• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 // Copyright 2020 NXP
5 //
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/pinctrl/consumer.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/regmap.h>
26 #include <linux/sched.h>
27 #include <linux/spi/spi.h>
28 #include <linux/spi/spi-fsl-dspi.h>
29 #include <linux/spi/spi_bitbang.h>
30 #include <linux/time.h>
31 
32 #define DRIVER_NAME "fsl-dspi"
33 
34 #ifdef CONFIG_M5441x
35 #define DSPI_FIFO_SIZE			16
36 #else
37 #define DSPI_FIFO_SIZE			4
38 #endif
39 #define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
40 
41 #define SPI_MCR		0x00
42 #define SPI_MCR_MASTER		(1 << 31)
43 #define SPI_MCR_PCSIS		(0x3F << 16)
44 #define SPI_MCR_CLR_TXF	(1 << 11)
45 #define SPI_MCR_CLR_RXF	(1 << 10)
46 #define SPI_MCR_XSPI		(1 << 3)
47 #define SPI_MCR_DIS_TXF		(1 << 13)
48 #define SPI_MCR_DIS_RXF		(1 << 12)
49 #define SPI_MCR_HALT		(1 << 0)
50 
51 #define SPI_TCR			0x08
52 #define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)
53 
54 #define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
55 #define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
56 #define SPI_CTAR_CPOL(x)	((x) << 26)
57 #define SPI_CTAR_CPHA(x)	((x) << 25)
58 #define SPI_CTAR_LSBFE(x)	((x) << 24)
59 #define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
60 #define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
61 #define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
62 #define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
63 #define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
64 #define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
65 #define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
66 #define SPI_CTAR_BR(x)		((x) & 0x0000000f)
67 #define SPI_CTAR_SCALE_BITS	0xf
68 
69 #define SPI_CTAR0_SLAVE	0x0c
70 
71 #define SPI_SR			0x2c
72 #define SPI_SR_EOQF		0x10000000
73 #define SPI_SR_TCFQF		0x80000000
74 #define SPI_SR_CLEAR		0x9aaf0000
75 
76 #define SPI_RSER_TFFFE		BIT(25)
77 #define SPI_RSER_TFFFD		BIT(24)
78 #define SPI_RSER_RFDFE		BIT(17)
79 #define SPI_RSER_RFDFD		BIT(16)
80 
81 #define SPI_RSER		0x30
82 #define SPI_RSER_EOQFE		0x10000000
83 #define SPI_RSER_TCFQE		0x80000000
84 
85 #define SPI_PUSHR		0x34
86 #define SPI_PUSHR_CMD_CONT	(1 << 15)
87 #define SPI_PUSHR_CONT		(SPI_PUSHR_CMD_CONT << 16)
88 #define SPI_PUSHR_CMD_CTAS(x)	(((x) & 0x0003) << 12)
89 #define SPI_PUSHR_CTAS(x)	(SPI_PUSHR_CMD_CTAS(x) << 16)
90 #define SPI_PUSHR_CMD_EOQ	(1 << 11)
91 #define SPI_PUSHR_EOQ		(SPI_PUSHR_CMD_EOQ << 16)
92 #define SPI_PUSHR_CMD_CTCNT	(1 << 10)
93 #define SPI_PUSHR_CTCNT		(SPI_PUSHR_CMD_CTCNT << 16)
94 #define SPI_PUSHR_CMD_PCS(x)	((1 << x) & 0x003f)
95 #define SPI_PUSHR_PCS(x)	(SPI_PUSHR_CMD_PCS(x) << 16)
96 #define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
97 
98 #define SPI_PUSHR_SLAVE	0x34
99 
100 #define SPI_POPR		0x38
101 #define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
102 
103 #define SPI_TXFR0		0x3c
104 #define SPI_TXFR1		0x40
105 #define SPI_TXFR2		0x44
106 #define SPI_TXFR3		0x48
107 #define SPI_RXFR0		0x7c
108 #define SPI_RXFR1		0x80
109 #define SPI_RXFR2		0x84
110 #define SPI_RXFR3		0x88
111 
112 #define SPI_CTARE(x)		(0x11c + (((x) & 0x3) * 4))
113 #define SPI_CTARE_FMSZE(x)	(((x) & 0x1) << 16)
114 #define SPI_CTARE_DTCP(x)	((x) & 0x7ff)
115 
116 #define SPI_SREX		0x13c
117 
118 #define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
119 #define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
120 #define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
121 #define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
122 
123 #define SPI_FRAME_EBITS(bits)	SPI_CTARE_FMSZE(((bits) - 1) >> 4)
124 #define SPI_FRAME_EBITS_MASK	SPI_CTARE_FMSZE(1)
125 
126 /* Register offsets for regmap_pushr */
127 #define PUSHR_CMD		0x0
128 #define PUSHR_TX		0x2
129 
130 #define SPI_CS_INIT		0x01
131 #define SPI_CS_ASSERT		0x02
132 #define SPI_CS_DROP		0x04
133 
134 #define DMA_COMPLETION_TIMEOUT	msecs_to_jiffies(3000)
135 
136 struct chip_data {
137 	u32 ctar_val;
138 	u16 void_write_data;
139 };
140 
141 enum dspi_trans_mode {
142 	DSPI_EOQ_MODE = 0,
143 	DSPI_TCFQ_MODE,
144 	DSPI_DMA_MODE,
145 };
146 
147 struct fsl_dspi_devtype_data {
148 	enum dspi_trans_mode trans_mode;
149 	u8 max_clock_factor;
150 	bool xspi_mode;
