• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
pci_dev_d3_sleep(struct pci_dev * dev)66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
pci_ats_disabled(void)122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131 
pcie_port_pm_setup(char * str)132 static int __init pcie_port_pm_setup(char *str)
133 {
134 	if (!strcmp(str, "off"))
135 		pci_bridge_d3_disable = true;
136 	else if (!strcmp(str, "force"))
137 		pci_bridge_d3_force = true;
138 	return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141 
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144 
145 /**
146  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147  * @bus: pointer to PCI bus structure to search
148  *
149  * Given a PCI bus, returns the highest PCI bus number present in the set
150  * including the given PCI bus and its list of child PCI buses.
151  */
pci_bus_max_busnr(struct pci_bus * bus)152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 	struct pci_bus *tmp;
155 	unsigned char max, n;
156 
157 	max = bus->busn_res.end;
158 	list_for_each_entry(tmp, &bus->children, node) {
159 		n = pci_bus_max_busnr(tmp);
160 		if (n > max)
161 			max = n;
162 	}
163 	return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166 
167 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 	struct resource *res = &pdev->resource[bar];
171 
172 	/*
173 	 * Make sure the BAR is actually a memory resource, not an IO resource
174 	 */
175 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 		return NULL;
178 	}
179 	return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 	/*
186 	 * Make sure the BAR is actually a memory resource, not an IO resource
187 	 */
188 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 		WARN_ON(1);
190 		return NULL;
191 	}
192 	return ioremap_wc(pci_resource_start(pdev, bar),
193 			  pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197 
198 /**
199  * pci_dev_str_match_path - test if a path string matches a device
200  * @dev:    the PCI device to test
201  * @p:      string to match the device against
202  * @endptr: pointer to the string after the match
203  *
204  * Test if a string (typically from a kernel parameter) formatted as a
205  * path of device/function addresses matches a PCI device. The string must
206  * be of the form:
207  *
208  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209  *
210  * A path for a device can be obtained using 'lspci -t'.  Using a path
211  * is more robust against bus renumbering than using only a single bus,
212  * device and function address.
213  *
214  * Returns 1 if the string matches the device, 0 if it does not and
215  * a negative error code if it fails to parse the string.
216  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 				  const char **endptr)
219 {
220 	int ret;
221 	int seg, bus, slot, func;
222 	char *wpath, *p;
223 	char end;
224 
225 	*endptr = strchrnul(path, ';');
226 
227 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 	if (!wpath)
229 		return -ENOMEM;
230 
231 	while (1) {
232 		p = strrchr(wpath, '/');
233 		if (!p)
234 			break;
235 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 		if (ret != 2) {
237 			ret = -EINVAL;
238 			goto free_and_exit;
239 		}
240 
241 		if (dev->devfn != PCI_DEVFN(slot, func)) {
242 			ret = 0;
243 			goto free_and_exit;
244 		}
245 
246 		/*
247 		 * Note: we don't need to get a reference to the upstream
248 		 * bridge because we hold a reference to the top level
249 		 * device which should hold a reference to the bridge,
250 		 * and so on.
251 		 */
252 		dev = pci_upstream_bridge(dev);
253 		if (!dev) {
254 			ret = 0;
255 			goto free_and_exit;
256 		}
257 
258 		*p = 0;
259 	}
260 
261 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 		     &func, &end);
263 	if (ret != 4) {
264 		seg = 0;
265 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 		if (ret != 3) {
267 			ret = -EINVAL;
268 			goto free_and_exit;
269 		}
270 	}
271 
272 	ret = (seg == pci_domain_nr(dev->bus) &&
273 	       bus == dev->bus->number &&
274 	       dev->devfn == PCI_DEVFN(slot, func));
275 
276 free_and_exit:
277 	kfree(wpath);
278 	return ret;
279 }
280 
281 /**
282  * pci_dev_str_match - test if a string matches a device
283  * @dev:    the PCI device to test
284  * @p:      string to match the device against
285  * @endptr: pointer to the string after the match
286  *
287  * Test if a string (typically from a kernel parameter) matches a specified
288  * PCI device. The string may be of one of the following formats:
289  *
290  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292  *
293  * The first format specifies a PCI bus/device/function address which
294  * may change if new hardware is inserted, if motherboard firmware changes,
295  * or due to changes caused in kernel parameters. If the domain is
296  * left unspecified, it is taken to be 0.  In order to be robust against
297  * bus renumbering issues, a path of PCI device/function numbers may be used
298  * to address the specific device.  The path for a device can be determined
299  * through the use of 'lspci -t'.
300  *
301  * The second format matches devices using IDs in the configuration
302  * space which may match multiple devices in the system. A value of 0
303  * for any field will match all devices. (Note: this differs from
304  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305  * legacy reasons and convenience so users don't have to specify
306  * FFFFFFFFs on the command line.)
307  *
308  * Returns 1 if the string matches the device, 0 if it does not and
309  * a negative error code if the string cannot be parsed.
310  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 			     const char **endptr)
313 {
314 	int ret;
315 	int count;
316 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
317 
318 	if (strncmp(p, "pci:", 4) == 0) {
319 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 		p += 4;
321 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 			     &subsystem_vendor, &subsystem_device, &count);
323 		if (ret != 4) {
324 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 			if (ret != 2)
326 				return -EINVAL;
327 
328 			subsystem_vendor = 0;
329 			subsystem_device = 0;
330 		}
331 
332 		p += count;
333 
334 		if ((!vendor || vendor == dev->vendor) &&
335 		    (!device || device == dev->device) &&
336 		    (!subsystem_vendor ||
337 			    subsystem_vendor == dev->subsystem_vendor) &&
338 		    (!subsystem_device ||
339 			    subsystem_device == dev->subsystem_device))
340 			goto found;
341 	} else {
342 		/*
343 		 * PCI Bus, Device, Function IDs are specified
344 		 *  (optionally, may include a path of devfns following it)
345 		 */
346 		ret = pci_dev_str_match_path(dev, p, &p);
347 		if (ret < 0)
348 			return ret;
349 		else if (ret)
350 			goto found;
351 	}
352 
353 	*endptr = p;
354 	return 0;
355 
356 found:
357 	*endptr = p;
358 	return 1;
359 }
360 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 				   u8 pos, int cap, int *ttl)
363 {
364 	u8 id;
365 	u16 ent;
366 
367 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
368 
369 	while ((*ttl)--) {
370 		if (pos < 0x40)
371 			break;
372 		pos &= ~3;
373 		pci_bus_read_config_word(bus, devfn, pos, &ent);
374 
375 		id = ent & 0xff;
376 		if (id == 0xff)
377 			break;
378 		if (id == cap)
379 			return pos;
380 		pos = (ent >> 8);
381 	}
382 	return 0;
383 }
384 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 			       u8 pos, int cap)
387 {
388 	int ttl = PCI_FIND_CAP_TTL;
389 
390 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 	return __pci_find_next_cap(dev->bus, dev->devfn,
396 				   pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 				    unsigned int devfn, u8 hdr_type)
402 {
403 	u16 status;
404 
405 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 	if (!(status & PCI_STATUS_CAP_LIST))
407 		return 0;
408 
409 	switch (hdr_type) {
410 	case PCI_HEADER_TYPE_NORMAL:
411 	case PCI_HEADER_TYPE_BRIDGE:
412 		return PCI_CAPABILITY_LIST;
413 	case PCI_HEADER_TYPE_CARDBUS:
414 		return PCI_CB_CAPABILITY_LIST;
415 	}
416 
417 	return 0;
418 }
419 
420 /**
421  * pci_find_capability - query for devices' capabilities
422  * @dev: PCI device to query
423  * @cap: capability code
424  *
425  * Tell if a device supports a given PCI capability.
426  * Returns the address of the requested capability structure within the
427  * device's PCI configuration space or 0 in case the device does not
428  * support it.  Possible values for @cap:
429  *
430  *  %PCI_CAP_ID_PM           Power Management
431  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
432  *  %PCI_CAP_ID_VPD          Vital Product Data
433  *  %PCI_CAP_ID_SLOTID       Slot Identification
434  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
435  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
436  *  %PCI_CAP_ID_PCIX         PCI-X
437  *  %PCI_CAP_ID_EXP          PCI Express
438  */
pci_find_capability(struct pci_dev * dev,int cap)439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 	int pos;
442 
443 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 	if (pos)
445 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446 
447 	return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450 
451 /**
452  * pci_bus_find_capability - query for devices' capabilities
453  * @bus:   the PCI bus to query
454  * @devfn: PCI device to query
455  * @cap:   capability code
456  *
457  * Like pci_find_capability() but works for pci devices that do not have a
458  * pci_dev structure set up yet.
459  *
460  * Returns the address of the requested capability structure within the
461  * device's PCI configuration space or 0 in case the device does not
462  * support it.
463  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 	int pos;
467 	u8 hdr_type;
468 
469 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470 
471 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 	if (pos)
473 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
474 
475 	return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478 
479 /**
480  * pci_find_next_ext_capability - Find an extended capability
481  * @dev: PCI device to query
482  * @start: address at which to start looking (0 to start at beginning of list)
483  * @cap: capability code
484  *
485  * Returns the address of the next matching extended capability structure
486  * within the device's PCI configuration space or 0 if the device does
487  * not support it.  Some capabilities can occur several times, e.g., the
488  * vendor-specific capability, and this provides a way to find them all.
489  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 	u32 header;
493 	int ttl;
494 	int pos = PCI_CFG_SPACE_SIZE;
495 
496 	/* minimum 8 bytes per capability */
497 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498 
499 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 		return 0;
501 
502 	if (start)
503 		pos = start;
504 
505 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 		return 0;
507 
508 	/*
509 	 * If we have no capabilities, this is indicated by cap ID,
510 	 * cap version and next pointer all being 0.
511 	 */
512 	if (header == 0)
513 		return 0;
514 
515 	while (ttl-- > 0) {
516 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 			return pos;
518 
519 		pos = PCI_EXT_CAP_NEXT(header);
520 		if (pos < PCI_CFG_SPACE_SIZE)
521 			break;
522 
523 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 			break;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 
531 /**
532  * pci_find_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @cap: capability code
535  *
536  * Returns the address of the requested extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Possible values for @cap:
539  *
540  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
541  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
542  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
543  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
544  */
pci_find_ext_capability(struct pci_dev * dev,int cap)545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 	return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 	int rc, ttl = PCI_FIND_CAP_TTL;
554 	u8 cap, mask;
555 
556 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 		mask = HT_3BIT_CAP_MASK;
558 	else
559 		mask = HT_5BIT_CAP_MASK;
560 
561 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 				      PCI_CAP_ID_HT, &ttl);
563 	while (pos) {
564 		rc = pci_read_config_byte(dev, pos + 3, &cap);
565 		if (rc != PCIBIOS_SUCCESSFUL)
566 			return 0;
567 
568 		if ((cap & mask) == ht_cap)
569 			return pos;
570 
571 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 					      pos + PCI_CAP_LIST_NEXT,
573 					      PCI_CAP_ID_HT, &ttl);
574 	}
575 
576 	return 0;
577 }
578 /**
579  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580  * @dev: PCI device to query
581  * @pos: Position from which to continue searching
582  * @ht_cap: Hypertransport capability code
583  *
584  * To be used in conjunction with pci_find_ht_capability() to search for
585  * all capabilities matching @ht_cap. @pos should always be a value returned
586  * from pci_find_ht_capability().
587  *
588  * NB. To be 100% safe against broken PCI devices, the caller should take
589  * steps to avoid an infinite loop.
590  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 
597 /**
598  * pci_find_ht_capability - query a device's Hypertransport capabilities
599  * @dev: PCI device to query
600  * @ht_cap: Hypertransport capability code
601  *
602  * Tell if a device supports a given Hypertransport capability.
603  * Returns an address within the device's PCI configuration space
604  * or 0 in case the device does not support the request capability.
605  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606  * which has a Hypertransport capability matching @ht_cap.
607  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 	int pos;
611 
612 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 	if (pos)
614 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615 
616 	return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 
620 /**
621  * pci_find_parent_resource - return resource region of parent bus of given region
622  * @dev: PCI device structure contains resources to be searched
623  * @res: child resource record for which parent is sought
624  *
625  *  For given resource region of given device, return the resource
626  *  region of parent bus the given region is contained in.
627  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)628 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
629 					  struct resource *res)
630 {
631 	const struct pci_bus *bus = dev->bus;
632 	struct resource *r;
633 	int i;
634 
635 	pci_bus_for_each_resource(bus, r, i) {
636 		if (!r)
637 			continue;
638 		if (resource_contains(r, res)) {
639 
640 			/*
641 			 * If the window is prefetchable but the BAR is
642 			 * not, the allocator made a mistake.
643 			 */
644 			if (r->flags & IORESOURCE_PREFETCH &&
645 			    !(res->flags & IORESOURCE_PREFETCH))
646 				return NULL;
647 
648 			/*
649 			 * If we're below a transparent bridge, there may
650 			 * be both a positively-decoded aperture and a
651 			 * subtractively-decoded region that contain the BAR.
652 			 * We want the positively-decoded one, so this depends
653 			 * on pci_bus_for_each_resource() giving us those
654 			 * first.
655 			 */
656 			return r;
657 		}
658 	}
659 	return NULL;
660 }
661 EXPORT_SYMBOL(pci_find_parent_resource);
662 
663 /**
664  * pci_find_resource - Return matching PCI device resource
665  * @dev: PCI device to query
666  * @res: Resource to look for
667  *
668  * Goes over standard PCI resources (BARs) and checks if the given resource
669  * is partially or fully contained in any of them. In that case the
670  * matching resource is returned, %NULL otherwise.
671  */
pci_find_resource(struct pci_dev * dev,struct resource * res)672 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
673 {
674 	int i;
675 
676 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
677 		struct resource *r = &dev->resource[i];
678 
679 		if (r->start && resource_contains(r, res))
680 			return r;
681 	}
682 
683 	return NULL;
684 }
685 EXPORT_SYMBOL(pci_find_resource);
686 
687 /**
688  * pci_find_pcie_root_port - return PCIe Root Port
689  * @dev: PCI device to query
690  *
691  * Traverse up the parent chain and return the PCIe Root Port PCI Device
692  * for a given PCI Device.
693  */
pci_find_pcie_root_port(struct pci_dev * dev)694 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
695 {
696 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
697 
698 	bridge = pci_upstream_bridge(dev);
699 	while (bridge && pci_is_pcie(bridge)) {
700 		highest_pcie_bridge = bridge;
701 		bridge = pci_upstream_bridge(bridge);
702 	}
703 
704 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
705 		return NULL;
706 
707 	return highest_pcie_bridge;
708 }
709 EXPORT_SYMBOL(pci_find_pcie_root_port);
710 
711 /**
712  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713  * @dev: the PCI device to operate on
714  * @pos: config space offset of status word
715  * @mask: mask of bit(s) to care about in status word
716  *
717  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
718  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)719 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
720 {
721 	int i;
722 
723 	/* Wait for Transaction Pending bit clean */
724 	for (i = 0; i < 4; i++) {
725 		u16 status;
726 		if (i)
727 			msleep((1 << (i - 1)) * 100);
728 
729 		pci_read_config_word(dev, pos, &status);
730 		if (!(status & mask))
731 			return 1;
732 	}
733 
734 	return 0;
735 }
736 
737 /**
738  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
739  * @dev: PCI device to have its BARs restored
740  *
741  * Restore the BAR values for a given device, so as to make it
742  * accessible by its driver.
743  */
pci_restore_bars(struct pci_dev * dev)744 static void pci_restore_bars(struct pci_dev *dev)
745 {
746 	int i;
747 
748 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
749 		pci_update_resource(dev, i);
750 }
751 
752 static const struct pci_platform_pm_ops *pci_platform_pm;
753 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)754 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
755 {
756 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
757 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
758 		return -EINVAL;
759 	pci_platform_pm = ops;
760 	return 0;
761 }
762 
platform_pci_power_manageable(struct pci_dev * dev)763 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
764 {
765 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
766 }
767 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)768 static inline int platform_pci_set_power_state(struct pci_dev *dev,
769 					       pci_power_t t)
770 {
771 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
772 }
773 
platform_pci_get_power_state(struct pci_dev * dev)774 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
775 {
776 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
777 }
778 
platform_pci_choose_state(struct pci_dev * dev)779 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
780 {
781 	return pci_platform_pm ?
782 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
783 }
784 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)785 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
786 {
787 	return pci_platform_pm ?
788 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
789 }
790 
platform_pci_need_resume(struct pci_dev * dev)791 static inline bool platform_pci_need_resume(struct pci_dev *dev)
792 {
793 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
794 }
795 
796 /**
797  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
798  *                           given PCI device
799  * @dev: PCI device to handle.
800  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
801  *
802  * RETURN VALUE:
803  * -EINVAL if the requested state is invalid.
804  * -EIO if device does not support PCI PM or its PM capabilities register has a
805  * wrong version, or device doesn't support the requested state.
806  * 0 if device already is in the requested state.
807  * 0 if device's power state has been successfully changed.
808  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)809 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
810 {
811 	u16 pmcsr;
812 	bool need_restore = false;
813 
814 	/* Check if we're already there */
815 	if (dev->current_state == state)
816 		return 0;
817 
818 	if (!dev->pm_cap)
819 		return -EIO;
820 
821 	if (state < PCI_D0 || state > PCI_D3hot)
822 		return -EINVAL;
823 
824 	/* Validate current state:
825 	 * Can enter D0 from any state, but if we can only go deeper
826 	 * to sleep if we're already in a low power state
827 	 */
828 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
829 	    && dev->current_state > state) {
830 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
831 			dev->current_state, state);
832 		return -EINVAL;
833 	}
834 
835 	/* check if this device supports the desired state */
836 	if ((state == PCI_D1 && !dev->d1_support)
837 	   || (state == PCI_D2 && !dev->d2_support))
838 		return -EIO;
839 
840 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
841 
842 	/* If we're (effectively) in D3, force entire word to 0.
843 	 * This doesn't affect PME_Status, disables PME_En, and
844 	 * sets PowerState to 0.
845 	 */
846 	switch (dev->current_state) {
847 	case PCI_D0:
848 	case PCI_D1:
849 	case PCI_D2:
850 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
851 		pmcsr |= state;
852 		break;
853 	case PCI_D3hot:
854 	case PCI_D3cold:
855 	case PCI_UNKNOWN: /* Boot-up */
856 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
857 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
858 			need_restore = true;
859 		/* Fall-through: force to D0 */
860 	default:
861 		pmcsr = 0;
862 		break;
863 	}
864 
865 	/* enter specified state */
866 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
867 
868 	/* Mandatory power management transition delays */
869 	/* see PCI PM 1.1 5.6.1 table 18 */
870 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
871 		pci_dev_d3_sleep(dev);
872 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
873 		udelay(PCI_PM_D2_DELAY);
874 
875 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
876 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
877 	if (dev->current_state != state && printk_ratelimit())
878 		pci_info(dev, "Refused to change power state, currently in D%d\n",
879 			 dev->current_state);
880 
881 	/*
882 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
883 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
884 	 * from D3hot to D0 _may_ perform an internal reset, thereby
885 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
886 	 * For example, at least some versions of the 3c905B and the
887 	 * 3c556B exhibit this behaviour.
888 	 *
889 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
890 	 * devices in a D3hot state at boot.  Consequently, we need to
891 	 * restore at least the BARs so that the device will be
892 	 * accessible to its driver.
893 	 */
894 	if (need_restore)
895 		pci_restore_bars(dev);
896 
897 	if (dev->bus->self)
898 		pcie_aspm_pm_state_change(dev->bus->self);
899 
900 	return 0;
901 }
902 
903 /**
904  * pci_update_current_state - Read power state of given device and cache it
905  * @dev: PCI device to handle.
906  * @state: State to cache in case the device doesn't have the PM capability
907  *
908  * The power state is read from the PMCSR register, which however is
909  * inaccessible in D3cold.  The platform firmware is therefore queried first
910  * to detect accessibility of the register.  In case the platform firmware
911  * reports an incorrect state or the device isn't power manageable by the
912  * platform at all, we try to detect D3cold by testing accessibility of the
913  * vendor ID in config space.
914  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)915 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
916 {
917 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
918 	    !pci_device_is_present(dev)) {
919 		dev->current_state = PCI_D3cold;
920 	} else if (dev->pm_cap) {
921 		u16 pmcsr;
922 
923 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
924 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
925 	} else {
926 		dev->current_state = state;
927 	}
928 }
929 
930 /**
931  * pci_platform_power_transition - Use platform to change device power state
932  * @dev: PCI device to handle.
933  * @state: State to put the device into.
934  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)935 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
936 {
937 	int error;
938 
939 	if (platform_pci_power_manageable(dev)) {
940 		error = platform_pci_set_power_state(dev, state);
941 		if (!error)
942 			pci_update_current_state(dev, state);
943 	} else
944 		error = -ENODEV;
945 
946 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
947 		dev->current_state = PCI_D0;
948 
949 	return error;
950 }
951 
952 /**
953  * pci_wakeup - Wake up a PCI device
954  * @pci_dev: Device to handle.
955  * @ign: ignored parameter
956  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)957 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
958 {
959 	pci_wakeup_event(pci_dev);
960 	pm_request_resume(&pci_dev->dev);
961 	return 0;
962 }
963 
964 /**
965  * pci_wakeup_bus - Walk given bus and wake up devices on it
966  * @bus: Top bus of the subtree to walk.
967  */
pci_wakeup_bus(struct pci_bus * bus)968 void pci_wakeup_bus(struct pci_bus *bus)
969 {
970 	if (bus)
971 		pci_walk_bus(bus, pci_wakeup, NULL);
972 }
973 
974 /**
975  * __pci_start_power_transition - Start power transition of a PCI device
976  * @dev: PCI device to handle.
977  * @state: State to put the device into.
978  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)979 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
980 {
981 	if (state == PCI_D0) {
982 		pci_platform_power_transition(dev, PCI_D0);
983 		/*
984 		 * Mandatory power management transition delays, see
985 		 * PCI Express Base Specification Revision 2.0 Section
986 		 * 6.6.1: Conventional Reset.  Do not delay for
987 		 * devices powered on/off by corresponding bridge,
988 		 * because have already delayed for the bridge.
