• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 #include <net/netns/generic.h>
40 
41 #define DRV_NAME	"vrf"
42 #define DRV_VERSION	"1.0"
43 
44 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
45 
46 static unsigned int vrf_net_id;
47 
48 struct net_vrf {
49 	struct rtable __rcu	*rth;
50 	struct rt6_info	__rcu	*rt6;
51 #if IS_ENABLED(CONFIG_IPV6)
52 	struct fib6_table	*fib6_table;
53 #endif
54 	u32                     tb_id;
55 };
56 
57 struct pcpu_dstats {
58 	u64			tx_pkts;
59 	u64			tx_bytes;
60 	u64			tx_drps;
61 	u64			rx_pkts;
62 	u64			rx_bytes;
63 	u64			rx_drps;
64 	struct u64_stats_sync	syncp;
65 };
66 
vrf_rx_stats(struct net_device * dev,int len)67 static void vrf_rx_stats(struct net_device *dev, int len)
68 {
69 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
70 
71 	u64_stats_update_begin(&dstats->syncp);
72 	dstats->rx_pkts++;
73 	dstats->rx_bytes += len;
74 	u64_stats_update_end(&dstats->syncp);
75 }
76 
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)77 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
78 {
79 	vrf_dev->stats.tx_errors++;
80 	kfree_skb(skb);
81 }
82 
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)83 static void vrf_get_stats64(struct net_device *dev,
84 			    struct rtnl_link_stats64 *stats)
85 {
86 	int i;
87 
88 	for_each_possible_cpu(i) {
89 		const struct pcpu_dstats *dstats;
90 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
91 		unsigned int start;
92 
93 		dstats = per_cpu_ptr(dev->dstats, i);
94 		do {
95 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
96 			tbytes = dstats->tx_bytes;
97 			tpkts = dstats->tx_pkts;
98 			tdrops = dstats->tx_drps;
99 			rbytes = dstats->rx_bytes;
100 			rpkts = dstats->rx_pkts;
101 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
102 		stats->tx_bytes += tbytes;
103 		stats->tx_packets += tpkts;
104 		stats->tx_dropped += tdrops;
105 		stats->rx_bytes += rbytes;
106 		stats->rx_packets += rpkts;
107 	}
108 }
109 
110 /* by default VRF devices do not have a qdisc and are expected
111  * to be created with only a single queue.
112  */
qdisc_tx_is_default(const struct net_device * dev)113 static bool qdisc_tx_is_default(const struct net_device *dev)
114 {
115 	struct netdev_queue *txq;
116 	struct Qdisc *qdisc;
117 
118 	if (dev->num_tx_queues > 1)
119 		return false;
120 
121 	txq = netdev_get_tx_queue(dev, 0);
122 	qdisc = rcu_access_pointer(txq->qdisc);
123 
124 	return !qdisc->enqueue;
125 }
126 
127 /* Local traffic destined to local address. Reinsert the packet to rx
128  * path, similar to loopback handling.
129  */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)130 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
131 			  struct dst_entry *dst)
132 {
133 	int len = skb->len;
134 
135 	skb_orphan(skb);
136 
137 	skb_dst_set(skb, dst);
138 
139 	/* set pkt_type to avoid skb hitting packet taps twice -
140 	 * once on Tx and again in Rx processing
141 	 */
142 	skb->pkt_type = PACKET_LOOPBACK;
143 
144 	skb->protocol = eth_type_trans(skb, dev);
145 
146 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
147 		vrf_rx_stats(dev, len);
148 	else
149 		this_cpu_inc(dev->dstats->rx_drps);
150 
151 	return NETDEV_TX_OK;
152 }
153 
154 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)155 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
156 			     struct sk_buff *skb)
157 {
158 	int err;
159 
160 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
161 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
162 
163 	if (likely(err == 1))
164 		err = dst_output(net, sk, skb);
165 
166 	return err;
167 }
168 
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)169 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
170 					   struct net_device *dev)
171 {
172 	const struct ipv6hdr *iph;
173 	struct net *net = dev_net(skb->dev);
174 	struct flowi6 fl6;
175 	int ret = NET_XMIT_DROP;
176 	struct dst_entry *dst;
177 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
178 
179 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
180 		goto err;
181 
182 	iph = ipv6_hdr(skb);
183 
184 	memset(&fl6, 0, sizeof(fl6));
185 	/* needed to match OIF rule */
186 	fl6.flowi6_oif = dev->ifindex;
187 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
188 	fl6.daddr = iph->daddr;
189 	fl6.saddr = iph->saddr;
190 	fl6.flowlabel = ip6_flowinfo(iph);
191 	fl6.flowi6_mark = skb->mark;
192 	fl6.flowi6_proto = iph->nexthdr;
193 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
194 
195 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
196 	if (IS_ERR(dst) || dst == dst_null)
197 		goto err;
198 
199 	skb_dst_drop(skb);
200 
201 	/* if dst.dev is loopback or the VRF device again this is locally
202 	 * originated traffic destined to a local address. Short circuit
203 	 * to Rx path
204 	 */
205 	if (dst->dev == dev)
206 		return vrf_local_xmit(skb, dev, dst);
207 
208 	skb_dst_set(skb, dst);
209 
210 	/* strip the ethernet header added for pass through VRF device */
211 	__skb_pull(skb, skb_network_offset(skb));
212 
213 	ret = vrf_ip6_local_out(net, skb->sk, skb);
214 	if (unlikely(net_xmit_eval(ret)))
215 		dev->stats.tx_errors++;
216 	else
217 		ret = NET_XMIT_SUCCESS;
218 
219 	return ret;
220 err:
221 	vrf_tx_error(dev, skb);
222 	return NET_XMIT_DROP;
223 }
224 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)225 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
226 					   struct net_device *dev)
