• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28 
29 
30 /* *************************** Data Structures/Defines ****************** */
31 
32 
33 enum nvme_fc_queue_flags {
34 	NVME_FC_Q_CONNECTED = 0,
35 	NVME_FC_Q_LIVE,
36 };
37 
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
39 
40 struct nvme_fc_queue {
41 	struct nvme_fc_ctrl	*ctrl;
42 	struct device		*dev;
43 	struct blk_mq_hw_ctx	*hctx;
44 	void			*lldd_handle;
45 	size_t			cmnd_capsule_len;
46 	u32			qnum;
47 	u32			rqcnt;
48 	u32			seqno;
49 
50 	u64			connection_id;
51 	atomic_t		csn;
52 
53 	unsigned long		flags;
54 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
55 
56 enum nvme_fcop_flags {
57 	FCOP_FLAGS_TERMIO	= (1 << 0),
58 	FCOP_FLAGS_AEN		= (1 << 1),
59 };
60 
61 struct nvmefc_ls_req_op {
62 	struct nvmefc_ls_req	ls_req;
63 
64 	struct nvme_fc_rport	*rport;
65 	struct nvme_fc_queue	*queue;
66 	struct request		*rq;
67 	u32			flags;
68 
69 	int			ls_error;
70 	struct completion	ls_done;
71 	struct list_head	lsreq_list;	/* rport->ls_req_list */
72 	bool			req_queued;
73 };
74 
75 enum nvme_fcpop_state {
76 	FCPOP_STATE_UNINIT	= 0,
77 	FCPOP_STATE_IDLE	= 1,
78 	FCPOP_STATE_ACTIVE	= 2,
79 	FCPOP_STATE_ABORTED	= 3,
80 	FCPOP_STATE_COMPLETE	= 4,
81 };
82 
83 struct nvme_fc_fcp_op {
84 	struct nvme_request	nreq;		/*
85 						 * nvme/host/core.c
86 						 * requires this to be
87 						 * the 1st element in the
88 						 * private structure
89 						 * associated with the
90 						 * request.
91 						 */
92 	struct nvmefc_fcp_req	fcp_req;
93 
94 	struct nvme_fc_ctrl	*ctrl;
95 	struct nvme_fc_queue	*queue;
96 	struct request		*rq;
97 
98 	atomic_t		state;
99 	u32			flags;
100 	u32			rqno;
101 	u32			nents;
102 
103 	struct nvme_fc_cmd_iu	cmd_iu;
104 	struct nvme_fc_ersp_iu	rsp_iu;
105 };
106 
107 struct nvme_fc_lport {
108 	struct nvme_fc_local_port	localport;
109 
110 	struct ida			endp_cnt;
111 	struct list_head		port_list;	/* nvme_fc_port_list */
112 	struct list_head		endp_list;
113 	struct device			*dev;	/* physical device for dma */
114 	struct nvme_fc_port_template	*ops;
115 	struct kref			ref;
116 	atomic_t                        act_rport_cnt;
117 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
118 
119 struct nvme_fc_rport {
120 	struct nvme_fc_remote_port	remoteport;
121 
122 	struct list_head		endp_list; /* for lport->endp_list */
123 	struct list_head		ctrl_list;
124 	struct list_head		ls_req_list;
125 	struct device			*dev;	/* physical device for dma */
126 	struct nvme_fc_lport		*lport;
127 	spinlock_t			lock;
128 	struct kref			ref;
129 	atomic_t                        act_ctrl_cnt;
130 	unsigned long			dev_loss_end;
131 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
132 
133 enum nvme_fcctrl_flags {
134 	FCCTRL_TERMIO		= (1 << 0),
135 };
136 
137 struct nvme_fc_ctrl {
138 	spinlock_t		lock;
139 	struct nvme_fc_queue	*queues;
140 	struct device		*dev;
141 	struct nvme_fc_lport	*lport;
142 	struct nvme_fc_rport	*rport;
143 	u32			cnum;
144 
145 	bool			ioq_live;
146 	bool			assoc_active;
147 	atomic_t		err_work_active;
148 	u64			association_id;
149 
150 	struct list_head	ctrl_list;	/* rport->ctrl_list */
151 
152 	struct blk_mq_tag_set	admin_tag_set;
153 	struct blk_mq_tag_set	tag_set;
154 
155 	struct delayed_work	connect_work;
156 	struct work_struct	err_work;
157 
158 	struct kref		ref;
159 	u32			flags;
160 	u32			iocnt;
161 	wait_queue_head_t	ioabort_wait;
162 
163 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
164 
165 	struct nvme_ctrl	ctrl;
166 };
167 
168 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)169 to_fc_ctrl(struct nvme_ctrl *ctrl)
170 {
171 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
172 }
173 
174 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)175 localport_to_lport(struct nvme_fc_local_port *portptr)
176 {
177 	return container_of(portptr, struct nvme_fc_lport, localport);
178 }
179 
180 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)181 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
182 {
183 	return container_of(portptr, struct nvme_fc_rport, remoteport);
184 }
185 
186 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)187 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
188 {
189 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
190 }
191 
192 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)193 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
194 {
195 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
196 }
197 
198 
199 
200 /* *************************** Globals **************************** */
201 
202 
203 static DEFINE_SPINLOCK(nvme_fc_lock);
204 
205 static LIST_HEAD(nvme_fc_lport_list);
206 static DEFINE_IDA(nvme_fc_local_port_cnt);
207 static DEFINE_IDA(nvme_fc_ctrl_cnt);
208 
209 static struct workqueue_struct *nvme_fc_wq;
210 
211 /*
212  * These items are short-term. They will eventually be moved into
213  * a generic FC class. See comments in module init.
214  */
215 static struct class *fc_class;
216 static struct device *fc_udev_device;
217 
218 
219 /* *********************** FC-NVME Port Management ************************ */
220 
221 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
222 			struct nvme_fc_queue *, unsigned int);
223 
224 static void
nvme_fc_free_lport(struct kref * ref)225 nvme_fc_free_lport(struct kref *ref)
226 {
227 	struct nvme_fc_lport *lport =
228 		container_of(ref, struct nvme_fc_lport, ref);
229 	unsigned long flags;
230 
231 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
232 	WARN_ON(!list_empty(&lport->endp_list));
233 
234 	/* remove from transport list */
235 	spin_lock_irqsave(&nvme_fc_lock, flags);
236 	list_del(&lport->port_list);
237 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
238 
239 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 	ida_destroy(&lport->endp_cnt);
241 
242 	put_device(lport->dev);
243 
244 	kfree(lport);
245 }
246 
247 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250 	kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252 
253 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256 	return kref_get_unless_zero(&lport->ref);
257 }
258 
259 
260 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 			struct nvme_fc_port_template *ops,
263 			struct device *dev)
264 {
265 	struct nvme_fc_lport *lport;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&nvme_fc_lock, flags);
269 
270 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 		if (lport->localport.node_name != pinfo->node_name ||
272 		    lport->localport.port_name != pinfo->port_name)
273 			continue;
274 
275 		if (lport->dev != dev) {
276 			lport = ERR_PTR(-EXDEV);
277 			goto out_done;
278 		}
279 
280 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 			lport = ERR_PTR(-EEXIST);
282 			goto out_done;
283 		}
284 
285 		if (!nvme_fc_lport_get(lport)) {
286 			/*
287 			 * fails if ref cnt already 0. If so,
288 			 * act as if lport already deleted
289 			 */
290 			lport = NULL;
291 			goto out_done;
292 		}
293 
294 		/* resume the lport */
295 
296 		lport->ops = ops;
297 		lport->localport.port_role = pinfo->port_role;
298 		lport->localport.port_id = pinfo->port_id;
299 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
300 
301 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
302 
303 		return lport;
304 	}
305 
306 	lport = NULL;
307 
308 out_done:
309 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
310 
311 	return lport;
312 }
313 
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @lport_p:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 			struct nvme_fc_port_template *template,
334 			struct device *dev,
335 			struct nvme_fc_local_port **portptr)
336 {
337 	struct nvme_fc_lport *newrec;
338 	unsigned long flags;
339 	int ret, idx;
340 
341 	if (!template->localport_delete || !template->remoteport_delete ||
342 	    !template->ls_req || !template->fcp_io ||
343 	    !template->ls_abort || !template->fcp_abort ||
344 	    !template->max_hw_queues || !template->max_sgl_segments ||
345 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
346 		ret = -EINVAL;
347 		goto out_reghost_failed;
348 	}
349 
350 	/*
351 	 * look to see if there is already a localport that had been
352 	 * deregistered and in the process of waiting for all the
353 	 * references to fully be removed.  If the references haven't
354 	 * expired, we can simply re-enable the localport. Remoteports
355 	 * and controller reconnections should resume naturally.
356 	 */
357 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358 
359 	/* found an lport, but something about its state is bad */
360 	if (IS_ERR(newrec)) {
361 		ret = PTR_ERR(newrec);
362 		goto out_reghost_failed;
363 
364 	/* found existing lport, which was resumed */
365 	} else if (newrec) {
366 		*portptr = &newrec->localport;
367 		return 0;
368 	}
369 
370 	/* nothing found - allocate a new localport struct */
371 
372 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373 			 GFP_KERNEL);
374 	if (!newrec) {
375 		ret = -ENOMEM;
376 		goto out_reghost_failed;
377 	}
378 
379 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380 	if (idx < 0) {
381 		ret = -ENOSPC;
382 		goto out_fail_kfree;
383 	}
384 
385 	if (!get_device(dev) && dev) {
386 		ret = -ENODEV;
387 		goto out_ida_put;
388 	}
389 
390 	INIT_LIST_HEAD(&newrec->port_list);
391 	INIT_LIST_HEAD(&newrec->endp_list);
392 	kref_init(&newrec->ref);
393 	atomic_set(&newrec->act_rport_cnt, 0);
394 	newrec->ops = template;
395 	newrec->dev = dev;
396 	ida_init(&newrec->endp_cnt);
397 	newrec->localport.private = &newrec[1];
398 	newrec->localport.node_name = pinfo->node_name;
399 	newrec->localport.port_name = pinfo->port_name;
400 	newrec->localport.port_role = pinfo->port_role;
401 	newrec->localport.port_id = pinfo->port_id;
402 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403 	newrec->localport.port_num = idx;
404 
405 	spin_lock_irqsave(&nvme_fc_lock, flags);
406 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
408 
409 	if (dev)
410 		dma_set_seg_boundary(dev, template->dma_boundary);
411 
412 	*portptr = &newrec->localport;
413 	return 0;
414 
415 out_ida_put:
416 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418 	kfree(newrec);
419 out_reghost_failed:
420 	*portptr = NULL;
421 
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425 
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @localport: pointer to the (registered) local port that is to be
431  *             deregistered.
432  *
433  * Returns:
434  * a completion status. Must be 0 upon success; a negative errno
435  * (ex: -ENXIO) upon failure.
436  */
437 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 {
440 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
441 	unsigned long flags;
442 
443 	if (!portptr)
444 		return -EINVAL;
445 
446 	spin_lock_irqsave(&nvme_fc_lock, flags);
447 
448 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
449 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
450 		return -EINVAL;
451 	}
452 	portptr->port_state = FC_OBJSTATE_DELETED;
453 
454 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
455 
456 	if (atomic_read(&lport->act_rport_cnt) == 0)
457 		lport->ops->localport_delete(&lport->localport);
458 
459 	nvme_fc_lport_put(lport);
460 
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
464 
465 /*
466  * TRADDR strings, per FC-NVME are fixed format:
467  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
468  * udev event will only differ by prefix of what field is
469  * being specified:
470  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
471  *  19 + 43 + null_fudge = 64 characters
472  */
473 #define FCNVME_TRADDR_LENGTH		64
474 
475 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
477 		struct nvme_fc_rport *rport)
478 {
479 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
480 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
481 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482 
483 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
484 		return;
485 
486 	snprintf(hostaddr, sizeof(hostaddr),
487 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
488 		lport->localport.node_name, lport->localport.port_name);
489 	snprintf(tgtaddr, sizeof(tgtaddr),
490 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
491 		rport->remoteport.node_name, rport->remoteport.port_name);
492 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
493 }
494 
495 static void
nvme_fc_free_rport(struct kref * ref)496 nvme_fc_free_rport(struct kref *ref)
497 {
498 	struct nvme_fc_rport *rport =
499 		container_of(ref, struct nvme_fc_rport, ref);
500 	struct nvme_fc_lport *lport =
501 			localport_to_lport(rport->remoteport.localport);
502 	unsigned long flags;
503 
504 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
505 	WARN_ON(!list_empty(&rport->ctrl_list));
506 
507 	/* remove from lport list */
508 	spin_lock_irqsave(&nvme_fc_lock, flags);
509 	list_del(&rport->endp_list);
510 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
511 
512 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513 
514 	kfree(rport);
515 
516 	nvme_fc_lport_put(lport);
517 }
518 
519 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522 	kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524 
525 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528 	return kref_get_unless_zero(&rport->ref);
529 }
530 
531 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534 	switch (ctrl->ctrl.state) {
535 	case NVME_CTRL_NEW:
536 	case NVME_CTRL_CONNECTING:
537 		/*
538 		 * As all reconnects were suppressed, schedule a
539 		 * connect.
