
ravb_get_stats(struct net_device * ndev)1617 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1618 {
1619 	struct ravb_private *priv = netdev_priv(ndev);
1620 	struct net_device_stats *nstats, *stats0, *stats1;
1621 
1622 	nstats = &ndev->stats;
1623 	stats0 = &priv->stats[RAVB_BE];
1624 	stats1 = &priv->stats[RAVB_NC];
1625 
1626 	nstats->tx_dropped += ravb_read(ndev, TROCR);
1627 	ravb_write(ndev, 0, TROCR);	/* (write clear) */
1628 	nstats->collisions += ravb_read(ndev, CDCR);
1629 	ravb_write(ndev, 0, CDCR);	/* (write clear) */
1630 	nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1631 	ravb_write(ndev, 0, LCCR);	/* (write clear) */
1632 
1633 	nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1634 	ravb_write(ndev, 0, CERCR);	/* (write clear) */
1635 	nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1636 	ravb_write(ndev, 0, CEECR);	/* (write clear) */
1637 
1638 	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1639 	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1640 	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1641 	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1642 	nstats->multicast = stats0->multicast + stats1->multicast;
1643 	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1644 	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1645 	nstats->rx_frame_errors =
1646 		stats0->rx_frame_errors + stats1->rx_frame_errors;
1647 	nstats->rx_length_errors =
1648 		stats0->rx_length_errors + stats1->rx_length_errors;
1649 	nstats->rx_missed_errors =
1650 		stats0->rx_missed_errors + stats1->rx_missed_errors;
1651 	nstats->rx_over_errors =
1652 		stats0->rx_over_errors + stats1->rx_over_errors;
1653 
1654 	return nstats;
1655 }
1656 
1657 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)1658 static void ravb_set_rx_mode(struct net_device *ndev)
1659 {
1660 	struct ravb_private *priv = netdev_priv(ndev);
1661 	unsigned long flags;
1662 
1663 	spin_lock_irqsave(&priv->lock, flags);
1664 	ravb_modify(ndev, ECMR, ECMR_PRM,
1665 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1666 	mmiowb();
1667 	spin_unlock_irqrestore(&priv->lock, flags);
1668 }
1669 
1670 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)1671 static int ravb_close(struct net_device *ndev)
1672 {
1673 	struct device_node *np = ndev->dev.parent->of_node;
1674 	struct ravb_private *priv = netdev_priv(ndev);
1675 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1676 
1677 	netif_tx_stop_all_queues(ndev);
1678 
1679 	/* Disable interrupts by clearing the interrupt masks. */
1680 	ravb_write(ndev, 0, RIC0);
1681 	ravb_write(ndev, 0, RIC2);
1682 	ravb_write(ndev, 0, TIC);
1683 
1684 	/* Stop PTP Clock driver */
1685 	if (priv->chip_id == RCAR_GEN2)
1686 		ravb_ptp_stop(ndev);
1687 
1688 	/* Set the config mode to stop the AVB-DMAC's processes */
1689 	if (ravb_stop_dma(ndev) < 0)
1690 		netdev_err(ndev,
1691 			   "device will be stopped after h/w processes are done.\n");
1692 
1693 	/* Clear the timestamp list */
1694 	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1695 		list_del(&ts_skb->list);
1696 		kfree_skb(ts_skb->skb);
1697 		kfree(ts_skb);
1698 	}
1699 
1700 	/* PHY disconnect */
1701 	if (ndev->phydev) {
1702 		phy_stop(ndev->phydev);
1703 		phy_disconnect(ndev->phydev);
1704 		if (of_phy_is_fixed_link(np))
1705 			of_phy_deregister_fixed_link(np);
1706 	}
1707 
1708 	if (priv->chip_id != RCAR_GEN2) {
1709 		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1710 		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1711 		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1712 		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1713 		free_irq(priv->emac_irq, ndev);
1714 	}
1715 	free_irq(ndev->irq, ndev);
1716 
1717 	napi_disable(&priv->napi[RAVB_NC]);
1718 	napi_disable(&priv->napi[RAVB_BE]);
