1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015 Broadcom Corporation
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irqchip/chained_irq.h>
8 #include <linux/irqdomain.h>
9 #include <linux/msi.h>
10 #include <linux/of_irq.h>
11 #include <linux/of_pci.h>
12 #include <linux/pci.h>
13
14 #include "pcie-iproc.h"
15
16 #define IPROC_MSI_INTR_EN_SHIFT 11
17 #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT)
18 #define IPROC_MSI_INT_N_EVENT_SHIFT 1
19 #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
20 #define IPROC_MSI_EQ_EN_SHIFT 0
21 #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT)
22
23 #define IPROC_MSI_EQ_MASK 0x3f
24
25 /* Max number of GIC interrupts */
26 #define NR_HW_IRQS 6
27
28 /* Number of entries in each event queue */
29 #define EQ_LEN 64
30
31 /* Size of each event queue memory region */
32 #define EQ_MEM_REGION_SIZE SZ_4K
33
34 /* Size of each MSI address region */
35 #define MSI_MEM_REGION_SIZE SZ_4K
36
37 enum iproc_msi_reg {
38 IPROC_MSI_EQ_PAGE = 0,
39 IPROC_MSI_EQ_PAGE_UPPER,
40 IPROC_MSI_PAGE,
41 IPROC_MSI_PAGE_UPPER,
42 IPROC_MSI_CTRL,
43 IPROC_MSI_EQ_HEAD,
44 IPROC_MSI_EQ_TAIL,
45 IPROC_MSI_INTS_EN,
46 IPROC_MSI_REG_SIZE,
47 };
48
49 struct iproc_msi;
50
51 /**
52 * iProc MSI group
53 *
54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
55 * event queue.
56 *
57 * @msi: pointer to iProc MSI data
58 * @gic_irq: GIC interrupt
59 * @eq: Event queue number
60 */
61 struct iproc_msi_grp {
62 struct iproc_msi *msi;
63 int gic_irq;
64 unsigned int eq;
65 };
66
67 /**
68 * iProc event queue based MSI
69 *
70 * Only meant to be used on platforms without MSI support integrated into the
71 * GIC.
72 *
73 * @pcie: pointer to iProc PCIe data
74 * @reg_offsets: MSI register offsets
75 * @grps: MSI groups
76 * @nr_irqs: number of total interrupts connected to GIC
77 * @nr_cpus: number of toal CPUs
78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
79 * set explicitly (required for some legacy platforms)
80 * @bitmap: MSI vector bitmap
81 * @bitmap_lock: lock to protect access to the MSI bitmap
82 * @nr_msi_vecs: total number of MSI vectors
83 * @inner_domain: inner IRQ domain
84 * @msi_domain: MSI IRQ domain
85 * @nr_eq_region: required number of 4K aligned memory region for MSI event
86 * queues
87 * @nr_msi_region: required number of 4K aligned address region for MSI posted
88 * writes
89 * @eq_cpu: pointer to allocated memory region for MSI event queues
90 * @eq_dma: DMA address of MSI event queues
91 * @msi_addr: MSI address
92 */
93 struct iproc_msi {
94 struct iproc_pcie *pcie;
95 const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
96 struct iproc_msi_grp *grps;
97 int nr_irqs;
98 int nr_cpus;
99 bool has_inten_reg;
100 unsigned long *bitmap;
101 struct mutex bitmap_lock;
102 unsigned int nr_msi_vecs;
103 struct irq_domain *inner_domain;
104 struct irq_domain *msi_domain;
105 unsigned int nr_eq_region;
106 unsigned int nr_msi_region;
107 void *eq_cpu;
108 dma_addr_t eq_dma;
109 phys_addr_t msi_addr;
110 };
111
112 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
113 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
114 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
115 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
116 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
117 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
118 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
119 };
120
121 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
122 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
123 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
124 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
125 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
126 };
127
iproc_msi_read_reg(struct iproc_msi * msi,enum iproc_msi_reg reg,unsigned int eq)128 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
129 enum iproc_msi_reg reg,
130 unsigned int eq)
131 {
132 struct iproc_pcie *pcie = msi->pcie;
133
134 return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
135 }
136
iproc_msi_write_reg(struct iproc_msi * msi,enum iproc_msi_reg reg,int eq,u32 val)137 static inline void iproc_msi_write_reg(struct iproc_msi *msi,
138 enum iproc_msi_reg reg,
139 int eq, u32 val)
140 {
141 struct iproc_pcie *pcie = msi->pcie;
142
143 writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
