• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/phy.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/ptp_clock_kernel.h>
35 
36 #include "dp83640_reg.h"
37 
38 #define DP83640_PHY_ID	0x20005ce1
39 #define PAGESEL		0x13
40 #define MAX_RXTS	64
41 #define N_EXT_TS	6
42 #define N_PER_OUT	7
43 #define PSF_PTPVER	2
44 #define PSF_EVNT	0x4000
45 #define PSF_RX		0x2000
46 #define PSF_TX		0x1000
47 #define EXT_EVENT	1
48 #define CAL_EVENT	7
49 #define CAL_TRIGGER	1
50 #define DP83640_N_PINS	12
51 
52 #define MII_DP83640_MICR 0x11
53 #define MII_DP83640_MISR 0x12
54 
55 #define MII_DP83640_MICR_OE 0x1
56 #define MII_DP83640_MICR_IE 0x2
57 
58 #define MII_DP83640_MISR_RHF_INT_EN 0x01
59 #define MII_DP83640_MISR_FHF_INT_EN 0x02
60 #define MII_DP83640_MISR_ANC_INT_EN 0x04
61 #define MII_DP83640_MISR_DUP_INT_EN 0x08
62 #define MII_DP83640_MISR_SPD_INT_EN 0x10
63 #define MII_DP83640_MISR_LINK_INT_EN 0x20
64 #define MII_DP83640_MISR_ED_INT_EN 0x40
65 #define MII_DP83640_MISR_LQ_INT_EN 0x80
66 
67 /* phyter seems to miss the mark by 16 ns */
68 #define ADJTIME_FIX	16
69 
70 #define SKB_TIMESTAMP_TIMEOUT	2 /* jiffies */
71 
72 #if defined(__BIG_ENDIAN)
73 #define ENDIAN_FLAG	0
74 #elif defined(__LITTLE_ENDIAN)
75 #define ENDIAN_FLAG	PSF_ENDIAN
76 #endif
77 
78 struct dp83640_skb_info {
79 	int ptp_type;
80 	unsigned long tmo;
81 };
82 
83 struct phy_rxts {
84 	u16 ns_lo;   /* ns[15:0] */
85 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
86 	u16 sec_lo;  /* sec[15:0] */
87 	u16 sec_hi;  /* sec[31:16] */
88 	u16 seqid;   /* sequenceId[15:0] */
89 	u16 msgtype; /* messageType[3:0], hash[11:0] */
90 };
91 
92 struct phy_txts {
93 	u16 ns_lo;   /* ns[15:0] */
94 	u16 ns_hi;   /* overflow[1:0], ns[29:16] */
95 	u16 sec_lo;  /* sec[15:0] */
96 	u16 sec_hi;  /* sec[31:16] */
97 };
98 
99 struct rxts {
100 	struct list_head list;
101 	unsigned long tmo;
102 	u64 ns;
103 	u16 seqid;
104 	u8  msgtype;
105 	u16 hash;
106 };
107 
108 struct dp83640_clock;
109 
110 struct dp83640_private {
111 	struct list_head list;
112 	struct dp83640_clock *clock;
113 	struct phy_device *phydev;
114 	struct delayed_work ts_work;
115 	int hwts_tx_en;
116 	int hwts_rx_en;
117 	int layer;
118 	int version;
119 	/* remember state of cfg0 during calibration */
120 	int cfg0;
121 	/* remember the last event time stamp */
122 	struct phy_txts edata;
123 	/* list of rx timestamps */
124 	struct list_head rxts;
125 	struct list_head rxpool;
126 	struct rxts rx_pool_data[MAX_RXTS];
127 	/* protects above three fields from concurrent access */
128 	spinlock_t rx_lock;
129 	/* queues of incoming and outgoing packets */
130 	struct sk_buff_head rx_queue;
131 	struct sk_buff_head tx_queue;
132 };
133 
134 struct dp83640_clock {
135 	/* keeps the instance in the 'phyter_clocks' list */
136 	struct list_head list;
137 	/* we create one clock instance per MII bus */
138 	struct mii_bus *bus;
139 	/* protects extended registers from concurrent access */
140 	struct mutex extreg_lock;
141 	/* remembers which page was last selected */
142 	int page;
143 	/* our advertised capabilities */
144 	struct ptp_clock_info caps;
145 	/* protects the three fields below from concurrent access */
146 	struct mutex clock_lock;
147 	/* the one phyter from which we shall read */
148 	struct dp83640_private *chosen;
149 	/* list of the other attached phyters, not chosen */
150 	struct list_head phylist;
151 	/* reference to our PTP hardware clock */
152 	struct ptp_clock *ptp_clock;
153 };
154 
155 /* globals */
156 
157 enum {
158 	CALIBRATE_GPIO,
159 	PEROUT_GPIO,
160 	EXTTS0_GPIO,
161 	EXTTS1_GPIO,
162 	EXTTS2_GPIO,
163 	EXTTS3_GPIO,
164 	EXTTS4_GPIO,
165 	EXTTS5_GPIO,
166 	GPIO_TABLE_SIZE
167 };
168 
169 static int chosen_phy = -1;
170 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
171 	1, 2, 3, 4, 8, 9, 10, 11
172 };
173 
174 module_param(chosen_phy, int, 0444);
175 module_param_array(gpio_tab, ushort, NULL, 0444);
176 
177 MODULE_PARM_DESC(chosen_phy, \
178 	"The address of the PHY to use for the ancillary clock features");
179 MODULE_PARM_DESC(gpio_tab, \
180 	"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
181 
dp83640_gpio_defaults(struct ptp_pin_desc * pd)182 static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
183 {
184 	int i, index;
185 
186 	for (i = 0; i < DP83640_N_PINS; i++) {
187 		snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
188 		pd[i].index = i;
189 	}
190 
191 	for (i = 0; i < GPIO_TABLE_SIZE; i++) {
192 		if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
193 			pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
194 			return;
195 		}
196 	}
197 
198 	index = gpio_tab[CALIBRATE_GPIO] - 1;
199 	pd[index].func = PTP_PF_PHYSYNC;
200 	pd[index].chan = 0;
201 
202 	index = gpio_tab[PEROUT_GPIO] - 1;
203 	pd[index].func = PTP_PF_PEROUT;
204 	pd[index].chan = 0;
205 
206 	for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
207 		index = gpio_tab[i] - 1;
208 		pd[index].func = PTP_PF_EXTTS;
209 		pd[index].chan = i - EXTTS0_GPIO;
210 	}
211 }
212 
213 /* a list of clocks and a mutex to protect it */
214 static LIST_HEAD(phyter_clocks);
215 static DEFINE_MUTEX(phyter_clocks_lock);
216 
217 static void rx_timestamp_work(struct work_struct *work);
218 
219 /* extended register access functions */
220 
221 #define BROADCAST_ADDR 31
222 
broadcast_write(struct phy_device * phydev,u32 regnum,u16 val)223 static inline int broadcast_write(struct phy_device *phydev, u32 regnum,
224 				  u16 val)
225 {
226 	return mdiobus_write(phydev->mdio.bus, BROADCAST_ADDR, regnum, val);
227 }
228 
229 /* Caller must hold extreg_lock. */
ext_read(struct phy_device * phydev,int page,u32 regnum)230 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
231 {
232 	struct dp83640_private *dp83640 = phydev->priv;
233 	int val;
234 
235 	if (dp83640->clock->page != page) {
236 		broadcast_write(phydev, PAGESEL, page);
237 		dp83640->clock->page = page;
238 	}
239 	val = phy_read(phydev, regnum);
240 
241 	return val;
242 }
243 
244 /* Caller must hold extreg_lock. */
ext_write(int broadcast,struct phy_device * phydev,int page,u32 regnum,u16 val)245 static void ext_write(int broadcast, struct phy_device *phydev,
246 		      int page, u32 regnum, u16 val)
