• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30 
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
44 
45 struct nvme_rdma_device {
46 	struct ib_device	*dev;
47 	struct ib_pd		*pd;
48 	struct kref		ref;
49 	struct list_head	entry;
50 	unsigned int		num_inline_segments;
51 };
52 
53 struct nvme_rdma_qe {
54 	struct ib_cqe		cqe;
55 	void			*data;
56 	u64			dma;
57 };
58 
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61 	struct nvme_request	req;
62 	struct ib_mr		*mr;
63 	struct nvme_rdma_qe	sqe;
64 	union nvme_result	result;
65 	__le16			status;
66 	refcount_t		ref;
67 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68 	u32			num_sge;
69 	int			nents;
70 	struct ib_reg_wr	reg_wr;
71 	struct ib_cqe		reg_cqe;
72 	struct nvme_rdma_queue  *queue;
73 	struct sg_table		sg_table;
74 	struct scatterlist	first_sgl[];
75 };
76 
77 enum nvme_rdma_queue_flags {
78 	NVME_RDMA_Q_ALLOCATED		= 0,
79 	NVME_RDMA_Q_LIVE		= 1,
80 	NVME_RDMA_Q_TR_READY		= 2,
81 };
82 
83 struct nvme_rdma_queue {
84 	struct nvme_rdma_qe	*rsp_ring;
85 	int			queue_size;
86 	size_t			cmnd_capsule_len;
87 	struct nvme_rdma_ctrl	*ctrl;
88 	struct nvme_rdma_device	*device;
89 	struct ib_cq		*ib_cq;
90 	struct ib_qp		*qp;
91 
92 	unsigned long		flags;
93 	struct rdma_cm_id	*cm_id;
94 	int			cm_error;
95 	struct completion	cm_done;
96 };
97 
98 struct nvme_rdma_ctrl {
99 	/* read only in the hot path */
100 	struct nvme_rdma_queue	*queues;
101 
102 	/* other member variables */
103 	struct blk_mq_tag_set	tag_set;
104 	struct work_struct	err_work;
105 
106 	struct nvme_rdma_qe	async_event_sqe;
107 
108 	struct delayed_work	reconnect_work;
109 
110 	struct list_head	list;
111 
112 	struct blk_mq_tag_set	admin_tag_set;
113 	struct nvme_rdma_device	*device;
114 
115 	u32			max_fr_pages;
116 
117 	struct sockaddr_storage addr;
118 	struct sockaddr_storage src_addr;
119 
120 	struct nvme_ctrl	ctrl;
121 	struct mutex		teardown_lock;
122 	bool			use_inline_data;
123 };
124 
to_rdma_ctrl(struct nvme_ctrl * ctrl)125 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
126 {
127 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
128 }
129 
130 static LIST_HEAD(device_list);
131 static DEFINE_MUTEX(device_list_mutex);
132 
133 static LIST_HEAD(nvme_rdma_ctrl_list);
134 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
135 
136 /*
137  * Disabling this option makes small I/O goes faster, but is fundamentally
138  * unsafe.  With it turned off we will have to register a global rkey that
139  * allows read and write access to all physical memory.
140  */
141 static bool register_always = true;
142 module_param(register_always, bool, 0444);
143 MODULE_PARM_DESC(register_always,
144 	 "Use memory registration even for contiguous memory regions");
145 
146 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
147 		struct rdma_cm_event *event);
148 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
149 
150 static const struct blk_mq_ops nvme_rdma_mq_ops;
151 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
152 
153 /* XXX: really should move to a generic header sooner or later.. */
put_unaligned_le24(u32 val,u8 * p)154 static inline void put_unaligned_le24(u32 val, u8 *p)
155 {
156 	*p++ = val;
157 	*p++ = val >> 8;
158 	*p++ = val >> 16;
159 }
160 
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)161 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
162 {
163 	return queue - queue->ctrl->queues;
164 }
165 
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)166 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
167 {
168 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
169 }
170 
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)171 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
172 		size_t capsule_size, enum dma_data_direction dir)
173 {
174 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
175 	kfree(qe->data);
176 }
177 
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)178 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
179 		size_t capsule_size, enum dma_data_direction dir)
180 {
181 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
182 	if (!qe->data)
183 		return -ENOMEM;
184 
185 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
186 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
187 		kfree(qe->data);
188 		qe->data = NULL;
189 		return -ENOMEM;
190 	}
191 
192 	return 0;
193 }
194 
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)195 static void nvme_rdma_free_ring(struct ib_device *ibdev,
196 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
197 		size_t capsule_size, enum dma_data_direction dir)
198 {
199 	int i;
200 
201 	for (i = 0; i < ib_queue_size; i++)
202 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
203 	kfree(ring);
204 }
205 
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
207 		size_t ib_queue_size, size_t capsule_size,
208 		enum dma_data_direction dir)
209 {
210 	struct nvme_rdma_qe *ring;
211 	int i;
212 
213 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
214 	if (!ring)
215 		return NULL;
216 
217 	for (i = 0; i < ib_queue_size; i++) {
218 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
219 			goto out_free_ring;
220 	}
221 
222 	return ring;
223 
224 out_free_ring:
225 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
226 	return NULL;
227 }
228 
nvme_rdma_qp_event(struct ib_event * event,void * context)229 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
230 {
231 	pr_debug("QP event %s (%d)\n",
232 		 ib_event_msg(event->event), event->event);
233 
234 }
235 
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
237 {
238 	wait_for_completion_interruptible_timeout(&queue->cm_done,
239 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
240 	return queue->cm_error;
241 }
242 
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
244 {
245 	struct nvme_rdma_device *dev = queue->device;
246 	struct ib_qp_init_attr init_attr;
247 	int ret;
248 
249 	memset(&init_attr, 0, sizeof(init_attr));
250 	init_attr.event_handler = nvme_rdma_qp_event;
251 	/* +1 for drain */
252 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
253 	/* +1 for drain */
254 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
255 	init_attr.cap.max_recv_sge = 1;
256 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
257 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
258 	init_attr.qp_type = IB_QPT_RC;
259 	init_attr.send_cq = queue->ib_cq;
260 	init_attr.recv_cq = queue->ib_cq;
261 
262 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
263 
264 	queue->qp = queue->cm_id->qp;
265 	return ret;
266 }
267 
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)268 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
269 		struct request *rq, unsigned int hctx_idx)
270 {
271 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
272 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
273 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
274 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
275 	struct nvme_rdma_device *dev = queue->device;
276 
277 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
278 			DMA_TO_DEVICE);
279 }
280 
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)281 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
282 		struct request *rq, unsigned int hctx_idx,
283 		unsigned int numa_node)
284 {
285 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
286 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
287 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
288 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
289 	struct nvme_rdma_device *dev = queue->device;
290 	struct ib_device *ibdev = dev->dev;
291 	int ret;
292 
293 	nvme_req(rq)->ctrl = &ctrl->ctrl;
294 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
295 			DMA_TO_DEVICE);
296 	if (ret)
297 		return ret;
298 
299 	req->queue = queue;
300 
301 	return 0;
302 }
303 
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)304 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
305 		unsigned int hctx_idx)
306 {
307 	struct nvme_rdma_ctrl *ctrl = data;
308 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
309 
310 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
311 
312 	hctx->driver_data = queue;
313 	return 0;
314 }
315 
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)316 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
317 		unsigned int hctx_idx)
318 {
319 	struct nvme_rdma_ctrl *ctrl = data;
320 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
321 
322 	BUG_ON(hctx_idx != 0);
323 
324 	hctx->driver_data = queue;
325 	return 0;
326 }
327 
nvme_rdma_free_dev(struct kref * ref)328 static void nvme_rdma_free_dev(struct kref *ref)
329 {
330 	struct nvme_rdma_device *ndev =
331 		container_of(ref, struct nvme_rdma_device, ref);