540 		 */
541 		dev_info(ctrl->ctrl.device,
542 			"NVME-FC{%d}: connectivity re-established. "
543 			"Attempting reconnect\n", ctrl->cnum);
544 
545 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546 		break;
547 
548 	case NVME_CTRL_RESETTING:
549 		/*
550 		 * Controller is already in the process of terminating the
551 		 * association. No need to do anything further. The reconnect
552 		 * step will naturally occur after the reset completes.
553 		 */
554 		break;
555 
556 	default:
557 		/* no action to take - let it delete */
558 		break;
559 	}
560 }
561 
562 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564 				struct nvme_fc_port_info *pinfo)
565 {
566 	struct nvme_fc_rport *rport;
567 	struct nvme_fc_ctrl *ctrl;
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&nvme_fc_lock, flags);
571 
572 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
573 		if (rport->remoteport.node_name != pinfo->node_name ||
574 		    rport->remoteport.port_name != pinfo->port_name)
575 			continue;
576 
577 		if (!nvme_fc_rport_get(rport)) {
578 			rport = ERR_PTR(-ENOLCK);
579 			goto out_done;
580 		}
581 
582 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
583 
584 		spin_lock_irqsave(&rport->lock, flags);
585 
586 		/* has it been unregistered */
587 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588 			/* means lldd called us twice */
589 			spin_unlock_irqrestore(&rport->lock, flags);
590 			nvme_fc_rport_put(rport);
591 			return ERR_PTR(-ESTALE);
592 		}
593 
594 		rport->remoteport.port_role = pinfo->port_role;
595 		rport->remoteport.port_id = pinfo->port_id;
596 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597 		rport->dev_loss_end = 0;
598 
599 		/*
600 		 * kick off a reconnect attempt on all associations to the
601 		 * remote port. A successful reconnects will resume i/o.
602 		 */
603 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604 			nvme_fc_resume_controller(ctrl);
605 
606 		spin_unlock_irqrestore(&rport->lock, flags);
607 
608 		return rport;
609 	}
610 
611 	rport = NULL;
612 
613 out_done:
614 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
615 
616 	return rport;
617 }
618 
619 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621 			struct nvme_fc_port_info *pinfo)
622 {
623 	if (pinfo->dev_loss_tmo)
624 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625 	else
626 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
627 }
628 
629 /**
630  * nvme_fc_register_remoteport - transport entry point called by an
631  *                              LLDD to register the existence of a NVME
632  *                              subsystem FC port on its fabric.
633  * @localport: pointer to the (registered) local port that the remote
634  *             subsystem port is connected to.
635  * @pinfo:     pointer to information about the port to be registered
636  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
637  *             will allocate a nvme_fc_remote_port structure and place its
638  *             address in the remote port pointer. Upon failure, remote port
639  *             pointer will be set to 0.
640  *
641  * Returns:
642  * a completion status. Must be 0 upon success; a negative errno
643  * (ex: -ENXIO) upon failure.
644  */
645 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647 				struct nvme_fc_port_info *pinfo,
648 				struct nvme_fc_remote_port **portptr)
649 {
650 	struct nvme_fc_lport *lport = localport_to_lport(localport);
651 	struct nvme_fc_rport *newrec;
652 	unsigned long flags;
653 	int ret, idx;
654 
655 	if (!nvme_fc_lport_get(lport)) {
656 		ret = -ESHUTDOWN;
657 		goto out_reghost_failed;
658 	}
659 
660 	/*
661 	 * look to see if there is already a remoteport that is waiting
662 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
663 	 * If so, transition to it and reconnect.
664 	 */
665 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666 
667 	/* found an rport, but something about its state is bad */
668 	if (IS_ERR(newrec)) {
669 		ret = PTR_ERR(newrec);
670 		goto out_lport_put;
671 
672 	/* found existing rport, which was resumed */
673 	} else if (newrec) {
674 		nvme_fc_lport_put(lport);
675 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676 		nvme_fc_signal_discovery_scan(lport, newrec);
677 		*portptr = &newrec->remoteport;
678 		return 0;
679 	}
680 
681 	/* nothing found - allocate a new remoteport struct */
682 
683 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684 			 GFP_KERNEL);
685 	if (!newrec) {
686 		ret = -ENOMEM;
687 		goto out_lport_put;
688 	}
689 
690 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691 	if (idx < 0) {
692 		ret = -ENOSPC;
693 		goto out_kfree_rport;
694 	}
695 
696 	INIT_LIST_HEAD(&newrec->endp_list);
697 	INIT_LIST_HEAD(&newrec->ctrl_list);
698 	INIT_LIST_HEAD(&newrec->ls_req_list);
699 	kref_init(&newrec->ref);
700 	atomic_set(&newrec->act_ctrl_cnt, 0);
701 	spin_lock_init(&newrec->lock);
702 	newrec->remoteport.localport = &lport->localport;
703 	newrec->dev = lport->dev;
704 	newrec->lport = lport;
705 	newrec->remoteport.private = &newrec[1];
706 	newrec->remoteport.port_role = pinfo->port_role;
707 	newrec->remoteport.node_name = pinfo->node_name;
708 	newrec->remoteport.port_name = pinfo->port_name;
709 	newrec->remoteport.port_id = pinfo->port_id;
710 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
711 	newrec->remoteport.port_num = idx;
712 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
713 
714 	spin_lock_irqsave(&nvme_fc_lock, flags);
715 	list_add_tail(&newrec->endp_list, &lport->endp_list);
716 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
717 
718 	nvme_fc_signal_discovery_scan(lport, newrec);
719 
720 	*portptr = &newrec->remoteport;
721 	return 0;
722 
723 out_kfree_rport:
724 	kfree(newrec);
725 out_lport_put:
726 	nvme_fc_lport_put(lport);
727 out_reghost_failed:
728 	*portptr = NULL;
729 	return ret;
730 }
731 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
732 
733 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)734 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
735 {
736 	struct nvmefc_ls_req_op *lsop;
737 	unsigned long flags;
738 
739 restart:
740 	spin_lock_irqsave(&rport->lock, flags);
741 
742 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
743 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
744 			lsop->flags |= FCOP_FLAGS_TERMIO;
745 			spin_unlock_irqrestore(&rport->lock, flags);
746 			rport->lport->ops->ls_abort(&rport->lport->localport,
747 						&rport->remoteport,
748 						&lsop->ls_req);
749 			goto restart;
750 		}
751 	}
752 	spin_unlock_irqrestore(&rport->lock, flags);
753 
754 	return 0;
755 }
756 
757 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)758 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
759 {
760 	dev_info(ctrl->ctrl.device,
761 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
762 		"Reconnect", ctrl->cnum);
763 
764 	switch (ctrl->ctrl.state) {
765 	case NVME_CTRL_NEW:
766 	case NVME_CTRL_LIVE:
767 		/*
768 		 * Schedule a controller reset. The reset will terminate the
769 		 * association and schedule the reconnect timer.  Reconnects
770 		 * will be attempted until either the ctlr_loss_tmo
771 		 * (max_retries * connect_delay) expires or the remoteport's
772 		 * dev_loss_tmo expires.
773 		 */
774 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
775 			dev_warn(ctrl->ctrl.device,
776 				"NVME-FC{%d}: Couldn't schedule reset.\n",
777 				ctrl->cnum);
778 			nvme_delete_ctrl(&ctrl->ctrl);
779 		}
780 		break;
781 
782 	case NVME_CTRL_CONNECTING:
783 		/*
784 		 * The association has already been terminated and the
785 		 * controller is attempting reconnects.  No need to do anything
786 		 * futher.  Reconnects will be attempted until either the
787 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
788 		 * remoteport's dev_loss_tmo expires.
789 		 */
790 		break;
791 
792 	case NVME_CTRL_RESETTING:
793 		/*
794 		 * Controller is already in the process of terminating the
795 		 * association.  No need to do anything further. The reconnect
796 		 * step will kick in naturally after the association is
797 		 * terminated.
798 		 */
799 		break;
800 
801 	case NVME_CTRL_DELETING:
802 	default:
803 		/* no action to take - let it delete */
804 		break;
805 	}
806 }
807 
808 /**
809  * nvme_fc_unregister_remoteport - transport entry point called by an
810  *                              LLDD to deregister/remove a previously
811  *                              registered a NVME subsystem FC port.
812  * @remoteport: pointer to the (registered) remote port that is to be
813  *              deregistered.
814  *
815  * Returns:
816  * a completion status. Must be 0 upon success; a negative errno
817  * (ex: -ENXIO) upon failure.
818  */
819 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)820 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
821 {
822 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
823 	struct nvme_fc_ctrl *ctrl;
824 	unsigned long flags;
825 
826 	if (!portptr)
827 		return -EINVAL;
828 
829 	spin_lock_irqsave(&rport->lock, flags);
830 
831 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
832 		spin_unlock_irqrestore(&rport->lock, flags);
833 		return -EINVAL;
834 	}
835 	portptr->port_state = FC_OBJSTATE_DELETED;
836 
837 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
838 
839 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
840 		/* if dev_loss_tmo==0, dev loss is immediate */
841 		if (!portptr->dev_loss_tmo) {
842 			dev_warn(ctrl->ctrl.device,
843 				"NVME-FC{%d}: controller connectivity lost.\n",
844 				ctrl->cnum);
845 			nvme_delete_ctrl(&ctrl->ctrl);
846 		} else
847 			nvme_fc_ctrl_connectivity_loss(ctrl);
848 	}
849 
850 	spin_unlock_irqrestore(&rport->lock, flags);
851 
852 	nvme_fc_abort_lsops(rport);
853 
854 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
855 		rport->lport->ops->remoteport_delete(portptr);
856 
857 	/*
858 	 * release the reference, which will allow, if all controllers
859 	 * go away, which should only occur after dev_loss_tmo occurs,
860 	 * for the rport to be torn down.
861 	 */
862 	nvme_fc_rport_put(rport);
863 
864 	return 0;
865 }
866 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
867 
868 /**
869  * nvme_fc_rescan_remoteport - transport entry point called by an
870  *                              LLDD to request a nvme device rescan.
871  * @remoteport: pointer to the (registered) remote port that is to be
872  *              rescanned.
873  *
874  * Returns: N/A
875  */
876 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)877 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
878 {
879 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
880 
881 	nvme_fc_signal_discovery_scan(rport->lport, rport);
882 }
883 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
884 
885 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)886 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
887 			u32 dev_loss_tmo)
888 {
889 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
890 	unsigned long flags;
891 
892 	spin_lock_irqsave(&rport->lock, flags);
893 
894 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
895 		spin_unlock_irqrestore(&rport->lock, flags);
896 		return -EINVAL;
897 	}
898 
899 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
900 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
901 
902 	spin_unlock_irqrestore(&rport->lock, flags);
903 
904 	return 0;
905 }
906 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
907 
908 
909 /* *********************** FC-NVME DMA Handling **************************** */
910 
911 /*
912  * The fcloop device passes in a NULL device pointer. Real LLD's will
913  * pass in a valid device pointer. If NULL is passed to the dma mapping
914  * routines, depending on the platform, it may or may not succeed, and
915  * may crash.
916  *
917  * As such:
918  * Wrapper all the dma routines and check the dev pointer.
919  *
920  * If simple mappings (return just a dma address, we'll noop them,
921  * returning a dma address of 0.