247 {
248 	struct dp83640_private *dp83640 = phydev->priv;
249 
250 	if (dp83640->clock->page != page) {
251 		broadcast_write(phydev, PAGESEL, page);
252 		dp83640->clock->page = page;
253 	}
254 	if (broadcast)
255 		broadcast_write(phydev, regnum, val);
256 	else
257 		phy_write(phydev, regnum, val);
258 }
259 
260 /* Caller must hold extreg_lock. */
tdr_write(int bc,struct phy_device * dev,const struct timespec64 * ts,u16 cmd)261 static int tdr_write(int bc, struct phy_device *dev,
262 		     const struct timespec64 *ts, u16 cmd)
263 {
264 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
265 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
266 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
267 	ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
268 
269 	ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
270 
271 	return 0;
272 }
273 
274 /* convert phy timestamps into driver timestamps */
275 
phy2rxts(struct phy_rxts * p,struct rxts * rxts)276 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
277 {
278 	u32 sec;
279 
280 	sec = p->sec_lo;
281 	sec |= p->sec_hi << 16;
282 
283 	rxts->ns = p->ns_lo;
284 	rxts->ns |= (p->ns_hi & 0x3fff) << 16;
285 	rxts->ns += ((u64)sec) * 1000000000ULL;
286 	rxts->seqid = p->seqid;
287 	rxts->msgtype = (p->msgtype >> 12) & 0xf;
288 	rxts->hash = p->msgtype & 0x0fff;
289 	rxts->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
290 }
291 
phy2txts(struct phy_txts * p)292 static u64 phy2txts(struct phy_txts *p)
293 {
294 	u64 ns;
295 	u32 sec;
296 
297 	sec = p->sec_lo;
298 	sec |= p->sec_hi << 16;
299 
300 	ns = p->ns_lo;
301 	ns |= (p->ns_hi & 0x3fff) << 16;
302 	ns += ((u64)sec) * 1000000000ULL;
303 
304 	return ns;
305 }
306 
periodic_output(struct dp83640_clock * clock,struct ptp_clock_request * clkreq,bool on,int trigger)307 static int periodic_output(struct dp83640_clock *clock,
308 			   struct ptp_clock_request *clkreq, bool on,
309 			   int trigger)
310 {
311 	struct dp83640_private *dp83640 = clock->chosen;
312 	struct phy_device *phydev = dp83640->phydev;
313 	u32 sec, nsec, pwidth;
314 	u16 gpio, ptp_trig, val;
315 
316 	if (on) {
317 		gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT,
318 					trigger);
319 		if (gpio < 1)
320 			return -EINVAL;
321 	} else {
322 		gpio = 0;
323 	}
324 
325 	ptp_trig = TRIG_WR |
326 		(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
327 		(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
328 		TRIG_PER |
329 		TRIG_PULSE;
330 
331 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
332 
333 	if (!on) {
334 		val |= TRIG_DIS;
335 		mutex_lock(&clock->extreg_lock);
336 		ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
337 		ext_write(0, phydev, PAGE4, PTP_CTL, val);
338 		mutex_unlock(&clock->extreg_lock);
339 		return 0;
340 	}
341 
342 	sec = clkreq->perout.start.sec;
343 	nsec = clkreq->perout.start.nsec;
344 	pwidth = clkreq->perout.period.sec * 1000000000UL;
345 	pwidth += clkreq->perout.period.nsec;
346 	pwidth /= 2;
347 
348 	mutex_lock(&clock->extreg_lock);
349 
350 	ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
351 
352 	/*load trigger*/
353 	val |= TRIG_LOAD;
354 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
355 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
356 	ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
357 	ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
358 	ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
359 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
360 	ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);    /* ns[31:16] */
361 	/* Triggers 0 and 1 has programmable pulsewidth2 */
362 	if (trigger < 2) {
363 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
364 		ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
365 	}
366 
367 	/*enable trigger*/
368 	val &= ~TRIG_LOAD;
369 	val |= TRIG_EN;
370 	ext_write(0, phydev, PAGE4, PTP_CTL, val);
371 
372 	mutex_unlock(&clock->extreg_lock);
373 	return 0;
374 }
375 
376 /* ptp clock methods */
377 
ptp_dp83640_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)378 static int ptp_dp83640_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
379 {
380 	struct dp83640_clock *clock =
381 		container_of(ptp, struct dp83640_clock, caps);
382 	struct phy_device *phydev = clock->chosen->phydev;
383 	u64 rate;
384 	int neg_adj = 0;
385 	u16 hi, lo;
386 
387 	if (scaled_ppm < 0) {
388 		neg_adj = 1;
389 		scaled_ppm = -scaled_ppm;
390 	}
391 	rate = scaled_ppm;
392 	rate <<= 13;
393 	rate = div_u64(rate, 15625);
394 
395 	hi = (rate >> 16) & PTP_RATE_HI_MASK;
396 	if (neg_adj)
397 		hi |= PTP_RATE_DIR;
398 
399 	lo = rate & 0xffff;
400 
401 	mutex_lock(&clock->extreg_lock);
402 
403 	ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
404 	ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
405 
406 	mutex_unlock(&clock->extreg_lock);
407 
408 	return 0;
409 }
410 
ptp_dp83640_adjtime(struct ptp_clock_info * ptp,s64 delta)411 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
412 {
413 	struct dp83640_clock *clock =
414 		container_of(ptp, struct dp83640_clock, caps);
415 	struct phy_device *phydev = clock->chosen->phydev;
416 	struct timespec64 ts;
417 	int err;
418 
419 	delta += ADJTIME_FIX;
420 
421 	ts = ns_to_timespec64(delta);
422 
423 	mutex_lock(&clock->extreg_lock);
424 
425 	err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
426 
427 	mutex_unlock(&clock->extreg_lock);
428 
429 	return err;
430 }
431 
ptp_dp83640_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)432 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp,
433 			       struct timespec64 *ts)
434 {
435 	struct dp83640_clock *clock =
436 		container_of(ptp, struct dp83640_clock, caps);
437 	struct phy_device *phydev = clock->chosen->phydev;
438 	unsigned int val[4];
439 
440 	mutex_lock(&clock->extreg_lock);
441 
442 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
443 
444 	val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
445 	val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
446 	val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
447 	val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
448 
449 	mutex_unlock(&clock->extreg_lock);