332 
333 	mutex_lock(&device_list_mutex);
334 	list_del(&ndev->entry);
335 	mutex_unlock(&device_list_mutex);
336 
337 	ib_dealloc_pd(ndev->pd);
338 	kfree(ndev);
339 }
340 
nvme_rdma_dev_put(struct nvme_rdma_device * dev)341 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
342 {
343 	kref_put(&dev->ref, nvme_rdma_free_dev);
344 }
345 
nvme_rdma_dev_get(struct nvme_rdma_device * dev)346 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
347 {
348 	return kref_get_unless_zero(&dev->ref);
349 }
350 
351 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)352 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
353 {
354 	struct nvme_rdma_device *ndev;
355 
356 	mutex_lock(&device_list_mutex);
357 	list_for_each_entry(ndev, &device_list, entry) {
358 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
359 		    nvme_rdma_dev_get(ndev))
360 			goto out_unlock;
361 	}
362 
363 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
364 	if (!ndev)
365 		goto out_err;
366 
367 	ndev->dev = cm_id->device;
368 	kref_init(&ndev->ref);
369 
370 	ndev->pd = ib_alloc_pd(ndev->dev,
371 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
372 	if (IS_ERR(ndev->pd))
373 		goto out_free_dev;
374 
375 	if (!(ndev->dev->attrs.device_cap_flags &
376 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
377 		dev_err(&ndev->dev->dev,
378 			"Memory registrations not supported.\n");
379 		goto out_free_pd;
380 	}
381 
382 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
383 					ndev->dev->attrs.max_send_sge - 1);
384 	list_add(&ndev->entry, &device_list);
385 out_unlock:
386 	mutex_unlock(&device_list_mutex);
387 	return ndev;
388 
389 out_free_pd:
390 	ib_dealloc_pd(ndev->pd);
391 out_free_dev:
392 	kfree(ndev);
393 out_err:
394 	mutex_unlock(&device_list_mutex);
395 	return NULL;
396 }
397 
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)398 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
399 {
400 	struct nvme_rdma_device *dev;
401 	struct ib_device *ibdev;
402 
403 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
404 		return;
405 
406 	dev = queue->device;
407 	ibdev = dev->dev;
408 
409 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
410 
411 	/*
412 	 * The cm_id object might have been destroyed during RDMA connection
413 	 * establishment error flow to avoid getting other cma events, thus
414 	 * the destruction of the QP shouldn't use rdma_cm API.
415 	 */
416 	ib_destroy_qp(queue->qp);
417 	ib_free_cq(queue->ib_cq);
418 
419 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
420 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
421 
422 	nvme_rdma_dev_put(dev);
423 }
424 
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev)425 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
426 {
427 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
428 		     ibdev->attrs.max_fast_reg_page_list_len);
429 }
430 
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)431 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
432 {
433 	struct ib_device *ibdev;
434 	const int send_wr_factor = 3;			/* MR, SEND, INV */
435 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
436 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
437 	int ret;
438 
439 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
440 	if (!queue->device) {
441 		dev_err(queue->cm_id->device->dev.parent,
442 			"no client data found!\n");
443 		return -ECONNREFUSED;
444 	}
445 	ibdev = queue->device->dev;
446 
447 	/*
448 	 * Spread I/O queues completion vectors according their queue index.
449 	 * Admin queues can always go on completion vector 0.
450 	 */
451 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
452 
453 	/* +1 for ib_stop_cq */
454 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
455 				cq_factor * queue->queue_size + 1,
456 				comp_vector, IB_POLL_SOFTIRQ);
457 	if (IS_ERR(queue->ib_cq)) {
458 		ret = PTR_ERR(queue->ib_cq);
459 		goto out_put_dev;
460 	}
461 
462 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
463 	if (ret)
464 		goto out_destroy_ib_cq;
465 
466 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
467 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
468 	if (!queue->rsp_ring) {
469 		ret = -ENOMEM;
470 		goto out_destroy_qp;
471 	}
472 
473 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
474 			      queue->queue_size,
475 			      IB_MR_TYPE_MEM_REG,
476 			      nvme_rdma_get_max_fr_pages(ibdev));
477 	if (ret) {
478 		dev_err(queue->ctrl->ctrl.device,
479 			"failed to initialize MR pool sized %d for QID %d\n",
480 			queue->queue_size, idx);
481 		goto out_destroy_ring;
482 	}
483 
484 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
485 
486 	return 0;
487 
488 out_destroy_ring:
489 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
490 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491 out_destroy_qp:
492 	rdma_destroy_qp(queue->cm_id);
493 out_destroy_ib_cq:
494 	ib_free_cq(queue->ib_cq);
495 out_put_dev:
496 	nvme_rdma_dev_put(queue->device);
497 	return ret;
498 }
499 
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)500 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
501 		int idx, size_t queue_size)
502 {
503 	struct nvme_rdma_queue *queue;
504 	struct sockaddr *src_addr = NULL;
505 	int ret;
506 
507 	queue = &ctrl->queues[idx];
508 	queue->ctrl = ctrl;
509 	init_completion(&queue->cm_done);
510 
511 	if (idx > 0)
512 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
513 	else
514 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
515 
516 	queue->queue_size = queue_size;
517 
518 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
519 			RDMA_PS_TCP, IB_QPT_RC);
520 	if (IS_ERR(queue->cm_id)) {
521 		dev_info(ctrl->ctrl.device,
522 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
523 		return PTR_ERR(queue->cm_id);
524 	}
525 
526 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
527 		src_addr = (struct sockaddr *)&ctrl->src_addr;
528 
529 	queue->cm_error = -ETIMEDOUT;
530 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
531 			(struct sockaddr *)&ctrl->addr,
532 			NVME_RDMA_CONNECT_TIMEOUT_MS);
533 	if (ret) {
534 		dev_info(ctrl->ctrl.device,
535 			"rdma_resolve_addr failed (%d).\n", ret);
536 		goto out_destroy_cm_id;
537 	}
538 
539 	ret = nvme_rdma_wait_for_cm(queue);
540 	if (ret) {
541 		dev_info(ctrl->ctrl.device,
542 			"rdma connection establishment failed (%d)\n", ret);
543 		goto out_destroy_cm_id;
544 	}
545 
546 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
547 
548 	return 0;
549 
550 out_destroy_cm_id:
551 	rdma_destroy_id(queue->cm_id);
552 	nvme_rdma_destroy_queue_ib(queue);
553 	return ret;
554 }
555 
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)556 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
557 {
558 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
559 		return;
560 
561 	rdma_disconnect(queue->cm_id);
562 	ib_drain_qp(queue->qp);
563 }
564 
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)565 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
566 {
567 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
568 		return;
569 
570 	nvme_rdma_destroy_queue_ib(queue);
571 	rdma_destroy_id(queue->cm_id);
572 }
573 
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
575 {
576 	int i;
577 
578 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
579 		nvme_rdma_free_queue(&ctrl->queues[i]);
580 }
581 
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584 	int i;
585 
586 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
587 		nvme_rdma_stop_queue(&ctrl->queues[i]);
588 }
589 
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
591 {
592 	int ret;
593 
594 	if (idx)
595 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
596 	else
597 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
598 
599 	if (!ret)
600 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
601 	else
602 		dev_info(ctrl->ctrl.device,
603 			"failed to connect queue: %d ret=%d\n", idx, ret);
604 	return ret;
605 }
606 
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
608 {
609 	int i, ret = 0;
610 
611 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
612 		ret = nvme_rdma_start_queue(ctrl, i);
613 		if (ret)
614 			goto out_stop_queues;
615 	}
616 
617 	return 0;
618 
619 out_stop_queues:
620 	for (i--; i >= 1; i--)
621 		nvme_rdma_stop_queue(&ctrl->queues[i]);
622 	return ret;
623 }
624 
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
628 	struct ib_device *ibdev = ctrl->device->dev;
629 	unsigned int nr_io_queues;
630 	int i, ret;
631 
632 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
633 
634 	/*
635 	 * we map queues according to the device irq vectors for
636 	 * optimal locality so we don't need more queues than
637 	 * completion vectors.