151 };
152 
153 static const struct fsl_dspi_devtype_data vf610_data = {
154 	.trans_mode = DSPI_DMA_MODE,
155 	.max_clock_factor = 2,
156 };
157 
158 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
159 	.trans_mode = DSPI_TCFQ_MODE,
160 	.max_clock_factor = 8,
161 	.xspi_mode = true,
162 };
163 
164 static const struct fsl_dspi_devtype_data ls2085a_data = {
165 	.trans_mode = DSPI_TCFQ_MODE,
166 	.max_clock_factor = 8,
167 };
168 
169 static const struct fsl_dspi_devtype_data coldfire_data = {
170 	.trans_mode = DSPI_EOQ_MODE,
171 	.max_clock_factor = 8,
172 };
173 
174 struct fsl_dspi_dma {
175 	/* Length of transfer in words of DSPI_FIFO_SIZE */
176 	u32 curr_xfer_len;
177 
178 	u32 *tx_dma_buf;
179 	struct dma_chan *chan_tx;
180 	dma_addr_t tx_dma_phys;
181 	struct completion cmd_tx_complete;
182 	struct dma_async_tx_descriptor *tx_desc;
183 
184 	u32 *rx_dma_buf;
185 	struct dma_chan *chan_rx;
186 	dma_addr_t rx_dma_phys;
187 	struct completion cmd_rx_complete;
188 	struct dma_async_tx_descriptor *rx_desc;
189 };
190 
191 struct fsl_dspi {
192 	struct spi_master	*master;
193 	struct platform_device	*pdev;
194 
195 	struct regmap		*regmap;
196 	struct regmap		*regmap_pushr;
197 	int			irq;
198 	struct clk		*clk;
199 
200 	struct spi_transfer	*cur_transfer;
201 	struct spi_message	*cur_msg;
202 	struct chip_data	*cur_chip;
203 	size_t			len;
204 	const void		*tx;
205 	void			*rx;
206 	void			*rx_end;
207 	u16			void_write_data;
208 	u16			tx_cmd;
209 	u8			bits_per_word;
210 	u8			bytes_per_word;
211 	const struct fsl_dspi_devtype_data *devtype_data;
212 
213 	wait_queue_head_t	waitq;
214 	u32			waitflags;
215 
216 	struct fsl_dspi_dma	*dma;
217 };
218 
dspi_pop_tx(struct fsl_dspi * dspi)219 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
220 {
221 	u32 txdata = 0;
222 
223 	if (dspi->tx) {
224 		if (dspi->bytes_per_word == 1)
225 			txdata = *(u8 *)dspi->tx;
226 		else if (dspi->bytes_per_word == 2)
227 			txdata = *(u16 *)dspi->tx;
228 		else  /* dspi->bytes_per_word == 4 */
229 			txdata = *(u32 *)dspi->tx;
230 		dspi->tx += dspi->bytes_per_word;
231 	}
232 	dspi->len -= dspi->bytes_per_word;
233 	return txdata;
234 }
235 
dspi_pop_tx_pushr(struct fsl_dspi * dspi)236 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
237 {
238 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
239 
240 	if (dspi->len > 0)
241 		cmd |= SPI_PUSHR_CMD_CONT;
242 	return cmd << 16 | data;
243 }
244 
dspi_push_rx(struct fsl_dspi * dspi,u32 rxdata)245 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
246 {
247 	if (!dspi->rx)
248 		return;
249 
250 	/* Mask of undefined bits */
251 	rxdata &= (1 << dspi->bits_per_word) - 1;
252 
253 	if (dspi->bytes_per_word == 1)
254 		*(u8 *)dspi->rx = rxdata;
255 	else if (dspi->bytes_per_word == 2)
256 		*(u16 *)dspi->rx = rxdata;
257 	else /* dspi->bytes_per_word == 4 */
258 		*(u32 *)dspi->rx = rxdata;
259 	dspi->rx += dspi->bytes_per_word;
260 }
261 
dspi_tx_dma_callback(void * arg)262 static void dspi_tx_dma_callback(void *arg)
263 {
264 	struct fsl_dspi *dspi = arg;
265 	struct fsl_dspi_dma *dma = dspi->dma;
266 
267 	complete(&dma->cmd_tx_complete);
268 }
269 
dspi_rx_dma_callback(void * arg)270 static void dspi_rx_dma_callback(void *arg)
271 {
272 	struct fsl_dspi *dspi = arg;
273 	struct fsl_dspi_dma *dma = dspi->dma;
274 	int i;
275 
276 	if (dspi->rx) {
277 		for (i = 0; i < dma->curr_xfer_len; i++)
278 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
279 	}
280 
281 	complete(&dma->cmd_rx_complete);
282 }
283 
dspi_next_xfer_dma_submit(struct fsl_dspi * dspi)284 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
285 {
286 	struct fsl_dspi_dma *dma = dspi->dma;
287 	struct device *dev = &dspi->pdev->dev;
288 	int time_left;
289 	int i;
290 
291 	for (i = 0; i < dma->curr_xfer_len; i++)
292 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
293 
294 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
295 					dma->tx_dma_phys,
296 					dma->curr_xfer_len *
297 					DMA_SLAVE_BUSWIDTH_4_BYTES,
298 					DMA_MEM_TO_DEV,
299 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
300 	if (!dma->tx_desc) {
301 		dev_err(dev, "Not able to get desc for DMA xfer\n");
302 		return -EIO;
303 	}
304 
305 	dma->tx_desc->callback = dspi_tx_dma_callback;
306 	dma->tx_desc->callback_param = dspi;
