• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24 
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30 
31 /* SPI register offsets */
32 #define SPI_CR					0x0000
33 #define SPI_MR					0x0004
34 #define SPI_RDR					0x0008
35 #define SPI_TDR					0x000c
36 #define SPI_SR					0x0010
37 #define SPI_IER					0x0014
38 #define SPI_IDR					0x0018
39 #define SPI_IMR					0x001c
40 #define SPI_CSR0				0x0030
41 #define SPI_CSR1				0x0034
42 #define SPI_CSR2				0x0038
43 #define SPI_CSR3				0x003c
44 #define SPI_FMR					0x0040
45 #define SPI_FLR					0x0044
46 #define SPI_VERSION				0x00fc
47 #define SPI_RPR					0x0100
48 #define SPI_RCR					0x0104
49 #define SPI_TPR					0x0108
50 #define SPI_TCR					0x010c
51 #define SPI_RNPR				0x0110
52 #define SPI_RNCR				0x0114
53 #define SPI_TNPR				0x0118
54 #define SPI_TNCR				0x011c
55 #define SPI_PTCR				0x0120
56 #define SPI_PTSR				0x0124
57 
58 /* Bitfields in CR */
59 #define SPI_SPIEN_OFFSET			0
60 #define SPI_SPIEN_SIZE				1
61 #define SPI_SPIDIS_OFFSET			1
62 #define SPI_SPIDIS_SIZE				1
63 #define SPI_SWRST_OFFSET			7
64 #define SPI_SWRST_SIZE				1
65 #define SPI_LASTXFER_OFFSET			24
66 #define SPI_LASTXFER_SIZE			1
67 #define SPI_TXFCLR_OFFSET			16
68 #define SPI_TXFCLR_SIZE				1
69 #define SPI_RXFCLR_OFFSET			17
70 #define SPI_RXFCLR_SIZE				1
71 #define SPI_FIFOEN_OFFSET			30
72 #define SPI_FIFOEN_SIZE				1
73 #define SPI_FIFODIS_OFFSET			31
74 #define SPI_FIFODIS_SIZE			1
75 
76 /* Bitfields in MR */
77 #define SPI_MSTR_OFFSET				0
78 #define SPI_MSTR_SIZE				1
79 #define SPI_PS_OFFSET				1
80 #define SPI_PS_SIZE				1
81 #define SPI_PCSDEC_OFFSET			2
82 #define SPI_PCSDEC_SIZE				1
83 #define SPI_FDIV_OFFSET				3
84 #define SPI_FDIV_SIZE				1
85 #define SPI_MODFDIS_OFFSET			4
86 #define SPI_MODFDIS_SIZE			1
87 #define SPI_WDRBT_OFFSET			5
88 #define SPI_WDRBT_SIZE				1
89 #define SPI_LLB_OFFSET				7
90 #define SPI_LLB_SIZE				1
91 #define SPI_PCS_OFFSET				16
92 #define SPI_PCS_SIZE				4
93 #define SPI_DLYBCS_OFFSET			24
94 #define SPI_DLYBCS_SIZE				8
95 
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET				0
98 #define SPI_RD_SIZE				16
99 
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET				0
102 #define SPI_TD_SIZE				16
103 
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET				0
106 #define SPI_RDRF_SIZE				1
107 #define SPI_TDRE_OFFSET				1
108 #define SPI_TDRE_SIZE				1
109 #define SPI_MODF_OFFSET				2
110 #define SPI_MODF_SIZE				1
111 #define SPI_OVRES_OFFSET			3
112 #define SPI_OVRES_SIZE				1
113 #define SPI_ENDRX_OFFSET			4
114 #define SPI_ENDRX_SIZE				1
115 #define SPI_ENDTX_OFFSET			5
116 #define SPI_ENDTX_SIZE				1
117 #define SPI_RXBUFF_OFFSET			6
118 #define SPI_RXBUFF_SIZE				1
119 #define SPI_TXBUFE_OFFSET			7
120 #define SPI_TXBUFE_SIZE				1
121 #define SPI_NSSR_OFFSET				8
122 #define SPI_NSSR_SIZE				1
123 #define SPI_TXEMPTY_OFFSET			9
124 #define SPI_TXEMPTY_SIZE			1
125 #define SPI_SPIENS_OFFSET			16
126 #define SPI_SPIENS_SIZE				1
127 #define SPI_TXFEF_OFFSET			24
128 #define SPI_TXFEF_SIZE				1
129 #define SPI_TXFFF_OFFSET			25
130 #define SPI_TXFFF_SIZE				1
131 #define SPI_TXFTHF_OFFSET			26
132 #define SPI_TXFTHF_SIZE				1
133 #define SPI_RXFEF_OFFSET			27
134 #define SPI_RXFEF_SIZE				1
135 #define SPI_RXFFF_OFFSET			28
136 #define SPI_RXFFF_SIZE				1
137 #define SPI_RXFTHF_OFFSET			29
138 #define SPI_RXFTHF_SIZE				1
139 #define SPI_TXFPTEF_OFFSET			30
140 #define SPI_TXFPTEF_SIZE			1
141 #define SPI_RXFPTEF_OFFSET			31
142 #define SPI_RXFPTEF_SIZE			1
143 
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET				0
146 #define SPI_CPOL_SIZE				1
147 #define SPI_NCPHA_OFFSET			1
148 #define SPI_NCPHA_SIZE				1
149 #define SPI_CSAAT_OFFSET			3
150 #define SPI_CSAAT_SIZE				1
151 #define SPI_BITS_OFFSET				4
152 #define SPI_BITS_SIZE				4
153 #define SPI_SCBR_OFFSET				8
154 #define SPI_SCBR_SIZE				8
155 #define SPI_DLYBS_OFFSET			16
156 #define SPI_DLYBS_SIZE				8
157 #define SPI_DLYBCT_OFFSET			24
158 #define SPI_DLYBCT_SIZE				8
159 
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET			0
162 #define SPI_RXCTR_SIZE				16
163 
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET			0
166 #define SPI_TXCTR_SIZE				16
167 
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET			0
170 #define SPI_RXNCR_SIZE				16
171 
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET			0
174 #define SPI_TXNCR_SIZE				16
175 
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET			0
178 #define SPI_RXTEN_SIZE				1
179 #define SPI_RXTDIS_OFFSET			1
180 #define SPI_RXTDIS_SIZE				1
181 #define SPI_TXTEN_OFFSET			8
182 #define SPI_TXTEN_SIZE				1
183 #define SPI_TXTDIS_OFFSET			9
184 #define SPI_TXTDIS_SIZE				1
185 
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET			0
188 #define SPI_TXRDYM_SIZE				2
189 #define SPI_RXRDYM_OFFSET			4
190 #define SPI_RXRDYM_SIZE				2
191 #define SPI_TXFTHRES_OFFSET			16
192 #define SPI_TXFTHRES_SIZE			6
193 #define SPI_RXFTHRES_OFFSET			24
194 #define SPI_RXFTHRES_SIZE			6
195 
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET				0
198 #define SPI_TXFL_SIZE				6
199 #define SPI_RXFL_OFFSET				16
200 #define SPI_RXFL_SIZE				6
201 
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT				0
204 #define SPI_BITS_9_BPT				1
205 #define SPI_BITS_10_BPT				2
206 #define SPI_BITS_11_BPT				3
207 #define SPI_BITS_12_BPT				4
208 #define SPI_BITS_13_BPT				5
209 #define SPI_BITS_14_BPT				6
210 #define SPI_BITS_15_BPT				7
211 #define SPI_BITS_16_BPT				8
212 #define SPI_ONE_DATA				0
213 #define SPI_TWO_DATA				1
214 #define SPI_FOUR_DATA				2
215 
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218 	(1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 	  | SPI_BF(name, value))
226 
227 /* Register access macros */
228 #ifdef CONFIG_AVR32
229 #define spi_readl(port, reg) \
230 	__raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232 	__raw_writel((value), (port)->regs + SPI_##reg)
233 
234 #define spi_readw(port, reg) \
235 	__raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237 	__raw_writew((value), (port)->regs + SPI_##reg)
238 
239 #define spi_readb(port, reg) \
240 	__raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242 	__raw_writeb((value), (port)->regs + SPI_##reg)
243 #else
244 #define spi_readl(port, reg) \
245 	readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247 	writel_relaxed((value), (port)->regs + SPI_##reg)
248 
249 #define spi_readw(port, reg) \
250 	readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252 	writew_relaxed((value), (port)->regs + SPI_##reg)
253 
254 #define spi_readb(port, reg) \
255 	readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257 	writeb_relaxed((value), (port)->regs + SPI_##reg)
258 #endif
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260  * cache operations; better heuristics consider wordsize and bitrate.