227 {
228 	vrf_tx_error(dev, skb);
229 	return NET_XMIT_DROP;
230 }
231 #endif
232 
233 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)234 static int vrf_ip_local_out(struct net *net, struct sock *sk,
235 			    struct sk_buff *skb)
236 {
237 	int err;
238 
239 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
240 		      skb, NULL, skb_dst(skb)->dev, dst_output);
241 	if (likely(err == 1))
242 		err = dst_output(net, sk, skb);
243 
244 	return err;
245 }
246 
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)247 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
248 					   struct net_device *vrf_dev)
249 {
250 	struct iphdr *ip4h;
251 	int ret = NET_XMIT_DROP;
252 	struct flowi4 fl4;
253 	struct net *net = dev_net(vrf_dev);
254 	struct rtable *rt;
255 
256 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
257 		goto err;
258 
259 	ip4h = ip_hdr(skb);
260 
261 	memset(&fl4, 0, sizeof(fl4));
262 	/* needed to match OIF rule */
263 	fl4.flowi4_oif = vrf_dev->ifindex;
264 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
265 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
266 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
267 	fl4.flowi4_proto = ip4h->protocol;
268 	fl4.daddr = ip4h->daddr;
269 	fl4.saddr = ip4h->saddr;
270 
271 	rt = ip_route_output_flow(net, &fl4, NULL);
272 	if (IS_ERR(rt))
273 		goto err;
274 
275 	skb_dst_drop(skb);
276 
277 	/* if dst.dev is loopback or the VRF device again this is locally
278 	 * originated traffic destined to a local address. Short circuit
279 	 * to Rx path
280 	 */
281 	if (rt->dst.dev == vrf_dev)
282 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
283 
284 	skb_dst_set(skb, &rt->dst);
285 
286 	/* strip the ethernet header added for pass through VRF device */
287 	__skb_pull(skb, skb_network_offset(skb));
288 
289 	if (!ip4h->saddr) {
290 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
291 					       RT_SCOPE_LINK);
292 	}
293 
294 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
295 	if (unlikely(net_xmit_eval(ret)))
296 		vrf_dev->stats.tx_errors++;
297 	else
298 		ret = NET_XMIT_SUCCESS;
299 
300 out:
301 	return ret;
302 err:
303 	vrf_tx_error(vrf_dev, skb);
304 	goto out;
305 }
306 
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)307 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
308 {
309 	switch (skb->protocol) {
310 	case htons(ETH_P_IP):
311 		return vrf_process_v4_outbound(skb, dev);
312 	case htons(ETH_P_IPV6):
313 		return vrf_process_v6_outbound(skb, dev);
314 	default:
315 		vrf_tx_error(dev, skb);
316 		return NET_XMIT_DROP;
317 	}
318 }
319 
vrf_xmit(struct sk_buff * skb,struct net_device * dev)320 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
321 {
322 	int len = skb->len;
323 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
324 
325 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
326 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
327 
328 		u64_stats_update_begin(&dstats->syncp);
329 		dstats->tx_pkts++;
330 		dstats->tx_bytes += len;
331 		u64_stats_update_end(&dstats->syncp);
332 	} else {
333 		this_cpu_inc(dev->dstats->tx_drps);
334 	}
335 
336 	return ret;
337 }
338 
vrf_finish_direct(struct net * net,struct sock * sk,struct sk_buff * skb)339 static int vrf_finish_direct(struct net *net, struct sock *sk,
340 			     struct sk_buff *skb)
341 {
342 	struct net_device *vrf_dev = skb->dev;
343 
344 	if (!list_empty(&vrf_dev->ptype_all) &&
345 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
346 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
347 
348 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
349 		eth_zero_addr(eth->h_dest);
350 		eth->h_proto = skb->protocol;
351 
352 		rcu_read_lock_bh();
353 		dev_queue_xmit_nit(skb, vrf_dev);
354 		rcu_read_unlock_bh();
355 
356 		skb_pull(skb, ETH_HLEN);
357 	}
358 
359 	return 1;
360 }
361 
362 #if IS_ENABLED(CONFIG_IPV6)
363 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)364 static int vrf_finish_output6(struct net *net, struct sock *sk,
365 			      struct sk_buff *skb)
366 {
367 	struct dst_entry *dst = skb_dst(skb);
368 	struct net_device *dev = dst->dev;
369 	struct neighbour *neigh;
370 	struct in6_addr *nexthop;
371 	int ret;
372 
373 	nf_reset(skb);
374 
375 	skb->protocol = htons(ETH_P_IPV6);
376 	skb->dev = dev;
377 
378 	rcu_read_lock_bh();
379 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
380 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
381 	if (unlikely(!neigh))
382 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
383 	if (!IS_ERR(neigh)) {
384 		sock_confirm_neigh(skb, neigh);
385 		ret = neigh_output(neigh, skb);
386 		rcu_read_unlock_bh();
387 		return ret;
388 	}
389 	rcu_read_unlock_bh();
390 
391 	IP6_INC_STATS(dev_net(dst->dev),
392 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
393 	kfree_skb(skb);
394 	return -EINVAL;
395 }
396 
397 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)398 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
399 {
400 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
401 			    net, sk, skb, NULL, skb_dst(skb)->dev,
402 			    vrf_finish_output6,
403 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
404 }
405 
406 /* set dst on skb to send packet to us via dev_xmit path. Allows
407  * packet to go through device based features such as qdisc, netfilter
408  * hooks and packet sockets with skb->dev set to vrf device.