922  *
923  * On more complex mappings (dma_map_sg), a pseudo routine fills
924  * in the scatter list, setting all dma addresses to 0.
925  */
926 
927 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)928 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
929 		enum dma_data_direction dir)
930 {
931 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
932 }
933 
934 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)935 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
936 {
937 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
938 }
939 
940 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)941 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
942 	enum dma_data_direction dir)
943 {
944 	if (dev)
945 		dma_unmap_single(dev, addr, size, dir);
946 }
947 
948 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)949 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
950 		enum dma_data_direction dir)
951 {
952 	if (dev)
953 		dma_sync_single_for_cpu(dev, addr, size, dir);
954 }
955 
956 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)957 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
958 		enum dma_data_direction dir)
959 {
960 	if (dev)
961 		dma_sync_single_for_device(dev, addr, size, dir);
962 }
963 
964 /* pseudo dma_map_sg call */
965 static int
fc_map_sg(struct scatterlist * sg,int nents)966 fc_map_sg(struct scatterlist *sg, int nents)
967 {
968 	struct scatterlist *s;
969 	int i;
970 
971 	WARN_ON(nents == 0 || sg[0].length == 0);
972 
973 	for_each_sg(sg, s, nents, i) {
974 		s->dma_address = 0L;
975 #ifdef CONFIG_NEED_SG_DMA_LENGTH
976 		s->dma_length = s->length;
977 #endif
978 	}
979 	return nents;
980 }
981 
982 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)983 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
984 		enum dma_data_direction dir)
985 {
986 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
987 }
988 
989 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)990 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
991 		enum dma_data_direction dir)
992 {
993 	if (dev)
994 		dma_unmap_sg(dev, sg, nents, dir);
995 }
996 
997 /* *********************** FC-NVME LS Handling **************************** */
998 
999 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1000 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1001 
1002 
1003 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1004 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1005 {
1006 	struct nvme_fc_rport *rport = lsop->rport;
1007 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1008 	unsigned long flags;
1009 
1010 	spin_lock_irqsave(&rport->lock, flags);
1011 
1012 	if (!lsop->req_queued) {
1013 		spin_unlock_irqrestore(&rport->lock, flags);
1014 		return;
1015 	}
1016 
1017 	list_del(&lsop->lsreq_list);
1018 
1019 	lsop->req_queued = false;
1020 
1021 	spin_unlock_irqrestore(&rport->lock, flags);
1022 
1023 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1024 				  (lsreq->rqstlen + lsreq->rsplen),
1025 				  DMA_BIDIRECTIONAL);
1026 
1027 	nvme_fc_rport_put(rport);
1028 }
1029 
1030 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1031 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1032 		struct nvmefc_ls_req_op *lsop,
1033 		void (*done)(struct nvmefc_ls_req *req, int status))
1034 {
1035 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1036 	unsigned long flags;
1037 	int ret = 0;
1038 
1039 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1040 		return -ECONNREFUSED;
1041 
1042 	if (!nvme_fc_rport_get(rport))
1043 		return -ESHUTDOWN;
1044 
1045 	lsreq->done = done;
1046 	lsop->rport = rport;
1047 	lsop->req_queued = false;
1048 	INIT_LIST_HEAD(&lsop->lsreq_list);
1049 	init_completion(&lsop->ls_done);
1050 
1051 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1052 				  lsreq->rqstlen + lsreq->rsplen,
1053 				  DMA_BIDIRECTIONAL);
1054 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1055 		ret = -EFAULT;
1056 		goto out_putrport;
1057 	}
1058 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1059 
1060 	spin_lock_irqsave(&rport->lock, flags);
1061 
1062 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1063 
1064 	lsop->req_queued = true;
1065 
1066 	spin_unlock_irqrestore(&rport->lock, flags);
1067 
1068 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1069 					&rport->remoteport, lsreq);
1070 	if (ret)
1071 		goto out_unlink;
1072 
1073 	return 0;
1074 
1075 out_unlink:
1076 	lsop->ls_error = ret;
1077 	spin_lock_irqsave(&rport->lock, flags);
1078 	lsop->req_queued = false;
1079 	list_del(&lsop->lsreq_list);
1080 	spin_unlock_irqrestore(&rport->lock, flags);
1081 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1082 				  (lsreq->rqstlen + lsreq->rsplen),
1083 				  DMA_BIDIRECTIONAL);
1084 out_putrport:
1085 	nvme_fc_rport_put(rport);
1086 
1087 	return ret;
1088 }
1089 
1090 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1091 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1092 {
1093 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1094 
1095 	lsop->ls_error = status;
1096 	complete(&lsop->ls_done);
1097 }
1098 
1099 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1100 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1101 {
1102 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1103 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1104 	int ret;
1105 
1106 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1107 
1108 	if (!ret) {
1109 		/*
1110 		 * No timeout/not interruptible as we need the struct
1111 		 * to exist until the lldd calls us back. Thus mandate
1112 		 * wait until driver calls back. lldd responsible for
1113 		 * the timeout action
1114 		 */
1115 		wait_for_completion(&lsop->ls_done);
1116 
1117 		__nvme_fc_finish_ls_req(lsop);
1118 
1119 		ret = lsop->ls_error;
1120 	}
1121 
1122 	if (ret)
1123 		return ret;
1124 
1125 	/* ACC or RJT payload ? */
1126 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1127 		return -ENXIO;
1128 
1129 	return 0;
1130 }
1131 
1132 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1133 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1134 		struct nvmefc_ls_req_op *lsop,
1135 		void (*done)(struct nvmefc_ls_req *req, int status))
1136 {
1137 	/* don't wait for completion */
1138 
1139 	return __nvme_fc_send_ls_req(rport, lsop, done);
1140 }
1141 
1142 /* Validation Error indexes into the string table below */
1143 enum {
1144 	VERR_NO_ERROR		= 0,
1145 	VERR_LSACC		= 1,
1146 	VERR_LSDESC_RQST	= 2,
1147 	VERR_LSDESC_RQST_LEN	= 3,
1148 	VERR_ASSOC_ID		= 4,
1149 	VERR_ASSOC_ID_LEN	= 5,
1150 	VERR_CONN_ID		= 6,
1151 	VERR_CONN_ID_LEN	= 7,
1152 	VERR_CR_ASSOC		= 8,
1153 	VERR_CR_ASSOC_ACC_LEN	= 9,
1154 	VERR_CR_CONN		= 10,
1155 	VERR_CR_CONN_ACC_LEN	= 11,
1156 	VERR_DISCONN		= 12,
1157 	VERR_DISCONN_ACC_LEN	= 13,
1158 };
1159 
1160 static char *validation_errors[] = {
1161 	"OK",
1162 	"Not LS_ACC",
1163 	"Not LSDESC_RQST",
1164 	"Bad LSDESC_RQST Length",
1165 	"Not Association ID",
1166 	"Bad Association ID Length",
1167 	"Not Connection ID",
1168 	"Bad Connection ID Length",
1169 	"Not CR_ASSOC Rqst",
1170 	"Bad CR_ASSOC ACC Length",
1171 	"Not CR_CONN Rqst",
1172 	"Bad CR_CONN ACC Length",
1173 	"Not Disconnect Rqst",
1174 	"Bad Disconnect ACC Length",
1175 };
1176 
1177 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1178 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1179 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1180 {
1181 	struct nvmefc_ls_req_op *lsop;
1182 	struct nvmefc_ls_req *lsreq;
1183 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1184 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1185 	int ret, fcret = 0;
1186 
1187 	lsop = kzalloc((sizeof(*lsop) +
1188 			 ctrl->lport->ops->lsrqst_priv_sz +
1189 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1190 	if (!lsop) {
1191 		ret = -ENOMEM;
1192 		goto out_no_memory;
1193 	}
1194 	lsreq = &lsop->ls_req;
1195 
1196 	lsreq->private = (void *)&lsop[1];
1197 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1198 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1199 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 
1201 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1202 	assoc_rqst->desc_list_len =
1203 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1204 
1205 	assoc_rqst->assoc_cmd.desc_tag =
1206 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1207 	assoc_rqst->assoc_cmd.desc_len =
1208 			fcnvme_lsdesc_len(
1209 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1210 
1211 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1212 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1213 	/* Linux supports only Dynamic controllers */
1214 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1215 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1216 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1217 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1218 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1219 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1220 
1221 	lsop->queue = queue;
1222 	lsreq->rqstaddr = assoc_rqst;
1223 	lsreq->rqstlen = sizeof(*assoc_rqst);
1224 	lsreq->rspaddr = assoc_acc;
1225 	lsreq->rsplen = sizeof(*assoc_acc);
1226 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1227 
1228 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1229 	if (ret)
1230 		goto out_free_buffer;
1231 
1232 	/* process connect LS completion */
1233 
1234 	/* validate the ACC response */
1235 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1236 		fcret = VERR_LSACC;
1237 	else if (assoc_acc->hdr.desc_list_len !=
1238 			fcnvme_lsdesc_len(
1239 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1240 		fcret = VERR_CR_ASSOC_ACC_LEN;
1241 	else if (assoc_acc->hdr.rqst.desc_tag !=
1242 			cpu_to_be32(FCNVME_LSDESC_RQST))
1243 		fcret = VERR_LSDESC_RQST;
1244 	else if (assoc_acc->hdr.rqst.desc_len !=
1245 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1246 		fcret = VERR_LSDESC_RQST_LEN;
1247 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1248 		fcret = VERR_CR_ASSOC;
1249 	else if (assoc_acc->associd.desc_tag !=
1250 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1251 		fcret = VERR_ASSOC_ID;
1252 	else if (assoc_acc->associd.desc_len !=
1253 			fcnvme_lsdesc_len(
1254 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1255 		fcret = VERR_ASSOC_ID_LEN;
1256 	else if (assoc_acc->connectid.desc_tag !=
1257 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1258 		fcret = VERR_CONN_ID;
1259 	else if (assoc_acc->connectid.desc_len !=
1260 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1261 		fcret = VERR_CONN_ID_LEN;
1262 
1263 	if (fcret) {
1264 		ret = -EBADF;
1265 		dev_err(ctrl->dev,
1266 			"q %d connect failed: %s\n",
1267 			queue->qnum, validation_errors[fcret]);
1268 	} else {
1269 		ctrl->association_id =
1270 			be64_to_cpu(assoc_acc->associd.association_id);
1271 		queue->connection_id =
1272 			be64_to_cpu(assoc_acc->connectid.connection_id);
1273 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1274 	}
1275 
1276 out_free_buffer:
1277 	kfree(lsop);
1278 out_no_memory:
1279 	if (ret)
1280 		dev_err(ctrl->dev,
1281 			"queue %d connect admin queue failed (%d).\n",
1282 			queue->qnum, ret);
1283 	return ret;
1284 }
1285 
1286 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1288 			u16 qsize, u16 ersp_ratio)
1289 {
1290 	struct nvmefc_ls_req_op *lsop;
1291 	struct nvmefc_ls_req *lsreq;
1292 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1293 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1294 	int ret, fcret = 0;
1295 
1296 	lsop = kzalloc((sizeof(*lsop) +
1297 			 ctrl->lport->ops->lsrqst_priv_sz +
1298 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1299 	if (!lsop) {
1300 		ret = -ENOMEM;
1301 		goto out_no_memory;
1302 	}
1303 	lsreq = &lsop->ls_req;
1304 
1305 	lsreq->private = (void *)&lsop[1];
1306 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1307 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1308 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1309 
1310 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1311 	conn_rqst->desc_list_len = cpu_to_be32(
1312 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1313 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1314 
1315 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1316 	conn_rqst->associd.desc_len =
1317 			fcnvme_lsdesc_len(
1318 				sizeof(struct fcnvme_lsdesc_assoc_id));
1319 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1320 	conn_rqst->connect_cmd.desc_tag =
1321 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1322 	conn_rqst->connect_cmd.desc_len =
1323 			fcnvme_lsdesc_len(
1324 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1326 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1327 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1328 
1329 	lsop->queue = queue;
1330 	lsreq->rqstaddr = conn_rqst;
1331 	lsreq->rqstlen = sizeof(*conn_rqst);
1332 	lsreq->rspaddr = conn_acc;
1333 	lsreq->rsplen = sizeof(*conn_acc);
1334 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1335 
1336 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1337 	if (ret)
1338 		goto out_free_buffer;
1339 
1340 	/* process connect LS completion */
1341 
1342 	/* validate the ACC response */
1343 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1344 		fcret = VERR_LSACC;
1345 	else if (conn_acc->hdr.desc_list_len !=
1346 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1347 		fcret = VERR_CR_CONN_ACC_LEN;
1348 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1349 		fcret = VERR_LSDESC_RQST;
1350 	else if (conn_acc->hdr.rqst.desc_len !=
1351 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1352 		fcret = VERR_LSDESC_RQST_LEN;
1353 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1354 		fcret = VERR_CR_CONN;
1355 	else if (conn_acc->connectid.desc_tag !=
1356 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1357 		fcret = VERR_CONN_ID;
1358 	else if (conn_acc->connectid.desc_len !=
1359 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1360 		fcret = VERR_CONN_ID_LEN;
1361 
1362 	if (fcret) {
1363 		ret = -EBADF;
1364 		dev_err(ctrl->dev,
1365 			"q %d connect failed: %s\n",
1366 			queue->qnum, validation_errors[fcret]);
1367 	} else {
1368 		queue->connection_id =
1369 			be64_to_cpu(conn_acc->connectid.connection_id);
1370 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1371 	}
1372 
1373 out_free_buffer:
1374 	kfree(lsop);
1375 out_no_memory:
1376 	if (ret)
1377 		dev_err(ctrl->dev,
1378 			"queue %d connect command failed (%d).\n",
1379 			queue->qnum, ret);
1380 	return ret;
1381 }
1382 
1383 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1384 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1385 {
1386 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1387 
1388 	__nvme_fc_finish_ls_req(lsop);
1389 
1390 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1391 
1392 	kfree(lsop);
1393 }
1394 
1395 /*
1396  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1397  * the FC-NVME Association.  Terminating the association also
1398  * terminates the FC-NVME connections (per queue, both admin and io
1399  * queues) that are part of the association. E.g. things are torn
1400  * down, and the related FC-NVME Association ID and Connection IDs
1401  * become invalid.
