• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Broadcom Corporation
4  */
5 
6 #include <linux/interrupt.h>
7 #include <linux/irqchip/chained_irq.h>
8 #include <linux/irqdomain.h>
9 #include <linux/msi.h>
10 #include <linux/of_irq.h>
11 #include <linux/of_pci.h>
12 #include <linux/pci.h>
13 
14 #include "pcie-iproc.h"
15 
16 #define IPROC_MSI_INTR_EN_SHIFT        11
17 #define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
18 #define IPROC_MSI_INT_N_EVENT_SHIFT    1
19 #define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
20 #define IPROC_MSI_EQ_EN_SHIFT          0
21 #define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)
22 
23 #define IPROC_MSI_EQ_MASK              0x3f
24 
25 /* Max number of GIC interrupts */
26 #define NR_HW_IRQS                     6
27 
28 /* Number of entries in each event queue */
29 #define EQ_LEN                         64
30 
31 /* Size of each event queue memory region */
32 #define EQ_MEM_REGION_SIZE             SZ_4K
33 
34 /* Size of each MSI address region */
35 #define MSI_MEM_REGION_SIZE            SZ_4K
36 
37 enum iproc_msi_reg {
38 	IPROC_MSI_EQ_PAGE = 0,
39 	IPROC_MSI_EQ_PAGE_UPPER,
40 	IPROC_MSI_PAGE,
41 	IPROC_MSI_PAGE_UPPER,
42 	IPROC_MSI_CTRL,
43 	IPROC_MSI_EQ_HEAD,
44 	IPROC_MSI_EQ_TAIL,
45 	IPROC_MSI_INTS_EN,
46 	IPROC_MSI_REG_SIZE,
47 };
48 
49 struct iproc_msi;
50 
51 /**
52  * iProc MSI group
53  *
54  * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
55  * event queue.
56  *
57  * @msi: pointer to iProc MSI data
58  * @gic_irq: GIC interrupt
59  * @eq: Event queue number
60  */
61 struct iproc_msi_grp {
62 	struct iproc_msi *msi;
63 	int gic_irq;
64 	unsigned int eq;
65 };
66 
67 /**
68  * iProc event queue based MSI
69  *
70  * Only meant to be used on platforms without MSI support integrated into the
71  * GIC.
72  *
73  * @pcie: pointer to iProc PCIe data
74  * @reg_offsets: MSI register offsets
75  * @grps: MSI groups
76  * @nr_irqs: number of total interrupts connected to GIC
77  * @nr_cpus: number of toal CPUs
78  * @has_inten_reg: indicates the MSI interrupt enable register needs to be
79  * set explicitly (required for some legacy platforms)
80  * @bitmap: MSI vector bitmap
81  * @bitmap_lock: lock to protect access to the MSI bitmap
82  * @nr_msi_vecs: total number of MSI vectors
83  * @inner_domain: inner IRQ domain
84  * @msi_domain: MSI IRQ domain
85  * @nr_eq_region: required number of 4K aligned memory region for MSI event
86  * queues
87  * @nr_msi_region: required number of 4K aligned address region for MSI posted
88  * writes
89  * @eq_cpu: pointer to allocated memory region for MSI event queues
90  * @eq_dma: DMA address of MSI event queues
91  * @msi_addr: MSI address
92  */
93 struct iproc_msi {
94 	struct iproc_pcie *pcie;
95 	const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
96 	struct iproc_msi_grp *grps;
97 	int nr_irqs;
98 	int nr_cpus;
99 	bool has_inten_reg;
100 	unsigned long *bitmap;
101 	struct mutex bitmap_lock;
102 	unsigned int nr_msi_vecs;
103 	struct irq_domain *inner_domain;
104 	struct irq_domain *msi_domain;
105 	unsigned int nr_eq_region;
106 	unsigned int nr_msi_region;
107 	void *eq_cpu;
108 	dma_addr_t eq_dma;
109 	phys_addr_t msi_addr;
110 };
111 
112 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
113 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
114 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
115 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
116 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
117 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
118 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
119 };
120 
121 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
122 	{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
123 	{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
124 	{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
125 	{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
126 };
127 
iproc_msi_read_reg(struct iproc_msi * msi,enum iproc_msi_reg reg,unsigned int eq)128 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
129 				     enum iproc_msi_reg reg,
130 				     unsigned int eq)
131 {
132 	struct iproc_pcie *pcie = msi->pcie;
133 
134 	return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
135 }
136 
iproc_msi_write_reg(struct iproc_msi * msi,enum iproc_msi_reg reg,int eq,u32 val)137 static inline void iproc_msi_write_reg(struct iproc_msi *msi,
138 				       enum iproc_msi_reg reg,
139 				       int eq, u32 val)
140 {
141 	struct iproc_pcie *pcie = msi->pcie;
142 
