1 /*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS 256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
44
45 struct nvme_rdma_device {
46 struct ib_device *dev;
47 struct ib_pd *pd;
48 struct kref ref;
49 struct list_head entry;
50 unsigned int num_inline_segments;
51 };
52
53 struct nvme_rdma_qe {
54 struct ib_cqe cqe;
55 void *data;
56 u64 dma;
57 };
58
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61 struct nvme_request req;
62 struct ib_mr *mr;
63 struct nvme_rdma_qe sqe;
64 union nvme_result result;
65 __le16 status;
66 refcount_t ref;
67 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 u32 num_sge;
69 int nents;
70 struct ib_reg_wr reg_wr;
71 struct ib_cqe reg_cqe;
72 struct nvme_rdma_queue *queue;
73 struct sg_table sg_table;
74 struct scatterlist first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78 NVME_RDMA_Q_ALLOCATED = 0,
79 NVME_RDMA_Q_LIVE = 1,
80 NVME_RDMA_Q_TR_READY = 2,
81 };
82
83 struct nvme_rdma_queue {
84 struct nvme_rdma_qe *rsp_ring;
85 int queue_size;
86 size_t cmnd_capsule_len;
87 struct nvme_rdma_ctrl *ctrl;
88 struct nvme_rdma_device *device;
89 struct ib_cq *ib_cq;
90 struct ib_qp *qp;
91
92 unsigned long flags;
93 struct rdma_cm_id *cm_id;
94 int cm_error;
95 struct completion cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99 /* read only in the hot path */
100 struct nvme_rdma_queue *queues;
101
102 /* other member variables */
103 struct blk_mq_tag_set tag_set;
104 struct work_struct err_work;
105
106 struct nvme_rdma_qe async_event_sqe;
107
108 struct delayed_work reconnect_work;
109
110 struct list_head list;
111
112 struct blk_mq_tag_set admin_tag_set;
113 struct nvme_rdma_device *device;
114
115 u32 max_fr_pages;
116
117 struct sockaddr_storage addr;
118 struct sockaddr_storage src_addr;
119
120 struct nvme_ctrl ctrl;
121 struct mutex teardown_lock;
122 bool use_inline_data;
123 };
124
to_rdma_ctrl(struct nvme_ctrl * ctrl)125 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
126 {
127 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
128 }
129
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132
133 static LIST_HEAD(nvme_rdma_ctrl_list);
134 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
135
136 /*
137 * Disabling this option makes small I/O goes faster, but is fundamentally
138 * unsafe. With it turned off we will have to register a global rkey that
139 * allows read and write access to all physical memory.
140 */
141 static bool register_always = true;
142 module_param(register_always, bool, 0444);
143 MODULE_PARM_DESC(register_always,
144 "Use memory registration even for contiguous memory regions");
145
146 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
147 struct rdma_cm_event *event);
148 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
149
150 static const struct blk_mq_ops nvme_rdma_mq_ops;
151 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
152
153 /* XXX: really should move to a generic header sooner or later.. */
put_unaligned_le24(u32 val,u8 * p)154 static inline void put_unaligned_le24(u32 val, u8 *p)
155 {
156 *p++ = val;
157 *p++ = val >> 8;
158 *p++ = val >> 16;
159 }
160
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)161 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
162 {
163 return queue - queue->ctrl->queues;
164 }
165
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)166 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
167 {
168 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
169 }
170
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)171 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
172 size_t capsule_size, enum dma_data_direction dir)
173 {
174 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
175 kfree(qe->data);
176 }
177
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)178 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
179 size_t capsule_size, enum dma_data_direction dir)
180 {
181 qe->data = kzalloc(capsule_size, GFP_KERNEL);
182 if (!qe->data)
183 return -ENOMEM;
184
185 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
186 if (ib_dma_mapping_error(ibdev, qe->dma)) {
187 kfree(qe->data);
188 qe->data = NULL;
189 return -ENOMEM;
190 }
191
192 return 0;
193 }
194
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)195 static void nvme_rdma_free_ring(struct ib_device *ibdev,
196 struct nvme_rdma_qe *ring, size_t ib_queue_size,
197 size_t capsule_size, enum dma_data_direction dir)
198 {
199 int i;
200
201 for (i = 0; i < ib_queue_size; i++)
202 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
203 kfree(ring);
204 }
205
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
207 size_t ib_queue_size, size_t capsule_size,
208 enum dma_data_direction dir)
209 {
210 struct nvme_rdma_qe *ring;
211 int i;
212
213 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
214 if (!ring)
215 return NULL;
216
217 for (i = 0; i < ib_queue_size; i++) {
218 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
219 goto out_free_ring;
220 }
221
222 return ring;
223
224 out_free_ring:
225 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
226 return NULL;
227 }
228
nvme_rdma_qp_event(struct ib_event * event,void * context)229 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
230 {
231 pr_debug("QP event %s (%d)\n",
232 ib_event_msg(event->event), event->event);
233
234 }
235
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
237 {
238 wait_for_completion_interruptible_timeout(&queue->cm_done,
239 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
240 return queue->cm_error;
241 }
242
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
244 {
245 struct nvme_rdma_device *dev = queue->device;
246 struct ib_qp_init_attr init_attr;
247 int ret;
248
249 memset(&init_attr, 0, sizeof(init_attr));
250 init_attr.event_handler = nvme_rdma_qp_event;
251 /* +1 for drain */
252 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
253 /* +1 for drain */
254 init_attr.cap.max_recv_wr = queue->queue_size + 1;
255 init_attr.cap.max_recv_sge = 1;
256 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
257 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
258 init_attr.qp_type = IB_QPT_RC;
259 init_attr.send_cq = queue->ib_cq;
260 init_attr.recv_cq = queue->ib_cq;
261
262 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
263
264 queue->qp = queue->cm_id->qp;
265 return ret;
266 }
267
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)268 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
269 struct request *rq, unsigned int hctx_idx)
270 {
271 struct nvme_rdma_ctrl *ctrl = set->driver_data;
272 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
273 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
274 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
275 struct nvme_rdma_device *dev = queue->device;
276
277 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
278 DMA_TO_DEVICE);
279 }
280
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)281 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
282 struct request *rq, unsigned int hctx_idx,
283 unsigned int numa_node)
284 {
285 struct nvme_rdma_ctrl *ctrl = set->driver_data;
286 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
287 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
288 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
289 struct nvme_rdma_device *dev = queue->device;
290 struct ib_device *ibdev = dev->dev;
291 int ret;
292
293 nvme_req(rq)->ctrl = &ctrl->ctrl;
294 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
295 DMA_TO_DEVICE);
296 if (ret)
297 return ret;
298
299 req->queue = queue;
300
301 return 0;
302 }
303
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)304 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
305 unsigned int hctx_idx)
306 {
307 struct nvme_rdma_ctrl *ctrl = data;
308 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
309
310 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
311
312 hctx->driver_data = queue;
313 return 0;
314 }
315
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)316 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
317 unsigned int hctx_idx)
318 {
319 struct nvme_rdma_ctrl *ctrl = data;
320 struct nvme_rdma_queue *queue = &ctrl->queues[0];
321
322 BUG_ON(hctx_idx != 0);
323
324 hctx->driver_data = queue;
325 return 0;
326 }
327
nvme_rdma_free_dev(struct kref * ref)328 static void nvme_rdma_free_dev(struct kref *ref)
329 {
330 struct nvme_rdma_device *ndev =