1402  *
1403  * The behavior of the fc-nvme initiator is such that it's
1404  * understanding of the association and connections will implicitly
1405  * be torn down. The action is implicit as it may be due to a loss of
1406  * connectivity with the fc-nvme target, so you may never get a
1407  * response even if you tried.  As such, the action of this routine
1408  * is to asynchronously send the LS, ignore any results of the LS, and
1409  * continue on with terminating the association. If the fc-nvme target
1410  * is present and receives the LS, it too can tear down.
1411  */
1412 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1413 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1414 {
1415 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1416 	struct fcnvme_ls_disconnect_acc *discon_acc;
1417 	struct nvmefc_ls_req_op *lsop;
1418 	struct nvmefc_ls_req *lsreq;
1419 	int ret;
1420 
1421 	lsop = kzalloc((sizeof(*lsop) +
1422 			 ctrl->lport->ops->lsrqst_priv_sz +
1423 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1424 			GFP_KERNEL);
1425 	if (!lsop)
1426 		/* couldn't sent it... too bad */
1427 		return;
1428 
1429 	lsreq = &lsop->ls_req;
1430 
1431 	lsreq->private = (void *)&lsop[1];
1432 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1433 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1434 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1435 
1436 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1437 	discon_rqst->desc_list_len = cpu_to_be32(
1438 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1439 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1440 
1441 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1442 	discon_rqst->associd.desc_len =
1443 			fcnvme_lsdesc_len(
1444 				sizeof(struct fcnvme_lsdesc_assoc_id));
1445 
1446 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1447 
1448 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1449 						FCNVME_LSDESC_DISCONN_CMD);
1450 	discon_rqst->discon_cmd.desc_len =
1451 			fcnvme_lsdesc_len(
1452 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1453 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1454 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1455 
1456 	lsreq->rqstaddr = discon_rqst;
1457 	lsreq->rqstlen = sizeof(*discon_rqst);
1458 	lsreq->rspaddr = discon_acc;
1459 	lsreq->rsplen = sizeof(*discon_acc);
1460 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1461 
1462 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1463 				nvme_fc_disconnect_assoc_done);
1464 	if (ret)
1465 		kfree(lsop);
1466 
1467 	/* only meaningful part to terminating the association */
1468 	ctrl->association_id = 0;
1469 }
1470 
1471 
1472 /* *********************** NVME Ctrl Routines **************************** */
1473 
1474 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1475 
1476 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1477 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1478 		struct nvme_fc_fcp_op *op)
1479 {
1480 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1481 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1482 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1483 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1484 
1485 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1486 }
1487 
1488 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1489 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1490 		unsigned int hctx_idx)
1491 {
1492 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1493 
1494 	return __nvme_fc_exit_request(set->driver_data, op);
1495 }
1496 
1497 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1498 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1499 {
1500 	unsigned long flags;
1501 	int opstate;
1502 
1503 	spin_lock_irqsave(&ctrl->lock, flags);
1504 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1505 	if (opstate != FCPOP_STATE_ACTIVE)
1506 		atomic_set(&op->state, opstate);
1507 	else if (ctrl->flags & FCCTRL_TERMIO)
1508 		ctrl->iocnt++;
1509 	spin_unlock_irqrestore(&ctrl->lock, flags);
1510 
1511 	if (opstate != FCPOP_STATE_ACTIVE)
1512 		return -ECANCELED;
1513 
1514 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1515 					&ctrl->rport->remoteport,
1516 					op->queue->lldd_handle,
1517 					&op->fcp_req);
1518 
1519 	return 0;
1520 }
1521 
1522 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1523 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1524 {
1525 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1526 	int i;
1527 
1528 	/* ensure we've initialized the ops once */
1529 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1530 		return;
1531 
1532 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1533 		__nvme_fc_abort_op(ctrl, aen_op);
1534 }
1535 
1536 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1537 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1538 		struct nvme_fc_fcp_op *op, int opstate)
1539 {
1540 	unsigned long flags;
1541 
1542 	if (opstate == FCPOP_STATE_ABORTED) {
1543 		spin_lock_irqsave(&ctrl->lock, flags);
1544 		if (ctrl->flags & FCCTRL_TERMIO) {
1545 			if (!--ctrl->iocnt)
1546 				wake_up(&ctrl->ioabort_wait);
1547 		}
1548 		spin_unlock_irqrestore(&ctrl->lock, flags);
1549 	}
1550 }
1551 
1552 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1553 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1554 {
1555 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1556 	struct request *rq = op->rq;
1557 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1558 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1559 	struct nvme_fc_queue *queue = op->queue;
1560 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1561 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1562 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1563 	union nvme_result result;
1564 	bool terminate_assoc = true;
1565 	int opstate;
1566 
1567 	/*
1568 	 * WARNING:
1569 	 * The current linux implementation of a nvme controller
1570 	 * allocates a single tag set for all io queues and sizes
1571 	 * the io queues to fully hold all possible tags. Thus, the
1572 	 * implementation does not reference or care about the sqhd
1573 	 * value as it never needs to use the sqhd/sqtail pointers
1574 	 * for submission pacing.
1575 	 *
1576 	 * This affects the FC-NVME implementation in two ways:
1577 	 * 1) As the value doesn't matter, we don't need to waste
1578 	 *    cycles extracting it from ERSPs and stamping it in the
1579 	 *    cases where the transport fabricates CQEs on successful
1580 	 *    completions.
1581 	 * 2) The FC-NVME implementation requires that delivery of
1582 	 *    ERSP completions are to go back to the nvme layer in order
1583 	 *    relative to the rsn, such that the sqhd value will always
1584 	 *    be "in order" for the nvme layer. As the nvme layer in
1585 	 *    linux doesn't care about sqhd, there's no need to return
1586 	 *    them in order.
1587 	 *
1588 	 * Additionally:
1589 	 * As the core nvme layer in linux currently does not look at
1590 	 * every field in the cqe - in cases where the FC transport must
1591 	 * fabricate a CQE, the following fields will not be set as they
1592 	 * are not referenced:
1593 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1594 	 *
1595 	 * Failure or error of an individual i/o, in a transport
1596 	 * detected fashion unrelated to the nvme completion status,
1597 	 * potentially cause the initiator and target sides to get out
1598 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1599 	 * Per FC-NVME spec, failure of an individual command requires
1600 	 * the connection to be terminated, which in turn requires the
1601 	 * association to be terminated.
1602 	 */
1603 
1604 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1605 
1606 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1607 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1608 
1609 	if (opstate == FCPOP_STATE_ABORTED)
1610 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1611 	else if (freq->status)
1612 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1613 
1614 	/*
1615 	 * For the linux implementation, if we have an unsuccesful
1616 	 * status, they blk-mq layer can typically be called with the
1617 	 * non-zero status and the content of the cqe isn't important.
1618 	 */
1619 	if (status)
1620 		goto done;
1621 
1622 	/*
1623 	 * command completed successfully relative to the wire
1624 	 * protocol. However, validate anything received and
1625 	 * extract the status and result from the cqe (create it
1626 	 * where necessary).
1627 	 */
1628 
1629 	switch (freq->rcv_rsplen) {
1630 
1631 	case 0:
1632 	case NVME_FC_SIZEOF_ZEROS_RSP:
1633 		/*
1634 		 * No response payload or 12 bytes of payload (which
1635 		 * should all be zeros) are considered successful and
1636 		 * no payload in the CQE by the transport.
1637 		 */
1638 		if (freq->transferred_length !=
1639 			be32_to_cpu(op->cmd_iu.data_len)) {
1640 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1641 			goto done;
1642 		}
1643 		result.u64 = 0;
1644 		break;
1645 
1646 	case sizeof(struct nvme_fc_ersp_iu):
1647 		/*
1648 		 * The ERSP IU contains a full completion with CQE.
1649 		 * Validate ERSP IU and look at cqe.