450 
451 	ts->tv_nsec = val[0] | (val[1] << 16);
452 	ts->tv_sec  = val[2] | (val[3] << 16);
453 
454 	return 0;
455 }
456 
ptp_dp83640_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)457 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
458 			       const struct timespec64 *ts)
459 {
460 	struct dp83640_clock *clock =
461 		container_of(ptp, struct dp83640_clock, caps);
462 	struct phy_device *phydev = clock->chosen->phydev;
463 	int err;
464 
465 	mutex_lock(&clock->extreg_lock);
466 
467 	err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
468 
469 	mutex_unlock(&clock->extreg_lock);
470 
471 	return err;
472 }
473 
ptp_dp83640_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)474 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
475 			      struct ptp_clock_request *rq, int on)
476 {
477 	struct dp83640_clock *clock =
478 		container_of(ptp, struct dp83640_clock, caps);
479 	struct phy_device *phydev = clock->chosen->phydev;
480 	unsigned int index;
481 	u16 evnt, event_num, gpio_num;
482 
483 	switch (rq->type) {
484 	case PTP_CLK_REQ_EXTTS:
485 		index = rq->extts.index;
486 		if (index >= N_EXT_TS)
487 			return -EINVAL;
488 		event_num = EXT_EVENT + index;
489 		evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
490 		if (on) {
491 			gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
492 						    PTP_PF_EXTTS, index);
493 			if (gpio_num < 1)
494 				return -EINVAL;
495 			evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
496 			if (rq->extts.flags & PTP_FALLING_EDGE)
497 				evnt |= EVNT_FALL;
498 			else
499 				evnt |= EVNT_RISE;
500 		}
501 		mutex_lock(&clock->extreg_lock);
502 		ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
503 		mutex_unlock(&clock->extreg_lock);
504 		return 0;
505 
506 	case PTP_CLK_REQ_PEROUT:
507 		if (rq->perout.index >= N_PER_OUT)
508 			return -EINVAL;
509 		return periodic_output(clock, rq, on, rq->perout.index);
510 
511 	default:
512 		break;
513 	}
514 
515 	return -EOPNOTSUPP;
516 }
517 
ptp_dp83640_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)518 static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
519 			      enum ptp_pin_function func, unsigned int chan)
520 {
521 	struct dp83640_clock *clock =
522 		container_of(ptp, struct dp83640_clock, caps);
523 
524 	if (clock->caps.pin_config[pin].func == PTP_PF_PHYSYNC &&
525 	    !list_empty(&clock->phylist))
526 		return 1;
527 
528 	if (func == PTP_PF_PHYSYNC)
529 		return 1;
530 
531 	return 0;
532 }
533 
534 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
535 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
536 
enable_status_frames(struct phy_device * phydev,bool on)537 static void enable_status_frames(struct phy_device *phydev, bool on)
538 {
539 	struct dp83640_private *dp83640 = phydev->priv;
540 	struct dp83640_clock *clock = dp83640->clock;
541 	u16 cfg0 = 0, ver;
542 
543 	if (on)
544 		cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
545 
546 	ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
547 
548 	mutex_lock(&clock->extreg_lock);
549 
550 	ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
551 	ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
552 
553 	mutex_unlock(&clock->extreg_lock);
554 
555 	if (!phydev->attached_dev) {
556 		pr_warn("expected to find an attached netdevice\n");
557 		return;
558 	}
559 
560 	if (on) {
561 		if (dev_mc_add(phydev->attached_dev, status_frame_dst))
562 			pr_warn("failed to add mc address\n");
563 	} else {
564 		if (dev_mc_del(phydev->attached_dev, status_frame_dst))
565 			pr_warn("failed to delete mc address\n");
566 	}
567 }
568 
is_status_frame(struct sk_buff * skb,int type)569 static bool is_status_frame(struct sk_buff *skb, int type)
570 {
571 	struct ethhdr *h = eth_hdr(skb);
572 
573 	if (PTP_CLASS_V2_L2 == type &&
574 	    !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
575 		return true;
576 	else
577 		return false;
578 }
579 
expired(struct rxts * rxts)580 static int expired(struct rxts *rxts)
581 {
582 	return time_after(jiffies, rxts->tmo);
583 }
584 
585 /* Caller must hold rx_lock. */
prune_rx_ts(struct dp83640_private * dp83640)586 static void prune_rx_ts(struct dp83640_private *dp83640)
587 {
588 	struct list_head *this, *next;
589 	struct rxts *rxts;
590 
591 	list_for_each_safe(this, next, &dp83640->rxts) {
592 		rxts = list_entry(this, struct rxts, list);
593 		if (expired(rxts)) {
594 			list_del_init(&rxts->list);
595 			list_add(&rxts->list, &dp83640->rxpool);
596 		}
597 	}
598 }
599 
600 /* synchronize the phyters so they act as one clock */
601 
enable_broadcast(struct phy_device * phydev,int init_page,int on)602 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
603 {
604 	int val;
605 	phy_write(phydev, PAGESEL, 0);
606 	val = phy_read(phydev, PHYCR2);
607 	if (on)
608 		val |= BC_WRITE;
609 	else
610 		val &= ~BC_WRITE;
611 	phy_write(phydev, PHYCR2, val);
612 	phy_write(phydev, PAGESEL, init_page);
613 }
614 
recalibrate(struct dp83640_clock * clock)615 static void recalibrate(struct dp83640_clock *clock)
616 {
617 	s64 now, diff;
618 	struct phy_txts event_ts;
619 	struct timespec64 ts;
620 	struct list_head *this;
621 	struct dp83640_private *tmp;
622 	struct phy_device *master = clock->chosen->phydev;
623 	u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
624 
625 	trigger = CAL_TRIGGER;
626 	cal_gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PHYSYNC, 0);
627 	if (cal_gpio < 1) {
628 		pr_err("PHY calibration pin not available - PHY is not calibrated.");
629 		return;
630 	}
631 
632 	mutex_lock(&clock->extreg_lock);
633 
634 	/*
635 	 * enable broadcast, disable status frames, enable ptp clock
636 	 */
637 	list_for_each(this, &clock->phylist) {
638 		tmp = list_entry(this, struct dp83640_private, list);
639 		enable_broadcast(tmp->phydev, clock->page, 1);
640 		tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
641 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
642 		ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
643 	}
644 	enable_broadcast(master, clock->page, 1);
645 	cfg0 = ext_read(master, PAGE5, PSF_CFG0);
646 	ext_write(0, master, PAGE5, PSF_CFG0, 0);