331 container_of(ref, struct nvme_rdma_device, ref);
332
333 mutex_lock(&device_list_mutex);
334 list_del(&ndev->entry);
335 mutex_unlock(&device_list_mutex);
336
337 ib_dealloc_pd(ndev->pd);
338 kfree(ndev);
339 }
340
nvme_rdma_dev_put(struct nvme_rdma_device * dev)341 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
342 {
343 kref_put(&dev->ref, nvme_rdma_free_dev);
344 }
345
nvme_rdma_dev_get(struct nvme_rdma_device * dev)346 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
347 {
348 return kref_get_unless_zero(&dev->ref);
349 }
350
351 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)352 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
353 {
354 struct nvme_rdma_device *ndev;
355
356 mutex_lock(&device_list_mutex);
357 list_for_each_entry(ndev, &device_list, entry) {
358 if (ndev->dev->node_guid == cm_id->device->node_guid &&
359 nvme_rdma_dev_get(ndev))
360 goto out_unlock;
361 }
362
363 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
364 if (!ndev)
365 goto out_err;
366
367 ndev->dev = cm_id->device;
368 kref_init(&ndev->ref);
369
370 ndev->pd = ib_alloc_pd(ndev->dev,
371 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
372 if (IS_ERR(ndev->pd))
373 goto out_free_dev;
374
375 if (!(ndev->dev->attrs.device_cap_flags &
376 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
377 dev_err(&ndev->dev->dev,
378 "Memory registrations not supported.\n");
379 goto out_free_pd;
380 }
381
382 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
383 ndev->dev->attrs.max_send_sge - 1);
384 list_add(&ndev->entry, &device_list);
385 out_unlock:
386 mutex_unlock(&device_list_mutex);
387 return ndev;
388
389 out_free_pd:
390 ib_dealloc_pd(ndev->pd);
391 out_free_dev:
392 kfree(ndev);
393 out_err:
394 mutex_unlock(&device_list_mutex);
395 return NULL;
396 }
397
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)398 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
399 {
400 struct nvme_rdma_device *dev;
401 struct ib_device *ibdev;
402
403 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
404 return;
405
406 dev = queue->device;
407 ibdev = dev->dev;
408
409 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
410
411 /*
412 * The cm_id object might have been destroyed during RDMA connection
413 * establishment error flow to avoid getting other cma events, thus
414 * the destruction of the QP shouldn't use rdma_cm API.
415 */
416 ib_destroy_qp(queue->qp);
417 ib_free_cq(queue->ib_cq);
418
419 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
420 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
421
422 nvme_rdma_dev_put(dev);
423 }
424
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev)425 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
426 {
427 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
428 ibdev->attrs.max_fast_reg_page_list_len);
429 }
430
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)431 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
432 {
433 struct ib_device *ibdev;
434 const int send_wr_factor = 3; /* MR, SEND, INV */
435 const int cq_factor = send_wr_factor + 1; /* + RECV */
436 int comp_vector, idx = nvme_rdma_queue_idx(queue);
437 int ret;
438
439 queue->device = nvme_rdma_find_get_device(queue->cm_id);
440 if (!queue->device) {
441 dev_err(queue->cm_id->device->dev.parent,
442 "no client data found!\n");
443 return -ECONNREFUSED;
444 }
445 ibdev = queue->device->dev;
446
447 /*
448 * Spread I/O queues completion vectors according their queue index.
449 * Admin queues can always go on completion vector 0.
450 */
451 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
452
453 /* +1 for ib_stop_cq */
454 queue->ib_cq = ib_alloc_cq(ibdev, queue,
455 cq_factor * queue->queue_size + 1,
456 comp_vector, IB_POLL_SOFTIRQ);
457 if (IS_ERR(queue->ib_cq)) {
458 ret = PTR_ERR(queue->ib_cq);
459 goto out_put_dev;
460 }
461
462 ret = nvme_rdma_create_qp(queue, send_wr_factor);
463 if (ret)
464 goto out_destroy_ib_cq;
465
466 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
467 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
468 if (!queue->rsp_ring) {
469 ret = -ENOMEM;
470 goto out_destroy_qp;
471 }
472
473 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
474 queue->queue_size,
475 IB_MR_TYPE_MEM_REG,
476 nvme_rdma_get_max_fr_pages(ibdev));
477 if (ret) {
478 dev_err(queue->ctrl->ctrl.device,
479 "failed to initialize MR pool sized %d for QID %d\n",
480 queue->queue_size, idx);
481 goto out_destroy_ring;
482 }
483
484 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
485
486 return 0;
487
488 out_destroy_ring:
489 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
490 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491 out_destroy_qp:
492 rdma_destroy_qp(queue->cm_id);
493 out_destroy_ib_cq:
494 ib_free_cq(queue->ib_cq);
495 out_put_dev:
496 nvme_rdma_dev_put(queue->device);
497 return ret;
498 }
499
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)500 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
501 int idx, size_t queue_size)
502 {
503 struct nvme_rdma_queue *queue;
504 struct sockaddr *src_addr = NULL;
505 int ret;
506
507 queue = &ctrl->queues[idx];
508 queue->ctrl = ctrl;
509 init_completion(&queue->cm_done);
510
511 if (idx > 0)
512 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
513 else
514 queue->cmnd_capsule_len = sizeof(struct nvme_command);
515
516 queue->queue_size = queue_size;
517
518 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
519 RDMA_PS_TCP, IB_QPT_RC);
520 if (IS_ERR(queue->cm_id)) {
521 dev_info(ctrl->ctrl.device,
522 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
523 return PTR_ERR(queue->cm_id);
524 }
525
526 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
527 src_addr = (struct sockaddr *)&ctrl->src_addr;
528
529 queue->cm_error = -ETIMEDOUT;
530 ret = rdma_resolve_addr(queue->cm_id, src_addr,
531 (struct sockaddr *)&ctrl->addr,
532 NVME_RDMA_CONNECT_TIMEOUT_MS);
533 if (ret) {
534 dev_info(ctrl->ctrl.device,
535 "rdma_resolve_addr failed (%d).\n", ret);
536 goto out_destroy_cm_id;
537 }
538
539 ret = nvme_rdma_wait_for_cm(queue);
540 if (ret) {
541 dev_info(ctrl->ctrl.device,
542 "rdma connection establishment failed (%d)\n", ret);
543 goto out_destroy_cm_id;
544 }
545
546 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
547
548 return 0;
549
550 out_destroy_cm_id:
551 rdma_destroy_id(queue->cm_id);
552 nvme_rdma_destroy_queue_ib(queue);
553 return ret;
554 }
555
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)556 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
557 {
558 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
559 return;
560
561 rdma_disconnect(queue->cm_id);
562 ib_drain_qp(queue->qp);
563 }
564
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)565 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
566 {
567 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
568 return;
569
570 nvme_rdma_destroy_queue_ib(queue);
571 rdma_destroy_id(queue->cm_id);
572 }
573
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
575 {
576 int i;
577
578 for (i = 1; i < ctrl->ctrl.queue_count; i++)
579 nvme_rdma_free_queue(&ctrl->queues[i]);
580 }
581
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584 int i;
585
586 for (i = 1; i < ctrl->ctrl.queue_count; i++)
587 nvme_rdma_stop_queue(&ctrl->queues[i]);
588 }
589
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
591 {
592 int ret;
593
594 if (idx)
595 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
596 else
597 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
598
599 if (!ret)
600 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
601 else
602 dev_info(ctrl->ctrl.device,
603 "failed to connect queue: %d ret=%d\n", idx, ret);
604 return ret;
605 }
606
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
608 {
609 int i, ret = 0;
610
611 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
612 ret = nvme_rdma_start_queue(ctrl, i);
613 if (ret)
614 goto out_stop_queues;
615 }
616
617 return 0;
618
619 out_stop_queues:
620 for (i--; i >= 1; i--)
621 nvme_rdma_stop_queue(&ctrl->queues[i]);
622 return ret;
623 }
624
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
628 struct ib_device *ibdev = ctrl->device->dev;
629 unsigned int nr_io_queues;
630 int i, ret;
631
632 nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
633
634 /*
635 * we map queues according to the device irq vectors for
636 * optimal locality so we don't need more queues than
637 * completion vectors.
