• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Special handling for DW core on Intel MID platform
3  *
4  * Copyright (c) 2009, 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 
23 #include "spi-dw.h"
24 
25 #ifdef CONFIG_SPI_DW_MID_DMA
26 #include <linux/pci.h>
27 #include <linux/platform_data/dma-dw.h>
28 
29 #define RX_BUSY		0
30 #define TX_BUSY		1
31 
32 static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
33 static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
34 
mid_spi_dma_chan_filter(struct dma_chan * chan,void * param)35 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
36 {
37 	struct dw_dma_slave *s = param;
38 
39 	if (s->dma_dev != chan->device->dev)
40 		return false;
41 
42 	chan->private = s;
43 	return true;
44 }
45 
mid_spi_dma_init(struct dw_spi * dws)46 static int mid_spi_dma_init(struct dw_spi *dws)
47 {
48 	struct pci_dev *dma_dev;
49 	struct dw_dma_slave *tx = dws->dma_tx;
50 	struct dw_dma_slave *rx = dws->dma_rx;
51 	dma_cap_mask_t mask;
52 
53 	/*
54 	 * Get pci device for DMA controller, currently it could only
55 	 * be the DMA controller of Medfield
56 	 */
57 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
58 	if (!dma_dev)
59 		return -ENODEV;
60 
61 	dma_cap_zero(mask);
62 	dma_cap_set(DMA_SLAVE, mask);
63 
64 	/* 1. Init rx channel */
65 	rx->dma_dev = &dma_dev->dev;
66 	dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
67 	if (!dws->rxchan)
68 		goto err_exit;
69 	dws->master->dma_rx = dws->rxchan;
70 
71 	/* 2. Init tx channel */
72 	tx->dma_dev = &dma_dev->dev;
73 	dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
74 	if (!dws->txchan)
75 		goto free_rxchan;
76 	dws->master->dma_tx = dws->txchan;
77 
78 	dws->dma_inited = 1;
79 	return 0;
80 
81 free_rxchan:
82 	dma_release_channel(dws->rxchan);
83 err_exit:
84 	return -EBUSY;
85 }
86 
mid_spi_dma_exit(struct dw_spi * dws)87 static void mid_spi_dma_exit(struct dw_spi *dws)
88 {
89 	if (!dws->dma_inited)
90 		return;
91 
92 	dmaengine_terminate_sync(dws->txchan);
93 	dma_release_channel(dws->txchan);
94 
95 	dmaengine_terminate_sync(dws->rxchan);
96 	dma_release_channel(dws->rxchan);
97 }
98 
dma_transfer(struct dw_spi * dws)99 static irqreturn_t dma_transfer(struct dw_spi *dws)
100 {
101 	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
102 
103 	if (!irq_status)
104 		return IRQ_NONE;
105 
106 	dw_readl(dws, DW_SPI_ICR);
107 	spi_reset_chip(dws);
108 
109 	dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
110 	dws->master->cur_msg->status = -EIO;
111 	spi_finalize_current_transfer(dws->master);
112 	return IRQ_HANDLED;
113 }
114 
mid_spi_can_dma(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * xfer)115 static bool mid_spi_can_dma(struct spi_controller *master,
116 		struct spi_device *spi, struct spi_transfer *xfer)
117 {
118 	struct dw_spi *dws = spi_controller_get_devdata(master);
119 
120 	if (!dws->dma_inited)
121 		return false;
122 
123 	return xfer->len > dws->fifo_len;
124 }
125 
convert_dma_width(u32 dma_width)126 static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
127 	if (dma_width == 1)
128 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
129 	else if (dma_width == 2)
130 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
131 
132 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
133 }
134 
135 /*
136  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
137  * channel will clear a corresponding bit.
138  */
dw_spi_dma_tx_done(void * arg)139 static void dw_spi_dma_tx_done(void *arg)
140 {
141 	struct dw_spi *dws = arg;
142 
143 	clear_bit(TX_BUSY, &dws->dma_chan_busy);
144 	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
145 		return;
146 	spi_finalize_current_transfer(dws->master);
147 }
148 
dw_spi_dma_prepare_tx(struct dw_spi * dws,struct spi_transfer * xfer)149 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
150 		struct spi_transfer *xfer)
151 {
152 	struct dma_slave_config txconf;
153 	struct dma_async_tx_descriptor *txdesc;
154 
155 	if (!xfer->tx_buf)
156 		return NULL;
157 
158 	memset(&txconf, 0, sizeof(txconf));
159 	txconf.direction = DMA_MEM_TO_DEV;
160 	txconf.dst_addr = dws->dma_addr;
161 	txconf.dst_maxburst = 16;
162 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
163 	txconf.dst_addr_width = convert_dma_width(dws->dma_width);
164 	txconf.device_fc = false;
165 
166 	dmaengine_slave_config(dws->txchan, &txconf);
167 
168 	txdesc = dmaengine_prep_slave_sg(dws->txchan,
169 				xfer->tx_sg.sgl,
170 				xfer->tx_sg.nents,
171 				DMA_MEM_TO_DEV,
172 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
173 	if (!txdesc)
174 		return NULL;
175 
176 	txdesc->callback = dw_spi_dma_tx_done;
177 	txdesc->callback_param = dws;
178 
179 	return txdesc;
180 }
181 
182 /*
183  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
184  * channel will clear a corresponding bit.