409  */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)410 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
411 					    struct sk_buff *skb)
412 {
413 	struct net_vrf *vrf = netdev_priv(vrf_dev);
414 	struct dst_entry *dst = NULL;
415 	struct rt6_info *rt6;
416 
417 	rcu_read_lock();
418 
419 	rt6 = rcu_dereference(vrf->rt6);
420 	if (likely(rt6)) {
421 		dst = &rt6->dst;
422 		dst_hold(dst);
423 	}
424 
425 	rcu_read_unlock();
426 
427 	if (unlikely(!dst)) {
428 		vrf_tx_error(vrf_dev, skb);
429 		return NULL;
430 	}
431 
432 	skb_dst_drop(skb);
433 	skb_dst_set(skb, dst);
434 
435 	return skb;
436 }
437 
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)438 static int vrf_output6_direct(struct net *net, struct sock *sk,
439 			      struct sk_buff *skb)
440 {
441 	skb->protocol = htons(ETH_P_IPV6);
442 
443 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
444 			    net, sk, skb, NULL, skb->dev,
445 			    vrf_finish_direct,
446 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
447 }
448 
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)449 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
450 					  struct sock *sk,
451 					  struct sk_buff *skb)
452 {
453 	struct net *net = dev_net(vrf_dev);
454 	int err;
455 
456 	skb->dev = vrf_dev;
457 
458 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
459 		      skb, NULL, vrf_dev, vrf_output6_direct);
460 
461 	if (likely(err == 1))
462 		err = vrf_output6_direct(net, sk, skb);
463 
464 	/* reset skb device */
465 	if (likely(err == 1))
466 		nf_reset(skb);
467 	else
468 		skb = NULL;
469 
470 	return skb;
471 }
472 
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)473 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
474 				   struct sock *sk,
475 				   struct sk_buff *skb)
476 {
477 	/* don't divert link scope packets */
478 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
479 		return skb;
480 
481 	if (qdisc_tx_is_default(vrf_dev) ||
482 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
483 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
484 
485 	return vrf_ip6_out_redirect(vrf_dev, skb);
486 }
487 
488 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)489 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
490 {
491 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
492 	struct net *net = dev_net(dev);
493 	struct dst_entry *dst;
494 
495 	RCU_INIT_POINTER(vrf->rt6, NULL);
496 	synchronize_rcu();
497 
498 	/* move dev in dst's to loopback so this VRF device can be deleted
499 	 * - based on dst_ifdown
500 	 */
501 	if (rt6) {
502 		dst = &rt6->dst;
503 		dev_put(dst->dev);
504 		dst->dev = net->loopback_dev;
505 		dev_hold(dst->dev);
506 		dst_release(dst);
507 	}
508 }
509 
vrf_rt6_create(struct net_device * dev)510 static int vrf_rt6_create(struct net_device *dev)
511 {
512 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
513 	struct net_vrf *vrf = netdev_priv(dev);
514 	struct net *net = dev_net(dev);
515 	struct rt6_info *rt6;
516 	int rc = -ENOMEM;
517 
518 	/* IPv6 can be CONFIG enabled and then disabled runtime */
519 	if (!ipv6_mod_enabled())
520 		return 0;
521 
522 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
523 	if (!vrf->fib6_table)
524 		goto out;
525 
526 	/* create a dst for routing packets out a VRF device */
527 	rt6 = ip6_dst_alloc(net, dev, flags);
528 	if (!rt6)
529 		goto out;
530 
531 	rt6->dst.output	= vrf_output6;
532 
533 	rcu_assign_pointer(vrf->rt6, rt6);
534 
535 	rc = 0;
536 out:
537 	return rc;
538 }
539 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)540 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
541 				   struct sock *sk,
542 				   struct sk_buff *skb)
543 {
544 	return skb;
545 }
546 
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)547 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
548 {
549 }
550 
vrf_rt6_create(struct net_device * dev)551 static int vrf_rt6_create(struct net_device *dev)
552 {
553 	return 0;
554 }
555 #endif
556 
557 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)558 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
559 {
560 	struct dst_entry *dst = skb_dst(skb);
561 	struct rtable *rt = (struct rtable *)dst;
562 	struct net_device *dev = dst->dev;
563 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
564 	struct neighbour *neigh;
565 	u32 nexthop;
566 	int ret = -EINVAL;
567 
568 	nf_reset(skb);
569 
570 	/* Be paranoid, rather than too clever. */
571 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
572 		struct sk_buff *skb2;
573 
574 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
575 		if (!skb2) {
576 			ret = -ENOMEM;
577 			goto err;
578 		}
579 		if (skb->sk)
580 			skb_set_owner_w(skb2, skb->sk);
581 
582 		consume_skb(skb);
583 		skb = skb2;
584 	}
585 
586 	rcu_read_lock_bh();
587 
588 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
589 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
590 	if (unlikely(!neigh))
591 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
592 	if (!IS_ERR(neigh)) {
593 		sock_confirm_neigh(skb, neigh);
594 		ret = neigh_output(neigh, skb);
595 		rcu_read_unlock_bh();
596 		return ret;
597 	}
598 
599 	rcu_read_unlock_bh();
600 err:
601 	vrf_tx_error(skb->dev, skb);
602 	return ret;
603 }
604 
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)605 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
606 {
607 	struct net_device *dev = skb_dst(skb)->dev;
608 
609 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
610 
611 	skb->dev = dev;
612 	skb->protocol = htons(ETH_P_IP);
613 
614 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
615 			    net, sk, skb, NULL, dev,
616 			    vrf_finish_output,
617 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
618 }
619 
620 /* set dst on skb to send packet to us via dev_xmit path. Allows
621  * packet to go through device based features such as qdisc, netfilter
622  * hooks and packet sockets with skb->dev set to vrf device.