143 	writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
144 }
145 
hwirq_to_group(struct iproc_msi * msi,unsigned long hwirq)146 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
147 {
148 	return (hwirq % msi->nr_irqs);
149 }
150 
iproc_msi_addr_offset(struct iproc_msi * msi,unsigned long hwirq)151 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
152 						 unsigned long hwirq)
153 {
154 	if (msi->nr_msi_region > 1)
155 		return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
156 	else
157 		return hwirq_to_group(msi, hwirq) * sizeof(u32);
158 }
159 
iproc_msi_eq_offset(struct iproc_msi * msi,u32 eq)160 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
161 {
162 	if (msi->nr_eq_region > 1)
163 		return eq * EQ_MEM_REGION_SIZE;
164 	else
165 		return eq * EQ_LEN * sizeof(u32);
166 }
167 
168 static struct irq_chip iproc_msi_irq_chip = {
169 	.name = "iProc-MSI",
170 };
171 
172 static struct msi_domain_info iproc_msi_domain_info = {
173 	.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
174 		MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
175 	.chip = &iproc_msi_irq_chip,
176 };
177 
178 /*
179  * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
180  * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
181  *
182  * The number of MSI groups varies between different iProc SoCs.  The total
183  * number of CPU cores also varies.  To support MSI IRQ affinity, we
184  * distribute GIC interrupts across all available CPUs.  MSI vector is moved
185  * from one GIC interrupt to another to steer to the target CPU.
186  *
187  * Assuming:
188  * - the number of MSI groups is M
189  * - the number of CPU cores is N
190  * - M is always a multiple of N
191  *
192  * Total number of raw MSI vectors = M * 64
193  * Total number of supported MSI vectors = (M * 64) / N
194  */
hwirq_to_cpu(struct iproc_msi * msi,unsigned long hwirq)195 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
196 {
197 	return (hwirq % msi->nr_cpus);
198 }
199 
hwirq_to_canonical_hwirq(struct iproc_msi * msi,unsigned long hwirq)200 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
201 						     unsigned long hwirq)
202 {
203 	return (hwirq - hwirq_to_cpu(msi, hwirq));
204 }
205 
iproc_msi_irq_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)206 static int iproc_msi_irq_set_affinity(struct irq_data *data,
207 				      const struct cpumask *mask, bool force)
208 {
209 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
210 	int target_cpu = cpumask_first(mask);
211 	int curr_cpu;
212 	int ret;
213 
214 	curr_cpu = hwirq_to_cpu(msi, data->hwirq);
215 	if (curr_cpu == target_cpu)
216 		ret = IRQ_SET_MASK_OK_DONE;
217 	else {
218 		/* steer MSI to the target CPU */
219 		data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
220 		ret = IRQ_SET_MASK_OK;
221 	}
222 
223 	irq_data_update_effective_affinity(data, cpumask_of(target_cpu));
224 
225 	return ret;
226 }
227 
iproc_msi_irq_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)228 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
229 					  struct msi_msg *msg)
230 {
231 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
232 	dma_addr_t addr;
233 
234 	addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
235 	msg->address_lo = lower_32_bits(addr);
236 	msg->address_hi = upper_32_bits(addr);
237 	msg->data = data->hwirq << 5;
238 }
239 
240 static struct irq_chip iproc_msi_bottom_irq_chip = {
241 	.name = "MSI",
242 	.irq_set_affinity = iproc_msi_irq_set_affinity,
243 	.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
244 };
245 
iproc_msi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)246 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
247 				      unsigned int virq, unsigned int nr_irqs,
248 				      void *args)
249 {
250 	struct iproc_msi *msi = domain->host_data;
251 	int hwirq, i;
252 
253 	mutex_lock(&msi->bitmap_lock);
254 
255 	/* Allocate 'nr_cpus' number of MSI vectors each time */
256 	hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
257 					   msi->nr_cpus, 0);
258 	if (hwirq < msi->nr_msi_vecs) {
259 		bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
260 	} else {
261 		mutex_unlock(&msi->bitmap_lock);
262 		return -ENOSPC;
263 	}
264 
265 	mutex_unlock(&msi->bitmap_lock);
266 
267 	for (i = 0; i < nr_irqs; i++) {
268 		irq_domain_set_info(domain, virq + i, hwirq + i,
269 				    &iproc_msi_bottom_irq_chip,
270 				    domain->host_data, handle_simple_irq,
271 				    NULL, NULL);
272 	}
273 
274 	return hwirq;
275 }
276 
