1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channsel Host Bus Adapters. *
4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38
39 #include <linux/nvme.h>
40 #include <linux/nvme-fc-driver.h>
41 #include <linux/nvme-fc.h>
42
43 #include "lpfc_version.h"
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_logmsg.h"
55 #include "lpfc_crtn.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_debugfs.h"
58
59 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
60 struct lpfc_nvmet_rcv_ctx *,
61 dma_addr_t rspbuf,
62 uint16_t rspsize);
63 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
64 struct lpfc_nvmet_rcv_ctx *);
65 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
66 struct lpfc_nvmet_rcv_ctx *,
67 uint32_t, uint16_t);
68 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
69 struct lpfc_nvmet_rcv_ctx *,
70 uint32_t, uint16_t);
71 static int lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *,
72 struct lpfc_nvmet_rcv_ctx *,
73 uint32_t, uint16_t);
74 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
75 struct lpfc_nvmet_rcv_ctx *);
76
77 static union lpfc_wqe128 lpfc_tsend_cmd_template;
78 static union lpfc_wqe128 lpfc_treceive_cmd_template;
79 static union lpfc_wqe128 lpfc_trsp_cmd_template;
80
81 /* Setup WQE templates for NVME IOs */
82 void
lpfc_nvmet_cmd_template(void)83 lpfc_nvmet_cmd_template(void)
84 {
85 union lpfc_wqe128 *wqe;
86
87 /* TSEND template */
88 wqe = &lpfc_tsend_cmd_template;
89 memset(wqe, 0, sizeof(union lpfc_wqe128));
90
91 /* Word 0, 1, 2 - BDE is variable */
92
93 /* Word 3 - payload_offset_len is zero */
94
95 /* Word 4 - relative_offset is variable */
96
97 /* Word 5 - is zero */
98
99 /* Word 6 - ctxt_tag, xri_tag is variable */
100
101 /* Word 7 - wqe_ar is variable */
102 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
103 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
104 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
105 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
106 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
107
108 /* Word 8 - abort_tag is variable */
109
110 /* Word 9 - reqtag, rcvoxid is variable */
111
112 /* Word 10 - wqes, xc is variable */
113 bf_set(wqe_nvme, &wqe->fcp_tsend.wqe_com, 1);
114 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
115 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
116 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
117 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
118 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
119
120 /* Word 11 - sup, irsp, irsplen is variable */
121 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
122 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
123 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
124 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
125 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
126 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
127
128 /* Word 12 - fcp_data_len is variable */
129
130 /* Word 13, 14, 15 - PBDE is zero */
131
132 /* TRECEIVE template */
133 wqe = &lpfc_treceive_cmd_template;
134 memset(wqe, 0, sizeof(union lpfc_wqe128));
135
136 /* Word 0, 1, 2 - BDE is variable */
137
138 /* Word 3 */
139 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
140
141 /* Word 4 - relative_offset is variable */
142
143 /* Word 5 - is zero */
144
145 /* Word 6 - ctxt_tag, xri_tag is variable */
146
147 /* Word 7 */
148 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
149 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
150 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
151 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
152 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
153
154 /* Word 8 - abort_tag is variable */
155
156 /* Word 9 - reqtag, rcvoxid is variable */
157
158 /* Word 10 - xc is variable */
159 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
160 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
161 bf_set(wqe_nvme, &wqe->fcp_treceive.wqe_com, 1);
162 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
163 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
164 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
165
166 /* Word 11 - pbde is variable */
167 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
168 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
169 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
170 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
171 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
172 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
173
174 /* Word 12 - fcp_data_len is variable */
175
176 /* Word 13, 14, 15 - PBDE is variable */
177
178 /* TRSP template */
179 wqe = &lpfc_trsp_cmd_template;
180 memset(wqe, 0, sizeof(union lpfc_wqe128));
181
182 /* Word 0, 1, 2 - BDE is variable */
183
184 /* Word 3 - response_len is variable */
185
186 /* Word 4, 5 - is zero */
187
188 /* Word 6 - ctxt_tag, xri_tag is variable */
189
190 /* Word 7 */
191 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
192 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
193 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
194 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
195 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
196
197 /* Word 8 - abort_tag is variable */
198
199 /* Word 9 - reqtag is variable */
200
201 /* Word 10 wqes, xc is variable */
202 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
203 bf_set(wqe_nvme, &wqe->fcp_trsp.wqe_com, 1);
204 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
205 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
206 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
207 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
208
209 /* Word 11 irsp, irsplen is variable */
210 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
211 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
212 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
213 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
214 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
215 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
216
217 /* Word 12, 13, 14, 15 - is zero */
218 }
219
220 void
lpfc_nvmet_defer_release(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp)221 lpfc_nvmet_defer_release(struct lpfc_hba *phba, struct lpfc_nvmet_rcv_ctx *ctxp)
222 {
223 unsigned long iflag;
224
225 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
226 "6313 NVMET Defer ctx release xri x%x flg x%x\n",
227 ctxp->oxid, ctxp->flag);
228
229 spin_lock_irqsave(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
230 if (ctxp->flag & LPFC_NVMET_CTX_RLS) {
231 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock,
232 iflag);
233 return;
234 }
235 ctxp->flag |= LPFC_NVMET_CTX_RLS;
236 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
237 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvme_buf_list_lock, iflag);
238 }
239
240 /**
241 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
242 * @phba: Pointer to HBA context object.
243 * @cmdwqe: Pointer to driver command WQE object.
244 * @wcqe: Pointer to driver response CQE object.
245 *
246 * The function is called from SLI ring event handler with no
247 * lock held. This function is the completion handler for NVME LS commands
248 * The function frees memory resources used for the NVME commands.
249 **/
250 static void
lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)251 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
252 struct lpfc_wcqe_complete *wcqe)
253 {
254 struct lpfc_nvmet_tgtport *tgtp;
255 struct nvmefc_tgt_ls_req *rsp;
256 struct lpfc_nvmet_rcv_ctx *ctxp;
257 uint32_t status, result;
258
259 status = bf_get(lpfc_wcqe_c_status, wcqe);
260 result = wcqe->parameter;
261 ctxp = cmdwqe->context2;
262
263 if (ctxp->state != LPFC_NVMET_STE_LS_RSP || ctxp->entry_cnt != 2) {
264 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
265 "6410 NVMET LS cmpl state mismatch IO x%x: "
266 "%d %d\n",
267 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
268 }
269
270 if (!phba->targetport)
271 goto out;
272
273 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
274
275 if (tgtp) {
276 if (status) {
277 atomic_inc(&tgtp->xmt_ls_rsp_error);
278 if (result == IOERR_ABORT_REQUESTED)
279 atomic_inc(&tgtp->xmt_ls_rsp_aborted);
280 if (bf_get(lpfc_wcqe_c_xb, wcqe))
281 atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
282 } else {
283 atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
284 }
285 }
286
287 out:
288 rsp = &ctxp->ctx.ls_req;
289
290 lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n",
291 ctxp->oxid, status, result);
292
293 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
294 "6038 NVMET LS rsp cmpl: %d %d oxid x%x\n",
295 status, result, ctxp->oxid);
296
297 lpfc_nlp_put(cmdwqe->context1);
298 cmdwqe->context2 = NULL;
299 cmdwqe->context3 = NULL;
300 lpfc_sli_release_iocbq(phba, cmdwqe);
301 rsp->done(rsp);
302 kfree(ctxp);
303 }
304
305 /**
306 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
307 * @phba: HBA buffer is associated with
308 * @ctxp: context to clean up
309 * @mp: Buffer to free
310 *
311 * Description: Frees the given DMA buffer in the appropriate way given by
312 * reposting it to its associated RQ so it can be reused.
313 *
314 * Notes: Takes phba->hbalock. Can be called with or without other locks held.
315 *
316 * Returns: None
317 **/
318 void
lpfc_nvmet_ctxbuf_post(struct lpfc_hba * phba,struct lpfc_nvmet_ctxbuf * ctx_buf)319 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
320 {
321 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
322 struct lpfc_nvmet_rcv_ctx *ctxp = ctx_buf->context;
323 struct lpfc_nvmet_tgtport *tgtp;
324 struct fc_frame_header *fc_hdr;
325 struct rqb_dmabuf *nvmebuf;
326 struct lpfc_nvmet_ctx_info *infop;
327 uint32_t *payload;
328 uint32_t size, oxid, sid, rc;
329 int cpu;
330 unsigned long iflag;
331
332 if (ctxp->txrdy) {
333 dma_pool_free(phba->txrdy_payload_pool, ctxp->txrdy,
334 ctxp->txrdy_phys);
335 ctxp->txrdy = NULL;
336 ctxp->txrdy_phys = 0;
337 }
338
339 if (ctxp->state == LPFC_NVMET_STE_FREE) {
340 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
341 "6411 NVMET free, already free IO x%x: %d %d\n",
342 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
343 }
344 ctxp->state = LPFC_NVMET_STE_FREE;
345
346 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
347 if (phba->sli4_hba.nvmet_io_wait_cnt) {
348 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
349 nvmebuf, struct rqb_dmabuf,
350 hbuf.list);
351 phba->sli4_hba.nvmet_io_wait_cnt--;
352 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
353 iflag);
354
355 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
356 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
357 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
358 payload = (uint32_t *)(nvmebuf->dbuf.virt);
359 size = nvmebuf->bytes_recv;
360 sid = sli4_sid_from_fc_hdr(fc_hdr);
361
362 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
363 ctxp->wqeq = NULL;
364 ctxp->txrdy = NULL;
365 ctxp->offset = 0;
366 ctxp->phba = phba;
367 ctxp->size = size;
368 ctxp->oxid = oxid;
369 ctxp->sid = sid;
370 ctxp->state = LPFC_NVMET_STE_RCV;
371 ctxp->entry_cnt = 1;
372 ctxp->flag = 0;
373 ctxp->ctxbuf = ctx_buf;
374 ctxp->rqb_buffer = (void *)nvmebuf;
375 spin_lock_init(&ctxp->ctxlock);
376
377 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
378 if (ctxp->ts_cmd_nvme) {
379 ctxp->ts_cmd_nvme = ktime_get_ns();
380 ctxp->ts_nvme_data = 0;
381 ctxp->ts_data_wqput = 0;
382 ctxp->ts_isr_data = 0;
383 ctxp->ts_data_nvme = 0;
384 ctxp->ts_nvme_status = 0;
385 ctxp->ts_status_wqput = 0;
386 ctxp->ts_isr_status = 0;
387 ctxp->ts_status_nvme = 0;
388 }
389 #endif
390 atomic_inc(&tgtp->rcv_fcp_cmd_in);
391 /*
392 * The calling sequence should be:
393 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
394 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
395 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
396 * the NVME command / FC header is stored.
397 * A buffer has already been reposted for this IO, so just free
398 * the nvmebuf.
399 */
400 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
401 payload, size);
402
403 /* Process FCP command */
404 if (rc == 0) {
405 ctxp->rqb_buffer = NULL;
406 atomic_inc(&tgtp->rcv_fcp_cmd_out);
407 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
408 return;
409 }
410
411 /* Processing of FCP command is deferred */
412 if (rc == -EOVERFLOW) {
413 lpfc_nvmeio_data(phba,
414 "NVMET RCV BUSY: xri x%x sz %d "
415 "from %06x\n",
416 oxid, size, sid);
417 atomic_inc(&tgtp->rcv_fcp_cmd_out);
418 return;
419 }
420 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
421 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
422 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
423 ctxp->oxid, rc,
424 atomic_read(&tgtp->rcv_fcp_cmd_in),
425 atomic_read(&tgtp->rcv_fcp_cmd_out),
426 atomic_read(&tgtp->xmt_fcp_release));
427
428 lpfc_nvmet_defer_release(phba, ctxp);
429 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
430 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
431 return;
432 }
433 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
434
435 /*
436 * Use the CPU context list, from the MRQ the IO was received on
437 * (ctxp->idx), to save context structure.
438 */
439 cpu = smp_processor_id();
440 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
441 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
442 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
443 infop->nvmet_ctx_list_cnt++;
444 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
445 #endif
446 }
447
448 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
449 static void
lpfc_nvmet_ktime(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp)450 lpfc_nvmet_ktime(struct lpfc_hba *phba,
451 struct lpfc_nvmet_rcv_ctx *ctxp)
452 {
453 uint64_t seg1, seg2, seg3, seg4, seg5;
454 uint64_t seg6, seg7, seg8, seg9, seg10;
455 uint64_t segsum;
456
457 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
458 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
459 !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
460 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
461 !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
462 return;
463
464 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
465 return;
466 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme)
467 return;
468 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
469 return;
470 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
471 return;
472 if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
473 return;
474 if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
475 return;
476 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
477 return;
478 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
479 return;
480 if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
481 return;
482 if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
483 return;
484 /*
485 * Segment 1 - Time from FCP command received by MSI-X ISR
486 * to FCP command is passed to NVME Layer.
487 * Segment 2 - Time from FCP command payload handed
488 * off to NVME Layer to Driver receives a Command op
489 * from NVME Layer.
490 * Segment 3 - Time from Driver receives a Command op
491 * from NVME Layer to Command is put on WQ.