623  */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)624 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
625 					   struct sk_buff *skb)
626 {
627 	struct net_vrf *vrf = netdev_priv(vrf_dev);
628 	struct dst_entry *dst = NULL;
629 	struct rtable *rth;
630 
631 	rcu_read_lock();
632 
633 	rth = rcu_dereference(vrf->rth);
634 	if (likely(rth)) {
635 		dst = &rth->dst;
636 		dst_hold(dst);
637 	}
638 
639 	rcu_read_unlock();
640 
641 	if (unlikely(!dst)) {
642 		vrf_tx_error(vrf_dev, skb);
643 		return NULL;
644 	}
645 
646 	skb_dst_drop(skb);
647 	skb_dst_set(skb, dst);
648 
649 	return skb;
650 }
651 
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)652 static int vrf_output_direct(struct net *net, struct sock *sk,
653 			     struct sk_buff *skb)
654 {
655 	skb->protocol = htons(ETH_P_IP);
656 
657 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
658 			    net, sk, skb, NULL, skb->dev,
659 			    vrf_finish_direct,
660 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
661 }
662 
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)663 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
664 					 struct sock *sk,
665 					 struct sk_buff *skb)
666 {
667 	struct net *net = dev_net(vrf_dev);
668 	int err;
669 
670 	skb->dev = vrf_dev;
671 
672 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
673 		      skb, NULL, vrf_dev, vrf_output_direct);
674 
675 	if (likely(err == 1))
676 		err = vrf_output_direct(net, sk, skb);
677 
678 	/* reset skb device */
679 	if (likely(err == 1))
680 		nf_reset(skb);
681 	else
682 		skb = NULL;
683 
684 	return skb;
685 }
686 
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)687 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
688 				  struct sock *sk,
689 				  struct sk_buff *skb)
690 {
691 	/* don't divert multicast or local broadcast */
692 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
693 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
694 		return skb;
695 
696 	if (qdisc_tx_is_default(vrf_dev) ||
697 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
698 		return vrf_ip_out_direct(vrf_dev, sk, skb);
699 
700 	return vrf_ip_out_redirect(vrf_dev, skb);
701 }
702 
703 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)704 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
705 				  struct sock *sk,
706 				  struct sk_buff *skb,
707 				  u16 proto)
708 {
709 	switch (proto) {
710 	case AF_INET:
711 		return vrf_ip_out(vrf_dev, sk, skb);
712 	case AF_INET6:
713 		return vrf_ip6_out(vrf_dev, sk, skb);
714 	}
715 
716 	return skb;
717 }
718 
719 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)720 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
721 {
722 	struct rtable *rth = rtnl_dereference(vrf->rth);
723 	struct net *net = dev_net(dev);
724 	struct dst_entry *dst;
725 
726 	RCU_INIT_POINTER(vrf->rth, NULL);
727 	synchronize_rcu();
728 
729 	/* move dev in dst's to loopback so this VRF device can be deleted
730 	 * - based on dst_ifdown
731 	 */
732 	if (rth) {
733 		dst = &rth->dst;
734 		dev_put(dst->dev);
735 		dst->dev = net->loopback_dev;
736 		dev_hold(dst->dev);
737 		dst_release(dst);
738 	}
739 }
740 
vrf_rtable_create(struct net_device * dev)741 static int vrf_rtable_create(struct net_device *dev)
742 {
743 	struct net_vrf *vrf = netdev_priv(dev);
744 	struct rtable *rth;
745 
746 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
747 		return -ENOMEM;
748 
749 	/* create a dst for routing packets out through a VRF device */
750 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
751 	if (!rth)
752 		return -ENOMEM;
753 
754 	rth->dst.output	= vrf_output;
755 
756 	rcu_assign_pointer(vrf->rth, rth);
757 
758 	return 0;
759 }
760 
761 /**************************** device handling ********************/
762 
763 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev)764 static void cycle_netdev(struct net_device *dev)
765 {
766 	unsigned int flags = dev->flags;
767 	int ret;
768 
769 	if (!netif_running(dev))
770 		return;
771 
772 	ret = dev_change_flags(dev, flags & ~IFF_UP);
773 	if (ret >= 0)
774 		ret = dev_change_flags(dev, flags);
775 
776 	if (ret < 0) {
777 		netdev_err(dev,
778 			   "Failed to cycle device %s; route tables might be wrong!\n",
779 			   dev->name);
780 	}
781 }
782 
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)783 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
784 			    struct netlink_ext_ack *extack)
785 {
786 	int ret;
787 
788 	/* do not allow loopback device to be enslaved to a VRF.