989 		 */
990 		if (dev->runtime_d3cold) {
991 			if (dev->d3cold_delay)
992 				msleep(dev->d3cold_delay);
993 			/*
994 			 * When powering on a bridge from D3cold, the
995 			 * whole hierarchy may be powered on into
996 			 * D0uninitialized state, resume them to give
997 			 * them a chance to suspend again
998 			 */
999 			pci_wakeup_bus(dev->subordinate);
1000 		}
1001 	}
1002 }
1003 
1004 /**
1005  * __pci_dev_set_current_state - Set current state of a PCI device
1006  * @dev: Device to handle
1007  * @data: pointer to state to be set
1008  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1009 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1010 {
1011 	pci_power_t state = *(pci_power_t *)data;
1012 
1013 	dev->current_state = state;
1014 	return 0;
1015 }
1016 
1017 /**
1018  * pci_bus_set_current_state - Walk given bus and set current state of devices
1019  * @bus: Top bus of the subtree to walk.
1020  * @state: state to be set
1021  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1022 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1023 {
1024 	if (bus)
1025 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1026 }
1027 
1028 /**
1029  * __pci_complete_power_transition - Complete power transition of a PCI device
1030  * @dev: PCI device to handle.
1031  * @state: State to put the device into.
1032  *
1033  * This function should not be called directly by device drivers.
1034  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)1035 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1036 {
1037 	int ret;
1038 
1039 	if (state <= PCI_D0)
1040 		return -EINVAL;
1041 	ret = pci_platform_power_transition(dev, state);
1042 	/* Power off the bridge may power off the whole hierarchy */
1043 	if (!ret && state == PCI_D3cold)
1044 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1045 	return ret;
1046 }
1047 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1048 
1049 /**
1050  * pci_set_power_state - Set the power state of a PCI device
1051  * @dev: PCI device to handle.
1052  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1053  *
1054  * Transition a device to a new power state, using the platform firmware and/or
1055  * the device's PCI PM registers.
1056  *
1057  * RETURN VALUE:
1058  * -EINVAL if the requested state is invalid.
1059  * -EIO if device does not support PCI PM or its PM capabilities register has a
1060  * wrong version, or device doesn't support the requested state.
1061  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1062  * 0 if device already is in the requested state.
1063  * 0 if the transition is to D3 but D3 is not supported.
1064  * 0 if device's power state has been successfully changed.
1065  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1066 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1067 {
1068 	int error;
1069 
1070 	/* bound the state we're entering */
1071 	if (state > PCI_D3cold)
1072 		state = PCI_D3cold;
1073 	else if (state < PCI_D0)
1074 		state = PCI_D0;
1075 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1076 		/*
1077 		 * If the device or the parent bridge do not support PCI PM,
1078 		 * ignore the request if we're doing anything other than putting
1079 		 * it into D0 (which would only happen on boot).
1080 		 */
1081 		return 0;
1082 
1083 	/* Check if we're already there */
1084 	if (dev->current_state == state)
1085 		return 0;
1086 
1087 	__pci_start_power_transition(dev, state);
1088 
1089 	/* This device is quirked not to be put into D3, so
1090 	   don't put it in D3 */
1091 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1092 		return 0;
1093 
1094 	/*
1095 	 * To put device in D3cold, we put device into D3hot in native
1096 	 * way, then put device into D3cold with platform ops
1097 	 */
1098 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1099 					PCI_D3hot : state);
1100 
1101 	if (!__pci_complete_power_transition(dev, state))
1102 		error = 0;
1103 
1104 	return error;
1105 }
1106 EXPORT_SYMBOL(pci_set_power_state);
1107 
1108 /**
1109  * pci_power_up - Put the given device into D0 forcibly
1110  * @dev: PCI device to power up
1111  */
pci_power_up(struct pci_dev * dev)1112 void pci_power_up(struct pci_dev *dev)
1113 {
1114 	__pci_start_power_transition(dev, PCI_D0);
1115 	pci_raw_set_power_state(dev, PCI_D0);
1116 	pci_update_current_state(dev, PCI_D0);
1117 }
1118 
1119 /**
1120  * pci_choose_state - Choose the power state of a PCI device
1121  * @dev: PCI device to be suspended
1122  * @state: target sleep state for the whole system. This is the value
1123  *	that is passed to suspend() function.
1124  *
1125  * Returns PCI power state suitable for given device and given system
1126  * message.
1127  */
1128 
pci_choose_state(struct pci_dev * dev,pm_message_t state)1129 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1130 {
1131 	pci_power_t ret;
1132 
1133 	if (!dev->pm_cap)
1134 		return PCI_D0;
1135 
1136 	ret = platform_pci_choose_state(dev);
1137 	if (ret != PCI_POWER_ERROR)
1138 		return ret;
1139 
1140 	switch (state.event) {
1141 	case PM_EVENT_ON:
1142 		return PCI_D0;
1143 	case PM_EVENT_FREEZE:
1144 	case PM_EVENT_PRETHAW:
1145 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1146 	case PM_EVENT_SUSPEND:
1147 	case PM_EVENT_HIBERNATE:
1148 		return PCI_D3hot;
1149 	default:
1150 		pci_info(dev, "unrecognized suspend event %d\n",
1151 			 state.event);
1152 		BUG();
1153 	}
1154 	return PCI_D0;
1155 }
1156 EXPORT_SYMBOL(pci_choose_state);
1157 
1158 #define PCI_EXP_SAVE_REGS	7
1159 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1160 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1161 						       u16 cap, bool extended)
1162 {
1163 	struct pci_cap_saved_state *tmp;
1164 
1165 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1166 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1167 			return tmp;
1168 	}
1169 	return NULL;
1170 }
1171 
pci_find_saved_cap(struct pci_dev * dev,char cap)1172 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1173 {
1174 	return _pci_find_saved_cap(dev, cap, false);
1175 }
1176 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1177 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1178 {
1179 	return _pci_find_saved_cap(dev, cap, true);
1180 }
1181 
pci_save_pcie_state(struct pci_dev * dev)1182 static int pci_save_pcie_state(struct pci_dev *dev)
1183 {
1184 	int i = 0;
1185 	struct pci_cap_saved_state *save_state;
1186 	u16 *cap;
1187 
1188 	if (!pci_is_pcie(dev))
1189 		return 0;
1190 
1191 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1192 	if (!save_state) {
1193 		pci_err(dev, "buffer not found in %s\n", __func__);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	cap = (u16 *)&save_state->cap.data[0];
1198 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1199 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1200 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1201 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1202 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1203 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1204 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1205 
1206 	return 0;
1207 }
1208 
pci_restore_pcie_state(struct pci_dev * dev)1209 static void pci_restore_pcie_state(struct pci_dev *dev)
1210 {
1211 	int i = 0;
1212 	struct pci_cap_saved_state *save_state;
1213 	u16 *cap;
1214 
1215 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1216 	if (!save_state)
1217 		return;
1218 
1219 	cap = (u16 *)&save_state->cap.data[0];
1220 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1221 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1222 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1223 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1224 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1225 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1226 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1227 }
1228 
1229 
pci_save_pcix_state(struct pci_dev * dev)1230 static int pci_save_pcix_state(struct pci_dev *dev)
1231 {
1232 	int pos;
1233 	struct pci_cap_saved_state *save_state;
1234 
1235 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1236 	if (!pos)
1237 		return 0;
1238 
1239 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1240 	if (!save_state) {
1241 		pci_err(dev, "buffer not found in %s\n", __func__);
1242 		return -ENOMEM;
1243 	}
1244 
1245 	pci_read_config_word(dev, pos + PCI_X_CMD,
1246 			     (u16 *)save_state->cap.data);
1247 
1248 	return 0;
1249 }
1250 
pci_restore_pcix_state(struct pci_dev * dev)1251 static void pci_restore_pcix_state(struct pci_dev *dev)
1252 {
1253 	int i = 0, pos;
1254 	struct pci_cap_saved_state *save_state;
1255 	u16 *cap;
1256 
1257 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1258 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1259 	if (!save_state || !pos)
1260 		return;
1261 	cap = (u16 *)&save_state->cap.data[0];
1262 
1263 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1264 }
1265 
1266 
1267 /**
1268  * pci_save_state - save the PCI configuration space of a device before suspending
1269  * @dev: - PCI device that we're dealing with
1270  */
pci_save_state(struct pci_dev * dev)1271 int pci_save_state(struct pci_dev *dev)
1272 {
1273 	int i;
1274 	/* XXX: 100% dword access ok here? */
1275 	for (i = 0; i < 16; i++)
1276 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1277 	dev->state_saved = true;
1278 
1279 	i = pci_save_pcie_state(dev);
1280 	if (i != 0)
1281 		return i;
1282 
1283 	i = pci_save_pcix_state(dev);
1284 	if (i != 0)
1285 		return i;
1286 
1287 	return pci_save_vc_state(dev);
1288 }
1289 EXPORT_SYMBOL(pci_save_state);
1290 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1291 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1292 				     u32 saved_val, int retry, bool force)
1293 {
1294 	u32 val;
1295 
1296 	pci_read_config_dword(pdev, offset, &val);
1297 	if (!force && val == saved_val)
1298 		return;
1299 
1300 	for (;;) {
1301 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1302 			offset, val, saved_val);
1303 		pci_write_config_dword(pdev, offset, saved_val);
1304 		if (retry-- <= 0)
1305 			return;
1306 
1307 		pci_read_config_dword(pdev, offset, &val);
1308 		if (val == saved_val)
1309 			return;
1310 
1311 		mdelay(1);
1312 	}
1313 }
1314 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1315 static void pci_restore_config_space_range(struct pci_dev *pdev,
1316 					   int start, int end, int retry,
1317 					   bool force)
1318 {
1319 	int index;
1320 
1321 	for (index = end; index >= start; index--)
1322 		pci_restore_config_dword(pdev, 4 * index,
1323 					 pdev->saved_config_space[index],
1324 					 retry, force);
1325 }
1326 
pci_restore_config_space(struct pci_dev * pdev)1327 static void pci_restore_config_space(struct pci_dev *pdev)
1328 {
1329 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1330 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1331 		/* Restore BARs before the command register. */
1332 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1333 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1334 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1335 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1336 
1337 		/*
1338 		 * Force rewriting of prefetch registers to avoid S3 resume
1339 		 * issues on Intel PCI bridges that occur when these
1340 		 * registers are not explicitly written.
1341 		 */
1342 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1343 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1344 	} else {
1345 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1346 	}
1347 }
1348 
pci_restore_rebar_state(struct pci_dev * pdev)1349 static void pci_restore_rebar_state(struct pci_dev *pdev)
1350 {
1351 	unsigned int pos, nbars, i;
1352 	u32 ctrl;
1353 
1354 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1355 	if (!pos)
1356 		return;
1357 
1358 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1359 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1360 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1361 
1362 	for (i = 0; i < nbars; i++, pos += 8) {
1363 		struct resource *res;
1364 		int bar_idx, size;
1365 
1366 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1367 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1368 		res = pdev->resource + bar_idx;
1369 		size = ilog2(resource_size(res)) - 20;
1370 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1371 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1372 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1373 	}
1374 }
1375 
1376 /**
1377  * pci_restore_state - Restore the saved state of a PCI device
1378  * @dev: - PCI device that we're dealing with
1379  */
pci_restore_state(struct pci_dev * dev)1380 void pci_restore_state(struct pci_dev *dev)
1381 {
1382 	if (!dev->state_saved)
1383 		return;
1384 
1385 	/* PCI Express register must be restored first */
1386 	pci_restore_pcie_state(dev);
1387 	pci_restore_pasid_state(dev);
1388 	pci_restore_pri_state(dev);
1389 	pci_restore_ats_state(dev);
1390 	pci_restore_vc_state(dev);
1391 	pci_restore_rebar_state(dev);
1392 
1393 	pci_cleanup_aer_error_status_regs(dev);
1394 
1395 	pci_restore_config_space(dev);
1396 
1397 	pci_restore_pcix_state(dev);
1398 	pci_restore_msi_state(dev);
1399 
1400 	/* Restore ACS and IOV configuration state */
1401 	pci_enable_acs(dev);
1402 	pci_restore_iov_state(dev);
1403 
1404 	dev->state_saved = false;
1405 }
1406 EXPORT_SYMBOL(pci_restore_state);
1407 
1408 struct pci_saved_state {
1409 	u32 config_space[16];
1410 	struct pci_cap_saved_data cap[0];
1411 };
1412 
1413 /**
1414  * pci_store_saved_state - Allocate and return an opaque struct containing
1415  *			   the device saved state.
1416  * @dev: PCI device that we're dealing with
1417  *
1418  * Return NULL if no state or error.
1419  */
pci_store_saved_state(struct pci_dev * dev)1420 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1421 {
1422 	struct pci_saved_state *state;
1423 	struct pci_cap_saved_state *tmp;
1424 	struct pci_cap_saved_data *cap;
1425 	size_t size;
1426 
1427 	if (!dev->state_saved)
1428 		return NULL;
1429 
1430 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1431 
1432 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1433 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1434 
1435 	state = kzalloc(size, GFP_KERNEL);
1436 	if (!state)
1437 		return NULL;
1438 
1439 	memcpy(state->config_space, dev->saved_config_space,
1440 	       sizeof(state->config_space));
1441 
1442 	cap = state->cap;
1443 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1444 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1445 		memcpy(cap, &tmp->cap, len);
1446 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1447 	}
1448 	/* Empty cap_save terminates list */
1449 
1450 	return state;
1451 }
1452 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1453 
1454 /**
1455  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1456  * @dev: PCI device that we're dealing with
1457  * @state: Saved state returned from pci_store_saved_state()
1458  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1459 int pci_load_saved_state(struct pci_dev *dev,
1460 			 struct pci_saved_state *state)
1461 {
1462 	struct pci_cap_saved_data *cap;
1463 
1464 	dev->state_saved = false;
1465 
1466 	if (!state)
1467 		return 0;
1468 
1469 	memcpy(dev->saved_config_space, state->config_space,
1470 	       sizeof(state->config_space));
1471 
1472 	cap = state->cap;
1473 	while (cap->size) {
1474 		struct pci_cap_saved_state *tmp;
1475 
1476 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1477 		if (!tmp || tmp->cap.size != cap->size)
1478 			return -EINVAL;
1479 
1480 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1481 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1482 		       sizeof(struct pci_cap_saved_data) + cap->size);
1483 	}
1484 
1485 	dev->state_saved = true;
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1489 
1490 /**
1491  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1492  *				   and free the memory allocated for it.
1493  * @dev: PCI device that we're dealing with
1494  * @state: Pointer to saved state returned from pci_store_saved_state()
1495  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1496 int pci_load_and_free_saved_state(struct pci_dev *dev,
1497 				  struct pci_saved_state **state)
1498 {
1499 	int ret = pci_load_saved_state(dev, *state);
1500 	kfree(*state);
1501 	*state = NULL;
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1505 
pcibios_enable_device(struct pci_dev * dev,int bars)1506 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1507 {
1508 	return pci_enable_resources(dev, bars);
1509 }
1510 
do_pci_enable_device(struct pci_dev * dev,int bars)1511 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1512 {
1513 	int err;
1514 	struct pci_dev *bridge;
1515 	u16 cmd;
1516 	u8 pin;
1517 
1518 	err = pci_set_power_state(dev, PCI_D0);
1519 	if (err < 0 && err != -EIO)
1520 		return err;
1521 
1522 	bridge = pci_upstream_bridge(dev);
1523 	if (bridge)
1524 		pcie_aspm_powersave_config_link(bridge);
1525 
1526 	err = pcibios_enable_device(dev, bars);
1527 	if (err < 0)
1528 		return err;
1529 	pci_fixup_device(pci_fixup_enable, dev);
1530 
1531 	if (dev->msi_enabled || dev->msix_enabled)
1532 		return 0;
1533 
1534 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1535 	if (pin) {
1536 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1537 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1538 			pci_write_config_word(dev, PCI_COMMAND,
1539 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 /**
1546  * pci_reenable_device - Resume abandoned device
1547  * @dev: PCI device to be resumed
1548  *
1549  *  Note this function is a backend of pci_default_resume and is not supposed
1550  *  to be called by normal code, write proper resume handler and use it instead.
1551  */
pci_reenable_device(struct pci_dev * dev)1552 int pci_reenable_device(struct pci_dev *dev)
1553 {
1554 	if (pci_is_enabled(dev))
1555 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(pci_reenable_device);
1559 
pci_enable_bridge(struct pci_dev * dev)1560 static void pci_enable_bridge(struct pci_dev *dev)
1561 {
1562 	struct pci_dev *bridge;
1563 	int retval;
1564 
1565 	bridge = pci_upstream_bridge(dev);
1566 	if (bridge)
1567 		pci_enable_bridge(bridge);
1568 
1569 	if (pci_is_enabled(dev)) {
1570 		if (!dev->is_busmaster)
1571 			pci_set_master(dev);
1572 		return;
1573 	}
1574 
1575 	retval = pci_enable_device(dev);
1576 	if (retval)
1577 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1578 			retval);
1579 	pci_set_master(dev);
1580 }
1581 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1582 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1583 {
1584 	struct pci_dev *bridge;
1585 	int err;
1586 	int i, bars = 0;
1587 
1588 	/*
1589 	 * Power state could be unknown at this point, either due to a fresh
1590 	 * boot or a device removal call.  So get the current power state
1591 	 * so that things like MSI message writing will behave as expected
1592 	 * (e.g. if the device really is in D0 at enable time).
1593 	 */
1594 	if (dev->pm_cap) {
1595 		u16 pmcsr;
1596 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1597 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1598 	}
1599 
1600 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1601 		return 0;		/* already enabled */
1602 
1603 	bridge = pci_upstream_bridge(dev);
1604 	if (bridge)
1605 		pci_enable_bridge(bridge);
1606 
1607 	/* only skip sriov related */
1608 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1609 		if (dev->resource[i].flags & flags)
1610 			bars |= (1 << i);
1611 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1612 		if (dev->resource[i].flags & flags)
1613 			bars |= (1 << i);
1614 
1615 	err = do_pci_enable_device(dev, bars);
1616 	if (err < 0)
1617 		atomic_dec(&dev->enable_cnt);
1618 	return err;
1619 }
1620 
1621 /**
1622  * pci_enable_device_io - Initialize a device for use with IO space
1623  * @dev: PCI device to be initialized
1624  *
1625  *  Initialize device before it's used by a driver. Ask low-level code
1626  *  to enable I/O resources. Wake up the device if it was suspended.
1627  *  Beware, this function can fail.
1628  */
pci_enable_device_io(struct pci_dev * dev)1629 int pci_enable_device_io(struct pci_dev *dev)
1630 {
1631 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1632 }
1633 EXPORT_SYMBOL(pci_enable_device_io);
1634 
1635 /**
1636  * pci_enable_device_mem - Initialize a device for use with Memory space
1637  * @dev: PCI device to be initialized
1638  *
1639  *  Initialize device before it's used by a driver. Ask low-level code
1640  *  to enable Memory resources. Wake up the device if it was suspended.
1641  *  Beware, this function can fail.
1642  */
pci_enable_device_mem(struct pci_dev * dev)1643 int pci_enable_device_mem(struct pci_dev *dev)
1644 {
1645 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1646 }
1647 EXPORT_SYMBOL(pci_enable_device_mem);
1648 
1649 /**
1650  * pci_enable_device - Initialize device before it's used by a driver.
1651  * @dev: PCI device to be initialized
1652  *
1653  *  Initialize device before it's used by a driver. Ask low-level code
1654  *  to enable I/O and memory. Wake up the device if it was suspended.
1655  *  Beware, this function can fail.
1656  *
1657  *  Note we don't actually enable the device many times if we call
1658  *  this function repeatedly (we just increment the count).
1659  */
pci_enable_device(struct pci_dev * dev)1660 int pci_enable_device(struct pci_dev *dev)
1661 {
1662 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1663 }
1664 EXPORT_SYMBOL(pci_enable_device);
1665 
1666 /*
1667  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1668  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1669  * there's no need to track it separately.  pci_devres is initialized
1670  * when a device is enabled using managed PCI device enable interface.
1671  */
1672 struct pci_devres {
1673 	unsigned int enabled:1;
1674 	unsigned int pinned:1;
1675 	unsigned int orig_intx:1;
1676 	unsigned int restore_intx:1;
1677 	unsigned int mwi:1;
1678 	u32 region_mask;
1679 };
1680 
pcim_release(struct device * gendev,void * res)1681 static void pcim_release(struct device *gendev, void *res)
1682 {
1683 	struct pci_dev *dev = to_pci_dev(gendev);
1684 	struct pci_devres *this = res;
1685 	int i;
1686 
1687 	if (dev->msi_enabled)
1688 		pci_disable_msi(dev);
1689 	if (dev->msix_enabled)
1690 		pci_disable_msix(dev);
1691 
1692 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1693 		if (this->region_mask & (1 << i))
1694 			pci_release_region(dev, i);
1695 
1696 	if (this->mwi)
1697 		pci_clear_mwi(dev);
1698 
1699 	if (this->restore_intx)
1700 		pci_intx(dev, this->orig_intx);
1701 
1702 	if (this->enabled && !this->pinned)
1703 		pci_disable_device(dev);
1704 }
1705 
get_pci_dr(struct pci_dev * pdev)1706 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1707 {
1708 	struct pci_devres *dr, *new_dr;
1709 
1710 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1711 	if (dr)
1712 		return dr;
1713 
1714 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1715 	if (!new_dr)
1716 		return NULL;
1717 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1718 }
1719 
find_pci_dr(struct pci_dev * pdev)1720 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1721 {
1722 	if (pci_is_managed(pdev))
1723 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1724 	return NULL;
1725 }
1726 
1727 /**
1728  * pcim_enable_device - Managed pci_enable_device()
1729  * @pdev: PCI device to be initialized
1730  *
1731  * Managed pci_enable_device().
1732  */
pcim_enable_device(struct pci_dev * pdev)1733 int pcim_enable_device(struct pci_dev *pdev)
1734 {
1735 	struct pci_devres *dr;
1736 	int rc;
1737 
1738 	dr = get_pci_dr(pdev);
1739 	if (unlikely(!dr))
1740 		return -ENOMEM;
1741 	if (dr->enabled)
1742 		return 0;
1743 
1744 	rc = pci_enable_device(pdev);
1745 	if (!rc) {
1746 		pdev->is_managed = 1;
1747 		dr->enabled = 1;
1748 	}
1749 	return rc;
1750 }
1751 EXPORT_SYMBOL(pcim_enable_device);
1752 
1753 /**
1754  * pcim_pin_device - Pin managed PCI device
1755  * @pdev: PCI device to pin
1756  *
1757  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1758  * driver detach.  @pdev must have been enabled with
1759  * pcim_enable_device().
1760  */
pcim_pin_device(struct pci_dev * pdev)1761 void pcim_pin_device(struct pci_dev *pdev)
1762 {
1763 	struct pci_devres *dr;
1764 
1765 	dr = find_pci_dr(pdev);
1766 	WARN_ON(!dr || !dr->enabled);
1767 	if (dr)
1768 		dr->pinned = 1;
1769 }
1770 EXPORT_SYMBOL(pcim_pin_device);
1771 
1772 /*
1773  * pcibios_add_device - provide arch specific hooks when adding device dev
1774  * @dev: the PCI device being added
1775  *
1776  * Permits the platform to provide architecture specific functionality when
1777  * devices are added. This is the default implementation. Architecture
1778  * implementations can override this.