638 */
639 nr_io_queues = min_t(unsigned int, nr_io_queues,
640 ibdev->num_comp_vectors);
641
642 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
643 if (ret)
644 return ret;
645
646 ctrl->ctrl.queue_count = nr_io_queues + 1;
647 if (ctrl->ctrl.queue_count < 2)
648 return 0;
649
650 dev_info(ctrl->ctrl.device,
651 "creating %d I/O queues.\n", nr_io_queues);
652
653 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
654 ret = nvme_rdma_alloc_queue(ctrl, i,
655 ctrl->ctrl.sqsize + 1);
656 if (ret)
657 goto out_free_queues;
658 }
659
660 return 0;
661
662 out_free_queues:
663 for (i--; i >= 1; i--)
664 nvme_rdma_free_queue(&ctrl->queues[i]);
665
666 return ret;
667 }
668
nvme_rdma_free_tagset(struct nvme_ctrl * nctrl,struct blk_mq_tag_set * set)669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
670 struct blk_mq_tag_set *set)
671 {
672 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
673
674 blk_mq_free_tag_set(set);
675 nvme_rdma_dev_put(ctrl->device);
676 }
677
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
679 bool admin)
680 {
681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682 struct blk_mq_tag_set *set;
683 int ret;
684
685 if (admin) {
686 set = &ctrl->admin_tag_set;
687 memset(set, 0, sizeof(*set));
688 set->ops = &nvme_rdma_admin_mq_ops;
689 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
690 set->reserved_tags = 2; /* connect + keep-alive */
691 set->numa_node = NUMA_NO_NODE;
692 set->cmd_size = sizeof(struct nvme_rdma_request) +
693 SG_CHUNK_SIZE * sizeof(struct scatterlist);
694 set->driver_data = ctrl;
695 set->nr_hw_queues = 1;
696 set->timeout = ADMIN_TIMEOUT;
697 set->flags = BLK_MQ_F_NO_SCHED;
698 } else {
699 set = &ctrl->tag_set;
700 memset(set, 0, sizeof(*set));
701 set->ops = &nvme_rdma_mq_ops;
702 set->queue_depth = nctrl->sqsize + 1;
703 set->reserved_tags = 1; /* fabric connect */
704 set->numa_node = NUMA_NO_NODE;
705 set->flags = BLK_MQ_F_SHOULD_MERGE;
706 set->cmd_size = sizeof(struct nvme_rdma_request) +
707 SG_CHUNK_SIZE * sizeof(struct scatterlist);
708 set->driver_data = ctrl;
709 set->nr_hw_queues = nctrl->queue_count - 1;
710 set->timeout = NVME_IO_TIMEOUT;
711 }
712
713 ret = blk_mq_alloc_tag_set(set);
714 if (ret)
715 goto out;
716
717 /*
718 * We need a reference on the device as long as the tag_set is alive,
719 * as the MRs in the request structures need a valid ib_device.
720 */
721 ret = nvme_rdma_dev_get(ctrl->device);
722 if (!ret) {
723 ret = -EINVAL;
724 goto out_free_tagset;
725 }
726
727 return set;
728
729 out_free_tagset:
730 blk_mq_free_tag_set(set);
731 out:
732 return ERR_PTR(ret);
733 }
734
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
736 bool remove)
737 {
738 if (remove) {
739 blk_cleanup_queue(ctrl->ctrl.admin_q);
740 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
741 }
742 if (ctrl->async_event_sqe.data) {
743 cancel_work_sync(&ctrl->ctrl.async_event_work);
744 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
745 sizeof(struct nvme_command), DMA_TO_DEVICE);
746 ctrl->async_event_sqe.data = NULL;
747 }
748 nvme_rdma_free_queue(&ctrl->queues[0]);
749 }
750
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)751 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
752 bool new)
753 {
754 int error;
755
756 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
757 if (error)
758 return error;
759
760 ctrl->device = ctrl->queues[0].device;
761
762 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
763
764 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
765 sizeof(struct nvme_command), DMA_TO_DEVICE);
766 if (error)
767 goto out_free_queue;
768
769 if (new) {
770 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
771 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
772 error = PTR_ERR(ctrl->ctrl.admin_tagset);
773 goto out_free_async_qe;
774 }
775
776 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
777 if (IS_ERR(ctrl->ctrl.admin_q)) {
778 error = PTR_ERR(ctrl->ctrl.admin_q);
779 goto out_free_tagset;
780 }
781 }
782
783 error = nvme_rdma_start_queue(ctrl, 0);
784 if (error)
785 goto out_cleanup_queue;
786
787 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
788 &ctrl->ctrl.cap);
789 if (error) {
790 dev_err(ctrl->ctrl.device,
791 "prop_get NVME_REG_CAP failed\n");
792 goto out_stop_queue;
793 }
794
795 ctrl->ctrl.sqsize =
796 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
797
798 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
799 if (error)
800 goto out_stop_queue;
801
802 ctrl->ctrl.max_hw_sectors =
803 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
804
805 error = nvme_init_identify(&ctrl->ctrl);
806 if (error)
807 goto out_stop_queue;
808
809 return 0;
810
811 out_stop_queue:
812 nvme_rdma_stop_queue(&ctrl->queues[0]);
813 out_cleanup_queue:
814 if (new)
815 blk_cleanup_queue(ctrl->ctrl.admin_q);
816 out_free_tagset:
817 if (new)
818 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
819 out_free_async_qe:
820 if (ctrl->async_event_sqe.data) {
821 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
822 sizeof(struct nvme_command), DMA_TO_DEVICE);
823 ctrl->async_event_sqe.data = NULL;
824 }
825 out_free_queue:
826 nvme_rdma_free_queue(&ctrl->queues[0]);
827 return error;
828 }
829
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)830 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
831 bool remove)
832 {
833 if (remove) {
834 blk_cleanup_queue(ctrl->ctrl.connect_q);
835 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
836 }
837 nvme_rdma_free_io_queues(ctrl);
838 }
839
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)840 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
841 {
842 int ret;
843
844 ret = nvme_rdma_alloc_io_queues(ctrl);
845 if (ret)
846 return ret;
847
848 if (new) {
849 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
850 if (IS_ERR(ctrl->ctrl.tagset)) {
851 ret = PTR_ERR(ctrl->ctrl.tagset);
852 goto out_free_io_queues;
853 }
854
855 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
856 if (IS_ERR(ctrl->ctrl.connect_q)) {
857 ret = PTR_ERR(ctrl->ctrl.connect_q);
858 goto out_free_tag_set;
859 }
860 } else {
861 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
862 ctrl->ctrl.queue_count - 1);
863 }
864
865 ret = nvme_rdma_start_io_queues(ctrl);
866 if (ret)
867 goto out_cleanup_connect_q;
868
869 return 0;
870
871 out_cleanup_connect_q:
872 if (new)
873 blk_cleanup_queue(ctrl->ctrl.connect_q);
874 out_free_tag_set:
875 if (new)
876 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
877 out_free_io_queues:
878 nvme_rdma_free_io_queues(ctrl);
879 return ret;
880 }
881
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)882 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
883 bool remove)
884 {
885 mutex_lock(&ctrl->teardown_lock);
886 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
887 nvme_rdma_stop_queue(&ctrl->queues[0]);
888 if (ctrl->ctrl.admin_tagset)
889 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
890 nvme_cancel_request, &ctrl->ctrl);
891 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
892 nvme_rdma_destroy_admin_queue(ctrl, remove);
893 mutex_unlock(&ctrl->teardown_lock);
894 }
895
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)896 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
897 bool remove)
898 {
899 mutex_lock(&ctrl->teardown_lock);
900 if (ctrl->ctrl.queue_count > 1) {
901 nvme_stop_queues(&ctrl->ctrl);
902 nvme_rdma_stop_io_queues(ctrl);
903 if (ctrl->ctrl.tagset)
904 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
905 nvme_cancel_request, &ctrl->ctrl);
906 if (remove)
907 nvme_start_queues(&ctrl->ctrl);
908 nvme_rdma_destroy_io_queues(ctrl, remove);
909 }
910 mutex_unlock(&ctrl->teardown_lock);
911 }
912
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)913 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
914 {
915 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
916
917 cancel_work_sync(&ctrl->err_work);
918 cancel_delayed_work_sync(&ctrl->reconnect_work);
919 }
920
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)921 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
922 {
923 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
924
925 if (list_empty(&ctrl->list))
926 goto free_ctrl;
927
928 mutex_lock(&nvme_rdma_ctrl_mutex);
929 list_del(&ctrl->list);
930 mutex_unlock(&nvme_rdma_ctrl_mutex);
931
932 nvmf_free_options(nctrl->opts);
933 free_ctrl:
934 kfree(ctrl->queues);
935 kfree(ctrl);
936 }
937
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)938 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