iproc_msi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)277 static void iproc_msi_irq_domain_free(struct irq_domain *domain,
278 				      unsigned int virq, unsigned int nr_irqs)
279 {
280 	struct irq_data *data = irq_domain_get_irq_data(domain, virq);
281 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
282 	unsigned int hwirq;
283 
284 	mutex_lock(&msi->bitmap_lock);
285 
286 	hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
287 	bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
288 
289 	mutex_unlock(&msi->bitmap_lock);
290 
291 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
292 }
293 
294 static const struct irq_domain_ops msi_domain_ops = {
295 	.alloc = iproc_msi_irq_domain_alloc,
296 	.free = iproc_msi_irq_domain_free,
297 };
298 
decode_msi_hwirq(struct iproc_msi * msi,u32 eq,u32 head)299 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
300 {
301 	u32 *msg, hwirq;
302 	unsigned int offs;
303 
304 	offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
305 	msg = (u32 *)(msi->eq_cpu + offs);
306 	hwirq = readl(msg);
307 	hwirq = (hwirq >> 5) + (hwirq & 0x1f);
308 
309 	/*
310 	 * Since we have multiple hwirq mapped to a single MSI vector,
311 	 * now we need to derive the hwirq at CPU0.  It can then be used to
312 	 * mapped back to virq.
313 	 */
314 	return hwirq_to_canonical_hwirq(msi, hwirq);
315 }
316 
iproc_msi_handler(struct irq_desc * desc)317 static void iproc_msi_handler(struct irq_desc *desc)
318 {
319 	struct irq_chip *chip = irq_desc_get_chip(desc);
320 	struct iproc_msi_grp *grp;
321 	struct iproc_msi *msi;
322 	u32 eq, head, tail, nr_events;
323 	unsigned long hwirq;
324 	int virq;
325 
326 	chained_irq_enter(chip, desc);
327 
328 	grp = irq_desc_get_handler_data(desc);
329 	msi = grp->msi;
330 	eq = grp->eq;
331 
332 	/*
333 	 * iProc MSI event queue is tracked by head and tail pointers.  Head
334 	 * pointer indicates the next entry (MSI data) to be consumed by SW in
335 	 * the queue and needs to be updated by SW.  iProc MSI core uses the
336 	 * tail pointer as the next data insertion point.
337 	 *
338 	 * Entries between head and tail pointers contain valid MSI data.  MSI
339 	 * data is guaranteed to be in the event queue memory before the tail
340 	 * pointer is updated by the iProc MSI core.
341 	 */
342 	head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
343 				  eq) & IPROC_MSI_EQ_MASK;
344 	do {
345 		tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
346 					  eq) & IPROC_MSI_EQ_MASK;
347 
348 		/*
349 		 * Figure out total number of events (MSI data) to be
350 		 * processed.
351 		 */
352 		nr_events = (tail < head) ?
353 			(EQ_LEN - (head - tail)) : (tail - head);
354 		if (!nr_events)
355 			break;
356 
357 		/* process all outstanding events */
358 		while (nr_events--) {
359 			hwirq = decode_msi_hwirq(msi, eq, head);
360 			virq = irq_find_mapping(msi->inner_domain, hwirq);
361 			generic_handle_irq(virq);
362 
363 			head++;
364 			head %= EQ_LEN;
365 		}
366 
367 		/*
368 		 * Now all outstanding events have been processed.  Update the
369 		 * head pointer.
370 		 */
371 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
372 
373 		/*
374 		 * Now go read the tail pointer again to see if there are new
375 		 * oustanding events that came in during the above window.
376 		 */
377 	} while (true);
378 
379 	chained_irq_exit(chip, desc);
380 }
381 
iproc_msi_enable(struct iproc_msi * msi)382 static void iproc_msi_enable(struct iproc_msi *msi)
383 {
384 	int i, eq;
385 	u32 val;
386 
387 	/* Program memory region for each event queue */
388 	for (i = 0; i < msi->nr_eq_region; i++) {
389 		dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
390 
391 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
392 				    lower_32_bits(addr));
393 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
394 				    upper_32_bits(addr));
395 	}
396 
397 	/* Program address region for MSI posted writes */
398 	for (i = 0; i < msi->nr_msi_region; i++) {
399 		phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
400 
401 		iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
402 				    lower_32_bits(addr));
403 		iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
404 				    upper_32_bits(addr));
405 	}
406 
407 	for (eq = 0; eq < msi->nr_irqs; eq++) {
408 		/* Enable MSI event queue */
409 		val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
410 			IPROC_MSI_EQ_EN;
411 		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
412 
413 		/*
414 		 * Some legacy platforms require the MSI interrupt enable
415 		 * register to be set explicitly.