144 }
145
hwirq_to_group(struct iproc_msi * msi,unsigned long hwirq)146 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
147 {
148 return (hwirq % msi->nr_irqs);
149 }
150
iproc_msi_addr_offset(struct iproc_msi * msi,unsigned long hwirq)151 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
152 unsigned long hwirq)
153 {
154 if (msi->nr_msi_region > 1)
155 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
156 else
157 return hwirq_to_group(msi, hwirq) * sizeof(u32);
158 }
159
iproc_msi_eq_offset(struct iproc_msi * msi,u32 eq)160 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
161 {
162 if (msi->nr_eq_region > 1)
163 return eq * EQ_MEM_REGION_SIZE;
164 else
165 return eq * EQ_LEN * sizeof(u32);
166 }
167
168 static struct irq_chip iproc_msi_irq_chip = {
169 .name = "iProc-MSI",
170 };
171
172 static struct msi_domain_info iproc_msi_domain_info = {
173 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
174 MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
175 .chip = &iproc_msi_irq_chip,
176 };
177
178 /*
179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
180 * dedicated event queue. Each MSI group can support up to 64 MSI vectors.
181 *
182 * The number of MSI groups varies between different iProc SoCs. The total
183 * number of CPU cores also varies. To support MSI IRQ affinity, we
184 * distribute GIC interrupts across all available CPUs. MSI vector is moved
185 * from one GIC interrupt to another to steer to the target CPU.
186 *
187 * Assuming:
188 * - the number of MSI groups is M
189 * - the number of CPU cores is N
190 * - M is always a multiple of N
191 *
192 * Total number of raw MSI vectors = M * 64
193 * Total number of supported MSI vectors = (M * 64) / N
194 */
hwirq_to_cpu(struct iproc_msi * msi,unsigned long hwirq)195 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
196 {
197 return (hwirq % msi->nr_cpus);
198 }
199
hwirq_to_canonical_hwirq(struct iproc_msi * msi,unsigned long hwirq)200 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
201 unsigned long hwirq)
202 {
203 return (hwirq - hwirq_to_cpu(msi, hwirq));
204 }
205
iproc_msi_irq_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)206 static int iproc_msi_irq_set_affinity(struct irq_data *data,
207 const struct cpumask *mask, bool force)
208 {
209 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
210 int target_cpu = cpumask_first(mask);
211 int curr_cpu;
212 int ret;
213
214 curr_cpu = hwirq_to_cpu(msi, data->hwirq);
215 if (curr_cpu == target_cpu)
216 ret = IRQ_SET_MASK_OK_DONE;
217 else {
218 /* steer MSI to the target CPU */
219 data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
220 ret = IRQ_SET_MASK_OK;
221 }
222
223 irq_data_update_effective_affinity(data, cpumask_of(target_cpu));
224
225 return ret;
226 }
227
iproc_msi_irq_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)228 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
229 struct msi_msg *msg)
230 {
231 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
232 dma_addr_t addr;
233
234 addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
235 msg->address_lo = lower_32_bits(addr);
236 msg->address_hi = upper_32_bits(addr);
237 msg->data = data->hwirq << 5;
238 }
239
240 static struct irq_chip iproc_msi_bottom_irq_chip = {
241 .name = "MSI",
242 .irq_set_affinity = iproc_msi_irq_set_affinity,
243 .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
244 };
245
iproc_msi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)246 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
247 unsigned int virq, unsigned int nr_irqs,
248 void *args)
249 {
250 struct iproc_msi *msi = domain->host_data;
251 int hwirq, i;
252
253 mutex_lock(&msi->bitmap_lock);
254
255 /* Allocate 'nr_cpus' number of MSI vectors each time */
256 hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
257 msi->nr_cpus, 0);
258 if (hwirq < msi->nr_msi_vecs) {
259 bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
260 } else {
261 mutex_unlock(&msi->bitmap_lock);
262 return -ENOSPC;
263 }
264
265 mutex_unlock(&msi->bitmap_lock);
266
267 for (i = 0; i < nr_irqs; i++) {
268 irq_domain_set_info(domain, virq + i, hwirq + i,
269 &iproc_msi_bottom_irq_chip,
270 domain->host_data, handle_simple_irq,
271 NULL, NULL);
272 }
273
274 return hwirq;
275 }
276
