1 #include <linux/export.h>
2 #include <linux/kref.h>
3 #include <linux/list.h>
4 #include <linux/mutex.h>
5 #include <linux/phylink.h>
6 #include <linux/rtnetlink.h>
7 #include <linux/slab.h>
8
9 #include "sfp.h"
10
11 struct sfp_quirk {
12 const char *vendor;
13 const char *part;
14 void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
15 };
16
17 /**
18 * struct sfp_bus - internal representation of a sfp bus
19 */
20 struct sfp_bus {
21 /* private: */
22 struct kref kref;
23 struct list_head node;
24 struct fwnode_handle *fwnode;
25
26 const struct sfp_socket_ops *socket_ops;
27 struct device *sfp_dev;
28 struct sfp *sfp;
29 const struct sfp_quirk *sfp_quirk;
30
31 const struct sfp_upstream_ops *upstream_ops;
32 void *upstream;
33 struct net_device *netdev;
34 struct phy_device *phydev;
35
36 bool registered;
37 bool started;
38 };
39
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes)40 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
41 unsigned long *modes)
42 {
43 phylink_set(modes, 2500baseX_Full);
44 }
45
46 static const struct sfp_quirk sfp_quirks[] = {
47 {
48 // Alcatel Lucent G-010S-P can operate at 2500base-X, but
49 // incorrectly report 2500MBd NRZ in their EEPROM
50 .vendor = "ALCATELLUCENT",
51 .part = "G010SP",
52 .modes = sfp_quirk_2500basex,
53 }, {
54 // Alcatel Lucent G-010S-A can operate at 2500base-X, but
55 // report 3.2GBd NRZ in their EEPROM
56 .vendor = "ALCATELLUCENT",
57 .part = "3FE46541AA",
58 .modes = sfp_quirk_2500basex,
59 }, {
60 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
61 // NRZ in their EEPROM
62 .vendor = "HUAWEI",
63 .part = "MA5671A",
64 .modes = sfp_quirk_2500basex,
65 },
66 };
67
sfp_strlen(const char * str,size_t maxlen)68 static size_t sfp_strlen(const char *str, size_t maxlen)
69 {
70 size_t size, i;
71
72 /* Trailing characters should be filled with space chars */
73 for (i = 0, size = 0; i < maxlen; i++)
74 if (str[i] != ' ')
75 size = i + 1;
76
77 return size;
78 }
79
sfp_match(const char * qs,const char * str,size_t len)80 static bool sfp_match(const char *qs, const char *str, size_t len)
81 {
82 if (!qs)
83 return true;
84 if (strlen(qs) != len)
85 return false;
86 return !strncmp(qs, str, len);
87 }
88
sfp_lookup_quirk(const struct sfp_eeprom_id * id)89 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
90 {
91 const struct sfp_quirk *q;
92 unsigned int i;
93 size_t vs, ps;
94
95 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
96 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
97
98 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
99 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
100 sfp_match(q->part, id->base.vendor_pn, ps))
101 return q;
102
103 return NULL;
104 }
105 /**
106 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
107 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
108 * @id: a pointer to the module's &struct sfp_eeprom_id
109 * @support: optional pointer to an array of unsigned long for the
110 * ethtool support mask
111 *
112 * Parse the EEPROM identification given in @id, and return one of
113 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
114 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
115 * the connector type.
116 *
117 * If the port type is not known, returns %PORT_OTHER.
