1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12
13 #include "internals.h"
14
15 #define SPI_MEM_MAX_BUSWIDTH 4
16
17 /**
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19 * memory operation
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23 * function
24 *
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
31 *
32 * Return: 0 in case of success, a negative error code otherwise.
33 */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35 const struct spi_mem_op *op,
36 struct sg_table *sgt)
37 {
38 struct device *dmadev;
39
40 if (!op->data.nbytes)
41 return -EINVAL;
42
43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44 dmadev = ctlr->dma_tx->device->dev;
45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46 dmadev = ctlr->dma_rx->device->dev;
47 else
48 dmadev = ctlr->dev.parent;
49
50 if (!dmadev)
51 return -EINVAL;
52
53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54 op->data.dir == SPI_MEM_DATA_IN ?
55 DMA_FROM_DEVICE : DMA_TO_DEVICE);
56 }
57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58
59 /**
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61 * memory operation
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 * spi_controller_dma_map_mem_op_data()
66 *
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
70 *
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
73 *
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
76 * returned 0.
77 *
78 * Return: 0 in case of success, a negative error code otherwise.
79 */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81 const struct spi_mem_op *op,
82 struct sg_table *sgt)
83 {
84 struct device *dmadev;
85
86 if (!op->data.nbytes)
87 return;
88
89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90 dmadev = ctlr->dma_tx->device->dev;
91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92 dmadev = ctlr->dma_rx->device->dev;
93 else
94 dmadev = ctlr->dev.parent;
95
96 spi_unmap_buf(ctlr, dmadev, sgt,
97 op->data.dir == SPI_MEM_DATA_IN ?
98 DMA_FROM_DEVICE : DMA_TO_DEVICE);
99 }
100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103 {
104 u32 mode = mem->spi->mode;
105
106 switch (buswidth) {
107 case 1:
108 return 0;
109
110 case 2:
111 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
112 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
113 return 0;
114
115 break;
116
117 case 4:
118 if ((tx && (mode & SPI_TX_QUAD)) ||
119 (!tx && (mode & SPI_RX_QUAD)))
120 return 0;
121
122 break;
123
124 default:
125 break;
126 }
127
128 return -ENOTSUPP;
129 }
130
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)131 static bool spi_mem_default_supports_op(struct spi_mem *mem,
132 const struct spi_mem_op *op)
133 {
134 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
135 return false;
136
137 if (op->addr.nbytes &&
138 spi_check_buswidth_req(mem, op->addr.buswidth, true))
139 return false;
140
141 if (op->dummy.nbytes &&
142 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
143 return false;
144
145 if (op->data.nbytes &&
146 spi_check_buswidth_req(mem, op->data.buswidth,
147 op->data.dir == SPI_MEM_DATA_OUT))
148 return false;
149
150 return true;
151 }
152 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
153
spi_mem_buswidth_is_valid(u8 buswidth)154 static bool spi_mem_buswidth_is_valid(u8 buswidth)
155 {
156 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
157 return false;
158
159 return true;
160 }
161
spi_mem_check_op(const struct spi_mem_op * op)162 static int spi_mem_check_op(const struct spi_mem_op *op)
163 {
164 if (!op->cmd.buswidth)
165 return -EINVAL;
166
167 if ((op->addr.nbytes && !op->addr.buswidth) ||
168 (op->dummy.nbytes && !op->dummy.buswidth) ||
169 (op->data.nbytes && !op->data.buswidth))
170 return -EINVAL;
171
172 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
173 !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
174 !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
175 !spi_mem_buswidth_is_valid(op->data.buswidth))
176 return -EINVAL;
177
178 return 0;
179 }
180
spi_mem_internal_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)181 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
182 const struct spi_mem_op *op)
183 {
184 struct spi_controller *ctlr = mem->spi->controller;
185
186 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
187 return ctlr->mem_ops->supports_op(mem, op);
188
189 return spi_mem_default_supports_op(mem, op);
190 }
191
192 /**
193 * spi_mem_supports_op() - Check if a memory device and the controller it is
194 * connected to support a specific memory operation
195 * @mem: the SPI memory
196 * @op: the memory operation to check
197 *
198 * Some controllers are only supporting Single or Dual IOs, others might only
199 * support specific opcodes, or it can even be that the controller and device
200 * both support Quad IOs but the hardware prevents you from using it because
201 * only 2 IO lines are connected.
202 *
203 * This function checks whether a specific operation is supported.