492 * Segment 4 - Time from Driver WQ put is done
493 * to MSI-X ISR for Command cmpl.
494 * Segment 5 - Time from MSI-X ISR for Command cmpl to
495 * Command cmpl is passed to NVME Layer.
496 * Segment 6 - Time from Command cmpl is passed to NVME
497 * Layer to Driver receives a RSP op from NVME Layer.
498 * Segment 7 - Time from Driver receives a RSP op from
499 * NVME Layer to WQ put is done on TRSP FCP Status.
500 * Segment 8 - Time from Driver WQ put is done on TRSP
501 * FCP Status to MSI-X ISR for TRSP cmpl.
502 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
503 * TRSP cmpl is passed to NVME Layer.
504 * Segment 10 - Time from FCP command received by
505 * MSI-X ISR to command is completed on wire.
506 * (Segments 1 thru 8) for READDATA / WRITEDATA
507 * (Segments 1 thru 4) for READDATA_RSP
508 */
509 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
510 segsum = seg1;
511
512 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
513 if (segsum > seg2)
514 return;
515 seg2 -= segsum;
516 segsum += seg2;
517
518 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
519 if (segsum > seg3)
520 return;
521 seg3 -= segsum;
522 segsum += seg3;
523
524 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
525 if (segsum > seg4)
526 return;
527 seg4 -= segsum;
528 segsum += seg4;
529
530 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
531 if (segsum > seg5)
532 return;
533 seg5 -= segsum;
534 segsum += seg5;
535
536
537 /* For auto rsp commands seg6 thru seg10 will be 0 */
538 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
539 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
540 if (segsum > seg6)
541 return;
542 seg6 -= segsum;
543 segsum += seg6;
544
545 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
546 if (segsum > seg7)
547 return;
548 seg7 -= segsum;
549 segsum += seg7;
550
551 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
552 if (segsum > seg8)
553 return;
554 seg8 -= segsum;
555 segsum += seg8;
556
557 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
558 if (segsum > seg9)
559 return;
560 seg9 -= segsum;
561 segsum += seg9;
562
563 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
564 return;
565 seg10 = (ctxp->ts_isr_status -
566 ctxp->ts_isr_cmd);
567 } else {
568 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
569 return;
570 seg6 = 0;
571 seg7 = 0;
572 seg8 = 0;
573 seg9 = 0;
574 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
575 }
576
577 phba->ktime_seg1_total += seg1;
578 if (seg1 < phba->ktime_seg1_min)
579 phba->ktime_seg1_min = seg1;
580 else if (seg1 > phba->ktime_seg1_max)
581 phba->ktime_seg1_max = seg1;
582
583 phba->ktime_seg2_total += seg2;
584 if (seg2 < phba->ktime_seg2_min)
585 phba->ktime_seg2_min = seg2;
586 else if (seg2 > phba->ktime_seg2_max)
587 phba->ktime_seg2_max = seg2;
588
589 phba->ktime_seg3_total += seg3;
590 if (seg3 < phba->ktime_seg3_min)
591 phba->ktime_seg3_min = seg3;
592 else if (seg3 > phba->ktime_seg3_max)
593 phba->ktime_seg3_max = seg3;
594
595 phba->ktime_seg4_total += seg4;
596 if (seg4 < phba->ktime_seg4_min)
597 phba->ktime_seg4_min = seg4;
598 else if (seg4 > phba->ktime_seg4_max)
599 phba->ktime_seg4_max = seg4;
600
601 phba->ktime_seg5_total += seg5;
602 if (seg5 < phba->ktime_seg5_min)
603 phba->ktime_seg5_min = seg5;
604 else if (seg5 > phba->ktime_seg5_max)
605 phba->ktime_seg5_max = seg5;
606
607 phba->ktime_data_samples++;
608 if (!seg6)
609 goto out;
610
611 phba->ktime_seg6_total += seg6;
612 if (seg6 < phba->ktime_seg6_min)
613 phba->ktime_seg6_min = seg6;
614 else if (seg6 > phba->ktime_seg6_max)
615 phba->ktime_seg6_max = seg6;
616
617 phba->ktime_seg7_total += seg7;
618 if (seg7 < phba->ktime_seg7_min)
619 phba->ktime_seg7_min = seg7;
620 else if (seg7 > phba->ktime_seg7_max)
621 phba->ktime_seg7_max = seg7;
622
623 phba->ktime_seg8_total += seg8;
624 if (seg8 < phba->ktime_seg8_min)
625 phba->ktime_seg8_min = seg8;
626 else if (seg8 > phba->ktime_seg8_max)
627 phba->ktime_seg8_max = seg8;
628
629 phba->ktime_seg9_total += seg9;
630 if (seg9 < phba->ktime_seg9_min)
631 phba->ktime_seg9_min = seg9;
632 else if (seg9 > phba->ktime_seg9_max)
633 phba->ktime_seg9_max = seg9;
634 out:
635 phba->ktime_seg10_total += seg10;
636 if (seg10 < phba->ktime_seg10_min)
637 phba->ktime_seg10_min = seg10;
638 else if (seg10 > phba->ktime_seg10_max)
639 phba->ktime_seg10_max = seg10;
640 phba->ktime_status_samples++;
641 }
642 #endif
643
644 /**
645 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
646 * @phba: Pointer to HBA context object.
647 * @cmdwqe: Pointer to driver command WQE object.
648 * @wcqe: Pointer to driver response CQE object.
649 *
650 * The function is called from SLI ring event handler with no
651 * lock held. This function is the completion handler for NVME FCP commands
652 * The function frees memory resources used for the NVME commands.
653 **/
654 static void
lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)655 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
656 struct lpfc_wcqe_complete *wcqe)
657 {
658 struct lpfc_nvmet_tgtport *tgtp;
659 struct nvmefc_tgt_fcp_req *rsp;
660 struct lpfc_nvmet_rcv_ctx *ctxp;
661 uint32_t status, result, op, start_clean, logerr;
662 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
663 uint32_t id;
664 #endif
665
666 ctxp = cmdwqe->context2;
667 ctxp->flag &= ~LPFC_NVMET_IO_INP;
668
669 rsp = &ctxp->ctx.fcp_req;
670 op = rsp->op;
671
672 status = bf_get(lpfc_wcqe_c_status, wcqe);
673 result = wcqe->parameter;
674
675 if (phba->targetport)
676 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
677 else
678 tgtp = NULL;
679
680 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
681 ctxp->oxid, op, status);
682
683 if (status) {
684 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
685 rsp->transferred_length = 0;
686 if (tgtp) {
687 atomic_inc(&tgtp->xmt_fcp_rsp_error);
688 if (result == IOERR_ABORT_REQUESTED)
689 atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
690 }
691
692 logerr = LOG_NVME_IOERR;
693
694 /* pick up SLI4 exhange busy condition */
695 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
696 ctxp->flag |= LPFC_NVMET_XBUSY;
697 logerr |= LOG_NVME_ABTS;
698 if (tgtp)
699 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
700
701 } else {
702 ctxp->flag &= ~LPFC_NVMET_XBUSY;
703 }
704
705 lpfc_printf_log(phba, KERN_INFO, logerr,
706 "6315 IO Error Cmpl xri x%x: %x/%x XBUSY:x%x\n",
707 ctxp->oxid, status, result, ctxp->flag);
708
709 } else {
710 rsp->fcp_error = NVME_SC_SUCCESS;
711 if (op == NVMET_FCOP_RSP)
712 rsp->transferred_length = rsp->rsplen;
713 else
714 rsp->transferred_length = rsp->transfer_length;
715 if (tgtp)
716 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
717 }
718
719 if ((op == NVMET_FCOP_READDATA_RSP) ||
720 (op == NVMET_FCOP_RSP)) {
721 /* Sanity check */
722 ctxp->state = LPFC_NVMET_STE_DONE;
723 ctxp->entry_cnt++;
724
725 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
726 if (ctxp->ts_cmd_nvme) {
727 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
728 ctxp->ts_isr_data =
729 cmdwqe->isr_timestamp;
730 ctxp->ts_data_nvme =
731 ktime_get_ns();
732 ctxp->ts_nvme_status =
733 ctxp->ts_data_nvme;
734 ctxp->ts_status_wqput =
735 ctxp->ts_data_nvme;
736 ctxp->ts_isr_status =
737 ctxp->ts_data_nvme;
738 ctxp->ts_status_nvme =
739 ctxp->ts_data_nvme;
740 } else {
741 ctxp->ts_isr_status =
742 cmdwqe->isr_timestamp;
743 ctxp->ts_status_nvme =
744 ktime_get_ns();
745 }
746 }
747 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
748 id = smp_processor_id();
749 if (ctxp->cpu != id)
750 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
751 "6703 CPU Check cmpl: "
752 "cpu %d expect %d\n",
753 id, ctxp->cpu);
754 if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
755 phba->cpucheck_cmpl_io[id]++;
756 }
757 #endif
758 rsp->done(rsp);
759 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
760 if (ctxp->ts_cmd_nvme)
761 lpfc_nvmet_ktime(phba, ctxp);
762 #endif
763 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */
764 } else {
765 ctxp->entry_cnt++;
766 start_clean = offsetof(struct lpfc_iocbq, iocb_flag);
767 memset(((char *)cmdwqe) + start_clean, 0,
768 (sizeof(struct lpfc_iocbq) - start_clean));
769 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
770 if (ctxp->ts_cmd_nvme) {
771 ctxp->ts_isr_data = cmdwqe->isr_timestamp;
772 ctxp->ts_data_nvme = ktime_get_ns();
773 }
774 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
775 id = smp_processor_id();
776 if (ctxp->cpu != id)
777 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
778 "6704 CPU Check cmdcmpl: "
779 "cpu %d expect %d\n",
780 id, ctxp->cpu);
781 if (ctxp->cpu < LPFC_CHECK_CPU_CNT)
782 phba->cpucheck_ccmpl_io[id]++;
783 }
784 #endif
785 rsp->done(rsp);
786 }
787 }
788
789 static int
lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_ls_req * rsp)790 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
791 struct nvmefc_tgt_ls_req *rsp)
792 {
793 struct lpfc_nvmet_rcv_ctx *ctxp =
794 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req);
795 struct lpfc_hba *phba = ctxp->phba;
796 struct hbq_dmabuf *nvmebuf =
797 (struct hbq_dmabuf *)ctxp->rqb_buffer;
798 struct lpfc_iocbq *nvmewqeq;
799 struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
800 struct lpfc_dmabuf dmabuf;
801 struct ulp_bde64 bpl;
802 int rc;
803
804 if (phba->pport->load_flag & FC_UNLOADING)
805 return -ENODEV;
806
807 if (phba->pport->load_flag & FC_UNLOADING)
808 return -ENODEV;
809
810 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
811 "6023 NVMET LS rsp oxid x%x\n", ctxp->oxid);
812
813 if ((ctxp->state != LPFC_NVMET_STE_LS_RCV) ||
814 (ctxp->entry_cnt != 1)) {
815 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
816 "6412 NVMET LS rsp state mismatch "
817 "oxid x%x: %d %d\n",
818 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
819 }
820 ctxp->state = LPFC_NVMET_STE_LS_RSP;
821 ctxp->entry_cnt++;
822
823 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, ctxp, rsp->rspdma,
824 rsp->rsplen);
825 if (nvmewqeq == NULL) {
826 atomic_inc(&nvmep->xmt_ls_drop);
827 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
828 "6150 LS Drop IO x%x: Prep\n",
829 ctxp->oxid);
830 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
831 atomic_inc(&nvmep->xmt_ls_abort);
832 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp,
833 ctxp->sid, ctxp->oxid);
834 return -ENOMEM;
835 }
836
837 /* Save numBdes for bpl2sgl */
838 nvmewqeq->rsvd2 = 1;
839 nvmewqeq->hba_wqidx = 0;
840 nvmewqeq->context3 = &dmabuf;
841 dmabuf.virt = &bpl;
842 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
843 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
844 bpl.tus.f.bdeSize = rsp->rsplen;
845 bpl.tus.f.bdeFlags = 0;
846 bpl.tus.w = le32_to_cpu(bpl.tus.w);
847
848 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_rsp_cmp;
849 nvmewqeq->iocb_cmpl = NULL;
850 nvmewqeq->context2 = ctxp;
851
852 lpfc_nvmeio_data(phba, "NVMET LS RESP: xri x%x wqidx x%x len x%x\n",
853 ctxp->oxid, nvmewqeq->hba_wqidx, rsp->rsplen);
854
855 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, nvmewqeq);
856 if (rc == WQE_SUCCESS) {
857 /*
858 * Okay to repost buffer here, but wait till cmpl
859 * before freeing ctxp and iocbq.