118 */
sfp_parse_port(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)119 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
120 unsigned long *support)
121 {
122 int port;
123
124 /* port is the physical connector, set this from the connector field. */
125 switch (id->base.connector) {
126 case SFP_CONNECTOR_SC:
127 case SFP_CONNECTOR_FIBERJACK:
128 case SFP_CONNECTOR_LC:
129 case SFP_CONNECTOR_MT_RJ:
130 case SFP_CONNECTOR_MU:
131 case SFP_CONNECTOR_OPTICAL_PIGTAIL:
132 port = PORT_FIBRE;
133 break;
134
135 case SFP_CONNECTOR_RJ45:
136 port = PORT_TP;
137 break;
138
139 case SFP_CONNECTOR_COPPER_PIGTAIL:
140 port = PORT_DA;
141 break;
142
143 case SFP_CONNECTOR_UNSPEC:
144 if (id->base.e1000_base_t) {
145 port = PORT_TP;
146 break;
147 }
148 /* fallthrough */
149 case SFP_CONNECTOR_SG: /* guess */
150 case SFP_CONNECTOR_MPO_1X12:
151 case SFP_CONNECTOR_MPO_2X16:
152 case SFP_CONNECTOR_HSSDC_II:
153 case SFP_CONNECTOR_NOSEPARATE:
154 case SFP_CONNECTOR_MXC_2X16:
155 port = PORT_OTHER;
156 break;
157 default:
158 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
159 id->base.connector);
160 port = PORT_OTHER;
161 break;
162 }
163
164 if (support) {
165 switch (port) {
166 case PORT_FIBRE:
167 phylink_set(support, FIBRE);
168 break;
169
170 case PORT_TP:
171 phylink_set(support, TP);
172 break;
173 }
174 }
175
176 return port;
177 }
178 EXPORT_SYMBOL_GPL(sfp_parse_port);
179
180 /**
181 * sfp_parse_support() - Parse the eeprom id for supported link modes
182 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
183 * @id: a pointer to the module's &struct sfp_eeprom_id
184 * @support: pointer to an array of unsigned long for the ethtool support mask
185 *
186 * Parse the EEPROM identification information and derive the supported
187 * ethtool link modes for the module.
188 */
sfp_parse_support(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * support)189 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
190 unsigned long *support)
191 {
192 unsigned int br_min, br_nom, br_max;
193 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
194
195 /* Decode the bitrate information to MBd */
196 br_min = br_nom = br_max = 0;
197 if (id->base.br_nominal) {
198 if (id->base.br_nominal != 255) {
199 br_nom = id->base.br_nominal * 100;
200 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
201 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
202 } else if (id->ext.br_max) {
203 br_nom = 250 * id->ext.br_max;
204 br_max = br_nom + br_nom * id->ext.br_min / 100;
205 br_min = br_nom - br_nom * id->ext.br_min / 100;
206 }
207
208 /* When using passive cables, in case neither BR,min nor BR,max
209 * are specified, set br_min to 0 as the nominal value is then
210 * used as the maximum.
211 */
212 if (br_min == br_max && id->base.sfp_ct_passive)
213 br_min = 0;
214 }
215
216 /* Set ethtool support from the compliance fields. */
217 if (id->base.e10g_base_sr)
218 phylink_set(modes, 10000baseSR_Full);
219 if (id->base.e10g_base_lr)
220 phylink_set(modes, 10000baseLR_Full);
221 if (id->base.e10g_base_lrm)
222 phylink_set(modes, 10000baseLRM_Full);
223 if (id->base.e10g_base_er)
224 phylink_set(modes, 10000baseER_Full);
225 if (id->base.e1000_base_sx ||
226 id->base.e1000_base_lx ||
227 id->base.e1000_base_cx)
228 phylink_set(modes, 1000baseX_Full);
229 if (id->base.e1000_base_t) {
230 phylink_set(modes, 1000baseT_Half);
231 phylink_set(modes, 1000baseT_Full);
232 }
233
234 /* 1000Base-PX or 1000Base-BX10 */
235 if ((id->base.e_base_px || id->base.e_base_bx10) &&
236 br_min <= 1300 && br_max >= 1200)
237 phylink_set(modes, 1000baseX_Full);
238
239 /* For active or passive cables, select the link modes
240 * based on the bit rates and the cable compliance bytes.