939 {
940 /* If we are resetting/deleting then do nothing */
941 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
942 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
943 ctrl->ctrl.state == NVME_CTRL_LIVE);
944 return;
945 }
946
947 if (nvmf_should_reconnect(&ctrl->ctrl)) {
948 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
949 ctrl->ctrl.opts->reconnect_delay);
950 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
951 ctrl->ctrl.opts->reconnect_delay * HZ);
952 } else {
953 nvme_delete_ctrl(&ctrl->ctrl);
954 }
955 }
956
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)957 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
958 {
959 int ret = -EINVAL;
960 bool changed;
961
962 ret = nvme_rdma_configure_admin_queue(ctrl, new);
963 if (ret)
964 return ret;
965
966 if (ctrl->ctrl.icdoff) {
967 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
968 goto destroy_admin;
969 }
970
971 if (!(ctrl->ctrl.sgls & (1 << 2))) {
972 dev_err(ctrl->ctrl.device,
973 "Mandatory keyed sgls are not supported!\n");
974 goto destroy_admin;
975 }
976
977 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
978 dev_warn(ctrl->ctrl.device,
979 "queue_size %zu > ctrl sqsize %u, clamping down\n",
980 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
981 }
982
983 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
984 dev_warn(ctrl->ctrl.device,
985 "sqsize %u > ctrl maxcmd %u, clamping down\n",
986 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
987 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
988 }
989
990 if (ctrl->ctrl.sgls & (1 << 20))
991 ctrl->use_inline_data = true;
992
993 if (ctrl->ctrl.queue_count > 1) {
994 ret = nvme_rdma_configure_io_queues(ctrl, new);
995 if (ret)
996 goto destroy_admin;
997 }
998
999 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1000 if (!changed) {
1001 /* state change failure is ok if we're in DELETING state */
1002 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1003 ret = -EINVAL;
1004 goto destroy_io;
1005 }
1006
1007 nvme_start_ctrl(&ctrl->ctrl);
1008 return 0;
1009
1010 destroy_io:
1011 if (ctrl->ctrl.queue_count > 1)
1012 nvme_rdma_destroy_io_queues(ctrl, new);
1013 destroy_admin:
1014 nvme_rdma_stop_queue(&ctrl->queues[0]);
1015 nvme_rdma_destroy_admin_queue(ctrl, new);
1016 return ret;
1017 }
1018
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1019 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1020 {
1021 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1022 struct nvme_rdma_ctrl, reconnect_work);
1023
1024 ++ctrl->ctrl.nr_reconnects;
1025
1026 if (nvme_rdma_setup_ctrl(ctrl, false))
1027 goto requeue;
1028
1029 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1030 ctrl->ctrl.nr_reconnects);
1031
1032 ctrl->ctrl.nr_reconnects = 0;
1033
1034 return;
1035
1036 requeue:
1037 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1038 ctrl->ctrl.nr_reconnects);
1039 nvme_rdma_reconnect_or_remove(ctrl);
1040 }
1041
nvme_rdma_error_recovery_work(struct work_struct * work)1042 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1043 {
1044 struct nvme_rdma_ctrl *ctrl = container_of(work,
1045 struct nvme_rdma_ctrl, err_work);
1046
1047 nvme_stop_keep_alive(&ctrl->ctrl);
1048 nvme_rdma_teardown_io_queues(ctrl, false);
1049 nvme_start_queues(&ctrl->ctrl);
1050 nvme_rdma_teardown_admin_queue(ctrl, false);
1051
1052 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1053 /* state change failure is ok if we're in DELETING state */
1054 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1055 return;
1056 }
1057
1058 nvme_rdma_reconnect_or_remove(ctrl);
1059 }
1060
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1061 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1062 {
1063 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1064 return;
1065
1066 queue_work(nvme_wq, &ctrl->err_work);
1067 }
1068
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1069 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1070 const char *op)
1071 {
1072 struct nvme_rdma_queue *queue = cq->cq_context;
1073 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1074
1075 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1076 dev_info(ctrl->ctrl.device,
1077 "%s for CQE 0x%p failed with status %s (%d)\n",
1078 op, wc->wr_cqe,
1079 ib_wc_status_msg(wc->status), wc->status);
1080 nvme_rdma_error_recovery(ctrl);
1081 }
1082
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1083 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1084 {
1085 if (unlikely(wc->status != IB_WC_SUCCESS))
1086 nvme_rdma_wr_error(cq, wc, "MEMREG");
1087 }
1088
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1089 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1090 {
1091 struct nvme_rdma_request *req =
1092 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1093 struct request *rq = blk_mq_rq_from_pdu(req);
1094
1095 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1096 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1097 return;
1098 }
1099
1100 if (refcount_dec_and_test(&req->ref))
1101 nvme_end_request(rq, req->status, req->result);
1102
1103 }
1104
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1105 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1106 struct nvme_rdma_request *req)
1107 {
1108 struct ib_send_wr wr = {
1109 .opcode = IB_WR_LOCAL_INV,
1110 .next = NULL,
1111 .num_sge = 0,
1112 .send_flags = IB_SEND_SIGNALED,
1113 .ex.invalidate_rkey = req->mr->rkey,
1114 };
1115
1116 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1117 wr.wr_cqe = &req->reg_cqe;
1118
1119 return ib_post_send(queue->qp, &wr, NULL);
1120 }
1121
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1122 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1123 struct request *rq)
1124 {
1125 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1126 struct nvme_rdma_device *dev = queue->device;
1127 struct ib_device *ibdev = dev->dev;
1128
1129 if (!blk_rq_payload_bytes(rq))
1130 return;
1131
1132 if (req->mr) {
1133 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1134 req->mr = NULL;
1135 }
1136
1137 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1138 req->nents, rq_data_dir(rq) ==
1139 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1140
1141 nvme_cleanup_cmd(rq);
1142 sg_free_table_chained(&req->sg_table, true);
1143 }
1144
nvme_rdma_set_sg_null(struct nvme_command * c)1145 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1146 {
1147 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1148
1149 sg->addr = 0;
1150 put_unaligned_le24(0, sg->length);
1151 put_unaligned_le32(0, sg->key);
1152 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1153 return 0;
1154 }
1155
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1156 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1157 struct nvme_rdma_request *req, struct nvme_command *c,
1158 int count)
1159 {
1160 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1161 struct scatterlist *sgl = req->sg_table.sgl;
1162 struct ib_sge *sge = &req->sge[1];
1163 u32 len = 0;
1164 int i;
1165
1166 for (i = 0; i < count; i++, sgl++, sge++) {
1167 sge->addr = sg_dma_address(sgl);
1168 sge->length = sg_dma_len(sgl);
1169 sge->lkey = queue->device->pd->local_dma_lkey;
1170 len += sge->length;
1171 }
1172
1173 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1174 sg->length = cpu_to_le32(len);
1175 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1176
1177 req->num_sge += count;
1178 return 0;
1179 }
1180
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1181 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1182 struct nvme_rdma_request *req, struct nvme_command *c)
1183 {
1184 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1185
1186 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1187 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1188 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1189 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1190 return 0;
1191 }
1192
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1193 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1194 struct nvme_rdma_request *req, struct nvme_command *c,
1195 int count)
1196 {
1197 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1198 int nr;
1199
1200 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1201 if (WARN_ON_ONCE(!req->mr))
1202 return -EAGAIN;
1203
1204 /*
1205 * Align the MR to a 4K page size to match the ctrl page size and
1206 * the block virtual boundary.