307 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
308 		dev_err(dev, "DMA submit failed\n");
309 		return -EINVAL;
310 	}
311 
312 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
313 					dma->rx_dma_phys,
314 					dma->curr_xfer_len *
315 					DMA_SLAVE_BUSWIDTH_4_BYTES,
316 					DMA_DEV_TO_MEM,
317 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
318 	if (!dma->rx_desc) {
319 		dev_err(dev, "Not able to get desc for DMA xfer\n");
320 		return -EIO;
321 	}
322 
323 	dma->rx_desc->callback = dspi_rx_dma_callback;
324 	dma->rx_desc->callback_param = dspi;
325 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
326 		dev_err(dev, "DMA submit failed\n");
327 		return -EINVAL;
328 	}
329 
330 	reinit_completion(&dspi->dma->cmd_rx_complete);
331 	reinit_completion(&dspi->dma->cmd_tx_complete);
332 
333 	dma_async_issue_pending(dma->chan_rx);
334 	dma_async_issue_pending(dma->chan_tx);
335 
336 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
337 					DMA_COMPLETION_TIMEOUT);
338 	if (time_left == 0) {
339 		dev_err(dev, "DMA tx timeout\n");
340 		dmaengine_terminate_all(dma->chan_tx);
341 		dmaengine_terminate_all(dma->chan_rx);
342 		return -ETIMEDOUT;
343 	}
344 
345 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
346 					DMA_COMPLETION_TIMEOUT);
347 	if (time_left == 0) {
348 		dev_err(dev, "DMA rx timeout\n");
349 		dmaengine_terminate_all(dma->chan_tx);
350 		dmaengine_terminate_all(dma->chan_rx);
351 		return -ETIMEDOUT;
352 	}
353 
354 	return 0;
355 }
356 
dspi_dma_xfer(struct fsl_dspi * dspi)357 static int dspi_dma_xfer(struct fsl_dspi *dspi)
358 {
359 	struct fsl_dspi_dma *dma = dspi->dma;
360 	struct device *dev = &dspi->pdev->dev;
361 	struct spi_message *message = dspi->cur_msg;
362 	int curr_remaining_bytes;
363 	int bytes_per_buffer;
364 	int ret = 0;
365 
366 	curr_remaining_bytes = dspi->len;
367 	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
368 	while (curr_remaining_bytes) {
369 		/* Check if current transfer fits the DMA buffer */
370 		dma->curr_xfer_len = curr_remaining_bytes
371 			/ dspi->bytes_per_word;
372 		if (dma->curr_xfer_len > bytes_per_buffer)
373 			dma->curr_xfer_len = bytes_per_buffer;
374 
375 		ret = dspi_next_xfer_dma_submit(dspi);
376 		if (ret) {
377 			dev_err(dev, "DMA transfer failed\n");
378 			goto exit;
379 
380 		} else {
381 			const int len =
382 				dma->curr_xfer_len * dspi->bytes_per_word;
383 			curr_remaining_bytes -= len;
384 			message->actual_length += len;
385 			if (curr_remaining_bytes < 0)
386 				curr_remaining_bytes = 0;
387 		}
388 	}
389 
390 exit:
391 	return ret;
392 }
393 
dspi_request_dma(struct fsl_dspi * dspi,phys_addr_t phy_addr)394 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
395 {
396 	struct fsl_dspi_dma *dma;
397 	struct dma_slave_config cfg;
398 	struct device *dev = &dspi->pdev->dev;
399 	int ret;
400 
401 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
402 	if (!dma)
403 		return -ENOMEM;
404 
405 	dma->chan_rx = dma_request_slave_channel(dev, "rx");
406 	if (!dma->chan_rx) {
407 		dev_err(dev, "rx dma channel not available\n");
408 		ret = -ENODEV;
409 		return ret;
410 	}
411 
412 	dma->chan_tx = dma_request_slave_channel(dev, "tx");
413 	if (!dma->chan_tx) {
414 		dev_err(dev, "tx dma channel not available\n");
415 		ret = -ENODEV;
416 		goto err_tx_channel;
417 	}
418 
419 	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
420 					&dma->tx_dma_phys, GFP_KERNEL);
421 	if (!dma->tx_dma_buf) {
422 		ret = -ENOMEM;
423 		goto err_tx_dma_buf;
424 	}
425 
426 	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
427 					&dma->rx_dma_phys, GFP_KERNEL);
428 	if (!dma->rx_dma_buf) {
429 		ret = -ENOMEM;
430 		goto err_rx_dma_buf;
431 	}
432 
433 	cfg.src_addr = phy_addr + SPI_POPR;
434 	cfg.dst_addr = phy_addr + SPI_PUSHR;
435 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
436 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
437 	cfg.src_maxburst = 1;
438 	cfg.dst_maxburst = 1;
439 
440 	cfg.direction = DMA_DEV_TO_MEM;
441 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
442 	if (ret) {
443 		dev_err(dev, "can't configure rx dma channel\n");
444 		ret = -EINVAL;
445 		goto err_slave_config;
446 	}
447 
448 	cfg.direction = DMA_MEM_TO_DEV;
449 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