241 */
242 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
243 /* This may look odd, but some manufacturers use 12000MBd */
244 if (br_min <= 12000 && br_max >= 10300)
245 phylink_set(modes, 10000baseCR_Full);
246 if (br_min <= 3200 && br_max >= 3100)
247 phylink_set(modes, 2500baseX_Full);
248 if (br_min <= 1300 && br_max >= 1200)
249 phylink_set(modes, 1000baseX_Full);
250 }
251 if (id->base.sfp_ct_passive) {
252 if (id->base.passive.sff8431_app_e)
253 phylink_set(modes, 10000baseCR_Full);
254 }
255 if (id->base.sfp_ct_active) {
256 if (id->base.active.sff8431_app_e ||
257 id->base.active.sff8431_lim) {
258 phylink_set(modes, 10000baseCR_Full);
259 }
260 }
261
262 switch (id->base.extended_cc) {
263 case 0x00: /* Unspecified */
264 break;
265 case 0x02: /* 100Gbase-SR4 or 25Gbase-SR */
266 phylink_set(modes, 100000baseSR4_Full);
267 phylink_set(modes, 25000baseSR_Full);
268 break;
269 case 0x03: /* 100Gbase-LR4 or 25Gbase-LR */
270 case 0x04: /* 100Gbase-ER4 or 25Gbase-ER */
271 phylink_set(modes, 100000baseLR4_ER4_Full);
272 break;
273 case 0x0b: /* 100Gbase-CR4 or 25Gbase-CR CA-L */
274 case 0x0c: /* 25Gbase-CR CA-S */
275 case 0x0d: /* 25Gbase-CR CA-N */
276 phylink_set(modes, 100000baseCR4_Full);
277 phylink_set(modes, 25000baseCR_Full);
278 break;
279 default:
280 dev_warn(bus->sfp_dev,
281 "Unknown/unsupported extended compliance code: 0x%02x\n",
282 id->base.extended_cc);
283 break;
284 }
285
286 /* For fibre channel SFP, derive possible BaseX modes */
287 if (id->base.fc_speed_100 ||
288 id->base.fc_speed_200 ||
289 id->base.fc_speed_400) {
290 if (id->base.br_nominal >= 31)
291 phylink_set(modes, 2500baseX_Full);
292 if (id->base.br_nominal >= 12)
293 phylink_set(modes, 1000baseX_Full);
294 }
295
296 /* If we haven't discovered any modes that this module supports, try
297 * the encoding and bitrate to determine supported modes. Some BiDi
298 * modules (eg, 1310nm/1550nm) are not 1000BASE-BX compliant due to
299 * the differing wavelengths, so do not set any transceiver bits.
300 */
301 if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS)) {
302 /* If the encoding and bit rate allows 1000baseX */
303 if (id->base.encoding == SFP_ENCODING_8B10B && br_nom &&
304 br_min <= 1300 && br_max >= 1200)
305 phylink_set(modes, 1000baseX_Full);
306 }
307
308 if (bus->sfp_quirk)
309 bus->sfp_quirk->modes(id, modes);
310
311 bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
312
313 phylink_set(support, Autoneg);
314 phylink_set(support, Pause);
315 phylink_set(support, Asym_Pause);
316 }
317 EXPORT_SYMBOL_GPL(sfp_parse_support);
318
319 /**
320 * sfp_select_interface() - Select appropriate phy_interface_t mode
321 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
322 * @id: a pointer to the module's &struct sfp_eeprom_id
323 * @link_modes: ethtool link modes mask
324 *
325 * Derive the phy_interface_t mode for the information found in the
326 * module's identifying EEPROM and the link modes mask. There is no
327 * standard or defined way to derive this information, so we decide
328 * based upon the link mode mask.