1207 */
1208 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1209 if (unlikely(nr < count)) {
1210 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1211 req->mr = NULL;
1212 if (nr < 0)
1213 return nr;
1214 return -EINVAL;
1215 }
1216
1217 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1218
1219 req->reg_cqe.done = nvme_rdma_memreg_done;
1220 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1221 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1222 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1223 req->reg_wr.wr.num_sge = 0;
1224 req->reg_wr.mr = req->mr;
1225 req->reg_wr.key = req->mr->rkey;
1226 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1227 IB_ACCESS_REMOTE_READ |
1228 IB_ACCESS_REMOTE_WRITE;
1229
1230 sg->addr = cpu_to_le64(req->mr->iova);
1231 put_unaligned_le24(req->mr->length, sg->length);
1232 put_unaligned_le32(req->mr->rkey, sg->key);
1233 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1234 NVME_SGL_FMT_INVALIDATE;
1235
1236 return 0;
1237 }
1238
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1239 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1240 struct request *rq, struct nvme_command *c)
1241 {
1242 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1243 struct nvme_rdma_device *dev = queue->device;
1244 struct ib_device *ibdev = dev->dev;
1245 int count, ret;
1246
1247 req->num_sge = 1;
1248 refcount_set(&req->ref, 2); /* send and recv completions */
1249
1250 c->common.flags |= NVME_CMD_SGL_METABUF;
1251
1252 if (!blk_rq_payload_bytes(rq))
1253 return nvme_rdma_set_sg_null(c);
1254
1255 req->sg_table.sgl = req->first_sgl;
1256 ret = sg_alloc_table_chained(&req->sg_table,
1257 blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1258 if (ret)
1259 return -ENOMEM;
1260
1261 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1262
1263 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1264 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1265 if (unlikely(count <= 0)) {
1266 ret = -EIO;
1267 goto out_free_table;
1268 }
1269
1270 if (count <= dev->num_inline_segments) {
1271 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1272 queue->ctrl->use_inline_data &&
1273 blk_rq_payload_bytes(rq) <=
1274 nvme_rdma_inline_data_size(queue)) {
1275 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1276 goto out;
1277 }
1278
1279 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1280 ret = nvme_rdma_map_sg_single(queue, req, c);
1281 goto out;
1282 }
1283 }
1284
1285 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1286 out:
1287 if (unlikely(ret))
1288 goto out_unmap_sg;
1289
1290 return 0;
1291
1292 out_unmap_sg:
1293 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1294 req->nents, rq_data_dir(rq) ==
1295 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1296 out_free_table:
1297 sg_free_table_chained(&req->sg_table, true);
1298 return ret;
1299 }
1300
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1301 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1302 {
1303 struct nvme_rdma_qe *qe =
1304 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1305 struct nvme_rdma_request *req =
1306 container_of(qe, struct nvme_rdma_request, sqe);
1307 struct request *rq = blk_mq_rq_from_pdu(req);
1308
1309 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1310 nvme_rdma_wr_error(cq, wc, "SEND");
1311 return;
1312 }
1313
1314 if (refcount_dec_and_test(&req->ref))
1315 nvme_end_request(rq, req->status, req->result);
1316 }
1317
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1318 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1319 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1320 struct ib_send_wr *first)
1321 {
1322 struct ib_send_wr wr;
1323 int ret;
1324
1325 sge->addr = qe->dma;
1326 sge->length = sizeof(struct nvme_command),
1327 sge->lkey = queue->device->pd->local_dma_lkey;
1328
1329 wr.next = NULL;
1330 wr.wr_cqe = &qe->cqe;
1331 wr.sg_list = sge;
1332 wr.num_sge = num_sge;
1333 wr.opcode = IB_WR_SEND;
1334 wr.send_flags = IB_SEND_SIGNALED;
1335
1336 if (first)
1337 first->next = ≀
1338 else
1339 first = ≀
1340
1341 ret = ib_post_send(queue->qp, first, NULL);
1342 if (unlikely(ret)) {
1343 dev_err(queue->ctrl->ctrl.device,
1344 "%s failed with error code %d\n", __func__, ret);
1345 }
1346 return ret;
1347 }
1348
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1349 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1350 struct nvme_rdma_qe *qe)
1351 {
1352 struct ib_recv_wr wr;
1353 struct ib_sge list;
1354 int ret;
1355
1356 list.addr = qe->dma;
1357 list.length = sizeof(struct nvme_completion);
1358 list.lkey = queue->device->pd->local_dma_lkey;
1359
1360 qe->cqe.done = nvme_rdma_recv_done;
1361
1362 wr.next = NULL;
1363 wr.wr_cqe = &qe->cqe;
1364 wr.sg_list = &list;
1365 wr.num_sge = 1;
1366
1367 ret = ib_post_recv(queue->qp, &wr, NULL);
1368 if (unlikely(ret)) {
1369 dev_err(queue->ctrl->ctrl.device,
1370 "%s failed with error code %d\n", __func__, ret);
1371 }
1372 return ret;
1373 }
1374
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1375 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1376 {
1377 u32 queue_idx = nvme_rdma_queue_idx(queue);
1378
1379 if (queue_idx == 0)
1380 return queue->ctrl->admin_tag_set.tags[queue_idx];
1381 return queue->ctrl->tag_set.tags[queue_idx - 1];
1382 }
1383
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1384 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1385 {
1386 if (unlikely(wc->status != IB_WC_SUCCESS))
1387 nvme_rdma_wr_error(cq, wc, "ASYNC");
1388 }
1389
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1390 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1391 {
1392 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1393 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1394 struct ib_device *dev = queue->device->dev;
1395 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1396 struct nvme_command *cmd = sqe->data;
1397 struct ib_sge sge;
1398 int ret;
1399
1400 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1401
1402 memset(cmd, 0, sizeof(*cmd));
1403 cmd->common.opcode = nvme_admin_async_event;