638 	 */
639 	nr_io_queues = min_t(unsigned int, nr_io_queues,
640 				ibdev->num_comp_vectors);
641 
642 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
643 	if (ret)
644 		return ret;
645 
646 	ctrl->ctrl.queue_count = nr_io_queues + 1;
647 	if (ctrl->ctrl.queue_count < 2)
648 		return 0;
649 
650 	dev_info(ctrl->ctrl.device,
651 		"creating %d I/O queues.\n", nr_io_queues);
652 
653 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
654 		ret = nvme_rdma_alloc_queue(ctrl, i,
655 				ctrl->ctrl.sqsize + 1);
656 		if (ret)
657 			goto out_free_queues;
658 	}
659 
660 	return 0;
661 
662 out_free_queues:
663 	for (i--; i >= 1; i--)
664 		nvme_rdma_free_queue(&ctrl->queues[i]);
665 
666 	return ret;
667 }
668 
nvme_rdma_free_tagset(struct nvme_ctrl * nctrl,struct blk_mq_tag_set * set)669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
670 		struct blk_mq_tag_set *set)
671 {
672 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
673 
674 	blk_mq_free_tag_set(set);
675 	nvme_rdma_dev_put(ctrl->device);
676 }
677 
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
679 		bool admin)
680 {
681 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682 	struct blk_mq_tag_set *set;
683 	int ret;
684 
685 	if (admin) {
686 		set = &ctrl->admin_tag_set;
687 		memset(set, 0, sizeof(*set));
688 		set->ops = &nvme_rdma_admin_mq_ops;
689 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
690 		set->reserved_tags = 2; /* connect + keep-alive */
691 		set->numa_node = NUMA_NO_NODE;
692 		set->cmd_size = sizeof(struct nvme_rdma_request) +
693 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
694 		set->driver_data = ctrl;
695 		set->nr_hw_queues = 1;
696 		set->timeout = ADMIN_TIMEOUT;
697 		set->flags = BLK_MQ_F_NO_SCHED;
698 	} else {
699 		set = &ctrl->tag_set;
700 		memset(set, 0, sizeof(*set));
701 		set->ops = &nvme_rdma_mq_ops;
702 		set->queue_depth = nctrl->sqsize + 1;
703 		set->reserved_tags = 1; /* fabric connect */
704 		set->numa_node = NUMA_NO_NODE;
705 		set->flags = BLK_MQ_F_SHOULD_MERGE;
706 		set->cmd_size = sizeof(struct nvme_rdma_request) +
707 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
708 		set->driver_data = ctrl;
709 		set->nr_hw_queues = nctrl->queue_count - 1;
710 		set->timeout = NVME_IO_TIMEOUT;
711 	}
712 
713 	ret = blk_mq_alloc_tag_set(set);
714 	if (ret)
715 		goto out;
716 
717 	/*
718 	 * We need a reference on the device as long as the tag_set is alive,
719 	 * as the MRs in the request structures need a valid ib_device.
720 	 */
721 	ret = nvme_rdma_dev_get(ctrl->device);
722 	if (!ret) {
723 		ret = -EINVAL;
724 		goto out_free_tagset;
725 	}
726 
727 	return set;
728 
729 out_free_tagset:
730 	blk_mq_free_tag_set(set);
731 out:
732 	return ERR_PTR(ret);
733 }
734 
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
736 		bool remove)
737 {
738 	if (remove) {
739 		blk_cleanup_queue(ctrl->ctrl.admin_q);
740 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
741 	}
742 	if (ctrl->async_event_sqe.data) {
743 		cancel_work_sync(&ctrl->ctrl.async_event_work);
744 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
745 				sizeof(struct nvme_command), DMA_TO_DEVICE);
746 		ctrl->async_event_sqe.data = NULL;
747 	}
748 	nvme_rdma_free_queue(&ctrl->queues[0]);
749 }
750 
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)751 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
752 		bool new)
753 {
754 	int error;
755 
756 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
757 	if (error)
758 		return error;
759 
760 	ctrl->device = ctrl->queues[0].device;
761 
762 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
763 
764 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
765 			sizeof(struct nvme_command), DMA_TO_DEVICE);
766 	if (error)
767 		goto out_free_queue;
768 
769 	if (new) {
770 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
771 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
772 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
773 			goto out_free_async_qe;
774 		}
775 
776 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
777 		if (IS_ERR(ctrl->ctrl.admin_q)) {
778 			error = PTR_ERR(ctrl->ctrl.admin_q);
779 			goto out_free_tagset;
780 		}
781 	}
782 
783 	error = nvme_rdma_start_queue(ctrl, 0);
784 	if (error)
785 		goto out_cleanup_queue;
786 
787 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
788 			&ctrl->ctrl.cap);
789 	if (error) {
790 		dev_err(ctrl->ctrl.device,
791 			"prop_get NVME_REG_CAP failed\n");
792 		goto out_stop_queue;
793 	}
794 
795 	ctrl->ctrl.sqsize =
796 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
797 
798 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
799 	if (error)
800 		goto out_stop_queue;
801 
802 	ctrl->ctrl.max_hw_sectors =
803 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
804 
805 	error = nvme_init_identify(&ctrl->ctrl);
806 	if (error)
807 		goto out_stop_queue;
808 
809 	return 0;
810 
811 out_stop_queue:
812 	nvme_rdma_stop_queue(&ctrl->queues[0]);
813 out_cleanup_queue:
814 	if (new)
815 		blk_cleanup_queue(ctrl->ctrl.admin_q);
816 out_free_tagset:
817 	if (new)
818 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
819 out_free_async_qe:
820 	if (ctrl->async_event_sqe.data) {
821 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
822 			sizeof(struct nvme_command), DMA_TO_DEVICE);
823 		ctrl->async_event_sqe.data = NULL;
824 	}
825 out_free_queue:
826 	nvme_rdma_free_queue(&ctrl->queues[0]);
827 	return error;
828 }
829 
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)830 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
831 		bool remove)
832 {
833 	if (remove) {
834 		blk_cleanup_queue(ctrl->ctrl.connect_q);
835 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
836 	}
837 	nvme_rdma_free_io_queues(ctrl);
838 }
839 
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)840 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
841 {
842 	int ret;
843 
844 	ret = nvme_rdma_alloc_io_queues(ctrl);
845 	if (ret)
846 		return ret;
847 
848 	if (new) {
849 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
850 		if (IS_ERR(ctrl->ctrl.tagset)) {
851 			ret = PTR_ERR(ctrl->ctrl.tagset);
852 			goto out_free_io_queues;
853 		}
854 
855 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
856 		if (IS_ERR(ctrl->ctrl.connect_q)) {
857 			ret = PTR_ERR(ctrl->ctrl.connect_q);
858 			goto out_free_tag_set;
859 		}
860 	} else {
861 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
862 			ctrl->ctrl.queue_count - 1);
863 	}
864 
865 	ret = nvme_rdma_start_io_queues(ctrl);
866 	if (ret)
867 		goto out_cleanup_connect_q;
868 
869 	return 0;
870 
871 out_cleanup_connect_q:
872 	if (new)
873 		blk_cleanup_queue(ctrl->ctrl.connect_q);
874 out_free_tag_set:
875 	if (new)
876 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
877 out_free_io_queues:
878 	nvme_rdma_free_io_queues(ctrl);
879 	return ret;
880 }
881 
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)882 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
883 		bool remove)
884 {
885 	mutex_lock(&ctrl->teardown_lock);
886 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
887 	nvme_rdma_stop_queue(&ctrl->queues[0]);
888 	if (ctrl->ctrl.admin_tagset)
889 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
890 			nvme_cancel_request, &ctrl->ctrl);
891 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
892 	nvme_rdma_destroy_admin_queue(ctrl, remove);
893 	mutex_unlock(&ctrl->teardown_lock);
894 }
895 
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)896 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
897 		bool remove)
898 {
899 	mutex_lock(&ctrl->teardown_lock);
900 	if (ctrl->ctrl.queue_count > 1) {
901 		nvme_stop_queues(&ctrl->ctrl);
902 		nvme_rdma_stop_io_queues(ctrl);
903 		if (ctrl->ctrl.tagset)
904 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
905 				nvme_cancel_request, &ctrl->ctrl);
906 		if (remove)
907 			nvme_start_queues(&ctrl->ctrl);
908 		nvme_rdma_destroy_io_queues(ctrl, remove);
909 	}
910 	mutex_unlock(&ctrl->teardown_lock);
911 }
912 
nvme_rdma_stop_ctrl(struct nvme_ctrl * nctrl)913 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
914 {
915 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
916 
917 	cancel_work_sync(&ctrl->err_work);
918 	cancel_delayed_work_sync(&ctrl->reconnect_work);
919 }
920 
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)921 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
922 {
923 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
924 
925 	if (list_empty(&ctrl->list))
926 		goto free_ctrl;
927 
928 	mutex_lock(&nvme_rdma_ctrl_mutex);
929 	list_del(&ctrl->list);
930 	mutex_unlock(&nvme_rdma_ctrl_mutex);
931 
932 	nvmf_free_options(nctrl->opts);
933 free_ctrl:
934 	kfree(ctrl->queues);
935 	kfree(ctrl);
936 }
937 
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)938 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