860 */
861 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
862 ctxp->rqb_buffer = 0;
863 atomic_inc(&nvmep->xmt_ls_rsp);
864 return 0;
865 }
866 /* Give back resources */
867 atomic_inc(&nvmep->xmt_ls_drop);
868 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
869 "6151 LS Drop IO x%x: Issue %d\n",
870 ctxp->oxid, rc);
871
872 lpfc_nlp_put(nvmewqeq->context1);
873
874 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
875 atomic_inc(&nvmep->xmt_ls_abort);
876 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
877 return -ENXIO;
878 }
879
880 static int
lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)881 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
882 struct nvmefc_tgt_fcp_req *rsp)
883 {
884 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
885 struct lpfc_nvmet_rcv_ctx *ctxp =
886 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
887 struct lpfc_hba *phba = ctxp->phba;
888 struct lpfc_queue *wq;
889 struct lpfc_iocbq *nvmewqeq;
890 struct lpfc_sli_ring *pring;
891 unsigned long iflags;
892 int rc;
893
894 if (phba->pport->load_flag & FC_UNLOADING) {
895 rc = -ENODEV;
896 goto aerr;
897 }
898
899 if (phba->pport->load_flag & FC_UNLOADING) {
900 rc = -ENODEV;
901 goto aerr;
902 }
903
904 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
905 if (ctxp->ts_cmd_nvme) {
906 if (rsp->op == NVMET_FCOP_RSP)
907 ctxp->ts_nvme_status = ktime_get_ns();
908 else
909 ctxp->ts_nvme_data = ktime_get_ns();
910 }
911 if (phba->cpucheck_on & LPFC_CHECK_NVMET_IO) {
912 int id = smp_processor_id();
913 ctxp->cpu = id;
914 if (id < LPFC_CHECK_CPU_CNT)
915 phba->cpucheck_xmt_io[id]++;
916 if (rsp->hwqid != id) {
917 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
918 "6705 CPU Check OP: "
919 "cpu %d expect %d\n",
920 id, rsp->hwqid);
921 ctxp->cpu = rsp->hwqid;
922 }
923 }
924 #endif
925
926 /* Sanity check */
927 if ((ctxp->flag & LPFC_NVMET_ABTS_RCV) ||
928 (ctxp->state == LPFC_NVMET_STE_ABORT)) {
929 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
930 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
931 "6102 IO xri x%x aborted\n",
932 ctxp->oxid);
933 rc = -ENXIO;
934 goto aerr;
935 }
936
937 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
938 if (nvmewqeq == NULL) {
939 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
940 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
941 "6152 FCP Drop IO x%x: Prep\n",
942 ctxp->oxid);
943 rc = -ENXIO;
944 goto aerr;
945 }
946
947 nvmewqeq->wqe_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
948 nvmewqeq->iocb_cmpl = NULL;
949 nvmewqeq->context2 = ctxp;
950 nvmewqeq->iocb_flag |= LPFC_IO_NVMET;
951 ctxp->wqeq->hba_wqidx = rsp->hwqid;
952
953 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
954 ctxp->oxid, rsp->op, rsp->rsplen);
955
956 ctxp->flag |= LPFC_NVMET_IO_INP;
957 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq);
958 if (rc == WQE_SUCCESS) {
959 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
960 if (!ctxp->ts_cmd_nvme)
961 return 0;
962 if (rsp->op == NVMET_FCOP_RSP)
963 ctxp->ts_status_wqput = ktime_get_ns();
964 else
965 ctxp->ts_data_wqput = ktime_get_ns();
966 #endif
967 return 0;
968 }
969
970 if (rc == -EBUSY) {
971 /*
972 * WQ was full, so queue nvmewqeq to be sent after
973 * WQE release CQE
974 */
975 ctxp->flag |= LPFC_NVMET_DEFER_WQFULL;
976 wq = phba->sli4_hba.nvme_wq[rsp->hwqid];
977 pring = wq->pring;
978 spin_lock_irqsave(&pring->ring_lock, iflags);
979 list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
980 wq->q_flag |= HBA_NVMET_WQFULL;
981 spin_unlock_irqrestore(&pring->ring_lock, iflags);
982 atomic_inc(&lpfc_nvmep->defer_wqfull);
983 return 0;
984 }
985
986 /* Give back resources */
987 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
988 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
989 "6153 FCP Drop IO x%x: Issue: %d\n",
990 ctxp->oxid, rc);
991
992 ctxp->wqeq->hba_wqidx = 0;
993 nvmewqeq->context2 = NULL;
994 nvmewqeq->context3 = NULL;
995 rc = -EBUSY;
996 aerr:
997 return rc;
998 }
999
1000 static void
lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port * targetport)1001 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1002 {
1003 struct lpfc_nvmet_tgtport *tport = targetport->private;
1004
1005 /* release any threads waiting for the unreg to complete */
1006 if (tport->phba->targetport)
1007 complete(tport->tport_unreg_cmp);
1008 }
1009
1010 static void
lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * req)1011 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1012 struct nvmefc_tgt_fcp_req *req)
1013 {
1014 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1015 struct lpfc_nvmet_rcv_ctx *ctxp =
1016 container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
1017 struct lpfc_hba *phba = ctxp->phba;
1018 struct lpfc_queue *wq;
1019 unsigned long flags;
1020
1021 if (phba->pport->load_flag & FC_UNLOADING)
1022 return;
1023
1024 if (phba->pport->load_flag & FC_UNLOADING)
1025 return;
1026
1027 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1028 "6103 NVMET Abort op: oxri x%x flg x%x ste %d\n",
1029 ctxp->oxid, ctxp->flag, ctxp->state);
1030
1031 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1032 ctxp->oxid, ctxp->flag, ctxp->state);
1033
1034 atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1035
1036 spin_lock_irqsave(&ctxp->ctxlock, flags);
1037 ctxp->state = LPFC_NVMET_STE_ABORT;
1038
1039 /* Since iaab/iaar are NOT set, we need to check
1040 * if the firmware is in process of aborting IO
1041 */
1042 if (ctxp->flag & LPFC_NVMET_XBUSY) {
1043 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1044 return;
1045 }
1046 ctxp->flag |= LPFC_NVMET_ABORT_OP;
1047
1048 if (ctxp->flag & LPFC_NVMET_DEFER_WQFULL) {
1049 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1050 ctxp->oxid);
1051 wq = phba->sli4_hba.nvme_wq[ctxp->wqeq->hba_wqidx];
1052 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1053 lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1054 return;
1055 }
1056
1057 /* An state of LPFC_NVMET_STE_RCV means we have just received
1058 * the NVME command and have not started processing it.
1059 * (by issuing any IO WQEs on this exchange yet)
1060 */
1061 if (ctxp->state == LPFC_NVMET_STE_RCV)
1062 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1063 ctxp->oxid);
1064 else
1065 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1066 ctxp->oxid);
1067 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1068 }
1069
1070 static void
lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1071 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1072 struct nvmefc_tgt_fcp_req *rsp)
1073 {
1074 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1075 struct lpfc_nvmet_rcv_ctx *ctxp =
1076 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
1077 struct lpfc_hba *phba = ctxp->phba;
1078 unsigned long flags;
1079 bool aborting = false;
1080
1081 if (ctxp->state != LPFC_NVMET_STE_DONE &&
1082 ctxp->state != LPFC_NVMET_STE_ABORT) {
1083 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1084 "6413 NVMET release bad state %d %d oxid x%x\n",
1085 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1086 }
1087
1088 spin_lock_irqsave(&ctxp->ctxlock, flags);
1089 if ((ctxp->flag & LPFC_NVMET_ABORT_OP) ||
1090 (ctxp->flag & LPFC_NVMET_XBUSY)) {
1091 aborting = true;
1092 /* let the abort path do the real release */
1093 lpfc_nvmet_defer_release(phba, ctxp);
1094 }
1095 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1096
1097 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1098 ctxp->state, aborting);
1099
1100 atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1101
1102 if (aborting)
1103 return;
1104
1105 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1106 }
1107
1108 static void
lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1109 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1110 struct nvmefc_tgt_fcp_req *rsp)
1111 {
1112 struct lpfc_nvmet_tgtport *tgtp;
1113 struct lpfc_nvmet_rcv_ctx *ctxp =
1114 container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
1115 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1116 struct lpfc_hba *phba = ctxp->phba;
1117
1118 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1119 ctxp->oxid, ctxp->size, smp_processor_id());
1120
1121 if (!nvmebuf) {
1122 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1123 "6425 Defer rcv: no buffer xri x%x: "
1124 "flg %x ste %x\n",
1125 ctxp->oxid, ctxp->flag, ctxp->state);
1126 return;
1127 }
1128
1129 tgtp = phba->targetport->private;
1130 if (tgtp)
1131 atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1132
1133 /* Free the nvmebuf since a new buffer already replaced it */
1134 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1135 }
1136
1137 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1138 .targetport_delete = lpfc_nvmet_targetport_delete,
1139 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
1140 .fcp_op = lpfc_nvmet_xmt_fcp_op,
1141 .fcp_abort = lpfc_nvmet_xmt_fcp_abort,
1142 .fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1143 .defer_rcv = lpfc_nvmet_defer_rcv,
1144
1145 .max_hw_queues = 1,
1146 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1147 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1148 .dma_boundary = 0xFFFFFFFF,
1149
1150 /* optional features */
1151 .target_features = 0,
1152 /* sizes of additional private data for data structures */
1153 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1154 };
1155
1156 static void
__lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * infop)1157 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1158 struct lpfc_nvmet_ctx_info *infop)
1159 {
1160 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1161 unsigned long flags;
1162
1163 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1164 list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1165 &infop->nvmet_ctx_list, list) {
1166 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1167 list_del_init(&ctx_buf->list);
1168 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1169
1170 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1171 ctx_buf->sglq->state = SGL_FREED;
1172 ctx_buf->sglq->ndlp = NULL;
1173
1174 spin_lock(&phba->sli4_hba.sgl_list_lock);
1175 list_add_tail(&ctx_buf->sglq->list,
1176 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1177 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1178
1179 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1180 kfree(ctx_buf->context);
1181 }
1182 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1183 }
1184
1185 static void
lpfc_nvmet_cleanup_io_context(struct lpfc_hba * phba)1186 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1187 {
1188 struct lpfc_nvmet_ctx_info *infop;
1189 int i, j;
1190
1191 /* The first context list, MRQ 0 CPU 0 */
1192 infop = phba->sli4_hba.nvmet_ctx_info;
1193 if (!infop)
1194 return;
1195
1196 /* Cycle the the entire CPU context list for every MRQ */
1197 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1198 for (j = 0; j < phba->sli4_hba.num_present_cpu; j++) {
1199 __lpfc_nvmet_clean_io_for_cpu(phba, infop);
1200 infop++; /* next */
1201 }
1202 }
1203 kfree(phba->sli4_hba.nvmet_ctx_info);
1204 phba->sli4_hba.nvmet_ctx_info = NULL;
1205 }
1206
1207 static int
lpfc_nvmet_setup_io_context(struct lpfc_hba * phba)1208 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1209 {
1210 struct lpfc_nvmet_ctxbuf *ctx_buf;
1211 struct lpfc_iocbq *nvmewqe;
1212 union lpfc_wqe128 *wqe;
1213 struct lpfc_nvmet_ctx_info *last_infop;
1214 struct lpfc_nvmet_ctx_info *infop;
1215 int i, j, idx;
1216
1217 lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1218 "6403 Allocate NVMET resources for %d XRIs\n",
1219 phba->sli4_hba.nvmet_xri_cnt);
1220
1221 phba->sli4_hba.nvmet_ctx_info = kcalloc(
1222 phba->sli4_hba.num_present_cpu * phba->cfg_nvmet_mrq,
1223 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1224 if (!phba->sli4_hba.nvmet_ctx_info) {
1225 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1226 "6419 Failed allocate memory for "
1227 "nvmet context lists\n");
1228 return -ENOMEM;
1229 }
1230
1231 /*
1232 * Assuming X CPUs in the system, and Y MRQs, allocate some
1233 * lpfc_nvmet_ctx_info structures as follows:
1234 *
1235 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1236 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1237 * ...
1238 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1239 *
1240 * Each line represents a MRQ "silo" containing an entry for
1241 * every CPU.
1242 *
1243 * MRQ X is initially assumed to be associated with CPU X, thus
1244 * contexts are initially distributed across all MRQs using
1245 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1246 * freed, the are freed to the MRQ silo based on the CPU number
1247 * of the IO completion. Thus a context that was allocated for MRQ A
1248 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1249 */
1250 infop = phba->sli4_hba.nvmet_ctx_info;
1251 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1252 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1253 INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1254 spin_lock_init(&infop->nvmet_ctx_list_lock);
1255 infop->nvmet_ctx_list_cnt = 0;
1256 infop++;
1257 }
1258 }
1259
1260 /*
1261 * Setup the next CPU context info ptr for each MRQ.
1262 * MRQ 0 will cycle thru CPUs 0 - X separately from
1263 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1264 */
1265 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1266 last_infop = lpfc_get_ctx_list(phba, 0, j);
1267 for (i = phba->sli4_hba.num_present_cpu - 1; i >= 0; i--) {
1268 infop = lpfc_get_ctx_list(phba, i, j);
1269 infop->nvmet_ctx_next_cpu = last_infop;
1270 last_infop = infop;
1271 }
1272 }
1273
1274 /* For all nvmet xris, allocate resources needed to process a
1275 * received command on a per xri basis.