1650 		 */
1651 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1652 					(freq->rcv_rsplen / 4) ||
1653 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1654 					freq->transferred_length ||
1655 			     op->rsp_iu.status_code ||
1656 			     sqe->common.command_id != cqe->command_id)) {
1657 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1658 			goto done;
1659 		}
1660 		result = cqe->result;
1661 		status = cqe->status;
1662 		break;
1663 
1664 	default:
1665 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666 		goto done;
1667 	}
1668 
1669 	terminate_assoc = false;
1670 
1671 done:
1672 	if (op->flags & FCOP_FLAGS_AEN) {
1673 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1674 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1675 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1676 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1677 		nvme_fc_ctrl_put(ctrl);
1678 		goto check_error;
1679 	}
1680 
1681 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1682 	nvme_end_request(rq, status, result);
1683 
1684 check_error:
1685 	if (terminate_assoc)
1686 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1687 }
1688 
1689 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)1690 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1691 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1692 		struct request *rq, u32 rqno)
1693 {
1694 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1695 	int ret = 0;
1696 
1697 	memset(op, 0, sizeof(*op));
1698 	op->fcp_req.cmdaddr = &op->cmd_iu;
1699 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1700 	op->fcp_req.rspaddr = &op->rsp_iu;
1701 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1702 	op->fcp_req.done = nvme_fc_fcpio_done;
1703 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1704 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1705 	op->ctrl = ctrl;
1706 	op->queue = queue;
1707 	op->rq = rq;
1708 	op->rqno = rqno;
1709 
1710 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1711 	cmdiu->fc_id = NVME_CMD_FC_ID;
1712 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1713 
1714 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1715 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1716 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1717 		dev_err(ctrl->dev,
1718 			"FCP Op failed - cmdiu dma mapping failed.\n");
1719 		ret = -EFAULT;
1720 		goto out_on_error;
1721 	}
1722 
1723 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1724 				&op->rsp_iu, sizeof(op->rsp_iu),
1725 				DMA_FROM_DEVICE);
1726 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1727 		dev_err(ctrl->dev,
1728 			"FCP Op failed - rspiu dma mapping failed.\n");
1729 		ret = -EFAULT;
1730 	}
1731 
1732 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1733 out_on_error:
1734 	return ret;
1735 }
1736 
1737 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1738 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1739 		unsigned int hctx_idx, unsigned int numa_node)
1740 {
1741 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1742 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1743 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1744 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1745 
1746 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1747 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1748 }
1749 
1750 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)1751 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1752 {
1753 	struct nvme_fc_fcp_op *aen_op;
1754 	struct nvme_fc_cmd_iu *cmdiu;
1755 	struct nvme_command *sqe;
1756 	void *private;
1757 	int i, ret;
1758 
1759 	aen_op = ctrl->aen_ops;
1760 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1761 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1762 						GFP_KERNEL);
1763 		if (!private)
1764 			return -ENOMEM;
1765 
1766 		cmdiu = &aen_op->cmd_iu;
1767 		sqe = &cmdiu->sqe;
1768 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1769 				aen_op, (struct request *)NULL,
1770 				(NVME_AQ_BLK_MQ_DEPTH + i));
1771 		if (ret) {
1772 			kfree(private);
1773 			return ret;
1774 		}
1775 
1776 		aen_op->flags = FCOP_FLAGS_AEN;
1777 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1778 		aen_op->fcp_req.private = private;
1779 
1780 		memset(sqe, 0, sizeof(*sqe));
1781 		sqe->common.opcode = nvme_admin_async_event;
1782 		/* Note: core layer may overwrite the sqe.command_id value */
1783 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1784 	}
1785 	return 0;
1786 }
1787 
1788 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)1789 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1790 {
1791 	struct nvme_fc_fcp_op *aen_op;
1792 	int i;
1793 
1794 	cancel_work_sync(&ctrl->ctrl.async_event_work);
1795 	aen_op = ctrl->aen_ops;
1796 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1797 		if (!aen_op->fcp_req.private)
1798 			continue;
1799 
1800 		__nvme_fc_exit_request(ctrl, aen_op);
1801 
1802 		kfree(aen_op->fcp_req.private);
1803 		aen_op->fcp_req.private = NULL;
1804 	}
1805 }
1806 
1807 static inline void
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,struct nvme_fc_ctrl * ctrl,unsigned int qidx)1808 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1809 		unsigned int qidx)
1810 {
1811 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1812 
1813 	hctx->driver_data = queue;
1814 	queue->hctx = hctx;
1815 }
1816 
1817 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1818 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1819 		unsigned int hctx_idx)
1820 {
1821 	struct nvme_fc_ctrl *ctrl = data;
1822 
1823 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1824 
1825 	return 0;
1826 }
1827 
1828 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1829 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1830 		unsigned int hctx_idx)
1831 {
1832 	struct nvme_fc_ctrl *ctrl = data;
1833 
1834 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1835 
1836 	return 0;
1837 }
1838 
1839 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)1840 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1841 {
1842 	struct nvme_fc_queue *queue;
1843 
1844 	queue = &ctrl->queues[idx];
1845 	memset(queue, 0, sizeof(*queue));
1846 	queue->ctrl = ctrl;
1847 	queue->qnum = idx;
1848 	atomic_set(&queue->csn, 0);
1849 	queue->dev = ctrl->dev;
1850 
1851 	if (idx > 0)
1852 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1853 	else
1854 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1855 
1856 	/*
1857 	 * Considered whether we should allocate buffers for all SQEs
1858 	 * and CQEs and dma map them - mapping their respective entries
1859 	 * into the request structures (kernel vm addr and dma address)
1860 	 * thus the driver could use the buffers/mappings directly.
1861 	 * It only makes sense if the LLDD would use them for its
1862 	 * messaging api. It's very unlikely most adapter api's would use
1863 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1864 	 * structures were used instead.
1865 	 */
1866 }
1867 
1868 /*
1869  * This routine terminates a queue at the transport level.
1870  * The transport has already ensured that all outstanding ios on
1871  * the queue have been terminated.
1872  * The transport will send a Disconnect LS request to terminate
1873  * the queue's connection. Termination of the admin queue will also
1874  * terminate the association at the target.
1875  */
1876 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)1877 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1878 {
1879 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1880 		return;
1881 
1882 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1883 	/*
1884 	 * Current implementation never disconnects a single queue.
1885 	 * It always terminates a whole association. So there is never
1886 	 * a disconnect(queue) LS sent to the target.
1887 	 */
1888 
1889 	queue->connection_id = 0;
1890 	atomic_set(&queue->csn, 0);
1891 }
1892 
1893 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)1894 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1895 	struct nvme_fc_queue *queue, unsigned int qidx)
1896 {
1897 	if (ctrl->lport->ops->delete_queue)
1898 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1899 				queue->lldd_handle);
1900 	queue->lldd_handle = NULL;
1901 }
1902 
1903 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)1904 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1905 {
1906 	int i;
1907 
1908 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1909 		nvme_fc_free_queue(&ctrl->queues[i]);
1910 }
1911 
1912 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)1913 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1914 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1915 {
1916 	int ret = 0;
1917 
1918 	queue->lldd_handle = NULL;
1919 	if (ctrl->lport->ops->create_queue)
1920 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1921 				qidx, qsize, &queue->lldd_handle);
1922 
1923 	return ret;
1924 }
1925 
1926 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)1927 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1928 {
1929 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1930 	int i;
1931 
1932 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1933 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1934 }
1935 
1936 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)1937 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1938 {
1939 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1940 	int i, ret;
1941 
1942 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1943 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1944 		if (ret)
1945 			goto delete_queues;
1946 	}
1947 
1948 	return 0;
1949 
1950 delete_queues:
1951 	for (; i >= 0; i--)
1952 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1953 	return ret;
1954 }
1955 
1956 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)1957 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1958 {
1959 	int i, ret = 0;
1960 
1961 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1962 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1963 					(qsize / 5));
1964 		if (ret)
1965 			break;
1966 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1967 		if (ret)
1968 			break;
1969 
1970 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1971 	}
1972 
1973 	return ret;
1974 }
1975 
1976 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)1977 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1978 {
1979 	int i;
1980 
1981 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1982 		nvme_fc_init_queue(ctrl, i);
1983 }
1984 
1985 static void
nvme_fc_ctrl_free(struct kref * ref)1986 nvme_fc_ctrl_free(struct kref *ref)
1987 {
1988 	struct nvme_fc_ctrl *ctrl =
1989 		container_of(ref, struct nvme_fc_ctrl, ref);
1990 	unsigned long flags;
1991 
1992 	if (ctrl->ctrl.tagset) {
1993 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1994 		blk_mq_free_tag_set(&ctrl->tag_set);
1995 	}
1996 
1997 	/* remove from rport list */
1998 	spin_lock_irqsave(&ctrl->rport->lock, flags);
1999 	list_del(&ctrl->ctrl_list);
2000 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2001 
2002 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2003 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2004 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2005 
2006 	kfree(ctrl->queues);
2007 
2008 	put_device(ctrl->dev);
2009 	nvme_fc_rport_put(ctrl->rport);
2010 
2011 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2012 	if (ctrl->ctrl.opts)
2013 		nvmf_free_options(ctrl->ctrl.opts);
2014 	kfree(ctrl);
2015 }
2016 
2017 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2018 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2019 {
2020 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2021 }
2022 
2023 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2024 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2025 {
2026 	return kref_get_unless_zero(&ctrl->ref);
2027 }
2028 
2029 /*
2030  * All accesses from nvme core layer done - can now free the
2031  * controller. Called after last nvme_put_ctrl() call
2032  */
2033 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2034 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2035 {
2036 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2037 
2038 	WARN_ON(nctrl != &ctrl->ctrl);
2039 
2040 	nvme_fc_ctrl_put(ctrl);
2041 }
2042 
2043 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2044 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2045 {
2046 	int active;
2047 
2048 	/*
2049 	 * if an error (io timeout, etc) while (re)connecting,
2050 	 * it's an error on creating the new association.
2051 	 * Start the error recovery thread if it hasn't already
2052 	 * been started. It is expected there could be multiple
2053 	 * ios hitting this path before things are cleaned up.
2054 	 */
2055 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2056 		active = atomic_xchg(&ctrl->err_work_active, 1);
2057 		if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2058 			atomic_set(&ctrl->err_work_active, 0);
2059 			WARN_ON(1);
2060 		}
2061 		return;
2062 	}
2063 
2064 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2065 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2066 		return;
2067 
2068 	dev_warn(ctrl->ctrl.device,
2069 		"NVME-FC{%d}: transport association error detected: %s\n",
2070 		ctrl->cnum, errmsg);
2071 	dev_warn(ctrl->ctrl.device,
2072 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2073 
2074 	nvme_reset_ctrl(&ctrl->ctrl);
2075 }
2076 
2077 static enum blk_eh_timer_return
nvme_fc_timeout(struct request * rq,bool reserved)2078 nvme_fc_timeout(struct request *rq, bool reserved)
2079 {
2080 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2081 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2082 
2083 	/*
2084 	 * we can't individually ABTS an io without affecting the queue,
2085 	 * thus killing the queue, and thus the association.
2086 	 * So resolve by performing a controller reset, which will stop
2087 	 * the host/io stack, terminate the association on the link,
2088 	 * and recreate an association on the link.
2089 	 */
2090 	nvme_fc_error_recovery(ctrl, "io timeout error");
2091 
2092 	/*
2093 	 * the io abort has been initiated. Have the reset timer
2094 	 * restarted and the abort completion will complete the io
2095 	 * shortly. Avoids a synchronous wait while the abort finishes.
2096 	 */
2097 	return BLK_EH_RESET_TIMER;
2098 }
2099 
2100 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2101 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2102 		struct nvme_fc_fcp_op *op)
2103 {
2104 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2105 	enum dma_data_direction dir;
2106 	int ret;
2107 
2108 	freq->sg_cnt = 0;
2109 
2110 	if (!blk_rq_payload_bytes(rq))
2111 		return 0;
2112 
2113 	freq->sg_table.sgl = freq->first_sgl;
2114 	ret = sg_alloc_table_chained(&freq->sg_table,
2115 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2116 	if (ret)
2117 		return -ENOMEM;
2118 
2119 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2120 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2121 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2122 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2123 				op->nents, dir);
2124 	if (unlikely(freq->sg_cnt <= 0)) {
2125 		sg_free_table_chained(&freq->sg_table, true);
2126 		freq->sg_cnt = 0;
2127 		return -EFAULT;
2128 	}
2129 
2130 	/*
2131 	 * TODO: blk_integrity_rq(rq)  for DIF
2132 	 */
2133 	return 0;
2134 }
2135 
2136 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2137 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2138 		struct nvme_fc_fcp_op *op)
2139 {
2140 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2141 
2142 	if (!freq->sg_cnt)
2143 		return;
2144 
2145 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2146 				((rq_data_dir(rq) == WRITE) ?
2147 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
2148 
2149 	nvme_cleanup_cmd(rq);
2150 
2151 	sg_free_table_chained(&freq->sg_table, true);
2152 
2153 	freq->sg_cnt = 0;
2154 }
2155 
2156 /*
2157  * In FC, the queue is a logical thing. At transport connect, the target
2158  * creates its "queue" and returns a handle that is to be given to the
2159  * target whenever it posts something to the corresponding SQ.  When an
2160  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2161  * command contained within the SQE, an io, and assigns a FC exchange
2162  * to it. The SQE and the associated SQ handle are sent in the initial
2163  * CMD IU sents on the exchange. All transfers relative to the io occur
2164  * as part of the exchange.  The CQE is the last thing for the io,
2165  * which is transferred (explicitly or implicitly) with the RSP IU
2166  * sent on the exchange. After the CQE is received, the FC exchange is
2167  * terminaed and the Exchange may be used on a different io.
2168  *
2169  * The transport to LLDD api has the transport making a request for a
2170  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2171  * resource and transfers the command. The LLDD will then process all
2172  * steps to complete the io. Upon completion, the transport done routine
2173  * is called.
2174  *
2175  * So - while the operation is outstanding to the LLDD, there is a link
2176  * level FC exchange resource that is also outstanding. This must be
2177  * considered in all cleanup operations.