261  */
262 #define DMA_MIN_BYTES	16
263 
264 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
265 
266 #define AUTOSUSPEND_TIMEOUT	2000
267 
268 struct atmel_spi_caps {
269 	bool	is_spi2;
270 	bool	has_wdrbt;
271 	bool	has_dma_support;
272 	bool	has_pdc_support;
273 };
274 
275 /*
276  * The core SPI transfer engine just talks to a register bank to set up
277  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
278  * framework provides the base clock, subdivided for each spi_device.
279  */
280 struct atmel_spi {
281 	spinlock_t		lock;
282 	unsigned long		flags;
283 
284 	phys_addr_t		phybase;
285 	void __iomem		*regs;
286 	int			irq;
287 	struct clk		*clk;
288 	struct platform_device	*pdev;
289 	unsigned long		spi_clk;
290 
291 	struct spi_transfer	*current_transfer;
292 	int			current_remaining_bytes;
293 	int			done_status;
294 	dma_addr_t		dma_addr_rx_bbuf;
295 	dma_addr_t		dma_addr_tx_bbuf;
296 	void			*addr_rx_bbuf;
297 	void			*addr_tx_bbuf;
298 
299 	struct completion	xfer_completion;
300 
301 	struct atmel_spi_caps	caps;
302 
303 	bool			use_dma;
304 	bool			use_pdc;
305 	bool			use_cs_gpios;
306 
307 	bool			keep_cs;
308 
309 	u32			fifo_size;
310 };
311 
312 /* Controller-specific per-slave state */
313 struct atmel_spi_device {
314 	unsigned int		npcs_pin;
315 	u32			csr;
316 };
317 
318 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
319 #define INVALID_DMA_ADDRESS	0xffffffff
320 
321 /*
322  * Version 2 of the SPI controller has
323  *  - CR.LASTXFER
324  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
325  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
326  *  - SPI_CSRx.CSAAT
327  *  - SPI_CSRx.SBCR allows faster clocking
328  */
atmel_spi_is_v2(struct atmel_spi * as)329 static bool atmel_spi_is_v2(struct atmel_spi *as)
330 {
331 	return as->caps.is_spi2;
332 }
333 
334 /*
335  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
336  * they assume that spi slave device state will not change on deselect, so
337  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
338  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
339  * controllers have CSAAT and friends.
340  *
341  * Since the CSAAT functionality is a bit weird on newer controllers as
342  * well, we use GPIO to control nCSx pins on all controllers, updating
343  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
344  * support active-high chipselects despite the controller's belief that
345  * only active-low devices/systems exists.
346  *
347  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
348  * right when driven with GPIO.  ("Mode Fault does not allow more than one
349  * Master on Chip Select 0.")  No workaround exists for that ... so for
350  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
351  * and (c) will trigger that first erratum in some cases.
352  */
353 
cs_activate(struct atmel_spi * as,struct spi_device * spi)354 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
355 {
356 	struct atmel_spi_device *asd = spi->controller_state;
357 	unsigned active = spi->mode & SPI_CS_HIGH;
358 	u32 mr;
359 
360 	if (atmel_spi_is_v2(as)) {
361 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
362 		/* For the low SPI version, there is a issue that PDC transfer
363 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
364 		 */
365 		spi_writel(as, CSR0, asd->csr);
366 		if (as->caps.has_wdrbt) {
367 			spi_writel(as, MR,
368 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
369 					| SPI_BIT(WDRBT)
370 					| SPI_BIT(MODFDIS)
371 					| SPI_BIT(MSTR));
372 		} else {
373 			spi_writel(as, MR,
374 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
375 					| SPI_BIT(MODFDIS)
376 					| SPI_BIT(MSTR));
377 		}
378 
379 		mr = spi_readl(as, MR);
380 		if (as->use_cs_gpios)
381 			gpio_set_value(asd->npcs_pin, active);
382 	} else {
383 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
384 		int i;
385 		u32 csr;
386 
387 		/* Make sure clock polarity is correct */
388 		for (i = 0; i < spi->master->num_chipselect; i++) {
389 			csr = spi_readl(as, CSR0 + 4 * i);
390 			if ((csr ^ cpol) & SPI_BIT(CPOL))
391 				spi_writel(as, CSR0 + 4 * i,
392 						csr ^ SPI_BIT(CPOL));
393 		}
394 
395 		mr = spi_readl(as, MR);
396 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
397 		if (as->use_cs_gpios && spi->chip_select != 0)
398 			gpio_set_value(asd->npcs_pin, active);
399 		spi_writel(as, MR, mr);
400 	}
401 
402 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
403 			asd->npcs_pin, active ? " (high)" : "",
404 			mr);
405 }
406 
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)407 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
408 {
409 	struct atmel_spi_device *asd = spi->controller_state;
410 	unsigned active = spi->mode & SPI_CS_HIGH;
411 	u32 mr;
412 
413 	/* only deactivate *this* device; sometimes transfers to
414 	 * another device may be active when this routine is called.
415 	 */
416 	mr = spi_readl(as, MR);
417 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
418 		mr = SPI_BFINS(PCS, 0xf, mr);
419 		spi_writel(as, MR, mr);
420 	}
421 
422 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
423 			asd->npcs_pin, active ? " (low)" : "",
424 			mr);
425 
426 	if (!as->use_cs_gpios)
427 		spi_writel(as, CR, SPI_BIT(LASTXFER));
428 	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
429 		gpio_set_value(asd->npcs_pin, !active);
430 }
431 
atmel_spi_lock(struct atmel_spi * as)432 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
433 {
434 	spin_lock_irqsave(&as->lock, as->flags);
435 }
436 
atmel_spi_unlock(struct atmel_spi * as)437 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
438 {
439 	spin_unlock_irqrestore(&as->lock, as->flags);
440 }
441 
atmel_spi_is_vmalloc_xfer(struct spi_transfer * xfer)442 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
443 {
444 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
445 }
446 
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)447 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
448 				struct spi_transfer *xfer)
449 {
450 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
451 }
452 
atmel_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)453 static bool atmel_spi_can_dma(struct spi_master *master,
454 			      struct spi_device *spi,
455 			      struct spi_transfer *xfer)
456 {
457 	struct atmel_spi *as = spi_master_get_devdata(master);
458 
459 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
460 		return atmel_spi_use_dma(as, xfer) &&
461 			!atmel_spi_is_vmalloc_xfer(xfer);
462 	else
463 		return atmel_spi_use_dma(as, xfer);
464 
465 }
466 
atmel_spi_dma_slave_config(struct atmel_spi * as,struct dma_slave_config * slave_config,u8 bits_per_word)467 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
468 				struct dma_slave_config *slave_config,
469 				u8 bits_per_word)
470 {
471 	struct spi_master *master = platform_get_drvdata(as->pdev);
472 	int err = 0;
473 
474 	if (bits_per_word > 8) {
475 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
476 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
477 	} else {
478 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
479 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
480 	}
481 
482 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
483 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
484 	slave_config->src_maxburst = 1;
485 	slave_config->dst_maxburst = 1;
486 	slave_config->device_fc = false;
487 
488 	/*
489 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
490 	 * the Mode Register).