450 	if (ret) {
451 		dev_err(dev, "can't configure tx dma channel\n");
452 		ret = -EINVAL;
453 		goto err_slave_config;
454 	}
455 
456 	dspi->dma = dma;
457 	init_completion(&dma->cmd_tx_complete);
458 	init_completion(&dma->cmd_rx_complete);
459 
460 	return 0;
461 
462 err_slave_config:
463 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
464 			dma->rx_dma_buf, dma->rx_dma_phys);
465 err_rx_dma_buf:
466 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
467 			dma->tx_dma_buf, dma->tx_dma_phys);
468 err_tx_dma_buf:
469 	dma_release_channel(dma->chan_tx);
470 err_tx_channel:
471 	dma_release_channel(dma->chan_rx);
472 
473 	devm_kfree(dev, dma);
474 	dspi->dma = NULL;
475 
476 	return ret;
477 }
478 
dspi_release_dma(struct fsl_dspi * dspi)479 static void dspi_release_dma(struct fsl_dspi *dspi)
480 {
481 	struct fsl_dspi_dma *dma = dspi->dma;
482 	struct device *dev = &dspi->pdev->dev;
483 
484 	if (dma) {
485 		if (dma->chan_tx) {
486 			dma_unmap_single(dev, dma->tx_dma_phys,
487 					DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
488 			dma_release_channel(dma->chan_tx);
489 		}
490 
491 		if (dma->chan_rx) {
492 			dma_unmap_single(dev, dma->rx_dma_phys,
493 					DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
494 			dma_release_channel(dma->chan_rx);
495 		}
496 	}
497 }
498 
hz_to_spi_baud(char * pbr,char * br,int speed_hz,unsigned long clkrate)499 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
500 		unsigned long clkrate)
501 {
502 	/* Valid baud rate pre-scaler values */
503 	int pbr_tbl[4] = {2, 3, 5, 7};
504 	int brs[16] = {	2,	4,	6,	8,
505 		16,	32,	64,	128,
506 		256,	512,	1024,	2048,
507 		4096,	8192,	16384,	32768 };
508 	int scale_needed, scale, minscale = INT_MAX;
509 	int i, j;
510 
511 	scale_needed = clkrate / speed_hz;
512 	if (clkrate % speed_hz)
513 		scale_needed++;
514 
515 	for (i = 0; i < ARRAY_SIZE(brs); i++)
516 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
517 			scale = brs[i] * pbr_tbl[j];
518 			if (scale >= scale_needed) {
519 				if (scale < minscale) {
520 					minscale = scale;
521 					*br = i;
522 					*pbr = j;
523 				}
524 				break;
525 			}
526 		}
527 
528 	if (minscale == INT_MAX) {
529 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
530 			speed_hz, clkrate);
531 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
532 		*br =  ARRAY_SIZE(brs) - 1;
533 	}
534 }
535 
ns_delay_scale(char * psc,char * sc,int delay_ns,unsigned long clkrate)536 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
537 		unsigned long clkrate)
538 {
539 	int pscale_tbl[4] = {1, 3, 5, 7};
540 	int scale_needed, scale, minscale = INT_MAX;
541 	int i, j;
542 	u32 remainder;
543 
544 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
545 			&remainder);
546 	if (remainder)
547 		scale_needed++;
548 
549 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
550 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
551 			scale = pscale_tbl[i] * (2 << j);
552 			if (scale >= scale_needed) {
553 				if (scale < minscale) {
554 					minscale = scale;
555 					*psc = i;
556 					*sc = j;
557 				}
558 				break;
559 			}
560 		}
561 
562 	if (minscale == INT_MAX) {
563 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
564 			delay_ns, clkrate);
565 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
566 		*sc = SPI_CTAR_SCALE_BITS;
567 	}
568 }
569 
fifo_write(struct fsl_dspi * dspi)570 static void fifo_write(struct fsl_dspi *dspi)
571 {
572 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
573 }
574 
cmd_fifo_write(struct fsl_dspi * dspi)575 static void cmd_fifo_write(struct fsl_dspi *dspi)
576 {
577 	u16 cmd = dspi->tx_cmd;
578 
579 	if (dspi->len > 0)
580 		cmd |= SPI_PUSHR_CMD_CONT;
581 	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
582 }
583 
tx_fifo_write(struct fsl_dspi * dspi,u16 txdata)584 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
585 {
586 	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
587 }
588 
dspi_tcfq_write(struct fsl_dspi * dspi)589 static void dspi_tcfq_write(struct fsl_dspi *dspi)
590 {
591 	/* Clear transfer count */
592 	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
593 
594 	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
595 		/* Write two TX FIFO entries first, and then the corresponding
596 		 * CMD FIFO entry.