416 		 */
417 		if (msi->has_inten_reg) {
418 			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
419 			val |= BIT(eq);
420 			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
421 		}
422 	}
423 }
424 
iproc_msi_disable(struct iproc_msi * msi)425 static void iproc_msi_disable(struct iproc_msi *msi)
426 {
427 	u32 eq, val;
428 
429 	for (eq = 0; eq < msi->nr_irqs; eq++) {
430 		if (msi->has_inten_reg) {
431 			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
432 			val &= ~BIT(eq);
433 			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
434 		}
435 
436 		val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
437 		val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
438 			 IPROC_MSI_EQ_EN);
439 		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
440 	}
441 }
442 
iproc_msi_alloc_domains(struct device_node * node,struct iproc_msi * msi)443 static int iproc_msi_alloc_domains(struct device_node *node,
444 				   struct iproc_msi *msi)
445 {
446 	msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
447 						  &msi_domain_ops, msi);
448 	if (!msi->inner_domain)
449 		return -ENOMEM;
450 
451 	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
452 						    &iproc_msi_domain_info,
453 						    msi->inner_domain);
454 	if (!msi->msi_domain) {
455 		irq_domain_remove(msi->inner_domain);
456 		return -ENOMEM;
457 	}
458 
459 	return 0;
460 }
461 
iproc_msi_free_domains(struct iproc_msi * msi)462 static void iproc_msi_free_domains(struct iproc_msi *msi)
463 {
464 	if (msi->msi_domain)
465 		irq_domain_remove(msi->msi_domain);
466 
467 	if (msi->inner_domain)
468 		irq_domain_remove(msi->inner_domain);
469 }
470 
iproc_msi_irq_free(struct iproc_msi * msi,unsigned int cpu)471 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
472 {
473 	int i;
474 
475 	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
476 		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
477 						 NULL, NULL);
478 	}
479 }
480 
iproc_msi_irq_setup(struct iproc_msi * msi,unsigned int cpu)481 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
482 {
483 	int i, ret;
484 	cpumask_var_t mask;
485 	struct iproc_pcie *pcie = msi->pcie;
486 
487 	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
488 		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
489 						 iproc_msi_handler,
490 						 &msi->grps[i]);
491 		/* Dedicate GIC interrupt to each CPU core */
492 		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
493 			cpumask_clear(mask);
494 			cpumask_set_cpu(cpu, mask);
495 			ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
496 			if (ret)
497 				dev_err(pcie->dev,
498 					"failed to set affinity for IRQ%d\n",
499 					msi->grps[i].gic_irq);
500 			free_cpumask_var(mask);
501 		} else {
502 			dev_err(pcie->dev, "failed to alloc CPU mask\n");
503 			ret = -EINVAL;
504 		}
505 
506 		if (ret) {
507 			/* Free all configured/unconfigured IRQs */
508 			iproc_msi_irq_free(msi, cpu);
509 			return ret;
510 		}
511 	}
512 
513 	return 0;
514 }
515 
iproc_msi_init(struct iproc_pcie * pcie,struct device_node * node)516 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
517 {
518 	struct iproc_msi *msi;
519 	int i, ret;
520 	unsigned int cpu;
521 
522 	if (!of_device_is_compatible(node, "brcm,iproc-msi"))
523 		return -ENODEV;
524 
525 	if (!of_find_property(node, "msi-controller", NULL))
526 		return -ENODEV;
527 
528 	if (pcie->msi)
529 		return -EBUSY;
530 
531 	msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
532 	if (!msi)
533 		return -ENOMEM;
534 
535 	msi->pcie = pcie;
536 	pcie->msi = msi;
537 	msi->msi_addr = pcie->base_addr;
538 	mutex_init(&msi->bitmap_lock);
539 	msi->nr_cpus = num_possible_cpus();