1719 
1720 	/* Free all the skb's in the RX queue and the DMA buffers. */
1721 	ravb_ring_free(ndev, RAVB_BE);
1722 	ravb_ring_free(ndev, RAVB_NC);
1723 
1724 	return 0;
1725 }
1726 
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)1727 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1728 {
1729 	struct ravb_private *priv = netdev_priv(ndev);
1730 	struct hwtstamp_config config;
1731 
1732 	config.flags = 0;
1733 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1734 						HWTSTAMP_TX_OFF;
1735 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
1736 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
1737 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1738 		break;
1739 	case RAVB_RXTSTAMP_TYPE_ALL:
1740 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1741 		break;
1742 	default:
1743 		config.rx_filter = HWTSTAMP_FILTER_NONE;
1744 	}
1745 
1746 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1747 		-EFAULT : 0;
1748 }
1749 
1750 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)1751 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1752 {
1753 	struct ravb_private *priv = netdev_priv(ndev);
1754 	struct hwtstamp_config config;
1755 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1756 	u32 tstamp_tx_ctrl;
1757 
1758 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1759 		return -EFAULT;
1760 
1761 	/* Reserved for future extensions */
1762 	if (config.flags)
1763 		return -EINVAL;
1764 
1765 	switch (config.tx_type) {
1766 	case HWTSTAMP_TX_OFF:
1767 		tstamp_tx_ctrl = 0;
1768 		break;
1769 	case HWTSTAMP_TX_ON:
1770 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1771 		break;
1772 	default:
1773 		return -ERANGE;
1774 	}
1775 
1776 	switch (config.rx_filter) {
1777 	case HWTSTAMP_FILTER_NONE:
1778 		tstamp_rx_ctrl = 0;
1779 		break;
1780 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1781 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1782 		break;
1783 	default:
1784 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1785 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1786 	}
1787 
1788 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1789 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1790 
1791 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1792 		-EFAULT : 0;
1793 }
1794 
1795 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)1796 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1797 {
1798 	struct phy_device *phydev = ndev->phydev;
1799 
1800 	if (!netif_running(ndev))
1801 		return -EINVAL;
1802 
1803 	if (!phydev)
1804 		return -ENODEV;
1805 
1806 	switch (cmd) {
1807 	case SIOCGHWTSTAMP:
1808 		return ravb_hwtstamp_get(ndev, req);
1809 	case SIOCSHWTSTAMP:
1810 		return ravb_hwtstamp_set(ndev, req);
1811 	}
1812 
1813 	return phy_mii_ioctl(phydev, req, cmd);
1814 }
1815 
ravb_change_mtu(struct net_device * ndev,int new_mtu)1816 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1817 {
1818 	if (netif_running(ndev))
1819 		return -EBUSY;
1820 
1821 	ndev->mtu = new_mtu;
1822 	netdev_update_features(ndev);
1823 
1824 	return 0;
1825 }
1826 
ravb_set_rx_csum(struct net_device * ndev,bool enable)1827 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1828 {
1829 	struct ravb_private *priv = netdev_priv(ndev);
1830 	unsigned long flags;
1831 
1832 	spin_lock_irqsave(&priv->lock, flags);
1833 
1834 	/* Disable TX and RX */
1835 	ravb_rcv_snd_disable(ndev);
1836 
1837 	/* Modify RX Checksum setting */
1838 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1839 
1840 	/* Enable TX and RX */
1841 	ravb_rcv_snd_enable(ndev);
1842 
1843 	spin_unlock_irqrestore(&priv->lock, flags);
1844 }
1845 
ravb_set_features(struct net_device * ndev,netdev_features_t features)1846 static int ravb_set_features(struct net_device *ndev,