iproc_msi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)277 static void iproc_msi_irq_domain_free(struct irq_domain *domain,
278 unsigned int virq, unsigned int nr_irqs)
279 {
280 struct irq_data *data = irq_domain_get_irq_data(domain, virq);
281 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
282 unsigned int hwirq;
283
284 mutex_lock(&msi->bitmap_lock);
285
286 hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
287 bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
288
289 mutex_unlock(&msi->bitmap_lock);
290
291 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
292 }
293
294 static const struct irq_domain_ops msi_domain_ops = {
295 .alloc = iproc_msi_irq_domain_alloc,
296 .free = iproc_msi_irq_domain_free,
297 };
298
decode_msi_hwirq(struct iproc_msi * msi,u32 eq,u32 head)299 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
300 {
301 u32 *msg, hwirq;
302 unsigned int offs;
303
304 offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
305 msg = (u32 *)(msi->eq_cpu + offs);
306 hwirq = readl(msg);
307 hwirq = (hwirq >> 5) + (hwirq & 0x1f);
308
309 /*
310 * Since we have multiple hwirq mapped to a single MSI vector,
311 * now we need to derive the hwirq at CPU0. It can then be used to
312 * mapped back to virq.
313 */
314 return hwirq_to_canonical_hwirq(msi, hwirq);
315 }
316
iproc_msi_handler(struct irq_desc * desc)317 static void iproc_msi_handler(struct irq_desc *desc)
318 {
319 struct irq_chip *chip = irq_desc_get_chip(desc);
320 struct iproc_msi_grp *grp;
321 struct iproc_msi *msi;
322 u32 eq, head, tail, nr_events;
323 unsigned long hwirq;
324 int virq;
325
326 chained_irq_enter(chip, desc);
327
328 grp = irq_desc_get_handler_data(desc);
329 msi = grp->msi;
330 eq = grp->eq;
331
332 /*
333 * iProc MSI event queue is tracked by head and tail pointers. Head
334 * pointer indicates the next entry (MSI data) to be consumed by SW in
335 * the queue and needs to be updated by SW. iProc MSI core uses the
336 * tail pointer as the next data insertion point.
337 *
338 * Entries between head and tail pointers contain valid MSI data. MSI
339 * data is guaranteed to be in the event queue memory before the tail
340 * pointer is updated by the iProc MSI core.
341 */
342 head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
343 eq) & IPROC_MSI_EQ_MASK;
344 do {
345 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
346 eq) & IPROC_MSI_EQ_MASK;
347
348 /*
349 * Figure out total number of events (MSI data) to be
350 * processed.
351 */
352 nr_events = (tail < head) ?
353 (EQ_LEN - (head - tail)) : (tail - head);
354 if (!nr_events)
355 break;
356
357 /* process all outstanding events */
358 while (nr_events--) {
359 hwirq = decode_msi_hwirq(msi, eq, head);
360 virq = irq_find_mapping(msi->inner_domain, hwirq);
361 generic_handle_irq(virq);
362
363 head++;
364 head %= EQ_LEN;
365 }
366
367 /*
368 * Now all outstanding events have been processed. Update the
369 * head pointer.
370 */
371 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
372
373 /*
374 * Now go read the tail pointer again to see if there are new
375 * oustanding events that came in during the above window.
376 */
377 } while (true);
378
379 chained_irq_exit(chip, desc);
380 }
381
iproc_msi_enable(struct iproc_msi * msi)382 static void iproc_msi_enable(struct iproc_msi *msi)
383 {
384 int i, eq;
385 u32 val;
386
387 /* Program memory region for each event queue */
388 for (i = 0; i < msi->nr_eq_region; i++) {
389 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
390
391 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
392 lower_32_bits(addr));
393 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
394 upper_32_bits(addr));
395 }
396
397 /* Program address region for MSI posted writes */
398 for (i = 0; i < msi->nr_msi_region; i++) {
399 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
400
401 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
402 lower_32_bits(addr));
403 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
404 upper_32_bits(addr));
405 }
406
407 for (eq = 0; eq < msi->nr_irqs; eq++) {
408 /* Enable MSI event queue */
409 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
410 IPROC_MSI_EQ_EN;
411 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
412
413 /*
414 * Some legacy platforms require the MSI interrupt enable
415 * register to be set explicitly.