597 		 */
598 		u32 data = dspi_pop_tx(dspi);
599 
600 		if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE(1)) {
601 			/* LSB */
602 			tx_fifo_write(dspi, data & 0xFFFF);
603 			tx_fifo_write(dspi, data >> 16);
604 		} else {
605 			/* MSB */
606 			tx_fifo_write(dspi, data >> 16);
607 			tx_fifo_write(dspi, data & 0xFFFF);
608 		}
609 		cmd_fifo_write(dspi);
610 	} else {
611 		/* Write one entry to both TX FIFO and CMD FIFO
612 		 * simultaneously.
613 		 */
614 		fifo_write(dspi);
615 	}
616 }
617 
fifo_read(struct fsl_dspi * dspi)618 static u32 fifo_read(struct fsl_dspi *dspi)
619 {
620 	u32 rxdata = 0;
621 
622 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
623 	return rxdata;
624 }
625 
dspi_tcfq_read(struct fsl_dspi * dspi)626 static void dspi_tcfq_read(struct fsl_dspi *dspi)
627 {
628 	dspi_push_rx(dspi, fifo_read(dspi));
629 }
630 
dspi_eoq_write(struct fsl_dspi * dspi)631 static void dspi_eoq_write(struct fsl_dspi *dspi)
632 {
633 	int fifo_size = DSPI_FIFO_SIZE;
634 	u16 xfer_cmd = dspi->tx_cmd;
635 
636 	/* Fill TX FIFO with as many transfers as possible */
637 	while (dspi->len && fifo_size--) {
638 		dspi->tx_cmd = xfer_cmd;
639 		/* Request EOQF for last transfer in FIFO */
640 		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
641 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
642 		/* Clear transfer count for first transfer in FIFO */
643 		if (fifo_size == (DSPI_FIFO_SIZE - 1))
644 			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
645 		/* Write combined TX FIFO and CMD FIFO entry */
646 		fifo_write(dspi);
647 	}
648 }
649 
dspi_eoq_read(struct fsl_dspi * dspi)650 static void dspi_eoq_read(struct fsl_dspi *dspi)
651 {
652 	int fifo_size = DSPI_FIFO_SIZE;
653 
654 	/* Read one FIFO entry at and push to rx buffer */
655 	while ((dspi->rx < dspi->rx_end) && fifo_size--)
656 		dspi_push_rx(dspi, fifo_read(dspi));
657 }
658 
dspi_transfer_one_message(struct spi_master * master,struct spi_message * message)659 static int dspi_transfer_one_message(struct spi_master *master,
660 		struct spi_message *message)
661 {
662 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
663 	struct spi_device *spi = message->spi;
664 	struct spi_transfer *transfer;
665 	int status = 0;
666 	enum dspi_trans_mode trans_mode;
667 
668 	message->actual_length = 0;
669 
670 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
671 		dspi->cur_transfer = transfer;
672 		dspi->cur_msg = message;
673 		dspi->cur_chip = spi_get_ctldata(spi);
674 		/* Prepare command word for CMD FIFO */
675 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
676 			SPI_PUSHR_CMD_PCS(spi->chip_select);
677 		if (list_is_last(&dspi->cur_transfer->transfer_list,
678 				 &dspi->cur_msg->transfers)) {
679 			/* Leave PCS activated after last transfer when
680 			 * cs_change is set.
681 			 */
682 			if (transfer->cs_change)
683 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
684 		} else {
685 			/* Keep PCS active between transfers in same message
686 			 * when cs_change is not set, and de-activate PCS
687 			 * between transfers in the same message when
688 			 * cs_change is set.