1847 			     netdev_features_t features)
1848 {
1849 	netdev_features_t changed = ndev->features ^ features;
1850 
1851 	if (changed & NETIF_F_RXCSUM)
1852 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1853 
1854 	ndev->features = features;
1855 
1856 	return 0;
1857 }
1858 
1859 static const struct net_device_ops ravb_netdev_ops = {
1860 	.ndo_open		= ravb_open,
1861 	.ndo_stop		= ravb_close,
1862 	.ndo_start_xmit		= ravb_start_xmit,
1863 	.ndo_select_queue	= ravb_select_queue,
1864 	.ndo_get_stats		= ravb_get_stats,
1865 	.ndo_set_rx_mode	= ravb_set_rx_mode,
1866 	.ndo_tx_timeout		= ravb_tx_timeout,
1867 	.ndo_do_ioctl		= ravb_do_ioctl,
1868 	.ndo_change_mtu		= ravb_change_mtu,
1869 	.ndo_validate_addr	= eth_validate_addr,
1870 	.ndo_set_mac_address	= eth_mac_addr,
1871 	.ndo_set_features	= ravb_set_features,
1872 };
1873 
1874 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)1875 static int ravb_mdio_init(struct ravb_private *priv)
1876 {
1877 	struct platform_device *pdev = priv->pdev;
1878 	struct device *dev = &pdev->dev;
1879 	int error;
1880 
1881 	/* Bitbang init */
1882 	priv->mdiobb.ops = &bb_ops;
1883 
1884 	/* MII controller setting */
1885 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1886 	if (!priv->mii_bus)
1887 		return -ENOMEM;
1888 
1889 	/* Hook up MII support for ethtool */
1890 	priv->mii_bus->name = "ravb_mii";
1891 	priv->mii_bus->parent = dev;
1892 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1893 		 pdev->name, pdev->id);
1894 
1895 	/* Register MDIO bus */
1896 	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1897 	if (error)
1898 		goto out_free_bus;
1899 
1900 	return 0;
1901 
1902 out_free_bus:
1903 	free_mdio_bitbang(priv->mii_bus);
1904 	return error;
1905 }
1906 
1907 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)1908 static int ravb_mdio_release(struct ravb_private *priv)
1909 {
1910 	/* Unregister mdio bus */
1911 	mdiobus_unregister(priv->mii_bus);
1912 
1913 	/* Free bitbang info */
1914 	free_mdio_bitbang(priv->mii_bus);
1915 
1916 	return 0;
1917 }
1918 
1919 static const struct of_device_id ravb_match_table[] = {
1920 	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1921 	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1922 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1923 	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1924 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1925 	{ }
1926 };
1927 MODULE_DEVICE_TABLE(of, ravb_match_table);
1928 
ravb_set_gti(struct net_device * ndev)1929 static int ravb_set_gti(struct net_device *ndev)
1930 {
1931 	struct ravb_private *priv = netdev_priv(ndev);
1932 	struct device *dev = ndev->dev.parent;
1933 	unsigned long rate;
1934 	uint64_t inc;
1935 
1936 	rate = clk_get_rate(priv->clk);
1937 	if (!rate)
1938 		return -EINVAL;
1939 
1940 	inc = 1000000000ULL << 20;
1941 	do_div(inc, rate);
1942 
1943 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1944 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1945 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1946 		return -EINVAL;
1947 	}
1948 
1949 	ravb_write(ndev, inc, GTI);
1950 
1951 	return 0;
1952 }
1953 
ravb_set_config_mode(struct net_device * ndev)1954 static void ravb_set_config_mode(struct net_device *ndev)
1955 {
1956 	struct ravb_private *priv = netdev_priv(ndev);
1957 
1958 	if (priv->chip_id == RCAR_GEN2) {
1959 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1960 		/* Set CSEL value */
1961 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1962 	} else {
1963 		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1964 			    CCC_GAC | CCC_CSEL_HPB);
1965 	}
1966 }
1967 
1968 /* Set tx and rx clock internal delay modes */
ravb_set_delay_mode(struct net_device * ndev)1969 static void ravb_set_delay_mode(struct net_device *ndev)