647 	ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
648 
649 	/*
650 	 * enable an event timestamp
651 	 */
652 	evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
653 	evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
654 	evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
655 
656 	list_for_each(this, &clock->phylist) {
657 		tmp = list_entry(this, struct dp83640_private, list);
658 		ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
659 	}
660 	ext_write(0, master, PAGE5, PTP_EVNT, evnt);
661 
662 	/*
663 	 * configure a trigger
664 	 */
665 	ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
666 	ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
667 	ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
668 	ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
669 
670 	/* load trigger */
671 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
672 	val |= TRIG_LOAD;
673 	ext_write(0, master, PAGE4, PTP_CTL, val);
674 
675 	/* enable trigger */
676 	val &= ~TRIG_LOAD;
677 	val |= TRIG_EN;
678 	ext_write(0, master, PAGE4, PTP_CTL, val);
679 
680 	/* disable trigger */
681 	val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
682 	val |= TRIG_DIS;
683 	ext_write(0, master, PAGE4, PTP_CTL, val);
684 
685 	/*
686 	 * read out and correct offsets
687 	 */
688 	val = ext_read(master, PAGE4, PTP_STS);
689 	pr_info("master PTP_STS  0x%04hx\n", val);
690 	val = ext_read(master, PAGE4, PTP_ESTS);
691 	pr_info("master PTP_ESTS 0x%04hx\n", val);
692 	event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
693 	event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
694 	event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
695 	event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
696 	now = phy2txts(&event_ts);
697 
698 	list_for_each(this, &clock->phylist) {
699 		tmp = list_entry(this, struct dp83640_private, list);
700 		val = ext_read(tmp->phydev, PAGE4, PTP_STS);
701 		pr_info("slave  PTP_STS  0x%04hx\n", val);
702 		val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
703 		pr_info("slave  PTP_ESTS 0x%04hx\n", val);
704 		event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
705 		event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
706 		event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
707 		event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
708 		diff = now - (s64) phy2txts(&event_ts);
709 		pr_info("slave offset %lld nanoseconds\n", diff);
710 		diff += ADJTIME_FIX;
711 		ts = ns_to_timespec64(diff);
712 		tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
713 	}
714 
715 	/*
716 	 * restore status frames
717 	 */
718 	list_for_each(this, &clock->phylist) {
719 		tmp = list_entry(this, struct dp83640_private, list);
720 		ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
721 	}
722 	ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
723 
724 	mutex_unlock(&clock->extreg_lock);
725 }
726 
727 /* time stamping methods */
728 
exts_chan_to_edata(int ch)729 static inline u16 exts_chan_to_edata(int ch)
730 {
731 	return 1 << ((ch + EXT_EVENT) * 2);
732 }
733 
decode_evnt(struct dp83640_private * dp83640,void * data,int len,u16 ests)734 static int decode_evnt(struct dp83640_private *dp83640,
735 		       void *data, int len, u16 ests)
736 {
737 	struct phy_txts *phy_txts;
738 	struct ptp_clock_event event;
739 	int i, parsed;
740 	int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
741 	u16 ext_status = 0;
742 
743 	/* calculate length of the event timestamp status message */
744 	if (ests & MULT_EVNT)
745 		parsed = (words + 2) * sizeof(u16);
746 	else
747 		parsed = (words + 1) * sizeof(u16);
748 
749 	/* check if enough data is available */
750 	if (len < parsed)
751 		return len;
752 
753 	if (ests & MULT_EVNT) {
754 		ext_status = *(u16 *) data;
755 		data += sizeof(ext_status);
756 	}
757 
758 	phy_txts = data;
759 
760 	switch (words) {
761 	case 3:
762 		dp83640->edata.sec_hi = phy_txts->sec_hi;
763 		/* fall through */
764 	case 2:
765 		dp83640->edata.sec_lo = phy_txts->sec_lo;
766 		/* fall through */
767 	case 1:
768 		dp83640->edata.ns_hi = phy_txts->ns_hi;
769 		/* fall through */
770 	case 0:
771 		dp83640->edata.ns_lo = phy_txts->ns_lo;
772 	}
773 
774 	if (!ext_status) {
775 		i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
776 		ext_status = exts_chan_to_edata(i);
777 	}
778 
779 	event.type = PTP_CLOCK_EXTTS;
780 	event.timestamp = phy2txts(&dp83640->edata);
781 
782 	/* Compensate for input path and synchronization delays */
783 	event.timestamp -= 35;
784 
785 	for (i = 0; i < N_EXT_TS; i++) {
786 		if (ext_status & exts_chan_to_edata(i)) {
787 			event.index = i;
788 			ptp_clock_event(dp83640->clock->ptp_clock, &event);
789 		}
790 	}
791 
792 	return parsed;
793 }
794 
795 #define DP83640_PACKET_HASH_OFFSET	20
796 #define DP83640_PACKET_HASH_LEN		10
797 
match(struct sk_buff * skb,unsigned int type,struct rxts * rxts)798 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
799 {
800 	u16 *seqid, hash;
801 	unsigned int offset = 0;
802 	u8 *msgtype, *data = skb_mac_header(skb);
803 
804 	/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
805 
806 	if (type & PTP_CLASS_VLAN)
807 		offset += VLAN_HLEN;
808 
809 	switch (type & PTP_CLASS_PMASK) {
810 	case PTP_CLASS_IPV4:
811 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
812 		break;
813 	case PTP_CLASS_IPV6:
814 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
815 		break;
816 	case PTP_CLASS_L2:
817 		offset += ETH_HLEN;
818 		break;
819 	default:
820 		return 0;
821 	}
822 
823 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
824 		return 0;
825 
826 	if (unlikely(type & PTP_CLASS_V1))
827 		msgtype = data + offset + OFF_PTP_CONTROL;
828 	else
829 		msgtype = data + offset;
830 	if (rxts->msgtype != (*msgtype & 0xf))
831 		return 0;
832 
833 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
834 	if (rxts->seqid != ntohs(*seqid))
835 		return 0;
836 
837 	hash = ether_crc(DP83640_PACKET_HASH_LEN,
838 			 data + offset + DP83640_PACKET_HASH_OFFSET) >> 20;
839 	if (rxts->hash != hash)
840 		return 0;
841 
842 	return 1;
843 }
844 
decode_rxts(struct dp83640_private * dp83640,struct phy_rxts * phy_rxts)845 static void decode_rxts(struct dp83640_private *dp83640,