1779  */
pcibios_add_device(struct pci_dev * dev)1780 int __weak pcibios_add_device(struct pci_dev *dev)
1781 {
1782 	return 0;
1783 }
1784 
1785 /**
1786  * pcibios_release_device - provide arch specific hooks when releasing device dev
1787  * @dev: the PCI device being released
1788  *
1789  * Permits the platform to provide architecture specific functionality when
1790  * devices are released. This is the default implementation. Architecture
1791  * implementations can override this.
1792  */
pcibios_release_device(struct pci_dev * dev)1793 void __weak pcibios_release_device(struct pci_dev *dev) {}
1794 
1795 /**
1796  * pcibios_disable_device - disable arch specific PCI resources for device dev
1797  * @dev: the PCI device to disable
1798  *
1799  * Disables architecture specific PCI resources for the device. This
1800  * is the default implementation. Architecture implementations can
1801  * override this.
1802  */
pcibios_disable_device(struct pci_dev * dev)1803 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1804 
1805 /**
1806  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1807  * @irq: ISA IRQ to penalize
1808  * @active: IRQ active or not
1809  *
1810  * Permits the platform to provide architecture-specific functionality when
1811  * penalizing ISA IRQs. This is the default implementation. Architecture
1812  * implementations can override this.
1813  */
pcibios_penalize_isa_irq(int irq,int active)1814 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1815 
do_pci_disable_device(struct pci_dev * dev)1816 static void do_pci_disable_device(struct pci_dev *dev)
1817 {
1818 	u16 pci_command;
1819 
1820 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1821 	if (pci_command & PCI_COMMAND_MASTER) {
1822 		pci_command &= ~PCI_COMMAND_MASTER;
1823 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1824 	}
1825 
1826 	pcibios_disable_device(dev);
1827 }
1828 
1829 /**
1830  * pci_disable_enabled_device - Disable device without updating enable_cnt
1831  * @dev: PCI device to disable
1832  *
1833  * NOTE: This function is a backend of PCI power management routines and is
1834  * not supposed to be called drivers.
1835  */
pci_disable_enabled_device(struct pci_dev * dev)1836 void pci_disable_enabled_device(struct pci_dev *dev)
1837 {
1838 	if (pci_is_enabled(dev))
1839 		do_pci_disable_device(dev);
1840 }
1841 
1842 /**
1843  * pci_disable_device - Disable PCI device after use
1844  * @dev: PCI device to be disabled
1845  *
1846  * Signal to the system that the PCI device is not in use by the system
1847  * anymore.  This only involves disabling PCI bus-mastering, if active.
1848  *
1849  * Note we don't actually disable the device until all callers of
1850  * pci_enable_device() have called pci_disable_device().
1851  */
pci_disable_device(struct pci_dev * dev)1852 void pci_disable_device(struct pci_dev *dev)
1853 {
1854 	struct pci_devres *dr;
1855 
1856 	dr = find_pci_dr(dev);
1857 	if (dr)
1858 		dr->enabled = 0;
1859 
1860 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1861 		      "disabling already-disabled device");
1862 
1863 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1864 		return;
1865 
1866 	do_pci_disable_device(dev);
1867 
1868 	dev->is_busmaster = 0;
1869 }
1870 EXPORT_SYMBOL(pci_disable_device);
1871 
1872 /**
1873  * pcibios_set_pcie_reset_state - set reset state for device dev
1874  * @dev: the PCIe device reset
1875  * @state: Reset state to enter into
1876  *
1877  *
1878  * Sets the PCIe reset state for the device. This is the default
1879  * implementation. Architecture implementations can override this.
1880  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1881 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1882 					enum pcie_reset_state state)
1883 {
1884 	return -EINVAL;
1885 }
1886 
1887 /**
1888  * pci_set_pcie_reset_state - set reset state for device dev
1889  * @dev: the PCIe device reset
1890  * @state: Reset state to enter into
1891  *
1892  *
1893  * Sets the PCI reset state for the device.
1894  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1895 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1896 {
1897 	return pcibios_set_pcie_reset_state(dev, state);
1898 }
1899 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1900 
1901 /**
1902  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1903  * @dev: PCIe root port or event collector.
1904  */
pcie_clear_root_pme_status(struct pci_dev * dev)1905 void pcie_clear_root_pme_status(struct pci_dev *dev)
1906 {
1907 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1908 }
1909 
1910 /**
1911  * pci_check_pme_status - Check if given device has generated PME.
1912  * @dev: Device to check.
1913  *
1914  * Check the PME status of the device and if set, clear it and clear PME enable
1915  * (if set).  Return 'true' if PME status and PME enable were both set or
1916  * 'false' otherwise.
1917  */
pci_check_pme_status(struct pci_dev * dev)1918 bool pci_check_pme_status(struct pci_dev *dev)
1919 {
1920 	int pmcsr_pos;
1921 	u16 pmcsr;
1922 	bool ret = false;
1923 
1924 	if (!dev->pm_cap)
1925 		return false;
1926 
1927 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1928 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1929 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1930 		return false;
1931 
1932 	/* Clear PME status. */
1933 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1934 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1935 		/* Disable PME to avoid interrupt flood. */
1936 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1937 		ret = true;
1938 	}
1939 
1940 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1941 
1942 	return ret;
1943 }
1944 
1945 /**
1946  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1947  * @dev: Device to handle.
1948  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1949  *
1950  * Check if @dev has generated PME and queue a resume request for it in that
1951  * case.
1952  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1953 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1954 {
1955 	if (pme_poll_reset && dev->pme_poll)
1956 		dev->pme_poll = false;
1957 
1958 	if (pci_check_pme_status(dev)) {
1959 		pci_wakeup_event(dev);
1960 		pm_request_resume(&dev->dev);
1961 	}
1962 	return 0;
1963 }
1964 
1965 /**
1966  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1967  * @bus: Top bus of the subtree to walk.
1968  */
pci_pme_wakeup_bus(struct pci_bus * bus)1969 void pci_pme_wakeup_bus(struct pci_bus *bus)
1970 {
1971 	if (bus)
1972 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1973 }
1974 
1975 
1976 /**
1977  * pci_pme_capable - check the capability of PCI device to generate PME#
1978  * @dev: PCI device to handle.
1979  * @state: PCI state from which device will issue PME#.
1980  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1981 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1982 {
1983 	if (!dev->pm_cap)
1984 		return false;
1985 
1986 	return !!(dev->pme_support & (1 << state));
1987 }
1988 EXPORT_SYMBOL(pci_pme_capable);
1989 
pci_pme_list_scan(struct work_struct * work)1990 static void pci_pme_list_scan(struct work_struct *work)
1991 {
1992 	struct pci_pme_device *pme_dev, *n;
1993 
1994 	mutex_lock(&pci_pme_list_mutex);
1995 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1996 		if (pme_dev->dev->pme_poll) {
1997 			struct pci_dev *bridge;
1998 
1999 			bridge = pme_dev->dev->bus->self;
2000 			/*
2001 			 * If bridge is in low power state, the
2002 			 * configuration space of subordinate devices
2003 			 * may be not accessible
2004 			 */
2005 			if (bridge && bridge->current_state != PCI_D0)
2006 				continue;
2007 			/*
2008 			 * If the device is in D3cold it should not be
2009 			 * polled either.
2010 			 */
2011 			if (pme_dev->dev->current_state == PCI_D3cold)
2012 				continue;
2013 
2014 			pci_pme_wakeup(pme_dev->dev, NULL);
2015 		} else {
2016 			list_del(&pme_dev->list);
2017 			kfree(pme_dev);
2018 		}
2019 	}
2020 	if (!list_empty(&pci_pme_list))
2021 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2022 				   msecs_to_jiffies(PME_TIMEOUT));
2023 	mutex_unlock(&pci_pme_list_mutex);
2024 }
2025 
__pci_pme_active(struct pci_dev * dev,bool enable)2026 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2027 {
2028 	u16 pmcsr;
2029 
2030 	if (!dev->pme_support)
2031 		return;
2032 
2033 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2034 	/* Clear PME_Status by writing 1 to it and enable PME# */
2035 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2036 	if (!enable)
2037 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2038 
2039 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2040 }
2041 
2042 /**
2043  * pci_pme_restore - Restore PME configuration after config space restore.
2044  * @dev: PCI device to update.
2045  */
pci_pme_restore(struct pci_dev * dev)2046 void pci_pme_restore(struct pci_dev *dev)
2047 {
2048 	u16 pmcsr;
2049 
2050 	if (!dev->pme_support)
2051 		return;
2052 
2053 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2054 	if (dev->wakeup_prepared) {
2055 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2056 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2057 	} else {
2058 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2059 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2060 	}
2061 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2062 }
2063 
2064 /**
2065  * pci_pme_active - enable or disable PCI device's PME# function
2066  * @dev: PCI device to handle.
2067  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2068  *
2069  * The caller must verify that the device is capable of generating PME# before
2070  * calling this function with @enable equal to 'true'.
2071  */
pci_pme_active(struct pci_dev * dev,bool enable)2072 void pci_pme_active(struct pci_dev *dev, bool enable)
2073 {
2074 	__pci_pme_active(dev, enable);
2075 
2076 	/*
2077 	 * PCI (as opposed to PCIe) PME requires that the device have
2078 	 * its PME# line hooked up correctly. Not all hardware vendors
2079 	 * do this, so the PME never gets delivered and the device
2080 	 * remains asleep. The easiest way around this is to
2081 	 * periodically walk the list of suspended devices and check
2082 	 * whether any have their PME flag set. The assumption is that
2083 	 * we'll wake up often enough anyway that this won't be a huge
2084 	 * hit, and the power savings from the devices will still be a
2085 	 * win.
2086 	 *
2087 	 * Although PCIe uses in-band PME message instead of PME# line
2088 	 * to report PME, PME does not work for some PCIe devices in
2089 	 * reality.  For example, there are devices that set their PME
2090 	 * status bits, but don't really bother to send a PME message;
2091 	 * there are PCI Express Root Ports that don't bother to
2092 	 * trigger interrupts when they receive PME messages from the
2093 	 * devices below.  So PME poll is used for PCIe devices too.
2094 	 */
2095 
2096 	if (dev->pme_poll) {
2097 		struct pci_pme_device *pme_dev;
2098 		if (enable) {
2099 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2100 					  GFP_KERNEL);
2101 			if (!pme_dev) {
2102 				pci_warn(dev, "can't enable PME#\n");
2103 				return;
2104 			}
2105 			pme_dev->dev = dev;
2106 			mutex_lock(&pci_pme_list_mutex);
2107 			list_add(&pme_dev->list, &pci_pme_list);
2108 			if (list_is_singular(&pci_pme_list))
2109 				queue_delayed_work(system_freezable_wq,
2110 						   &pci_pme_work,
2111 						   msecs_to_jiffies(PME_TIMEOUT));
2112 			mutex_unlock(&pci_pme_list_mutex);
2113 		} else {
2114 			mutex_lock(&pci_pme_list_mutex);
2115 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2116 				if (pme_dev->dev == dev) {
2117 					list_del(&pme_dev->list);
2118 					kfree(pme_dev);
2119 					break;
2120 				}
2121 			}
2122 			mutex_unlock(&pci_pme_list_mutex);
2123 		}
2124 	}
2125 
2126 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2127 }
2128 EXPORT_SYMBOL(pci_pme_active);
2129 
2130 /**
2131  * __pci_enable_wake - enable PCI device as wakeup event source
2132  * @dev: PCI device affected
2133  * @state: PCI state from which device will issue wakeup events
2134  * @enable: True to enable event generation; false to disable
2135  *
2136  * This enables the device as a wakeup event source, or disables it.
2137  * When such events involves platform-specific hooks, those hooks are
2138  * called automatically by this routine.
2139  *
2140  * Devices with legacy power management (no standard PCI PM capabilities)
2141  * always require such platform hooks.
2142  *
2143  * RETURN VALUE:
2144  * 0 is returned on success
2145  * -EINVAL is returned if device is not supposed to wake up the system
2146  * Error code depending on the platform is returned if both the platform and
2147  * the native mechanism fail to enable the generation of wake-up events
2148  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2149 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2150 {
2151 	int ret = 0;
2152 
2153 	/*
2154 	 * Bridges can only signal wakeup on behalf of subordinate devices,
2155 	 * but that is set up elsewhere, so skip them.
2156 	 */
2157 	if (pci_has_subordinate(dev))
2158 		return 0;
2159 
2160 	/* Don't do the same thing twice in a row for one device. */
2161 	if (!!enable == !!dev->wakeup_prepared)
2162 		return 0;
2163 
2164 	/*
2165 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2166 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2167 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2168 	 */
2169 
2170 	if (enable) {
2171 		int error;
2172 
2173 		if (pci_pme_capable(dev, state))
2174 			pci_pme_active(dev, true);
2175 		else
2176 			ret = 1;
2177 		error = platform_pci_set_wakeup(dev, true);
2178 		if (ret)
2179 			ret = error;
2180 		if (!ret)
2181 			dev->wakeup_prepared = true;
2182 	} else {
2183 		platform_pci_set_wakeup(dev, false);
2184 		pci_pme_active(dev, false);
2185 		dev->wakeup_prepared = false;
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 /**
2192  * pci_enable_wake - change wakeup settings for a PCI device
2193  * @pci_dev: Target device
2194  * @state: PCI state from which device will issue wakeup events
2195  * @enable: Whether or not to enable event generation
2196  *
2197  * If @enable is set, check device_may_wakeup() for the device before calling
2198  * __pci_enable_wake() for it.
2199  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2200 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2201 {
2202 	if (enable && !device_may_wakeup(&pci_dev->dev))
2203 		return -EINVAL;
2204 
2205 	return __pci_enable_wake(pci_dev, state, enable);
2206 }
2207 EXPORT_SYMBOL(pci_enable_wake);
2208 
2209 /**
2210  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2211  * @dev: PCI device to prepare
2212  * @enable: True to enable wake-up event generation; false to disable
2213  *
2214  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2215  * and this function allows them to set that up cleanly - pci_enable_wake()
2216  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2217  * ordering constraints.
2218  *
2219  * This function only returns error code if the device is not allowed to wake
2220  * up the system from sleep or it is not capable of generating PME# from both
2221  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2222  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2223 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2224 {
2225 	return pci_pme_capable(dev, PCI_D3cold) ?
2226 			pci_enable_wake(dev, PCI_D3cold, enable) :
2227 			pci_enable_wake(dev, PCI_D3hot, enable);
2228 }
2229 EXPORT_SYMBOL(pci_wake_from_d3);
2230 
2231 /**
2232  * pci_target_state - find an appropriate low power state for a given PCI dev
2233  * @dev: PCI device
2234  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2235  *
2236  * Use underlying platform code to find a supported low power state for @dev.
2237  * If the platform can't manage @dev, return the deepest state from which it
2238  * can generate wake events, based on any available PME info.
2239  */
pci_target_state(struct pci_dev * dev,bool wakeup)2240 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2241 {
2242 	pci_power_t target_state = PCI_D3hot;
2243 
2244 	if (platform_pci_power_manageable(dev)) {
2245 		/*
2246 		 * Call the platform to find the target state for the device.
2247 		 */
2248 		pci_power_t state = platform_pci_choose_state(dev);
2249 
2250 		switch (state) {
2251 		case PCI_POWER_ERROR:
2252 		case PCI_UNKNOWN:
2253 			break;
2254 		case PCI_D1:
2255 		case PCI_D2:
2256 			if (pci_no_d1d2(dev))
2257 				break;
2258 			/* else: fall through */
2259 		default:
2260 			target_state = state;
2261 		}
2262 
2263 		return target_state;
2264 	}
2265 
2266 	if (!dev->pm_cap)
2267 		target_state = PCI_D0;
2268 
2269 	/*
2270 	 * If the device is in D3cold even though it's not power-manageable by
2271 	 * the platform, it may have been powered down by non-standard means.
2272 	 * Best to let it slumber.
2273 	 */
2274 	if (dev->current_state == PCI_D3cold)
2275 		target_state = PCI_D3cold;
2276 
2277 	if (wakeup) {
2278 		/*
2279 		 * Find the deepest state from which the device can generate
2280 		 * PME#.
2281 		 */
2282 		if (dev->pme_support) {
2283 			while (target_state
2284 			      && !(dev->pme_support & (1 << target_state)))
2285 				target_state--;
2286 		}
2287 	}
2288 
2289 	return target_state;
2290 }
2291 
2292 /**
2293  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2294  * @dev: Device to handle.
2295  *
2296  * Choose the power state appropriate for the device depending on whether
2297  * it can wake up the system and/or is power manageable by the platform
2298  * (PCI_D3hot is the default) and put the device into that state.
2299  */
pci_prepare_to_sleep(struct pci_dev * dev)2300 int pci_prepare_to_sleep(struct pci_dev *dev)
2301 {
2302 	bool wakeup = device_may_wakeup(&dev->dev);
2303 	pci_power_t target_state = pci_target_state(dev, wakeup);
2304 	int error;
2305 
2306 	if (target_state == PCI_POWER_ERROR)
2307 		return -EIO;
2308 
2309 	pci_enable_wake(dev, target_state, wakeup);
2310 
2311 	error = pci_set_power_state(dev, target_state);
2312 
2313 	if (error)
2314 		pci_enable_wake(dev, target_state, false);
2315 
2316 	return error;
2317 }
2318 EXPORT_SYMBOL(pci_prepare_to_sleep);
2319 
2320 /**
2321  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2322  * @dev: Device to handle.
2323  *
2324  * Disable device's system wake-up capability and put it into D0.
2325  */
pci_back_from_sleep(struct pci_dev * dev)2326 int pci_back_from_sleep(struct pci_dev *dev)
2327 {
2328 	pci_enable_wake(dev, PCI_D0, false);
2329 	return pci_set_power_state(dev, PCI_D0);
2330 }
2331 EXPORT_SYMBOL(pci_back_from_sleep);
2332 
2333 /**
2334  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2335  * @dev: PCI device being suspended.
2336  *
2337  * Prepare @dev to generate wake-up events at run time and put it into a low
2338  * power state.
2339  */
pci_finish_runtime_suspend(struct pci_dev * dev)2340 int pci_finish_runtime_suspend(struct pci_dev *dev)
2341 {
2342 	pci_power_t target_state;
2343 	int error;
2344 
2345 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2346 	if (target_state == PCI_POWER_ERROR)
2347 		return -EIO;
2348 
2349 	dev->runtime_d3cold = target_state == PCI_D3cold;
2350 
2351 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2352 
2353 	error = pci_set_power_state(dev, target_state);
2354 
2355 	if (error) {
2356 		pci_enable_wake(dev, target_state, false);
2357 		dev->runtime_d3cold = false;
2358 	}
2359 
2360 	return error;
2361 }
2362 
2363 /**
2364  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2365  * @dev: Device to check.
2366  *
2367  * Return true if the device itself is capable of generating wake-up events
2368  * (through the platform or using the native PCIe PME) or if the device supports
2369  * PME and one of its upstream bridges can generate wake-up events.
2370  */
pci_dev_run_wake(struct pci_dev * dev)2371 bool pci_dev_run_wake(struct pci_dev *dev)
2372 {
2373 	struct pci_bus *bus = dev->bus;
2374 
2375 	if (!dev->pme_support)
2376 		return false;
2377 
2378 	/* PME-capable in principle, but not from the target power state */
2379 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2380 		return false;
2381 
2382 	if (device_can_wakeup(&dev->dev))
2383 		return true;
2384 
2385 	while (bus->parent) {
2386 		struct pci_dev *bridge = bus->self;
2387 
2388 		if (device_can_wakeup(&bridge->dev))
2389 			return true;
2390 
2391 		bus = bus->parent;
2392 	}
2393 
2394 	/* We have reached the root bus. */
2395 	if (bus->bridge)
2396 		return device_can_wakeup(bus->bridge);
2397 
2398 	return false;
2399 }
2400 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2401 
2402 /**
2403  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2404  * @pci_dev: Device to check.
2405  *
2406  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2407  * reconfigured due to wakeup settings difference between system and runtime
2408  * suspend and the current power state of it is suitable for the upcoming
2409  * (system) transition.
2410  *
2411  * If the device is not configured for system wakeup, disable PME for it before
2412  * returning 'true' to prevent it from waking up the system unnecessarily.
2413  */
pci_dev_keep_suspended(struct pci_dev * pci_dev)2414 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2415 {
2416 	struct device *dev = &pci_dev->dev;
2417 	bool wakeup = device_may_wakeup(dev);
2418 
2419 	if (!pm_runtime_suspended(dev)
2420 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2421 	    || platform_pci_need_resume(pci_dev))
2422 		return false;
2423 
2424 	/*
2425 	 * At this point the device is good to go unless it's been configured
2426 	 * to generate PME at the runtime suspend time, but it is not supposed
2427 	 * to wake up the system.  In that case, simply disable PME for it
2428 	 * (it will have to be re-enabled on exit from system resume).
2429 	 *
2430 	 * If the device's power state is D3cold and the platform check above
2431 	 * hasn't triggered, the device's configuration is suitable and we don't
2432 	 * need to manipulate it at all.
2433 	 */
2434 	spin_lock_irq(&dev->power.lock);
2435 
2436 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2437 	    !wakeup)
2438 		__pci_pme_active(pci_dev, false);
2439 
2440 	spin_unlock_irq(&dev->power.lock);
2441 	return true;
2442 }
2443 
2444 /**
2445  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2446  * @pci_dev: Device to handle.
2447  *
2448  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2449  * it might have been disabled during the prepare phase of system suspend if
2450  * the device was not configured for system wakeup.
2451  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2452 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2453 {
2454 	struct device *dev = &pci_dev->dev;
2455 
2456 	if (!pci_dev_run_wake(pci_dev))
2457 		return;
2458 
2459 	spin_lock_irq(&dev->power.lock);
2460 
2461 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2462 		__pci_pme_active(pci_dev, true);
2463 
2464 	spin_unlock_irq(&dev->power.lock);
2465 }
2466 
pci_config_pm_runtime_get(struct pci_dev * pdev)2467 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2468 {
2469 	struct device *dev = &pdev->dev;
2470 	struct device *parent = dev->parent;
2471 
2472 	if (parent)
2473 		pm_runtime_get_sync(parent);
2474 	pm_runtime_get_noresume(dev);
2475 	/*
2476 	 * pdev->current_state is set to PCI_D3cold during suspending,
2477 	 * so wait until suspending completes
2478 	 */
2479 	pm_runtime_barrier(dev);
2480 	/*
2481 	 * Only need to resume devices in D3cold, because config
2482 	 * registers are still accessible for devices suspended but
2483 	 * not in D3cold.