329 */
sfp_select_interface(struct sfp_bus * bus,const struct sfp_eeprom_id * id,unsigned long * link_modes)330 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
331 const struct sfp_eeprom_id *id,
332 unsigned long *link_modes)
333 {
334 if (phylink_test(link_modes, 10000baseCR_Full) ||
335 phylink_test(link_modes, 10000baseSR_Full) ||
336 phylink_test(link_modes, 10000baseLR_Full) ||
337 phylink_test(link_modes, 10000baseLRM_Full) ||
338 phylink_test(link_modes, 10000baseER_Full))
339 return PHY_INTERFACE_MODE_10GKR;
340
341 if (phylink_test(link_modes, 2500baseX_Full))
342 return PHY_INTERFACE_MODE_2500BASEX;
343
344 if (id->base.e1000_base_t ||
345 id->base.e100_base_lx ||
346 id->base.e100_base_fx)
347 return PHY_INTERFACE_MODE_SGMII;
348
349 if (phylink_test(link_modes, 1000baseX_Full))
350 return PHY_INTERFACE_MODE_1000BASEX;
351
352 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
353
354 return PHY_INTERFACE_MODE_NA;
355 }
356 EXPORT_SYMBOL_GPL(sfp_select_interface);
357
358 static LIST_HEAD(sfp_buses);
359 static DEFINE_MUTEX(sfp_mutex);
360
sfp_get_upstream_ops(struct sfp_bus * bus)361 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
362 {
363 return bus->registered ? bus->upstream_ops : NULL;
364 }
365
sfp_bus_get(struct fwnode_handle * fwnode)366 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
367 {
368 struct sfp_bus *sfp, *new, *found = NULL;
369
370 new = kzalloc(sizeof(*new), GFP_KERNEL);
371
372 mutex_lock(&sfp_mutex);
373
374 list_for_each_entry(sfp, &sfp_buses, node) {
375 if (sfp->fwnode == fwnode) {
376 kref_get(&sfp->kref);
377 found = sfp;
378 break;
379 }
380 }
381
382 if (!found && new) {
383 kref_init(&new->kref);
384 new->fwnode = fwnode;
385 list_add(&new->node, &sfp_buses);
386 found = new;
387 new = NULL;
388 }
389
390 mutex_unlock(&sfp_mutex);
391
392 kfree(new);
393
394 return found;
395 }
396
sfp_bus_release(struct kref * kref)397 static void sfp_bus_release(struct kref *kref)
398 {
399 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
400
401 list_del(&bus->node);
402 mutex_unlock(&sfp_mutex);
403 kfree(bus);
404 }
405
sfp_bus_put(struct sfp_bus * bus)406 static void sfp_bus_put(struct sfp_bus *bus)
407 {
408 kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
409 }
410
sfp_register_bus(struct sfp_bus * bus)411 static int sfp_register_bus(struct sfp_bus *bus)
412 {
413 const struct sfp_upstream_ops *ops = bus->upstream_ops;
414 int ret;
415
416 if (ops) {
417 if (ops->link_down)
418 ops->link_down(bus->upstream);
419 if (ops->connect_phy && bus->phydev) {
420 ret = ops->connect_phy(bus->upstream, bus->phydev);
421 if (ret)
422 return ret;
423 }
424 }
425 bus->socket_ops->attach(bus->sfp);
426 if (bus->started)
427 bus->socket_ops->start(bus->sfp);
428 bus->netdev->sfp_bus = bus;
429 bus->registered = true;
430 return 0;
431 }
432
sfp_unregister_bus(struct sfp_bus * bus)433 static void sfp_unregister_bus(struct sfp_bus *bus)
434 {
435 const struct sfp_upstream_ops *ops = bus->upstream_ops;
436
437 bus->netdev->sfp_bus = NULL;
438 if (bus->registered) {
439 if (bus->started)
440 bus->socket_ops->stop(bus->sfp);
441 bus->socket_ops->detach(bus->sfp);
442 if (bus->phydev && ops && ops->disconnect_phy)
443 ops->disconnect_phy(bus->upstream);
444 }
445 bus->registered = false;
446 }
447
448 /**
449 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
450 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
451 * @modinfo: a &struct ethtool_modinfo
452 *
453 * Fill in the type and eeprom_len parameters in @modinfo for a module on
454 * the sfp bus specified by @bus.
455 *
456 * Returns 0 on success or a negative errno number.
457 */
sfp_get_module_info(struct sfp_bus * bus,struct ethtool_modinfo * modinfo)458 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
459 {
460 return bus->socket_ops->module_info(bus->sfp, modinfo);
461 }
462 EXPORT_SYMBOL_GPL(sfp_get_module_info);
463
464 /**
465 * sfp_get_module_eeprom() - Read the SFP module EEPROM
466 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
467 * @ee: a &struct ethtool_eeprom
468 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
469 *
470 * Read the EEPROM as specified by the supplied @ee. See the documentation
471 * for &struct ethtool_eeprom for the region to be read.