939 {
940 	/* If we are resetting/deleting then do nothing */
941 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
942 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
943 			ctrl->ctrl.state == NVME_CTRL_LIVE);
944 		return;
945 	}
946 
947 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
948 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
949 			ctrl->ctrl.opts->reconnect_delay);
950 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
951 				ctrl->ctrl.opts->reconnect_delay * HZ);
952 	} else {
953 		nvme_delete_ctrl(&ctrl->ctrl);
954 	}
955 }
956 
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)957 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
958 {
959 	int ret = -EINVAL;
960 	bool changed;
961 
962 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
963 	if (ret)
964 		return ret;
965 
966 	if (ctrl->ctrl.icdoff) {
967 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
968 		goto destroy_admin;
969 	}
970 
971 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
972 		dev_err(ctrl->ctrl.device,
973 			"Mandatory keyed sgls are not supported!\n");
974 		goto destroy_admin;
975 	}
976 
977 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
978 		dev_warn(ctrl->ctrl.device,
979 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
980 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
981 	}
982 
983 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
984 		dev_warn(ctrl->ctrl.device,
985 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
986 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
987 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
988 	}
989 
990 	if (ctrl->ctrl.sgls & (1 << 20))
991 		ctrl->use_inline_data = true;
992 
993 	if (ctrl->ctrl.queue_count > 1) {
994 		ret = nvme_rdma_configure_io_queues(ctrl, new);
995 		if (ret)
996 			goto destroy_admin;
997 	}
998 
999 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1000 	if (!changed) {
1001 		/* state change failure is ok if we're in DELETING state */
1002 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1003 		ret = -EINVAL;
1004 		goto destroy_io;
1005 	}
1006 
1007 	nvme_start_ctrl(&ctrl->ctrl);
1008 	return 0;
1009 
1010 destroy_io:
1011 	if (ctrl->ctrl.queue_count > 1)
1012 		nvme_rdma_destroy_io_queues(ctrl, new);
1013 destroy_admin:
1014 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1015 	nvme_rdma_destroy_admin_queue(ctrl, new);
1016 	return ret;
1017 }
1018 
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1019 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1020 {
1021 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1022 			struct nvme_rdma_ctrl, reconnect_work);
1023 
1024 	++ctrl->ctrl.nr_reconnects;
1025 
1026 	if (nvme_rdma_setup_ctrl(ctrl, false))
1027 		goto requeue;
1028 
1029 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1030 			ctrl->ctrl.nr_reconnects);
1031 
1032 	ctrl->ctrl.nr_reconnects = 0;
1033 
1034 	return;
1035 
1036 requeue:
1037 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1038 			ctrl->ctrl.nr_reconnects);
1039 	nvme_rdma_reconnect_or_remove(ctrl);
1040 }
1041 
nvme_rdma_error_recovery_work(struct work_struct * work)1042 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1043 {
1044 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1045 			struct nvme_rdma_ctrl, err_work);
1046 
1047 	nvme_stop_keep_alive(&ctrl->ctrl);
1048 	nvme_rdma_teardown_io_queues(ctrl, false);
1049 	nvme_start_queues(&ctrl->ctrl);
1050 	nvme_rdma_teardown_admin_queue(ctrl, false);
1051 
1052 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1053 		/* state change failure is ok if we're in DELETING state */
1054 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1055 		return;
1056 	}
1057 
1058 	nvme_rdma_reconnect_or_remove(ctrl);
1059 }
1060 
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1061 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1062 {
1063 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1064 		return;
1065 
1066 	queue_work(nvme_wq, &ctrl->err_work);
1067 }
1068 
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1069 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1070 		const char *op)
1071 {
1072 	struct nvme_rdma_queue *queue = cq->cq_context;
1073 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1074 
1075 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1076 		dev_info(ctrl->ctrl.device,
1077 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1078 			     op, wc->wr_cqe,
1079 			     ib_wc_status_msg(wc->status), wc->status);
1080 	nvme_rdma_error_recovery(ctrl);
1081 }
1082 
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1083 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1084 {
1085 	if (unlikely(wc->status != IB_WC_SUCCESS))
1086 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1087 }
1088 
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1089 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1090 {
1091 	struct nvme_rdma_request *req =
1092 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1093 	struct request *rq = blk_mq_rq_from_pdu(req);
1094 
1095 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1096 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1097 		return;
1098 	}
1099 
1100 	if (refcount_dec_and_test(&req->ref))
1101 		nvme_end_request(rq, req->status, req->result);
1102 
1103 }
1104 
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1105 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1106 		struct nvme_rdma_request *req)
1107 {
1108 	struct ib_send_wr wr = {
1109 		.opcode		    = IB_WR_LOCAL_INV,
1110 		.next		    = NULL,
1111 		.num_sge	    = 0,
1112 		.send_flags	    = IB_SEND_SIGNALED,
1113 		.ex.invalidate_rkey = req->mr->rkey,
1114 	};
1115 
1116 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1117 	wr.wr_cqe = &req->reg_cqe;
1118 
1119 	return ib_post_send(queue->qp, &wr, NULL);
1120 }
1121 
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1122 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1123 		struct request *rq)
1124 {
1125 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1126 	struct nvme_rdma_device *dev = queue->device;
1127 	struct ib_device *ibdev = dev->dev;
1128 
1129 	if (!blk_rq_payload_bytes(rq))
1130 		return;
1131 
1132 	if (req->mr) {
1133 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1134 		req->mr = NULL;
1135 	}
1136 
1137 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1138 			req->nents, rq_data_dir(rq) ==
1139 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1140 
1141 	nvme_cleanup_cmd(rq);
1142 	sg_free_table_chained(&req->sg_table, true);
1143 }
1144 
nvme_rdma_set_sg_null(struct nvme_command * c)1145 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1146 {
1147 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1148 
1149 	sg->addr = 0;
1150 	put_unaligned_le24(0, sg->length);
1151 	put_unaligned_le32(0, sg->key);
1152 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1153 	return 0;
1154 }
1155 
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1156 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1157 		struct nvme_rdma_request *req, struct nvme_command *c,
1158 		int count)
1159 {
1160 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1161 	struct scatterlist *sgl = req->sg_table.sgl;
1162 	struct ib_sge *sge = &req->sge[1];
1163 	u32 len = 0;
1164 	int i;
1165 
1166 	for (i = 0; i < count; i++, sgl++, sge++) {
1167 		sge->addr = sg_dma_address(sgl);
1168 		sge->length = sg_dma_len(sgl);
1169 		sge->lkey = queue->device->pd->local_dma_lkey;
1170 		len += sge->length;
1171 	}
1172 
1173 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1174 	sg->length = cpu_to_le32(len);
1175 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1176 
1177 	req->num_sge += count;
1178 	return 0;
1179 }
1180 
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1181 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1182 		struct nvme_rdma_request *req, struct nvme_command *c)
1183 {
1184 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1185 
1186 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1187 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1188 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1189 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1190 	return 0;
1191 }
1192 
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1193 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1194 		struct nvme_rdma_request *req, struct nvme_command *c,
1195 		int count)
1196 {
1197 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1198 	int nr;
1199 
1200 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1201 	if (WARN_ON_ONCE(!req->mr))
1202 		return -EAGAIN;
1203 
1204 	/*
1205 	 * Align the MR to a 4K page size to match the ctrl page size and
1206 	 * the block virtual boundary.