2484 	 */
2485 	if (pdev->current_state == PCI_D3cold)
2486 		pm_runtime_resume(dev);
2487 }
2488 
pci_config_pm_runtime_put(struct pci_dev * pdev)2489 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2490 {
2491 	struct device *dev = &pdev->dev;
2492 	struct device *parent = dev->parent;
2493 
2494 	pm_runtime_put(dev);
2495 	if (parent)
2496 		pm_runtime_put_sync(parent);
2497 }
2498 
2499 static const struct dmi_system_id bridge_d3_blacklist[] = {
2500 #ifdef CONFIG_X86
2501 	{
2502 		/*
2503 		 * Gigabyte X299 root port is not marked as hotplug capable
2504 		 * which allows Linux to power manage it.  However, this
2505 		 * confuses the BIOS SMI handler so don't power manage root
2506 		 * ports on that system.
2507 		 */
2508 		.ident = "X299 DESIGNARE EX-CF",
2509 		.matches = {
2510 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2511 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2512 		},
2513 	},
2514 #endif
2515 	{ }
2516 };
2517 
2518 /**
2519  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2520  * @bridge: Bridge to check
2521  *
2522  * This function checks if it is possible to move the bridge to D3.
2523  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2524  */
pci_bridge_d3_possible(struct pci_dev * bridge)2525 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2526 {
2527 	if (!pci_is_pcie(bridge))
2528 		return false;
2529 
2530 	switch (pci_pcie_type(bridge)) {
2531 	case PCI_EXP_TYPE_ROOT_PORT:
2532 	case PCI_EXP_TYPE_UPSTREAM:
2533 	case PCI_EXP_TYPE_DOWNSTREAM:
2534 		if (pci_bridge_d3_disable)
2535 			return false;
2536 
2537 		/*
2538 		 * Hotplug ports handled by firmware in System Management Mode
2539 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2540 		 */
2541 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2542 			return false;
2543 
2544 		if (pci_bridge_d3_force)
2545 			return true;
2546 
2547 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2548 		if (bridge->is_thunderbolt)
2549 			return true;
2550 
2551 		/*
2552 		 * Hotplug ports handled natively by the OS were not validated
2553 		 * by vendors for runtime D3 at least until 2018 because there
2554 		 * was no OS support.
2555 		 */
2556 		if (bridge->is_hotplug_bridge)
2557 			return false;
2558 
2559 		if (dmi_check_system(bridge_d3_blacklist))
2560 			return false;
2561 
2562 		/*
2563 		 * It should be safe to put PCIe ports from 2015 or newer
2564 		 * to D3.
2565 		 */
2566 		if (dmi_get_bios_year() >= 2015)
2567 			return true;
2568 		break;
2569 	}
2570 
2571 	return false;
2572 }
2573 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2574 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2575 {
2576 	bool *d3cold_ok = data;
2577 
2578 	if (/* The device needs to be allowed to go D3cold ... */
2579 	    dev->no_d3cold || !dev->d3cold_allowed ||
2580 
2581 	    /* ... and if it is wakeup capable to do so from D3cold. */
2582 	    (device_may_wakeup(&dev->dev) &&
2583 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2584 
2585 	    /* If it is a bridge it must be allowed to go to D3. */
2586 	    !pci_power_manageable(dev))
2587 
2588 		*d3cold_ok = false;
2589 
2590 	return !*d3cold_ok;
2591 }
2592 
2593 /*
2594  * pci_bridge_d3_update - Update bridge D3 capabilities
2595  * @dev: PCI device which is changed
2596  *
2597  * Update upstream bridge PM capabilities accordingly depending on if the
2598  * device PM configuration was changed or the device is being removed.  The
2599  * change is also propagated upstream.
2600  */
pci_bridge_d3_update(struct pci_dev * dev)2601 void pci_bridge_d3_update(struct pci_dev *dev)
2602 {
2603 	bool remove = !device_is_registered(&dev->dev);
2604 	struct pci_dev *bridge;
2605 	bool d3cold_ok = true;
2606 
2607 	bridge = pci_upstream_bridge(dev);
2608 	if (!bridge || !pci_bridge_d3_possible(bridge))
2609 		return;
2610 
2611 	/*
2612 	 * If D3 is currently allowed for the bridge, removing one of its
2613 	 * children won't change that.
2614 	 */
2615 	if (remove && bridge->bridge_d3)
2616 		return;
2617 
2618 	/*
2619 	 * If D3 is currently allowed for the bridge and a child is added or
2620 	 * changed, disallowance of D3 can only be caused by that child, so
2621 	 * we only need to check that single device, not any of its siblings.
2622 	 *
2623 	 * If D3 is currently not allowed for the bridge, checking the device
2624 	 * first may allow us to skip checking its siblings.
2625 	 */
2626 	if (!remove)
2627 		pci_dev_check_d3cold(dev, &d3cold_ok);
2628 
2629 	/*
2630 	 * If D3 is currently not allowed for the bridge, this may be caused
2631 	 * either by the device being changed/removed or any of its siblings,
2632 	 * so we need to go through all children to find out if one of them
2633 	 * continues to block D3.
2634 	 */
2635 	if (d3cold_ok && !bridge->bridge_d3)
2636 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2637 			     &d3cold_ok);
2638 
2639 	if (bridge->bridge_d3 != d3cold_ok) {
2640 		bridge->bridge_d3 = d3cold_ok;
2641 		/* Propagate change to upstream bridges */
2642 		pci_bridge_d3_update(bridge);
2643 	}
2644 }
2645 
2646 /**
2647  * pci_d3cold_enable - Enable D3cold for device
2648  * @dev: PCI device to handle
2649  *
2650  * This function can be used in drivers to enable D3cold from the device
2651  * they handle.  It also updates upstream PCI bridge PM capabilities
2652  * accordingly.
2653  */
pci_d3cold_enable(struct pci_dev * dev)2654 void pci_d3cold_enable(struct pci_dev *dev)
2655 {
2656 	if (dev->no_d3cold) {
2657 		dev->no_d3cold = false;
2658 		pci_bridge_d3_update(dev);
2659 	}
2660 }
2661 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2662 
2663 /**
2664  * pci_d3cold_disable - Disable D3cold for device
2665  * @dev: PCI device to handle
2666  *
2667  * This function can be used in drivers to disable D3cold from the device
2668  * they handle.  It also updates upstream PCI bridge PM capabilities
2669  * accordingly.
2670  */
pci_d3cold_disable(struct pci_dev * dev)2671 void pci_d3cold_disable(struct pci_dev *dev)
2672 {
2673 	if (!dev->no_d3cold) {
2674 		dev->no_d3cold = true;
2675 		pci_bridge_d3_update(dev);
2676 	}
2677 }
2678 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2679 
2680 /**
2681  * pci_pm_init - Initialize PM functions of given PCI device
2682  * @dev: PCI device to handle.
2683  */
pci_pm_init(struct pci_dev * dev)2684 void pci_pm_init(struct pci_dev *dev)
2685 {
2686 	int pm;
2687 	u16 pmc;
2688 
2689 	pm_runtime_forbid(&dev->dev);
2690 	pm_runtime_set_active(&dev->dev);
2691 	pm_runtime_enable(&dev->dev);
2692 	device_enable_async_suspend(&dev->dev);
2693 	dev->wakeup_prepared = false;
2694 
2695 	dev->pm_cap = 0;
2696 	dev->pme_support = 0;
2697 
2698 	/* find PCI PM capability in list */
2699 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2700 	if (!pm)
2701 		return;
2702 	/* Check device's ability to generate PME# */
2703 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2704 
2705 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2706 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2707 			pmc & PCI_PM_CAP_VER_MASK);
2708 		return;
2709 	}
2710 
2711 	dev->pm_cap = pm;
2712 	dev->d3_delay = PCI_PM_D3_WAIT;
2713 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2714 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2715 	dev->d3cold_allowed = true;
2716 
2717 	dev->d1_support = false;
2718 	dev->d2_support = false;
2719 	if (!pci_no_d1d2(dev)) {
2720 		if (pmc & PCI_PM_CAP_D1)
2721 			dev->d1_support = true;
2722 		if (pmc & PCI_PM_CAP_D2)
2723 			dev->d2_support = true;
2724 
2725 		if (dev->d1_support || dev->d2_support)
2726 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2727 				   dev->d1_support ? " D1" : "",
2728 				   dev->d2_support ? " D2" : "");
2729 	}
2730 
2731 	pmc &= PCI_PM_CAP_PME_MASK;
2732 	if (pmc) {
2733 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2734 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2735 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2736 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2737 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2738 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2739 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2740 		dev->pme_poll = true;
2741 		/*
2742 		 * Make device's PM flags reflect the wake-up capability, but
2743 		 * let the user space enable it to wake up the system as needed.
2744 		 */
2745 		device_set_wakeup_capable(&dev->dev, true);
2746 		/* Disable the PME# generation functionality */
2747 		pci_pme_active(dev, false);
2748 	}
2749 }
2750 
pci_ea_flags(struct pci_dev * dev,u8 prop)2751 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2752 {
2753 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2754 
2755 	switch (prop) {
2756 	case PCI_EA_P_MEM:
2757 	case PCI_EA_P_VF_MEM:
2758 		flags |= IORESOURCE_MEM;
2759 		break;
2760 	case PCI_EA_P_MEM_PREFETCH:
2761 	case PCI_EA_P_VF_MEM_PREFETCH:
2762 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2763 		break;
2764 	case PCI_EA_P_IO:
2765 		flags |= IORESOURCE_IO;
2766 		break;
2767 	default:
2768 		return 0;
2769 	}
2770 
2771 	return flags;
2772 }
2773 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)2774 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2775 					    u8 prop)
2776 {
2777 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2778 		return &dev->resource[bei];
2779 #ifdef CONFIG_PCI_IOV
2780 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2781 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2782 		return &dev->resource[PCI_IOV_RESOURCES +
2783 				      bei - PCI_EA_BEI_VF_BAR0];
2784 #endif
2785 	else if (bei == PCI_EA_BEI_ROM)
2786 		return &dev->resource[PCI_ROM_RESOURCE];
2787 	else
2788 		return NULL;
2789 }
2790 
2791 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)2792 static int pci_ea_read(struct pci_dev *dev, int offset)
2793 {
2794 	struct resource *res;
2795 	int ent_size, ent_offset = offset;
2796 	resource_size_t start, end;
2797 	unsigned long flags;
2798 	u32 dw0, bei, base, max_offset;
2799 	u8 prop;
2800 	bool support_64 = (sizeof(resource_size_t) >= 8);
2801 
2802 	pci_read_config_dword(dev, ent_offset, &dw0);
2803 	ent_offset += 4;
2804 
2805 	/* Entry size field indicates DWORDs after 1st */
2806 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2807 
2808 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2809 		goto out;
2810 
2811 	bei = (dw0 & PCI_EA_BEI) >> 4;
2812 	prop = (dw0 & PCI_EA_PP) >> 8;
2813 
2814 	/*
2815 	 * If the Property is in the reserved range, try the Secondary
2816 	 * Property instead.
2817 	 */
2818 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2819 		prop = (dw0 & PCI_EA_SP) >> 16;
2820 	if (prop > PCI_EA_P_BRIDGE_IO)
2821 		goto out;
2822 
2823 	res = pci_ea_get_resource(dev, bei, prop);
2824 	if (!res) {
2825 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2826 		goto out;
2827 	}
2828 
2829 	flags = pci_ea_flags(dev, prop);
2830 	if (!flags) {
2831 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2832 		goto out;
2833 	}
2834 
2835 	/* Read Base */
2836 	pci_read_config_dword(dev, ent_offset, &base);
2837 	start = (base & PCI_EA_FIELD_MASK);
2838 	ent_offset += 4;
2839 
2840 	/* Read MaxOffset */
2841 	pci_read_config_dword(dev, ent_offset, &max_offset);
2842 	ent_offset += 4;
2843 
2844 	/* Read Base MSBs (if 64-bit entry) */
2845 	if (base & PCI_EA_IS_64) {
2846 		u32 base_upper;
2847 
2848 		pci_read_config_dword(dev, ent_offset, &base_upper);
2849 		ent_offset += 4;
2850 
2851 		flags |= IORESOURCE_MEM_64;
2852 
2853 		/* entry starts above 32-bit boundary, can't use */
2854 		if (!support_64 && base_upper)
2855 			goto out;
2856 
2857 		if (support_64)
2858 			start |= ((u64)base_upper << 32);
2859 	}
2860 
2861 	end = start + (max_offset | 0x03);
2862 
2863 	/* Read MaxOffset MSBs (if 64-bit entry) */
2864 	if (max_offset & PCI_EA_IS_64) {
2865 		u32 max_offset_upper;
2866 
2867 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2868 		ent_offset += 4;
2869 
2870 		flags |= IORESOURCE_MEM_64;
2871 
2872 		/* entry too big, can't use */
2873 		if (!support_64 && max_offset_upper)
2874 			goto out;
2875 
2876 		if (support_64)
2877 			end += ((u64)max_offset_upper << 32);
2878 	}
2879 
2880 	if (end < start) {
2881 		pci_err(dev, "EA Entry crosses address boundary\n");
2882 		goto out;
2883 	}
2884 
2885 	if (ent_size != ent_offset - offset) {
2886 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2887 			ent_size, ent_offset - offset);
2888 		goto out;
2889 	}
2890 
2891 	res->name = pci_name(dev);
2892 	res->start = start;
2893 	res->end = end;
2894 	res->flags = flags;
2895 
2896 	if (bei <= PCI_EA_BEI_BAR5)
2897 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2898 			   bei, res, prop);
2899 	else if (bei == PCI_EA_BEI_ROM)
2900 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2901 			   res, prop);
2902 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2903 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2904 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2905 	else
2906 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2907 			   bei, res, prop);
2908 
2909 out:
2910 	return offset + ent_size;
2911 }
2912 
2913 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)2914 void pci_ea_init(struct pci_dev *dev)
2915 {
2916 	int ea;
2917 	u8 num_ent;
2918 	int offset;
2919 	int i;
2920 
2921 	/* find PCI EA capability in list */
2922 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2923 	if (!ea)
2924 		return;
2925 
2926 	/* determine the number of entries */
2927 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2928 					&num_ent);
2929 	num_ent &= PCI_EA_NUM_ENT_MASK;
2930 
2931 	offset = ea + PCI_EA_FIRST_ENT;
2932 
2933 	/* Skip DWORD 2 for type 1 functions */
2934 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2935 		offset += 4;
2936 
2937 	/* parse each EA entry */
2938 	for (i = 0; i < num_ent; ++i)
2939 		offset = pci_ea_read(dev, offset);
2940 }
2941 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2942 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2943 	struct pci_cap_saved_state *new_cap)
2944 {
2945 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2946 }
2947 
2948 /**
2949  * _pci_add_cap_save_buffer - allocate buffer for saving given
2950  *                            capability registers
2951  * @dev: the PCI device
2952  * @cap: the capability to allocate the buffer for
2953  * @extended: Standard or Extended capability ID
2954  * @size: requested size of the buffer
2955  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2956 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2957 				    bool extended, unsigned int size)
2958 {
2959 	int pos;
2960 	struct pci_cap_saved_state *save_state;
2961 
2962 	if (extended)
2963 		pos = pci_find_ext_capability(dev, cap);
2964 	else
2965 		pos = pci_find_capability(dev, cap);
2966 
2967 	if (!pos)
2968 		return 0;
2969 
2970 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2971 	if (!save_state)
2972 		return -ENOMEM;
2973 
2974 	save_state->cap.cap_nr = cap;
2975 	save_state->cap.cap_extended = extended;
2976 	save_state->cap.size = size;
2977 	pci_add_saved_cap(dev, save_state);
2978 
2979 	return 0;
2980 }
2981 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2982 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2983 {
2984 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2985 }
2986 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2987 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2988 {
2989 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2990 }
2991 
2992 /**
2993  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2994  * @dev: the PCI device
2995  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2996 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2997 {
2998 	int error;
2999 
3000 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3001 					PCI_EXP_SAVE_REGS * sizeof(u16));
3002 	if (error)
3003 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3004 
3005 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3006 	if (error)
3007 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3008 
3009 	pci_allocate_vc_save_buffers(dev);
3010 }
3011 
pci_free_cap_save_buffers(struct pci_dev * dev)3012 void pci_free_cap_save_buffers(struct pci_dev *dev)
3013 {
3014 	struct pci_cap_saved_state *tmp;
3015 	struct hlist_node *n;
3016 
3017 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3018 		kfree(tmp);
3019 }
3020 
3021 /**
3022  * pci_configure_ari - enable or disable ARI forwarding
3023  * @dev: the PCI device
3024  *
3025  * If @dev and its upstream bridge both support ARI, enable ARI in the
3026  * bridge.  Otherwise, disable ARI in the bridge.
3027  */
pci_configure_ari(struct pci_dev * dev)3028 void pci_configure_ari(struct pci_dev *dev)
3029 {
3030 	u32 cap;
3031 	struct pci_dev *bridge;
3032 
3033 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3034 		return;
3035 
3036 	bridge = dev->bus->self;
3037 	if (!bridge)
3038 		return;
3039 
3040 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3041 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3042 		return;
3043 
3044 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3045 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3046 					 PCI_EXP_DEVCTL2_ARI);
3047 		bridge->ari_enabled = 1;
3048 	} else {
3049 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3050 					   PCI_EXP_DEVCTL2_ARI);
3051 		bridge->ari_enabled = 0;
3052 	}
3053 }
3054 
3055 static int pci_acs_enable;
3056 
3057 /**
3058  * pci_request_acs - ask for ACS to be enabled if supported
3059  */
pci_request_acs(void)3060 void pci_request_acs(void)
3061 {
3062 	pci_acs_enable = 1;
3063 }
3064 
3065 static const char *disable_acs_redir_param;
3066 
3067 /**
3068  * pci_disable_acs_redir - disable ACS redirect capabilities
3069  * @dev: the PCI device
3070  *
3071  * For only devices specified in the disable_acs_redir parameter.
3072  */
pci_disable_acs_redir(struct pci_dev * dev)3073 static void pci_disable_acs_redir(struct pci_dev *dev)
3074 {
3075 	int ret = 0;
3076 	const char *p;
3077 	int pos;
3078 	u16 ctrl;
3079 
3080 	if (!disable_acs_redir_param)
3081 		return;
3082 
3083 	p = disable_acs_redir_param;
3084 	while (*p) {
3085 		ret = pci_dev_str_match(dev, p, &p);
3086 		if (ret < 0) {
3087 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3088 				     disable_acs_redir_param);
3089 
3090 			break;
3091 		} else if (ret == 1) {
3092 			/* Found a match */
3093 			break;
3094 		}
3095 
3096 		if (*p != ';' && *p != ',') {
3097 			/* End of param or invalid format */
3098 			break;
3099 		}
3100 		p++;
3101 	}
3102 
3103 	if (ret != 1)
3104 		return;
3105 
3106 	if (!pci_dev_specific_disable_acs_redir(dev))
3107 		return;
3108 
3109 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3110 	if (!pos) {
3111 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3112 		return;
3113 	}
3114 
3115 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3116 
3117 	/* P2P Request & Completion Redirect */
3118 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3119 
3120 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3121 
3122 	pci_info(dev, "disabled ACS redirect\n");
3123 }
3124 
3125 /**
3126  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3127  * @dev: the PCI device
3128  */
pci_std_enable_acs(struct pci_dev * dev)3129 static void pci_std_enable_acs(struct pci_dev *dev)
3130 {
3131 	int pos;
3132 	u16 cap;
3133 	u16 ctrl;
3134 
3135 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3136 	if (!pos)
3137 		return;
3138 
3139 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3140 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3141 
3142 	/* Source Validation */
3143 	ctrl |= (cap & PCI_ACS_SV);
3144 
3145 	/* P2P Request Redirect */
3146 	ctrl |= (cap & PCI_ACS_RR);
3147 
3148 	/* P2P Completion Redirect */
3149 	ctrl |= (cap & PCI_ACS_CR);
3150 
3151 	/* Upstream Forwarding */
3152 	ctrl |= (cap & PCI_ACS_UF);
3153 
3154 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3155 }
3156 
3157 /**
3158  * pci_enable_acs - enable ACS if hardware support it
3159  * @dev: the PCI device
3160  */
pci_enable_acs(struct pci_dev * dev)3161 void pci_enable_acs(struct pci_dev *dev)
3162 {
3163 	if (!pci_acs_enable)
3164 		goto disable_acs_redir;
3165 
3166 	if (!pci_dev_specific_enable_acs(dev))
3167 		goto disable_acs_redir;
3168 
3169 	pci_std_enable_acs(dev);
3170 
3171 disable_acs_redir:
3172 	/*
3173 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3174 	 * enabled by the kernel because it may have been enabled by
3175 	 * platform firmware.  So if we are told to disable it, we should
3176 	 * always disable it after setting the kernel's default
3177 	 * preferences.
3178 	 */
3179 	pci_disable_acs_redir(dev);
3180 }
3181 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3182 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3183 {
3184 	int pos;
3185 	u16 cap, ctrl;
3186 
3187 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3188 	if (!pos)
3189 		return false;
3190 
3191 	/*
3192 	 * Except for egress control, capabilities are either required
3193 	 * or only required if controllable.  Features missing from the
3194 	 * capability field can therefore be assumed as hard-wired enabled.
3195 	 */
3196 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3197 	acs_flags &= (cap | PCI_ACS_EC);
3198 
3199 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3200 	return (ctrl & acs_flags) == acs_flags;
3201 }
3202 
3203 /**
3204  * pci_acs_enabled - test ACS against required flags for a given device
3205  * @pdev: device to test
3206  * @acs_flags: required PCI ACS flags
3207  *
3208  * Return true if the device supports the provided flags.  Automatically
3209  * filters out flags that are not implemented on multifunction devices.
3210  *
3211  * Note that this interface checks the effective ACS capabilities of the
3212  * device rather than the actual capabilities.  For instance, most single
3213  * function endpoints are not required to support ACS because they have no
3214  * opportunity for peer-to-peer access.  We therefore return 'true'
3215  * regardless of whether the device exposes an ACS capability.  This makes
3216  * it much easier for callers of this function to ignore the actual type
3217  * or topology of the device when testing ACS support.
3218  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3219 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3220 {
3221 	int ret;
3222 
3223 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3224 	if (ret >= 0)
3225 		return ret > 0;
3226 
3227 	/*
3228 	 * Conventional PCI and PCI-X devices never support ACS, either
3229 	 * effectively or actually.  The shared bus topology implies that
3230 	 * any device on the bus can receive or snoop DMA.