416 */
417 if (msi->has_inten_reg) {
418 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
419 val |= BIT(eq);
420 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
421 }
422 }
423 }
424
iproc_msi_disable(struct iproc_msi * msi)425 static void iproc_msi_disable(struct iproc_msi *msi)
426 {
427 u32 eq, val;
428
429 for (eq = 0; eq < msi->nr_irqs; eq++) {
430 if (msi->has_inten_reg) {
431 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
432 val &= ~BIT(eq);
433 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
434 }
435
436 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
437 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
438 IPROC_MSI_EQ_EN);
439 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
440 }
441 }
442
iproc_msi_alloc_domains(struct device_node * node,struct iproc_msi * msi)443 static int iproc_msi_alloc_domains(struct device_node *node,
444 struct iproc_msi *msi)
445 {
446 msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
447 &msi_domain_ops, msi);
448 if (!msi->inner_domain)
449 return -ENOMEM;
450
451 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
452 &iproc_msi_domain_info,
453 msi->inner_domain);
454 if (!msi->msi_domain) {
455 irq_domain_remove(msi->inner_domain);
456 return -ENOMEM;
457 }
458
459 return 0;
460 }
461
iproc_msi_free_domains(struct iproc_msi * msi)462 static void iproc_msi_free_domains(struct iproc_msi *msi)
463 {
464 if (msi->msi_domain)
465 irq_domain_remove(msi->msi_domain);
466
467 if (msi->inner_domain)
468 irq_domain_remove(msi->inner_domain);
469 }
470
iproc_msi_irq_free(struct iproc_msi * msi,unsigned int cpu)471 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
472 {
473 int i;
474
475 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
476 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
477 NULL, NULL);
478 }
479 }
480
iproc_msi_irq_setup(struct iproc_msi * msi,unsigned int cpu)481 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
482 {
483 int i, ret;
484 cpumask_var_t mask;
485 struct iproc_pcie *pcie = msi->pcie;
486
487 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
488 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
489 iproc_msi_handler,
490 &msi->grps[i]);
491 /* Dedicate GIC interrupt to each CPU core */
492 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
493 cpumask_clear(mask);
494 cpumask_set_cpu(cpu, mask);
495 ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
496 if (ret)
497 dev_err(pcie->dev,
498 "failed to set affinity for IRQ%d\n",
499 msi->grps[i].gic_irq);
500 free_cpumask_var(mask);
501 } else {
502 dev_err(pcie->dev, "failed to alloc CPU mask\n");
503 ret = -EINVAL;
504 }
505
506 if (ret) {
507 /* Free all configured/unconfigured IRQs */
508 iproc_msi_irq_free(msi, cpu);
509 return ret;
510 }
511 }
512
513 return 0;
514 }
515
iproc_msi_init(struct iproc_pcie * pcie,struct device_node * node)516 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
517 {
518 struct iproc_msi *msi;
519 int i, ret;
520 unsigned int cpu;
521
522 if (!of_device_is_compatible(node, "brcm,iproc-msi"))
523 return -ENODEV;
524
525 if (!of_find_property(node, "msi-controller", NULL))
526 return -ENODEV;
527
528 if (pcie->msi)
529 return -EBUSY;
530
531 msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
532 if (!msi)
533 return -ENOMEM;
534
535 msi->pcie = pcie;
536 pcie->msi = msi;
537 msi->msi_addr = pcie->base_addr;
538 mutex_init(&msi->bitmap_lock);
539 msi->nr_cpus = num_possible_cpus();