1970 {
1971 	struct ravb_private *priv = netdev_priv(ndev);
1972 	int set = 0;
1973 
1974 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1975 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1976 		set |= APSR_DM_RDM;
1977 
1978 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1979 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1980 		set |= APSR_DM_TDM;
1981 
1982 	ravb_modify(ndev, APSR, APSR_DM, set);
1983 }
1984 
ravb_probe(struct platform_device * pdev)1985 static int ravb_probe(struct platform_device *pdev)
1986 {
1987 	struct device_node *np = pdev->dev.of_node;
1988 	struct ravb_private *priv;
1989 	enum ravb_chip_id chip_id;
1990 	struct net_device *ndev;
1991 	int error, irq, q;
1992 	struct resource *res;
1993 	int i;
1994 
1995 	if (!np) {
1996 		dev_err(&pdev->dev,
1997 			"this driver is required to be instantiated from device tree\n");
1998 		return -EINVAL;
1999 	}
2000 
2001 	/* Get base address */
2002 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2003 	if (!res) {
2004 		dev_err(&pdev->dev, "invalid resource\n");
2005 		return -EINVAL;
2006 	}
2007 
2008 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2009 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2010 	if (!ndev)
2011 		return -ENOMEM;
2012 
2013 	ndev->features = NETIF_F_RXCSUM;
2014 	ndev->hw_features = NETIF_F_RXCSUM;
2015 
2016 	pm_runtime_enable(&pdev->dev);
2017 	pm_runtime_get_sync(&pdev->dev);
2018 
2019 	/* The Ether-specific entries in the device structure. */
2020 	ndev->base_addr = res->start;
2021 
2022 	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2023 
2024 	if (chip_id == RCAR_GEN3)
2025 		irq = platform_get_irq_byname(pdev, "ch22");
2026 	else
2027 		irq = platform_get_irq(pdev, 0);
2028 	if (irq < 0) {
2029 		error = irq;
2030 		goto out_release;
2031 	}
2032 	ndev->irq = irq;
2033 
2034 	SET_NETDEV_DEV(ndev, &pdev->dev);
2035 
2036 	priv = netdev_priv(ndev);
2037 	priv->ndev = ndev;
2038 	priv->pdev = pdev;
2039 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2040 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2041 	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2042 	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2043 	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2044 	if (IS_ERR(priv->addr)) {
2045 		error = PTR_ERR(priv->addr);
2046 		goto out_release;
2047 	}
2048 
2049 	spin_lock_init(&priv->lock);
2050 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2051 
2052 	priv->phy_interface = of_get_phy_mode(np);
2053 
2054 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2055 	priv->avb_link_active_low =
2056 		of_property_read_bool(np, "renesas,ether-link-active-low");
2057 
2058 	if (chip_id == RCAR_GEN3) {
2059 		irq = platform_get_irq_byname(pdev, "ch24");
2060 		if (irq < 0) {
2061 			error = irq;
2062 			goto out_release;
2063 		}
2064 		priv->emac_irq = irq;
2065 		for (i = 0; i < NUM_RX_QUEUE; i++) {
2066 			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2067 			if (irq < 0) {
2068 				error = irq;
2069 				goto out_release;
2070 			}
2071 			priv->rx_irqs[i] = irq;
2072 		}
2073 		for (i = 0; i < NUM_TX_QUEUE; i++) {
2074 			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2075 			if (irq < 0) {
2076 				error = irq;
2077 				goto out_release;
2078 			}
2079 			priv->tx_irqs[i] = irq;
2080 		}
2081 	}
2082 
2083 	priv->chip_id = chip_id;
2084 
2085 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2086 	if (IS_ERR(priv->clk)) {
2087 		error = PTR_ERR(priv->clk);
2088 		goto out_release;
2089 	}
2090 
2091 	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2092 	ndev->min_mtu = ETH_MIN_MTU;
2093 
2094 	/* Set function */
2095 	ndev->netdev_ops = &ravb_netdev_ops;
2096 	ndev->ethtool_ops = &ravb_ethtool_ops;
2097 
2098 	/* Set AVB config mode */