472 *
473 * Returns 0 on success or a negative errno number.
474 */
sfp_get_module_eeprom(struct sfp_bus * bus,struct ethtool_eeprom * ee,u8 * data)475 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
476 u8 *data)
477 {
478 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
479 }
480 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
481
482 /**
483 * sfp_upstream_start() - Inform the SFP that the network device is up
484 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
485 *
486 * Inform the SFP socket that the network device is now up, so that the
487 * module can be enabled by allowing TX_DISABLE to be deasserted. This
488 * should be called from the network device driver's &struct net_device_ops
489 * ndo_open() method.
490 */
sfp_upstream_start(struct sfp_bus * bus)491 void sfp_upstream_start(struct sfp_bus *bus)
492 {
493 if (bus->registered)
494 bus->socket_ops->start(bus->sfp);
495 bus->started = true;
496 }
497 EXPORT_SYMBOL_GPL(sfp_upstream_start);
498
499 /**
500 * sfp_upstream_stop() - Inform the SFP that the network device is down
501 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
502 *
503 * Inform the SFP socket that the network device is now up, so that the
504 * module can be disabled by asserting TX_DISABLE, disabling the laser
505 * in optical modules. This should be called from the network device
506 * driver's &struct net_device_ops ndo_stop() method.
507 */
sfp_upstream_stop(struct sfp_bus * bus)508 void sfp_upstream_stop(struct sfp_bus *bus)
509 {
510 if (bus->registered)
511 bus->socket_ops->stop(bus->sfp);
512 bus->started = false;
513 }
514 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
515
sfp_upstream_clear(struct sfp_bus * bus)516 static void sfp_upstream_clear(struct sfp_bus *bus)
517 {
518 bus->upstream_ops = NULL;
519 bus->upstream = NULL;
520 bus->netdev = NULL;
521 }
522
523 /**
524 * sfp_register_upstream() - Register the neighbouring device
525 * @fwnode: firmware node for the SFP bus
526 * @ndev: network device associated with the interface
527 * @upstream: the upstream private data
528 * @ops: the upstream's &struct sfp_upstream_ops
529 *
530 * Register the upstream device (eg, PHY) with the SFP bus. MAC drivers
531 * should use phylink, which will call this function for them. Returns
532 * a pointer to the allocated &struct sfp_bus.
533 *
534 * On error, returns %NULL.
535 */
sfp_register_upstream(struct fwnode_handle * fwnode,struct net_device * ndev,void * upstream,const struct sfp_upstream_ops * ops)536 struct sfp_bus *sfp_register_upstream(struct fwnode_handle *fwnode,
537 struct net_device *ndev, void *upstream,
538 const struct sfp_upstream_ops *ops)
539 {
540 struct sfp_bus *bus = sfp_bus_get(fwnode);
541 int ret = 0;
542
543 if (bus) {
544 rtnl_lock();
545 bus->upstream_ops = ops;
546 bus->upstream = upstream;
547 bus->netdev = ndev;
548
549 if (bus->sfp) {
550 ret = sfp_register_bus(bus);
551 if (ret)
552 sfp_upstream_clear(bus);
553 }
554 rtnl_unlock();
555 }
556
557 if (ret) {
558 sfp_bus_put(bus);
559 bus = NULL;
560 }
561
562 return bus;
563 }
564 EXPORT_SYMBOL_GPL(sfp_register_upstream);
565
566 /**
567 * sfp_unregister_upstream() - Unregister sfp bus
568 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
569 *
570 * Unregister a previously registered upstream connection for the SFP
571 * module. @bus is returned from sfp_register_upstream().