1207 	 */
1208 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1209 	if (unlikely(nr < count)) {
1210 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1211 		req->mr = NULL;
1212 		if (nr < 0)
1213 			return nr;
1214 		return -EINVAL;
1215 	}
1216 
1217 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1218 
1219 	req->reg_cqe.done = nvme_rdma_memreg_done;
1220 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1221 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1222 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1223 	req->reg_wr.wr.num_sge = 0;
1224 	req->reg_wr.mr = req->mr;
1225 	req->reg_wr.key = req->mr->rkey;
1226 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1227 			     IB_ACCESS_REMOTE_READ |
1228 			     IB_ACCESS_REMOTE_WRITE;
1229 
1230 	sg->addr = cpu_to_le64(req->mr->iova);
1231 	put_unaligned_le24(req->mr->length, sg->length);
1232 	put_unaligned_le32(req->mr->rkey, sg->key);
1233 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1234 			NVME_SGL_FMT_INVALIDATE;
1235 
1236 	return 0;
1237 }
1238 
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1239 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1240 		struct request *rq, struct nvme_command *c)
1241 {
1242 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1243 	struct nvme_rdma_device *dev = queue->device;
1244 	struct ib_device *ibdev = dev->dev;
1245 	int count, ret;
1246 
1247 	req->num_sge = 1;
1248 	refcount_set(&req->ref, 2); /* send and recv completions */
1249 
1250 	c->common.flags |= NVME_CMD_SGL_METABUF;
1251 
1252 	if (!blk_rq_payload_bytes(rq))
1253 		return nvme_rdma_set_sg_null(c);
1254 
1255 	req->sg_table.sgl = req->first_sgl;
1256 	ret = sg_alloc_table_chained(&req->sg_table,
1257 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1258 	if (ret)
1259 		return -ENOMEM;
1260 
1261 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1262 
1263 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1264 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1265 	if (unlikely(count <= 0)) {
1266 		ret = -EIO;
1267 		goto out_free_table;
1268 	}
1269 
1270 	if (count <= dev->num_inline_segments) {
1271 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1272 		    queue->ctrl->use_inline_data &&
1273 		    blk_rq_payload_bytes(rq) <=
1274 				nvme_rdma_inline_data_size(queue)) {
1275 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1276 			goto out;
1277 		}
1278 
1279 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1280 			ret = nvme_rdma_map_sg_single(queue, req, c);
1281 			goto out;
1282 		}
1283 	}
1284 
1285 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1286 out:
1287 	if (unlikely(ret))
1288 		goto out_unmap_sg;
1289 
1290 	return 0;
1291 
1292 out_unmap_sg:
1293 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1294 			req->nents, rq_data_dir(rq) ==
1295 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1296 out_free_table:
1297 	sg_free_table_chained(&req->sg_table, true);
1298 	return ret;
1299 }
1300 
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1301 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1302 {
1303 	struct nvme_rdma_qe *qe =
1304 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1305 	struct nvme_rdma_request *req =
1306 		container_of(qe, struct nvme_rdma_request, sqe);
1307 	struct request *rq = blk_mq_rq_from_pdu(req);
1308 
1309 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1310 		nvme_rdma_wr_error(cq, wc, "SEND");
1311 		return;
1312 	}
1313 
1314 	if (refcount_dec_and_test(&req->ref))
1315 		nvme_end_request(rq, req->status, req->result);
1316 }
1317 
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1318 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1319 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1320 		struct ib_send_wr *first)
1321 {
1322 	struct ib_send_wr wr;
1323 	int ret;
1324 
1325 	sge->addr   = qe->dma;
1326 	sge->length = sizeof(struct nvme_command),
1327 	sge->lkey   = queue->device->pd->local_dma_lkey;
1328 
1329 	wr.next       = NULL;
1330 	wr.wr_cqe     = &qe->cqe;
1331 	wr.sg_list    = sge;
1332 	wr.num_sge    = num_sge;
1333 	wr.opcode     = IB_WR_SEND;
1334 	wr.send_flags = IB_SEND_SIGNALED;
1335 
1336 	if (first)
1337 		first->next = &wr;
1338 	else
1339 		first = &wr;
1340 
1341 	ret = ib_post_send(queue->qp, first, NULL);
1342 	if (unlikely(ret)) {
1343 		dev_err(queue->ctrl->ctrl.device,
1344 			     "%s failed with error code %d\n", __func__, ret);
1345 	}
1346 	return ret;
1347 }
1348 
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1349 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1350 		struct nvme_rdma_qe *qe)
1351 {
1352 	struct ib_recv_wr wr;
1353 	struct ib_sge list;
1354 	int ret;
1355 
1356 	list.addr   = qe->dma;
1357 	list.length = sizeof(struct nvme_completion);
1358 	list.lkey   = queue->device->pd->local_dma_lkey;
1359 
1360 	qe->cqe.done = nvme_rdma_recv_done;
1361 
1362 	wr.next     = NULL;
1363 	wr.wr_cqe   = &qe->cqe;
1364 	wr.sg_list  = &list;
1365 	wr.num_sge  = 1;
1366 
1367 	ret = ib_post_recv(queue->qp, &wr, NULL);
1368 	if (unlikely(ret)) {
1369 		dev_err(queue->ctrl->ctrl.device,
1370 			"%s failed with error code %d\n", __func__, ret);
1371 	}
1372 	return ret;
1373 }
1374 
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1375 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1376 {
1377 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1378 
1379 	if (queue_idx == 0)
1380 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1381 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1382 }
1383 
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1384 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1385 {
1386 	if (unlikely(wc->status != IB_WC_SUCCESS))
1387 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1388 }
1389 
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1390 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1391 {
1392 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1393 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1394 	struct ib_device *dev = queue->device->dev;
1395 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1396 	struct nvme_command *cmd = sqe->data;
1397 	struct ib_sge sge;
1398 	int ret;
1399 
1400 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1401 
1402 	memset(cmd, 0, sizeof(*cmd));
1403 	cmd->common.opcode = nvme_admin_async_event;