2099 	ravb_set_config_mode(ndev);
2100 
2101 	/* Set GTI value */
2102 	error = ravb_set_gti(ndev);
2103 	if (error)
2104 		goto out_release;
2105 
2106 	/* Request GTI loading */
2107 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2108 
2109 	if (priv->chip_id != RCAR_GEN2)
2110 		ravb_set_delay_mode(ndev);
2111 
2112 	/* Allocate descriptor base address table */
2113 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2114 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2115 					    &priv->desc_bat_dma, GFP_KERNEL);
2116 	if (!priv->desc_bat) {
2117 		dev_err(&pdev->dev,
2118 			"Cannot allocate desc base address table (size %d bytes)\n",
2119 			priv->desc_bat_size);
2120 		error = -ENOMEM;
2121 		goto out_release;
2122 	}
2123 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2124 		priv->desc_bat[q].die_dt = DT_EOS;
2125 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2126 
2127 	/* Initialise HW timestamp list */
2128 	INIT_LIST_HEAD(&priv->ts_skb_list);
2129 
2130 	/* Initialise PTP Clock driver */
2131 	if (chip_id != RCAR_GEN2)
2132 		ravb_ptp_init(ndev, pdev);
2133 
2134 	/* Debug message level */
2135 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2136 
2137 	/* Read and set MAC address */
2138 	ravb_read_mac_address(ndev, of_get_mac_address(np));
2139 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2140 		dev_warn(&pdev->dev,
2141 			 "no valid MAC address supplied, using a random one\n");
2142 		eth_hw_addr_random(ndev);
2143 	}
2144 
2145 	/* MDIO bus init */
2146 	error = ravb_mdio_init(priv);
2147 	if (error) {
2148 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2149 		goto out_dma_free;
2150 	}
2151 
2152 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2153 	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2154 
2155 	/* Network device register */
2156 	error = register_netdev(ndev);
2157 	if (error)
2158 		goto out_napi_del;
2159 
2160 	device_set_wakeup_capable(&pdev->dev, 1);
2161 
2162 	/* Print device information */
2163 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2164 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2165 
2166 	platform_set_drvdata(pdev, ndev);
2167 
2168 	return 0;
2169 
2170 out_napi_del:
2171 	netif_napi_del(&priv->napi[RAVB_NC]);
2172 	netif_napi_del(&priv->napi[RAVB_BE]);
2173 	ravb_mdio_release(priv);
2174 out_dma_free:
2175 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2176 			  priv->desc_bat_dma);
2177 
2178 	/* Stop PTP Clock driver */
2179 	if (chip_id != RCAR_GEN2)
2180 		ravb_ptp_stop(ndev);
2181 out_release:
2182 	free_netdev(ndev);
2183 
2184 	pm_runtime_put(&pdev->dev);
2185 	pm_runtime_disable(&pdev->dev);
2186 	return error;
2187 }
2188 
ravb_remove(struct platform_device * pdev)2189 static int ravb_remove(struct platform_device *pdev)
2190 {
2191 	struct net_device *ndev = platform_get_drvdata(pdev);
2192 	struct ravb_private *priv = netdev_priv(ndev);
2193 
2194 	/* Stop PTP Clock driver */
2195 	if (priv->chip_id != RCAR_GEN2)
2196 		ravb_ptp_stop(ndev);
2197 
2198 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2199 			  priv->desc_bat_dma);
2200 	/* Set reset mode */
2201 	ravb_write(ndev, CCC_OPC_RESET, CCC);
2202 	pm_runtime_put_sync(&pdev->dev);
2203 	unregister_netdev(ndev);
2204 	netif_napi_del(&priv->napi[RAVB_NC]);
2205 	netif_napi_del(&priv->napi[RAVB_BE]);
2206 	ravb_mdio_release(priv);
2207 	pm_runtime_disable(&pdev->dev);
2208 	free_netdev(ndev);
2209 	platform_set_drvdata(pdev, NULL);
2210 
2211 	return 0;
2212 }
2213 
ravb_wol_setup(struct net_device * ndev)2214 static int ravb_wol_setup(struct net_device *ndev)
2215 {
2216 	struct ravb_private *priv = netdev_priv(ndev);
2217 
2218 	/* Disable interrupts by clearing the interrupt masks. */
2219 	ravb_write(ndev, 0, RIC0);