491 	 * So according to the datasheet, when FIFOs are available (and
492 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
493 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
494 	 * Data Register in a single access.
495 	 * However, the first data has to be written into the lowest 16 bits and
496 	 * the second data into the highest 16 bits of the Transmit
497 	 * Data Register. For 8bit data (the most frequent case), it would
498 	 * require to rework tx_buf so each data would actualy fit 16 bits.
499 	 * So we'd rather write only one data at the time. Hence the transmit
500 	 * path works the same whether FIFOs are available (and enabled) or not.
501 	 */
502 	slave_config->direction = DMA_MEM_TO_DEV;
503 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
504 		dev_err(&as->pdev->dev,
505 			"failed to configure tx dma channel\n");
506 		err = -EINVAL;
507 	}
508 
509 	/*
510 	 * This driver configures the spi controller for master mode (MSTR bit
511 	 * set to '1' in the Mode Register).
512 	 * So according to the datasheet, when FIFOs are available (and
513 	 * enabled), the Receive FIFO operates in Single Data Mode.
514 	 * So the receive path works the same whether FIFOs are available (and
515 	 * enabled) or not.
516 	 */
517 	slave_config->direction = DMA_DEV_TO_MEM;
518 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
519 		dev_err(&as->pdev->dev,
520 			"failed to configure rx dma channel\n");
521 		err = -EINVAL;
522 	}
523 
524 	return err;
525 }
526 
atmel_spi_configure_dma(struct spi_master * master,struct atmel_spi * as)527 static int atmel_spi_configure_dma(struct spi_master *master,
528 				   struct atmel_spi *as)
529 {
530 	struct dma_slave_config	slave_config;
531 	struct device *dev = &as->pdev->dev;
532 	int err;
533 
534 	dma_cap_mask_t mask;
535 	dma_cap_zero(mask);
536 	dma_cap_set(DMA_SLAVE, mask);
537 
538 	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
539 	if (IS_ERR(master->dma_tx)) {
540 		err = PTR_ERR(master->dma_tx);
541 		if (err == -EPROBE_DEFER) {
542 			dev_warn(dev, "no DMA channel available at the moment\n");
543 			goto error_clear;
544 		}
545 		dev_err(dev,
546 			"DMA TX channel not available, SPI unable to use DMA\n");
547 		err = -EBUSY;
548 		goto error_clear;
549 	}
550 
551 	/*
552 	 * No reason to check EPROBE_DEFER here since we have already requested
553 	 * tx channel. If it fails here, it's for another reason.
554 	 */
555 	master->dma_rx = dma_request_slave_channel(dev, "rx");
556 
557 	if (!master->dma_rx) {
558 		dev_err(dev,
559 			"DMA RX channel not available, SPI unable to use DMA\n");
560 		err = -EBUSY;
561 		goto error;
562 	}
563 
564 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
565 	if (err)
566 		goto error;
567 
568 	dev_info(&as->pdev->dev,
569 			"Using %s (tx) and %s (rx) for DMA transfers\n",
570 			dma_chan_name(master->dma_tx),
571 			dma_chan_name(master->dma_rx));
572 
573 	return 0;
574 error:
575 	if (master->dma_rx)
576 		dma_release_channel(master->dma_rx);
577 	if (!IS_ERR(master->dma_tx))
578 		dma_release_channel(master->dma_tx);
579 error_clear:
580 	master->dma_tx = master->dma_rx = NULL;
581 	return err;
582 }
583 
atmel_spi_stop_dma(struct spi_master * master)584 static void atmel_spi_stop_dma(struct spi_master *master)
585 {
586 	if (master->dma_rx)
587 		dmaengine_terminate_all(master->dma_rx);
588 	if (master->dma_tx)
589 		dmaengine_terminate_all(master->dma_tx);
590 }
591 
atmel_spi_release_dma(struct spi_master * master)592 static void atmel_spi_release_dma(struct spi_master *master)
593 {
594 	if (master->dma_rx) {
595 		dma_release_channel(master->dma_rx);
596 		master->dma_rx = NULL;
597 	}
598 	if (master->dma_tx) {
599 		dma_release_channel(master->dma_tx);
600 		master->dma_tx = NULL;
601 	}
602 }
603 
604 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)605 static void dma_callback(void *data)
606 {
607 	struct spi_master	*master = data;
608 	struct atmel_spi	*as = spi_master_get_devdata(master);
609 
610 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
611 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
612 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
613 		       as->current_transfer->len);
614 	}
615 	complete(&as->xfer_completion);
616 }
617 
618 /*
619  * Next transfer using PIO without FIFO.
620  */
atmel_spi_next_xfer_single(struct spi_master * master,struct spi_transfer * xfer)621 static void atmel_spi_next_xfer_single(struct spi_master *master,
622 				       struct spi_transfer *xfer)
623 {
624 	struct atmel_spi	*as = spi_master_get_devdata(master);
625 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
626 
627 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
628 
629 	/* Make sure data is not remaining in RDR */
630 	spi_readl(as, RDR);
631 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
632 		spi_readl(as, RDR);
633 		cpu_relax();
634 	}
635 
636 	if (xfer->bits_per_word > 8)
637 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
638 	else
639 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
640 
641 	dev_dbg(master->dev.parent,
642 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
643 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
644 		xfer->bits_per_word);
645 
646 	/* Enable relevant interrupts */
647 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
648 }
649 
650 /*
651  * Next transfer using PIO with FIFO.
652  */
atmel_spi_next_xfer_fifo(struct spi_master * master,struct spi_transfer * xfer)653 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
654 				     struct spi_transfer *xfer)
655 {
656 	struct atmel_spi *as = spi_master_get_devdata(master);
657 	u32 current_remaining_data, num_data;
658 	u32 offset = xfer->len - as->current_remaining_bytes;
659 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
660 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
661 	u16 td0, td1;
662 	u32 fifomr;
663 
664 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
665 
666 	/* Compute the number of data to transfer in the current iteration */
667 	current_remaining_data = ((xfer->bits_per_word > 8) ?
668 				  ((u32)as->current_remaining_bytes >> 1) :
669 				  (u32)as->current_remaining_bytes);
670 	num_data = min(current_remaining_data, as->fifo_size);
671 
672 	/* Flush RX and TX FIFOs */
673 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
674 	while (spi_readl(as, FLR))
675 		cpu_relax();
676 
677 	/* Set RX FIFO Threshold to the number of data to transfer */
678 	fifomr = spi_readl(as, FMR);
679 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
680 
681 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
682 	(void)spi_readl(as, SR);
683 
684 	/* Fill TX FIFO */
685 	while (num_data >= 2) {
686 		if (xfer->bits_per_word > 8) {
687 			td0 = *words++;
688 			td1 = *words++;
689 		} else {
690 			td0 = *bytes++;
691 			td1 = *bytes++;
692 		}
693 
694 		spi_writel(as, TDR, (td1 << 16) | td0);
695 		num_data -= 2;
696 	}
697 
698 	if (num_data) {
699 		if (xfer->bits_per_word > 8)
700 			td0 = *words++;
701 		else
702 			td0 = *bytes++;
703 
704 		spi_writew(as, TDR, td0);
705 		num_data--;
706 	}
707 
708 	dev_dbg(master->dev.parent,
709 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
710 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
711 		xfer->bits_per_word);
712 
713 	/*
714 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
715 	 * transfer completion.