3231 	 */
3232 	if (!pci_is_pcie(pdev))
3233 		return false;
3234 
3235 	switch (pci_pcie_type(pdev)) {
3236 	/*
3237 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3238 	 * but since their primary interface is PCI/X, we conservatively
3239 	 * handle them as we would a non-PCIe device.
3240 	 */
3241 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3242 	/*
3243 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3244 	 * applicable... must never implement an ACS Extended Capability...".
3245 	 * This seems arbitrary, but we take a conservative interpretation
3246 	 * of this statement.
3247 	 */
3248 	case PCI_EXP_TYPE_PCI_BRIDGE:
3249 	case PCI_EXP_TYPE_RC_EC:
3250 		return false;
3251 	/*
3252 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3253 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3254 	 * regardless of whether they are single- or multi-function devices.
3255 	 */
3256 	case PCI_EXP_TYPE_DOWNSTREAM:
3257 	case PCI_EXP_TYPE_ROOT_PORT:
3258 		return pci_acs_flags_enabled(pdev, acs_flags);
3259 	/*
3260 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3261 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3262 	 * capabilities, but only when they are part of a multifunction
3263 	 * device.  The footnote for section 6.12 indicates the specific
3264 	 * PCIe types included here.
3265 	 */
3266 	case PCI_EXP_TYPE_ENDPOINT:
3267 	case PCI_EXP_TYPE_UPSTREAM:
3268 	case PCI_EXP_TYPE_LEG_END:
3269 	case PCI_EXP_TYPE_RC_END:
3270 		if (!pdev->multifunction)
3271 			break;
3272 
3273 		return pci_acs_flags_enabled(pdev, acs_flags);
3274 	}
3275 
3276 	/*
3277 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3278 	 * to single function devices with the exception of downstream ports.
3279 	 */
3280 	return true;
3281 }
3282 
3283 /**
3284  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3285  * @start: starting downstream device
3286  * @end: ending upstream device or NULL to search to the root bus
3287  * @acs_flags: required flags
3288  *
3289  * Walk up a device tree from start to end testing PCI ACS support.  If
3290  * any step along the way does not support the required flags, return false.
3291  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3292 bool pci_acs_path_enabled(struct pci_dev *start,
3293 			  struct pci_dev *end, u16 acs_flags)
3294 {
3295 	struct pci_dev *pdev, *parent = start;
3296 
3297 	do {
3298 		pdev = parent;
3299 
3300 		if (!pci_acs_enabled(pdev, acs_flags))
3301 			return false;
3302 
3303 		if (pci_is_root_bus(pdev->bus))
3304 			return (end == NULL);
3305 
3306 		parent = pdev->bus->self;
3307 	} while (pdev != end);
3308 
3309 	return true;
3310 }
3311 
3312 /**
3313  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3314  * @pdev: PCI device
3315  * @bar: BAR to find
3316  *
3317  * Helper to find the position of the ctrl register for a BAR.
3318  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3319  * Returns -ENOENT if no ctrl register for the BAR could be found.
3320  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3321 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3322 {
3323 	unsigned int pos, nbars, i;
3324 	u32 ctrl;
3325 
3326 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3327 	if (!pos)
3328 		return -ENOTSUPP;
3329 
3330 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3331 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3332 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3333 
3334 	for (i = 0; i < nbars; i++, pos += 8) {
3335 		int bar_idx;
3336 
3337 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3338 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3339 		if (bar_idx == bar)
3340 			return pos;
3341 	}
3342 
3343 	return -ENOENT;
3344 }
3345 
3346 /**
3347  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3348  * @pdev: PCI device
3349  * @bar: BAR to query
3350  *
3351  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3352  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3353  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3354 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3355 {
3356 	int pos;
3357 	u32 cap;
3358 
3359 	pos = pci_rebar_find_pos(pdev, bar);
3360 	if (pos < 0)
3361 		return 0;
3362 
3363 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3364 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3365 }
3366 
3367 /**
3368  * pci_rebar_get_current_size - get the current size of a BAR
3369  * @pdev: PCI device
3370  * @bar: BAR to set size to
3371  *
3372  * Read the size of a BAR from the resizable BAR config.
3373  * Returns size if found or negative error code.
3374  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3375 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3376 {
3377 	int pos;
3378 	u32 ctrl;
3379 
3380 	pos = pci_rebar_find_pos(pdev, bar);
3381 	if (pos < 0)
3382 		return pos;
3383 
3384 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3385 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3386 }
3387 
3388 /**
3389  * pci_rebar_set_size - set a new size for a BAR
3390  * @pdev: PCI device
3391  * @bar: BAR to set size to
3392  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3393  *
3394  * Set the new size of a BAR as defined in the spec.
3395  * Returns zero if resizing was successful, error code otherwise.
3396  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3397 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3398 {
3399 	int pos;
3400 	u32 ctrl;
3401 
3402 	pos = pci_rebar_find_pos(pdev, bar);
3403 	if (pos < 0)
3404 		return pos;
3405 
3406 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3407 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3408 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3409 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3410 	return 0;
3411 }
3412 
3413 /**
3414  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3415  * @dev: the PCI device
3416  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3417  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3418  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3419  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3420  *
3421  * Return 0 if all upstream bridges support AtomicOp routing, egress
3422  * blocking is disabled on all upstream ports, and the root port supports
3423  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3424  * AtomicOp completion), or negative otherwise.
3425  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3426 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3427 {
3428 	struct pci_bus *bus = dev->bus;
3429 	struct pci_dev *bridge;
3430 	u32 cap, ctl2;
3431 
3432 	if (!pci_is_pcie(dev))
3433 		return -EINVAL;
3434 
3435 	/*
3436 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3437 	 * AtomicOp requesters.  For now, we only support endpoints as
3438 	 * requesters and root ports as completers.  No endpoints as
3439 	 * completers, and no peer-to-peer.
3440 	 */
3441 
3442 	switch (pci_pcie_type(dev)) {
3443 	case PCI_EXP_TYPE_ENDPOINT:
3444 	case PCI_EXP_TYPE_LEG_END:
3445 	case PCI_EXP_TYPE_RC_END:
3446 		break;
3447 	default:
3448 		return -EINVAL;
3449 	}
3450 
3451 	while (bus->parent) {
3452 		bridge = bus->self;
3453 
3454 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3455 
3456 		switch (pci_pcie_type(bridge)) {
3457 		/* Ensure switch ports support AtomicOp routing */
3458 		case PCI_EXP_TYPE_UPSTREAM:
3459 		case PCI_EXP_TYPE_DOWNSTREAM:
3460 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3461 				return -EINVAL;
3462 			break;
3463 
3464 		/* Ensure root port supports all the sizes we care about */
3465 		case PCI_EXP_TYPE_ROOT_PORT:
3466 			if ((cap & cap_mask) != cap_mask)
3467 				return -EINVAL;
3468 			break;
3469 		}
3470 
3471 		/* Ensure upstream ports don't block AtomicOps on egress */
3472 		if (!bridge->has_secondary_link) {
3473 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3474 						   &ctl2);
3475 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3476 				return -EINVAL;
3477 		}
3478 
3479 		bus = bus->parent;
3480 	}
3481 
3482 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3483 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3484 	return 0;
3485 }
3486 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3487 
3488 /**
3489  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3490  * @dev: the PCI device
3491  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3492  *
3493  * Perform INTx swizzling for a device behind one level of bridge.  This is
3494  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3495  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3496  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3497  * the PCI Express Base Specification, Revision 2.1)
3498  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3499 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3500 {
3501 	int slot;
3502 
3503 	if (pci_ari_enabled(dev->bus))
3504 		slot = 0;
3505 	else
3506 		slot = PCI_SLOT(dev->devfn);
3507 
3508 	return (((pin - 1) + slot) % 4) + 1;
3509 }
3510 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3511 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3512 {
3513 	u8 pin;
3514 
3515 	pin = dev->pin;
3516 	if (!pin)
3517 		return -1;
3518 
3519 	while (!pci_is_root_bus(dev->bus)) {
3520 		pin = pci_swizzle_interrupt_pin(dev, pin);
3521 		dev = dev->bus->self;
3522 	}
3523 	*bridge = dev;
3524 	return pin;
3525 }
3526 
3527 /**
3528  * pci_common_swizzle - swizzle INTx all the way to root bridge
3529  * @dev: the PCI device
3530  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3531  *
3532  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3533  * bridges all the way up to a PCI root bus.
3534  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3535 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3536 {
3537 	u8 pin = *pinp;
3538 
3539 	while (!pci_is_root_bus(dev->bus)) {
3540 		pin = pci_swizzle_interrupt_pin(dev, pin);
3541 		dev = dev->bus->self;
3542 	}
3543 	*pinp = pin;
3544 	return PCI_SLOT(dev->devfn);
3545 }
3546 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3547 
3548 /**
3549  *	pci_release_region - Release a PCI bar
3550  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3551  *	@bar: BAR to release
3552  *
3553  *	Releases the PCI I/O and memory resources previously reserved by a
3554  *	successful call to pci_request_region.  Call this function only
3555  *	after all use of the PCI regions has ceased.
3556  */
pci_release_region(struct pci_dev * pdev,int bar)3557 void pci_release_region(struct pci_dev *pdev, int bar)
3558 {
3559 	struct pci_devres *dr;
3560 
3561 	if (pci_resource_len(pdev, bar) == 0)
3562 		return;
3563 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3564 		release_region(pci_resource_start(pdev, bar),
3565 				pci_resource_len(pdev, bar));
3566 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3567 		release_mem_region(pci_resource_start(pdev, bar),
3568 				pci_resource_len(pdev, bar));
3569 
3570 	dr = find_pci_dr(pdev);
3571 	if (dr)
3572 		dr->region_mask &= ~(1 << bar);
3573 }
3574 EXPORT_SYMBOL(pci_release_region);
3575 
3576 /**
3577  *	__pci_request_region - Reserved PCI I/O and memory resource
3578  *	@pdev: PCI device whose resources are to be reserved
3579  *	@bar: BAR to be reserved
3580  *	@res_name: Name to be associated with resource.
3581  *	@exclusive: whether the region access is exclusive or not
3582  *
3583  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3584  *	being reserved by owner @res_name.  Do not access any
3585  *	address inside the PCI regions unless this call returns
3586  *	successfully.
3587  *
3588  *	If @exclusive is set, then the region is marked so that userspace
3589  *	is explicitly not allowed to map the resource via /dev/mem or
3590  *	sysfs MMIO access.
3591  *
3592  *	Returns 0 on success, or %EBUSY on error.  A warning
3593  *	message is also printed on failure.
3594  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3595 static int __pci_request_region(struct pci_dev *pdev, int bar,
3596 				const char *res_name, int exclusive)
3597 {
3598 	struct pci_devres *dr;
3599 
3600 	if (pci_resource_len(pdev, bar) == 0)
3601 		return 0;
3602 
3603 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3604 		if (!request_region(pci_resource_start(pdev, bar),
3605 			    pci_resource_len(pdev, bar), res_name))
3606 			goto err_out;
3607 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3608 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3609 					pci_resource_len(pdev, bar), res_name,
3610 					exclusive))
3611 			goto err_out;
3612 	}
3613 
3614 	dr = find_pci_dr(pdev);
3615 	if (dr)
3616 		dr->region_mask |= 1 << bar;
3617 
3618 	return 0;
3619 
3620 err_out:
3621 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3622 		 &pdev->resource[bar]);
3623 	return -EBUSY;
3624 }
3625 
3626 /**
3627  *	pci_request_region - Reserve PCI I/O and memory resource
3628  *	@pdev: PCI device whose resources are to be reserved
3629  *	@bar: BAR to be reserved
3630  *	@res_name: Name to be associated with resource
3631  *
3632  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3633  *	being reserved by owner @res_name.  Do not access any
3634  *	address inside the PCI regions unless this call returns
3635  *	successfully.
3636  *
3637  *	Returns 0 on success, or %EBUSY on error.  A warning
3638  *	message is also printed on failure.
3639  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3640 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3641 {
3642 	return __pci_request_region(pdev, bar, res_name, 0);
3643 }
3644 EXPORT_SYMBOL(pci_request_region);
3645 
3646 /**
3647  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3648  *	@pdev: PCI device whose resources are to be reserved
3649  *	@bar: BAR to be reserved
3650  *	@res_name: Name to be associated with resource.
3651  *
3652  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3653  *	being reserved by owner @res_name.  Do not access any
3654  *	address inside the PCI regions unless this call returns
3655  *	successfully.
3656  *
3657  *	Returns 0 on success, or %EBUSY on error.  A warning
3658  *	message is also printed on failure.
3659  *
3660  *	The key difference that _exclusive makes it that userspace is
3661  *	explicitly not allowed to map the resource via /dev/mem or
3662  *	sysfs.
3663  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)3664 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3665 				 const char *res_name)
3666 {
3667 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3668 }
3669 EXPORT_SYMBOL(pci_request_region_exclusive);
3670 
3671 /**
3672  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3673  * @pdev: PCI device whose resources were previously reserved
3674  * @bars: Bitmask of BARs to be released
3675  *
3676  * Release selected PCI I/O and memory resources previously reserved.
3677  * Call this function only after all use of the PCI regions has ceased.
3678  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3679 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3680 {
3681 	int i;
3682 
3683 	for (i = 0; i < 6; i++)
3684 		if (bars & (1 << i))
3685 			pci_release_region(pdev, i);
3686 }
3687 EXPORT_SYMBOL(pci_release_selected_regions);
3688 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3689 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3690 					  const char *res_name, int excl)
3691 {
3692 	int i;
3693 
3694 	for (i = 0; i < 6; i++)
3695 		if (bars & (1 << i))
3696 			if (__pci_request_region(pdev, i, res_name, excl))
3697 				goto err_out;
3698 	return 0;
3699 
3700 err_out:
3701 	while (--i >= 0)
3702 		if (bars & (1 << i))
3703 			pci_release_region(pdev, i);
3704 
3705 	return -EBUSY;
3706 }
3707 
3708 
3709 /**
3710  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3711  * @pdev: PCI device whose resources are to be reserved
3712  * @bars: Bitmask of BARs to be requested
3713  * @res_name: Name to be associated with resource
3714  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3715 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3716 				 const char *res_name)
3717 {
3718 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3719 }
3720 EXPORT_SYMBOL(pci_request_selected_regions);
3721 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3722 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3723 					   const char *res_name)
3724 {
3725 	return __pci_request_selected_regions(pdev, bars, res_name,
3726 			IORESOURCE_EXCLUSIVE);
3727 }
3728 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3729 
3730 /**
3731  *	pci_release_regions - Release reserved PCI I/O and memory resources
3732  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3733  *
3734  *	Releases all PCI I/O and memory resources previously reserved by a
3735  *	successful call to pci_request_regions.  Call this function only
3736  *	after all use of the PCI regions has ceased.
3737  */
3738 
pci_release_regions(struct pci_dev * pdev)3739 void pci_release_regions(struct pci_dev *pdev)
3740 {
3741 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3742 }
3743 EXPORT_SYMBOL(pci_release_regions);
3744 
3745 /**
3746  *	pci_request_regions - Reserved PCI I/O and memory resources
3747  *	@pdev: PCI device whose resources are to be reserved
3748  *	@res_name: Name to be associated with resource.
3749  *
3750  *	Mark all PCI regions associated with PCI device @pdev as
3751  *	being reserved by owner @res_name.  Do not access any
3752  *	address inside the PCI regions unless this call returns
3753  *	successfully.
3754  *
3755  *	Returns 0 on success, or %EBUSY on error.  A warning
3756  *	message is also printed on failure.
3757  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3758 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3759 {
3760 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3761 }
3762 EXPORT_SYMBOL(pci_request_regions);
3763 
3764 /**
3765  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3766  *	@pdev: PCI device whose resources are to be reserved
3767  *	@res_name: Name to be associated with resource.
3768  *
3769  *	Mark all PCI regions associated with PCI device @pdev as
3770  *	being reserved by owner @res_name.  Do not access any
3771  *	address inside the PCI regions unless this call returns
3772  *	successfully.
3773  *
3774  *	pci_request_regions_exclusive() will mark the region so that
3775  *	/dev/mem and the sysfs MMIO access will not be allowed.
3776  *
3777  *	Returns 0 on success, or %EBUSY on error.  A warning
3778  *	message is also printed on failure.
3779  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3780 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3781 {
3782 	return pci_request_selected_regions_exclusive(pdev,
3783 					((1 << 6) - 1), res_name);
3784 }
3785 EXPORT_SYMBOL(pci_request_regions_exclusive);
3786 
3787 /*
3788  * Record the PCI IO range (expressed as CPU physical address + size).
3789  * Return a negative value if an error has occured, zero otherwise
3790  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)3791 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3792 			resource_size_t	size)
3793 {
3794 	int ret = 0;
3795 #ifdef PCI_IOBASE
3796 	struct logic_pio_hwaddr *range;
3797 
3798 	if (!size || addr + size < addr)
3799 		return -EINVAL;
3800 
3801 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3802 	if (!range)
3803 		return -ENOMEM;
3804 
3805 	range->fwnode = fwnode;
3806 	range->size = size;
3807 	range->hw_start = addr;
3808 	range->flags = LOGIC_PIO_CPU_MMIO;
3809 
3810 	ret = logic_pio_register_range(range);
3811 	if (ret)
3812 		kfree(range);
3813 #endif
3814 
3815 	return ret;
3816 }
3817 
pci_pio_to_address(unsigned long pio)3818 phys_addr_t pci_pio_to_address(unsigned long pio)
3819 {
3820 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3821 
3822 #ifdef PCI_IOBASE
3823 	if (pio >= MMIO_UPPER_LIMIT)
3824 		return address;
3825 
3826 	address = logic_pio_to_hwaddr(pio);
3827 #endif
3828 
3829 	return address;
3830 }
3831 
pci_address_to_pio(phys_addr_t address)3832 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3833 {
3834 #ifdef PCI_IOBASE
3835 	return logic_pio_trans_cpuaddr(address);
3836 #else
3837 	if (address > IO_SPACE_LIMIT)
3838 		return (unsigned long)-1;
3839 
3840 	return (unsigned long) address;
3841 #endif
3842 }
3843 
3844 /**
3845  *	pci_remap_iospace - Remap the memory mapped I/O space
3846  *	@res: Resource describing the I/O space
3847  *	@phys_addr: physical address of range to be mapped
3848  *
3849  *	Remap the memory mapped I/O space described by the @res
3850  *	and the CPU physical address @phys_addr into virtual address space.
3851  *	Only architectures that have memory mapped IO functions defined
3852  *	(and the PCI_IOBASE value defined) should call this function.
3853  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)3854 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3855 {
3856 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3857 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3858 
3859 	if (!(res->flags & IORESOURCE_IO))
3860 		return -EINVAL;
3861 
3862 	if (res->end > IO_SPACE_LIMIT)
3863 		return -EINVAL;
3864 
3865 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3866 				  pgprot_device(PAGE_KERNEL));
3867 #else
3868 	/* this architecture does not have memory mapped I/O space,
3869 	   so this function should never be called */
3870 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3871 	return -ENODEV;
3872 #endif
3873 }
3874 EXPORT_SYMBOL(pci_remap_iospace);
3875 
3876 /**
3877  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3878  *	@res: resource to be unmapped
3879  *
3880  *	Unmap the CPU virtual address @res from virtual address space.
3881  *	Only architectures that have memory mapped IO functions defined
3882  *	(and the PCI_IOBASE value defined) should call this function.
3883  */
pci_unmap_iospace(struct resource * res)3884 void pci_unmap_iospace(struct resource *res)
3885 {
3886 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3887 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3888 
3889 	unmap_kernel_range(vaddr, resource_size(res));
3890 #endif
3891 }
3892 EXPORT_SYMBOL(pci_unmap_iospace);
3893 
devm_pci_unmap_iospace(struct device * dev,void * ptr)3894 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3895 {
3896 	struct resource **res = ptr;
3897 
3898 	pci_unmap_iospace(*res);
3899 }
3900 
3901 /**
3902  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3903  * @dev: Generic device to remap IO address for
3904  * @res: Resource describing the I/O space
3905  * @phys_addr: physical address of range to be mapped
3906  *
3907  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3908  * detach.
3909  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)3910 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3911 			   phys_addr_t phys_addr)
3912 {
3913 	const struct resource **ptr;
3914 	int error;
3915 
3916 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3917 	if (!ptr)
3918 		return -ENOMEM;
3919 
3920 	error = pci_remap_iospace(res, phys_addr);
3921 	if (error) {
3922 		devres_free(ptr);
3923 	} else	{
3924 		*ptr = res;
3925 		devres_add(dev, ptr);
3926 	}
3927 
3928 	return error;
3929 }
3930 EXPORT_SYMBOL(devm_pci_remap_iospace);
3931 
3932 /**
3933  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3934  * @dev: Generic device to remap IO address for
3935  * @offset: Resource address to map
3936  * @size: Size of map
3937  *
3938  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3939  * detach.
3940  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)3941 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3942 				      resource_size_t offset,
3943 				      resource_size_t size)
3944 {
3945 	void __iomem **ptr, *addr;
3946 
3947 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3948 	if (!ptr)
3949 		return NULL;
3950 
3951 	addr = pci_remap_cfgspace(offset, size);
3952 	if (addr) {
3953 		*ptr = addr;
3954 		devres_add(dev, ptr);
3955 	} else
3956 		devres_free(ptr);
3957 
3958 	return addr;
3959 }
3960 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3961 
3962 /**
3963  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3964  * @dev: generic device to handle the resource for
3965  * @res: configuration space resource to be handled
3966  *
3967  * Checks that a resource is a valid memory region, requests the memory
3968  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3969  * proper PCI configuration space memory attributes are guaranteed.
3970  *
3971  * All operations are managed and will be undone on driver detach.