1404 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1405 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1406 	nvme_rdma_set_sg_null(cmd);
1407 
1408 	sqe->cqe.done = nvme_rdma_async_done;
1409 
1410 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1411 			DMA_TO_DEVICE);
1412 
1413 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1414 	WARN_ON_ONCE(ret);
1415 }
1416 
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc,int tag)1417 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1418 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1419 {
1420 	struct request *rq;
1421 	struct nvme_rdma_request *req;
1422 	int ret = 0;
1423 
1424 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1425 	if (!rq) {
1426 		dev_err(queue->ctrl->ctrl.device,
1427 			"tag 0x%x on QP %#x not found\n",
1428 			cqe->command_id, queue->qp->qp_num);
1429 		nvme_rdma_error_recovery(queue->ctrl);
1430 		return ret;
1431 	}
1432 	req = blk_mq_rq_to_pdu(rq);
1433 
1434 	req->status = cqe->status;
1435 	req->result = cqe->result;
1436 
1437 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1438 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1439 			dev_err(queue->ctrl->ctrl.device,
1440 				"Bogus remote invalidation for rkey %#x\n",
1441 				req->mr->rkey);
1442 			nvme_rdma_error_recovery(queue->ctrl);
1443 		}
1444 	} else if (req->mr) {
1445 		ret = nvme_rdma_inv_rkey(queue, req);
1446 		if (unlikely(ret < 0)) {
1447 			dev_err(queue->ctrl->ctrl.device,
1448 				"Queueing INV WR for rkey %#x failed (%d)\n",
1449 				req->mr->rkey, ret);
1450 			nvme_rdma_error_recovery(queue->ctrl);
1451 		}
1452 		/* the local invalidation completion will end the request */
1453 		return 0;
1454 	}
1455 
1456 	if (refcount_dec_and_test(&req->ref)) {
1457 		if (rq->tag == tag)
1458 			ret = 1;
1459 		nvme_end_request(rq, req->status, req->result);
1460 	}
1461 
1462 	return ret;
1463 }
1464 
__nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc,int tag)1465 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1466 {
1467 	struct nvme_rdma_qe *qe =
1468 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1469 	struct nvme_rdma_queue *queue = cq->cq_context;
1470 	struct ib_device *ibdev = queue->device->dev;
1471 	struct nvme_completion *cqe = qe->data;
1472 	const size_t len = sizeof(struct nvme_completion);
1473 	int ret = 0;
1474 
1475 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1476 		nvme_rdma_wr_error(cq, wc, "RECV");
1477 		return 0;
1478 	}
1479 
1480 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1481 	/*
1482 	 * AEN requests are special as they don't time out and can
1483 	 * survive any kind of queue freeze and often don't respond to
1484 	 * aborts.  We don't even bother to allocate a struct request
1485 	 * for them but rather special case them here.
1486 	 */
1487 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1488 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1489 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1490 				&cqe->result);
1491 	else
1492 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1493 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1494 
1495 	nvme_rdma_post_recv(queue, qe);
1496 	return ret;
1497 }
1498 
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1499 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1500 {
1501 	__nvme_rdma_recv_done(cq, wc, -1);
1502 }
1503 
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1504 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1505 {
1506 	int ret, i;
1507 
1508 	for (i = 0; i < queue->queue_size; i++) {
1509 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1510 		if (ret)
1511 			goto out_destroy_queue_ib;
1512 	}
1513 
1514 	return 0;
1515 
1516 out_destroy_queue_ib:
1517 	nvme_rdma_destroy_queue_ib(queue);
1518 	return ret;
1519 }
1520 
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1521 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1522 		struct rdma_cm_event *ev)
1523 {
1524 	struct rdma_cm_id *cm_id = queue->cm_id;
1525 	int status = ev->status;
1526 	const char *rej_msg;
1527 	const struct nvme_rdma_cm_rej *rej_data;
1528 	u8 rej_data_len;
1529 
1530 	rej_msg = rdma_reject_msg(cm_id, status);
1531 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1532 
1533 	if (rej_data && rej_data_len >= sizeof(u16)) {
1534 		u16 sts = le16_to_cpu(rej_data->sts);
1535 
1536 		dev_err(queue->ctrl->ctrl.device,
1537 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1538 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1539 	} else {
1540 		dev_err(queue->ctrl->ctrl.device,
1541 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1542 	}
1543 
1544 	return -ECONNRESET;
1545 }
1546 
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1547 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1548 {
1549 	int ret;
1550 
1551 	ret = nvme_rdma_create_queue_ib(queue);
1552 	if (ret)
1553 		return ret;
1554 
1555 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1556 	if (ret) {
1557 		dev_err(queue->ctrl->ctrl.device,
1558 			"rdma_resolve_route failed (%d).\n",
1559 			queue->cm_error);
1560 		goto out_destroy_queue;
1561 	}
1562 
1563 	return 0;
1564 
1565 out_destroy_queue:
1566 	nvme_rdma_destroy_queue_ib(queue);
1567 	return ret;
1568 }
1569 
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1570 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1571 {
1572 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1573 	struct rdma_conn_param param = { };
1574 	struct nvme_rdma_cm_req priv = { };
1575 	int ret;
1576 
1577 	param.qp_num = queue->qp->qp_num;
1578 	param.flow_control = 1;
1579 
1580 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1581 	/* maximum retry count */
1582 	param.retry_count = 7;
1583 	param.rnr_retry_count = 7;
1584 	param.private_data = &priv;
1585 	param.private_data_len = sizeof(priv);
1586 
1587 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1588 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1589 	/*
1590 	 * set the admin queue depth to the minimum size
1591 	 * specified by the Fabrics standard.
1592 	 */
1593 	if (priv.qid == 0) {
1594 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1595 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1596 	} else {
1597 		/*
1598 		 * current interpretation of the fabrics spec
1599 		 * is at minimum you make hrqsize sqsize+1, or a
1600 		 * 1's based representation of sqsize.