716 	 */
717 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
718 }
719 
720 /*
721  * Next transfer using PIO.
722  */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)723 static void atmel_spi_next_xfer_pio(struct spi_master *master,
724 				    struct spi_transfer *xfer)
725 {
726 	struct atmel_spi *as = spi_master_get_devdata(master);
727 
728 	if (as->fifo_size)
729 		atmel_spi_next_xfer_fifo(master, xfer);
730 	else
731 		atmel_spi_next_xfer_single(master, xfer);
732 }
733 
734 /*
735  * Submit next transfer for DMA.
736  */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)737 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
738 				struct spi_transfer *xfer,
739 				u32 *plen)
740 {
741 	struct atmel_spi	*as = spi_master_get_devdata(master);
742 	struct dma_chan		*rxchan = master->dma_rx;
743 	struct dma_chan		*txchan = master->dma_tx;
744 	struct dma_async_tx_descriptor *rxdesc;
745 	struct dma_async_tx_descriptor *txdesc;
746 	struct dma_slave_config	slave_config;
747 	dma_cookie_t		cookie;
748 
749 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
750 
751 	/* Check that the channels are available */
752 	if (!rxchan || !txchan)
753 		return -ENODEV;
754 
755 	/* release lock for DMA operations */
756 	atmel_spi_unlock(as);
757 
758 	*plen = xfer->len;
759 
760 	if (atmel_spi_dma_slave_config(as, &slave_config,
761 				       xfer->bits_per_word))
762 		goto err_exit;
763 
764 	/* Send both scatterlists */
765 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
766 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
767 		rxdesc = dmaengine_prep_slave_single(rxchan,
768 						     as->dma_addr_rx_bbuf,
769 						     xfer->len,
770 						     DMA_DEV_TO_MEM,
771 						     DMA_PREP_INTERRUPT |
772 						     DMA_CTRL_ACK);
773 	} else {
774 		rxdesc = dmaengine_prep_slave_sg(rxchan,
775 						 xfer->rx_sg.sgl,
776 						 xfer->rx_sg.nents,
777 						 DMA_DEV_TO_MEM,
778 						 DMA_PREP_INTERRUPT |
779 						 DMA_CTRL_ACK);
780 	}
781 	if (!rxdesc)
782 		goto err_dma;
783 
784 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
785 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
786 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
787 		txdesc = dmaengine_prep_slave_single(txchan,
788 						     as->dma_addr_tx_bbuf,
789 						     xfer->len, DMA_MEM_TO_DEV,
790 						     DMA_PREP_INTERRUPT |
791 						     DMA_CTRL_ACK);
792 	} else {
793 		txdesc = dmaengine_prep_slave_sg(txchan,
794 						 xfer->tx_sg.sgl,
795 						 xfer->tx_sg.nents,
796 						 DMA_MEM_TO_DEV,
797 						 DMA_PREP_INTERRUPT |
798 						 DMA_CTRL_ACK);
799 	}
800 	if (!txdesc)
801 		goto err_dma;
802 
803 	dev_dbg(master->dev.parent,
804 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
805 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
806 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
807 
808 	/* Enable relevant interrupts */
809 	spi_writel(as, IER, SPI_BIT(OVRES));
810 
811 	/* Put the callback on the RX transfer only, that should finish last */
812 	rxdesc->callback = dma_callback;
813 	rxdesc->callback_param = master;
814 
815 	/* Submit and fire RX and TX with TX last so we're ready to read! */
816 	cookie = rxdesc->tx_submit(rxdesc);
817 	if (dma_submit_error(cookie))
818 		goto err_dma;
819 	cookie = txdesc->tx_submit(txdesc);
820 	if (dma_submit_error(cookie))
821 		goto err_dma;
822 	rxchan->device->device_issue_pending(rxchan);
823 	txchan->device->device_issue_pending(txchan);
824 
825 	/* take back lock */
826 	atmel_spi_lock(as);
827 	return 0;
828 
829 err_dma:
830 	spi_writel(as, IDR, SPI_BIT(OVRES));
831 	atmel_spi_stop_dma(master);
832 err_exit:
833 	atmel_spi_lock(as);
834 	return -ENOMEM;
835 }
836 
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)837 static void atmel_spi_next_xfer_data(struct spi_master *master,
838 				struct spi_transfer *xfer,
839 				dma_addr_t *tx_dma,
840 				dma_addr_t *rx_dma,
841 				u32 *plen)
842 {
843 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
844 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
845 	if (*plen > master->max_dma_len)
846 		*plen = master->max_dma_len;
847 }
848 
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)849 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
850 				    struct spi_device *spi,
851 				    struct spi_transfer *xfer)
852 {
853 	u32			scbr, csr;
854 	unsigned long		bus_hz;
855 
856 	/* v1 chips start out at half the peripheral bus speed. */
857 	bus_hz = as->spi_clk;
858 	if (!atmel_spi_is_v2(as))
859 		bus_hz /= 2;
860 
861 	/*
862 	 * Calculate the lowest divider that satisfies the
863 	 * constraint, assuming div32/fdiv/mbz == 0.
864 	 */
865 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
866 
867 	/*
868 	 * If the resulting divider doesn't fit into the
869 	 * register bitfield, we can't satisfy the constraint.
870 	 */
871 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
872 		dev_err(&spi->dev,
873 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
874 			xfer->speed_hz, scbr, bus_hz/255);
875 		return -EINVAL;
876 	}
877 	if (scbr == 0) {
878 		dev_err(&spi->dev,
879 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
880 			xfer->speed_hz, scbr, bus_hz);
881 		return -EINVAL;
882 	}
883 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
884 	csr = SPI_BFINS(SCBR, scbr, csr);
885 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
886 
887 	return 0;
888 }
889 
890 /*
891  * Submit next transfer for PDC.
892  * lock is held, spi irq is blocked
893  */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_message * msg,struct spi_transfer * xfer)894 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
895 					struct spi_message *msg,
896 					struct spi_transfer *xfer)
897 {
898 	struct atmel_spi	*as = spi_master_get_devdata(master);
899 	u32			len;
900 	dma_addr_t		tx_dma, rx_dma;
901 
902 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
903 
904 	len = as->current_remaining_bytes;
905 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
906 	as->current_remaining_bytes -= len;
907 
908 	spi_writel(as, RPR, rx_dma);
909 	spi_writel(as, TPR, tx_dma);
910 
911 	if (msg->spi->bits_per_word > 8)
912 		len >>= 1;
913 	spi_writel(as, RCR, len);
914 	spi_writel(as, TCR, len);
915 
916 	dev_dbg(&msg->spi->dev,
917 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
918 		xfer, xfer->len, xfer->tx_buf,
919 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
920 		(unsigned long long)xfer->rx_dma);
921 
922 	if (as->current_remaining_bytes) {
923 		len = as->current_remaining_bytes;
924 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
925 		as->current_remaining_bytes -= len;
926 
927 		spi_writel(as, RNPR, rx_dma);
928 		spi_writel(as, TNPR, tx_dma);
929 
930 		if (msg->spi->bits_per_word > 8)
931 			len >>= 1;
932 		spi_writel(as, RNCR, len);
933 		spi_writel(as, TNCR, len);
934 
935 		dev_dbg(&msg->spi->dev,
936 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
937 			xfer, xfer->len, xfer->tx_buf,
938 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
939 			(unsigned long long)xfer->rx_dma);
940 	}
941 
942 	/* REVISIT: We're waiting for RXBUFF before we start the next
943 	 * transfer because we need to handle some difficult timing
944 	 * issues otherwise. If we wait for TXBUFE in one transfer and
945 	 * then starts waiting for RXBUFF in the next, it's difficult
946 	 * to tell the difference between the RXBUFF interrupt we're
947 	 * actually waiting for and the RXBUFF interrupt of the
948 	 * previous transfer.