846 			struct phy_rxts *phy_rxts)
847 {
848 	struct rxts *rxts;
849 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
850 	struct sk_buff *skb;
851 	unsigned long flags;
852 	u8 overflow;
853 
854 	overflow = (phy_rxts->ns_hi >> 14) & 0x3;
855 	if (overflow)
856 		pr_debug("rx timestamp queue overflow, count %d\n", overflow);
857 
858 	spin_lock_irqsave(&dp83640->rx_lock, flags);
859 
860 	prune_rx_ts(dp83640);
861 
862 	if (list_empty(&dp83640->rxpool)) {
863 		pr_debug("rx timestamp pool is empty\n");
864 		goto out;
865 	}
866 	rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
867 	list_del_init(&rxts->list);
868 	phy2rxts(phy_rxts, rxts);
869 
870 	spin_lock(&dp83640->rx_queue.lock);
871 	skb_queue_walk(&dp83640->rx_queue, skb) {
872 		struct dp83640_skb_info *skb_info;
873 
874 		skb_info = (struct dp83640_skb_info *)skb->cb;
875 		if (match(skb, skb_info->ptp_type, rxts)) {
876 			__skb_unlink(skb, &dp83640->rx_queue);
877 			shhwtstamps = skb_hwtstamps(skb);
878 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
879 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
880 			list_add(&rxts->list, &dp83640->rxpool);
881 			break;
882 		}
883 	}
884 	spin_unlock(&dp83640->rx_queue.lock);
885 
886 	if (!shhwtstamps)
887 		list_add_tail(&rxts->list, &dp83640->rxts);
888 out:
889 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
890 
891 	if (shhwtstamps)
892 		netif_rx_ni(skb);
893 }
894 
decode_txts(struct dp83640_private * dp83640,struct phy_txts * phy_txts)895 static void decode_txts(struct dp83640_private *dp83640,
896 			struct phy_txts *phy_txts)
897 {
898 	struct skb_shared_hwtstamps shhwtstamps;
899 	struct dp83640_skb_info *skb_info;
900 	struct sk_buff *skb;
901 	u8 overflow;
902 	u64 ns;
903 
904 	/* We must already have the skb that triggered this. */
905 again:
906 	skb = skb_dequeue(&dp83640->tx_queue);
907 	if (!skb) {
908 		pr_debug("have timestamp but tx_queue empty\n");
909 		return;
910 	}
911 
912 	overflow = (phy_txts->ns_hi >> 14) & 0x3;
913 	if (overflow) {
914 		pr_debug("tx timestamp queue overflow, count %d\n", overflow);
915 		while (skb) {
916 			kfree_skb(skb);
917 			skb = skb_dequeue(&dp83640->tx_queue);
918 		}
919 		return;
920 	}
921 	skb_info = (struct dp83640_skb_info *)skb->cb;
922 	if (time_after(jiffies, skb_info->tmo)) {
923 		kfree_skb(skb);
924 		goto again;
925 	}
926 
927 	ns = phy2txts(phy_txts);
928 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
929 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
930 	skb_complete_tx_timestamp(skb, &shhwtstamps);
931 }
932 
decode_status_frame(struct dp83640_private * dp83640,struct sk_buff * skb)933 static void decode_status_frame(struct dp83640_private *dp83640,
934 				struct sk_buff *skb)
935 {
936 	struct phy_rxts *phy_rxts;
937 	struct phy_txts *phy_txts;
938 	u8 *ptr;
939 	int len, size;
940 	u16 ests, type;
941 
942 	ptr = skb->data + 2;
943 
944 	for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
945 
946 		type = *(u16 *)ptr;
947 		ests = type & 0x0fff;
948 		type = type & 0xf000;
949 		len -= sizeof(type);
950 		ptr += sizeof(type);
951 
952 		if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
953 
954 			phy_rxts = (struct phy_rxts *) ptr;
955 			decode_rxts(dp83640, phy_rxts);
956 			size = sizeof(*phy_rxts);
957 
958 		} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
959 
960 			phy_txts = (struct phy_txts *) ptr;
961 			decode_txts(dp83640, phy_txts);
962 			size = sizeof(*phy_txts);
963 
964 		} else if (PSF_EVNT == type) {
965 
966 			size = decode_evnt(dp83640, ptr, len, ests);
967 
968 		} else {
969 			size = 0;
970 			break;
971 		}
972 		ptr += size;
973 	}
974 }
975 
is_sync(struct sk_buff * skb,int type)976 static int is_sync(struct sk_buff *skb, int type)
977 {
978 	u8 *data = skb->data, *msgtype;
979 	unsigned int offset = 0;
980 
981 	if (type & PTP_CLASS_VLAN)
982 		offset += VLAN_HLEN;
983 
984 	switch (type & PTP_CLASS_PMASK) {
985 	case PTP_CLASS_IPV4:
986 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
987 		break;
988 	case PTP_CLASS_IPV6:
989 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
990 		break;
991 	case PTP_CLASS_L2:
992 		offset += ETH_HLEN;
993 		break;
994 	default:
995 		return 0;
996 	}
997 
998 	if (type & PTP_CLASS_V1)
999 		offset += OFF_PTP_CONTROL;
1000 
1001 	if (skb->len < offset + 1)
1002 		return 0;
1003 
1004 	msgtype = data + offset;
1005 
1006 	return (*msgtype & 0xf) == 0;
1007 }
1008 
dp83640_free_clocks(void)1009 static void dp83640_free_clocks(void)
1010 {
1011 	struct dp83640_clock *clock;
1012 	struct list_head *this, *next;
1013 
1014 	mutex_lock(&phyter_clocks_lock);
1015 
1016 	list_for_each_safe(this, next, &phyter_clocks) {
1017 		clock = list_entry(this, struct dp83640_clock, list);
1018 		if (!list_empty(&clock->phylist)) {
1019 			pr_warn("phy list non-empty while unloading\n");
1020 			BUG();
1021 		}
1022 		list_del(&clock->list);
1023 		mutex_destroy(&clock->extreg_lock);
1024 		mutex_destroy(&clock->clock_lock);
1025 		put_device(&clock->bus->dev);
1026 		kfree(clock->caps.pin_config);
1027 		kfree(clock);
1028 	}
1029 
1030 	mutex_unlock(&phyter_clocks_lock);
1031 }
1032 
dp83640_clock_init(struct dp83640_clock * clock,struct mii_bus * bus)1033 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
1034 {
1035 	INIT_LIST_HEAD(&clock->list);
1036 	clock->bus = bus;
1037 	mutex_init(&clock->extreg_lock);
1038 	mutex_init(&clock->clock_lock);
1039 	INIT_LIST_HEAD(&clock->phylist);
1040 	clock->caps.owner = THIS_MODULE;
1041 	sprintf(clock->caps.name, "dp83640 timer");
1042 	clock->caps.max_adj	= 1953124;
1043 	clock->caps.n_alarm	= 0;
1044 	clock->caps.n_ext_ts	= N_EXT_TS;
1045 	clock->caps.n_per_out	= N_PER_OUT;
1046 	clock->caps.n_pins	= DP83640_N_PINS;
1047 	clock->caps.pps		= 0;
1048 	clock->caps.adjfine	= ptp_dp83640_adjfine;
1049 	clock->caps.adjtime	= ptp_dp83640_adjtime;
1050 	clock->caps.gettime64	= ptp_dp83640_gettime;
1051 	clock->caps.settime64	= ptp_dp83640_settime;
1052 	clock->caps.enable	= ptp_dp83640_enable;
1053 	clock->caps.verify	= ptp_dp83640_verify;
1054 	/*
1055 	 * Convert the module param defaults into a dynamic pin configuration.