540
541 msi->nr_irqs = of_irq_count(node);
542 if (!msi->nr_irqs) {
543 dev_err(pcie->dev, "found no MSI GIC interrupt\n");
544 return -ENODEV;
545 }
546
547 if (msi->nr_irqs > NR_HW_IRQS) {
548 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
549 msi->nr_irqs);
550 msi->nr_irqs = NR_HW_IRQS;
551 }
552
553 if (msi->nr_irqs < msi->nr_cpus) {
554 dev_err(pcie->dev,
555 "not enough GIC interrupts for MSI affinity\n");
556 return -EINVAL;
557 }
558
559 if (msi->nr_irqs % msi->nr_cpus != 0) {
560 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
561 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
562 msi->nr_irqs);
563 }
564
565 switch (pcie->type) {
566 case IPROC_PCIE_PAXB_BCMA:
567 case IPROC_PCIE_PAXB:
568 msi->reg_offsets = iproc_msi_reg_paxb;
569 msi->nr_eq_region = 1;
570 msi->nr_msi_region = 1;
571 break;
572 case IPROC_PCIE_PAXC:
573 msi->reg_offsets = iproc_msi_reg_paxc;
574 msi->nr_eq_region = msi->nr_irqs;
575 msi->nr_msi_region = msi->nr_irqs;
576 break;
577 default:
578 dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
579 return -EINVAL;
580 }
581
582 if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
583 msi->has_inten_reg = true;
584
585 msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
586 msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
587 sizeof(*msi->bitmap), GFP_KERNEL);
588 if (!msi->bitmap)
589 return -ENOMEM;
590
591 msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
592 GFP_KERNEL);
593 if (!msi->grps)
594 return -ENOMEM;
595
596 for (i = 0; i < msi->nr_irqs; i++) {
597 unsigned int irq = irq_of_parse_and_map(node, i);
598
599 if (!irq) {
600 dev_err(pcie->dev, "unable to parse/map interrupt\n");
601 ret = -ENODEV;
602 goto free_irqs;
603 }
604 msi->grps[i].gic_irq = irq;
605 msi->grps[i].msi = msi;
606 msi->grps[i].eq = i;
607 }
608
609 /* Reserve memory for event queue and make sure memories are zeroed */
610 msi->eq_cpu = dma_zalloc_coherent(pcie->dev,
611 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
612 &msi->eq_dma, GFP_KERNEL);
613 if (!msi->eq_cpu) {
614 ret = -ENOMEM;
615 goto free_irqs;
616 }
617
618 ret = iproc_msi_alloc_domains(node, msi);
619 if (ret) {
620 dev_err(pcie->dev, "failed to create MSI domains\n");
621 goto free_eq_dma;
622 }
623
624 for_each_online_cpu(cpu) {
625 ret = iproc_msi_irq_setup(msi, cpu);
626 if (ret)
627 goto free_msi_irq;
628 }
629
630 iproc_msi_enable(msi);
631
632 return 0;
633
634 free_msi_irq:
635 for_each_online_cpu(cpu)
636 iproc_msi_irq_free(msi, cpu);
637 iproc_msi_free_domains(msi);
638
639 free_eq_dma:
640 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
641 msi->eq_cpu, msi->eq_dma);
642
643 free_irqs:
644 for (i = 0; i < msi->nr_irqs; i++) {
645 if (msi->grps[i].gic_irq)
646 irq_dispose_mapping(msi->grps[i].gic_irq);
647 }
648 pcie->msi = NULL;
649 return ret;
650 }
651 EXPORT_SYMBOL(iproc_msi_init);
652
iproc_msi_exit(struct iproc_pcie * pcie)653 void iproc_msi_exit(struct iproc_pcie *pcie)
654 {
655 struct iproc_msi *msi = pcie->msi;
656 unsigned int i, cpu;
657
658 if (!msi)
659 return;
660
661 iproc_msi_disable(msi);
662
663 for_each_online_cpu(cpu)
664 iproc_msi_irq_free(msi, cpu);
665
666 iproc_msi_free_domains(msi);
667
668 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
669 msi->eq_cpu, msi->eq_dma);
670
671 for (i = 0; i < msi->nr_irqs; i++) {
672 if (msi->grps[i].gic_irq)
673 irq_dispose_mapping(msi->grps[i].gic_irq);
674 }
675 }
676 EXPORT_SYMBOL(iproc_msi_exit);
677