2178  */
2179 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2180 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2181 	struct nvme_fc_fcp_op *op, u32 data_len,
2182 	enum nvmefc_fcp_datadir	io_dir)
2183 {
2184 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2185 	struct nvme_command *sqe = &cmdiu->sqe;
2186 	int ret, opstate;
2187 
2188 	/*
2189 	 * before attempting to send the io, check to see if we believe
2190 	 * the target device is present
2191 	 */
2192 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2193 		return BLK_STS_RESOURCE;
2194 
2195 	if (!nvme_fc_ctrl_get(ctrl))
2196 		return BLK_STS_IOERR;
2197 
2198 	/* format the FC-NVME CMD IU and fcp_req */
2199 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2200 	cmdiu->data_len = cpu_to_be32(data_len);
2201 	switch (io_dir) {
2202 	case NVMEFC_FCP_WRITE:
2203 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204 		break;
2205 	case NVMEFC_FCP_READ:
2206 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207 		break;
2208 	case NVMEFC_FCP_NODATA:
2209 		cmdiu->flags = 0;
2210 		break;
2211 	}
2212 	op->fcp_req.payload_length = data_len;
2213 	op->fcp_req.io_dir = io_dir;
2214 	op->fcp_req.transferred_length = 0;
2215 	op->fcp_req.rcv_rsplen = 0;
2216 	op->fcp_req.status = NVME_SC_SUCCESS;
2217 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218 
2219 	/*
2220 	 * validate per fabric rules, set fields mandated by fabric spec
2221 	 * as well as those by FC-NVME spec.
2222 	 */
2223 	WARN_ON_ONCE(sqe->common.metadata);
2224 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225 
2226 	/*
2227 	 * format SQE DPTR field per FC-NVME rules:
2228 	 *    type=0x5     Transport SGL Data Block Descriptor
2229 	 *    subtype=0xA  Transport-specific value
2230 	 *    address=0
2231 	 *    length=length of the data series
2232 	 */
2233 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234 					NVME_SGL_FMT_TRANSPORT_A;
2235 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236 	sqe->rw.dptr.sgl.addr = 0;
2237 
2238 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2239 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2240 		if (ret < 0) {
2241 			nvme_cleanup_cmd(op->rq);
2242 			nvme_fc_ctrl_put(ctrl);
2243 			if (ret == -ENOMEM || ret == -EAGAIN)
2244 				return BLK_STS_RESOURCE;
2245 			return BLK_STS_IOERR;
2246 		}
2247 	}
2248 
2249 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251 
2252 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253 
2254 	if (!(op->flags & FCOP_FLAGS_AEN))
2255 		blk_mq_start_request(op->rq);
2256 
2257 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2258 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2259 					&ctrl->rport->remoteport,
2260 					queue->lldd_handle, &op->fcp_req);
2261 
2262 	if (ret) {
2263 		/*
2264 		 * If the lld fails to send the command is there an issue with
2265 		 * the csn value?  If the command that fails is the Connect,
2266 		 * no - as the connection won't be live.  If it is a command
2267 		 * post-connect, it's possible a gap in csn may be created.
2268 		 * Does this matter?  As Linux initiators don't send fused
2269 		 * commands, no.  The gap would exist, but as there's nothing
2270 		 * that depends on csn order to be delivered on the target
2271 		 * side, it shouldn't hurt.  It would be difficult for a
2272 		 * target to even detect the csn gap as it has no idea when the
2273 		 * cmd with the csn was supposed to arrive.
2274 		 */
2275 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2276 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2277 
2278 		if (!(op->flags & FCOP_FLAGS_AEN))
2279 			nvme_fc_unmap_data(ctrl, op->rq, op);
2280 
2281 		nvme_fc_ctrl_put(ctrl);
2282 
2283 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2284 				ret != -EBUSY)
2285 			return BLK_STS_IOERR;
2286 
2287 		return BLK_STS_RESOURCE;
2288 	}
2289 
2290 	return BLK_STS_OK;
2291 }
2292 
2293 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2294 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2295 			const struct blk_mq_queue_data *bd)
2296 {
2297 	struct nvme_ns *ns = hctx->queue->queuedata;
2298 	struct nvme_fc_queue *queue = hctx->driver_data;
2299 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2300 	struct request *rq = bd->rq;
2301 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2302 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2303 	struct nvme_command *sqe = &cmdiu->sqe;
2304 	enum nvmefc_fcp_datadir	io_dir;
2305 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2306 	u32 data_len;
2307 	blk_status_t ret;
2308 
2309 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2310 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2311 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2312 
2313 	ret = nvme_setup_cmd(ns, rq, sqe);
2314 	if (ret)
2315 		return ret;
2316 
2317 	data_len = blk_rq_payload_bytes(rq);
2318 	if (data_len)
2319 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2320 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2321 	else
2322 		io_dir = NVMEFC_FCP_NODATA;
2323 
2324 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2325 }
2326 
2327 static struct blk_mq_tags *
nvme_fc_tagset(struct nvme_fc_queue * queue)2328 nvme_fc_tagset(struct nvme_fc_queue *queue)
2329 {
2330 	if (queue->qnum == 0)
2331 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2332 
2333 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2334 }
2335 
2336 static int
nvme_fc_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)2337 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2338 
2339 {
2340 	struct nvme_fc_queue *queue = hctx->driver_data;
2341 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2342 	struct request *req;
2343 	struct nvme_fc_fcp_op *op;
2344 
2345 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2346 	if (!req)
2347 		return 0;
2348 
2349 	op = blk_mq_rq_to_pdu(req);
2350 
2351 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2352 		 (ctrl->lport->ops->poll_queue))
2353 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2354 						 queue->lldd_handle);
2355 
2356 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2357 }
2358 
2359 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2360 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2361 {
2362 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2363 	struct nvme_fc_fcp_op *aen_op;
2364 	unsigned long flags;
2365 	bool terminating = false;
2366 	blk_status_t ret;
2367 
2368 	spin_lock_irqsave(&ctrl->lock, flags);
2369 	if (ctrl->flags & FCCTRL_TERMIO)
2370 		terminating = true;
2371 	spin_unlock_irqrestore(&ctrl->lock, flags);
2372 
2373 	if (terminating)
2374 		return;
2375 
2376 	aen_op = &ctrl->aen_ops[0];
2377 
2378 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2379 					NVMEFC_FCP_NODATA);
2380 	if (ret)
2381 		dev_err(ctrl->ctrl.device,
2382 			"failed async event work\n");
2383 }
2384 
2385 static void
nvme_fc_complete_rq(struct request * rq)2386 nvme_fc_complete_rq(struct request *rq)
2387 {
2388 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2389 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2390 
2391 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2392 
2393 	nvme_fc_unmap_data(ctrl, rq, op);
2394 	nvme_complete_rq(rq);
2395 	nvme_fc_ctrl_put(ctrl);
2396 }
2397 
2398 /*
2399  * This routine is used by the transport when it needs to find active
2400  * io on a queue that is to be terminated. The transport uses
2401  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2402  * this routine to kill them on a 1 by 1 basis.
2403  *
2404  * As FC allocates FC exchange for each io, the transport must contact
2405  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2406  * After terminating the exchange the LLDD will call the transport's
2407  * normal io done path for the request, but it will have an aborted
2408  * status. The done path will return the io request back to the block
2409  * layer with an error status.
2410  */
2411 static void
nvme_fc_terminate_exchange(struct request * req,void * data,bool reserved)2412 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2413 {
2414 	struct nvme_ctrl *nctrl = data;
2415 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2416 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2417 
2418 	__nvme_fc_abort_op(ctrl, op);
2419 }
2420 
2421 
2422 static const struct blk_mq_ops nvme_fc_mq_ops = {
2423 	.queue_rq	= nvme_fc_queue_rq,
2424 	.complete	= nvme_fc_complete_rq,
2425 	.init_request	= nvme_fc_init_request,
2426 	.exit_request	= nvme_fc_exit_request,
2427 	.init_hctx	= nvme_fc_init_hctx,
2428 	.poll		= nvme_fc_poll,
2429 	.timeout	= nvme_fc_timeout,
2430 };
2431 
2432 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2433 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2434 {
2435 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2436 	unsigned int nr_io_queues;
2437 	int ret;
2438 
2439 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2440 				ctrl->lport->ops->max_hw_queues);
2441 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2442 	if (ret) {
2443 		dev_info(ctrl->ctrl.device,
2444 			"set_queue_count failed: %d\n", ret);
2445 		return ret;
2446 	}
2447 
2448 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2449 	if (!nr_io_queues)
2450 		return 0;
2451 
2452 	nvme_fc_init_io_queues(ctrl);
2453 
2454 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2455 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2456 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2457 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2458 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2459 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2460 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2461 					(SG_CHUNK_SIZE *
2462 						sizeof(struct scatterlist)) +
2463 					ctrl->lport->ops->fcprqst_priv_sz;
2464 	ctrl->tag_set.driver_data = ctrl;
2465 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2466 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2467 
2468 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2469 	if (ret)
2470 		return ret;
2471 
2472 	ctrl->ctrl.tagset = &ctrl->tag_set;
2473 
2474 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2475 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2476 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2477 		goto out_free_tag_set;
2478 	}
2479 
2480 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2481 	if (ret)
2482 		goto out_cleanup_blk_queue;
2483 
2484 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2485 	if (ret)
2486 		goto out_delete_hw_queues;
2487 
2488 	ctrl->ioq_live = true;
2489 
2490 	return 0;
2491 
2492 out_delete_hw_queues:
2493 	nvme_fc_delete_hw_io_queues(ctrl);
2494 out_cleanup_blk_queue:
2495 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2496 out_free_tag_set:
2497 	blk_mq_free_tag_set(&ctrl->tag_set);
2498 	nvme_fc_free_io_queues(ctrl);
2499 
2500 	/* force put free routine to ignore io queues */
2501 	ctrl->ctrl.tagset = NULL;
2502 
2503 	return ret;
2504 }
2505 
2506 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2507 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2508 {
2509 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2510 	unsigned int nr_io_queues;
2511 	int ret;
2512 
2513 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2514 				ctrl->lport->ops->max_hw_queues);
2515 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2516 	if (ret) {
2517 		dev_info(ctrl->ctrl.device,
2518 			"set_queue_count failed: %d\n", ret);
2519 		return ret;
2520 	}
2521 
2522 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2523 	/* check for io queues existing */
2524 	if (ctrl->ctrl.queue_count == 1)
2525 		return 0;
2526 
2527 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2528 	if (ret)
2529 		goto out_free_io_queues;
2530 
2531 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2532 	if (ret)
2533 		goto out_delete_hw_queues;
2534 
2535 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2536 
2537 	return 0;
2538 
2539 out_delete_hw_queues:
2540 	nvme_fc_delete_hw_io_queues(ctrl);
2541 out_free_io_queues:
2542 	nvme_fc_free_io_queues(ctrl);
2543 	return ret;
2544 }
2545 
2546 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2547 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2548 {
2549 	struct nvme_fc_lport *lport = rport->lport;
2550 
2551 	atomic_inc(&lport->act_rport_cnt);
2552 }
2553 
2554 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2555 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2556 {
2557 	struct nvme_fc_lport *lport = rport->lport;
2558 	u32 cnt;
2559 
2560 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2561 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2562 		lport->ops->localport_delete(&lport->localport);
2563 }
2564 
2565 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)2566 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2567 {
2568 	struct nvme_fc_rport *rport = ctrl->rport;
2569 	u32 cnt;
2570 
2571 	if (ctrl->assoc_active)
2572 		return 1;
2573 
2574 	ctrl->assoc_active = true;
2575 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2576 	if (cnt == 1)
2577 		nvme_fc_rport_active_on_lport(rport);
2578 
2579 	return 0;
2580 }
2581 
2582 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)2583 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2584 {
2585 	struct nvme_fc_rport *rport = ctrl->rport;
2586 	struct nvme_fc_lport *lport = rport->lport;
2587 	u32 cnt;
2588 
2589 	/* ctrl->assoc_active=false will be set independently */
2590 
2591 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2592 	if (cnt == 0) {
2593 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2594 			lport->ops->remoteport_delete(&rport->remoteport);
2595 		nvme_fc_rport_inactive_on_lport(rport);
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 /*
2602  * This routine restarts the controller on the host side, and
2603  * on the link side, recreates the controller association.