1056 	 */
1057 	dp83640_gpio_defaults(clock->caps.pin_config);
1058 	/*
1059 	 * Get a reference to this bus instance.
1060 	 */
1061 	get_device(&bus->dev);
1062 }
1063 
choose_this_phy(struct dp83640_clock * clock,struct phy_device * phydev)1064 static int choose_this_phy(struct dp83640_clock *clock,
1065 			   struct phy_device *phydev)
1066 {
1067 	if (chosen_phy == -1 && !clock->chosen)
1068 		return 1;
1069 
1070 	if (chosen_phy == phydev->mdio.addr)
1071 		return 1;
1072 
1073 	return 0;
1074 }
1075 
dp83640_clock_get(struct dp83640_clock * clock)1076 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
1077 {
1078 	if (clock)
1079 		mutex_lock(&clock->clock_lock);
1080 	return clock;
1081 }
1082 
1083 /*
1084  * Look up and lock a clock by bus instance.
1085  * If there is no clock for this bus, then create it first.
1086  */
dp83640_clock_get_bus(struct mii_bus * bus)1087 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
1088 {
1089 	struct dp83640_clock *clock = NULL, *tmp;
1090 	struct list_head *this;
1091 
1092 	mutex_lock(&phyter_clocks_lock);
1093 
1094 	list_for_each(this, &phyter_clocks) {
1095 		tmp = list_entry(this, struct dp83640_clock, list);
1096 		if (tmp->bus == bus) {
1097 			clock = tmp;
1098 			break;
1099 		}
1100 	}
1101 	if (clock)
1102 		goto out;
1103 
1104 	clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
1105 	if (!clock)
1106 		goto out;
1107 
1108 	clock->caps.pin_config = kcalloc(DP83640_N_PINS,
1109 					 sizeof(struct ptp_pin_desc),
1110 					 GFP_KERNEL);
1111 	if (!clock->caps.pin_config) {
1112 		kfree(clock);
1113 		clock = NULL;
1114 		goto out;
1115 	}
1116 	dp83640_clock_init(clock, bus);
1117 	list_add_tail(&clock->list, &phyter_clocks);
1118 out:
1119 	mutex_unlock(&phyter_clocks_lock);
1120 
1121 	return dp83640_clock_get(clock);
1122 }
1123 
dp83640_clock_put(struct dp83640_clock * clock)1124 static void dp83640_clock_put(struct dp83640_clock *clock)
1125 {
1126 	mutex_unlock(&clock->clock_lock);
1127 }
1128 
dp83640_probe(struct phy_device * phydev)1129 static int dp83640_probe(struct phy_device *phydev)
1130 {
1131 	struct dp83640_clock *clock;
1132 	struct dp83640_private *dp83640;
1133 	int err = -ENOMEM, i;
1134 
1135 	if (phydev->mdio.addr == BROADCAST_ADDR)
1136 		return 0;
1137 
1138 	clock = dp83640_clock_get_bus(phydev->mdio.bus);
1139 	if (!clock)
1140 		goto no_clock;
1141 
1142 	dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
1143 	if (!dp83640)
1144 		goto no_memory;
1145 
1146 	dp83640->phydev = phydev;
1147 	INIT_DELAYED_WORK(&dp83640->ts_work, rx_timestamp_work);
1148 
1149 	INIT_LIST_HEAD(&dp83640->rxts);
1150 	INIT_LIST_HEAD(&dp83640->rxpool);
1151 	for (i = 0; i < MAX_RXTS; i++)
1152 		list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
1153 
1154 	phydev->priv = dp83640;
1155 
1156 	spin_lock_init(&dp83640->rx_lock);
1157 	skb_queue_head_init(&dp83640->rx_queue);
1158 	skb_queue_head_init(&dp83640->tx_queue);
1159 
1160 	dp83640->clock = clock;
1161 
1162 	if (choose_this_phy(clock, phydev)) {
1163 		clock->chosen = dp83640;
1164 		clock->ptp_clock = ptp_clock_register(&clock->caps,
1165 						      &phydev->mdio.dev);
1166 		if (IS_ERR(clock->ptp_clock)) {
1167 			err = PTR_ERR(clock->ptp_clock);
1168 			goto no_register;
1169 		}
1170 	} else
1171 		list_add_tail(&dp83640->list, &clock->phylist);
1172 
1173 	dp83640_clock_put(clock);
1174 	return 0;
1175 
1176 no_register:
1177 	clock->chosen = NULL;
1178 	kfree(dp83640);
1179 no_memory:
1180 	dp83640_clock_put(clock);
1181 no_clock:
1182 	return err;
1183 }
1184 
dp83640_remove(struct phy_device * phydev)1185 static void dp83640_remove(struct phy_device *phydev)
1186 {
1187 	struct dp83640_clock *clock;
1188 	struct list_head *this, *next;
1189 	struct dp83640_private *tmp, *dp83640 = phydev->priv;
1190 
1191 	if (phydev->mdio.addr == BROADCAST_ADDR)
1192 		return;
1193 
1194 	enable_status_frames(phydev, false);
1195 	cancel_delayed_work_sync(&dp83640->ts_work);
1196 
1197 	skb_queue_purge(&dp83640->rx_queue);
1198 	skb_queue_purge(&dp83640->tx_queue);
1199 
1200 	clock = dp83640_clock_get(dp83640->clock);
1201 
1202 	if (dp83640 == clock->chosen) {
1203 		ptp_clock_unregister(clock->ptp_clock);
1204 		clock->chosen = NULL;
1205 	} else {
1206 		list_for_each_safe(this, next, &clock->phylist) {
1207 			tmp = list_entry(this, struct dp83640_private, list);
1208 			if (tmp == dp83640) {
1209 				list_del_init(&tmp->list);
1210 				break;
1211 			}
1212 		}
1213 	}
1214 
1215 	dp83640_clock_put(clock);
1216 	kfree(dp83640);
1217 }
1218 
dp83640_soft_reset(struct phy_device * phydev)1219 static int dp83640_soft_reset(struct phy_device *phydev)
1220 {
1221 	int ret;
1222 
1223 	ret = genphy_soft_reset(phydev);
1224 	if (ret < 0)
1225 		return ret;
1226 
1227 	/* From DP83640 datasheet: "Software driver code must wait 3 us
1228 	 * following a software reset before allowing further serial MII
1229 	 * operations with the DP83640."