789 	 * The vrf device acts as the loopback for the vrf.
790 	 */
791 	if (port_dev == dev_net(dev)->loopback_dev) {
792 		NL_SET_ERR_MSG(extack,
793 			       "Can not enslave loopback device to a VRF");
794 		return -EOPNOTSUPP;
795 	}
796 
797 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
798 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
799 	if (ret < 0)
800 		goto err;
801 
802 	cycle_netdev(port_dev);
803 
804 	return 0;
805 
806 err:
807 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
808 	return ret;
809 }
810 
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)811 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
812 			 struct netlink_ext_ack *extack)
813 {
814 	if (netif_is_l3_master(port_dev)) {
815 		NL_SET_ERR_MSG(extack,
816 			       "Can not enslave an L3 master device to a VRF");
817 		return -EINVAL;
818 	}
819 
820 	if (netif_is_l3_slave(port_dev))
821 		return -EINVAL;
822 
823 	return do_vrf_add_slave(dev, port_dev, extack);
824 }
825 
826 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)827 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
828 {
829 	netdev_upper_dev_unlink(port_dev, dev);
830 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
831 
832 	cycle_netdev(port_dev);
833 
834 	return 0;
835 }
836 
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)837 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
838 {
839 	return do_vrf_del_slave(dev, port_dev);
840 }
841 
vrf_dev_uninit(struct net_device * dev)842 static void vrf_dev_uninit(struct net_device *dev)
843 {
844 	struct net_vrf *vrf = netdev_priv(dev);
845 
846 	vrf_rtable_release(dev, vrf);
847 	vrf_rt6_release(dev, vrf);
848 
849 	free_percpu(dev->dstats);
850 	dev->dstats = NULL;
851 }
852 
vrf_dev_init(struct net_device * dev)853 static int vrf_dev_init(struct net_device *dev)
854 {
855 	struct net_vrf *vrf = netdev_priv(dev);
856 
857 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
858 	if (!dev->dstats)
859 		goto out_nomem;
860 
861 	/* create the default dst which points back to us */
862 	if (vrf_rtable_create(dev) != 0)
863 		goto out_stats;
864 
865 	if (vrf_rt6_create(dev) != 0)
866 		goto out_rth;
867 
868 	dev->flags = IFF_MASTER | IFF_NOARP;
869 
870 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
871 	dev->mtu = 64 * 1024;
872 
873 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
874 	dev->operstate = IF_OPER_UP;
875 	netdev_lockdep_set_classes(dev);
876 	return 0;
877 
878 out_rth:
879 	vrf_rtable_release(dev, vrf);
880 out_stats:
881 	free_percpu(dev->dstats);
882 	dev->dstats = NULL;
883 out_nomem:
884 	return -ENOMEM;
885 }
886 
887 static const struct net_device_ops vrf_netdev_ops = {
888 	.ndo_init		= vrf_dev_init,
889 	.ndo_uninit		= vrf_dev_uninit,
890 	.ndo_start_xmit		= vrf_xmit,
891 	.ndo_get_stats64	= vrf_get_stats64,
892 	.ndo_add_slave		= vrf_add_slave,
893 	.ndo_del_slave		= vrf_del_slave,
894 };
895 
vrf_fib_table(const struct net_device * dev)896 static u32 vrf_fib_table(const struct net_device *dev)
897 {
898 	struct net_vrf *vrf = netdev_priv(dev);
899 
900 	return vrf->tb_id;
901 }
902 
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)903 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
904 {
905 	kfree_skb(skb);
906 	return 0;
907 }
908 
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)909 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
910 				      struct sk_buff *skb,
911 				      struct net_device *dev)
912 {
913 	struct net *net = dev_net(dev);
914 
915 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
916 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
917 
918 	return skb;
919 }
920 
921 #if IS_ENABLED(CONFIG_IPV6)
922 /* neighbor handling is done with actual device; do not want
923  * to flip skb->dev for those ndisc packets. This really fails
924  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
925  * a start.
