• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 
37 #include "spi-pxa2xx.h"
38 
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43 
44 #define TIMOUT_DFLT		1000
45 
46 /*
47  * for testing SSCR1 changes that require SSP restart, basically
48  * everything except the service and interrupt enables, the pxa270 developer
49  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50  * list, but the PXA255 dev man says all bits without really meaning the
51  * service and interrupt enables
52  */
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
61 				| QUARK_X1000_SSCR1_EFWR	\
62 				| QUARK_X1000_SSCR1_RFT		\
63 				| QUARK_X1000_SSCR1_TFT		\
64 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
72 
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT			9
77 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
78 
79 #define LPSS_PRIV_CLOCK_GATE 0x38
80 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
81 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
82 
83 struct lpss_config {
84 	/* LPSS offset from drv_data->ioaddr */
85 	unsigned offset;
86 	/* Register offsets from drv_data->lpss_base or -1 */
87 	int reg_general;
88 	int reg_ssp;
89 	int reg_cs_ctrl;
90 	int reg_capabilities;
91 	/* FIFO thresholds */
92 	u32 rx_threshold;
93 	u32 tx_threshold_lo;
94 	u32 tx_threshold_hi;
95 	/* Chip select control */
96 	unsigned cs_sel_shift;
97 	unsigned cs_sel_mask;
98 	unsigned cs_num;
99 	/* Quirks */
100 	unsigned cs_clk_stays_gated : 1;
101 };
102 
103 /* Keep these sorted with enum pxa_ssp_type */
104 static const struct lpss_config lpss_platforms[] = {
105 	{	/* LPSS_LPT_SSP */
106 		.offset = 0x800,
107 		.reg_general = 0x08,
108 		.reg_ssp = 0x0c,
109 		.reg_cs_ctrl = 0x18,
110 		.reg_capabilities = -1,
111 		.rx_threshold = 64,
112 		.tx_threshold_lo = 160,
113 		.tx_threshold_hi = 224,
114 	},
115 	{	/* LPSS_BYT_SSP */
116 		.offset = 0x400,
117 		.reg_general = 0x08,
118 		.reg_ssp = 0x0c,
119 		.reg_cs_ctrl = 0x18,
120 		.reg_capabilities = -1,
121 		.rx_threshold = 64,
122 		.tx_threshold_lo = 160,
123 		.tx_threshold_hi = 224,
124 	},
125 	{	/* LPSS_BSW_SSP */
126 		.offset = 0x400,
127 		.reg_general = 0x08,
128 		.reg_ssp = 0x0c,
129 		.reg_cs_ctrl = 0x18,
130 		.reg_capabilities = -1,
131 		.rx_threshold = 64,
132 		.tx_threshold_lo = 160,
133 		.tx_threshold_hi = 224,
134 		.cs_sel_shift = 2,
135 		.cs_sel_mask = 1 << 2,
136 		.cs_num = 2,
137 	},
138 	{	/* LPSS_SPT_SSP */
139 		.offset = 0x200,
140 		.reg_general = -1,
141 		.reg_ssp = 0x20,
142 		.reg_cs_ctrl = 0x24,
143 		.reg_capabilities = -1,
144 		.rx_threshold = 1,
145 		.tx_threshold_lo = 32,
146 		.tx_threshold_hi = 56,
147 	},
148 	{	/* LPSS_BXT_SSP */
149 		.offset = 0x200,
150 		.reg_general = -1,
151 		.reg_ssp = 0x20,
152 		.reg_cs_ctrl = 0x24,
153 		.reg_capabilities = 0xfc,
154 		.rx_threshold = 1,
155 		.tx_threshold_lo = 16,
156 		.tx_threshold_hi = 48,
157 		.cs_sel_shift = 8,
158 		.cs_sel_mask = 3 << 8,
159 		.cs_clk_stays_gated = true,
160 	},
161 	{	/* LPSS_CNL_SSP */
162 		.offset = 0x200,
163 		.reg_general = -1,
164 		.reg_ssp = 0x20,
165 		.reg_cs_ctrl = 0x24,
166 		.reg_capabilities = 0xfc,
167 		.rx_threshold = 1,
168 		.tx_threshold_lo = 32,
169 		.tx_threshold_hi = 56,
170 		.cs_sel_shift = 8,
171 		.cs_sel_mask = 3 << 8,
172 		.cs_clk_stays_gated = true,
173 	},
174 };
175 
176 static inline const struct lpss_config
lpss_get_config(const struct driver_data * drv_data)177 *lpss_get_config(const struct driver_data *drv_data)
178 {
179 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
180 }
181 
is_lpss_ssp(const struct driver_data * drv_data)182 static bool is_lpss_ssp(const struct driver_data *drv_data)
183 {
184 	switch (drv_data->ssp_type) {
185 	case LPSS_LPT_SSP:
186 	case LPSS_BYT_SSP:
187 	case LPSS_BSW_SSP:
188 	case LPSS_SPT_SSP:
189 	case LPSS_BXT_SSP:
190 	case LPSS_CNL_SSP:
191 		return true;
192 	default:
193 		return false;
194 	}
195 }
196 
is_quark_x1000_ssp(const struct driver_data * drv_data)197 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
198 {
199 	return drv_data->ssp_type == QUARK_X1000_SSP;
200 }
201 
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)202 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
203 {
204 	switch (drv_data->ssp_type) {
205 	case QUARK_X1000_SSP:
206 		return QUARK_X1000_SSCR1_CHANGE_MASK;
207 	case CE4100_SSP:
208 		return CE4100_SSCR1_CHANGE_MASK;
209 	default:
210 		return SSCR1_CHANGE_MASK;
211 	}
212 }
213 
214 static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)215 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
216 {
217 	switch (drv_data->ssp_type) {
218 	case QUARK_X1000_SSP:
219 		return RX_THRESH_QUARK_X1000_DFLT;
220 	case CE4100_SSP:
221 		return RX_THRESH_CE4100_DFLT;
222 	default:
223 		return RX_THRESH_DFLT;
224 	}
225 }
226 
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)227 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
228 {
229 	u32 mask;
230 
231 	switch (drv_data->ssp_type) {
232 	case QUARK_X1000_SSP:
233 		mask = QUARK_X1000_SSSR_TFL_MASK;
234 		break;
235 	case CE4100_SSP:
236 		mask = CE4100_SSSR_TFL_MASK;
237 		break;
238 	default:
239 		mask = SSSR_TFL_MASK;
240 		break;
241 	}
242 
243 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
244 }
245 
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)246 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
247 				     u32 *sccr1_reg)
248 {
249 	u32 mask;
250 
251 	switch (drv_data->ssp_type) {
252 	case QUARK_X1000_SSP:
253 		mask = QUARK_X1000_SSCR1_RFT;
254 		break;
255 	case CE4100_SSP:
256 		mask = CE4100_SSCR1_RFT;
257 		break;
258 	default:
259 		mask = SSCR1_RFT;
260 		break;
261 	}
262 	*sccr1_reg &= ~mask;
263 }
264 
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)265 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
266 				   u32 *sccr1_reg, u32 threshold)
267 {
268 	switch (drv_data->ssp_type) {
269 	case QUARK_X1000_SSP:
270 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
271 		break;
272 	case CE4100_SSP:
273 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
274 		break;
275 	default:
276 		*sccr1_reg |= SSCR1_RxTresh(threshold);
277 		break;
278 	}
279 }
280 
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)281 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
282 				  u32 clk_div, u8 bits)
283 {
284 	switch (drv_data->ssp_type) {
285 	case QUARK_X1000_SSP:
286 		return clk_div
287 			| QUARK_X1000_SSCR0_Motorola
288 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
289 			| SSCR0_SSE;
290 	default:
291 		return clk_div
292 			| SSCR0_Motorola
293 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
294 			| SSCR0_SSE
295 			| (bits > 16 ? SSCR0_EDSS : 0);
296 	}
297 }
298 
299 /*
300  * Read and write LPSS SSP private registers. Caller must first check that
301  * is_lpss_ssp() returns true before these can be called.
302  */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)303 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
304 {
305 	WARN_ON(!drv_data->lpss_base);
306 	return readl(drv_data->lpss_base + offset);
307 }
308 
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)309 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
310 				  unsigned offset, u32 value)
311 {
312 	WARN_ON(!drv_data->lpss_base);
313 	writel(value, drv_data->lpss_base + offset);
314 }
315 
316 /*
317  * lpss_ssp_setup - perform LPSS SSP specific setup
318  * @drv_data: pointer to the driver private data
319  *
320  * Perform LPSS SSP specific setup. This function must be called first if
321  * one is going to use LPSS SSP private registers.