1601 		 */
1602 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1603 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1604 	}
1605 
1606 	ret = rdma_connect(queue->cm_id, &param);
1607 	if (ret) {
1608 		dev_err(ctrl->ctrl.device,
1609 			"rdma_connect failed (%d).\n", ret);
1610 		goto out_destroy_queue_ib;
1611 	}
1612 
1613 	return 0;
1614 
1615 out_destroy_queue_ib:
1616 	nvme_rdma_destroy_queue_ib(queue);
1617 	return ret;
1618 }
1619 
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1620 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1621 		struct rdma_cm_event *ev)
1622 {
1623 	struct nvme_rdma_queue *queue = cm_id->context;
1624 	int cm_error = 0;
1625 
1626 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1627 		rdma_event_msg(ev->event), ev->event,
1628 		ev->status, cm_id);
1629 
1630 	switch (ev->event) {
1631 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1632 		cm_error = nvme_rdma_addr_resolved(queue);
1633 		break;
1634 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1635 		cm_error = nvme_rdma_route_resolved(queue);
1636 		break;
1637 	case RDMA_CM_EVENT_ESTABLISHED:
1638 		queue->cm_error = nvme_rdma_conn_established(queue);
1639 		/* complete cm_done regardless of success/failure */
1640 		complete(&queue->cm_done);
1641 		return 0;
1642 	case RDMA_CM_EVENT_REJECTED:
1643 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1644 		break;
1645 	case RDMA_CM_EVENT_ROUTE_ERROR:
1646 	case RDMA_CM_EVENT_CONNECT_ERROR:
1647 	case RDMA_CM_EVENT_UNREACHABLE:
1648 		nvme_rdma_destroy_queue_ib(queue);
1649 		/* fall through */
1650 	case RDMA_CM_EVENT_ADDR_ERROR:
1651 		dev_dbg(queue->ctrl->ctrl.device,
1652 			"CM error event %d\n", ev->event);
1653 		cm_error = -ECONNRESET;
1654 		break;
1655 	case RDMA_CM_EVENT_DISCONNECTED:
1656 	case RDMA_CM_EVENT_ADDR_CHANGE:
1657 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1658 		dev_dbg(queue->ctrl->ctrl.device,
1659 			"disconnect received - connection closed\n");
1660 		nvme_rdma_error_recovery(queue->ctrl);
1661 		break;
1662 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1663 		/* device removal is handled via the ib_client API */
1664 		break;
1665 	default:
1666 		dev_err(queue->ctrl->ctrl.device,
1667 			"Unexpected RDMA CM event (%d)\n", ev->event);
1668 		nvme_rdma_error_recovery(queue->ctrl);
1669 		break;
1670 	}
1671 
1672 	if (cm_error) {
1673 		queue->cm_error = cm_error;
1674 		complete(&queue->cm_done);
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)1681 nvme_rdma_timeout(struct request *rq, bool reserved)
1682 {
1683 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1684 	struct nvme_rdma_queue *queue = req->queue;
1685 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1686 
1687 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1688 		 rq->tag, nvme_rdma_queue_idx(queue));
1689 
1690 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1691 		/*
1692 		 * Teardown immediately if controller times out while starting
1693 		 * or we are already started error recovery. all outstanding
1694 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1695 		 */
1696 		flush_work(&ctrl->err_work);
1697 		nvme_rdma_teardown_io_queues(ctrl, false);
1698 		nvme_rdma_teardown_admin_queue(ctrl, false);
1699 		return BLK_EH_DONE;
1700 	}
1701 
1702 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1703 	nvme_rdma_error_recovery(ctrl);
1704 
1705 	return BLK_EH_RESET_TIMER;
1706 }
1707 
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1708 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1709 		const struct blk_mq_queue_data *bd)
1710 {
1711 	struct nvme_ns *ns = hctx->queue->queuedata;
1712 	struct nvme_rdma_queue *queue = hctx->driver_data;
1713 	struct request *rq = bd->rq;
1714 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1715 	struct nvme_rdma_qe *sqe = &req->sqe;
1716 	struct nvme_command *c = sqe->data;
1717 	struct ib_device *dev;
1718 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1719 	blk_status_t ret;
1720 	int err;
1721 
1722 	WARN_ON_ONCE(rq->tag < 0);
1723 
1724 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1725 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1726 
1727 	dev = queue->device->dev;
1728 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1729 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1730 
1731 	ret = nvme_setup_cmd(ns, rq, c);
1732 	if (ret)
1733 		return ret;
1734 
1735 	blk_mq_start_request(rq);
1736 
1737 	err = nvme_rdma_map_data(queue, rq, c);
1738 	if (unlikely(err < 0)) {
1739 		dev_err(queue->ctrl->ctrl.device,
1740 			     "Failed to map data (%d)\n", err);
1741 		nvme_cleanup_cmd(rq);
1742 		goto err;
1743 	}
1744 
1745 	sqe->cqe.done = nvme_rdma_send_done;
1746 
1747 	ib_dma_sync_single_for_device(dev, sqe->dma,
1748 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1749 
1750 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1751 			req->mr ? &req->reg_wr.wr : NULL);
1752 	if (unlikely(err)) {
1753 		nvme_rdma_unmap_data(queue, rq);
1754 		goto err;
1755 	}
1756 
1757 	return BLK_STS_OK;
1758 err:
1759 	if (err == -ENOMEM || err == -EAGAIN)
1760 		return BLK_STS_RESOURCE;
1761 	return BLK_STS_IOERR;
1762 }
1763 
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx,unsigned int tag)1764 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1765 {
1766 	struct nvme_rdma_queue *queue = hctx->driver_data;
1767 	struct ib_cq *cq = queue->ib_cq;
1768 	struct ib_wc wc;
1769 	int found = 0;
1770 
1771 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1772 		struct ib_cqe *cqe = wc.wr_cqe;
1773 
1774 		if (cqe) {
1775 			if (cqe->done == nvme_rdma_recv_done)
1776 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1777 			else
1778 				cqe->done(cq, &wc);
1779 		}
1780 	}
1781 
1782 	return found;
1783 }
1784 
nvme_rdma_complete_rq(struct request * rq)1785 static void nvme_rdma_complete_rq(struct request *rq)
1786 {
1787 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1788 
1789 	nvme_rdma_unmap_data(req->queue, rq);
1790 	nvme_complete_rq(rq);
1791 }
1792 
nvme_rdma_map_queues(struct blk_mq_tag_set * set)1793 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1794 {
1795 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1796 
1797 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1798 }
1799 
1800 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1801 	.queue_rq	= nvme_rdma_queue_rq,
1802 	.complete	= nvme_rdma_complete_rq,
1803 	.init_request	= nvme_rdma_init_request,
1804 	.exit_request	= nvme_rdma_exit_request,
1805 	.init_hctx	= nvme_rdma_init_hctx,
1806 	.poll		= nvme_rdma_poll,
1807 	.timeout	= nvme_rdma_timeout,
1808 	.map_queues	= nvme_rdma_map_queues,
1809 };
1810 
1811 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1812 	.queue_rq	= nvme_rdma_queue_rq,
1813 	.complete	= nvme_rdma_complete_rq,
1814 	.init_request	= nvme_rdma_init_request,
1815 	.exit_request	= nvme_rdma_exit_request,
1816 	.init_hctx	= nvme_rdma_init_admin_hctx,
1817 	.timeout	= nvme_rdma_timeout,
1818 };
1819 
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)1820 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1821 {
1822 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1823 	if (shutdown)
1824 		nvme_shutdown_ctrl(&ctrl->ctrl);
1825 	else
1826 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1827 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1828 }
1829 
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)1830 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1831 {
1832 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1833 }
1834 
nvme_rdma_reset_ctrl_work(struct work_struct * work)1835 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1836 {
1837 	struct nvme_rdma_ctrl *ctrl =
1838 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1839 
1840 	nvme_stop_ctrl(&ctrl->ctrl);
1841 	nvme_rdma_shutdown_ctrl(ctrl, false);
1842 
1843 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1844 		/* state change failure should never happen */
1845 		WARN_ON_ONCE(1);
1846 		return;
1847 	}
1848 
1849 	if (nvme_rdma_setup_ctrl(ctrl, false))
1850 		goto out_fail;
1851 
1852 	return;
1853 
1854 out_fail:
1855 	++ctrl->ctrl.nr_reconnects;
1856 	nvme_rdma_reconnect_or_remove(ctrl);
1857 }
1858 
1859 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1860 	.name			= "rdma",
1861 	.module			= THIS_MODULE,
1862 	.flags			= NVME_F_FABRICS,
1863 	.reg_read32		= nvmf_reg_read32,
1864 	.reg_read64		= nvmf_reg_read64,
1865 	.reg_write32		= nvmf_reg_write32,
1866 	.free_ctrl		= nvme_rdma_free_ctrl,
1867 	.submit_async_event	= nvme_rdma_submit_async_event,
1868 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1869 	.get_address		= nvmf_get_address,
1870 	.stop_ctrl		= nvme_rdma_stop_ctrl,
1871 };
1872 
1873 static inline bool
__nvme_rdma_options_match(struct nvme_rdma_ctrl * ctrl,struct nvmf_ctrl_options * opts)1874 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1875 	struct nvmf_ctrl_options *opts)
1876 {
1877 	char *stdport = __stringify(NVME_RDMA_IP_PORT);
1878 
1879 
1880 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1881 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1882 		return false;
1883 
1884 	if (opts->mask & NVMF_OPT_TRSVCID &&
1885 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1886 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1887 			return false;
1888 	} else if (opts->mask & NVMF_OPT_TRSVCID) {
1889 		if (strcmp(opts->trsvcid, stdport))
1890 			return false;
1891 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1892 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1893 			return false;
1894 	}
1895 	/* else, it's a match as both have stdport. Fall to next checks */
1896 
1897 	/*
1898 	 * checking the local address is rough. In most cases, one
1899 	 * is not specified and the host port is selected by the stack.