949 	 *
950 	 * It should be doable, though. Just not now...
951 	 */
952 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
953 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
954 }
955 
956 /*
957  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
958  *  - The buffer is either valid for CPU access, else NULL
959  *  - If the buffer is valid, so is its DMA address
960  *
961  * This driver manages the dma address unless message->is_dma_mapped.
962  */
963 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)964 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
965 {
966 	struct device	*dev = &as->pdev->dev;
967 
968 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
969 	if (xfer->tx_buf) {
970 		/* tx_buf is a const void* where we need a void * for the dma
971 		 * mapping */
972 		void *nonconst_tx = (void *)xfer->tx_buf;
973 
974 		xfer->tx_dma = dma_map_single(dev,
975 				nonconst_tx, xfer->len,
976 				DMA_TO_DEVICE);
977 		if (dma_mapping_error(dev, xfer->tx_dma))
978 			return -ENOMEM;
979 	}
980 	if (xfer->rx_buf) {
981 		xfer->rx_dma = dma_map_single(dev,
982 				xfer->rx_buf, xfer->len,
983 				DMA_FROM_DEVICE);
984 		if (dma_mapping_error(dev, xfer->rx_dma)) {
985 			if (xfer->tx_buf)
986 				dma_unmap_single(dev,
987 						xfer->tx_dma, xfer->len,
988 						DMA_TO_DEVICE);
989 			return -ENOMEM;
990 		}
991 	}
992 	return 0;
993 }
994 
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)995 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
996 				     struct spi_transfer *xfer)
997 {
998 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
999 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1000 				 xfer->len, DMA_TO_DEVICE);
1001 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1002 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1003 				 xfer->len, DMA_FROM_DEVICE);
1004 }
1005 
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)1006 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1007 {
1008 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1009 }
1010 
1011 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)1012 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013 {
1014 	u8		*rxp;
1015 	u16		*rxp16;
1016 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1017 
1018 	if (xfer->bits_per_word > 8) {
1019 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1020 		*rxp16 = spi_readl(as, RDR);
1021 	} else {
1022 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1023 		*rxp = spi_readl(as, RDR);
1024 	}
1025 	if (xfer->bits_per_word > 8) {
1026 		if (as->current_remaining_bytes > 2)
1027 			as->current_remaining_bytes -= 2;
1028 		else
1029 			as->current_remaining_bytes = 0;
1030 	} else {
1031 		as->current_remaining_bytes--;
1032 	}
1033 }
1034 
1035 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)1036 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1037 {
1038 	u32 fifolr = spi_readl(as, FLR);
1039 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1040 	u32 offset = xfer->len - as->current_remaining_bytes;
1041 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1042 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1043 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1044 
1045 	/* Update the number of remaining bytes to transfer */
1046 	num_bytes = ((xfer->bits_per_word > 8) ?
1047 		     (num_data << 1) :
1048 		     num_data);
1049 
1050 	if (as->current_remaining_bytes > num_bytes)
1051 		as->current_remaining_bytes -= num_bytes;
1052 	else
1053 		as->current_remaining_bytes = 0;
1054 
1055 	/* Handle odd number of bytes when data are more than 8bit width */
1056 	if (xfer->bits_per_word > 8)
1057 		as->current_remaining_bytes &= ~0x1;
1058 
1059 	/* Read data */
1060 	while (num_data) {
1061 		rd = spi_readl(as, RDR);
1062 		if (xfer->bits_per_word > 8)
1063 			*words++ = rd;
1064 		else
1065 			*bytes++ = rd;
1066 		num_data--;
1067 	}
1068 }
1069 
1070 /* Called from IRQ
1071  *
1072  * Must update "current_remaining_bytes" to keep track of data
1073  * to transfer.
1074  */
1075 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1076 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1077 {
1078 	if (as->fifo_size)
1079 		atmel_spi_pump_fifo_data(as, xfer);
1080 	else
1081 		atmel_spi_pump_single_data(as, xfer);
1082 }
1083 
1084 /* Interrupt
1085  *
1086  * No need for locking in this Interrupt handler: done_status is the
1087  * only information modified.
1088  */
1089 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1090 atmel_spi_pio_interrupt(int irq, void *dev_id)
1091 {
1092 	struct spi_master	*master = dev_id;
1093 	struct atmel_spi	*as = spi_master_get_devdata(master);
1094 	u32			status, pending, imr;
1095 	struct spi_transfer	*xfer;
1096 	int			ret = IRQ_NONE;
1097 
1098 	imr = spi_readl(as, IMR);
1099 	status = spi_readl(as, SR);
1100 	pending = status & imr;
1101 
1102 	if (pending & SPI_BIT(OVRES)) {
1103 		ret = IRQ_HANDLED;
1104 		spi_writel(as, IDR, SPI_BIT(OVRES));
1105 		dev_warn(master->dev.parent, "overrun\n");
1106 
1107 		/*
1108 		 * When we get an overrun, we disregard the current
1109 		 * transfer. Data will not be copied back from any
1110 		 * bounce buffer and msg->actual_len will not be
1111 		 * updated with the last xfer.
1112 		 *
1113 		 * We will also not process any remaning transfers in
1114 		 * the message.
1115 		 */
1116 		as->done_status = -EIO;
1117 		smp_wmb();
1118 
1119 		/* Clear any overrun happening while cleaning up */
1120 		spi_readl(as, SR);
1121 
1122 		complete(&as->xfer_completion);
1123 
1124 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1125 		atmel_spi_lock(as);
1126 
1127 		if (as->current_remaining_bytes) {
1128 			ret = IRQ_HANDLED;
1129 			xfer = as->current_transfer;
1130 			atmel_spi_pump_pio_data(as, xfer);
1131 			if (!as->current_remaining_bytes)
1132 				spi_writel(as, IDR, pending);
1133 
1134 			complete(&as->xfer_completion);
1135 		}
1136 
1137 		atmel_spi_unlock(as);
1138 	} else {
1139 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1140 		ret = IRQ_HANDLED;
1141 		spi_writel(as, IDR, pending);
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1148 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1149 {
1150 	struct spi_master	*master = dev_id;
1151 	struct atmel_spi	*as = spi_master_get_devdata(master);
1152 	u32			status, pending, imr;
1153 	int			ret = IRQ_NONE;
1154 
1155 	imr = spi_readl(as, IMR);
1156 	status = spi_readl(as, SR);
1157 	pending = status & imr;
1158 
1159 	if (pending & SPI_BIT(OVRES)) {
1160 
1161 		ret = IRQ_HANDLED;
1162 
1163 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1164 				     | SPI_BIT(OVRES)));
1165 
1166 		/* Clear any overrun happening while cleaning up */
1167 		spi_readl(as, SR);
1168 
1169 		as->done_status = -EIO;
1170 
1171 		complete(&as->xfer_completion);
1172 
1173 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1174 		ret = IRQ_HANDLED;
1175 
1176 		spi_writel(as, IDR, pending);
1177 
1178 		complete(&as->xfer_completion);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
atmel_spi_setup(struct spi_device * spi)1184 static int atmel_spi_setup(struct spi_device *spi)
1185 {
1186 	struct atmel_spi	*as;
1187 	struct atmel_spi_device	*asd;
1188 	u32			csr;
1189 	unsigned int		bits = spi->bits_per_word;
1190 	unsigned int		npcs_pin;
1191 
1192 	as = spi_master_get_devdata(spi->master);
1193 
1194 	/* see notes above re chipselect */
1195 	if (!as->use_cs_gpios && (spi->mode & SPI_CS_HIGH)) {
1196 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1197 		return -EINVAL;
1198 	}
1199 
1200 	csr = SPI_BF(BITS, bits - 8);
1201 	if (spi->mode & SPI_CPOL)
1202 		csr |= SPI_BIT(CPOL);
1203 	if (!(spi->mode & SPI_CPHA))
1204 		csr |= SPI_BIT(NCPHA);
1205 	if (!as->use_cs_gpios)
1206 		csr |= SPI_BIT(CSAAT);
1207 
1208 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1209 	 *
1210 	 * DLYBCT would add delays between words, slowing down transfers.