572 */
sfp_unregister_upstream(struct sfp_bus * bus)573 void sfp_unregister_upstream(struct sfp_bus *bus)
574 {
575 rtnl_lock();
576 if (bus->sfp)
577 sfp_unregister_bus(bus);
578 sfp_upstream_clear(bus);
579 rtnl_unlock();
580
581 sfp_bus_put(bus);
582 }
583 EXPORT_SYMBOL_GPL(sfp_unregister_upstream);
584
585 /* Socket driver entry points */
sfp_add_phy(struct sfp_bus * bus,struct phy_device * phydev)586 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
587 {
588 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
589 int ret = 0;
590
591 if (ops && ops->connect_phy)
592 ret = ops->connect_phy(bus->upstream, phydev);
593
594 if (ret == 0)
595 bus->phydev = phydev;
596
597 return ret;
598 }
599 EXPORT_SYMBOL_GPL(sfp_add_phy);
600
sfp_remove_phy(struct sfp_bus * bus)601 void sfp_remove_phy(struct sfp_bus *bus)
602 {
603 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
604
605 if (ops && ops->disconnect_phy)
606 ops->disconnect_phy(bus->upstream);
607 bus->phydev = NULL;
608 }
609 EXPORT_SYMBOL_GPL(sfp_remove_phy);
610
sfp_link_up(struct sfp_bus * bus)611 void sfp_link_up(struct sfp_bus *bus)
612 {
613 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
614
615 if (ops && ops->link_up)
616 ops->link_up(bus->upstream);
617 }
618 EXPORT_SYMBOL_GPL(sfp_link_up);
619
sfp_link_down(struct sfp_bus * bus)620 void sfp_link_down(struct sfp_bus *bus)
621 {
622 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
623
624 if (ops && ops->link_down)
625 ops->link_down(bus->upstream);
626 }
627 EXPORT_SYMBOL_GPL(sfp_link_down);
628
sfp_module_insert(struct sfp_bus * bus,const struct sfp_eeprom_id * id)629 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
630 {
631 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
632 int ret = 0;
633
634 bus->sfp_quirk = sfp_lookup_quirk(id);
635
636 if (ops && ops->module_insert)
637 ret = ops->module_insert(bus->upstream, id);
638
639 return ret;
640 }
641 EXPORT_SYMBOL_GPL(sfp_module_insert);
642
sfp_module_remove(struct sfp_bus * bus)643 void sfp_module_remove(struct sfp_bus *bus)
644 {
645 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
646
647 if (ops && ops->module_remove)
648 ops->module_remove(bus->upstream);
649
650 bus->sfp_quirk = NULL;
651 }
652 EXPORT_SYMBOL_GPL(sfp_module_remove);
653
sfp_socket_clear(struct sfp_bus * bus)654 static void sfp_socket_clear(struct sfp_bus *bus)
655 {
656 bus->sfp_dev = NULL;
657 bus->sfp = NULL;
658 bus->socket_ops = NULL;
659 }
660
sfp_register_socket(struct device * dev,struct sfp * sfp,const struct sfp_socket_ops * ops)661 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
662 const struct sfp_socket_ops *ops)
663 {
664 struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
665 int ret = 0;
666
667 if (bus) {
668 rtnl_lock();
669 bus->sfp_dev = dev;
670 bus->sfp = sfp;
671 bus->socket_ops = ops;
672
673 if (bus->netdev) {
674 ret = sfp_register_bus(bus);
675 if (ret)
676 sfp_socket_clear(bus);
677 }
678 rtnl_unlock();
679 }
680
681 if (ret) {
682 sfp_bus_put(bus);
683 bus = NULL;
684 }
685
686 return bus;
687 }
688 EXPORT_SYMBOL_GPL(sfp_register_socket);
689
sfp_unregister_socket(struct sfp_bus * bus)690 void sfp_unregister_socket(struct sfp_bus *bus)
691 {
692 rtnl_lock();
693 if (bus->netdev)
694 sfp_unregister_bus(bus);
695 sfp_socket_clear(bus);
696 rtnl_unlock();
697
698 sfp_bus_put(bus);
699 }
700 EXPORT_SYMBOL_GPL(sfp_unregister_socket);
701