926  */
ipv6_ndisc_frame(const struct sk_buff * skb)927 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
928 {
929 	const struct ipv6hdr *iph = ipv6_hdr(skb);
930 	bool rc = false;
931 
932 	if (iph->nexthdr == NEXTHDR_ICMP) {
933 		const struct icmp6hdr *icmph;
934 		struct icmp6hdr _icmph;
935 
936 		icmph = skb_header_pointer(skb, sizeof(*iph),
937 					   sizeof(_icmph), &_icmph);
938 		if (!icmph)
939 			goto out;
940 
941 		switch (icmph->icmp6_type) {
942 		case NDISC_ROUTER_SOLICITATION:
943 		case NDISC_ROUTER_ADVERTISEMENT:
944 		case NDISC_NEIGHBOUR_SOLICITATION:
945 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
946 		case NDISC_REDIRECT:
947 			rc = true;
948 			break;
949 		}
950 	}
951 
952 out:
953 	return rc;
954 }
955 
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)956 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
957 					     const struct net_device *dev,
958 					     struct flowi6 *fl6,
959 					     int ifindex,
960 					     const struct sk_buff *skb,
961 					     int flags)
962 {
963 	struct net_vrf *vrf = netdev_priv(dev);
964 
965 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
966 }
967 
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)968 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
969 			      int ifindex)
970 {
971 	const struct ipv6hdr *iph = ipv6_hdr(skb);
972 	struct flowi6 fl6 = {
973 		.flowi6_iif     = ifindex,
974 		.flowi6_mark    = skb->mark,
975 		.flowi6_proto   = iph->nexthdr,
976 		.daddr          = iph->daddr,
977 		.saddr          = iph->saddr,
978 		.flowlabel      = ip6_flowinfo(iph),
979 	};
980 	struct net *net = dev_net(vrf_dev);
981 	struct rt6_info *rt6;
982 
983 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
984 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
985 	if (unlikely(!rt6))
986 		return;
987 
988 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
989 		return;
990 
991 	skb_dst_set(skb, &rt6->dst);
992 }
993 
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)994 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
995 				   struct sk_buff *skb)
996 {
997 	int orig_iif = skb->skb_iif;
998 	bool need_strict;
999 
1000 	/* loopback traffic; do not push through packet taps again.
1001 	 * Reset pkt_type for upper layers to process skb
1002 	 */
1003 	if (skb->pkt_type == PACKET_LOOPBACK) {
1004 		skb->dev = vrf_dev;
1005 		skb->skb_iif = vrf_dev->ifindex;
1006 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1007 		skb->pkt_type = PACKET_HOST;
1008 		goto out;
1009 	}
1010 
1011 	/* if packet is NDISC or addressed to multicast or link-local
1012 	 * then keep the ingress interface
1013 	 */
1014 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1015 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
1016 		vrf_rx_stats(vrf_dev, skb->len);
1017 		skb->dev = vrf_dev;
1018 		skb->skb_iif = vrf_dev->ifindex;
1019 
1020 		if (!list_empty(&vrf_dev->ptype_all)) {
1021 			skb_push(skb, skb->mac_len);
1022 			dev_queue_xmit_nit(skb, vrf_dev);
1023 			skb_pull(skb, skb->mac_len);
1024 		}
1025 
1026 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1027 	}
1028 
1029 	if (need_strict)
1030 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1031 
1032 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1033 out:
1034 	return skb;
1035 }
1036 
1037 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1038 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1039 				   struct sk_buff *skb)
1040 {
1041 	return skb;
1042 }
1043 #endif
1044 
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1045 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1046 				  struct sk_buff *skb)
1047 {
1048 	skb->dev = vrf_dev;
1049 	skb->skb_iif = vrf_dev->ifindex;
1050 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1051 
1052 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1053 		goto out;
1054 
1055 	/* loopback traffic; do not push through packet taps again.
1056 	 * Reset pkt_type for upper layers to process skb
1057 	 */
1058 	if (skb->pkt_type == PACKET_LOOPBACK) {
1059 		skb->pkt_type = PACKET_HOST;
1060 		goto out;
1061 	}
1062 
1063 	vrf_rx_stats(vrf_dev, skb->len);
1064 
1065 	if (!list_empty(&vrf_dev->ptype_all)) {
1066 		skb_push(skb, skb->mac_len);
1067 		dev_queue_xmit_nit(skb, vrf_dev);
1068 		skb_pull(skb, skb->mac_len);
1069 	}
1070 
1071 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1072 out:
1073 	return skb;
1074 }
1075 
1076 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1077 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1078 				  struct sk_buff *skb,
1079 				  u16 proto)
1080 {
1081 	switch (proto) {
1082 	case AF_INET:
1083 		return vrf_ip_rcv(vrf_dev, skb);
1084 	case AF_INET6:
1085 		return vrf_ip6_rcv(vrf_dev, skb);
1086 	}
1087 
1088 	return skb;
1089 }
1090 
1091 #if IS_ENABLED(CONFIG_IPV6)
1092 /* send to link-local or multicast address via interface enslaved to
1093  * VRF device. Force lookup to VRF table without changing flow struct
1094  */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1095 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1096 					      struct flowi6 *fl6)
1097 {
1098 	struct net *net = dev_net(dev);
1099 	int flags = RT6_LOOKUP_F_IFACE;
1100 	struct dst_entry *dst = NULL;
1101 	struct rt6_info *rt;
1102 
1103 	/* VRF device does not have a link-local address and
1104 	 * sending packets to link-local or mcast addresses over