689 			 */
690 			if (!transfer->cs_change)
691 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
692 		}
693 
694 		dspi->void_write_data = dspi->cur_chip->void_write_data;
695 
696 		dspi->tx = transfer->tx_buf;
697 		dspi->rx = transfer->rx_buf;
698 		dspi->rx_end = dspi->rx + transfer->len;
699 		dspi->len = transfer->len;
700 		/* Validated transfer specific frame size (defaults applied) */
701 		dspi->bits_per_word = transfer->bits_per_word;
702 		if (transfer->bits_per_word <= 8)
703 			dspi->bytes_per_word = 1;
704 		else if (transfer->bits_per_word <= 16)
705 			dspi->bytes_per_word = 2;
706 		else
707 			dspi->bytes_per_word = 4;
708 
709 		regmap_update_bits(dspi->regmap, SPI_MCR,
710 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
711 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
712 		regmap_write(dspi->regmap, SPI_CTAR(0),
713 			     dspi->cur_chip->ctar_val |
714 			     SPI_FRAME_BITS(transfer->bits_per_word));
715 		if (dspi->devtype_data->xspi_mode)
716 			regmap_write(dspi->regmap, SPI_CTARE(0),
717 				     SPI_FRAME_EBITS(transfer->bits_per_word)
718 				     | SPI_CTARE_DTCP(1));
719 
720 		trans_mode = dspi->devtype_data->trans_mode;
721 		switch (trans_mode) {
722 		case DSPI_EOQ_MODE:
723 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
724 			dspi_eoq_write(dspi);
725 			break;
726 		case DSPI_TCFQ_MODE:
727 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
728 			dspi_tcfq_write(dspi);
729 			break;
730 		case DSPI_DMA_MODE:
731 			regmap_write(dspi->regmap, SPI_RSER,
732 				SPI_RSER_TFFFE | SPI_RSER_TFFFD |
733 				SPI_RSER_RFDFE | SPI_RSER_RFDFD);
734 			status = dspi_dma_xfer(dspi);
735 			break;
736 		default:
737 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
738 				trans_mode);
739 			status = -EINVAL;
740 			goto out;
741 		}
742 
743 		if (trans_mode != DSPI_DMA_MODE) {
744 			if (wait_event_interruptible(dspi->waitq,
745 						dspi->waitflags))
746 				dev_err(&dspi->pdev->dev,
747 					"wait transfer complete fail!\n");
748 			dspi->waitflags = 0;
749 		}
750 
751 		if (transfer->delay_usecs)
752 			udelay(transfer->delay_usecs);
753 	}
754 
755 out:
756 	message->status = status;
757 	spi_finalize_current_message(master);
758 
759 	return status;
760 }
761 
dspi_setup(struct spi_device * spi)762 static int dspi_setup(struct spi_device *spi)
763 {
764 	struct chip_data *chip;
765 	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
766 	struct fsl_dspi_platform_data *pdata;
767 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
768 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
769 	unsigned char pasc = 0, asc = 0;
770 	unsigned long clkrate;
771 
772 	/* Only alloc on first setup */
773 	chip = spi_get_ctldata(spi);
774 	if (chip == NULL) {
775 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
776 		if (!chip)
777 			return -ENOMEM;
778 	}
779 
780 	pdata = dev_get_platdata(&dspi->pdev->dev);
781 
782 	if (!pdata) {
783 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
784 				&cs_sck_delay);
785 
786 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
787 				&sck_cs_delay);
788 	} else {
789 		cs_sck_delay = pdata->cs_sck_delay;
790 		sck_cs_delay = pdata->sck_cs_delay;
791 	}
792 
793 	chip->void_write_data = 0;
794 
795 	clkrate = clk_get_rate(dspi->clk);
796 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
797 
798 	/* Set PCS to SCK delay scale values */
799 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
800 
801 	/* Set After SCK delay scale values */
802 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
803 
804 	chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
805 		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
806 		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
807 		| SPI_CTAR_PCSSCK(pcssck)
808 		| SPI_CTAR_CSSCK(cssck)
809 		| SPI_CTAR_PASC(pasc)
810 		| SPI_CTAR_ASC(asc)
811 		| SPI_CTAR_PBR(pbr)
812 		| SPI_CTAR_BR(br);
813 
814 	spi_set_ctldata(spi, chip);
815 
816 	return 0;
817 }
818 
dspi_cleanup(struct spi_device * spi)819 static void dspi_cleanup(struct spi_device *spi)
820 {
821 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
822 
823 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
824 			spi->master->bus_num, spi->chip_select);
825 
826 	kfree(chip);
827 }
828 
dspi_interrupt(int irq,void * dev_id)829 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
830 {
831 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
832 	struct spi_message *msg = dspi->cur_msg;
833 	enum dspi_trans_mode trans_mode;
834 	u32 spi_sr, spi_tcr;
835 	u16 spi_tcnt;
836 
837 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
838 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
839 
840 
841 	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
842 		/* Get transfer counter (in number of SPI transfers). It was
843 		 * reset to 0 when transfer(s) were started.