3972  *
3973  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3974  * on failure. Usage example::
3975  *
3976  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3977  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3978  *	if (IS_ERR(base))
3979  *		return PTR_ERR(base);
3980  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)3981 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3982 					  struct resource *res)
3983 {
3984 	resource_size_t size;
3985 	const char *name;
3986 	void __iomem *dest_ptr;
3987 
3988 	BUG_ON(!dev);
3989 
3990 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3991 		dev_err(dev, "invalid resource\n");
3992 		return IOMEM_ERR_PTR(-EINVAL);
3993 	}
3994 
3995 	size = resource_size(res);
3996 	name = res->name ?: dev_name(dev);
3997 
3998 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3999 		dev_err(dev, "can't request region for resource %pR\n", res);
4000 		return IOMEM_ERR_PTR(-EBUSY);
4001 	}
4002 
4003 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4004 	if (!dest_ptr) {
4005 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4006 		devm_release_mem_region(dev, res->start, size);
4007 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4008 	}
4009 
4010 	return dest_ptr;
4011 }
4012 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4013 
__pci_set_master(struct pci_dev * dev,bool enable)4014 static void __pci_set_master(struct pci_dev *dev, bool enable)
4015 {
4016 	u16 old_cmd, cmd;
4017 
4018 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4019 	if (enable)
4020 		cmd = old_cmd | PCI_COMMAND_MASTER;
4021 	else
4022 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4023 	if (cmd != old_cmd) {
4024 		pci_dbg(dev, "%s bus mastering\n",
4025 			enable ? "enabling" : "disabling");
4026 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4027 	}
4028 	dev->is_busmaster = enable;
4029 }
4030 
4031 /**
4032  * pcibios_setup - process "pci=" kernel boot arguments
4033  * @str: string used to pass in "pci=" kernel boot arguments
4034  *
4035  * Process kernel boot arguments.  This is the default implementation.
4036  * Architecture specific implementations can override this as necessary.
4037  */
pcibios_setup(char * str)4038 char * __weak __init pcibios_setup(char *str)
4039 {
4040 	return str;
4041 }
4042 
4043 /**
4044  * pcibios_set_master - enable PCI bus-mastering for device dev
4045  * @dev: the PCI device to enable
4046  *
4047  * Enables PCI bus-mastering for the device.  This is the default
4048  * implementation.  Architecture specific implementations can override
4049  * this if necessary.
4050  */
pcibios_set_master(struct pci_dev * dev)4051 void __weak pcibios_set_master(struct pci_dev *dev)
4052 {
4053 	u8 lat;
4054 
4055 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4056 	if (pci_is_pcie(dev))
4057 		return;
4058 
4059 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4060 	if (lat < 16)
4061 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4062 	else if (lat > pcibios_max_latency)
4063 		lat = pcibios_max_latency;
4064 	else
4065 		return;
4066 
4067 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4068 }
4069 
4070 /**
4071  * pci_set_master - enables bus-mastering for device dev
4072  * @dev: the PCI device to enable
4073  *
4074  * Enables bus-mastering on the device and calls pcibios_set_master()
4075  * to do the needed arch specific settings.
4076  */
pci_set_master(struct pci_dev * dev)4077 void pci_set_master(struct pci_dev *dev)
4078 {
4079 	__pci_set_master(dev, true);
4080 	pcibios_set_master(dev);
4081 }
4082 EXPORT_SYMBOL(pci_set_master);
4083 
4084 /**
4085  * pci_clear_master - disables bus-mastering for device dev
4086  * @dev: the PCI device to disable
4087  */
pci_clear_master(struct pci_dev * dev)4088 void pci_clear_master(struct pci_dev *dev)
4089 {
4090 	__pci_set_master(dev, false);
4091 }
4092 EXPORT_SYMBOL(pci_clear_master);
4093 
4094 /**
4095  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4096  * @dev: the PCI device for which MWI is to be enabled
4097  *
4098  * Helper function for pci_set_mwi.
4099  * Originally copied from drivers/net/acenic.c.
4100  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4101  *
4102  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4103  */
pci_set_cacheline_size(struct pci_dev * dev)4104 int pci_set_cacheline_size(struct pci_dev *dev)
4105 {
4106 	u8 cacheline_size;
4107 
4108 	if (!pci_cache_line_size)
4109 		return -EINVAL;
4110 
4111 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4112 	   equal to or multiple of the right value. */
4113 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4114 	if (cacheline_size >= pci_cache_line_size &&
4115 	    (cacheline_size % pci_cache_line_size) == 0)
4116 		return 0;
4117 
4118 	/* Write the correct value. */
4119 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4120 	/* Read it back. */
4121 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4122 	if (cacheline_size == pci_cache_line_size)
4123 		return 0;
4124 
4125 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4126 		   pci_cache_line_size << 2);
4127 
4128 	return -EINVAL;
4129 }
4130 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4131 
4132 /**
4133  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4134  * @dev: the PCI device for which MWI is enabled
4135  *
4136  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4137  *
4138  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4139  */
pci_set_mwi(struct pci_dev * dev)4140 int pci_set_mwi(struct pci_dev *dev)
4141 {
4142 #ifdef PCI_DISABLE_MWI
4143 	return 0;
4144 #else
4145 	int rc;
4146 	u16 cmd;
4147 
4148 	rc = pci_set_cacheline_size(dev);
4149 	if (rc)
4150 		return rc;
4151 
4152 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4153 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4154 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4155 		cmd |= PCI_COMMAND_INVALIDATE;
4156 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4157 	}
4158 	return 0;
4159 #endif
4160 }
4161 EXPORT_SYMBOL(pci_set_mwi);
4162 
4163 /**
4164  * pcim_set_mwi - a device-managed pci_set_mwi()
4165  * @dev: the PCI device for which MWI is enabled
4166  *
4167  * Managed pci_set_mwi().
4168  *
4169  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4170  */
pcim_set_mwi(struct pci_dev * dev)4171 int pcim_set_mwi(struct pci_dev *dev)
4172 {
4173 	struct pci_devres *dr;
4174 
4175 	dr = find_pci_dr(dev);
4176 	if (!dr)
4177 		return -ENOMEM;
4178 
4179 	dr->mwi = 1;
4180 	return pci_set_mwi(dev);
4181 }
4182 EXPORT_SYMBOL(pcim_set_mwi);
4183 
4184 /**
4185  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4186  * @dev: the PCI device for which MWI is enabled
4187  *
4188  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4189  * Callers are not required to check the return value.
4190  *
4191  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4192  */
pci_try_set_mwi(struct pci_dev * dev)4193 int pci_try_set_mwi(struct pci_dev *dev)
4194 {
4195 #ifdef PCI_DISABLE_MWI
4196 	return 0;
4197 #else
4198 	return pci_set_mwi(dev);
4199 #endif
4200 }
4201 EXPORT_SYMBOL(pci_try_set_mwi);
4202 
4203 /**
4204  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4205  * @dev: the PCI device to disable
4206  *
4207  * Disables PCI Memory-Write-Invalidate transaction on the device
4208  */
pci_clear_mwi(struct pci_dev * dev)4209 void pci_clear_mwi(struct pci_dev *dev)
4210 {
4211 #ifndef PCI_DISABLE_MWI
4212 	u16 cmd;
4213 
4214 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4215 	if (cmd & PCI_COMMAND_INVALIDATE) {
4216 		cmd &= ~PCI_COMMAND_INVALIDATE;
4217 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4218 	}
4219 #endif
4220 }
4221 EXPORT_SYMBOL(pci_clear_mwi);
4222 
4223 /**
4224  * pci_intx - enables/disables PCI INTx for device dev
4225  * @pdev: the PCI device to operate on
4226  * @enable: boolean: whether to enable or disable PCI INTx
4227  *
4228  * Enables/disables PCI INTx for device dev
4229  */
pci_intx(struct pci_dev * pdev,int enable)4230 void pci_intx(struct pci_dev *pdev, int enable)
4231 {
4232 	u16 pci_command, new;
4233 
4234 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4235 
4236 	if (enable)
4237 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4238 	else
4239 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4240 
4241 	if (new != pci_command) {
4242 		struct pci_devres *dr;
4243 
4244 		pci_write_config_word(pdev, PCI_COMMAND, new);
4245 
4246 		dr = find_pci_dr(pdev);
4247 		if (dr && !dr->restore_intx) {
4248 			dr->restore_intx = 1;
4249 			dr->orig_intx = !enable;
4250 		}
4251 	}
4252 }
4253 EXPORT_SYMBOL_GPL(pci_intx);
4254 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4255 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4256 {
4257 	struct pci_bus *bus = dev->bus;
4258 	bool mask_updated = true;
4259 	u32 cmd_status_dword;
4260 	u16 origcmd, newcmd;
4261 	unsigned long flags;
4262 	bool irq_pending;
4263 
4264 	/*
4265 	 * We do a single dword read to retrieve both command and status.
4266 	 * Document assumptions that make this possible.
4267 	 */
4268 	BUILD_BUG_ON(PCI_COMMAND % 4);
4269 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4270 
4271 	raw_spin_lock_irqsave(&pci_lock, flags);
4272 
4273 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4274 
4275 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4276 
4277 	/*
4278 	 * Check interrupt status register to see whether our device
4279 	 * triggered the interrupt (when masking) or the next IRQ is
4280 	 * already pending (when unmasking).
4281 	 */
4282 	if (mask != irq_pending) {
4283 		mask_updated = false;
4284 		goto done;
4285 	}
4286 
4287 	origcmd = cmd_status_dword;
4288 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4289 	if (mask)
4290 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4291 	if (newcmd != origcmd)
4292 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4293 
4294 done:
4295 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4296 
4297 	return mask_updated;
4298 }
4299 
4300 /**
4301  * pci_check_and_mask_intx - mask INTx on pending interrupt
4302  * @dev: the PCI device to operate on
4303  *
4304  * Check if the device dev has its INTx line asserted, mask it and
4305  * return true in that case. False is returned if no interrupt was
4306  * pending.
4307  */
pci_check_and_mask_intx(struct pci_dev * dev)4308 bool pci_check_and_mask_intx(struct pci_dev *dev)
4309 {
4310 	return pci_check_and_set_intx_mask(dev, true);
4311 }
4312 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4313 
4314 /**
4315  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4316  * @dev: the PCI device to operate on
4317  *
4318  * Check if the device dev has its INTx line asserted, unmask it if not
4319  * and return true. False is returned and the mask remains active if
4320  * there was still an interrupt pending.
4321  */
pci_check_and_unmask_intx(struct pci_dev * dev)4322 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4323 {
4324 	return pci_check_and_set_intx_mask(dev, false);
4325 }
4326 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4327 
4328 /**
4329  * pci_wait_for_pending_transaction - waits for pending transaction
4330  * @dev: the PCI device to operate on
4331  *
4332  * Return 0 if transaction is pending 1 otherwise.
4333  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4334 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4335 {
4336 	if (!pci_is_pcie(dev))
4337 		return 1;
4338 
4339 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4340 				    PCI_EXP_DEVSTA_TRPND);
4341 }
4342 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4343 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)4344 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4345 {
4346 	int delay = 1;
4347 	u32 id;
4348 
4349 	/*
4350 	 * After reset, the device should not silently discard config
4351 	 * requests, but it may still indicate that it needs more time by
4352 	 * responding to them with CRS completions.  The Root Port will
4353 	 * generally synthesize ~0 data to complete the read (except when
4354 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4355 	 * case it synthesizes 0x0001 data).
4356 	 *
4357 	 * Wait for the device to return a non-CRS completion.  Read the
4358 	 * Command register instead of Vendor ID so we don't have to
4359 	 * contend with the CRS SV value.
4360 	 */
4361 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4362 	while (id == ~0) {
4363 		if (delay > timeout) {
4364 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4365 				 delay - 1, reset_type);
4366 			return -ENOTTY;
4367 		}
4368 
4369 		if (delay > 1000)
4370 			pci_info(dev, "not ready %dms after %s; waiting\n",
4371 				 delay - 1, reset_type);
4372 
4373 		msleep(delay);
4374 		delay *= 2;
4375 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4376 	}
4377 
4378 	if (delay > 1000)
4379 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4380 			 reset_type);
4381 
4382 	return 0;
4383 }
4384 
4385 /**
4386  * pcie_has_flr - check if a device supports function level resets
4387  * @dev:	device to check
4388  *
4389  * Returns true if the device advertises support for PCIe function level
4390  * resets.
4391  */
pcie_has_flr(struct pci_dev * dev)4392 bool pcie_has_flr(struct pci_dev *dev)
4393 {
4394 	u32 cap;
4395 
4396 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4397 		return false;
4398 
4399 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4400 	return cap & PCI_EXP_DEVCAP_FLR;
4401 }
4402 EXPORT_SYMBOL_GPL(pcie_has_flr);
4403 
4404 /**
4405  * pcie_flr - initiate a PCIe function level reset
4406  * @dev:	device to reset
4407  *
4408  * Initiate a function level reset on @dev.  The caller should ensure the
4409  * device supports FLR before calling this function, e.g. by using the
4410  * pcie_has_flr() helper.
4411  */
pcie_flr(struct pci_dev * dev)4412 int pcie_flr(struct pci_dev *dev)
4413 {
4414 	if (!pci_wait_for_pending_transaction(dev))
4415 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4416 
4417 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4418 
4419 	/*
4420 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4421 	 * 100ms, but may silently discard requests while the FLR is in
4422 	 * progress.  Wait 100ms before trying to access the device.
4423 	 */
4424 	msleep(100);
4425 
4426 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4427 }
4428 EXPORT_SYMBOL_GPL(pcie_flr);
4429 
pci_af_flr(struct pci_dev * dev,int probe)4430 static int pci_af_flr(struct pci_dev *dev, int probe)
4431 {
4432 	int pos;
4433 	u8 cap;
4434 
4435 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4436 	if (!pos)
4437 		return -ENOTTY;
4438 
4439 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4440 		return -ENOTTY;
4441 
4442 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4443 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4444 		return -ENOTTY;
4445 
4446 	if (probe)
4447 		return 0;
4448 
4449 	/*
4450 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4451 	 * is used, so we use the conrol offset rather than status and shift
4452 	 * the test bit to match.
4453 	 */
4454 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4455 				 PCI_AF_STATUS_TP << 8))
4456 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4457 
4458 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4459 
4460 	/*
4461 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4462 	 * updated 27 July 2006; a device must complete an FLR within
4463 	 * 100ms, but may silently discard requests while the FLR is in
4464 	 * progress.  Wait 100ms before trying to access the device.
4465 	 */
4466 	msleep(100);
4467 
4468 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4469 }
4470 
4471 /**
4472  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4473  * @dev: Device to reset.
4474  * @probe: If set, only check if the device can be reset this way.
4475  *
4476  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4477  * unset, it will be reinitialized internally when going from PCI_D3hot to
4478  * PCI_D0.  If that's the case and the device is not in a low-power state
4479  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4480  *
4481  * NOTE: This causes the caller to sleep for twice the device power transition
4482  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4483  * by default (i.e. unless the @dev's d3_delay field has a different value).
4484  * Moreover, only devices in D0 can be reset by this function.
4485  */
pci_pm_reset(struct pci_dev * dev,int probe)4486 static int pci_pm_reset(struct pci_dev *dev, int probe)
4487 {
4488 	u16 csr;
4489 
4490 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4491 		return -ENOTTY;
4492 
4493 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4494 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4495 		return -ENOTTY;
4496 
4497 	if (probe)
4498 		return 0;
4499 
4500 	if (dev->current_state != PCI_D0)
4501 		return -EINVAL;
4502 
4503 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4504 	csr |= PCI_D3hot;
4505 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4506 	pci_dev_d3_sleep(dev);
4507 
4508 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4509 	csr |= PCI_D0;
4510 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4511 	pci_dev_d3_sleep(dev);
4512 
4513 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4514 }
4515 /**
4516  * pcie_wait_for_link - Wait until link is active or inactive
4517  * @pdev: Bridge device
4518  * @active: waiting for active or inactive?
4519  *
4520  * Use this to wait till link becomes active or inactive.
4521  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4522 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4523 {
4524 	int timeout = 1000;
4525 	bool ret;
4526 	u16 lnk_status;
4527 
4528 	for (;;) {
4529 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4530 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4531 		if (ret == active)
4532 			return true;
4533 		if (timeout <= 0)
4534 			break;
4535 		msleep(10);
4536 		timeout -= 10;
4537 	}
4538 
4539 	pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4540 		 active ? "set" : "cleared");
4541 
4542 	return false;
4543 }
4544 
pci_reset_secondary_bus(struct pci_dev * dev)4545 void pci_reset_secondary_bus(struct pci_dev *dev)
4546 {
4547 	u16 ctrl;
4548 
4549 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4550 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4551 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4552 
4553 	/*
4554 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4555 	 * this to 2ms to ensure that we meet the minimum requirement.
4556 	 */
4557 	msleep(2);
4558 
4559 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4560 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4561 
4562 	/*
4563 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4564 	 * Assuming a minimum 33MHz clock this results in a 1s
4565 	 * delay before we can consider subordinate devices to
4566 	 * be re-initialized.  PCIe has some ways to shorten this,
4567 	 * but we don't make use of them yet.
4568 	 */
4569 	ssleep(1);
4570 }
4571 
pcibios_reset_secondary_bus(struct pci_dev * dev)4572 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4573 {
4574 	pci_reset_secondary_bus(dev);
4575 }
4576 
4577 /**
4578  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4579  * @dev: Bridge device
4580  *
4581  * Use the bridge control register to assert reset on the secondary bus.
4582  * Devices on the secondary bus are left in power-on state.
4583  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4584 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4585 {
4586 	pcibios_reset_secondary_bus(dev);
4587 
4588 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4589 }
4590 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4591 
pci_parent_bus_reset(struct pci_dev * dev,int probe)4592 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4593 {
4594 	struct pci_dev *pdev;
4595 
4596 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4597 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4598 		return -ENOTTY;
4599 
4600 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4601 		if (pdev != dev)
4602 			return -ENOTTY;
4603 
4604 	if (probe)
4605 		return 0;
4606 
4607 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4608 }
4609 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)4610 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4611 {
4612 	int rc = -ENOTTY;
4613 
4614 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4615 		return rc;
4616 
4617 	if (hotplug->ops->reset_slot)
4618 		rc = hotplug->ops->reset_slot(hotplug, probe);
4619 
4620 	module_put(hotplug->ops->owner);
4621 
4622 	return rc;
4623 }
4624 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)4625 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4626 {
4627 	struct pci_dev *pdev;
4628 
4629 	if (dev->subordinate || !dev->slot ||
4630 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4631 		return -ENOTTY;
4632 
4633 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4634 		if (pdev != dev && pdev->slot == dev->slot)
4635 			return -ENOTTY;
4636 
4637 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4638 }
4639 
pci_dev_lock(struct pci_dev * dev)4640 static void pci_dev_lock(struct pci_dev *dev)
4641 {
4642 	pci_cfg_access_lock(dev);
4643 	/* block PM suspend, driver probe, etc. */
4644 	device_lock(&dev->dev);
4645 }
4646 
4647 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4648 static int pci_dev_trylock(struct pci_dev *dev)
4649 {
4650 	if (pci_cfg_access_trylock(dev)) {
4651 		if (device_trylock(&dev->dev))
4652 			return 1;
4653 		pci_cfg_access_unlock(dev);
4654 	}
4655 
4656 	return 0;
4657 }
4658 
pci_dev_unlock(struct pci_dev * dev)4659 static void pci_dev_unlock(struct pci_dev *dev)
4660 {
4661 	device_unlock(&dev->dev);
4662 	pci_cfg_access_unlock(dev);
4663 }
4664 
pci_dev_save_and_disable(struct pci_dev * dev)4665 static void pci_dev_save_and_disable(struct pci_dev *dev)
4666 {
4667 	const struct pci_error_handlers *err_handler =
4668 			dev->driver ? dev->driver->err_handler : NULL;
4669 
4670 	/*
4671 	 * dev->driver->err_handler->reset_prepare() is protected against
4672 	 * races with ->remove() by the device lock, which must be held by
4673 	 * the caller.
4674 	 */
4675 	if (err_handler && err_handler->reset_prepare)
4676 		err_handler->reset_prepare(dev);
4677 
4678 	/*
4679 	 * Wake-up device prior to save.  PM registers default to D0 after
4680 	 * reset and a simple register restore doesn't reliably return
4681 	 * to a non-D0 state anyway.
4682 	 */
4683 	pci_set_power_state(dev, PCI_D0);
4684 
4685 	pci_save_state(dev);
4686 	/*
4687 	 * Disable the device by clearing the Command register, except for
4688 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4689 	 * BARs, but also prevents the device from being Bus Master, preventing
4690 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4691 	 * compliant devices, INTx-disable prevents legacy interrupts.
4692 	 */
4693 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4694 }
4695 
pci_dev_restore(struct pci_dev * dev)4696 static void pci_dev_restore(struct pci_dev *dev)
4697 {
4698 	const struct pci_error_handlers *err_handler =
4699 			dev->driver ? dev->driver->err_handler : NULL;
4700 
4701 	pci_restore_state(dev);
4702 
4703 	/*
4704 	 * dev->driver->err_handler->reset_done() is protected against
4705 	 * races with ->remove() by the device lock, which must be held by
4706 	 * the caller.
4707 	 */
4708 	if (err_handler && err_handler->reset_done)
4709 		err_handler->reset_done(dev);
4710 }
4711 
4712 /**
4713  * __pci_reset_function_locked - reset a PCI device function while holding
4714  * the @dev mutex lock.
4715  * @dev: PCI device to reset
4716  *
4717  * Some devices allow an individual function to be reset without affecting
4718  * other functions in the same device.  The PCI device must be responsive
4719  * to PCI config space in order to use this function.
4720  *
4721  * The device function is presumed to be unused and the caller is holding
4722  * the device mutex lock when this function is called.
4723  * Resetting the device will make the contents of PCI configuration space
4724  * random, so any caller of this must be prepared to reinitialise the
4725  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4726  * etc.
4727  *
4728  * Returns 0 if the device function was successfully reset or negative if the
4729  * device doesn't support resetting a single function.
4730  */
__pci_reset_function_locked(struct pci_dev * dev)4731 int __pci_reset_function_locked(struct pci_dev *dev)
4732 {
4733 	int rc;
4734 
4735 	might_sleep();
4736 
4737 	/*
4738 	 * A reset method returns -ENOTTY if it doesn't support this device
4739 	 * and we should try the next method.
4740 	 *
4741 	 * If it returns 0 (success), we're finished.  If it returns any
4742 	 * other error, we're also finished: this indicates that further
4743 	 * reset mechanisms might be broken on the device.
4744 	 */
4745 	rc = pci_dev_specific_reset(dev, 0);
4746 	if (rc != -ENOTTY)
4747 		return rc;
4748 	if (pcie_has_flr(dev)) {
4749 		rc = pcie_flr(dev);
4750 		if (rc != -ENOTTY)
4751 			return rc;
4752 	}
4753 	rc = pci_af_flr(dev, 0);
4754 	if (rc != -ENOTTY)
4755 		return rc;
4756 	rc = pci_pm_reset(dev, 0);
4757 	if (rc != -ENOTTY)
4758 		return rc;
4759 	rc = pci_dev_reset_slot_function(dev, 0);
4760 	if (rc != -ENOTTY)
4761 		return rc;
4762 	return pci_parent_bus_reset(dev, 0);
4763 }
4764 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4765 
4766 /**
4767  * pci_probe_reset_function - check whether the device can be safely reset
4768  * @dev: PCI device to reset
4769  *
4770  * Some devices allow an individual function to be reset without affecting
4771  * other functions in the same device.  The PCI device must be responsive
4772  * to PCI config space in order to use this function.