1404 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1405 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1406 nvme_rdma_set_sg_null(cmd);
1407
1408 sqe->cqe.done = nvme_rdma_async_done;
1409
1410 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1411 DMA_TO_DEVICE);
1412
1413 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1414 WARN_ON_ONCE(ret);
1415 }
1416
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc,int tag)1417 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1418 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1419 {
1420 struct request *rq;
1421 struct nvme_rdma_request *req;
1422 int ret = 0;
1423
1424 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1425 if (!rq) {
1426 dev_err(queue->ctrl->ctrl.device,
1427 "tag 0x%x on QP %#x not found\n",
1428 cqe->command_id, queue->qp->qp_num);
1429 nvme_rdma_error_recovery(queue->ctrl);
1430 return ret;
1431 }
1432 req = blk_mq_rq_to_pdu(rq);
1433
1434 req->status = cqe->status;
1435 req->result = cqe->result;
1436
1437 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1438 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1439 dev_err(queue->ctrl->ctrl.device,
1440 "Bogus remote invalidation for rkey %#x\n",
1441 req->mr->rkey);
1442 nvme_rdma_error_recovery(queue->ctrl);
1443 }
1444 } else if (req->mr) {
1445 ret = nvme_rdma_inv_rkey(queue, req);
1446 if (unlikely(ret < 0)) {
1447 dev_err(queue->ctrl->ctrl.device,
1448 "Queueing INV WR for rkey %#x failed (%d)\n",
1449 req->mr->rkey, ret);
1450 nvme_rdma_error_recovery(queue->ctrl);
1451 }
1452 /* the local invalidation completion will end the request */
1453 return 0;
1454 }
1455
1456 if (refcount_dec_and_test(&req->ref)) {
1457 if (rq->tag == tag)
1458 ret = 1;
1459 nvme_end_request(rq, req->status, req->result);
1460 }
1461
1462 return ret;
1463 }
1464
__nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc,int tag)1465 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1466 {
1467 struct nvme_rdma_qe *qe =
1468 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1469 struct nvme_rdma_queue *queue = cq->cq_context;
1470 struct ib_device *ibdev = queue->device->dev;
1471 struct nvme_completion *cqe = qe->data;
1472 const size_t len = sizeof(struct nvme_completion);
1473 int ret = 0;
1474
1475 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1476 nvme_rdma_wr_error(cq, wc, "RECV");
1477 return 0;
1478 }
1479
1480 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1481 /*
1482 * AEN requests are special as they don't time out and can
1483 * survive any kind of queue freeze and often don't respond to
1484 * aborts. We don't even bother to allocate a struct request
1485 * for them but rather special case them here.
1486 */
1487 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1488 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1489 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1490 &cqe->result);
1491 else
1492 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1493 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1494
1495 nvme_rdma_post_recv(queue, qe);
1496 return ret;
1497 }
1498
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1499 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1500 {
1501 __nvme_rdma_recv_done(cq, wc, -1);
1502 }
1503
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1504 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1505 {
1506 int ret, i;
1507
1508 for (i = 0; i < queue->queue_size; i++) {
1509 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1510 if (ret)
1511 goto out_destroy_queue_ib;
1512 }
1513
1514 return 0;
1515
1516 out_destroy_queue_ib:
1517 nvme_rdma_destroy_queue_ib(queue);
1518 return ret;
1519 }
1520
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1521 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1522 struct rdma_cm_event *ev)
1523 {
1524 struct rdma_cm_id *cm_id = queue->cm_id;
1525 int status = ev->status;
1526 const char *rej_msg;
1527 const struct nvme_rdma_cm_rej *rej_data;
1528 u8 rej_data_len;
1529
1530 rej_msg = rdma_reject_msg(cm_id, status);
1531 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1532
1533 if (rej_data && rej_data_len >= sizeof(u16)) {
1534 u16 sts = le16_to_cpu(rej_data->sts);
1535
1536 dev_err(queue->ctrl->ctrl.device,
1537 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1538 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1539 } else {
1540 dev_err(queue->ctrl->ctrl.device,
1541 "Connect rejected: status %d (%s).\n", status, rej_msg);
1542 }
1543
1544 return -ECONNRESET;
1545 }
1546
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1547 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1548 {
1549 int ret;
1550
1551 ret = nvme_rdma_create_queue_ib(queue);
1552 if (ret)
1553 return ret;
1554
1555 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1556 if (ret) {
1557 dev_err(queue->ctrl->ctrl.device,
1558 "rdma_resolve_route failed (%d).\n",
1559 queue->cm_error);
1560 goto out_destroy_queue;
1561 }
1562
1563 return 0;
1564
1565 out_destroy_queue:
1566 nvme_rdma_destroy_queue_ib(queue);
1567 return ret;
1568 }
1569
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1570 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1571 {
1572 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1573 struct rdma_conn_param param = { };
1574 struct nvme_rdma_cm_req priv = { };
1575 int ret;
1576
1577 param.qp_num = queue->qp->qp_num;
1578 param.flow_control = 1;
1579
1580 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1581 /* maximum retry count */
1582 param.retry_count = 7;
1583 param.rnr_retry_count = 7;
1584 param.private_data = &priv;
1585 param.private_data_len = sizeof(priv);
1586
1587 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1588 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1589 /*
1590 * set the admin queue depth to the minimum size
1591 * specified by the Fabrics standard.
1592 */
1593 if (priv.qid == 0) {
1594 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1595 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1596 } else {
1597 /*
1598 * current interpretation of the fabrics spec
1599 * is at minimum you make hrqsize sqsize+1, or a
1600 * 1's based representation of sqsize.