204 *
205 * Return: true if @op is supported, false otherwise.
206 */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)207 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
208 {
209 if (spi_mem_check_op(op))
210 return false;
211
212 return spi_mem_internal_supports_op(mem, op);
213 }
214 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
215
216 /**
217 * spi_mem_exec_op() - Execute a memory operation
218 * @mem: the SPI memory
219 * @op: the memory operation to execute
220 *
221 * Executes a memory operation.
222 *
223 * This function first checks that @op is supported and then tries to execute
224 * it.
225 *
226 * Return: 0 in case of success, a negative error code otherwise.
227 */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)228 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
229 {
230 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
231 struct spi_controller *ctlr = mem->spi->controller;
232 struct spi_transfer xfers[4] = { };
233 struct spi_message msg;
234 u8 *tmpbuf;
235 int ret;
236
237 ret = spi_mem_check_op(op);
238 if (ret)
239 return ret;
240
241 if (!spi_mem_internal_supports_op(mem, op))
242 return -ENOTSUPP;
243
244 if (ctlr->mem_ops) {
245 /*
246 * Flush the message queue before executing our SPI memory
247 * operation to prevent preemption of regular SPI transfers.
248 */
249 spi_flush_queue(ctlr);
250
251 if (ctlr->auto_runtime_pm) {
252 ret = pm_runtime_get_sync(ctlr->dev.parent);
253 if (ret < 0) {
254 dev_err(&ctlr->dev,
255 "Failed to power device: %d\n",
256 ret);
257 return ret;
258 }
259 }
260
261 mutex_lock(&ctlr->bus_lock_mutex);
262 mutex_lock(&ctlr->io_mutex);
263 ret = ctlr->mem_ops->exec_op(mem, op);
264 mutex_unlock(&ctlr->io_mutex);
265 mutex_unlock(&ctlr->bus_lock_mutex);
266
267 if (ctlr->auto_runtime_pm)
268 pm_runtime_put(ctlr->dev.parent);
269
270 /*
271 * Some controllers only optimize specific paths (typically the
272 * read path) and expect the core to use the regular SPI
273 * interface in other cases.
274 */
275 if (!ret || ret != -ENOTSUPP)
276 return ret;
277 }
278
279 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
280 op->dummy.nbytes;
281
282 /*
283 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
284 * we're guaranteed that this buffer is DMA-able, as required by the
285 * SPI layer.
286 */
287 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
288 if (!tmpbuf)
289 return -ENOMEM;
290
291 spi_message_init(&msg);
292
293 tmpbuf[0] = op->cmd.opcode;
294 xfers[xferpos].tx_buf = tmpbuf;
295 xfers[xferpos].len = sizeof(op->cmd.opcode);
296 xfers[xferpos].tx_nbits = op->cmd.buswidth;
297 spi_message_add_tail(&xfers[xferpos], &msg);
298 xferpos++;
299 totalxferlen++;
300
301 if (op->addr.nbytes) {
302 int i;
303
304 for (i = 0; i < op->addr.nbytes; i++)
305 tmpbuf[i + 1] = op->addr.val >>
306 (8 * (op->addr.nbytes - i - 1));
307
308 xfers[xferpos].tx_buf = tmpbuf + 1;
309 xfers[xferpos].len = op->addr.nbytes;
310 xfers[xferpos].tx_nbits = op->addr.buswidth;
311 spi_message_add_tail(&xfers[xferpos], &msg);
312 xferpos++;
313 totalxferlen += op->addr.nbytes;
314 }
315
316 if (op->dummy.nbytes) {
317 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
318 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
319 xfers[xferpos].len = op->dummy.nbytes;
320 xfers[xferpos].tx_nbits = op->dummy.buswidth;
321 spi_message_add_tail(&xfers[xferpos], &msg);
322 xferpos++;
323 totalxferlen += op->dummy.nbytes;
324 }
325
326 if (op->data.nbytes) {
327 if (op->data.dir == SPI_MEM_DATA_IN) {
328 xfers[xferpos].rx_buf = op->data.buf.in;
329 xfers[xferpos].rx_nbits = op->data.buswidth;
330 } else {
331 xfers[xferpos].tx_buf = op->data.buf.out;
332 xfers[xferpos].tx_nbits = op->data.buswidth;
333 }
334
335 xfers[xferpos].len = op->data.nbytes;
336 spi_message_add_tail(&xfers[xferpos], &msg);
337 xferpos++;
338 totalxferlen += op->data.nbytes;
339 }
340
341 ret = spi_sync(mem->spi, &msg);
342
343 kfree(tmpbuf);
344
345 if (ret)
346 return ret;
347
348 if (msg.actual_length != totalxferlen)
349 return -EIO;
350
351 return 0;
352 }
353 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
354
355 /**
356 * spi_mem_get_name() - Return the SPI mem device name to be used by the
357 * upper layer if necessary
358 * @mem: the SPI memory
359 *
360 * This function allows SPI mem users to retrieve the SPI mem device name.