2604  */
2605 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)2606 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2607 {
2608 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2609 	int ret;
2610 	bool changed;
2611 
2612 	++ctrl->ctrl.nr_reconnects;
2613 
2614 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2615 		return -ENODEV;
2616 
2617 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2618 		return -ENOTUNIQ;
2619 
2620 	/*
2621 	 * Create the admin queue
2622 	 */
2623 
2624 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2625 				NVME_AQ_DEPTH);
2626 	if (ret)
2627 		goto out_free_queue;
2628 
2629 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2630 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2631 	if (ret)
2632 		goto out_delete_hw_queue;
2633 
2634 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2635 
2636 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2637 	if (ret)
2638 		goto out_disconnect_admin_queue;
2639 
2640 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2641 
2642 	/*
2643 	 * Check controller capabilities
2644 	 *
2645 	 * todo:- add code to check if ctrl attributes changed from
2646 	 * prior connection values
2647 	 */
2648 
2649 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2650 	if (ret) {
2651 		dev_err(ctrl->ctrl.device,
2652 			"prop_get NVME_REG_CAP failed\n");
2653 		goto out_disconnect_admin_queue;
2654 	}
2655 
2656 	ctrl->ctrl.sqsize =
2657 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2658 
2659 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2660 	if (ret)
2661 		goto out_disconnect_admin_queue;
2662 
2663 	ctrl->ctrl.max_hw_sectors =
2664 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2665 
2666 	ret = nvme_init_identify(&ctrl->ctrl);
2667 	if (ret)
2668 		goto out_disconnect_admin_queue;
2669 
2670 	/* sanity checks */
2671 
2672 	/* FC-NVME does not have other data in the capsule */
2673 	if (ctrl->ctrl.icdoff) {
2674 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2675 				ctrl->ctrl.icdoff);
2676 		goto out_disconnect_admin_queue;
2677 	}
2678 
2679 	/* FC-NVME supports normal SGL Data Block Descriptors */
2680 
2681 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2682 		/* warn if maxcmd is lower than queue_size */
2683 		dev_warn(ctrl->ctrl.device,
2684 			"queue_size %zu > ctrl maxcmd %u, reducing "
2685 			"to queue_size\n",
2686 			opts->queue_size, ctrl->ctrl.maxcmd);
2687 		opts->queue_size = ctrl->ctrl.maxcmd;
2688 	}
2689 
2690 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2691 		/* warn if sqsize is lower than queue_size */
2692 		dev_warn(ctrl->ctrl.device,
2693 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2694 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2695 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2696 	}
2697 
2698 	ret = nvme_fc_init_aen_ops(ctrl);
2699 	if (ret)
2700 		goto out_term_aen_ops;
2701 
2702 	/*
2703 	 * Create the io queues
2704 	 */
2705 
2706 	if (ctrl->ctrl.queue_count > 1) {
2707 		if (!ctrl->ioq_live)
2708 			ret = nvme_fc_create_io_queues(ctrl);
2709 		else
2710 			ret = nvme_fc_recreate_io_queues(ctrl);
2711 		if (ret)
2712 			goto out_term_aen_ops;
2713 	}
2714 
2715 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2716 
2717 	ctrl->ctrl.nr_reconnects = 0;
2718 
2719 	if (changed)
2720 		nvme_start_ctrl(&ctrl->ctrl);
2721 
2722 	return 0;	/* Success */
2723 
2724 out_term_aen_ops:
2725 	nvme_fc_term_aen_ops(ctrl);
2726 out_disconnect_admin_queue:
2727 	/* send a Disconnect(association) LS to fc-nvme target */
2728 	nvme_fc_xmt_disconnect_assoc(ctrl);
2729 out_delete_hw_queue:
2730 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2731 out_free_queue:
2732 	nvme_fc_free_queue(&ctrl->queues[0]);
2733 	ctrl->assoc_active = false;
2734 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2735 
2736 	return ret;
2737 }
2738 
2739 /*
2740  * This routine stops operation of the controller on the host side.
2741  * On the host os stack side: Admin and IO queues are stopped,
2742  *   outstanding ios on them terminated via FC ABTS.
2743  * On the link side: the association is terminated.
2744  */
2745 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)2746 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2747 {
2748 	unsigned long flags;
2749 
2750 	if (!ctrl->assoc_active)
2751 		return;
2752 	ctrl->assoc_active = false;
2753 
2754 	spin_lock_irqsave(&ctrl->lock, flags);
2755 	ctrl->flags |= FCCTRL_TERMIO;
2756 	ctrl->iocnt = 0;
2757 	spin_unlock_irqrestore(&ctrl->lock, flags);
2758 
2759 	/*
2760 	 * If io queues are present, stop them and terminate all outstanding
2761 	 * ios on them. As FC allocates FC exchange for each io, the
2762 	 * transport must contact the LLDD to terminate the exchange,
2763 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2764 	 * to tell us what io's are busy and invoke a transport routine
2765 	 * to kill them with the LLDD.  After terminating the exchange
2766 	 * the LLDD will call the transport's normal io done path, but it
2767 	 * will have an aborted status. The done path will return the
2768 	 * io requests back to the block layer as part of normal completions
2769 	 * (but with error status).
2770 	 */
2771 	if (ctrl->ctrl.queue_count > 1) {
2772 		nvme_stop_queues(&ctrl->ctrl);
2773 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2774 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2775 	}
2776 
2777 	/*
2778 	 * Other transports, which don't have link-level contexts bound
2779 	 * to sqe's, would try to gracefully shutdown the controller by
2780 	 * writing the registers for shutdown and polling (call
2781 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2782 	 * just aborted and we will wait on those contexts, and given
2783 	 * there was no indication of how live the controlelr is on the
2784 	 * link, don't send more io to create more contexts for the
2785 	 * shutdown. Let the controller fail via keepalive failure if
2786 	 * its still present.
2787 	 */
2788 
2789 	/*
2790 	 * clean up the admin queue. Same thing as above.
2791 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2792 	 * terminate the exchanges.
2793 	 */
2794 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2795 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2796 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2797 
2798 	/* kill the aens as they are a separate path */
2799 	nvme_fc_abort_aen_ops(ctrl);
2800 
2801 	/* wait for all io that had to be aborted */
2802 	spin_lock_irq(&ctrl->lock);
2803 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2804 	ctrl->flags &= ~FCCTRL_TERMIO;
2805 	spin_unlock_irq(&ctrl->lock);
2806 
2807 	nvme_fc_term_aen_ops(ctrl);
2808 
2809 	/*
2810 	 * send a Disconnect(association) LS to fc-nvme target
2811 	 * Note: could have been sent at top of process, but
2812 	 * cleaner on link traffic if after the aborts complete.
2813 	 * Note: if association doesn't exist, association_id will be 0
2814 	 */
2815 	if (ctrl->association_id)
2816 		nvme_fc_xmt_disconnect_assoc(ctrl);
2817 
2818 	if (ctrl->ctrl.tagset) {
2819 		nvme_fc_delete_hw_io_queues(ctrl);
2820 		nvme_fc_free_io_queues(ctrl);
2821 	}
2822 
2823 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2824 	nvme_fc_free_queue(&ctrl->queues[0]);
2825 
2826 	/* re-enable the admin_q so anything new can fast fail */
2827 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2828 
2829 	/* resume the io queues so that things will fast fail */
2830 	nvme_start_queues(&ctrl->ctrl);
2831 
2832 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2833 }
2834 
2835 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)2836 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2837 {
2838 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2839 
2840 	cancel_work_sync(&ctrl->err_work);
2841 	cancel_delayed_work_sync(&ctrl->connect_work);
2842 	/*
2843 	 * kill the association on the link side.  this will block
2844 	 * waiting for io to terminate
2845 	 */
2846 	nvme_fc_delete_association(ctrl);
2847 }
2848 
2849 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)2850 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2851 {
2852 	struct nvme_fc_rport *rport = ctrl->rport;
2853 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2854 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2855 	bool recon = true;
2856 
2857 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2858 		return;
2859 
2860 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2861 		dev_info(ctrl->ctrl.device,
2862 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2863 			ctrl->cnum, status);
2864 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2865 		recon = false;
2866 
2867 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2868 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2869 			dev_info(ctrl->ctrl.device,
2870 				"NVME-FC{%d}: Reconnect attempt in %ld "
2871 				"seconds\n",
2872 				ctrl->cnum, recon_delay / HZ);
2873 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2874 			recon_delay = rport->dev_loss_end - jiffies;
2875 
2876 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2877 	} else {
2878 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2879 			dev_warn(ctrl->ctrl.device,
2880 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2881 				"reached.\n",
2882 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2883 		else
2884 			dev_warn(ctrl->ctrl.device,
2885 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2886 				"while waiting for remoteport connectivity.\n",
2887 				ctrl->cnum, portptr->dev_loss_tmo);
2888 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2889 	}
2890 }
2891 
2892 static void
__nvme_fc_terminate_io(struct nvme_fc_ctrl * ctrl)2893 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2894 {
2895 	/*
2896 	 * if state is connecting - the error occurred as part of a
2897 	 * reconnect attempt. The create_association error paths will
2898 	 * clean up any outstanding io.
2899 	 *
2900 	 * if it's a different state - ensure all pending io is
2901 	 * terminated. Given this can delay while waiting for the
2902 	 * aborted io to return, we recheck adapter state below
2903 	 * before changing state.
2904 	 */
2905 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
2906 		nvme_stop_keep_alive(&ctrl->ctrl);
2907 
2908 		/* will block will waiting for io to terminate */
2909 		nvme_fc_delete_association(ctrl);
2910 	}
2911 
2912 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2913 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2914 		dev_err(ctrl->ctrl.device,
2915 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2916 			"to CONNECTING\n", ctrl->cnum);
2917 }
2918 
2919 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)2920 nvme_fc_reset_ctrl_work(struct work_struct *work)
2921 {
2922 	struct nvme_fc_ctrl *ctrl =
2923 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2924 	int ret;
2925 
2926 	__nvme_fc_terminate_io(ctrl);
2927 
2928 	nvme_stop_ctrl(&ctrl->ctrl);
2929 
2930 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2931 		ret = nvme_fc_create_association(ctrl);
2932 	else
2933 		ret = -ENOTCONN;
2934 
2935 	if (ret)
2936 		nvme_fc_reconnect_or_delete(ctrl, ret);
2937 	else
2938 		dev_info(ctrl->ctrl.device,
2939 			"NVME-FC{%d}: controller reset complete\n",
2940 			ctrl->cnum);
2941 }
2942 
2943 static void
nvme_fc_connect_err_work(struct work_struct * work)2944 nvme_fc_connect_err_work(struct work_struct *work)
2945 {
2946 	struct nvme_fc_ctrl *ctrl =
2947 			container_of(work, struct nvme_fc_ctrl, err_work);
2948 
2949 	__nvme_fc_terminate_io(ctrl);
2950 
2951 	atomic_set(&ctrl->err_work_active, 0);
2952 
2953 	/*
2954 	 * Rescheduling the connection after recovering
2955 	 * from the io error is left to the reconnect work
2956 	 * item, which is what should have stalled waiting on
2957 	 * the io that had the error that scheduled this work.
2958 	 */
2959 }
2960 
2961 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2962 	.name			= "fc",
2963 	.module			= THIS_MODULE,
2964 	.flags			= NVME_F_FABRICS,
2965 	.reg_read32		= nvmf_reg_read32,
2966 	.reg_read64		= nvmf_reg_read64,
2967 	.reg_write32		= nvmf_reg_write32,
2968 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2969 	.submit_async_event	= nvme_fc_submit_async_event,
2970 	.delete_ctrl		= nvme_fc_delete_ctrl,
2971 	.get_address		= nvmf_get_address,
2972 };
2973 
2974 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)2975 nvme_fc_connect_ctrl_work(struct work_struct *work)
2976 {
2977 	int ret;
2978 
2979 	struct nvme_fc_ctrl *ctrl =
2980 			container_of(to_delayed_work(work),
2981 				struct nvme_fc_ctrl, connect_work);
2982 
2983 	ret = nvme_fc_create_association(ctrl);
2984 	if (ret)
2985 		nvme_fc_reconnect_or_delete(ctrl, ret);
2986 	else
2987 		dev_info(ctrl->ctrl.device,
2988 			"NVME-FC{%d}: controller connect complete\n",
2989 			ctrl->cnum);
2990 }
2991 
2992 
2993 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2994 	.queue_rq	= nvme_fc_queue_rq,
2995 	.complete	= nvme_fc_complete_rq,
2996 	.init_request	= nvme_fc_init_request,
2997 	.exit_request	= nvme_fc_exit_request,
2998 	.init_hctx	= nvme_fc_init_admin_hctx,
2999 	.timeout	= nvme_fc_timeout,
3000 };
3001 
3002 
3003 /*
3004  * Fails a controller request if it matches an existing controller
3005  * (association) with the same tuple:
3006  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3007  *
3008  * The ports don't need to be compared as they are intrinsically
3009  * already matched by the port pointers supplied.