4773  *
4774  * Returns 0 if the device function can be reset or negative if the
4775  * device doesn't support resetting a single function.
4776  */
pci_probe_reset_function(struct pci_dev * dev)4777 int pci_probe_reset_function(struct pci_dev *dev)
4778 {
4779 	int rc;
4780 
4781 	might_sleep();
4782 
4783 	rc = pci_dev_specific_reset(dev, 1);
4784 	if (rc != -ENOTTY)
4785 		return rc;
4786 	if (pcie_has_flr(dev))
4787 		return 0;
4788 	rc = pci_af_flr(dev, 1);
4789 	if (rc != -ENOTTY)
4790 		return rc;
4791 	rc = pci_pm_reset(dev, 1);
4792 	if (rc != -ENOTTY)
4793 		return rc;
4794 	rc = pci_dev_reset_slot_function(dev, 1);
4795 	if (rc != -ENOTTY)
4796 		return rc;
4797 
4798 	return pci_parent_bus_reset(dev, 1);
4799 }
4800 
4801 /**
4802  * pci_reset_function - quiesce and reset a PCI device function
4803  * @dev: PCI device to reset
4804  *
4805  * Some devices allow an individual function to be reset without affecting
4806  * other functions in the same device.  The PCI device must be responsive
4807  * to PCI config space in order to use this function.
4808  *
4809  * This function does not just reset the PCI portion of a device, but
4810  * clears all the state associated with the device.  This function differs
4811  * from __pci_reset_function_locked() in that it saves and restores device state
4812  * over the reset and takes the PCI device lock.
4813  *
4814  * Returns 0 if the device function was successfully reset or negative if the
4815  * device doesn't support resetting a single function.
4816  */
pci_reset_function(struct pci_dev * dev)4817 int pci_reset_function(struct pci_dev *dev)
4818 {
4819 	int rc;
4820 
4821 	if (!dev->reset_fn)
4822 		return -ENOTTY;
4823 
4824 	pci_dev_lock(dev);
4825 	pci_dev_save_and_disable(dev);
4826 
4827 	rc = __pci_reset_function_locked(dev);
4828 
4829 	pci_dev_restore(dev);
4830 	pci_dev_unlock(dev);
4831 
4832 	return rc;
4833 }
4834 EXPORT_SYMBOL_GPL(pci_reset_function);
4835 
4836 /**
4837  * pci_reset_function_locked - quiesce and reset a PCI device function
4838  * @dev: PCI device to reset
4839  *
4840  * Some devices allow an individual function to be reset without affecting
4841  * other functions in the same device.  The PCI device must be responsive
4842  * to PCI config space in order to use this function.
4843  *
4844  * This function does not just reset the PCI portion of a device, but
4845  * clears all the state associated with the device.  This function differs
4846  * from __pci_reset_function_locked() in that it saves and restores device state
4847  * over the reset.  It also differs from pci_reset_function() in that it
4848  * requires the PCI device lock to be held.
4849  *
4850  * Returns 0 if the device function was successfully reset or negative if the
4851  * device doesn't support resetting a single function.
4852  */
pci_reset_function_locked(struct pci_dev * dev)4853 int pci_reset_function_locked(struct pci_dev *dev)
4854 {
4855 	int rc;
4856 
4857 	if (!dev->reset_fn)
4858 		return -ENOTTY;
4859 
4860 	pci_dev_save_and_disable(dev);
4861 
4862 	rc = __pci_reset_function_locked(dev);
4863 
4864 	pci_dev_restore(dev);
4865 
4866 	return rc;
4867 }
4868 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4869 
4870 /**
4871  * pci_try_reset_function - quiesce and reset a PCI device function
4872  * @dev: PCI device to reset
4873  *
4874  * Same as above, except return -EAGAIN if unable to lock device.
4875  */
pci_try_reset_function(struct pci_dev * dev)4876 int pci_try_reset_function(struct pci_dev *dev)
4877 {
4878 	int rc;
4879 
4880 	if (!dev->reset_fn)
4881 		return -ENOTTY;
4882 
4883 	if (!pci_dev_trylock(dev))
4884 		return -EAGAIN;
4885 
4886 	pci_dev_save_and_disable(dev);
4887 	rc = __pci_reset_function_locked(dev);
4888 	pci_dev_restore(dev);
4889 	pci_dev_unlock(dev);
4890 
4891 	return rc;
4892 }
4893 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4894 
4895 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)4896 static bool pci_bus_resetable(struct pci_bus *bus)
4897 {
4898 	struct pci_dev *dev;
4899 
4900 
4901 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4902 		return false;
4903 
4904 	list_for_each_entry(dev, &bus->devices, bus_list) {
4905 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4906 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4907 			return false;
4908 	}
4909 
4910 	return true;
4911 }
4912 
4913 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)4914 static void pci_bus_lock(struct pci_bus *bus)
4915 {
4916 	struct pci_dev *dev;
4917 
4918 	list_for_each_entry(dev, &bus->devices, bus_list) {
4919 		pci_dev_lock(dev);
4920 		if (dev->subordinate)
4921 			pci_bus_lock(dev->subordinate);
4922 	}
4923 }
4924 
4925 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)4926 static void pci_bus_unlock(struct pci_bus *bus)
4927 {
4928 	struct pci_dev *dev;
4929 
4930 	list_for_each_entry(dev, &bus->devices, bus_list) {
4931 		if (dev->subordinate)
4932 			pci_bus_unlock(dev->subordinate);
4933 		pci_dev_unlock(dev);
4934 	}
4935 }
4936 
4937 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)4938 static int pci_bus_trylock(struct pci_bus *bus)
4939 {
4940 	struct pci_dev *dev;
4941 
4942 	list_for_each_entry(dev, &bus->devices, bus_list) {
4943 		if (!pci_dev_trylock(dev))
4944 			goto unlock;
4945 		if (dev->subordinate) {
4946 			if (!pci_bus_trylock(dev->subordinate)) {
4947 				pci_dev_unlock(dev);
4948 				goto unlock;
4949 			}
4950 		}
4951 	}
4952 	return 1;
4953 
4954 unlock:
4955 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4956 		if (dev->subordinate)
4957 			pci_bus_unlock(dev->subordinate);
4958 		pci_dev_unlock(dev);
4959 	}
4960 	return 0;
4961 }
4962 
4963 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)4964 static bool pci_slot_resetable(struct pci_slot *slot)
4965 {
4966 	struct pci_dev *dev;
4967 
4968 	if (slot->bus->self &&
4969 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4970 		return false;
4971 
4972 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4973 		if (!dev->slot || dev->slot != slot)
4974 			continue;
4975 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4976 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4977 			return false;
4978 	}
4979 
4980 	return true;
4981 }
4982 
4983 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)4984 static void pci_slot_lock(struct pci_slot *slot)
4985 {
4986 	struct pci_dev *dev;
4987 
4988 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4989 		if (!dev->slot || dev->slot != slot)
4990 			continue;
4991 		pci_dev_lock(dev);
4992 		if (dev->subordinate)
4993 			pci_bus_lock(dev->subordinate);
4994 	}
4995 }
4996 
4997 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)4998 static void pci_slot_unlock(struct pci_slot *slot)
4999 {
5000 	struct pci_dev *dev;
5001 
5002 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5003 		if (!dev->slot || dev->slot != slot)
5004 			continue;
5005 		if (dev->subordinate)
5006 			pci_bus_unlock(dev->subordinate);
5007 		pci_dev_unlock(dev);
5008 	}
5009 }
5010 
5011 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5012 static int pci_slot_trylock(struct pci_slot *slot)
5013 {
5014 	struct pci_dev *dev;
5015 
5016 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5017 		if (!dev->slot || dev->slot != slot)
5018 			continue;
5019 		if (!pci_dev_trylock(dev))
5020 			goto unlock;
5021 		if (dev->subordinate) {
5022 			if (!pci_bus_trylock(dev->subordinate)) {
5023 				pci_dev_unlock(dev);
5024 				goto unlock;
5025 			}
5026 		}
5027 	}
5028 	return 1;
5029 
5030 unlock:
5031 	list_for_each_entry_continue_reverse(dev,
5032 					     &slot->bus->devices, bus_list) {
5033 		if (!dev->slot || dev->slot != slot)
5034 			continue;
5035 		if (dev->subordinate)
5036 			pci_bus_unlock(dev->subordinate);
5037 		pci_dev_unlock(dev);
5038 	}
5039 	return 0;
5040 }
5041 
5042 /*
5043  * Save and disable devices from the top of the tree down while holding
5044  * the @dev mutex lock for the entire tree.
5045  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5046 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5047 {
5048 	struct pci_dev *dev;
5049 
5050 	list_for_each_entry(dev, &bus->devices, bus_list) {
5051 		pci_dev_save_and_disable(dev);
5052 		if (dev->subordinate)
5053 			pci_bus_save_and_disable_locked(dev->subordinate);
5054 	}
5055 }
5056 
5057 /*
5058  * Restore devices from top of the tree down while holding @dev mutex lock
5059  * for the entire tree.  Parent bridges need to be restored before we can
5060  * get to subordinate devices.
5061  */
pci_bus_restore_locked(struct pci_bus * bus)5062 static void pci_bus_restore_locked(struct pci_bus *bus)
5063 {
5064 	struct pci_dev *dev;
5065 
5066 	list_for_each_entry(dev, &bus->devices, bus_list) {
5067 		pci_dev_restore(dev);
5068 		if (dev->subordinate)
5069 			pci_bus_restore_locked(dev->subordinate);
5070 	}
5071 }
5072 
5073 /*
5074  * Save and disable devices from the top of the tree down while holding
5075  * the @dev mutex lock for the entire tree.
5076  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5077 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5078 {
5079 	struct pci_dev *dev;
5080 
5081 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5082 		if (!dev->slot || dev->slot != slot)
5083 			continue;
5084 		pci_dev_save_and_disable(dev);
5085 		if (dev->subordinate)
5086 			pci_bus_save_and_disable_locked(dev->subordinate);
5087 	}
5088 }
5089 
5090 /*
5091  * Restore devices from top of the tree down while holding @dev mutex lock
5092  * for the entire tree.  Parent bridges need to be restored before we can
5093  * get to subordinate devices.
5094  */
pci_slot_restore_locked(struct pci_slot * slot)5095 static void pci_slot_restore_locked(struct pci_slot *slot)
5096 {
5097 	struct pci_dev *dev;
5098 
5099 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5100 		if (!dev->slot || dev->slot != slot)
5101 			continue;
5102 		pci_dev_restore(dev);
5103 		if (dev->subordinate)
5104 			pci_bus_restore_locked(dev->subordinate);
5105 	}
5106 }
5107 
pci_slot_reset(struct pci_slot * slot,int probe)5108 static int pci_slot_reset(struct pci_slot *slot, int probe)
5109 {
5110 	int rc;
5111 
5112 	if (!slot || !pci_slot_resetable(slot))
5113 		return -ENOTTY;
5114 
5115 	if (!probe)
5116 		pci_slot_lock(slot);
5117 
5118 	might_sleep();
5119 
5120 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5121 
5122 	if (!probe)
5123 		pci_slot_unlock(slot);
5124 
5125 	return rc;
5126 }
5127 
5128 /**
5129  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5130  * @slot: PCI slot to probe
5131  *
5132  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5133  */
pci_probe_reset_slot(struct pci_slot * slot)5134 int pci_probe_reset_slot(struct pci_slot *slot)
5135 {
5136 	return pci_slot_reset(slot, 1);
5137 }
5138 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5139 
5140 /**
5141  * __pci_reset_slot - Try to reset a PCI slot
5142  * @slot: PCI slot to reset
5143  *
5144  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5145  * independent of other slots.  For instance, some slots may support slot power
5146  * control.  In the case of a 1:1 bus to slot architecture, this function may
5147  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5148  * Generally a slot reset should be attempted before a bus reset.  All of the
5149  * function of the slot and any subordinate buses behind the slot are reset
5150  * through this function.  PCI config space of all devices in the slot and
5151  * behind the slot is saved before and restored after reset.
5152  *
5153  * Same as above except return -EAGAIN if the slot cannot be locked
5154  */
__pci_reset_slot(struct pci_slot * slot)5155 static int __pci_reset_slot(struct pci_slot *slot)
5156 {
5157 	int rc;
5158 
5159 	rc = pci_slot_reset(slot, 1);
5160 	if (rc)
5161 		return rc;
5162 
5163 	if (pci_slot_trylock(slot)) {
5164 		pci_slot_save_and_disable_locked(slot);
5165 		might_sleep();
5166 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5167 		pci_slot_restore_locked(slot);
5168 		pci_slot_unlock(slot);
5169 	} else
5170 		rc = -EAGAIN;
5171 
5172 	return rc;
5173 }
5174 
pci_bus_reset(struct pci_bus * bus,int probe)5175 static int pci_bus_reset(struct pci_bus *bus, int probe)
5176 {
5177 	int ret;
5178 
5179 	if (!bus->self || !pci_bus_resetable(bus))
5180 		return -ENOTTY;
5181 
5182 	if (probe)
5183 		return 0;
5184 
5185 	pci_bus_lock(bus);
5186 
5187 	might_sleep();
5188 
5189 	ret = pci_bridge_secondary_bus_reset(bus->self);
5190 
5191 	pci_bus_unlock(bus);
5192 
5193 	return ret;
5194 }
5195 
5196 /**
5197  * pci_bus_error_reset - reset the bridge's subordinate bus
5198  * @bridge: The parent device that connects to the bus to reset
5199  *
5200  * This function will first try to reset the slots on this bus if the method is
5201  * available. If slot reset fails or is not available, this will fall back to a
5202  * secondary bus reset.
5203  */
pci_bus_error_reset(struct pci_dev * bridge)5204 int pci_bus_error_reset(struct pci_dev *bridge)
5205 {
5206 	struct pci_bus *bus = bridge->subordinate;
5207 	struct pci_slot *slot;
5208 
5209 	if (!bus)
5210 		return -ENOTTY;
5211 
5212 	mutex_lock(&pci_slot_mutex);
5213 	if (list_empty(&bus->slots))
5214 		goto bus_reset;
5215 
5216 	list_for_each_entry(slot, &bus->slots, list)
5217 		if (pci_probe_reset_slot(slot))
5218 			goto bus_reset;
5219 
5220 	list_for_each_entry(slot, &bus->slots, list)
5221 		if (pci_slot_reset(slot, 0))
5222 			goto bus_reset;
5223 
5224 	mutex_unlock(&pci_slot_mutex);
5225 	return 0;
5226 bus_reset:
5227 	mutex_unlock(&pci_slot_mutex);
5228 	return pci_bus_reset(bridge->subordinate, 0);
5229 }
5230 
5231 /**
5232  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5233  * @bus: PCI bus to probe
5234  *
5235  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5236  */
pci_probe_reset_bus(struct pci_bus * bus)5237 int pci_probe_reset_bus(struct pci_bus *bus)
5238 {
5239 	return pci_bus_reset(bus, 1);
5240 }
5241 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5242 
5243 /**
5244  * __pci_reset_bus - Try to reset a PCI bus
5245  * @bus: top level PCI bus to reset
5246  *
5247  * Same as above except return -EAGAIN if the bus cannot be locked
5248  */
__pci_reset_bus(struct pci_bus * bus)5249 static int __pci_reset_bus(struct pci_bus *bus)
5250 {
5251 	int rc;
5252 
5253 	rc = pci_bus_reset(bus, 1);
5254 	if (rc)
5255 		return rc;
5256 
5257 	if (pci_bus_trylock(bus)) {
5258 		pci_bus_save_and_disable_locked(bus);
5259 		might_sleep();
5260 		rc = pci_bridge_secondary_bus_reset(bus->self);
5261 		pci_bus_restore_locked(bus);
5262 		pci_bus_unlock(bus);
5263 	} else
5264 		rc = -EAGAIN;
5265 
5266 	return rc;
5267 }
5268 
5269 /**
5270  * pci_reset_bus - Try to reset a PCI bus
5271  * @pdev: top level PCI device to reset via slot/bus
5272  *
5273  * Same as above except return -EAGAIN if the bus cannot be locked
5274  */
pci_reset_bus(struct pci_dev * pdev)5275 int pci_reset_bus(struct pci_dev *pdev)
5276 {
5277 	return (!pci_probe_reset_slot(pdev->slot)) ?
5278 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5279 }
5280 EXPORT_SYMBOL_GPL(pci_reset_bus);
5281 
5282 /**
5283  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5284  * @dev: PCI device to query
5285  *
5286  * Returns mmrbc: maximum designed memory read count in bytes
5287  *    or appropriate error value.
5288  */
pcix_get_max_mmrbc(struct pci_dev * dev)5289 int pcix_get_max_mmrbc(struct pci_dev *dev)
5290 {
5291 	int cap;
5292 	u32 stat;
5293 
5294 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5295 	if (!cap)
5296 		return -EINVAL;
5297 
5298 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5299 		return -EINVAL;
5300 
5301 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5302 }
5303 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5304 
5305 /**
5306  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5307  * @dev: PCI device to query
5308  *
5309  * Returns mmrbc: maximum memory read count in bytes
5310  *    or appropriate error value.
5311  */
pcix_get_mmrbc(struct pci_dev * dev)5312 int pcix_get_mmrbc(struct pci_dev *dev)
5313 {
5314 	int cap;
5315 	u16 cmd;
5316 
5317 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5318 	if (!cap)
5319 		return -EINVAL;
5320 
5321 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5322 		return -EINVAL;
5323 
5324 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5325 }
5326 EXPORT_SYMBOL(pcix_get_mmrbc);
5327 
5328 /**
5329  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5330  * @dev: PCI device to query
5331  * @mmrbc: maximum memory read count in bytes
5332  *    valid values are 512, 1024, 2048, 4096
5333  *
5334  * If possible sets maximum memory read byte count, some bridges have erratas
5335  * that prevent this.
5336  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5337 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5338 {
5339 	int cap;
5340 	u32 stat, v, o;
5341 	u16 cmd;
5342 
5343 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5344 		return -EINVAL;
5345 
5346 	v = ffs(mmrbc) - 10;
5347 
5348 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5349 	if (!cap)
5350 		return -EINVAL;
5351 
5352 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5353 		return -EINVAL;
5354 
5355 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5356 		return -E2BIG;
5357 
5358 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5359 		return -EINVAL;
5360 
5361 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5362 	if (o != v) {
5363 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5364 			return -EIO;
5365 
5366 		cmd &= ~PCI_X_CMD_MAX_READ;
5367 		cmd |= v << 2;
5368 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5369 			return -EIO;
5370 	}
5371 	return 0;
5372 }
5373 EXPORT_SYMBOL(pcix_set_mmrbc);
5374 
5375 /**
5376  * pcie_get_readrq - get PCI Express read request size
5377  * @dev: PCI device to query
5378  *
5379  * Returns maximum memory read request in bytes
5380  *    or appropriate error value.
5381  */
pcie_get_readrq(struct pci_dev * dev)5382 int pcie_get_readrq(struct pci_dev *dev)
5383 {
5384 	u16 ctl;
5385 
5386 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5387 
5388 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5389 }
5390 EXPORT_SYMBOL(pcie_get_readrq);
5391 
5392 /**
5393  * pcie_set_readrq - set PCI Express maximum memory read request
5394  * @dev: PCI device to query
5395  * @rq: maximum memory read count in bytes
5396  *    valid values are 128, 256, 512, 1024, 2048, 4096
5397  *
5398  * If possible sets maximum memory read request in bytes
5399  */
pcie_set_readrq(struct pci_dev * dev,int rq)5400 int pcie_set_readrq(struct pci_dev *dev, int rq)
5401 {
5402 	u16 v;
5403 
5404 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5405 		return -EINVAL;
5406 
5407 	/*
5408 	 * If using the "performance" PCIe config, we clamp the
5409 	 * read rq size to the max packet size to prevent the
5410 	 * host bridge generating requests larger than we can
5411 	 * cope with
5412 	 */
5413 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5414 		int mps = pcie_get_mps(dev);
5415 
5416 		if (mps < rq)
5417 			rq = mps;
5418 	}
5419 
5420 	v = (ffs(rq) - 8) << 12;
5421 
5422 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5423 						  PCI_EXP_DEVCTL_READRQ, v);
5424 }
5425 EXPORT_SYMBOL(pcie_set_readrq);
5426 
5427 /**
5428  * pcie_get_mps - get PCI Express maximum payload size
5429  * @dev: PCI device to query
5430  *
5431  * Returns maximum payload size in bytes
5432  */
pcie_get_mps(struct pci_dev * dev)5433 int pcie_get_mps(struct pci_dev *dev)
5434 {
5435 	u16 ctl;
5436 
5437 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5438 
5439 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5440 }
5441 EXPORT_SYMBOL(pcie_get_mps);
5442 
5443 /**
5444  * pcie_set_mps - set PCI Express maximum payload size
5445  * @dev: PCI device to query
5446  * @mps: maximum payload size in bytes
5447  *    valid values are 128, 256, 512, 1024, 2048, 4096
5448  *
5449  * If possible sets maximum payload size
5450  */
pcie_set_mps(struct pci_dev * dev,int mps)5451 int pcie_set_mps(struct pci_dev *dev, int mps)
5452 {
5453 	u16 v;
5454 
5455 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5456 		return -EINVAL;
5457 
5458 	v = ffs(mps) - 8;
5459 	if (v > dev->pcie_mpss)
5460 		return -EINVAL;
5461 	v <<= 5;
5462 
5463 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5464 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5465 }
5466 EXPORT_SYMBOL(pcie_set_mps);
5467 
5468 /**
5469  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5470  *			      device and its bandwidth limitation
5471  * @dev: PCI device to query
5472  * @limiting_dev: storage for device causing the bandwidth limitation
5473  * @speed: storage for speed of limiting device
5474  * @width: storage for width of limiting device
5475  *
5476  * Walk up the PCI device chain and find the point where the minimum
5477  * bandwidth is available.  Return the bandwidth available there and (if
5478  * limiting_dev, speed, and width pointers are supplied) information about
5479  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5480  * raw bandwidth.