1230 	 */
1231 	udelay(10);		/* Taking udelay inaccuracy into account */
1232 
1233 	return 0;
1234 }
1235 
dp83640_config_init(struct phy_device * phydev)1236 static int dp83640_config_init(struct phy_device *phydev)
1237 {
1238 	struct dp83640_private *dp83640 = phydev->priv;
1239 	struct dp83640_clock *clock = dp83640->clock;
1240 
1241 	if (clock->chosen && !list_empty(&clock->phylist))
1242 		recalibrate(clock);
1243 	else {
1244 		mutex_lock(&clock->extreg_lock);
1245 		enable_broadcast(phydev, clock->page, 1);
1246 		mutex_unlock(&clock->extreg_lock);
1247 	}
1248 
1249 	enable_status_frames(phydev, true);
1250 
1251 	mutex_lock(&clock->extreg_lock);
1252 	ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1253 	mutex_unlock(&clock->extreg_lock);
1254 
1255 	return 0;
1256 }
1257 
dp83640_ack_interrupt(struct phy_device * phydev)1258 static int dp83640_ack_interrupt(struct phy_device *phydev)
1259 {
1260 	int err = phy_read(phydev, MII_DP83640_MISR);
1261 
1262 	if (err < 0)
1263 		return err;
1264 
1265 	return 0;
1266 }
1267 
dp83640_config_intr(struct phy_device * phydev)1268 static int dp83640_config_intr(struct phy_device *phydev)
1269 {
1270 	int micr;
1271 	int misr;
1272 	int err;
1273 
1274 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
1275 		misr = phy_read(phydev, MII_DP83640_MISR);
1276 		if (misr < 0)
1277 			return misr;
1278 		misr |=
1279 			(MII_DP83640_MISR_ANC_INT_EN |
1280 			MII_DP83640_MISR_DUP_INT_EN |
1281 			MII_DP83640_MISR_SPD_INT_EN |
1282 			MII_DP83640_MISR_LINK_INT_EN);
1283 		err = phy_write(phydev, MII_DP83640_MISR, misr);
1284 		if (err < 0)
1285 			return err;
1286 
1287 		micr = phy_read(phydev, MII_DP83640_MICR);
1288 		if (micr < 0)
1289 			return micr;
1290 		micr |=
1291 			(MII_DP83640_MICR_OE |
1292 			MII_DP83640_MICR_IE);
1293 		return phy_write(phydev, MII_DP83640_MICR, micr);
1294 	} else {
1295 		micr = phy_read(phydev, MII_DP83640_MICR);
1296 		if (micr < 0)
1297 			return micr;
1298 		micr &=
1299 			~(MII_DP83640_MICR_OE |
1300 			MII_DP83640_MICR_IE);
1301 		err = phy_write(phydev, MII_DP83640_MICR, micr);
1302 		if (err < 0)
1303 			return err;
1304 
1305 		misr = phy_read(phydev, MII_DP83640_MISR);
1306 		if (misr < 0)
1307 			return misr;
1308 		misr &=
1309 			~(MII_DP83640_MISR_ANC_INT_EN |
1310 			MII_DP83640_MISR_DUP_INT_EN |
1311 			MII_DP83640_MISR_SPD_INT_EN |
1312 			MII_DP83640_MISR_LINK_INT_EN);
1313 		return phy_write(phydev, MII_DP83640_MISR, misr);
1314 	}
1315 }
1316 
dp83640_hwtstamp(struct phy_device * phydev,struct ifreq * ifr)1317 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1318 {
1319 	struct dp83640_private *dp83640 = phydev->priv;
1320 	struct hwtstamp_config cfg;
1321 	u16 txcfg0, rxcfg0;
1322 
1323 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1324 		return -EFAULT;
1325 
1326 	if (cfg.flags) /* reserved for future extensions */
1327 		return -EINVAL;
1328 
1329 	if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1330 		return -ERANGE;
1331 
1332 	dp83640->hwts_tx_en = cfg.tx_type;
1333 
1334 	switch (cfg.rx_filter) {
1335 	case HWTSTAMP_FILTER_NONE:
1336 		dp83640->hwts_rx_en = 0;
1337 		dp83640->layer = 0;
1338 		dp83640->version = 0;
1339 		break;
1340 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1341 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1342 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1343 		dp83640->hwts_rx_en = 1;
1344 		dp83640->layer = PTP_CLASS_L4;
1345 		dp83640->version = PTP_CLASS_V1;
1346 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1347 		break;
1348 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1349 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1350 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1351 		dp83640->hwts_rx_en = 1;
1352 		dp83640->layer = PTP_CLASS_L4;
1353 		dp83640->version = PTP_CLASS_V2;
1354 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1355 		break;
1356 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1357 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1358 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1359 		dp83640->hwts_rx_en = 1;
1360 		dp83640->layer = PTP_CLASS_L2;
1361 		dp83640->version = PTP_CLASS_V2;
1362 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1363 		break;
1364 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1365 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1366 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1367 		dp83640->hwts_rx_en = 1;
1368 		dp83640->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
1369 		dp83640->version = PTP_CLASS_V2;
1370 		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1371 		break;
1372 	default:
1373 		return -ERANGE;
1374 	}
1375 
1376 	txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1377 	rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1378 
1379 	if (dp83640->layer & PTP_CLASS_L2) {
1380 		txcfg0 |= TX_L2_EN;
1381 		rxcfg0 |= RX_L2_EN;
1382 	}
1383 	if (dp83640->layer & PTP_CLASS_L4) {
1384 		txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1385 		rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1386 	}
1387 
1388 	if (dp83640->hwts_tx_en)
1389 		txcfg0 |= TX_TS_EN;
1390 
1391 	if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1392 		txcfg0 |= SYNC_1STEP | CHK_1STEP;
1393 
1394 	if (dp83640->hwts_rx_en)
1395 		rxcfg0 |= RX_TS_EN;
1396 
1397 	mutex_lock(&dp83640->clock->extreg_lock);
1398 
1399 	ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1400 	ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1401 