1276 */
1277 idx = 0;
1278 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1279 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1280 if (!ctx_buf) {
1281 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1282 "6404 Ran out of memory for NVMET\n");
1283 return -ENOMEM;
1284 }
1285
1286 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1287 GFP_KERNEL);
1288 if (!ctx_buf->context) {
1289 kfree(ctx_buf);
1290 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1291 "6405 Ran out of NVMET "
1292 "context memory\n");
1293 return -ENOMEM;
1294 }
1295 ctx_buf->context->ctxbuf = ctx_buf;
1296 ctx_buf->context->state = LPFC_NVMET_STE_FREE;
1297
1298 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1299 if (!ctx_buf->iocbq) {
1300 kfree(ctx_buf->context);
1301 kfree(ctx_buf);
1302 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1303 "6406 Ran out of NVMET iocb/WQEs\n");
1304 return -ENOMEM;
1305 }
1306 ctx_buf->iocbq->iocb_flag = LPFC_IO_NVMET;
1307 nvmewqe = ctx_buf->iocbq;
1308 wqe = &nvmewqe->wqe;
1309
1310 /* Initialize WQE */
1311 memset(wqe, 0, sizeof(union lpfc_wqe));
1312
1313 ctx_buf->iocbq->context1 = NULL;
1314 spin_lock(&phba->sli4_hba.sgl_list_lock);
1315 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1316 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1317 if (!ctx_buf->sglq) {
1318 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1319 kfree(ctx_buf->context);
1320 kfree(ctx_buf);
1321 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1322 "6407 Ran out of NVMET XRIs\n");
1323 return -ENOMEM;
1324 }
1325
1326 /*
1327 * Add ctx to MRQidx context list. Our initial assumption
1328 * is MRQidx will be associated with CPUidx. This association
1329 * can change on the fly.
1330 */
1331 infop = lpfc_get_ctx_list(phba, idx, idx);
1332 spin_lock(&infop->nvmet_ctx_list_lock);
1333 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1334 infop->nvmet_ctx_list_cnt++;
1335 spin_unlock(&infop->nvmet_ctx_list_lock);
1336
1337 /* Spread ctx structures evenly across all MRQs */
1338 idx++;
1339 if (idx >= phba->cfg_nvmet_mrq)
1340 idx = 0;
1341 }
1342
1343 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1344 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1345 infop = lpfc_get_ctx_list(phba, i, j);
1346 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1347 "6408 TOTAL NVMET ctx for CPU %d "
1348 "MRQ %d: cnt %d nextcpu %p\n",
1349 i, j, infop->nvmet_ctx_list_cnt,
1350 infop->nvmet_ctx_next_cpu);
1351 }
1352 }
1353 return 0;
1354 }
1355
1356 int
lpfc_nvmet_create_targetport(struct lpfc_hba * phba)1357 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1358 {
1359 struct lpfc_vport *vport = phba->pport;
1360 struct lpfc_nvmet_tgtport *tgtp;
1361 struct nvmet_fc_port_info pinfo;
1362 int error;
1363
1364 if (phba->targetport)
1365 return 0;
1366
1367 error = lpfc_nvmet_setup_io_context(phba);
1368 if (error)
1369 return error;
1370
1371 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1372 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1373 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1374 pinfo.port_id = vport->fc_myDID;
1375
1376 /* Limit to LPFC_MAX_NVME_SEG_CNT.
1377 * For now need + 1 to get around NVME transport logic.
1378 */
1379 if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) {
1380 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1381 "6400 Reducing sg segment cnt to %d\n",
1382 LPFC_MAX_NVME_SEG_CNT);
1383 phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT;
1384 } else {
1385 phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt;
1386 }
1387 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1388 lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel;
1389 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1390
1391 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1392 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1393 &phba->pcidev->dev,
1394 &phba->targetport);
1395 #else
1396 error = -ENOENT;
1397 #endif
1398 if (error) {
1399 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
1400 "6025 Cannot register NVME targetport x%x: "
1401 "portnm %llx nodenm %llx segs %d qs %d\n",
1402 error,
1403 pinfo.port_name, pinfo.node_name,
1404 lpfc_tgttemplate.max_sgl_segments,
1405 lpfc_tgttemplate.max_hw_queues);
1406 phba->targetport = NULL;
1407 phba->nvmet_support = 0;
1408
1409 lpfc_nvmet_cleanup_io_context(phba);
1410
1411 } else {
1412 tgtp = (struct lpfc_nvmet_tgtport *)
1413 phba->targetport->private;
1414 tgtp->phba = phba;
1415
1416 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1417 "6026 Registered NVME "
1418 "targetport: %p, private %p "
1419 "portnm %llx nodenm %llx segs %d qs %d\n",
1420 phba->targetport, tgtp,
1421 pinfo.port_name, pinfo.node_name,
1422 lpfc_tgttemplate.max_sgl_segments,
1423 lpfc_tgttemplate.max_hw_queues);
1424
1425 atomic_set(&tgtp->rcv_ls_req_in, 0);
1426 atomic_set(&tgtp->rcv_ls_req_out, 0);
1427 atomic_set(&tgtp->rcv_ls_req_drop, 0);
1428 atomic_set(&tgtp->xmt_ls_abort, 0);
1429 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1430 atomic_set(&tgtp->xmt_ls_rsp, 0);
1431 atomic_set(&tgtp->xmt_ls_drop, 0);
1432 atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1433 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1434 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1435 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1436 atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1437 atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1438 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1439 atomic_set(&tgtp->xmt_fcp_drop, 0);
1440 atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1441 atomic_set(&tgtp->xmt_fcp_read, 0);
1442 atomic_set(&tgtp->xmt_fcp_write, 0);
1443 atomic_set(&tgtp->xmt_fcp_rsp, 0);
1444 atomic_set(&tgtp->xmt_fcp_release, 0);
1445 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1446 atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1447 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1448 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1449 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1450 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1451 atomic_set(&tgtp->xmt_fcp_abort, 0);
1452 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1453 atomic_set(&tgtp->xmt_abort_unsol, 0);
1454 atomic_set(&tgtp->xmt_abort_sol, 0);
1455 atomic_set(&tgtp->xmt_abort_rsp, 0);
1456 atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1457 atomic_set(&tgtp->defer_ctx, 0);
1458 atomic_set(&tgtp->defer_fod, 0);
1459 atomic_set(&tgtp->defer_wqfull, 0);
1460 }
1461 return error;
1462 }
1463
1464 int
lpfc_nvmet_update_targetport(struct lpfc_hba * phba)1465 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1466 {
1467 struct lpfc_vport *vport = phba->pport;
1468
1469 if (!phba->targetport)
1470 return 0;
1471
1472 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1473 "6007 Update NVMET port %p did x%x\n",
1474 phba->targetport, vport->fc_myDID);
1475
1476 phba->targetport->port_id = vport->fc_myDID;
1477 return 0;
1478 }
1479
1480 /**
1481 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1482 * @phba: pointer to lpfc hba data structure.
1483 * @axri: pointer to the nvmet xri abort wcqe structure.
1484 *
1485 * This routine is invoked by the worker thread to process a SLI4 fast-path
1486 * NVMET aborted xri.
1487 **/
1488 void
lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba * phba,struct sli4_wcqe_xri_aborted * axri)1489 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1490 struct sli4_wcqe_xri_aborted *axri)
1491 {
1492 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1493 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1494 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1495 struct lpfc_nvmet_tgtport *tgtp;
1496 struct lpfc_nodelist *ndlp;
1497 unsigned long iflag = 0;
1498 int rrq_empty = 0;
1499 bool released = false;
1500
1501 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1502 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1503
1504 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1505 return;
1506
1507 if (phba->targetport) {
1508 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1509 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1510 }
1511
1512 spin_lock_irqsave(&phba->hbalock, iflag);
1513 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1514 list_for_each_entry_safe(ctxp, next_ctxp,
1515 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1516 list) {
1517 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1518 continue;
1519
1520 /* Check if we already received a free context call
1521 * and we have completed processing an abort situation.
1522 */
1523 if (ctxp->flag & LPFC_NVMET_CTX_RLS &&
1524 !(ctxp->flag & LPFC_NVMET_ABORT_OP)) {
1525 list_del(&ctxp->list);
1526 released = true;
1527 }
1528 ctxp->flag &= ~LPFC_NVMET_XBUSY;
1529 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1530
1531 rrq_empty = list_empty(&phba->active_rrq_list);
1532 spin_unlock_irqrestore(&phba->hbalock, iflag);
1533 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1534 if (ndlp && NLP_CHK_NODE_ACT(ndlp) &&
1535 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1536 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1537 lpfc_set_rrq_active(phba, ndlp,
1538 ctxp->ctxbuf->sglq->sli4_lxritag,
1539 rxid, 1);
1540 lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1541 }
1542
1543 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1544 "6318 XB aborted oxid %x flg x%x (%x)\n",
1545 ctxp->oxid, ctxp->flag, released);
1546 if (released)
1547 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1548
1549 if (rrq_empty)
1550 lpfc_worker_wake_up(phba);
1551 return;
1552 }
1553 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1554 spin_unlock_irqrestore(&phba->hbalock, iflag);
1555 }
1556
1557 int
lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr)1558 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1559 struct fc_frame_header *fc_hdr)
1560
1561 {
1562 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1563 struct lpfc_hba *phba = vport->phba;
1564 struct lpfc_nvmet_rcv_ctx *ctxp, *next_ctxp;
1565 struct nvmefc_tgt_fcp_req *rsp;
1566 uint16_t xri;
1567 unsigned long iflag = 0;
1568
1569 xri = be16_to_cpu(fc_hdr->fh_ox_id);
1570
1571 spin_lock_irqsave(&phba->hbalock, iflag);
1572 spin_lock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1573 list_for_each_entry_safe(ctxp, next_ctxp,
1574 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1575 list) {
1576 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1577 continue;
1578
1579 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1580 spin_unlock_irqrestore(&phba->hbalock, iflag);
1581
1582 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1583 ctxp->flag |= LPFC_NVMET_ABTS_RCV;
1584 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1585
1586 lpfc_nvmeio_data(phba,
1587 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1588 xri, smp_processor_id(), 0);
1589
1590 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1591 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1592
1593 rsp = &ctxp->ctx.fcp_req;
1594 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1595
1596 /* Respond with BA_ACC accordingly */
1597 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1598 return 0;
1599 }
1600 spin_unlock(&phba->sli4_hba.abts_nvme_buf_list_lock);
1601 spin_unlock_irqrestore(&phba->hbalock, iflag);
1602
1603 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1604 xri, smp_processor_id(), 1);
1605
1606 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1607 "6320 NVMET Rcv ABTS:rjt xri x%x\n", xri);
1608
1609 /* Respond with BA_RJT accordingly */
1610 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
1611 #endif
1612 return 0;
1613 }
1614
1615 static void
lpfc_nvmet_wqfull_flush(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_nvmet_rcv_ctx * ctxp)1616 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
1617 struct lpfc_nvmet_rcv_ctx *ctxp)
1618 {
1619 struct lpfc_sli_ring *pring;
1620 struct lpfc_iocbq *nvmewqeq;
1621 struct lpfc_iocbq *next_nvmewqeq;
1622 unsigned long iflags;
1623 struct lpfc_wcqe_complete wcqe;
1624 struct lpfc_wcqe_complete *wcqep;
1625
1626 pring = wq->pring;
1627 wcqep = &wcqe;
1628
1629 /* Fake an ABORT error code back to cmpl routine */
1630 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
1631 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
1632 wcqep->parameter = IOERR_ABORT_REQUESTED;
1633
1634 spin_lock_irqsave(&pring->ring_lock, iflags);
1635 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
1636 &wq->wqfull_list, list) {
1637 if (ctxp) {
1638 /* Checking for a specific IO to flush */
1639 if (nvmewqeq->context2 == ctxp) {
1640 list_del(&nvmewqeq->list);
1641 spin_unlock_irqrestore(&pring->ring_lock,
1642 iflags);
1643 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
1644 wcqep);
1645 return;
1646 }
1647 continue;
1648 } else {
1649 /* Flush all IOs */
1650 list_del(&nvmewqeq->list);
1651 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1652 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, wcqep);
1653 spin_lock_irqsave(&pring->ring_lock, iflags);
1654 }
1655 }
1656 if (!ctxp)
1657 wq->q_flag &= ~HBA_NVMET_WQFULL;
1658 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1659 }
1660
1661 void
lpfc_nvmet_wqfull_process(struct lpfc_hba * phba,struct lpfc_queue * wq)1662 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
1663 struct lpfc_queue *wq)
1664 {
1665 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1666 struct lpfc_sli_ring *pring;
1667 struct lpfc_iocbq *nvmewqeq;
1668 unsigned long iflags;
1669 int rc;
1670
1671 /*
1672 * Some WQE slots are available, so try to re-issue anything
1673 * on the WQ wqfull_list.