1601 */
1602 priv.hrqsize = cpu_to_le16(queue->queue_size);
1603 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1604 }
1605
1606 ret = rdma_connect(queue->cm_id, ¶m);
1607 if (ret) {
1608 dev_err(ctrl->ctrl.device,
1609 "rdma_connect failed (%d).\n", ret);
1610 goto out_destroy_queue_ib;
1611 }
1612
1613 return 0;
1614
1615 out_destroy_queue_ib:
1616 nvme_rdma_destroy_queue_ib(queue);
1617 return ret;
1618 }
1619
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1620 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1621 struct rdma_cm_event *ev)
1622 {
1623 struct nvme_rdma_queue *queue = cm_id->context;
1624 int cm_error = 0;
1625
1626 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1627 rdma_event_msg(ev->event), ev->event,
1628 ev->status, cm_id);
1629
1630 switch (ev->event) {
1631 case RDMA_CM_EVENT_ADDR_RESOLVED:
1632 cm_error = nvme_rdma_addr_resolved(queue);
1633 break;
1634 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1635 cm_error = nvme_rdma_route_resolved(queue);
1636 break;
1637 case RDMA_CM_EVENT_ESTABLISHED:
1638 queue->cm_error = nvme_rdma_conn_established(queue);
1639 /* complete cm_done regardless of success/failure */
1640 complete(&queue->cm_done);
1641 return 0;
1642 case RDMA_CM_EVENT_REJECTED:
1643 cm_error = nvme_rdma_conn_rejected(queue, ev);
1644 break;
1645 case RDMA_CM_EVENT_ROUTE_ERROR:
1646 case RDMA_CM_EVENT_CONNECT_ERROR:
1647 case RDMA_CM_EVENT_UNREACHABLE:
1648 nvme_rdma_destroy_queue_ib(queue);
1649 /* fall through */
1650 case RDMA_CM_EVENT_ADDR_ERROR:
1651 dev_dbg(queue->ctrl->ctrl.device,
1652 "CM error event %d\n", ev->event);
1653 cm_error = -ECONNRESET;
1654 break;
1655 case RDMA_CM_EVENT_DISCONNECTED:
1656 case RDMA_CM_EVENT_ADDR_CHANGE:
1657 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1658 dev_dbg(queue->ctrl->ctrl.device,
1659 "disconnect received - connection closed\n");
1660 nvme_rdma_error_recovery(queue->ctrl);
1661 break;
1662 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1663 /* device removal is handled via the ib_client API */
1664 break;
1665 default:
1666 dev_err(queue->ctrl->ctrl.device,
1667 "Unexpected RDMA CM event (%d)\n", ev->event);
1668 nvme_rdma_error_recovery(queue->ctrl);
1669 break;
1670 }
1671
1672 if (cm_error) {
1673 queue->cm_error = cm_error;
1674 complete(&queue->cm_done);
1675 }
1676
1677 return 0;
1678 }
1679
1680 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)1681 nvme_rdma_timeout(struct request *rq, bool reserved)
1682 {
1683 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1684 struct nvme_rdma_queue *queue = req->queue;
1685 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1686
1687 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1688 rq->tag, nvme_rdma_queue_idx(queue));
1689
1690 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1691 /*
1692 * Teardown immediately if controller times out while starting
1693 * or we are already started error recovery. all outstanding
1694 * requests are completed on shutdown, so we return BLK_EH_DONE.
1695 */
1696 flush_work(&ctrl->err_work);
1697 nvme_rdma_teardown_io_queues(ctrl, false);
1698 nvme_rdma_teardown_admin_queue(ctrl, false);
1699 return BLK_EH_DONE;
1700 }
1701
1702 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1703 nvme_rdma_error_recovery(ctrl);
1704
1705 return BLK_EH_RESET_TIMER;
1706 }
1707
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1708 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1709 const struct blk_mq_queue_data *bd)
1710 {
1711 struct nvme_ns *ns = hctx->queue->queuedata;
1712 struct nvme_rdma_queue *queue = hctx->driver_data;
1713 struct request *rq = bd->rq;
1714 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1715 struct nvme_rdma_qe *sqe = &req->sqe;
1716 struct nvme_command *c = sqe->data;
1717 struct ib_device *dev;
1718 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1719 blk_status_t ret;
1720 int err;
1721
1722 WARN_ON_ONCE(rq->tag < 0);
1723
1724 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1725 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1726
1727 dev = queue->device->dev;
1728 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1729 sizeof(struct nvme_command), DMA_TO_DEVICE);
1730
1731 ret = nvme_setup_cmd(ns, rq, c);
1732 if (ret)
1733 return ret;
1734
1735 blk_mq_start_request(rq);
1736
1737 err = nvme_rdma_map_data(queue, rq, c);
1738 if (unlikely(err < 0)) {
1739 dev_err(queue->ctrl->ctrl.device,
1740 "Failed to map data (%d)\n", err);
1741 nvme_cleanup_cmd(rq);
1742 goto err;
1743 }
1744
1745 sqe->cqe.done = nvme_rdma_send_done;
1746
1747 ib_dma_sync_single_for_device(dev, sqe->dma,
1748 sizeof(struct nvme_command), DMA_TO_DEVICE);
1749
1750 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1751 req->mr ? &req->reg_wr.wr : NULL);
1752 if (unlikely(err)) {
1753 nvme_rdma_unmap_data(queue, rq);
1754 goto err;
1755 }
1756
1757 return BLK_STS_OK;
1758 err:
1759 if (err == -ENOMEM || err == -EAGAIN)
1760 return BLK_STS_RESOURCE;
1761 return BLK_STS_IOERR;
1762 }
1763
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)1764 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1765 {
1766 struct nvme_rdma_queue *queue = hctx->driver_data;
1767 struct ib_cq *cq = queue->ib_cq;
1768 struct ib_wc wc;
1769 int found = 0;
1770
1771 while (ib_poll_cq(cq, 1, &wc) > 0) {
1772 struct ib_cqe *cqe = wc.wr_cqe;
1773
1774 if (cqe) {
1775 if (cqe->done == nvme_rdma_recv_done)
1776 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1777 else
1778 cqe->done(cq, &wc);
1779 }
1780 }
1781
1782 return found;
1783 }
1784
nvme_rdma_complete_rq(struct request * rq)1785 static void nvme_rdma_complete_rq(struct request *rq)
1786 {
1787 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1788
1789 nvme_rdma_unmap_data(req->queue, rq);
1790 nvme_complete_rq(rq);
1791 }
1792
nvme_rdma_map_queues(struct blk_mq_tag_set * set)1793 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1794 {
1795 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1796
1797 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1798 }
1799
1800 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1801 .queue_rq = nvme_rdma_queue_rq,
1802 .complete = nvme_rdma_complete_rq,
1803 .init_request = nvme_rdma_init_request,
1804 .exit_request = nvme_rdma_exit_request,
1805 .init_hctx = nvme_rdma_init_hctx,
1806 .poll = nvme_rdma_poll,
1807 .timeout = nvme_rdma_timeout,
1808 .map_queues = nvme_rdma_map_queues,
1809 };
1810
1811 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1812 .queue_rq = nvme_rdma_queue_rq,
1813 .complete = nvme_rdma_complete_rq,
1814 .init_request = nvme_rdma_init_request,
1815 .exit_request = nvme_rdma_exit_request,
1816 .init_hctx = nvme_rdma_init_admin_hctx,
1817 .timeout = nvme_rdma_timeout,
1818 };
1819
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)1820 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1821 {
1822 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1823 if (shutdown)
1824 nvme_shutdown_ctrl(&ctrl->ctrl);
1825 else
1826 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1827 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1828 }
1829
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)1830 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1831 {
1832 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1833 }
1834
nvme_rdma_reset_ctrl_work(struct work_struct * work)1835 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1836 {
1837 struct nvme_rdma_ctrl *ctrl =
1838 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1839
1840 nvme_stop_ctrl(&ctrl->ctrl);
1841 nvme_rdma_shutdown_ctrl(ctrl, false);
1842
1843 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1844 /* state change failure should never happen */
1845 WARN_ON_ONCE(1);
1846 return;
1847 }
1848
1849 if (nvme_rdma_setup_ctrl(ctrl, false))
1850 goto out_fail;
1851
1852 return;
1853
1854 out_fail:
1855 ++ctrl->ctrl.nr_reconnects;
1856 nvme_rdma_reconnect_or_remove(ctrl);
1857 }
1858
1859 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1860 .name = "rdma",
1861 .module = THIS_MODULE,
1862 .flags = NVME_F_FABRICS,
1863 .reg_read32 = nvmf_reg_read32,
1864 .reg_read64 = nvmf_reg_read64,
1865 .reg_write32 = nvmf_reg_write32,
1866 .free_ctrl = nvme_rdma_free_ctrl,
1867 .submit_async_event = nvme_rdma_submit_async_event,
1868 .delete_ctrl = nvme_rdma_delete_ctrl,
1869 .get_address = nvmf_get_address,
1870 .stop_ctrl = nvme_rdma_stop_ctrl,
1871 };
1872
1873 static inline bool
__nvme_rdma_options_match(struct nvme_rdma_ctrl * ctrl,struct nvmf_ctrl_options * opts)1874 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1875 struct nvmf_ctrl_options *opts)
1876 {
1877 char *stdport = __stringify(NVME_RDMA_IP_PORT);
1878
1879
1880 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1881 strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1882 return false;
1883
1884 if (opts->mask & NVMF_OPT_TRSVCID &&
1885 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1886 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1887 return false;
1888 } else if (opts->mask & NVMF_OPT_TRSVCID) {
1889 if (strcmp(opts->trsvcid, stdport))
1890 return false;
1891 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1892 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1893 return false;
1894 }
1895 /* else, it's a match as both have stdport. Fall to next checks */
1896
1897 /*
1898 * checking the local address is rough. In most cases, one
1899 * is not specified and the host port is selected by the stack.