844 		 */
845 		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
846 		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
847 		/* Update total number of bytes that were transferred */
848 		msg->actual_length += spi_tcnt * dspi->bytes_per_word;
849 
850 		trans_mode = dspi->devtype_data->trans_mode;
851 		switch (trans_mode) {
852 		case DSPI_EOQ_MODE:
853 			dspi_eoq_read(dspi);
854 			break;
855 		case DSPI_TCFQ_MODE:
856 			dspi_tcfq_read(dspi);
857 			break;
858 		default:
859 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
860 				trans_mode);
861 				return IRQ_HANDLED;
862 		}
863 
864 		if (!dspi->len) {
865 			dspi->waitflags = 1;
866 			wake_up_interruptible(&dspi->waitq);
867 		} else {
868 			switch (trans_mode) {
869 			case DSPI_EOQ_MODE:
870 				dspi_eoq_write(dspi);
871 				break;
872 			case DSPI_TCFQ_MODE:
873 				dspi_tcfq_write(dspi);
874 				break;
875 			default:
876 				dev_err(&dspi->pdev->dev,
877 					"unsupported trans_mode %u\n",
878 					trans_mode);
879 			}
880 		}
881 
882 		return IRQ_HANDLED;
883 	}
884 
885 	return IRQ_NONE;
886 }
887 
888 static const struct of_device_id fsl_dspi_dt_ids[] = {
889 	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
890 	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
891 	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
892 	{ /* sentinel */ }
893 };
894 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
895 
896 #ifdef CONFIG_PM_SLEEP
dspi_suspend(struct device * dev)897 static int dspi_suspend(struct device *dev)
898 {
899 	struct spi_master *master = dev_get_drvdata(dev);
900 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
901 
902 	if (dspi->irq)
903 		disable_irq(dspi->irq);
904 	spi_master_suspend(master);
905 	clk_disable_unprepare(dspi->clk);
906 
907 	pinctrl_pm_select_sleep_state(dev);
908 
909 	return 0;
910 }
911 
dspi_resume(struct device * dev)912 static int dspi_resume(struct device *dev)
913 {
914 	struct spi_master *master = dev_get_drvdata(dev);
915 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
916 	int ret;
917 
918 	pinctrl_pm_select_default_state(dev);
919 
920 	ret = clk_prepare_enable(dspi->clk);
921 	if (ret)
922 		return ret;
923 	spi_master_resume(master);
924 	if (dspi->irq)
925 		enable_irq(dspi->irq);
926 
927 	return 0;
928 }
929 #endif /* CONFIG_PM_SLEEP */
930 
931 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
932 
933 static const struct regmap_range dspi_volatile_ranges[] = {
934 	regmap_reg_range(SPI_MCR, SPI_TCR),
935 	regmap_reg_range(SPI_SR, SPI_SR),
936 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
937 };
938 
939 static const struct regmap_access_table dspi_volatile_table = {
940 	.yes_ranges     = dspi_volatile_ranges,
941 	.n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
942 };
943 
944 static const struct regmap_config dspi_regmap_config = {
945 	.reg_bits = 32,
946 	.val_bits = 32,
947 	.reg_stride = 4,
948 	.max_register = 0x88,
949 	.volatile_table = &dspi_volatile_table,
950 };
951 
952 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
953 	regmap_reg_range(SPI_MCR, SPI_TCR),
954 	regmap_reg_range(SPI_SR, SPI_SR),
955 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
956 	regmap_reg_range(SPI_SREX, SPI_SREX),
957 };
958 
959 static const struct regmap_access_table dspi_xspi_volatile_table = {
960 	.yes_ranges     = dspi_xspi_volatile_ranges,
961 	.n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
962 };
963 
964 static const struct regmap_config dspi_xspi_regmap_config[] = {
965 	{
966 		.reg_bits = 32,
967 		.val_bits = 32,
968 		.reg_stride = 4,
969 		.max_register = 0x13c,
970 		.volatile_table = &dspi_xspi_volatile_table,
971 	},
972 	{
973 		.name = "pushr",
974 		.reg_bits = 16,
975 		.val_bits = 16,
976 		.reg_stride = 2,
977 		.max_register = 0x2,
978 	},
979 };
980 
dspi_init(struct fsl_dspi * dspi)981 static void dspi_init(struct fsl_dspi *dspi)
982 {
983 	regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS |
984 		     (dspi->devtype_data->xspi_mode ? SPI_MCR_XSPI : 0));
985 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
986 	if (dspi->devtype_data->xspi_mode)
987 		regmap_write(dspi->regmap, SPI_CTARE(0),
988 			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
989 }
990 
dspi_probe(struct platform_device * pdev)991 static int dspi_probe(struct platform_device *pdev)
992 {
993 	struct device_node *np = pdev->dev.of_node;
994 	struct spi_master *master;
995 	struct fsl_dspi *dspi;
996 	struct resource *res;
997 	const struct regmap_config *regmap_config;
998 	void __iomem *base;
999 	struct fsl_dspi_platform_data *pdata;
1000 	int ret = 0, cs_num, bus_num;
1001 
1002 	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1003 	if (!master)
1004 		return -ENOMEM;
1005 
1006 	dspi = spi_master_get_devdata(master);
1007 	dspi->pdev = pdev;
1008 	dspi->master = master;
1009 
1010 	master->transfer = NULL;
1011 	master->setup = dspi_setup;
1012 	master->transfer_one_message = dspi_transfer_one_message;
1013 	master->dev.of_node = pdev->dev.of_node;
1014 
1015 	master->cleanup = dspi_cleanup;