3010  */
3011 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3012 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3013 		struct nvmf_ctrl_options *opts)
3014 {
3015 	struct nvme_fc_ctrl *ctrl;
3016 	unsigned long flags;
3017 	bool found = false;
3018 
3019 	spin_lock_irqsave(&rport->lock, flags);
3020 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3021 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3022 		if (found)
3023 			break;
3024 	}
3025 	spin_unlock_irqrestore(&rport->lock, flags);
3026 
3027 	return found;
3028 }
3029 
3030 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3031 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3032 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3033 {
3034 	struct nvme_fc_ctrl *ctrl;
3035 	unsigned long flags;
3036 	int ret, idx;
3037 
3038 	if (!(rport->remoteport.port_role &
3039 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3040 		ret = -EBADR;
3041 		goto out_fail;
3042 	}
3043 
3044 	if (!opts->duplicate_connect &&
3045 	    nvme_fc_existing_controller(rport, opts)) {
3046 		ret = -EALREADY;
3047 		goto out_fail;
3048 	}
3049 
3050 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3051 	if (!ctrl) {
3052 		ret = -ENOMEM;
3053 		goto out_fail;
3054 	}
3055 
3056 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3057 	if (idx < 0) {
3058 		ret = -ENOSPC;
3059 		goto out_free_ctrl;
3060 	}
3061 
3062 	ctrl->ctrl.opts = opts;
3063 	ctrl->ctrl.nr_reconnects = 0;
3064 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3065 	ctrl->lport = lport;
3066 	ctrl->rport = rport;
3067 	ctrl->dev = lport->dev;
3068 	ctrl->cnum = idx;
3069 	ctrl->ioq_live = false;
3070 	ctrl->assoc_active = false;
3071 	atomic_set(&ctrl->err_work_active, 0);
3072 	init_waitqueue_head(&ctrl->ioabort_wait);
3073 
3074 	get_device(ctrl->dev);
3075 	kref_init(&ctrl->ref);
3076 
3077 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3078 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3079 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3080 	spin_lock_init(&ctrl->lock);
3081 
3082 	/* io queue count */
3083 	ctrl->ctrl.queue_count = min_t(unsigned int,
3084 				opts->nr_io_queues,
3085 				lport->ops->max_hw_queues);
3086 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3087 
3088 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3089 	ctrl->ctrl.kato = opts->kato;
3090 	ctrl->ctrl.cntlid = 0xffff;
3091 
3092 	ret = -ENOMEM;
3093 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3094 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3095 	if (!ctrl->queues)
3096 		goto out_free_ida;
3097 
3098 	nvme_fc_init_queue(ctrl, 0);
3099 
3100 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3101 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3102 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3103 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3104 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3105 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3106 					(SG_CHUNK_SIZE *
3107 						sizeof(struct scatterlist)) +
3108 					ctrl->lport->ops->fcprqst_priv_sz;
3109 	ctrl->admin_tag_set.driver_data = ctrl;
3110 	ctrl->admin_tag_set.nr_hw_queues = 1;
3111 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3112 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3113 
3114 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3115 	if (ret)
3116 		goto out_free_queues;
3117 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3118 
3119 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3120 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3121 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3122 		goto out_free_admin_tag_set;
3123 	}
3124 
3125 	/*
3126 	 * Would have been nice to init io queues tag set as well.
3127 	 * However, we require interaction from the controller
3128 	 * for max io queue count before we can do so.
3129 	 * Defer this to the connect path.
3130 	 */
3131 
3132 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3133 	if (ret)
3134 		goto out_cleanup_admin_q;
3135 
3136 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3137 
3138 	spin_lock_irqsave(&rport->lock, flags);
3139 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3140 	spin_unlock_irqrestore(&rport->lock, flags);
3141 
3142 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3143 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3144 		dev_err(ctrl->ctrl.device,
3145 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3146 		goto fail_ctrl;
3147 	}
3148 
3149 	nvme_get_ctrl(&ctrl->ctrl);
3150 
3151 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3152 		nvme_put_ctrl(&ctrl->ctrl);
3153 		dev_err(ctrl->ctrl.device,
3154 			"NVME-FC{%d}: failed to schedule initial connect\n",
3155 			ctrl->cnum);
3156 		goto fail_ctrl;
3157 	}
3158 
3159 	flush_delayed_work(&ctrl->connect_work);
3160 
3161 	dev_info(ctrl->ctrl.device,
3162 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3163 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3164 
3165 	return &ctrl->ctrl;
3166 
3167 fail_ctrl:
3168 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3169 	cancel_work_sync(&ctrl->ctrl.reset_work);
3170 	cancel_work_sync(&ctrl->err_work);
3171 	cancel_delayed_work_sync(&ctrl->connect_work);
3172 
3173 	ctrl->ctrl.opts = NULL;
3174 
3175 	/* initiate nvme ctrl ref counting teardown */
3176 	nvme_uninit_ctrl(&ctrl->ctrl);
3177 
3178 	/* Remove core ctrl ref. */
3179 	nvme_put_ctrl(&ctrl->ctrl);
3180 
3181 	/* as we're past the point where we transition to the ref
3182 	 * counting teardown path, if we return a bad pointer here,
3183 	 * the calling routine, thinking it's prior to the
3184 	 * transition, will do an rport put. Since the teardown
3185 	 * path also does a rport put, we do an extra get here to
3186 	 * so proper order/teardown happens.
3187 	 */
3188 	nvme_fc_rport_get(rport);
3189 
3190 	return ERR_PTR(-EIO);
3191 
3192 out_cleanup_admin_q:
3193 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3194 out_free_admin_tag_set:
3195 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3196 out_free_queues:
3197 	kfree(ctrl->queues);
3198 out_free_ida:
3199 	put_device(ctrl->dev);
3200 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3201 out_free_ctrl:
3202 	kfree(ctrl);
3203 out_fail:
3204 	/* exit via here doesn't follow ctlr ref points */
3205 	return ERR_PTR(ret);
3206 }
3207 
3208 
3209 struct nvmet_fc_traddr {
3210 	u64	nn;
3211 	u64	pn;
3212 };
3213 
3214 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3215 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3216 {
3217 	u64 token64;
3218 
3219 	if (match_u64(sstr, &token64))
3220 		return -EINVAL;
3221 	*val = token64;
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * This routine validates and extracts the WWN's from the TRADDR string.
3228  * As kernel parsers need the 0x to determine number base, universally
3229  * build string to parse with 0x prefix before parsing name strings.
3230  */
3231 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3232 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3233 {
3234 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3235 	substring_t wwn = { name, &name[sizeof(name)-1] };
3236 	int nnoffset, pnoffset;
3237 
3238 	/* validate it string one of the 2 allowed formats */
3239 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3240 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3241 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3242 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3243 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3244 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3245 						NVME_FC_TRADDR_OXNNLEN;
3246 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3247 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3248 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3249 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3250 		nnoffset = NVME_FC_TRADDR_NNLEN;
3251 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3252 	} else
3253 		goto out_einval;
3254 
3255 	name[0] = '0';
3256 	name[1] = 'x';
3257 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3258 
3259 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3260 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3261 		goto out_einval;
3262 
3263 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3264 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3265 		goto out_einval;
3266 
3267 	return 0;
3268 
3269 out_einval:
3270 	pr_warn("%s: bad traddr string\n", __func__);
3271 	return -EINVAL;
3272 }
3273 
3274 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3275 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3276 {
3277 	struct nvme_fc_lport *lport;
3278 	struct nvme_fc_rport *rport;
3279 	struct nvme_ctrl *ctrl;
3280 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3281 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3282 	unsigned long flags;
3283 	int ret;
3284 
3285 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3286 	if (ret || !raddr.nn || !raddr.pn)
3287 		return ERR_PTR(-EINVAL);
3288 
3289 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3290 	if (ret || !laddr.nn || !laddr.pn)
3291 		return ERR_PTR(-EINVAL);
3292 
3293 	/* find the host and remote ports to connect together */
3294 	spin_lock_irqsave(&nvme_fc_lock, flags);
3295 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3296 		if (lport->localport.node_name != laddr.nn ||
3297 		    lport->localport.port_name != laddr.pn ||
3298 		    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3299 			continue;
3300 
3301 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3302 			if (rport->remoteport.node_name != raddr.nn ||
3303 			    rport->remoteport.port_name != raddr.pn ||
3304 			    rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3305 				continue;
3306 
3307 			/* if fail to get reference fall through. Will error */
3308 			if (!nvme_fc_rport_get(rport))
3309 				break;
3310 
3311 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3312 
3313 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3314 			if (IS_ERR(ctrl))
3315 				nvme_fc_rport_put(rport);
3316 			return ctrl;
3317 		}
3318 	}
3319 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3320 
3321 	pr_warn("%s: %s - %s combination not found\n",
3322 		__func__, opts->traddr, opts->host_traddr);
3323 	return ERR_PTR(-ENOENT);
3324 }
3325 
3326 
3327 static struct nvmf_transport_ops nvme_fc_transport = {
3328 	.name		= "fc",
3329 	.module		= THIS_MODULE,
3330 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3331 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3332 	.create_ctrl	= nvme_fc_create_ctrl,
3333 };
3334 
nvme_fc_init_module(void)3335 static int __init nvme_fc_init_module(void)
3336 {
3337 	int ret;
3338 
3339 	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3340 	if (!nvme_fc_wq)
3341 		return -ENOMEM;
3342 
3343 	/*
3344 	 * NOTE:
3345 	 * It is expected that in the future the kernel will combine
3346 	 * the FC-isms that are currently under scsi and now being
3347 	 * added to by NVME into a new standalone FC class. The SCSI
3348 	 * and NVME protocols and their devices would be under this
3349 	 * new FC class.
3350 	 *
3351 	 * As we need something to post FC-specific udev events to,
3352 	 * specifically for nvme probe events, start by creating the
3353 	 * new device class.  When the new standalone FC class is
3354 	 * put in place, this code will move to a more generic
3355 	 * location for the class.
3356 	 */
3357 	fc_class = class_create(THIS_MODULE, "fc");
3358 	if (IS_ERR(fc_class)) {
3359 		pr_err("couldn't register class fc\n");
3360 		ret = PTR_ERR(fc_class);
3361 		goto out_destroy_wq;
3362 	}
3363 
3364 	/*
3365 	 * Create a device for the FC-centric udev events
3366 	 */
3367 	fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3368 				"fc_udev_device");
3369 	if (IS_ERR(fc_udev_device)) {
3370 		pr_err("couldn't create fc_udev device!\n");
3371 		ret = PTR_ERR(fc_udev_device);
3372 		goto out_destroy_class;
3373 	}
3374 
3375 	ret = nvmf_register_transport(&nvme_fc_transport);
3376 	if (ret)
3377 		goto out_destroy_device;
3378 
3379 	return 0;
3380 
3381 out_destroy_device:
3382 	device_destroy(fc_class, MKDEV(0, 0));
3383 out_destroy_class:
3384 	class_destroy(fc_class);
3385 out_destroy_wq:
3386 	destroy_workqueue(nvme_fc_wq);
3387 
3388 	return ret;
3389 }
3390 
nvme_fc_exit_module(void)3391 static void __exit nvme_fc_exit_module(void)
3392 {
3393 	/* sanity check - all lports should be removed */
3394 	if (!list_empty(&nvme_fc_lport_list))
3395 		pr_warn("%s: localport list not empty\n", __func__);
3396 
3397 	nvmf_unregister_transport(&nvme_fc_transport);
3398 
3399 	ida_destroy(&nvme_fc_local_port_cnt);
3400 	ida_destroy(&nvme_fc_ctrl_cnt);
3401 
3402 	device_destroy(fc_class, MKDEV(0, 0));
3403 	class_destroy(fc_class);
3404 	destroy_workqueue(nvme_fc_wq);
3405 }
3406 
3407 module_init(nvme_fc_init_module);
3408 module_exit(nvme_fc_exit_module);
3409 
3410 MODULE_LICENSE("GPL v2");
3411