1211 	 * It could potentially be useful to cope with DMA bottlenecks, but
1212 	 * in those cases it's probably best to just use a lower bitrate.
1213 	 */
1214 	csr |= SPI_BF(DLYBS, 0);
1215 	csr |= SPI_BF(DLYBCT, 0);
1216 
1217 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1218 	npcs_pin = (unsigned long)spi->controller_data;
1219 
1220 	if (!as->use_cs_gpios)
1221 		npcs_pin = spi->chip_select;
1222 	else if (gpio_is_valid(spi->cs_gpio))
1223 		npcs_pin = spi->cs_gpio;
1224 
1225 	asd = spi->controller_state;
1226 	if (!asd) {
1227 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1228 		if (!asd)
1229 			return -ENOMEM;
1230 
1231 		if (as->use_cs_gpios)
1232 			gpio_direction_output(npcs_pin,
1233 					      !(spi->mode & SPI_CS_HIGH));
1234 
1235 		asd->npcs_pin = npcs_pin;
1236 		spi->controller_state = asd;
1237 	}
1238 
1239 	asd->csr = csr;
1240 
1241 	dev_dbg(&spi->dev,
1242 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1243 		bits, spi->mode, spi->chip_select, csr);
1244 
1245 	if (!atmel_spi_is_v2(as))
1246 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1247 
1248 	return 0;
1249 }
1250 
atmel_spi_one_transfer(struct spi_master * master,struct spi_message * msg,struct spi_transfer * xfer)1251 static int atmel_spi_one_transfer(struct spi_master *master,
1252 					struct spi_message *msg,
1253 					struct spi_transfer *xfer)
1254 {
1255 	struct atmel_spi	*as;
1256 	struct spi_device	*spi = msg->spi;
1257 	u8			bits;
1258 	u32			len;
1259 	struct atmel_spi_device	*asd;
1260 	int			timeout;
1261 	int			ret;
1262 	unsigned long		dma_timeout;
1263 
1264 	as = spi_master_get_devdata(master);
1265 
1266 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1267 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1268 		return -EINVAL;
1269 	}
1270 
1271 	asd = spi->controller_state;
1272 	bits = (asd->csr >> 4) & 0xf;
1273 	if (bits != xfer->bits_per_word - 8) {
1274 		dev_dbg(&spi->dev,
1275 			"you can't yet change bits_per_word in transfers\n");
1276 		return -ENOPROTOOPT;
1277 	}
1278 
1279 	/*
1280 	 * DMA map early, for performance (empties dcache ASAP) and
1281 	 * better fault reporting.
1282 	 */
1283 	if ((!msg->is_dma_mapped)
1284 		&& as->use_pdc) {
1285 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1286 			return -ENOMEM;
1287 	}
1288 
1289 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1290 
1291 	as->done_status = 0;
1292 	as->current_transfer = xfer;
1293 	as->current_remaining_bytes = xfer->len;
1294 	while (as->current_remaining_bytes) {
1295 		reinit_completion(&as->xfer_completion);
1296 
1297 		if (as->use_pdc) {
1298 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1299 		} else if (atmel_spi_use_dma(as, xfer)) {
1300 			len = as->current_remaining_bytes;
1301 			ret = atmel_spi_next_xfer_dma_submit(master,
1302 								xfer, &len);
1303 			if (ret) {
1304 				dev_err(&spi->dev,
1305 					"unable to use DMA, fallback to PIO\n");
1306 				atmel_spi_next_xfer_pio(master, xfer);
1307 			} else {
1308 				as->current_remaining_bytes -= len;
1309 				if (as->current_remaining_bytes < 0)
1310 					as->current_remaining_bytes = 0;
1311 			}
1312 		} else {
1313 			atmel_spi_next_xfer_pio(master, xfer);
1314 		}
1315 
1316 		/* interrupts are disabled, so free the lock for schedule */
1317 		atmel_spi_unlock(as);
1318 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1319 							  SPI_DMA_TIMEOUT);
1320 		atmel_spi_lock(as);
1321 		if (WARN_ON(dma_timeout == 0)) {
1322 			dev_err(&spi->dev, "spi transfer timeout\n");
1323 			as->done_status = -EIO;
1324 		}
1325 
1326 		if (as->done_status)
1327 			break;
1328 	}
1329 
1330 	if (as->done_status) {
1331 		if (as->use_pdc) {
1332 			dev_warn(master->dev.parent,
1333 				"overrun (%u/%u remaining)\n",
1334 				spi_readl(as, TCR), spi_readl(as, RCR));
1335 
1336 			/*
1337 			 * Clean up DMA registers and make sure the data
1338 			 * registers are empty.