361 * It is useful if the upper layer needs to expose a custom name for
362 * compatibility reasons.
363 *
364 * Return: a string containing the name of the memory device to be used
365 * by the SPI mem user
366 */
spi_mem_get_name(struct spi_mem * mem)367 const char *spi_mem_get_name(struct spi_mem *mem)
368 {
369 return mem->name;
370 }
371 EXPORT_SYMBOL_GPL(spi_mem_get_name);
372
373 /**
374 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
375 * match controller limitations
376 * @mem: the SPI memory
377 * @op: the operation to adjust
378 *
379 * Some controllers have FIFO limitations and must split a data transfer
380 * operation into multiple ones, others require a specific alignment for
381 * optimized accesses. This function allows SPI mem drivers to split a single
382 * operation into multiple sub-operations when required.
383 *
384 * Return: a negative error code if the controller can't properly adjust @op,
385 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
386 * can't be handled in a single step.
387 */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)388 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
389 {
390 struct spi_controller *ctlr = mem->spi->controller;
391 size_t len;
392
393 len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
394
395 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
396 return ctlr->mem_ops->adjust_op_size(mem, op);
397
398 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
399 if (len > spi_max_transfer_size(mem->spi))
400 return -EINVAL;
401
402 op->data.nbytes = min3((size_t)op->data.nbytes,
403 spi_max_transfer_size(mem->spi),
404 spi_max_message_size(mem->spi) -
405 len);
406 if (!op->data.nbytes)
407 return -EINVAL;
408 }
409
410 return 0;
411 }
412 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
413
to_spi_mem_drv(struct device_driver * drv)414 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
415 {
416 return container_of(drv, struct spi_mem_driver, spidrv.driver);
417 }
418
spi_mem_probe(struct spi_device * spi)419 static int spi_mem_probe(struct spi_device *spi)
420 {
421 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
422 struct spi_controller *ctlr = spi->controller;
423 struct spi_mem *mem;
424
425 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
426 if (!mem)
427 return -ENOMEM;
428
429 mem->spi = spi;
430
431 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
432 mem->name = ctlr->mem_ops->get_name(mem);
433 else
434 mem->name = dev_name(&spi->dev);
435
436 if (IS_ERR_OR_NULL(mem->name))
437 return PTR_ERR(mem->name);
438
439 spi_set_drvdata(spi, mem);
440
441 return memdrv->probe(mem);
442 }
443
spi_mem_remove(struct spi_device * spi)444 static int spi_mem_remove(struct spi_device *spi)
445 {
446 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
447 struct spi_mem *mem = spi_get_drvdata(spi);
448
449 if (memdrv->remove)
450 return memdrv->remove(mem);
451
452 return 0;
453 }
454
spi_mem_shutdown(struct spi_device * spi)455 static void spi_mem_shutdown(struct spi_device *spi)
456 {
457 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
458 struct spi_mem *mem = spi_get_drvdata(spi);
459
460 if (memdrv->shutdown)
461 memdrv->shutdown(mem);
462 }
463
464 /**
465 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
466 * @memdrv: the SPI memory driver to register
467 * @owner: the owner of this driver
468 *
469 * Registers a SPI memory driver.
470 *
471 * Return: 0 in case of success, a negative error core otherwise.
472 */
473
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)474 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
475 struct module *owner)
476 {
477 memdrv->spidrv.probe = spi_mem_probe;
478 memdrv->spidrv.remove = spi_mem_remove;
479 memdrv->spidrv.shutdown = spi_mem_shutdown;
480
481 return __spi_register_driver(owner, &memdrv->spidrv);
482 }
483 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
484
485 /**
486 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
487 * @memdrv: the SPI memory driver to unregister
488 *
489 * Unregisters a SPI memory driver.
490 */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)491 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
492 {
493 spi_unregister_driver(&memdrv->spidrv);
494 }
495 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
496