5481  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5482 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5483 			     enum pci_bus_speed *speed,
5484 			     enum pcie_link_width *width)
5485 {
5486 	u16 lnksta;
5487 	enum pci_bus_speed next_speed;
5488 	enum pcie_link_width next_width;
5489 	u32 bw, next_bw;
5490 
5491 	if (speed)
5492 		*speed = PCI_SPEED_UNKNOWN;
5493 	if (width)
5494 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5495 
5496 	bw = 0;
5497 
5498 	while (dev) {
5499 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5500 
5501 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5502 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5503 			PCI_EXP_LNKSTA_NLW_SHIFT;
5504 
5505 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5506 
5507 		/* Check if current device limits the total bandwidth */
5508 		if (!bw || next_bw <= bw) {
5509 			bw = next_bw;
5510 
5511 			if (limiting_dev)
5512 				*limiting_dev = dev;
5513 			if (speed)
5514 				*speed = next_speed;
5515 			if (width)
5516 				*width = next_width;
5517 		}
5518 
5519 		dev = pci_upstream_bridge(dev);
5520 	}
5521 
5522 	return bw;
5523 }
5524 EXPORT_SYMBOL(pcie_bandwidth_available);
5525 
5526 /**
5527  * pcie_get_speed_cap - query for the PCI device's link speed capability
5528  * @dev: PCI device to query
5529  *
5530  * Query the PCI device speed capability.  Return the maximum link speed
5531  * supported by the device.
5532  */
pcie_get_speed_cap(struct pci_dev * dev)5533 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5534 {
5535 	u32 lnkcap2, lnkcap;
5536 
5537 	/*
5538 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5539 	 * implementation note there recommends using the Supported Link
5540 	 * Speeds Vector in Link Capabilities 2 when supported.
5541 	 *
5542 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5543 	 * should use the Supported Link Speeds field in Link Capabilities,
5544 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5545 	 */
5546 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5547 	if (lnkcap2) { /* PCIe r3.0-compliant */
5548 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5549 			return PCIE_SPEED_16_0GT;
5550 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5551 			return PCIE_SPEED_8_0GT;
5552 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5553 			return PCIE_SPEED_5_0GT;
5554 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5555 			return PCIE_SPEED_2_5GT;
5556 		return PCI_SPEED_UNKNOWN;
5557 	}
5558 
5559 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5560 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5561 		return PCIE_SPEED_5_0GT;
5562 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5563 		return PCIE_SPEED_2_5GT;
5564 
5565 	return PCI_SPEED_UNKNOWN;
5566 }
5567 EXPORT_SYMBOL(pcie_get_speed_cap);
5568 
5569 /**
5570  * pcie_get_width_cap - query for the PCI device's link width capability
5571  * @dev: PCI device to query
5572  *
5573  * Query the PCI device width capability.  Return the maximum link width
5574  * supported by the device.
5575  */
pcie_get_width_cap(struct pci_dev * dev)5576 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5577 {
5578 	u32 lnkcap;
5579 
5580 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5581 	if (lnkcap)
5582 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5583 
5584 	return PCIE_LNK_WIDTH_UNKNOWN;
5585 }
5586 EXPORT_SYMBOL(pcie_get_width_cap);
5587 
5588 /**
5589  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5590  * @dev: PCI device
5591  * @speed: storage for link speed
5592  * @width: storage for link width
5593  *
5594  * Calculate a PCI device's link bandwidth by querying for its link speed
5595  * and width, multiplying them, and applying encoding overhead.  The result
5596  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5597  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)5598 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5599 			   enum pcie_link_width *width)
5600 {
5601 	*speed = pcie_get_speed_cap(dev);
5602 	*width = pcie_get_width_cap(dev);
5603 
5604 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5605 		return 0;
5606 
5607 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5608 }
5609 
5610 /**
5611  * __pcie_print_link_status - Report the PCI device's link speed and width
5612  * @dev: PCI device to query
5613  * @verbose: Print info even when enough bandwidth is available
5614  *
5615  * If the available bandwidth at the device is less than the device is
5616  * capable of, report the device's maximum possible bandwidth and the
5617  * upstream link that limits its performance.  If @verbose, always print
5618  * the available bandwidth, even if the device isn't constrained.
5619  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)5620 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5621 {
5622 	enum pcie_link_width width, width_cap;
5623 	enum pci_bus_speed speed, speed_cap;
5624 	struct pci_dev *limiting_dev = NULL;
5625 	u32 bw_avail, bw_cap;
5626 
5627 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5628 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5629 
5630 	if (bw_avail >= bw_cap && verbose)
5631 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5632 			 bw_cap / 1000, bw_cap % 1000,
5633 			 PCIE_SPEED2STR(speed_cap), width_cap);
5634 	else if (bw_avail < bw_cap)
5635 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5636 			 bw_avail / 1000, bw_avail % 1000,
5637 			 PCIE_SPEED2STR(speed), width,
5638 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5639 			 bw_cap / 1000, bw_cap % 1000,
5640 			 PCIE_SPEED2STR(speed_cap), width_cap);
5641 }
5642 
5643 /**
5644  * pcie_print_link_status - Report the PCI device's link speed and width
5645  * @dev: PCI device to query
5646  *
5647  * Report the available bandwidth at the device.
5648  */
pcie_print_link_status(struct pci_dev * dev)5649 void pcie_print_link_status(struct pci_dev *dev)
5650 {
5651 	__pcie_print_link_status(dev, true);
5652 }
5653 EXPORT_SYMBOL(pcie_print_link_status);
5654 
5655 /**
5656  * pci_select_bars - Make BAR mask from the type of resource
5657  * @dev: the PCI device for which BAR mask is made
5658  * @flags: resource type mask to be selected
5659  *
5660  * This helper routine makes bar mask from the type of resource.
5661  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)5662 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5663 {
5664 	int i, bars = 0;
5665 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5666 		if (pci_resource_flags(dev, i) & flags)
5667 			bars |= (1 << i);
5668 	return bars;
5669 }
5670 EXPORT_SYMBOL(pci_select_bars);
5671 
5672 /* Some architectures require additional programming to enable VGA */
5673 static arch_set_vga_state_t arch_set_vga_state;
5674 
pci_register_set_vga_state(arch_set_vga_state_t func)5675 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5676 {
5677 	arch_set_vga_state = func;	/* NULL disables */
5678 }
5679 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)5680 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5681 				  unsigned int command_bits, u32 flags)
5682 {
5683 	if (arch_set_vga_state)
5684 		return arch_set_vga_state(dev, decode, command_bits,
5685 						flags);
5686 	return 0;
5687 }
5688 
5689 /**
5690  * pci_set_vga_state - set VGA decode state on device and parents if requested
5691  * @dev: the PCI device
5692  * @decode: true = enable decoding, false = disable decoding
5693  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5694  * @flags: traverse ancestors and change bridges
5695  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5696  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)5697 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5698 		      unsigned int command_bits, u32 flags)
5699 {
5700 	struct pci_bus *bus;
5701 	struct pci_dev *bridge;
5702 	u16 cmd;
5703 	int rc;
5704 
5705 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5706 
5707 	/* ARCH specific VGA enables */
5708 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5709 	if (rc)
5710 		return rc;
5711 
5712 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5713 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5714 		if (decode == true)
5715 			cmd |= command_bits;
5716 		else
5717 			cmd &= ~command_bits;
5718 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5719 	}
5720 
5721 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5722 		return 0;
5723 
5724 	bus = dev->bus;
5725 	while (bus) {
5726 		bridge = bus->self;
5727 		if (bridge) {
5728 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5729 					     &cmd);
5730 			if (decode == true)
5731 				cmd |= PCI_BRIDGE_CTL_VGA;
5732 			else
5733 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5734 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5735 					      cmd);
5736 		}
5737 		bus = bus->parent;
5738 	}
5739 	return 0;
5740 }
5741 
5742 /**
5743  * pci_add_dma_alias - Add a DMA devfn alias for a device
5744  * @dev: the PCI device for which alias is added
5745  * @devfn: alias slot and function
5746  *
5747  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5748  * which is used to program permissible bus-devfn source addresses for DMA
5749  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5750  * and are useful for devices generating DMA requests beyond or different
5751  * from their logical bus-devfn.  Examples include device quirks where the
5752  * device simply uses the wrong devfn, as well as non-transparent bridges
5753  * where the alias may be a proxy for devices in another domain.
5754  *
5755  * IOMMU group creation is performed during device discovery or addition,
5756  * prior to any potential DMA mapping and therefore prior to driver probing
5757  * (especially for userspace assigned devices where IOMMU group definition
5758  * cannot be left as a userspace activity).  DMA aliases should therefore
5759  * be configured via quirks, such as the PCI fixup header quirk.
5760  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn)5761 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5762 {
5763 	if (!dev->dma_alias_mask)
5764 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5765 					      sizeof(long), GFP_KERNEL);
5766 	if (!dev->dma_alias_mask) {
5767 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5768 		return;
5769 	}
5770 
5771 	set_bit(devfn, dev->dma_alias_mask);
5772 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5773 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5774 }
5775 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)5776 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5777 {
5778 	return (dev1->dma_alias_mask &&
5779 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5780 	       (dev2->dma_alias_mask &&
5781 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5782 }
5783 
pci_device_is_present(struct pci_dev * pdev)5784 bool pci_device_is_present(struct pci_dev *pdev)
5785 {
5786 	u32 v;
5787 
5788 	if (pci_dev_is_disconnected(pdev))
5789 		return false;
5790 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5791 }
5792 EXPORT_SYMBOL_GPL(pci_device_is_present);
5793 
pci_ignore_hotplug(struct pci_dev * dev)5794 void pci_ignore_hotplug(struct pci_dev *dev)
5795 {
5796 	struct pci_dev *bridge = dev->bus->self;
5797 
5798 	dev->ignore_hotplug = 1;
5799 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5800 	if (bridge)
5801 		bridge->ignore_hotplug = 1;
5802 }
5803 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5804 
pcibios_default_alignment(void)5805 resource_size_t __weak pcibios_default_alignment(void)
5806 {
5807 	return 0;
5808 }
5809 
5810 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5811 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5812 static DEFINE_SPINLOCK(resource_alignment_lock);
5813 
5814 /**
5815  * pci_specified_resource_alignment - get resource alignment specified by user.
5816  * @dev: the PCI device to get
5817  * @resize: whether or not to change resources' size when reassigning alignment
5818  *
5819  * RETURNS: Resource alignment if it is specified.
5820  *          Zero if it is not specified.
5821  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)5822 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5823 							bool *resize)
5824 {
5825 	int align_order, count;
5826 	resource_size_t align = pcibios_default_alignment();
5827 	const char *p;
5828 	int ret;
5829 
5830 	spin_lock(&resource_alignment_lock);
5831 	p = resource_alignment_param;
5832 	if (!*p && !align)
5833 		goto out;
5834 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5835 		align = 0;
5836 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5837 		goto out;
5838 	}
5839 
5840 	while (*p) {
5841 		count = 0;
5842 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5843 							p[count] == '@') {
5844 			p += count + 1;
5845 		} else {
5846 			align_order = -1;
5847 		}
5848 
5849 		ret = pci_dev_str_match(dev, p, &p);
5850 		if (ret == 1) {
5851 			*resize = true;
5852 			if (align_order == -1)
5853 				align = PAGE_SIZE;
5854 			else
5855 				align = 1 << align_order;
5856 			break;
5857 		} else if (ret < 0) {
5858 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5859 			       p);
5860 			break;
5861 		}
5862 
5863 		if (*p != ';' && *p != ',') {
5864 			/* End of param or invalid format */
5865 			break;
5866 		}
5867 		p++;
5868 	}
5869 out:
5870 	spin_unlock(&resource_alignment_lock);
5871 	return align;
5872 }
5873 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)5874 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5875 					   resource_size_t align, bool resize)
5876 {
5877 	struct resource *r = &dev->resource[bar];
5878 	resource_size_t size;
5879 
5880 	if (!(r->flags & IORESOURCE_MEM))
5881 		return;
5882 
5883 	if (r->flags & IORESOURCE_PCI_FIXED) {
5884 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5885 			 bar, r, (unsigned long long)align);
5886 		return;
5887 	}
5888 
5889 	size = resource_size(r);
5890 	if (size >= align)
5891 		return;
5892 
5893 	/*
5894 	 * Increase the alignment of the resource.  There are two ways we
5895 	 * can do this:
5896 	 *
5897 	 * 1) Increase the size of the resource.  BARs are aligned on their
5898 	 *    size, so when we reallocate space for this resource, we'll
5899 	 *    allocate it with the larger alignment.  This also prevents
5900 	 *    assignment of any other BARs inside the alignment region, so
5901 	 *    if we're requesting page alignment, this means no other BARs
5902 	 *    will share the page.
5903 	 *
5904 	 *    The disadvantage is that this makes the resource larger than
5905 	 *    the hardware BAR, which may break drivers that compute things
5906 	 *    based on the resource size, e.g., to find registers at a
5907 	 *    fixed offset before the end of the BAR.
5908 	 *
5909 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5910 	 *    set r->start to the desired alignment.  By itself this
5911 	 *    doesn't prevent other BARs being put inside the alignment
5912 	 *    region, but if we realign *every* resource of every device in
5913 	 *    the system, none of them will share an alignment region.
5914 	 *
5915 	 * When the user has requested alignment for only some devices via
5916 	 * the "pci=resource_alignment" argument, "resize" is true and we
5917 	 * use the first method.  Otherwise we assume we're aligning all
5918 	 * devices and we use the second.
5919 	 */
5920 
5921 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5922 		 bar, r, (unsigned long long)align);
5923 
5924 	if (resize) {
5925 		r->start = 0;
5926 		r->end = align - 1;
5927 	} else {
5928 		r->flags &= ~IORESOURCE_SIZEALIGN;
5929 		r->flags |= IORESOURCE_STARTALIGN;
5930 		r->start = align;
5931 		r->end = r->start + size - 1;
5932 	}
5933 	r->flags |= IORESOURCE_UNSET;
5934 }
5935 
5936 /*
5937  * This function disables memory decoding and releases memory resources
5938  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5939  * It also rounds up size to specified alignment.
5940  * Later on, the kernel will assign page-aligned memory resource back
5941  * to the device.
5942  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)5943 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5944 {
5945 	int i;
5946 	struct resource *r;
5947 	resource_size_t align;
5948 	u16 command;
5949 	bool resize = false;
5950 
5951 	/*
5952 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5953 	 * 3.4.1.11.  Their resources are allocated from the space
5954 	 * described by the VF BARx register in the PF's SR-IOV capability.
5955 	 * We can't influence their alignment here.
5956 	 */
5957 	if (dev->is_virtfn)
5958 		return;
5959 
5960 	/* check if specified PCI is target device to reassign */
5961 	align = pci_specified_resource_alignment(dev, &resize);
5962 	if (!align)
5963 		return;
5964 
5965 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5966 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5967 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5968 		return;
5969 	}
5970 
5971 	pci_read_config_word(dev, PCI_COMMAND, &command);
5972 	command &= ~PCI_COMMAND_MEMORY;
5973 	pci_write_config_word(dev, PCI_COMMAND, command);
5974 
5975 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5976 		pci_request_resource_alignment(dev, i, align, resize);
5977 
5978 	/*
5979 	 * Need to disable bridge's resource window,
5980 	 * to enable the kernel to reassign new resource
5981 	 * window later on.
5982 	 */
5983 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5984 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5985 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5986 			r = &dev->resource[i];
5987 			if (!(r->flags & IORESOURCE_MEM))
5988 				continue;
5989 			r->flags |= IORESOURCE_UNSET;
5990 			r->end = resource_size(r) - 1;
5991 			r->start = 0;
5992 		}
5993 		pci_disable_bridge_window(dev);
5994 	}
5995 }
5996 
pci_set_resource_alignment_param(const char * buf,size_t count)5997 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5998 {
5999 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6000 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6001 	spin_lock(&resource_alignment_lock);
6002 	strncpy(resource_alignment_param, buf, count);
6003 	resource_alignment_param[count] = '\0';
6004 	spin_unlock(&resource_alignment_lock);
6005 	return count;
6006 }
6007 
pci_get_resource_alignment_param(char * buf,size_t size)6008 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6009 {
6010 	size_t count;
6011 	spin_lock(&resource_alignment_lock);
6012 	count = snprintf(buf, size, "%s", resource_alignment_param);
6013 	spin_unlock(&resource_alignment_lock);
6014 	return count;
6015 }
6016 
pci_resource_alignment_show(struct bus_type * bus,char * buf)6017 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
6018 {
6019 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6020 }
6021 
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6022 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
6023 					const char *buf, size_t count)
6024 {
6025 	return pci_set_resource_alignment_param(buf, count);
6026 }
6027 
6028 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
6029 					pci_resource_alignment_store);
6030 
pci_resource_alignment_sysfs_init(void)6031 static int __init pci_resource_alignment_sysfs_init(void)
6032 {
6033 	return bus_create_file(&pci_bus_type,
6034 					&bus_attr_resource_alignment);
6035 }
6036 late_initcall(pci_resource_alignment_sysfs_init);
6037 
pci_no_domains(void)6038 static void pci_no_domains(void)
6039 {
6040 #ifdef CONFIG_PCI_DOMAINS
6041 	pci_domains_supported = 0;
6042 #endif
6043 }
6044 
6045 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6046 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6047 
pci_get_new_domain_nr(void)6048 static int pci_get_new_domain_nr(void)
6049 {
6050 	return atomic_inc_return(&__domain_nr);
6051 }
6052 
of_pci_bus_find_domain_nr(struct device * parent)6053 static int of_pci_bus_find_domain_nr(struct device *parent)
6054 {
6055 	static int use_dt_domains = -1;
6056 	int domain = -1;
6057 
6058 	if (parent)
6059 		domain = of_get_pci_domain_nr(parent->of_node);
6060 	/*
6061 	 * Check DT domain and use_dt_domains values.
6062 	 *
6063 	 * If DT domain property is valid (domain >= 0) and
6064 	 * use_dt_domains != 0, the DT assignment is valid since this means
6065 	 * we have not previously allocated a domain number by using
6066 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6067 	 * 1, to indicate that we have just assigned a domain number from
6068 	 * DT.
6069 	 *
6070 	 * If DT domain property value is not valid (ie domain < 0), and we
6071 	 * have not previously assigned a domain number from DT
6072 	 * (use_dt_domains != 1) we should assign a domain number by
6073 	 * using the:
6074 	 *
6075 	 * pci_get_new_domain_nr()
6076 	 *
6077 	 * API and update the use_dt_domains value to keep track of method we
6078 	 * are using to assign domain numbers (use_dt_domains = 0).
6079 	 *
6080 	 * All other combinations imply we have a platform that is trying
6081 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6082 	 * which is a recipe for domain mishandling and it is prevented by
6083 	 * invalidating the domain value (domain = -1) and printing a
6084 	 * corresponding error.
6085 	 */
6086 	if (domain >= 0 && use_dt_domains) {
6087 		use_dt_domains = 1;
6088 	} else if (domain < 0 && use_dt_domains != 1) {
6089 		use_dt_domains = 0;
6090 		domain = pci_get_new_domain_nr();
6091 	} else {
6092 		if (parent)
6093 			pr_err("Node %pOF has ", parent->of_node);
6094 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6095 		domain = -1;
6096 	}
6097 
6098 	return domain;
6099 }
6100 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6101 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6102 {
6103 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6104 			       acpi_pci_bus_find_domain_nr(bus);
6105 }
6106 #endif
6107 
6108 /**
6109  * pci_ext_cfg_avail - can we access extended PCI config space?
6110  *
6111  * Returns 1 if we can access PCI extended config space (offsets
6112  * greater than 0xff). This is the default implementation. Architecture
6113  * implementations can override this.
6114  */
pci_ext_cfg_avail(void)6115 int __weak pci_ext_cfg_avail(void)
6116 {
6117 	return 1;
6118 }
6119 
pci_fixup_cardbus(struct pci_bus * bus)6120 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6121 {
6122 }
6123 EXPORT_SYMBOL(pci_fixup_cardbus);
6124 
pci_setup(char * str)6125 static int __init pci_setup(char *str)
6126 {
6127 	while (str) {
6128 		char *k = strchr(str, ',');
6129 		if (k)
6130 			*k++ = 0;
6131 		if (*str && (str = pcibios_setup(str)) && *str) {
6132 			if (!strcmp(str, "nomsi")) {
6133 				pci_no_msi();
6134 			} else if (!strncmp(str, "noats", 5)) {
6135 				pr_info("PCIe: ATS is disabled\n");
6136 				pcie_ats_disabled = true;
6137 			} else if (!strcmp(str, "noaer")) {
6138 				pci_no_aer();
6139 			} else if (!strcmp(str, "earlydump")) {
6140 				pci_early_dump = true;
6141 			} else if (!strncmp(str, "realloc=", 8)) {
6142 				pci_realloc_get_opt(str + 8);
6143 			} else if (!strncmp(str, "realloc", 7)) {
6144 				pci_realloc_get_opt("on");
6145 			} else if (!strcmp(str, "nodomains")) {
6146 				pci_no_domains();
6147 			} else if (!strncmp(str, "noari", 5)) {
6148 				pcie_ari_disabled = true;
6149 			} else if (!strncmp(str, "cbiosize=", 9)) {
6150 				pci_cardbus_io_size = memparse(str + 9, &str);
6151 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6152 				pci_cardbus_mem_size = memparse(str + 10, &str);
6153 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6154 				pci_set_resource_alignment_param(str + 19,
6155 							strlen(str + 19));
6156 			} else if (!strncmp(str, "ecrc=", 5)) {
6157 				pcie_ecrc_get_policy(str + 5);
6158 			} else if (!strncmp(str, "hpiosize=", 9)) {
6159 				pci_hotplug_io_size = memparse(str + 9, &str);
6160 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6161 				pci_hotplug_mem_size = memparse(str + 10, &str);
6162 			} else if (!strncmp(str, "hpbussize=", 10)) {
6163 				pci_hotplug_bus_size =
6164 					simple_strtoul(str + 10, &str, 0);
6165 				if (pci_hotplug_bus_size > 0xff)
6166 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6167 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6168 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6169 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6170 				pcie_bus_config = PCIE_BUS_SAFE;
6171 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6172 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6173 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6174 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6175 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6176 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6177 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6178 				disable_acs_redir_param = str + 18;
6179 			} else {
6180 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
6181 						str);
6182 			}
6183 		}
6184 		str = k;
6185 	}
6186 	return 0;
6187 }
6188 early_param("pci", pci_setup);
6189 
6190 /*
6191  * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point
6192  * to data in the __initdata section which will be freed after the init
6193  * sequence is complete. We can't allocate memory in pci_setup() because some
6194  * architectures do not have any memory allocation service available during
6195  * an early_param() call. So we allocate memory and copy the variable here
6196  * before the init section is freed.
6197  */
pci_realloc_setup_params(void)6198 static int __init pci_realloc_setup_params(void)
6199 {
6200 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6201 
6202 	return 0;
6203 }
6204 pure_initcall(pci_realloc_setup_params);
6205