1339 			 */
1340 			spi_writel(as, RNCR, 0);
1341 			spi_writel(as, TNCR, 0);
1342 			spi_writel(as, RCR, 0);
1343 			spi_writel(as, TCR, 0);
1344 			for (timeout = 1000; timeout; timeout--)
1345 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1346 					break;
1347 			if (!timeout)
1348 				dev_warn(master->dev.parent,
1349 					 "timeout waiting for TXEMPTY");
1350 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1351 				spi_readl(as, RDR);
1352 
1353 			/* Clear any overrun happening while cleaning up */
1354 			spi_readl(as, SR);
1355 
1356 		} else if (atmel_spi_use_dma(as, xfer)) {
1357 			atmel_spi_stop_dma(master);
1358 		}
1359 
1360 		if (!msg->is_dma_mapped
1361 			&& as->use_pdc)
1362 			atmel_spi_dma_unmap_xfer(master, xfer);
1363 
1364 		return 0;
1365 
1366 	} else {
1367 		/* only update length if no error */
1368 		msg->actual_length += xfer->len;
1369 	}
1370 
1371 	if (!msg->is_dma_mapped
1372 		&& as->use_pdc)
1373 		atmel_spi_dma_unmap_xfer(master, xfer);
1374 
1375 	if (xfer->delay_usecs)
1376 		udelay(xfer->delay_usecs);
1377 
1378 	if (xfer->cs_change) {
1379 		if (list_is_last(&xfer->transfer_list,
1380 				 &msg->transfers)) {
1381 			as->keep_cs = true;
1382 		} else {
1383 			cs_deactivate(as, msg->spi);
1384 			udelay(10);
1385 			cs_activate(as, msg->spi);
1386 		}
1387 	}
1388 
1389 	return 0;
1390 }
1391 
atmel_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)1392 static int atmel_spi_transfer_one_message(struct spi_master *master,
1393 						struct spi_message *msg)
1394 {
1395 	struct atmel_spi *as;
1396 	struct spi_transfer *xfer;
1397 	struct spi_device *spi = msg->spi;
1398 	int ret = 0;
1399 
1400 	as = spi_master_get_devdata(master);
1401 
1402 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1403 					msg, dev_name(&spi->dev));
1404 
1405 	atmel_spi_lock(as);
1406 	cs_activate(as, spi);
1407 
1408 	as->keep_cs = false;
1409 
1410 	msg->status = 0;
1411 	msg->actual_length = 0;
1412 
1413 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1414 		ret = atmel_spi_one_transfer(master, msg, xfer);
1415 		if (ret)
1416 			goto msg_done;
1417 	}
1418 
1419 	if (as->use_pdc)
1420 		atmel_spi_disable_pdc_transfer(as);
1421 
1422 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1423 		dev_dbg(&spi->dev,
1424 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1425 			xfer, xfer->len,
1426 			xfer->tx_buf, &xfer->tx_dma,
1427 			xfer->rx_buf, &xfer->rx_dma);
1428 	}
1429 
1430 msg_done:
1431 	if (!as->keep_cs)
1432 		cs_deactivate(as, msg->spi);
1433 
1434 	atmel_spi_unlock(as);
1435 
1436 	msg->status = as->done_status;
1437 	spi_finalize_current_message(spi->master);
1438 
1439 	return ret;
1440 }
1441 
atmel_spi_cleanup(struct spi_device * spi)1442 static void atmel_spi_cleanup(struct spi_device *spi)
1443 {
1444 	struct atmel_spi_device	*asd = spi->controller_state;
1445 
1446 	if (!asd)
1447 		return;
1448 
1449 	spi->controller_state = NULL;
1450 	kfree(asd);
1451 }
1452 
atmel_get_version(struct atmel_spi * as)1453 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1454 {
1455 	return spi_readl(as, VERSION) & 0x00000fff;
1456 }
1457 
atmel_get_caps(struct atmel_spi * as)1458 static void atmel_get_caps(struct atmel_spi *as)
1459 {
1460 	unsigned int version;
1461 
1462 	version = atmel_get_version(as);
1463 
1464 	as->caps.is_spi2 = version > 0x121;
1465 	as->caps.has_wdrbt = version >= 0x210;
1466 	as->caps.has_dma_support = version >= 0x212;
1467 	as->caps.has_pdc_support = version < 0x212;
1468 }
1469 
1470 /*-------------------------------------------------------------------------*/
atmel_spi_gpio_cs(struct platform_device * pdev)1471 static int atmel_spi_gpio_cs(struct platform_device *pdev)
1472 {
1473 	struct spi_master	*master = platform_get_drvdata(pdev);
1474 	struct atmel_spi	*as = spi_master_get_devdata(master);
1475 	struct device_node	*np = master->dev.of_node;
1476 	int			i;
1477 	int			ret = 0;
1478 	int			nb = 0;
1479 
1480 	if (!as->use_cs_gpios)
1481 		return 0;
1482 
1483 	if (!np)
1484 		return 0;
1485 
1486 	nb = of_gpio_named_count(np, "cs-gpios");
1487 	for (i = 0; i < nb; i++) {
1488 		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1489 						"cs-gpios", i);
1490 
1491 		if (cs_gpio == -EPROBE_DEFER)
1492 			return cs_gpio;
1493 
1494 		if (gpio_is_valid(cs_gpio)) {
1495 			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1496 						dev_name(&pdev->dev));
1497 			if (ret)
1498 				return ret;
1499 		}
1500 	}
1501 
1502 	return 0;
1503 }
1504 
atmel_spi_init(struct atmel_spi * as)1505 static void atmel_spi_init(struct atmel_spi *as)
1506 {
1507 	spi_writel(as, CR, SPI_BIT(SWRST));
1508 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1509 
1510 	/* It is recommended to enable FIFOs first thing after reset */
1511 	if (as->fifo_size)
1512 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1513 
1514 	if (as->caps.has_wdrbt) {
1515 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1516 				| SPI_BIT(MSTR));
1517 	} else {
1518 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1519 	}
1520 
1521 	if (as->use_pdc)
1522 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1523 	spi_writel(as, CR, SPI_BIT(SPIEN));
1524 }
1525 
atmel_spi_probe(struct platform_device * pdev)1526 static int atmel_spi_probe(struct platform_device *pdev)
1527 {
1528 	struct resource		*regs;
1529 	int			irq;
1530 	struct clk		*clk;
1531 	int			ret;
1532 	struct spi_master	*master;
1533 	struct atmel_spi	*as;
1534 
1535 	/* Select default pin state */
1536 	pinctrl_pm_select_default_state(&pdev->dev);
1537 
1538 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1539 	if (!regs)
1540 		return -ENXIO;
1541 
1542 	irq = platform_get_irq(pdev, 0);
1543 	if (irq < 0)
1544 		return irq;
1545 
1546 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1547 	if (IS_ERR(clk))
1548 		return PTR_ERR(clk);
1549 
1550 	/* setup spi core then atmel-specific driver state */
1551 	ret = -ENOMEM;
1552 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1553 	if (!master)
1554 		goto out_free;
1555 
1556 	/* the spi->mode bits understood by this driver: */
1557 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1558 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1559 	master->dev.of_node = pdev->dev.of_node;
1560 	master->bus_num = pdev->id;
1561 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1562 	master->setup = atmel_spi_setup;
1563 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1564 	master->transfer_one_message = atmel_spi_transfer_one_message;
1565 	master->cleanup = atmel_spi_cleanup;
1566 	master->auto_runtime_pm = true;
1567 	master->max_dma_len = SPI_MAX_DMA_XFER;
1568 	master->can_dma = atmel_spi_can_dma;
1569 	platform_set_drvdata(pdev, master);
1570 
1571 	as = spi_master_get_devdata(master);
1572 
1573 	spin_lock_init(&as->lock);
1574 
1575 	as->pdev = pdev;
1576 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1577 	if (IS_ERR(as->regs)) {
1578 		ret = PTR_ERR(as->regs);
1579 		goto out_unmap_regs;
1580 	}
1581 	as->phybase = regs->start;
1582 	as->irq = irq;
1583 	as->clk = clk;
1584 
1585 	init_completion(&as->xfer_completion);
1586 
1587 	atmel_get_caps(as);
1588 
1589 	as->use_cs_gpios = true;
1590 	if (atmel_spi_is_v2(as) &&