1674 */
1675 pring = wq->pring;
1676 spin_lock_irqsave(&pring->ring_lock, iflags);
1677 while (!list_empty(&wq->wqfull_list)) {
1678 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
1679 list);
1680 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1681 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, nvmewqeq);
1682 spin_lock_irqsave(&pring->ring_lock, iflags);
1683 if (rc == -EBUSY) {
1684 /* WQ was full again, so put it back on the list */
1685 list_add(&nvmewqeq->list, &wq->wqfull_list);
1686 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1687 return;
1688 }
1689 }
1690 wq->q_flag &= ~HBA_NVMET_WQFULL;
1691 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1692
1693 #endif
1694 }
1695
1696 void
lpfc_nvmet_destroy_targetport(struct lpfc_hba * phba)1697 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
1698 {
1699 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1700 struct lpfc_nvmet_tgtport *tgtp;
1701 struct lpfc_queue *wq;
1702 uint32_t qidx;
1703 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
1704
1705 if (phba->nvmet_support == 0)
1706 return;
1707 if (phba->targetport) {
1708 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1709 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) {
1710 wq = phba->sli4_hba.nvme_wq[qidx];
1711 lpfc_nvmet_wqfull_flush(phba, wq, NULL);
1712 }
1713 tgtp->tport_unreg_cmp = &tport_unreg_cmp;
1714 nvmet_fc_unregister_targetport(phba->targetport);
1715 if (!wait_for_completion_timeout(&tport_unreg_cmp,
1716 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
1717 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1718 "6179 Unreg targetport %p timeout "
1719 "reached.\n", phba->targetport);
1720 lpfc_nvmet_cleanup_io_context(phba);
1721 }
1722 phba->targetport = NULL;
1723 #endif
1724 }
1725
1726 /**
1727 * lpfc_nvmet_unsol_ls_buffer - Process an unsolicited event data buffer
1728 * @phba: pointer to lpfc hba data structure.
1729 * @pring: pointer to a SLI ring.
1730 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1731 *
1732 * This routine is used for processing the WQE associated with a unsolicited
1733 * event. It first determines whether there is an existing ndlp that matches
1734 * the DID from the unsolicited WQE. If not, it will create a new one with
1735 * the DID from the unsolicited WQE. The ELS command from the unsolicited
1736 * WQE is then used to invoke the proper routine and to set up proper state
1737 * of the discovery state machine.
1738 **/
1739 static void
lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct hbq_dmabuf * nvmebuf)1740 lpfc_nvmet_unsol_ls_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1741 struct hbq_dmabuf *nvmebuf)
1742 {
1743 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1744 struct lpfc_nvmet_tgtport *tgtp;
1745 struct fc_frame_header *fc_hdr;
1746 struct lpfc_nvmet_rcv_ctx *ctxp;
1747 uint32_t *payload;
1748 uint32_t size, oxid, sid, rc;
1749
1750 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1751 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1752
1753 if (!phba->targetport) {
1754 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1755 "6154 LS Drop IO x%x\n", oxid);
1756 oxid = 0;
1757 size = 0;
1758 sid = 0;
1759 ctxp = NULL;
1760 goto dropit;
1761 }
1762
1763 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1764 payload = (uint32_t *)(nvmebuf->dbuf.virt);
1765 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
1766 sid = sli4_sid_from_fc_hdr(fc_hdr);
1767
1768 ctxp = kzalloc(sizeof(struct lpfc_nvmet_rcv_ctx), GFP_ATOMIC);
1769 if (ctxp == NULL) {
1770 atomic_inc(&tgtp->rcv_ls_req_drop);
1771 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1772 "6155 LS Drop IO x%x: Alloc\n",
1773 oxid);
1774 dropit:
1775 lpfc_nvmeio_data(phba, "NVMET LS DROP: "
1776 "xri x%x sz %d from %06x\n",
1777 oxid, size, sid);
1778 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1779 return;
1780 }
1781 ctxp->phba = phba;
1782 ctxp->size = size;
1783 ctxp->oxid = oxid;
1784 ctxp->sid = sid;
1785 ctxp->wqeq = NULL;
1786 ctxp->state = LPFC_NVMET_STE_LS_RCV;
1787 ctxp->entry_cnt = 1;
1788 ctxp->rqb_buffer = (void *)nvmebuf;
1789
1790 lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n",
1791 oxid, size, sid);
1792 /*
1793 * The calling sequence should be:
1794 * nvmet_fc_rcv_ls_req -> lpfc_nvmet_xmt_ls_rsp/cmp ->_req->done
1795 * lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp.
1796 */
1797 atomic_inc(&tgtp->rcv_ls_req_in);
1798 rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req,
1799 payload, size);
1800
1801 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1802 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
1803 "%08x %08x %08x\n", size, rc,
1804 *payload, *(payload+1), *(payload+2),
1805 *(payload+3), *(payload+4), *(payload+5));
1806
1807 if (rc == 0) {
1808 atomic_inc(&tgtp->rcv_ls_req_out);
1809 return;
1810 }
1811
1812 lpfc_nvmeio_data(phba, "NVMET LS DROP: xri x%x sz %d from %06x\n",
1813 oxid, size, sid);
1814
1815 atomic_inc(&tgtp->rcv_ls_req_drop);
1816 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1817 "6156 LS Drop IO x%x: nvmet_fc_rcv_ls_req %d\n",
1818 ctxp->oxid, rc);
1819
1820 /* We assume a rcv'ed cmd ALWAYs fits into 1 buffer */
1821 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
1822
1823 atomic_inc(&tgtp->xmt_ls_abort);
1824 lpfc_nvmet_unsol_ls_issue_abort(phba, ctxp, sid, oxid);
1825 #endif
1826 }
1827
1828 static struct lpfc_nvmet_ctxbuf *
lpfc_nvmet_replenish_context(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * current_infop)1829 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
1830 struct lpfc_nvmet_ctx_info *current_infop)
1831 {
1832 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1833 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
1834 struct lpfc_nvmet_ctx_info *get_infop;
1835 int i;
1836
1837 /*
1838 * The current_infop for the MRQ a NVME command IU was received
1839 * on is empty. Our goal is to replenish this MRQs context
1840 * list from a another CPUs.
1841 *
1842 * First we need to pick a context list to start looking on.
1843 * nvmet_ctx_start_cpu has available context the last time
1844 * we needed to replenish this CPU where nvmet_ctx_next_cpu
1845 * is just the next sequential CPU for this MRQ.
1846 */
1847 if (current_infop->nvmet_ctx_start_cpu)
1848 get_infop = current_infop->nvmet_ctx_start_cpu;
1849 else
1850 get_infop = current_infop->nvmet_ctx_next_cpu;
1851
1852 for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) {
1853 if (get_infop == current_infop) {
1854 get_infop = get_infop->nvmet_ctx_next_cpu;
1855 continue;
1856 }
1857 spin_lock(&get_infop->nvmet_ctx_list_lock);
1858
1859 /* Just take the entire context list, if there are any */
1860 if (get_infop->nvmet_ctx_list_cnt) {
1861 list_splice_init(&get_infop->nvmet_ctx_list,
1862 ¤t_infop->nvmet_ctx_list);
1863 current_infop->nvmet_ctx_list_cnt =
1864 get_infop->nvmet_ctx_list_cnt - 1;
1865 get_infop->nvmet_ctx_list_cnt = 0;
1866 spin_unlock(&get_infop->nvmet_ctx_list_lock);
1867
1868 current_infop->nvmet_ctx_start_cpu = get_infop;
1869 list_remove_head(¤t_infop->nvmet_ctx_list,
1870 ctx_buf, struct lpfc_nvmet_ctxbuf,
1871 list);
1872 return ctx_buf;
1873 }
1874
1875 /* Otherwise, move on to the next CPU for this MRQ */
1876 spin_unlock(&get_infop->nvmet_ctx_list_lock);
1877 get_infop = get_infop->nvmet_ctx_next_cpu;
1878 }
1879
1880 #endif
1881 /* Nothing found, all contexts for the MRQ are in-flight */
1882 return NULL;
1883 }
1884
1885 /**
1886 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
1887 * @phba: pointer to lpfc hba data structure.
1888 * @idx: relative index of MRQ vector
1889 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
1890 *
1891 * This routine is used for processing the WQE associated with a unsolicited
1892 * event. It first determines whether there is an existing ndlp that matches
1893 * the DID from the unsolicited WQE. If not, it will create a new one with
1894 * the DID from the unsolicited WQE. The ELS command from the unsolicited
1895 * WQE is then used to invoke the proper routine and to set up proper state
1896 * of the discovery state machine.
1897 **/
1898 static void
lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp)1899 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
1900 uint32_t idx,
1901 struct rqb_dmabuf *nvmebuf,
1902 uint64_t isr_timestamp)
1903 {
1904 struct lpfc_nvmet_rcv_ctx *ctxp;
1905 struct lpfc_nvmet_tgtport *tgtp;
1906 struct fc_frame_header *fc_hdr;
1907 struct lpfc_nvmet_ctxbuf *ctx_buf;
1908 struct lpfc_nvmet_ctx_info *current_infop;
1909 uint32_t *payload;
1910 uint32_t size, oxid, sid, rc, qno;
1911 unsigned long iflag;
1912 int current_cpu;
1913 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1914 uint32_t id;
1915 #endif
1916
1917 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
1918 return;
1919
1920 ctx_buf = NULL;
1921 if (!nvmebuf || !phba->targetport) {
1922 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1923 "6157 NVMET FCP Drop IO\n");
1924 oxid = 0;
1925 size = 0;
1926 sid = 0;
1927 ctxp = NULL;
1928 goto dropit;
1929 }
1930
1931 /*
1932 * Get a pointer to the context list for this MRQ based on
1933 * the CPU this MRQ IRQ is associated with. If the CPU association
1934 * changes from our initial assumption, the context list could
1935 * be empty, thus it would need to be replenished with the
1936 * context list from another CPU for this MRQ.
1937 */
1938 current_cpu = smp_processor_id();
1939 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
1940 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag);
1941 if (current_infop->nvmet_ctx_list_cnt) {
1942 list_remove_head(¤t_infop->nvmet_ctx_list,
1943 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
1944 current_infop->nvmet_ctx_list_cnt--;
1945 } else {
1946 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
1947 }
1948 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag);
1949
1950 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
1951 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1952 size = nvmebuf->bytes_recv;
1953
1954 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1955 if (phba->cpucheck_on & LPFC_CHECK_NVMET_RCV) {
1956 id = smp_processor_id();
1957 if (id < LPFC_CHECK_CPU_CNT)
1958 phba->cpucheck_rcv_io[id]++;
1959 }
1960 #endif
1961
1962 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n",
1963 oxid, size, smp_processor_id());
1964
1965 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1966
1967 if (!ctx_buf) {
1968 /* Queue this NVME IO to process later */
1969 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1970 list_add_tail(&nvmebuf->hbuf.list,
1971 &phba->sli4_hba.lpfc_nvmet_io_wait_list);
1972 phba->sli4_hba.nvmet_io_wait_cnt++;
1973 phba->sli4_hba.nvmet_io_wait_total++;
1974 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1975 iflag);
1976
1977 /* Post a brand new DMA buffer to RQ */
1978 qno = nvmebuf->idx;
1979 lpfc_post_rq_buffer(
1980 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
1981 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
1982
1983 atomic_inc(&tgtp->defer_ctx);
1984 return;
1985 }
1986
1987 payload = (uint32_t *)(nvmebuf->dbuf.virt);
1988 sid = sli4_sid_from_fc_hdr(fc_hdr);
1989
1990 ctxp = (struct lpfc_nvmet_rcv_ctx *)ctx_buf->context;
1991 if (ctxp->state != LPFC_NVMET_STE_FREE) {
1992 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
1993 "6414 NVMET Context corrupt %d %d oxid x%x\n",
1994 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1995 }
1996 ctxp->wqeq = NULL;
1997 ctxp->txrdy = NULL;
1998 ctxp->offset = 0;
1999 ctxp->phba = phba;
2000 ctxp->size = size;
2001 ctxp->oxid = oxid;
2002 ctxp->sid = sid;
2003 ctxp->idx = idx;
2004 ctxp->state = LPFC_NVMET_STE_RCV;
2005 ctxp->entry_cnt = 1;
2006 ctxp->flag = 0;
2007 ctxp->ctxbuf = ctx_buf;
2008 ctxp->rqb_buffer = (void *)nvmebuf;
2009 spin_lock_init(&ctxp->ctxlock);
2010
2011 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2012 if (isr_timestamp) {
2013 ctxp->ts_isr_cmd = isr_timestamp;
2014 ctxp->ts_cmd_nvme = ktime_get_ns();
2015 ctxp->ts_nvme_data = 0;
2016 ctxp->ts_data_wqput = 0;
2017 ctxp->ts_isr_data = 0;
2018 ctxp->ts_data_nvme = 0;
2019 ctxp->ts_nvme_status = 0;
2020 ctxp->ts_status_wqput = 0;
2021 ctxp->ts_isr_status = 0;
2022 ctxp->ts_status_nvme = 0;
2023 } else {
2024 ctxp->ts_cmd_nvme = 0;
2025 }
2026 #endif
2027
2028 atomic_inc(&tgtp->rcv_fcp_cmd_in);
2029 /*
2030 * The calling sequence should be:
2031 * nvmet_fc_rcv_fcp_req -> lpfc_nvmet_xmt_fcp_op/cmp -> req->done
2032 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2033 * When we return from nvmet_fc_rcv_fcp_req, all relevant info in
2034 * the NVME command / FC header is stored, so we are free to repost
2035 * the buffer.