185  */
dw_spi_dma_rx_done(void * arg)186 static void dw_spi_dma_rx_done(void *arg)
187 {
188 	struct dw_spi *dws = arg;
189 
190 	clear_bit(RX_BUSY, &dws->dma_chan_busy);
191 	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
192 		return;
193 	spi_finalize_current_transfer(dws->master);
194 }
195 
dw_spi_dma_prepare_rx(struct dw_spi * dws,struct spi_transfer * xfer)196 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
197 		struct spi_transfer *xfer)
198 {
199 	struct dma_slave_config rxconf;
200 	struct dma_async_tx_descriptor *rxdesc;
201 
202 	if (!xfer->rx_buf)
203 		return NULL;
204 
205 	memset(&rxconf, 0, sizeof(rxconf));
206 	rxconf.direction = DMA_DEV_TO_MEM;
207 	rxconf.src_addr = dws->dma_addr;
208 	rxconf.src_maxburst = 16;
209 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
210 	rxconf.src_addr_width = convert_dma_width(dws->dma_width);
211 	rxconf.device_fc = false;
212 
213 	dmaengine_slave_config(dws->rxchan, &rxconf);
214 
215 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
216 				xfer->rx_sg.sgl,
217 				xfer->rx_sg.nents,
218 				DMA_DEV_TO_MEM,
219 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
220 	if (!rxdesc)
221 		return NULL;
222 
223 	rxdesc->callback = dw_spi_dma_rx_done;
224 	rxdesc->callback_param = dws;
225 
226 	return rxdesc;
227 }
228 
mid_spi_dma_setup(struct dw_spi * dws,struct spi_transfer * xfer)229 static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
230 {
231 	u16 imr = 0, dma_ctrl = 0;
232 
233 	dw_writel(dws, DW_SPI_DMARDLR, 0xf);
234 	dw_writel(dws, DW_SPI_DMATDLR, 0x10);
235 
236 	if (xfer->tx_buf) {
237 		dma_ctrl |= SPI_DMA_TDMAE;
238 		imr |= SPI_INT_TXOI;
239 	}
240 	if (xfer->rx_buf) {
241 		dma_ctrl |= SPI_DMA_RDMAE;
242 		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
243 	}
244 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
245 
246 	/* Set the interrupt mask */
247 	spi_umask_intr(dws, imr);
248 
249 	dws->transfer_handler = dma_transfer;
250 
251 	return 0;
252 }
253 
mid_spi_dma_transfer(struct dw_spi * dws,struct spi_transfer * xfer)254 static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
255 {
256 	struct dma_async_tx_descriptor *txdesc, *rxdesc;
257 
258 	/* Prepare the TX dma transfer */
259 	txdesc = dw_spi_dma_prepare_tx(dws, xfer);
260 
261 	/* Prepare the RX dma transfer */
262 	rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
263 
264 	/* rx must be started before tx due to spi instinct */
265 	if (rxdesc) {
266 		set_bit(RX_BUSY, &dws->dma_chan_busy);
267 		dmaengine_submit(rxdesc);
268 		dma_async_issue_pending(dws->rxchan);
269 	}
270 
271 	if (txdesc) {
272 		set_bit(TX_BUSY, &dws->dma_chan_busy);
273 		dmaengine_submit(txdesc);
274 		dma_async_issue_pending(dws->txchan);
275 	}
276 
277 	return 1;
278 }
279 
mid_spi_dma_stop(struct dw_spi * dws)280 static void mid_spi_dma_stop(struct dw_spi *dws)
281 {
282 	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
283 		dmaengine_terminate_sync(dws->txchan);
284 		clear_bit(TX_BUSY, &dws->dma_chan_busy);
285 	}
286 	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
287 		dmaengine_terminate_sync(dws->rxchan);
288 		clear_bit(RX_BUSY, &dws->dma_chan_busy);
289 	}
290 }
291 
292 static const struct dw_spi_dma_ops mid_dma_ops = {
293 	.dma_init	= mid_spi_dma_init,
294 	.dma_exit	= mid_spi_dma_exit,
295 	.dma_setup	= mid_spi_dma_setup,
296 	.can_dma	= mid_spi_can_dma,
297 	.dma_transfer	= mid_spi_dma_transfer,
298 	.dma_stop	= mid_spi_dma_stop,
299 };
300 #endif
301 
302 /* Some specific info for SPI0 controller on Intel MID */
303 
304 /* HW info for MRST Clk Control Unit, 32b reg per controller */
305 #define MRST_SPI_CLK_BASE	100000000	/* 100m */
306 #define MRST_CLK_SPI_REG	0xff11d86c
307 #define CLK_SPI_BDIV_OFFSET	0
308 #define CLK_SPI_BDIV_MASK	0x00000007
309 #define CLK_SPI_CDIV_OFFSET	9
310 #define CLK_SPI_CDIV_MASK	0x00000e00
311 #define CLK_SPI_DISABLE_OFFSET	8
312 
dw_spi_mid_init(struct dw_spi * dws)313 int dw_spi_mid_init(struct dw_spi *dws)
314 {
315 	void __iomem *clk_reg;
316 	u32 clk_cdiv;
317 
318 	clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
319 	if (!clk_reg)
320 		return -ENOMEM;
321 
322 	/* Get SPI controller operating freq info */
323 	clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
324 	clk_cdiv &= CLK_SPI_CDIV_MASK;
325 	clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
326 	dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
327 
328 	iounmap(clk_reg);
329 
330 #ifdef CONFIG_SPI_DW_MID_DMA
331 	dws->dma_tx = &mid_dma_tx;
332 	dws->dma_rx = &mid_dma_rx;
333 	dws->dma_ops = &mid_dma_ops;
334 #endif
335 	return 0;
336 }
337