1402 	mutex_unlock(&dp83640->clock->extreg_lock);
1403 
1404 	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1405 }
1406 
rx_timestamp_work(struct work_struct * work)1407 static void rx_timestamp_work(struct work_struct *work)
1408 {
1409 	struct dp83640_private *dp83640 =
1410 		container_of(work, struct dp83640_private, ts_work.work);
1411 	struct sk_buff *skb;
1412 
1413 	/* Deliver expired packets. */
1414 	while ((skb = skb_dequeue(&dp83640->rx_queue))) {
1415 		struct dp83640_skb_info *skb_info;
1416 
1417 		skb_info = (struct dp83640_skb_info *)skb->cb;
1418 		if (!time_after(jiffies, skb_info->tmo)) {
1419 			skb_queue_head(&dp83640->rx_queue, skb);
1420 			break;
1421 		}
1422 
1423 		netif_rx_ni(skb);
1424 	}
1425 
1426 	if (!skb_queue_empty(&dp83640->rx_queue))
1427 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1428 }
1429 
dp83640_rxtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1430 static bool dp83640_rxtstamp(struct phy_device *phydev,
1431 			     struct sk_buff *skb, int type)
1432 {
1433 	struct dp83640_private *dp83640 = phydev->priv;
1434 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1435 	struct list_head *this, *next;
1436 	struct rxts *rxts;
1437 	struct skb_shared_hwtstamps *shhwtstamps = NULL;
1438 	unsigned long flags;
1439 
1440 	if (is_status_frame(skb, type)) {
1441 		decode_status_frame(dp83640, skb);
1442 		kfree_skb(skb);
1443 		return true;
1444 	}
1445 
1446 	if (!dp83640->hwts_rx_en)
1447 		return false;
1448 
1449 	if ((type & dp83640->version) == 0 || (type & dp83640->layer) == 0)
1450 		return false;
1451 
1452 	spin_lock_irqsave(&dp83640->rx_lock, flags);
1453 	prune_rx_ts(dp83640);
1454 	list_for_each_safe(this, next, &dp83640->rxts) {
1455 		rxts = list_entry(this, struct rxts, list);
1456 		if (match(skb, type, rxts)) {
1457 			shhwtstamps = skb_hwtstamps(skb);
1458 			memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1459 			shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1460 			list_del_init(&rxts->list);
1461 			list_add(&rxts->list, &dp83640->rxpool);
1462 			break;
1463 		}
1464 	}
1465 	spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1466 
1467 	if (!shhwtstamps) {
1468 		skb_info->ptp_type = type;
1469 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1470 		skb_queue_tail(&dp83640->rx_queue, skb);
1471 		schedule_delayed_work(&dp83640->ts_work, SKB_TIMESTAMP_TIMEOUT);
1472 	} else {
1473 		netif_rx_ni(skb);
1474 	}
1475 
1476 	return true;
1477 }
1478 
dp83640_txtstamp(struct phy_device * phydev,struct sk_buff * skb,int type)1479 static void dp83640_txtstamp(struct phy_device *phydev,
1480 			     struct sk_buff *skb, int type)
1481 {
1482 	struct dp83640_skb_info *skb_info = (struct dp83640_skb_info *)skb->cb;
1483 	struct dp83640_private *dp83640 = phydev->priv;
1484 
1485 	switch (dp83640->hwts_tx_en) {
1486 
1487 	case HWTSTAMP_TX_ONESTEP_SYNC:
1488 		if (is_sync(skb, type)) {
1489 			kfree_skb(skb);
1490 			return;
1491 		}
1492 		/* fall through */
1493 	case HWTSTAMP_TX_ON:
1494 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1495 		skb_info->tmo = jiffies + SKB_TIMESTAMP_TIMEOUT;
1496 		skb_queue_tail(&dp83640->tx_queue, skb);
1497 		break;
1498 
1499 	case HWTSTAMP_TX_OFF:
1500 	default:
1501 		kfree_skb(skb);
1502 		break;
1503 	}
1504 }
1505 
dp83640_ts_info(struct phy_device * dev,struct ethtool_ts_info * info)1506 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1507 {
1508 	struct dp83640_private *dp83640 = dev->priv;
1509 
1510 	info->so_timestamping =
1511 		SOF_TIMESTAMPING_TX_HARDWARE |
1512 		SOF_TIMESTAMPING_RX_HARDWARE |
1513 		SOF_TIMESTAMPING_RAW_HARDWARE;
1514 	info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1515 	info->tx_types =
1516 		(1 << HWTSTAMP_TX_OFF) |
1517 		(1 << HWTSTAMP_TX_ON) |
1518 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
1519 	info->rx_filters =
1520 		(1 << HWTSTAMP_FILTER_NONE) |
1521 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1522 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1523 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1524 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1525 	return 0;
1526 }
1527 
1528 static struct phy_driver dp83640_driver = {
1529 	.phy_id		= DP83640_PHY_ID,
1530 	.phy_id_mask	= 0xfffffff0,
1531 	.name		= "NatSemi DP83640",
1532 	.features	= PHY_BASIC_FEATURES,
1533 	.flags		= PHY_HAS_INTERRUPT,
1534 	.probe		= dp83640_probe,
1535 	.remove		= dp83640_remove,
1536 	.soft_reset	= dp83640_soft_reset,
1537 	.config_init	= dp83640_config_init,
1538 	.ack_interrupt  = dp83640_ack_interrupt,
1539 	.config_intr    = dp83640_config_intr,
1540 	.ts_info	= dp83640_ts_info,
1541 	.hwtstamp	= dp83640_hwtstamp,
1542 	.rxtstamp	= dp83640_rxtstamp,
1543 	.txtstamp	= dp83640_txtstamp,
1544 };
1545 
dp83640_init(void)1546 static int __init dp83640_init(void)
1547 {
1548 	return phy_driver_register(&dp83640_driver, THIS_MODULE);
1549 }
1550 
dp83640_exit(void)1551 static void __exit dp83640_exit(void)
1552 {
1553 	dp83640_free_clocks();
1554 	phy_driver_unregister(&dp83640_driver);
1555 }
1556 
1557 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1558 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
1559 MODULE_LICENSE("GPL");
1560 
1561 module_init(dp83640_init);
1562 module_exit(dp83640_exit);
1563 
1564 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1565 	{ DP83640_PHY_ID, 0xfffffff0 },
1566 	{ }
1567 };
1568 
1569 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);
1570