540 
541 	msi->nr_irqs = of_irq_count(node);
542 	if (!msi->nr_irqs) {
543 		dev_err(pcie->dev, "found no MSI GIC interrupt\n");
544 		return -ENODEV;
545 	}
546 
547 	if (msi->nr_irqs > NR_HW_IRQS) {
548 		dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
549 			 msi->nr_irqs);
550 		msi->nr_irqs = NR_HW_IRQS;
551 	}
552 
553 	if (msi->nr_irqs < msi->nr_cpus) {
554 		dev_err(pcie->dev,
555 			"not enough GIC interrupts for MSI affinity\n");
556 		return -EINVAL;
557 	}
558 
559 	if (msi->nr_irqs % msi->nr_cpus != 0) {
560 		msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
561 		dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
562 			 msi->nr_irqs);
563 	}
564 
565 	switch (pcie->type) {
566 	case IPROC_PCIE_PAXB_BCMA:
567 	case IPROC_PCIE_PAXB:
568 		msi->reg_offsets = iproc_msi_reg_paxb;
569 		msi->nr_eq_region = 1;
570 		msi->nr_msi_region = 1;
571 		break;
572 	case IPROC_PCIE_PAXC:
573 		msi->reg_offsets = iproc_msi_reg_paxc;
574 		msi->nr_eq_region = msi->nr_irqs;
575 		msi->nr_msi_region = msi->nr_irqs;
576 		break;
577 	default:
578 		dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
579 		return -EINVAL;
580 	}
581 
582 	if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
583 		msi->has_inten_reg = true;
584 
585 	msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
586 	msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
587 				   sizeof(*msi->bitmap), GFP_KERNEL);
588 	if (!msi->bitmap)
589 		return -ENOMEM;
590 
591 	msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
592 				 GFP_KERNEL);
593 	if (!msi->grps)
594 		return -ENOMEM;
595 
596 	for (i = 0; i < msi->nr_irqs; i++) {
597 		unsigned int irq = irq_of_parse_and_map(node, i);
598 
599 		if (!irq) {
600 			dev_err(pcie->dev, "unable to parse/map interrupt\n");
601 			ret = -ENODEV;
602 			goto free_irqs;
603 		}
604 		msi->grps[i].gic_irq = irq;
605 		msi->grps[i].msi = msi;
606 		msi->grps[i].eq = i;
607 	}
608 
609 	/* Reserve memory for event queue and make sure memories are zeroed */
610 	msi->eq_cpu = dma_zalloc_coherent(pcie->dev,
611 					  msi->nr_eq_region * EQ_MEM_REGION_SIZE,
612 					  &msi->eq_dma, GFP_KERNEL);
613 	if (!msi->eq_cpu) {
614 		ret = -ENOMEM;
615 		goto free_irqs;
616 	}
617 
618 	ret = iproc_msi_alloc_domains(node, msi);
619 	if (ret) {
620 		dev_err(pcie->dev, "failed to create MSI domains\n");
621 		goto free_eq_dma;
622 	}
623 
624 	for_each_online_cpu(cpu) {
625 		ret = iproc_msi_irq_setup(msi, cpu);
626 		if (ret)
627 			goto free_msi_irq;
628 	}
629 
630 	iproc_msi_enable(msi);
631 
632 	return 0;
633 
634 free_msi_irq:
635 	for_each_online_cpu(cpu)
636 		iproc_msi_irq_free(msi, cpu);
637 	iproc_msi_free_domains(msi);
638 
639 free_eq_dma:
640 	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
641 			  msi->eq_cpu, msi->eq_dma);
642 
643 free_irqs:
644 	for (i = 0; i < msi->nr_irqs; i++) {
645 		if (msi->grps[i].gic_irq)
646 			irq_dispose_mapping(msi->grps[i].gic_irq);
647 	}
648 	pcie->msi = NULL;
649 	return ret;
650 }
651 EXPORT_SYMBOL(iproc_msi_init);
652 
iproc_msi_exit(struct iproc_pcie * pcie)653 void iproc_msi_exit(struct iproc_pcie *pcie)
654 {
655 	struct iproc_msi *msi = pcie->msi;
656 	unsigned int i, cpu;
657 
658 	if (!msi)
659 		return;
660 
661 	iproc_msi_disable(msi);
662 
663 	for_each_online_cpu(cpu)
664 		iproc_msi_irq_free(msi, cpu);
665 
666 	iproc_msi_free_domains(msi);
667 
668 	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
669 			  msi->eq_cpu, msi->eq_dma);
670 
671 	for (i = 0; i < msi->nr_irqs; i++) {
672 		if (msi->grps[i].gic_irq)
673 			irq_dispose_mapping(msi->grps[i].gic_irq);
674 	}
675 }
676 EXPORT_SYMBOL(iproc_msi_exit);
677