1016 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1017 
1018 	pdata = dev_get_platdata(&pdev->dev);
1019 	if (pdata) {
1020 		master->num_chipselect = pdata->cs_num;
1021 		master->bus_num = pdata->bus_num;
1022 
1023 		dspi->devtype_data = &coldfire_data;
1024 	} else {
1025 
1026 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1027 		if (ret < 0) {
1028 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1029 			goto out_master_put;
1030 		}
1031 		master->num_chipselect = cs_num;
1032 
1033 		ret = of_property_read_u32(np, "bus-num", &bus_num);
1034 		if (ret < 0) {
1035 			dev_err(&pdev->dev, "can't get bus-num\n");
1036 			goto out_master_put;
1037 		}
1038 		master->bus_num = bus_num;
1039 
1040 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1041 		if (!dspi->devtype_data) {
1042 			dev_err(&pdev->dev, "can't get devtype_data\n");
1043 			ret = -EFAULT;
1044 			goto out_master_put;
1045 		}
1046 	}
1047 
1048 	if (dspi->devtype_data->xspi_mode)
1049 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1050 	else
1051 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1052 
1053 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 	base = devm_ioremap_resource(&pdev->dev, res);
1055 	if (IS_ERR(base)) {
1056 		ret = PTR_ERR(base);
1057 		goto out_master_put;
1058 	}
1059 
1060 	if (dspi->devtype_data->xspi_mode)
1061 		regmap_config = &dspi_xspi_regmap_config[0];
1062 	else
1063 		regmap_config = &dspi_regmap_config;
1064 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1065 	if (IS_ERR(dspi->regmap)) {
1066 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1067 				PTR_ERR(dspi->regmap));
1068 		ret = PTR_ERR(dspi->regmap);
1069 		goto out_master_put;
1070 	}
1071 
1072 	if (dspi->devtype_data->xspi_mode) {
1073 		dspi->regmap_pushr = devm_regmap_init_mmio(
1074 			&pdev->dev, base + SPI_PUSHR,
1075 			&dspi_xspi_regmap_config[1]);
1076 		if (IS_ERR(dspi->regmap_pushr)) {
1077 			dev_err(&pdev->dev,
1078 				"failed to init pushr regmap: %ld\n",
1079 				PTR_ERR(dspi->regmap_pushr));
1080 			ret = PTR_ERR(dspi->regmap_pushr);
1081 			goto out_master_put;
1082 		}
1083 	}
1084 
1085 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1086 	if (IS_ERR(dspi->clk)) {
1087 		ret = PTR_ERR(dspi->clk);
1088 		dev_err(&pdev->dev, "unable to get clock\n");
1089 		goto out_master_put;
1090 	}
1091 	ret = clk_prepare_enable(dspi->clk);
1092 	if (ret)
1093 		goto out_master_put;
1094 
1095 	dspi_init(dspi);
1096 	dspi->irq = platform_get_irq(pdev, 0);
1097 	if (dspi->irq < 0) {
1098 		dev_err(&pdev->dev, "can't get platform irq\n");
1099 		ret = dspi->irq;
1100 		goto out_clk_put;
1101 	}
1102 
1103 	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1104 				   IRQF_SHARED, pdev->name, dspi);
1105 	if (ret < 0) {
1106 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1107 		goto out_clk_put;
1108 	}
1109 
1110 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1111 		ret = dspi_request_dma(dspi, res->start);
1112 		if (ret < 0) {
1113 			dev_err(&pdev->dev, "can't get dma channels\n");
1114 			goto out_free_irq;
1115 		}
1116 	}
1117 
1118 	master->max_speed_hz =
1119 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1120 
1121 	init_waitqueue_head(&dspi->waitq);
1122 	platform_set_drvdata(pdev, master);
1123 
1124 	ret = spi_register_master(master);
1125 	if (ret != 0) {
1126 		dev_err(&pdev->dev, "Problem registering DSPI master\n");
1127 		goto out_free_irq;
1128 	}
1129 
1130 	return ret;
1131 
1132 out_free_irq:
1133 	if (dspi->irq)
1134 		free_irq(dspi->irq, dspi);
1135 out_clk_put:
1136 	clk_disable_unprepare(dspi->clk);
1137 out_master_put:
1138 	spi_master_put(master);
1139 
1140 	return ret;
1141 }
1142 
dspi_remove(struct platform_device * pdev)1143 static int dspi_remove(struct platform_device *pdev)
1144 {
1145 	struct spi_master *master = platform_get_drvdata(pdev);
1146 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1147 
1148 	/* Disconnect from the SPI framework */
1149 	spi_unregister_controller(dspi->master);
1150 
1151 	/* Disable RX and TX */
1152 	regmap_update_bits(dspi->regmap, SPI_MCR,
1153 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1154 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1155 
1156 	/* Stop Running */
1157 	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1158 
1159 	dspi_release_dma(dspi);
1160 	if (dspi->irq)
1161 		free_irq(dspi->irq, dspi);
1162 	clk_disable_unprepare(dspi->clk);
1163 
1164 	return 0;
1165 }
1166 
dspi_shutdown(struct platform_device * pdev)1167 static void dspi_shutdown(struct platform_device *pdev)
1168 {
1169 	dspi_remove(pdev);
1170 }
1171 
1172 static struct platform_driver fsl_dspi_driver = {
1173 	.driver.name    = DRIVER_NAME,
1174 	.driver.of_match_table = fsl_dspi_dt_ids,
1175 	.driver.owner   = THIS_MODULE,
1176 	.driver.pm = &dspi_pm,
1177 	.probe          = dspi_probe,
1178 	.remove		= dspi_remove,
1179 	.shutdown	= dspi_shutdown,
1180 };
1181 module_platform_driver(fsl_dspi_driver);
1182 
1183 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1184 MODULE_LICENSE("GPL");
1185 MODULE_ALIAS("platform:" DRIVER_NAME);
1186