1105 	 * a VRF device does not make sense
1106 	 */
1107 	if (fl6->flowi6_oif == dev->ifindex) {
1108 		dst = &net->ipv6.ip6_null_entry->dst;
1109 		dst_hold(dst);
1110 		return dst;
1111 	}
1112 
1113 	if (!ipv6_addr_any(&fl6->saddr))
1114 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1115 
1116 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1117 	if (rt)
1118 		dst = &rt->dst;
1119 
1120 	return dst;
1121 }
1122 #endif
1123 
1124 static const struct l3mdev_ops vrf_l3mdev_ops = {
1125 	.l3mdev_fib_table	= vrf_fib_table,
1126 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1127 	.l3mdev_l3_out		= vrf_l3_out,
1128 #if IS_ENABLED(CONFIG_IPV6)
1129 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1130 #endif
1131 };
1132 
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1133 static void vrf_get_drvinfo(struct net_device *dev,
1134 			    struct ethtool_drvinfo *info)
1135 {
1136 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1137 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1138 }
1139 
1140 static const struct ethtool_ops vrf_ethtool_ops = {
1141 	.get_drvinfo	= vrf_get_drvinfo,
1142 };
1143 
vrf_fib_rule_nl_size(void)1144 static inline size_t vrf_fib_rule_nl_size(void)
1145 {
1146 	size_t sz;
1147 
1148 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1149 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1150 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1151 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1152 
1153 	return sz;
1154 }
1155 
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1156 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1157 {
1158 	struct fib_rule_hdr *frh;
1159 	struct nlmsghdr *nlh;
1160 	struct sk_buff *skb;
1161 	int err;
1162 
1163 	if (family == AF_INET6 && !ipv6_mod_enabled())
1164 		return 0;
1165 
1166 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1167 	if (!skb)
1168 		return -ENOMEM;
1169 
1170 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1171 	if (!nlh)
1172 		goto nla_put_failure;
1173 
1174 	/* rule only needs to appear once */
1175 	nlh->nlmsg_flags |= NLM_F_EXCL;
1176 
1177 	frh = nlmsg_data(nlh);
1178 	memset(frh, 0, sizeof(*frh));
1179 	frh->family = family;
1180 	frh->action = FR_ACT_TO_TBL;
1181 
1182 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1183 		goto nla_put_failure;
1184 
1185 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1186 		goto nla_put_failure;
1187 
1188 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1189 		goto nla_put_failure;
1190 
1191 	nlmsg_end(skb, nlh);
1192 
1193 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1194 	skb->sk = dev_net(dev)->rtnl;
1195 	if (add_it) {
1196 		err = fib_nl_newrule(skb, nlh, NULL);
1197 		if (err == -EEXIST)
1198 			err = 0;
1199 	} else {
1200 		err = fib_nl_delrule(skb, nlh, NULL);
1201 		if (err == -ENOENT)
1202 			err = 0;
1203 	}
1204 	nlmsg_free(skb);
1205 
1206 	return err;
1207 
1208 nla_put_failure:
1209 	nlmsg_free(skb);
1210 
1211 	return -EMSGSIZE;
1212 }
1213 
vrf_add_fib_rules(const struct net_device * dev)1214 static int vrf_add_fib_rules(const struct net_device *dev)
1215 {
1216 	int err;
1217 
1218 	err = vrf_fib_rule(dev, AF_INET,  true);
1219 	if (err < 0)
1220 		goto out_err;
1221 
1222 	err = vrf_fib_rule(dev, AF_INET6, true);
1223 	if (err < 0)
1224 		goto ipv6_err;
1225 
1226 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1227 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1228 	if (err < 0)
1229 		goto ipmr_err;
1230 #endif
1231 
1232 	return 0;
1233 
1234 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1235 ipmr_err:
1236 	vrf_fib_rule(dev, AF_INET6,  false);
1237 #endif
1238 
1239 ipv6_err:
1240 	vrf_fib_rule(dev, AF_INET,  false);
1241 
1242 out_err:
1243 	netdev_err(dev, "Failed to add FIB rules.\n");
1244 	return err;
1245 }
1246 
vrf_setup(struct net_device * dev)1247 static void vrf_setup(struct net_device *dev)
1248 {
1249 	ether_setup(dev);
1250 
1251 	/* Initialize the device structure. */
1252 	dev->netdev_ops = &vrf_netdev_ops;
1253 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1254 	dev->ethtool_ops = &vrf_ethtool_ops;
1255 	dev->needs_free_netdev = true;
1256 
1257 	/* Fill in device structure with ethernet-generic values. */
1258 	eth_hw_addr_random(dev);
1259 
1260 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1261 	dev->features |= NETIF_F_LLTX;
1262 
1263 	/* don't allow vrf devices to change network namespaces. */
1264 	dev->features |= NETIF_F_NETNS_LOCAL;
1265 
1266 	/* does not make sense for a VLAN to be added to a vrf device */
1267 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1268 
1269 	/* enable offload features */
1270 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1271 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1272 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1273 
1274 	dev->hw_features = dev->features;
1275 	dev->hw_enc_features = dev->features;
1276 
1277 	/* default to no qdisc; user can add if desired */
1278 	dev->priv_flags |= IFF_NO_QUEUE;
1279 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1280 }
1281 
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1282 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1283 			struct netlink_ext_ack *extack)
1284 {
1285 	if (tb[IFLA_ADDRESS]) {
1286 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1287 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1288 			return -EINVAL;