1591 	    pdev->dev.of_node &&
1592 	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1593 		as->use_cs_gpios = false;
1594 		master->num_chipselect = 4;
1595 	}
1596 
1597 	ret = atmel_spi_gpio_cs(pdev);
1598 	if (ret)
1599 		goto out_unmap_regs;
1600 
1601 	as->use_dma = false;
1602 	as->use_pdc = false;
1603 	if (as->caps.has_dma_support) {
1604 		ret = atmel_spi_configure_dma(master, as);
1605 		if (ret == 0) {
1606 			as->use_dma = true;
1607 		} else if (ret == -EPROBE_DEFER) {
1608 			return ret;
1609 		}
1610 	} else if (as->caps.has_pdc_support) {
1611 		as->use_pdc = true;
1612 	}
1613 
1614 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1615 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1616 						      SPI_MAX_DMA_XFER,
1617 						      &as->dma_addr_rx_bbuf,
1618 						      GFP_KERNEL | GFP_DMA);
1619 		if (!as->addr_rx_bbuf) {
1620 			as->use_dma = false;
1621 		} else {
1622 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1623 					SPI_MAX_DMA_XFER,
1624 					&as->dma_addr_tx_bbuf,
1625 					GFP_KERNEL | GFP_DMA);
1626 			if (!as->addr_tx_bbuf) {
1627 				as->use_dma = false;
1628 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1629 						  as->addr_rx_bbuf,
1630 						  as->dma_addr_rx_bbuf);
1631 			}
1632 		}
1633 		if (!as->use_dma)
1634 			dev_info(master->dev.parent,
1635 				 "  can not allocate dma coherent memory\n");
1636 	}
1637 
1638 	if (as->caps.has_dma_support && !as->use_dma)
1639 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1640 
1641 	if (as->use_pdc) {
1642 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1643 					0, dev_name(&pdev->dev), master);
1644 	} else {
1645 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1646 					0, dev_name(&pdev->dev), master);
1647 	}
1648 	if (ret)
1649 		goto out_unmap_regs;
1650 
1651 	/* Initialize the hardware */
1652 	ret = clk_prepare_enable(clk);
1653 	if (ret)
1654 		goto out_free_irq;
1655 
1656 	as->spi_clk = clk_get_rate(clk);
1657 
1658 	as->fifo_size = 0;
1659 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1660 				  &as->fifo_size)) {
1661 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1662 	}
1663 
1664 	atmel_spi_init(as);
1665 
1666 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1667 	pm_runtime_use_autosuspend(&pdev->dev);
1668 	pm_runtime_set_active(&pdev->dev);
1669 	pm_runtime_enable(&pdev->dev);
1670 
1671 	ret = devm_spi_register_master(&pdev->dev, master);
1672 	if (ret)
1673 		goto out_free_dma;
1674 
1675 	/* go! */
1676 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1677 			atmel_get_version(as), (unsigned long)regs->start,
1678 			irq);
1679 
1680 	return 0;
1681 
1682 out_free_dma:
1683 	pm_runtime_disable(&pdev->dev);
1684 	pm_runtime_set_suspended(&pdev->dev);
1685 
1686 	if (as->use_dma)
1687 		atmel_spi_release_dma(master);
1688 
1689 	spi_writel(as, CR, SPI_BIT(SWRST));
1690 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1691 	clk_disable_unprepare(clk);
1692 out_free_irq:
1693 out_unmap_regs:
1694 out_free:
1695 	spi_master_put(master);
1696 	return ret;
1697 }
1698 
atmel_spi_remove(struct platform_device * pdev)1699 static int atmel_spi_remove(struct platform_device *pdev)
1700 {
1701 	struct spi_master	*master = platform_get_drvdata(pdev);
1702 	struct atmel_spi	*as = spi_master_get_devdata(master);
1703 
1704 	pm_runtime_get_sync(&pdev->dev);
1705 
1706 	/* reset the hardware and block queue progress */
1707 	if (as->use_dma) {
1708 		atmel_spi_stop_dma(master);
1709 		atmel_spi_release_dma(master);
1710 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1711 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1712 					  as->addr_tx_bbuf,
1713 					  as->dma_addr_tx_bbuf);
1714 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1715 					  as->addr_rx_bbuf,
1716 					  as->dma_addr_rx_bbuf);
1717 		}
1718 	}
1719 
1720 	spin_lock_irq(&as->lock);
1721 	spi_writel(as, CR, SPI_BIT(SWRST));
1722 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1723 	spi_readl(as, SR);
1724 	spin_unlock_irq(&as->lock);
1725 
1726 	clk_disable_unprepare(as->clk);
1727 
1728 	pm_runtime_put_noidle(&pdev->dev);
1729 	pm_runtime_disable(&pdev->dev);
1730 
1731 	return 0;
1732 }
1733 
1734 #ifdef CONFIG_PM
atmel_spi_runtime_suspend(struct device * dev)1735 static int atmel_spi_runtime_suspend(struct device *dev)
1736 {
1737 	struct spi_master *master = dev_get_drvdata(dev);
1738 	struct atmel_spi *as = spi_master_get_devdata(master);
1739 
1740 	clk_disable_unprepare(as->clk);
1741 	pinctrl_pm_select_sleep_state(dev);
1742 
1743 	return 0;
1744 }
1745 
atmel_spi_runtime_resume(struct device * dev)1746 static int atmel_spi_runtime_resume(struct device *dev)
1747 {
1748 	struct spi_master *master = dev_get_drvdata(dev);
1749 	struct atmel_spi *as = spi_master_get_devdata(master);
1750 
1751 	pinctrl_pm_select_default_state(dev);
1752 
1753 	return clk_prepare_enable(as->clk);
1754 }
1755 
1756 #ifdef CONFIG_PM_SLEEP
atmel_spi_suspend(struct device * dev)1757 static int atmel_spi_suspend(struct device *dev)
1758 {
1759 	struct spi_master *master = dev_get_drvdata(dev);
1760 	int ret;
1761 
1762 	/* Stop the queue running */
1763 	ret = spi_master_suspend(master);
1764 	if (ret) {
1765 		dev_warn(dev, "cannot suspend master\n");
1766 		return ret;
1767 	}
1768 
1769 	if (!pm_runtime_suspended(dev))
1770 		atmel_spi_runtime_suspend(dev);
1771 
1772 	return 0;
1773 }
1774 
atmel_spi_resume(struct device * dev)1775 static int atmel_spi_resume(struct device *dev)
1776 {
1777 	struct spi_master *master = dev_get_drvdata(dev);
1778 	struct atmel_spi *as = spi_master_get_devdata(master);
1779 	int ret;
1780 
1781 	ret = clk_prepare_enable(as->clk);
1782 	if (ret)
1783 		return ret;
1784 
1785 	atmel_spi_init(as);
1786 
1787 	clk_disable_unprepare(as->clk);
1788 
1789 	if (!pm_runtime_suspended(dev)) {
1790 		ret = atmel_spi_runtime_resume(dev);
1791 		if (ret)
1792 			return ret;
1793 	}
1794 
1795 	/* Start the queue running */
1796 	ret = spi_master_resume(master);
1797 	if (ret)
1798 		dev_err(dev, "problem starting queue (%d)\n", ret);
1799 
1800 	return ret;
1801 }
1802 #endif
1803 
1804 static const struct dev_pm_ops atmel_spi_pm_ops = {
1805 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1806 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1807 			   atmel_spi_runtime_resume, NULL)
1808 };
1809 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1810 #else
1811 #define ATMEL_SPI_PM_OPS	NULL
1812 #endif
1813 
1814 #if defined(CONFIG_OF)
1815 static const struct of_device_id atmel_spi_dt_ids[] = {
1816 	{ .compatible = "atmel,at91rm9200-spi" },
1817 	{ /* sentinel */ }
1818 };
1819 
1820 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1821 #endif
1822 
1823 static struct platform_driver atmel_spi_driver = {
1824 	.driver		= {
1825 		.name	= "atmel_spi",
1826 		.pm	= ATMEL_SPI_PM_OPS,
1827 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1828 	},
1829 	.probe		= atmel_spi_probe,
1830 	.remove		= atmel_spi_remove,
1831 };
1832 module_platform_driver(atmel_spi_driver);
1833 
1834 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1835 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1836 MODULE_LICENSE("GPL");
1837 MODULE_ALIAS("platform:atmel_spi");
1838