1900 *
1901 * Assume no match if:
1902 * local address is specified and address is not the same
1903 * local address is not specified but remote is, or vice versa
1904 * (admin using specific host_traddr when it matters).
1905 */
1906 if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1907 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1908 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1909 return false;
1910 } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1911 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1912 return false;
1913 /*
1914 * if neither controller had an host port specified, assume it's
1915 * a match as everything else matched.
1916 */
1917
1918 return true;
1919 }
1920
1921 /*
1922 * Fails a connection request if it matches an existing controller
1923 * (association) with the same tuple:
1924 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1925 *
1926 * if local address is not specified in the request, it will match an
1927 * existing controller with all the other parameters the same and no
1928 * local port address specified as well.
1929 *
1930 * The ports don't need to be compared as they are intrinsically
1931 * already matched by the port pointers supplied.
1932 */
1933 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)1934 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1935 {
1936 struct nvme_rdma_ctrl *ctrl;
1937 bool found = false;
1938
1939 mutex_lock(&nvme_rdma_ctrl_mutex);
1940 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1941 found = __nvme_rdma_options_match(ctrl, opts);
1942 if (found)
1943 break;
1944 }
1945 mutex_unlock(&nvme_rdma_ctrl_mutex);
1946
1947 return found;
1948 }
1949
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)1950 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1951 struct nvmf_ctrl_options *opts)
1952 {
1953 struct nvme_rdma_ctrl *ctrl;
1954 int ret;
1955 bool changed;
1956 char *port;
1957
1958 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1959 if (!ctrl)
1960 return ERR_PTR(-ENOMEM);
1961 ctrl->ctrl.opts = opts;
1962 INIT_LIST_HEAD(&ctrl->list);
1963 mutex_init(&ctrl->teardown_lock);
1964
1965 if (opts->mask & NVMF_OPT_TRSVCID)
1966 port = opts->trsvcid;
1967 else
1968 port = __stringify(NVME_RDMA_IP_PORT);
1969
1970 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1971 opts->traddr, port, &ctrl->addr);
1972 if (ret) {
1973 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1974 goto out_free_ctrl;
1975 }
1976
1977 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1978 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1979 opts->host_traddr, NULL, &ctrl->src_addr);
1980 if (ret) {
1981 pr_err("malformed src address passed: %s\n",
1982 opts->host_traddr);
1983 goto out_free_ctrl;
1984 }
1985 }
1986
1987 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1988 ret = -EALREADY;
1989 goto out_free_ctrl;
1990 }
1991
1992 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1993 nvme_rdma_reconnect_ctrl_work);
1994 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1995 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1996
1997 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1998 ctrl->ctrl.sqsize = opts->queue_size - 1;
1999 ctrl->ctrl.kato = opts->kato;
2000
2001 ret = -ENOMEM;
2002 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2003 GFP_KERNEL);
2004 if (!ctrl->queues)
2005 goto out_free_ctrl;
2006
2007 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2008 0 /* no quirks, we're perfect! */);
2009 if (ret)
2010 goto out_kfree_queues;
2011
2012 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2013 WARN_ON_ONCE(!changed);
2014
2015 ret = nvme_rdma_setup_ctrl(ctrl, true);
2016 if (ret)
2017 goto out_uninit_ctrl;
2018
2019 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2020 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2021
2022 nvme_get_ctrl(&ctrl->ctrl);
2023
2024 mutex_lock(&nvme_rdma_ctrl_mutex);
2025 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2026 mutex_unlock(&nvme_rdma_ctrl_mutex);
2027
2028 return &ctrl->ctrl;
2029
2030 out_uninit_ctrl:
2031 nvme_uninit_ctrl(&ctrl->ctrl);
2032 nvme_put_ctrl(&ctrl->ctrl);
2033 if (ret > 0)
2034 ret = -EIO;
2035 return ERR_PTR(ret);
2036 out_kfree_queues:
2037 kfree(ctrl->queues);
2038 out_free_ctrl:
2039 kfree(ctrl);
2040 return ERR_PTR(ret);
2041 }
2042
2043 static struct nvmf_transport_ops nvme_rdma_transport = {
2044 .name = "rdma",
2045 .module = THIS_MODULE,
2046 .required_opts = NVMF_OPT_TRADDR,
2047 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2048 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2049 .create_ctrl = nvme_rdma_create_ctrl,
2050 };
2051
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2052 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2053 {
2054 struct nvme_rdma_ctrl *ctrl;
2055 struct nvme_rdma_device *ndev;
2056 bool found = false;
2057
2058 mutex_lock(&device_list_mutex);
2059 list_for_each_entry(ndev, &device_list, entry) {
2060 if (ndev->dev == ib_device) {
2061 found = true;
2062 break;
2063 }
2064 }
2065 mutex_unlock(&device_list_mutex);
2066
2067 if (!found)
2068 return;
2069
2070 /* Delete all controllers using this device */
2071 mutex_lock(&nvme_rdma_ctrl_mutex);
2072 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2073 if (ctrl->device->dev != ib_device)
2074 continue;
2075 nvme_delete_ctrl(&ctrl->ctrl);
2076 }
2077 mutex_unlock(&nvme_rdma_ctrl_mutex);
2078
2079 flush_workqueue(nvme_delete_wq);
2080 }
2081
2082 static struct ib_client nvme_rdma_ib_client = {
2083 .name = "nvme_rdma",
2084 .remove = nvme_rdma_remove_one
2085 };
2086
nvme_rdma_init_module(void)2087 static int __init nvme_rdma_init_module(void)
2088 {
2089 int ret;
2090
2091 ret = ib_register_client(&nvme_rdma_ib_client);
2092 if (ret)
2093 return ret;
2094
2095 ret = nvmf_register_transport(&nvme_rdma_transport);
2096 if (ret)
2097 goto err_unreg_client;
2098
2099 return 0;
2100
2101 err_unreg_client:
2102 ib_unregister_client(&nvme_rdma_ib_client);
2103 return ret;
2104 }
2105
nvme_rdma_cleanup_module(void)2106 static void __exit nvme_rdma_cleanup_module(void)
2107 {
2108 nvmf_unregister_transport(&nvme_rdma_transport);
2109 ib_unregister_client(&nvme_rdma_ib_client);
2110 }
2111
2112 module_init(nvme_rdma_init_module);
2113 module_exit(nvme_rdma_cleanup_module);
2114
2115 MODULE_LICENSE("GPL v2");
2116