1289 		}
1290 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1291 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1292 			return -EADDRNOTAVAIL;
1293 		}
1294 	}
1295 	return 0;
1296 }
1297 
vrf_dellink(struct net_device * dev,struct list_head * head)1298 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1299 {
1300 	struct net_device *port_dev;
1301 	struct list_head *iter;
1302 
1303 	netdev_for_each_lower_dev(dev, port_dev, iter)
1304 		vrf_del_slave(dev, port_dev);
1305 
1306 	unregister_netdevice_queue(dev, head);
1307 }
1308 
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1309 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1310 		       struct nlattr *tb[], struct nlattr *data[],
1311 		       struct netlink_ext_ack *extack)
1312 {
1313 	struct net_vrf *vrf = netdev_priv(dev);
1314 	bool *add_fib_rules;
1315 	struct net *net;
1316 	int err;
1317 
1318 	if (!data || !data[IFLA_VRF_TABLE]) {
1319 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1320 		return -EINVAL;
1321 	}
1322 
1323 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1324 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1325 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1326 				    "Invalid VRF table id");
1327 		return -EINVAL;
1328 	}
1329 
1330 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1331 
1332 	err = register_netdevice(dev);
1333 	if (err)
1334 		goto out;
1335 
1336 	net = dev_net(dev);
1337 	add_fib_rules = net_generic(net, vrf_net_id);
1338 	if (*add_fib_rules) {
1339 		err = vrf_add_fib_rules(dev);
1340 		if (err) {
1341 			unregister_netdevice(dev);
1342 			goto out;
1343 		}
1344 		*add_fib_rules = false;
1345 	}
1346 
1347 out:
1348 	return err;
1349 }
1350 
vrf_nl_getsize(const struct net_device * dev)1351 static size_t vrf_nl_getsize(const struct net_device *dev)
1352 {
1353 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1354 }
1355 
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1356 static int vrf_fillinfo(struct sk_buff *skb,
1357 			const struct net_device *dev)
1358 {
1359 	struct net_vrf *vrf = netdev_priv(dev);
1360 
1361 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1362 }
1363 
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1364 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1365 				 const struct net_device *slave_dev)
1366 {
1367 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1368 }
1369 
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1370 static int vrf_fill_slave_info(struct sk_buff *skb,
1371 			       const struct net_device *vrf_dev,
1372 			       const struct net_device *slave_dev)
1373 {
1374 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1375 
1376 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1377 		return -EMSGSIZE;
1378 
1379 	return 0;
1380 }
1381 
1382 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1383 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1384 };
1385 
1386 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1387 	.kind		= DRV_NAME,
1388 	.priv_size	= sizeof(struct net_vrf),
1389 
1390 	.get_size	= vrf_nl_getsize,
1391 	.policy		= vrf_nl_policy,
1392 	.validate	= vrf_validate,
1393 	.fill_info	= vrf_fillinfo,
1394 
1395 	.get_slave_size  = vrf_get_slave_size,
1396 	.fill_slave_info = vrf_fill_slave_info,
1397 
1398 	.newlink	= vrf_newlink,
1399 	.dellink	= vrf_dellink,
1400 	.setup		= vrf_setup,
1401 	.maxtype	= IFLA_VRF_MAX,
1402 };
1403 
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1404 static int vrf_device_event(struct notifier_block *unused,
1405 			    unsigned long event, void *ptr)
1406 {
1407 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1408 
1409 	/* only care about unregister events to drop slave references */
1410 	if (event == NETDEV_UNREGISTER) {
1411 		struct net_device *vrf_dev;
1412 
1413 		if (!netif_is_l3_slave(dev))
1414 			goto out;
1415 
1416 		vrf_dev = netdev_master_upper_dev_get(dev);
1417 		vrf_del_slave(vrf_dev, dev);
1418 	}
1419 out:
1420 	return NOTIFY_DONE;
1421 }
1422 
1423 static struct notifier_block vrf_notifier_block __read_mostly = {
1424 	.notifier_call = vrf_device_event,
1425 };
1426 
1427 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1428 static int __net_init vrf_netns_init(struct net *net)
1429 {
1430 	bool *add_fib_rules = net_generic(net, vrf_net_id);
1431 
1432 	*add_fib_rules = true;
1433 
1434 	return 0;
1435 }
1436 
1437 static struct pernet_operations vrf_net_ops __net_initdata = {
1438 	.init = vrf_netns_init,
1439 	.id   = &vrf_net_id,
1440 	.size = sizeof(bool),
1441 };
1442 
vrf_init_module(void)1443 static int __init vrf_init_module(void)
1444 {
1445 	int rc;
1446 
1447 	register_netdevice_notifier(&vrf_notifier_block);
1448 
1449 	rc = register_pernet_subsys(&vrf_net_ops);
1450 	if (rc < 0)
1451 		goto error;
1452 
1453 	rc = rtnl_link_register(&vrf_link_ops);
1454 	if (rc < 0) {
1455 		unregister_pernet_subsys(&vrf_net_ops);
1456 		goto error;
1457 	}
1458 
1459 	return 0;
1460 
1461 error:
1462 	unregister_netdevice_notifier(&vrf_notifier_block);
1463 	return rc;
1464 }
1465 
1466 module_init(vrf_init_module);
1467 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1468 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1469 MODULE_LICENSE("GPL");
1470 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1471 MODULE_VERSION(DRV_VERSION);
1472