2036 */
2037 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->ctx.fcp_req,
2038 payload, size);
2039
2040 /* Process FCP command */
2041 if (rc == 0) {
2042 ctxp->rqb_buffer = NULL;
2043 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2044 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2045 return;
2046 }
2047
2048 /* Processing of FCP command is deferred */
2049 if (rc == -EOVERFLOW) {
2050 /*
2051 * Post a brand new DMA buffer to RQ and defer
2052 * freeing rcv buffer till .defer_rcv callback
2053 */
2054 qno = nvmebuf->idx;
2055 lpfc_post_rq_buffer(
2056 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2057 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2058
2059 lpfc_nvmeio_data(phba,
2060 "NVMET RCV BUSY: xri x%x sz %d from %06x\n",
2061 oxid, size, sid);
2062 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2063 atomic_inc(&tgtp->defer_fod);
2064 return;
2065 }
2066 ctxp->rqb_buffer = nvmebuf;
2067
2068 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2069 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2070 "6159 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2071 ctxp->oxid, rc,
2072 atomic_read(&tgtp->rcv_fcp_cmd_in),
2073 atomic_read(&tgtp->rcv_fcp_cmd_out),
2074 atomic_read(&tgtp->xmt_fcp_release));
2075 dropit:
2076 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2077 oxid, size, sid);
2078 if (oxid) {
2079 lpfc_nvmet_defer_release(phba, ctxp);
2080 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2081 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2082 return;
2083 }
2084
2085 if (ctx_buf)
2086 lpfc_nvmet_ctxbuf_post(phba, ctx_buf);
2087
2088 if (nvmebuf)
2089 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2090 }
2091
2092 /**
2093 * lpfc_nvmet_unsol_ls_event - Process an unsolicited event from an nvme nport
2094 * @phba: pointer to lpfc hba data structure.
2095 * @pring: pointer to a SLI ring.
2096 * @nvmebuf: pointer to received nvme data structure.
2097 *
2098 * This routine is used to process an unsolicited event received from a SLI
2099 * (Service Level Interface) ring. The actual processing of the data buffer
2100 * associated with the unsolicited event is done by invoking the routine
2101 * lpfc_nvmet_unsol_ls_buffer() after properly set up the buffer from the
2102 * SLI RQ on which the unsolicited event was received.
2103 **/
2104 void
lpfc_nvmet_unsol_ls_event(struct lpfc_hba * phba,struct lpfc_sli_ring * pring,struct lpfc_iocbq * piocb)2105 lpfc_nvmet_unsol_ls_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2106 struct lpfc_iocbq *piocb)
2107 {
2108 struct lpfc_dmabuf *d_buf;
2109 struct hbq_dmabuf *nvmebuf;
2110
2111 d_buf = piocb->context2;
2112 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2113
2114 if (phba->nvmet_support == 0) {
2115 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
2116 return;
2117 }
2118 lpfc_nvmet_unsol_ls_buffer(phba, pring, nvmebuf);
2119 }
2120
2121 /**
2122 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2123 * @phba: pointer to lpfc hba data structure.
2124 * @idx: relative index of MRQ vector
2125 * @nvmebuf: pointer to received nvme data structure.
2126 *
2127 * This routine is used to process an unsolicited event received from a SLI
2128 * (Service Level Interface) ring. The actual processing of the data buffer
2129 * associated with the unsolicited event is done by invoking the routine
2130 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2131 * SLI RQ on which the unsolicited event was received.
2132 **/
2133 void
lpfc_nvmet_unsol_fcp_event(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp)2134 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2135 uint32_t idx,
2136 struct rqb_dmabuf *nvmebuf,
2137 uint64_t isr_timestamp)
2138 {
2139 if (phba->nvmet_support == 0) {
2140 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2141 return;
2142 }
2143 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf,
2144 isr_timestamp);
2145 }
2146
2147 /**
2148 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2149 * @phba: pointer to a host N_Port data structure.
2150 * @ctxp: Context info for NVME LS Request
2151 * @rspbuf: DMA buffer of NVME command.
2152 * @rspsize: size of the NVME command.
2153 *
2154 * This routine is used for allocating a lpfc-WQE data structure from
2155 * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2156 * passed into the routine for discovery state machine to issue an Extended
2157 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2158 * and preparation routine that is used by all the discovery state machine
2159 * routines and the NVME command-specific fields will be later set up by
2160 * the individual discovery machine routines after calling this routine
2161 * allocating and preparing a generic WQE data structure. It fills in the
2162 * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2163 * payload and response payload (if expected). The reference count on the
2164 * ndlp is incremented by 1 and the reference to the ndlp is put into
2165 * context1 of the WQE data structure for this WQE to hold the ndlp
2166 * reference for the command's callback function to access later.
2167 *
2168 * Return code
2169 * Pointer to the newly allocated/prepared nvme wqe data structure
2170 * NULL - when nvme wqe data structure allocation/preparation failed
2171 **/
2172 static struct lpfc_iocbq *
lpfc_nvmet_prep_ls_wqe(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,dma_addr_t rspbuf,uint16_t rspsize)2173 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2174 struct lpfc_nvmet_rcv_ctx *ctxp,
2175 dma_addr_t rspbuf, uint16_t rspsize)
2176 {
2177 struct lpfc_nodelist *ndlp;
2178 struct lpfc_iocbq *nvmewqe;
2179 union lpfc_wqe128 *wqe;
2180
2181 if (!lpfc_is_link_up(phba)) {
2182 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2183 "6104 NVMET prep LS wqe: link err: "
2184 "NPORT x%x oxid:x%x ste %d\n",
2185 ctxp->sid, ctxp->oxid, ctxp->state);
2186 return NULL;
2187 }
2188
2189 /* Allocate buffer for command wqe */
2190 nvmewqe = lpfc_sli_get_iocbq(phba);
2191 if (nvmewqe == NULL) {
2192 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2193 "6105 NVMET prep LS wqe: No WQE: "
2194 "NPORT x%x oxid x%x ste %d\n",
2195 ctxp->sid, ctxp->oxid, ctxp->state);
2196 return NULL;
2197 }
2198
2199 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2200 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2201 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2202 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2203 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2204 "6106 NVMET prep LS wqe: No ndlp: "
2205 "NPORT x%x oxid x%x ste %d\n",
2206 ctxp->sid, ctxp->oxid, ctxp->state);
2207 goto nvme_wqe_free_wqeq_exit;
2208 }
2209 ctxp->wqeq = nvmewqe;
2210
2211 /* prevent preparing wqe with NULL ndlp reference */
2212 nvmewqe->context1 = lpfc_nlp_get(ndlp);
2213 if (nvmewqe->context1 == NULL)
2214 goto nvme_wqe_free_wqeq_exit;
2215 nvmewqe->context2 = ctxp;
2216
2217 wqe = &nvmewqe->wqe;
2218 memset(wqe, 0, sizeof(union lpfc_wqe));
2219
2220 /* Words 0 - 2 */
2221 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2222 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2223 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2224 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2225
2226 /* Word 3 */
2227
2228 /* Word 4 */
2229
2230 /* Word 5 */
2231 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2232 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2233 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2234 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2235 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2236
2237 /* Word 6 */
2238 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2239 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2240 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2241
2242 /* Word 7 */
2243 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2244 CMD_XMIT_SEQUENCE64_WQE);
2245 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2246 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2247 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2248
2249 /* Word 8 */
2250 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2251
2252 /* Word 9 */
2253 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2254 /* Needs to be set by caller */
2255 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2256
2257 /* Word 10 */
2258 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2259 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2260 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2261 LPFC_WQE_LENLOC_WORD12);
2262 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2263
2264 /* Word 11 */
2265 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2266 LPFC_WQE_CQ_ID_DEFAULT);
2267 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2268 OTHER_COMMAND);
2269
2270 /* Word 12 */
2271 wqe->xmit_sequence.xmit_len = rspsize;
2272
2273 nvmewqe->retry = 1;
2274 nvmewqe->vport = phba->pport;
2275 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2276 nvmewqe->iocb_flag |= LPFC_IO_NVME_LS;
2277
2278 /* Xmit NVMET response to remote NPORT <did> */
2279 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2280 "6039 Xmit NVMET LS response to remote "
2281 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2282 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2283 rspsize);
2284 return nvmewqe;
2285
2286 nvme_wqe_free_wqeq_exit:
2287 nvmewqe->context2 = NULL;
2288 nvmewqe->context3 = NULL;
2289 lpfc_sli_release_iocbq(phba, nvmewqe);
2290 return NULL;
2291 }
2292
2293
2294 static struct lpfc_iocbq *
lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp)2295 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2296 struct lpfc_nvmet_rcv_ctx *ctxp)
2297 {
2298 struct nvmefc_tgt_fcp_req *rsp = &ctxp->ctx.fcp_req;
2299 struct lpfc_nvmet_tgtport *tgtp;
2300 struct sli4_sge *sgl;
2301 struct lpfc_nodelist *ndlp;
2302 struct lpfc_iocbq *nvmewqe;
2303 struct scatterlist *sgel;
2304 union lpfc_wqe128 *wqe;
2305 struct ulp_bde64 *bde;
2306 uint32_t *txrdy;
2307 dma_addr_t physaddr;
2308 int i, cnt;
2309 int do_pbde;
2310 int xc = 1;
2311
2312 if (!lpfc_is_link_up(phba)) {
2313 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2314 "6107 NVMET prep FCP wqe: link err:"
2315 "NPORT x%x oxid x%x ste %d\n",
2316 ctxp->sid, ctxp->oxid, ctxp->state);
2317 return NULL;
2318 }
2319
2320 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2321 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2322 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2323 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2324 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2325 "6108 NVMET prep FCP wqe: no ndlp: "
2326 "NPORT x%x oxid x%x ste %d\n",
2327 ctxp->sid, ctxp->oxid, ctxp->state);
2328 return NULL;
2329 }
2330
2331 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2332 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2333 "6109 NVMET prep FCP wqe: seg cnt err: "
2334 "NPORT x%x oxid x%x ste %d cnt %d\n",
2335 ctxp->sid, ctxp->oxid, ctxp->state,
2336 phba->cfg_nvme_seg_cnt);
2337 return NULL;
2338 }
2339
2340 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2341 nvmewqe = ctxp->wqeq;
2342 if (nvmewqe == NULL) {
2343 /* Allocate buffer for command wqe */
2344 nvmewqe = ctxp->ctxbuf->iocbq;
2345 if (nvmewqe == NULL) {
2346 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2347 "6110 NVMET prep FCP wqe: No "
2348 "WQE: NPORT x%x oxid x%x ste %d\n",
2349 ctxp->sid, ctxp->oxid, ctxp->state);
2350 return NULL;
2351 }
2352 ctxp->wqeq = nvmewqe;
2353 xc = 0; /* create new XRI */
2354 nvmewqe->sli4_lxritag = NO_XRI;
2355 nvmewqe->sli4_xritag = NO_XRI;
2356 }
2357
2358 /* Sanity check */
2359 if (((ctxp->state == LPFC_NVMET_STE_RCV) &&
2360 (ctxp->entry_cnt == 1)) ||
2361 (ctxp->state == LPFC_NVMET_STE_DATA)) {
2362 wqe = &nvmewqe->wqe;
2363 } else {
2364 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2365 "6111 Wrong state NVMET FCP: %d cnt %d\n",
2366 ctxp->state, ctxp->entry_cnt);
2367 return NULL;
2368 }
2369
2370 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2371 switch (rsp->op) {
2372 case NVMET_FCOP_READDATA:
2373 case NVMET_FCOP_READDATA_RSP:
2374 /* From the tsend template, initialize words 7 - 11 */
2375 memcpy(&wqe->words[7],
2376 &lpfc_tsend_cmd_template.words[7],
2377 sizeof(uint32_t) * 5);
2378
2379 /* Words 0 - 2 : The first sg segment */
2380 sgel = &rsp->sg[0];
2381 physaddr = sg_dma_address(sgel);
2382 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2383 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2384 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2385 wqe->fcp_tsend.bde.addrHigh =
2386 cpu_to_le32(putPaddrHigh(physaddr));
2387
2388 /* Word 3 */
2389 wqe->fcp_tsend.payload_offset_len = 0;
2390
2391 /* Word 4 */
2392 wqe->fcp_tsend.relative_offset = ctxp->offset;
2393
2394 /* Word 5 */
2395 wqe->fcp_tsend.reserved = 0;
2396
2397 /* Word 6 */
2398 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2399 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2400 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2401 nvmewqe->sli4_xritag);