1900 	 *
1901 	 * Assume no match if:
1902 	 *  local address is specified and address is not the same
1903 	 *  local address is not specified but remote is, or vice versa
1904 	 *    (admin using specific host_traddr when it matters).
1905 	 */
1906 	if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1907 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1908 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1909 			return false;
1910 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1911 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1912 		return false;
1913 	/*
1914 	 * if neither controller had an host port specified, assume it's
1915 	 * a match as everything else matched.
1916 	 */
1917 
1918 	return true;
1919 }
1920 
1921 /*
1922  * Fails a connection request if it matches an existing controller
1923  * (association) with the same tuple:
1924  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1925  *
1926  * if local address is not specified in the request, it will match an
1927  * existing controller with all the other parameters the same and no
1928  * local port address specified as well.
1929  *
1930  * The ports don't need to be compared as they are intrinsically
1931  * already matched by the port pointers supplied.
1932  */
1933 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)1934 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1935 {
1936 	struct nvme_rdma_ctrl *ctrl;
1937 	bool found = false;
1938 
1939 	mutex_lock(&nvme_rdma_ctrl_mutex);
1940 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1941 		found = __nvme_rdma_options_match(ctrl, opts);
1942 		if (found)
1943 			break;
1944 	}
1945 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1946 
1947 	return found;
1948 }
1949 
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)1950 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1951 		struct nvmf_ctrl_options *opts)
1952 {
1953 	struct nvme_rdma_ctrl *ctrl;
1954 	int ret;
1955 	bool changed;
1956 	char *port;
1957 
1958 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1959 	if (!ctrl)
1960 		return ERR_PTR(-ENOMEM);
1961 	ctrl->ctrl.opts = opts;
1962 	INIT_LIST_HEAD(&ctrl->list);
1963 	mutex_init(&ctrl->teardown_lock);
1964 
1965 	if (opts->mask & NVMF_OPT_TRSVCID)
1966 		port = opts->trsvcid;
1967 	else
1968 		port = __stringify(NVME_RDMA_IP_PORT);
1969 
1970 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1971 			opts->traddr, port, &ctrl->addr);
1972 	if (ret) {
1973 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1974 		goto out_free_ctrl;
1975 	}
1976 
1977 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1978 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1979 			opts->host_traddr, NULL, &ctrl->src_addr);
1980 		if (ret) {
1981 			pr_err("malformed src address passed: %s\n",
1982 			       opts->host_traddr);
1983 			goto out_free_ctrl;
1984 		}
1985 	}
1986 
1987 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1988 		ret = -EALREADY;
1989 		goto out_free_ctrl;
1990 	}
1991 
1992 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1993 			nvme_rdma_reconnect_ctrl_work);
1994 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1995 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1996 
1997 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1998 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1999 	ctrl->ctrl.kato = opts->kato;
2000 
2001 	ret = -ENOMEM;
2002 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2003 				GFP_KERNEL);
2004 	if (!ctrl->queues)
2005 		goto out_free_ctrl;
2006 
2007 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2008 				0 /* no quirks, we're perfect! */);
2009 	if (ret)
2010 		goto out_kfree_queues;
2011 
2012 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2013 	WARN_ON_ONCE(!changed);
2014 
2015 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2016 	if (ret)
2017 		goto out_uninit_ctrl;
2018 
2019 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2020 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2021 
2022 	nvme_get_ctrl(&ctrl->ctrl);
2023 
2024 	mutex_lock(&nvme_rdma_ctrl_mutex);
2025 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2026 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2027 
2028 	return &ctrl->ctrl;
2029 
2030 out_uninit_ctrl:
2031 	nvme_uninit_ctrl(&ctrl->ctrl);
2032 	nvme_put_ctrl(&ctrl->ctrl);
2033 	if (ret > 0)
2034 		ret = -EIO;
2035 	return ERR_PTR(ret);
2036 out_kfree_queues:
2037 	kfree(ctrl->queues);
2038 out_free_ctrl:
2039 	kfree(ctrl);
2040 	return ERR_PTR(ret);
2041 }
2042 
2043 static struct nvmf_transport_ops nvme_rdma_transport = {
2044 	.name		= "rdma",
2045 	.module		= THIS_MODULE,
2046 	.required_opts	= NVMF_OPT_TRADDR,
2047 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2048 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2049 	.create_ctrl	= nvme_rdma_create_ctrl,
2050 };
2051 
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2052 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2053 {
2054 	struct nvme_rdma_ctrl *ctrl;
2055 	struct nvme_rdma_device *ndev;
2056 	bool found = false;
2057 
2058 	mutex_lock(&device_list_mutex);
2059 	list_for_each_entry(ndev, &device_list, entry) {
2060 		if (ndev->dev == ib_device) {
2061 			found = true;
2062 			break;
2063 		}
2064 	}
2065 	mutex_unlock(&device_list_mutex);
2066 
2067 	if (!found)
2068 		return;
2069 
2070 	/* Delete all controllers using this device */
2071 	mutex_lock(&nvme_rdma_ctrl_mutex);
2072 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2073 		if (ctrl->device->dev != ib_device)
2074 			continue;
2075 		nvme_delete_ctrl(&ctrl->ctrl);
2076 	}
2077 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2078 
2079 	flush_workqueue(nvme_delete_wq);
2080 }
2081 
2082 static struct ib_client nvme_rdma_ib_client = {
2083 	.name   = "nvme_rdma",
2084 	.remove = nvme_rdma_remove_one
2085 };
2086 
nvme_rdma_init_module(void)2087 static int __init nvme_rdma_init_module(void)
2088 {
2089 	int ret;
2090 
2091 	ret = ib_register_client(&nvme_rdma_ib_client);
2092 	if (ret)
2093 		return ret;
2094 
2095 	ret = nvmf_register_transport(&nvme_rdma_transport);
2096 	if (ret)
2097 		goto err_unreg_client;
2098 
2099 	return 0;
2100 
2101 err_unreg_client:
2102 	ib_unregister_client(&nvme_rdma_ib_client);
2103 	return ret;
2104 }
2105 
nvme_rdma_cleanup_module(void)2106 static void __exit nvme_rdma_cleanup_module(void)
2107 {
2108 	nvmf_unregister_transport(&nvme_rdma_transport);
2109 	ib_unregister_client(&nvme_rdma_ib_client);
2110 }
2111 
2112 module_init(nvme_rdma_init_module);
2113 module_exit(nvme_rdma_cleanup_module);
2114 
2115 MODULE_LICENSE("GPL v2");
2116