2220 	ravb_write(ndev, 0, RIC2);
2221 	ravb_write(ndev, 0, TIC);
2222 
2223 	/* Only allow ECI interrupts */
2224 	synchronize_irq(priv->emac_irq);
2225 	napi_disable(&priv->napi[RAVB_NC]);
2226 	napi_disable(&priv->napi[RAVB_BE]);
2227 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2228 
2229 	/* Enable MagicPacket */
2230 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2231 
2232 	return enable_irq_wake(priv->emac_irq);
2233 }
2234 
ravb_wol_restore(struct net_device * ndev)2235 static int ravb_wol_restore(struct net_device *ndev)
2236 {
2237 	struct ravb_private *priv = netdev_priv(ndev);
2238 	int ret;
2239 
2240 	napi_enable(&priv->napi[RAVB_NC]);
2241 	napi_enable(&priv->napi[RAVB_BE]);
2242 
2243 	/* Disable MagicPacket */
2244 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2245 
2246 	ret = ravb_close(ndev);
2247 	if (ret < 0)
2248 		return ret;
2249 
2250 	return disable_irq_wake(priv->emac_irq);
2251 }
2252 
ravb_suspend(struct device * dev)2253 static int __maybe_unused ravb_suspend(struct device *dev)
2254 {
2255 	struct net_device *ndev = dev_get_drvdata(dev);
2256 	struct ravb_private *priv = netdev_priv(ndev);
2257 	int ret;
2258 
2259 	if (!netif_running(ndev))
2260 		return 0;
2261 
2262 	netif_device_detach(ndev);
2263 
2264 	if (priv->wol_enabled)
2265 		ret = ravb_wol_setup(ndev);
2266 	else
2267 		ret = ravb_close(ndev);
2268 
2269 	return ret;
2270 }
2271 
ravb_resume(struct device * dev)2272 static int __maybe_unused ravb_resume(struct device *dev)
2273 {
2274 	struct net_device *ndev = dev_get_drvdata(dev);
2275 	struct ravb_private *priv = netdev_priv(ndev);
2276 	int ret = 0;
2277 
2278 	/* If WoL is enabled set reset mode to rearm the WoL logic */
2279 	if (priv->wol_enabled)
2280 		ravb_write(ndev, CCC_OPC_RESET, CCC);
2281 
2282 	/* All register have been reset to default values.
2283 	 * Restore all registers which where setup at probe time and
2284 	 * reopen device if it was running before system suspended.
2285 	 */
2286 
2287 	/* Set AVB config mode */
2288 	ravb_set_config_mode(ndev);
2289 
2290 	/* Set GTI value */
2291 	ret = ravb_set_gti(ndev);
2292 	if (ret)
2293 		return ret;
2294 
2295 	/* Request GTI loading */
2296 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2297 
2298 	if (priv->chip_id != RCAR_GEN2)
2299 		ravb_set_delay_mode(ndev);
2300 
2301 	/* Restore descriptor base address table */
2302 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2303 
2304 	if (netif_running(ndev)) {
2305 		if (priv->wol_enabled) {
2306 			ret = ravb_wol_restore(ndev);
2307 			if (ret)
2308 				return ret;
2309 		}
2310 		ret = ravb_open(ndev);
2311 		if (ret < 0)
2312 			return ret;
2313 		netif_device_attach(ndev);
2314 	}
2315 
2316 	return ret;
2317 }
2318 
ravb_runtime_nop(struct device * dev)2319 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2320 {
2321 	/* Runtime PM callback shared between ->runtime_suspend()
2322 	 * and ->runtime_resume(). Simply returns success.
2323 	 *
2324 	 * This driver re-initializes all registers after
2325 	 * pm_runtime_get_sync() anyway so there is no need
2326 	 * to save and restore registers here.
2327 	 */
2328 	return 0;
2329 }
2330 
2331 static const struct dev_pm_ops ravb_dev_pm_ops = {
2332 	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2333 	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2334 };
2335 
2336 static struct platform_driver ravb_driver = {
2337 	.probe		= ravb_probe,
2338 	.remove		= ravb_remove,
2339 	.driver = {
2340 		.name	= "ravb",
2341 		.pm	= &ravb_dev_pm_ops,
2342 		.of_match_table = ravb_match_table,
2343 	},
2344 };
2345 
2346 module_platform_driver(ravb_driver);
2347 
2348 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2349 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2350 MODULE_LICENSE("GPL v2");
2351