2402
2403 /* Word 7 - set ar later */
2404
2405 /* Word 8 */
2406 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2407
2408 /* Word 9 */
2409 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2410 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2411
2412 /* Word 10 - set wqes later, in template xc=1 */
2413 if (!xc)
2414 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2415
2416 /* Word 11 - set sup, irsp, irsplen later */
2417 do_pbde = 0;
2418
2419 /* Word 12 */
2420 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2421
2422 /* Setup 2 SKIP SGEs */
2423 sgl->addr_hi = 0;
2424 sgl->addr_lo = 0;
2425 sgl->word2 = 0;
2426 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2427 sgl->word2 = cpu_to_le32(sgl->word2);
2428 sgl->sge_len = 0;
2429 sgl++;
2430 sgl->addr_hi = 0;
2431 sgl->addr_lo = 0;
2432 sgl->word2 = 0;
2433 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2434 sgl->word2 = cpu_to_le32(sgl->word2);
2435 sgl->sge_len = 0;
2436 sgl++;
2437 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2438 atomic_inc(&tgtp->xmt_fcp_read_rsp);
2439
2440 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2441
2442 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2443 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2444 bf_set(wqe_sup,
2445 &wqe->fcp_tsend.wqe_com, 1);
2446 } else {
2447 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2448 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2449 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2450 ((rsp->rsplen >> 2) - 1));
2451 memcpy(&wqe->words[16], rsp->rspaddr,
2452 rsp->rsplen);
2453 }
2454 } else {
2455 atomic_inc(&tgtp->xmt_fcp_read);
2456
2457 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2458 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2459 }
2460 break;
2461
2462 case NVMET_FCOP_WRITEDATA:
2463 /* From the treceive template, initialize words 3 - 11 */
2464 memcpy(&wqe->words[3],
2465 &lpfc_treceive_cmd_template.words[3],
2466 sizeof(uint32_t) * 9);
2467
2468 /* Words 0 - 2 : The first sg segment */
2469 txrdy = dma_pool_alloc(phba->txrdy_payload_pool,
2470 GFP_KERNEL, &physaddr);
2471 if (!txrdy) {
2472 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2473 "6041 Bad txrdy buffer: oxid x%x\n",
2474 ctxp->oxid);
2475 return NULL;
2476 }
2477 ctxp->txrdy = txrdy;
2478 ctxp->txrdy_phys = physaddr;
2479 wqe->fcp_treceive.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2480 wqe->fcp_treceive.bde.tus.f.bdeSize = TXRDY_PAYLOAD_LEN;
2481 wqe->fcp_treceive.bde.addrLow =
2482 cpu_to_le32(putPaddrLow(physaddr));
2483 wqe->fcp_treceive.bde.addrHigh =
2484 cpu_to_le32(putPaddrHigh(physaddr));
2485
2486 /* Word 4 */
2487 wqe->fcp_treceive.relative_offset = ctxp->offset;
2488
2489 /* Word 6 */
2490 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2491 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2492 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2493 nvmewqe->sli4_xritag);
2494
2495 /* Word 7 */
2496
2497 /* Word 8 */
2498 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2499
2500 /* Word 9 */
2501 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2502 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2503
2504 /* Word 10 - in template xc=1 */
2505 if (!xc)
2506 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2507
2508 /* Word 11 - set pbde later */
2509 if (phba->cfg_enable_pbde) {
2510 do_pbde = 1;
2511 } else {
2512 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2513 do_pbde = 0;
2514 }
2515
2516 /* Word 12 */
2517 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2518
2519 /* Setup 1 TXRDY and 1 SKIP SGE */
2520 txrdy[0] = 0;
2521 txrdy[1] = cpu_to_be32(rsp->transfer_length);
2522 txrdy[2] = 0;
2523
2524 sgl->addr_hi = putPaddrHigh(physaddr);
2525 sgl->addr_lo = putPaddrLow(physaddr);
2526 sgl->word2 = 0;
2527 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2528 sgl->word2 = cpu_to_le32(sgl->word2);
2529 sgl->sge_len = cpu_to_le32(TXRDY_PAYLOAD_LEN);
2530 sgl++;
2531 sgl->addr_hi = 0;
2532 sgl->addr_lo = 0;
2533 sgl->word2 = 0;
2534 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2535 sgl->word2 = cpu_to_le32(sgl->word2);
2536 sgl->sge_len = 0;
2537 sgl++;
2538 atomic_inc(&tgtp->xmt_fcp_write);
2539 break;
2540
2541 case NVMET_FCOP_RSP:
2542 /* From the treceive template, initialize words 4 - 11 */
2543 memcpy(&wqe->words[4],
2544 &lpfc_trsp_cmd_template.words[4],
2545 sizeof(uint32_t) * 8);
2546
2547 /* Words 0 - 2 */
2548 physaddr = rsp->rspdma;
2549 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2550 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2551 wqe->fcp_trsp.bde.addrLow =
2552 cpu_to_le32(putPaddrLow(physaddr));
2553 wqe->fcp_trsp.bde.addrHigh =
2554 cpu_to_le32(putPaddrHigh(physaddr));
2555
2556 /* Word 3 */
2557 wqe->fcp_trsp.response_len = rsp->rsplen;
2558
2559 /* Word 6 */
2560 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2561 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2562 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2563 nvmewqe->sli4_xritag);
2564
2565 /* Word 7 */
2566
2567 /* Word 8 */
2568 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2569
2570 /* Word 9 */
2571 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2572 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2573
2574 /* Word 10 */
2575 if (xc)
2576 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2577
2578 /* Word 11 */
2579 /* In template wqes=0 irsp=0 irsplen=0 - good response */
2580 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2581 /* Bad response - embed it */
2582 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2583 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2584 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2585 ((rsp->rsplen >> 2) - 1));
2586 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2587 }
2588 do_pbde = 0;
2589
2590 /* Word 12 */
2591 wqe->fcp_trsp.rsvd_12_15[0] = 0;
2592
2593 /* Use rspbuf, NOT sg list */
2594 rsp->sg_cnt = 0;
2595 sgl->word2 = 0;
2596 atomic_inc(&tgtp->xmt_fcp_rsp);
2597 break;
2598
2599 default:
2600 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2601 "6064 Unknown Rsp Op %d\n",
2602 rsp->op);
2603 return NULL;
2604 }
2605
2606 nvmewqe->retry = 1;
2607 nvmewqe->vport = phba->pport;
2608 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2609 nvmewqe->context1 = ndlp;
2610
2611 for (i = 0; i < rsp->sg_cnt; i++) {
2612 sgel = &rsp->sg[i];
2613 physaddr = sg_dma_address(sgel);
2614 cnt = sg_dma_len(sgel);
2615 sgl->addr_hi = putPaddrHigh(physaddr);
2616 sgl->addr_lo = putPaddrLow(physaddr);
2617 sgl->word2 = 0;
2618 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
2619 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
2620 if ((i+1) == rsp->sg_cnt)
2621 bf_set(lpfc_sli4_sge_last, sgl, 1);
2622 sgl->word2 = cpu_to_le32(sgl->word2);
2623 sgl->sge_len = cpu_to_le32(cnt);
2624 if (i == 0) {
2625 bde = (struct ulp_bde64 *)&wqe->words[13];
2626 if (do_pbde) {
2627 /* Words 13-15 (PBDE) */
2628 bde->addrLow = sgl->addr_lo;
2629 bde->addrHigh = sgl->addr_hi;
2630 bde->tus.f.bdeSize =
2631 le32_to_cpu(sgl->sge_len);
2632 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2633 bde->tus.w = cpu_to_le32(bde->tus.w);
2634 } else {
2635 memset(bde, 0, sizeof(struct ulp_bde64));
2636 }
2637 }
2638 sgl++;
2639 ctxp->offset += cnt;
2640 }
2641 ctxp->state = LPFC_NVMET_STE_DATA;
2642 ctxp->entry_cnt++;
2643 return nvmewqe;
2644 }
2645
2646 /**
2647 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
2648 * @phba: Pointer to HBA context object.
2649 * @cmdwqe: Pointer to driver command WQE object.
2650 * @wcqe: Pointer to driver response CQE object.
2651 *
2652 * The function is called from SLI ring event handler with no
2653 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2654 * The function frees memory resources used for the NVME commands.
2655 **/
2656 static void
lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)2657 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2658 struct lpfc_wcqe_complete *wcqe)
2659 {
2660 struct lpfc_nvmet_rcv_ctx *ctxp;
2661 struct lpfc_nvmet_tgtport *tgtp;
2662 uint32_t status, result;
2663 unsigned long flags;
2664 bool released = false;
2665
2666 ctxp = cmdwqe->context2;
2667 status = bf_get(lpfc_wcqe_c_status, wcqe);
2668 result = wcqe->parameter;
2669
2670 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2671 if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2672 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2673
2674 ctxp->state = LPFC_NVMET_STE_DONE;
2675
2676 /* Check if we already received a free context call
2677 * and we have completed processing an abort situation.
2678 */
2679 spin_lock_irqsave(&ctxp->ctxlock, flags);
2680 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2681 !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2682 list_del(&ctxp->list);
2683 released = true;
2684 }
2685 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2686 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2687 atomic_inc(&tgtp->xmt_abort_rsp);
2688
2689 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2690 "6165 ABORT cmpl: xri x%x flg x%x (%d) "
2691 "WCQE: %08x %08x %08x %08x\n",
2692 ctxp->oxid, ctxp->flag, released,
2693 wcqe->word0, wcqe->total_data_placed,
2694 result, wcqe->word3);
2695
2696 cmdwqe->context2 = NULL;
2697 cmdwqe->context3 = NULL;
2698 /*
2699 * if transport has released ctx, then can reuse it. Otherwise,
2700 * will be recycled by transport release call.
2701 */
2702 if (released)
2703 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2704
2705 /* This is the iocbq for the abort, not the command */
2706 lpfc_sli_release_iocbq(phba, cmdwqe);
2707
2708 /* Since iaab/iaar are NOT set, there is no work left.
2709 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2710 * should have been called already.
2711 */
2712 }
2713
2714 /**
2715 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
2716 * @phba: Pointer to HBA context object.
2717 * @cmdwqe: Pointer to driver command WQE object.
2718 * @wcqe: Pointer to driver response CQE object.
2719 *
2720 * The function is called from SLI ring event handler with no
2721 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
2722 * The function frees memory resources used for the NVME commands.
2723 **/
2724 static void
lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)2725 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2726 struct lpfc_wcqe_complete *wcqe)
2727 {
2728 struct lpfc_nvmet_rcv_ctx *ctxp;
2729 struct lpfc_nvmet_tgtport *tgtp;
2730 unsigned long flags;
2731 uint32_t status, result;
2732 bool released = false;
2733
2734 ctxp = cmdwqe->context2;
2735 status = bf_get(lpfc_wcqe_c_status, wcqe);
2736 result = wcqe->parameter;
2737
2738 if (!ctxp) {
2739 /* if context is clear, related io alrady complete */
2740 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2741 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
2742 wcqe->word0, wcqe->total_data_placed,
2743 result, wcqe->word3);
2744 return;
2745 }
2746
2747 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2748 if (ctxp->flag & LPFC_NVMET_ABORT_OP)
2749 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
2750
2751 /* Sanity check */
2752 if (ctxp->state != LPFC_NVMET_STE_ABORT) {
2753 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2754 "6112 ABTS Wrong state:%d oxid x%x\n",
2755 ctxp->state, ctxp->oxid);
2756 }
2757
2758 /* Check if we already received a free context call
2759 * and we have completed processing an abort situation.
2760 */
2761 ctxp->state = LPFC_NVMET_STE_DONE;
2762 spin_lock_irqsave(&ctxp->ctxlock, flags);
2763 if ((ctxp->flag & LPFC_NVMET_CTX_RLS) &&
2764 !(ctxp->flag & LPFC_NVMET_XBUSY)) {
2765 list_del(&ctxp->list);
2766 released = true;
2767 }
2768 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2769 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
2770 atomic_inc(&tgtp->xmt_abort_rsp);
2771
2772 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2773 "6316 ABTS cmpl xri x%x flg x%x (%x) "
2774 "WCQE: %08x %08x %08x %08x\n",
2775 ctxp->oxid, ctxp->flag, released,
2776 wcqe->word0, wcqe->total_data_placed,
2777 result, wcqe->word3);
2778
2779 cmdwqe->context2 = NULL;
2780 cmdwqe->context3 = NULL;
2781 /*
2782 * if transport has released ctx, then can reuse it. Otherwise,
2783 * will be recycled by transport release call.
2784 */
2785 if (released)
2786 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
2787
2788 /* Since iaab/iaar are NOT set, there is no work left.
2789 * For LPFC_NVMET_XBUSY, lpfc_sli4_nvmet_xri_aborted
2790 * should have been called already.
2791 */
2792 }
2793
2794 /**
2795 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
2796 * @phba: Pointer to HBA context object.
2797 * @cmdwqe: Pointer to driver command WQE object.
2798 * @wcqe: Pointer to driver response CQE object.
2799 *
2800 * The function is called from SLI ring event handler with no
2801 * lock held. This function is the completion handler for NVME ABTS for LS cmds
2802 * The function frees memory resources used for the NVME commands.
2803 **/
2804 static void
lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_wcqe_complete * wcqe)2805 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
2806 struct lpfc_wcqe_complete *wcqe)
2807 {
2808 struct lpfc_nvmet_rcv_ctx *ctxp;
2809 struct lpfc_nvmet_tgtport *tgtp;
2810 uint32_t status, result;
2811
2812 ctxp = cmdwqe->context2;
2813 status = bf_get(lpfc_wcqe_c_status, wcqe);
2814 result = wcqe->parameter;
2815
2816 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2817 atomic_inc(&tgtp->xmt_ls_abort_cmpl);
2818
2819 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2820 "6083 Abort cmpl: ctx %p WCQE:%08x %08x %08x %08x\n",
2821 ctxp, wcqe->word0, wcqe->total_data_placed,
2822 result, wcqe->word3);
2823
2824 if (!ctxp) {
2825 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2826 "6415 NVMET LS Abort No ctx: WCQE: "
2827 "%08x %08x %08x %08x\n",
2828 wcqe->word0, wcqe->total_data_placed,
2829 result, wcqe->word3);
2830
2831 lpfc_sli_release_iocbq(phba, cmdwqe);
2832 return;
2833 }
2834
2835 if (ctxp->state != LPFC_NVMET_STE_LS_ABORT) {
2836 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
2837 "6416 NVMET LS abort cmpl state mismatch: "
2838 "oxid x%x: %d %d\n",
2839 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
2840 }
2841
2842 cmdwqe->context2 = NULL;
2843 cmdwqe->context3 = NULL;
2844 lpfc_sli_release_iocbq(phba, cmdwqe);
2845 kfree(ctxp);
2846 }
2847
2848 static int
lpfc_nvmet_unsol_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)2849 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
2850 struct lpfc_nvmet_rcv_ctx *ctxp,
2851 uint32_t sid, uint16_t xri)
2852 {
2853 struct lpfc_nvmet_tgtport *tgtp;
2854 struct lpfc_iocbq *abts_wqeq;
2855 union lpfc_wqe128 *wqe_abts;
2856 struct lpfc_nodelist *ndlp;
2857
2858 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2859 "6067 ABTS: sid %x xri x%x/x%x\n",
2860 sid, xri, ctxp->wqeq->sli4_xritag);
2861
2862 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2863
2864 ndlp = lpfc_findnode_did(phba->pport, sid);
2865 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2866 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2867 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2868 atomic_inc(&tgtp->xmt_abort_rsp_error);
2869 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2870 "6134 Drop ABTS - wrong NDLP state x%x.\n",
2871 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2872
2873 /* No failure to an ABTS request. */
2874 return 0;
2875 }
2876
2877 abts_wqeq = ctxp->wqeq;
2878 wqe_abts = &abts_wqeq->wqe;
2879
2880 /*
2881 * Since we zero the whole WQE, we need to ensure we set the WQE fields
2882 * that were initialized in lpfc_sli4_nvmet_alloc.
2883 */
2884 memset(wqe_abts, 0, sizeof(union lpfc_wqe));
2885
2886 /* Word 5 */
2887 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
2888 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
2889 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
2890 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
2891 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
2892
2893 /* Word 6 */
2894 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
2895 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2896 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
2897 abts_wqeq->sli4_xritag);
2898
2899 /* Word 7 */
2900 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
2901 CMD_XMIT_SEQUENCE64_WQE);
2902 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
2903 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
2904 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
2905
2906 /* Word 8 */
2907 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
2908
2909 /* Word 9 */
2910 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
2911 /* Needs to be set by caller */
2912 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
2913
2914 /* Word 10 */
2915 bf_set(wqe_dbde, &wqe_abts->xmit_sequence.wqe_com, 1);
2916 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2917 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
2918 LPFC_WQE_LENLOC_WORD12);
2919 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
2920 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
2921
2922 /* Word 11 */
2923 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
2924 LPFC_WQE_CQ_ID_DEFAULT);
2925 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
2926 OTHER_COMMAND);
2927
2928 abts_wqeq->vport = phba->pport;
2929 abts_wqeq->context1 = ndlp;
2930 abts_wqeq->context2 = ctxp;
2931 abts_wqeq->context3 = NULL;
2932 abts_wqeq->rsvd2 = 0;
2933 /* hba_wqidx should already be setup from command we are aborting */
2934 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
2935 abts_wqeq->iocb.ulpLe = 1;
2936
2937 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2938 "6069 Issue ABTS to xri x%x reqtag x%x\n",
2939 xri, abts_wqeq->iotag);
2940 return 1;
2941 }
2942
2943 static int
lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)2944 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
2945 struct lpfc_nvmet_rcv_ctx *ctxp,
2946 uint32_t sid, uint16_t xri)
2947 {
2948 struct lpfc_nvmet_tgtport *tgtp;
2949 struct lpfc_iocbq *abts_wqeq;
2950 union lpfc_wqe128 *abts_wqe;
2951 struct lpfc_nodelist *ndlp;
2952 unsigned long flags;
2953 int rc;
2954
2955 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2956 if (!ctxp->wqeq) {
2957 ctxp->wqeq = ctxp->ctxbuf->iocbq;
2958 ctxp->wqeq->hba_wqidx = 0;
2959 }
2960
2961 ndlp = lpfc_findnode_did(phba->pport, sid);
2962 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2963 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2964 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2965 atomic_inc(&tgtp->xmt_abort_rsp_error);
2966 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2967 "6160 Drop ABORT - wrong NDLP state x%x.\n",
2968 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
2969
2970 /* No failure to an ABTS request. */
2971 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2972 return 0;
2973 }
2974
2975 /* Issue ABTS for this WQE based on iotag */
2976 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
2977 if (!ctxp->abort_wqeq) {
2978 atomic_inc(&tgtp->xmt_abort_rsp_error);
2979 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
2980 "6161 ABORT failed: No wqeqs: "
2981 "xri: x%x\n", ctxp->oxid);
2982 /* No failure to an ABTS request. */
2983 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
2984 return 0;
2985 }
2986 abts_wqeq = ctxp->abort_wqeq;
2987 abts_wqe = &abts_wqeq->wqe;
2988 ctxp->state = LPFC_NVMET_STE_ABORT;
2989
2990 /* Announce entry to new IO submit field. */
2991 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2992 "6162 ABORT Request to rport DID x%06x "
2993 "for xri x%x x%x\n",
2994 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
2995
2996 /* If the hba is getting reset, this flag is set. It is
2997 * cleared when the reset is complete and rings reestablished.
2998 */
2999 spin_lock_irqsave(&phba->hbalock, flags);
3000 /* driver queued commands are in process of being flushed */
3001 if (phba->hba_flag & HBA_NVME_IOQ_FLUSH) {
3002 spin_unlock_irqrestore(&phba->hbalock, flags);
3003 atomic_inc(&tgtp->xmt_abort_rsp_error);
3004 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
3005 "6163 Driver in reset cleanup - flushing "
3006 "NVME Req now. hba_flag x%x oxid x%x\n",
3007 phba->hba_flag, ctxp->oxid);
3008 lpfc_sli_release_iocbq(phba, abts_wqeq);
3009 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
3010 return 0;
3011 }
3012
3013 /* Outstanding abort is in progress */
3014 if (abts_wqeq->iocb_flag & LPFC_DRIVER_ABORTED) {
3015 spin_unlock_irqrestore(&phba->hbalock, flags);
3016 atomic_inc(&tgtp->xmt_abort_rsp_error);
3017 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
3018 "6164 Outstanding NVME I/O Abort Request "
3019 "still pending on oxid x%x\n",
3020 ctxp->oxid);
3021 lpfc_sli_release_iocbq(phba, abts_wqeq);
3022 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
3023 return 0;
3024 }
3025
3026 /* Ready - mark outstanding as aborted by driver. */
3027 abts_wqeq->iocb_flag |= LPFC_DRIVER_ABORTED;
3028
3029 /* WQEs are reused. Clear stale data and set key fields to
3030 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
3031 */
3032 memset(abts_wqe, 0, sizeof(union lpfc_wqe));
3033
3034 /* word 3 */
3035 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
3036
3037 /* word 7 */
3038 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
3039 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
3040
3041 /* word 8 - tell the FW to abort the IO associated with this
3042 * outstanding exchange ID.
3043 */
3044 abts_wqe->abort_cmd.wqe_com.abort_tag = ctxp->wqeq->sli4_xritag;
3045
3046 /* word 9 - this is the iotag for the abts_wqe completion. */
3047 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
3048 abts_wqeq->iotag);
3049
3050 /* word 10 */
3051 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
3052 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
3053
3054 /* word 11 */
3055 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
3056 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
3057 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
3058
3059 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3060 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3061 abts_wqeq->wqe_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3062 abts_wqeq->iocb_cmpl = 0;
3063 abts_wqeq->iocb_flag |= LPFC_IO_NVME;
3064 abts_wqeq->context2 = ctxp;
3065 abts_wqeq->vport = phba->pport;
3066 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
3067 spin_unlock_irqrestore(&phba->hbalock, flags);
3068 if (rc == WQE_SUCCESS) {
3069 atomic_inc(&tgtp->xmt_abort_sol);
3070 return 0;
3071 }
3072
3073 atomic_inc(&tgtp->xmt_abort_rsp_error);
3074 ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
3075 lpfc_sli_release_iocbq(phba, abts_wqeq);
3076 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3077 "6166 Failed ABORT issue_wqe with status x%x "
3078 "for oxid x%x.\n",
3079 rc, ctxp->oxid);
3080 return 1;
3081 }
3082
3083
3084 static int
lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)3085 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3086 struct lpfc_nvmet_rcv_ctx *ctxp,
3087 uint32_t sid, uint16_t xri)
3088 {
3089 struct lpfc_nvmet_tgtport *tgtp;
3090 struct lpfc_iocbq *abts_wqeq;
3091 unsigned long flags;
3092 int rc;
3093
3094 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3095 if (!ctxp->wqeq) {
3096 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3097 ctxp->wqeq->hba_wqidx = 0;
3098 }
3099
3100 if (ctxp->state == LPFC_NVMET_STE_FREE) {
3101 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
3102 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3103 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3104 rc = WQE_BUSY;
3105 goto aerr;
3106 }
3107 ctxp->state = LPFC_NVMET_STE_ABORT;
3108 ctxp->entry_cnt++;
3109 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3110 if (rc == 0)
3111 goto aerr;
3112
3113 spin_lock_irqsave(&phba->hbalock, flags);
3114 abts_wqeq = ctxp->wqeq;
3115 abts_wqeq->wqe_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3116 abts_wqeq->iocb_cmpl = NULL;
3117 abts_wqeq->iocb_flag |= LPFC_IO_NVMET;
3118 rc = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abts_wqeq);
3119 spin_unlock_irqrestore(&phba->hbalock, flags);
3120 if (rc == WQE_SUCCESS) {
3121 return 0;
3122 }
3123
3124 aerr:
3125 spin_lock_irqsave(&ctxp->ctxlock, flags);
3126 if (ctxp->flag & LPFC_NVMET_CTX_RLS)
3127 list_del(&ctxp->list);
3128 ctxp->flag &= ~(LPFC_NVMET_ABORT_OP | LPFC_NVMET_CTX_RLS);
3129 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3130
3131 atomic_inc(&tgtp->xmt_abort_rsp_error);
3132 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3133 "6135 Failed to Issue ABTS for oxid x%x. Status x%x\n",
3134 ctxp->oxid, rc);
3135 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3136 return 1;
3137 }
3138
3139 static int
lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba * phba,struct lpfc_nvmet_rcv_ctx * ctxp,uint32_t sid,uint16_t xri)3140 lpfc_nvmet_unsol_ls_issue_abort(struct lpfc_hba *phba,
3141 struct lpfc_nvmet_rcv_ctx *ctxp,
3142 uint32_t sid, uint16_t xri)
3143 {
3144 struct lpfc_nvmet_tgtport *tgtp;
3145 struct lpfc_iocbq *abts_wqeq;
3146 union lpfc_wqe128 *wqe_abts;
3147 unsigned long flags;
3148 int rc;
3149
3150 if ((ctxp->state == LPFC_NVMET_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3151 (ctxp->state == LPFC_NVMET_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3152 ctxp->state = LPFC_NVMET_STE_LS_ABORT;
3153 ctxp->entry_cnt++;
3154 } else {
3155 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
3156 "6418 NVMET LS abort state mismatch "
3157 "IO x%x: %d %d\n",
3158 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3159 ctxp->state = LPFC_NVMET_STE_LS_ABORT;
3160 }
3161
3162 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3163 if (!ctxp->wqeq) {
3164 /* Issue ABTS for this WQE based on iotag */
3165 ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3166 if (!ctxp->wqeq) {
3167 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3168 "6068 Abort failed: No wqeqs: "
3169 "xri: x%x\n", xri);
3170 /* No failure to an ABTS request. */
3171 kfree(ctxp);
3172 return 0;
3173 }
3174 }
3175 abts_wqeq = ctxp->wqeq;
3176 wqe_abts = &abts_wqeq->wqe;
3177
3178 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3179 rc = WQE_BUSY;
3180 goto out;
3181 }
3182
3183 spin_lock_irqsave(&phba->hbalock, flags);
3184 abts_wqeq->wqe_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3185 abts_wqeq->iocb_cmpl = 0;
3186 abts_wqeq->iocb_flag |= LPFC_IO_NVME_LS;
3187 rc = lpfc_sli4_issue_wqe(phba, LPFC_ELS_RING, abts_wqeq);
3188 spin_unlock_irqrestore(&phba->hbalock, flags);
3189 if (rc == WQE_SUCCESS) {
3190 atomic_inc(&tgtp->xmt_abort_unsol);
3191 return 0;
3192 }
3193 out:
3194 atomic_inc(&tgtp->xmt_abort_rsp_error);
3195 abts_wqeq->context2 = NULL;
3196 abts_wqeq->context3 = NULL;
3197 lpfc_sli_release_iocbq(phba, abts_wqeq);
3198 kfree(ctxp);
3199 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_ABTS,
3200 "6056 Failed to Issue ABTS. Status x%x\n", rc);
3201 return 0;
3202 }
3203