322  */
lpss_ssp_setup(struct driver_data * drv_data)323 static void lpss_ssp_setup(struct driver_data *drv_data)
324 {
325 	const struct lpss_config *config;
326 	u32 value;
327 
328 	config = lpss_get_config(drv_data);
329 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
330 
331 	/* Enable software chip select control */
332 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
333 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
334 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
335 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
336 
337 	/* Enable multiblock DMA transfers */
338 	if (drv_data->master_info->enable_dma) {
339 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
340 
341 		if (config->reg_general >= 0) {
342 			value = __lpss_ssp_read_priv(drv_data,
343 						     config->reg_general);
344 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
345 			__lpss_ssp_write_priv(drv_data,
346 					      config->reg_general, value);
347 		}
348 	}
349 }
350 
lpss_ssp_select_cs(struct spi_device * spi,const struct lpss_config * config)351 static void lpss_ssp_select_cs(struct spi_device *spi,
352 			       const struct lpss_config *config)
353 {
354 	struct driver_data *drv_data =
355 		spi_controller_get_devdata(spi->controller);
356 	u32 value, cs;
357 
358 	if (!config->cs_sel_mask)
359 		return;
360 
361 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
362 
363 	cs = spi->chip_select;
364 	cs <<= config->cs_sel_shift;
365 	if (cs != (value & config->cs_sel_mask)) {
366 		/*
367 		 * When switching another chip select output active the
368 		 * output must be selected first and wait 2 ssp_clk cycles
369 		 * before changing state to active. Otherwise a short
370 		 * glitch will occur on the previous chip select since
371 		 * output select is latched but state control is not.
372 		 */
373 		value &= ~config->cs_sel_mask;
374 		value |= cs;
375 		__lpss_ssp_write_priv(drv_data,
376 				      config->reg_cs_ctrl, value);
377 		ndelay(1000000000 /
378 		       (drv_data->master->max_speed_hz / 2));
379 	}
380 }
381 
lpss_ssp_cs_control(struct spi_device * spi,bool enable)382 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
383 {
384 	struct driver_data *drv_data =
385 		spi_controller_get_devdata(spi->controller);
386 	const struct lpss_config *config;
387 	u32 value;
388 
389 	config = lpss_get_config(drv_data);
390 
391 	if (enable)
392 		lpss_ssp_select_cs(spi, config);
393 
394 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
395 	if (enable)
396 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
397 	else
398 		value |= LPSS_CS_CONTROL_CS_HIGH;
399 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
400 	if (config->cs_clk_stays_gated) {
401 		u32 clkgate;
402 
403 		/*
404 		 * Changing CS alone when dynamic clock gating is on won't
405 		 * actually flip CS at that time. This ruins SPI transfers
406 		 * that specify delays, or have no data. Toggle the clock mode
407 		 * to force on briefly to poke the CS pin to move.
408 		 */
409 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
410 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
411 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
412 
413 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
414 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
415 	}
416 }
417 
cs_assert(struct spi_device * spi)418 static void cs_assert(struct spi_device *spi)
419 {
420 	struct chip_data *chip = spi_get_ctldata(spi);
421 	struct driver_data *drv_data =
422 		spi_controller_get_devdata(spi->controller);
423 
424 	if (drv_data->ssp_type == CE4100_SSP) {
425 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
426 		return;
427 	}
428 
429 	if (chip->cs_control) {
430 		chip->cs_control(PXA2XX_CS_ASSERT);
431 		return;
432 	}
433 
434 	if (chip->gpiod_cs) {
435 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
436 		return;
437 	}
438 
439 	if (is_lpss_ssp(drv_data))
440 		lpss_ssp_cs_control(spi, true);
441 }
442 
cs_deassert(struct spi_device * spi)443 static void cs_deassert(struct spi_device *spi)
444 {
445 	struct chip_data *chip = spi_get_ctldata(spi);
446 	struct driver_data *drv_data =
447 		spi_controller_get_devdata(spi->controller);
448 	unsigned long timeout;
449 
450 	if (drv_data->ssp_type == CE4100_SSP)
451 		return;
452 
453 	/* Wait until SSP becomes idle before deasserting the CS */
454 	timeout = jiffies + msecs_to_jiffies(10);
455 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
456 	       !time_after(jiffies, timeout))
457 		cpu_relax();
458 
459 	if (chip->cs_control) {
460 		chip->cs_control(PXA2XX_CS_DEASSERT);
461 		return;
462 	}
463 
464 	if (chip->gpiod_cs) {
465 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
466 		return;
467 	}
468 
469 	if (is_lpss_ssp(drv_data))
470 		lpss_ssp_cs_control(spi, false);
471 }
472 
pxa2xx_spi_set_cs(struct spi_device * spi,bool level)473 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
474 {
475 	if (level)
476 		cs_deassert(spi);
477 	else
478 		cs_assert(spi);
479 }
480 
pxa2xx_spi_flush(struct driver_data * drv_data)481 int pxa2xx_spi_flush(struct driver_data *drv_data)
482 {
483 	unsigned long limit = loops_per_jiffy << 1;
484 
485 	do {
486 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
487 			pxa2xx_spi_read(drv_data, SSDR);
488 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
489 	write_SSSR_CS(drv_data, SSSR_ROR);
490 
491 	return limit;
492 }
493 
null_writer(struct driver_data * drv_data)494 static int null_writer(struct driver_data *drv_data)
495 {
496 	u8 n_bytes = drv_data->n_bytes;
497 
498 	if (pxa2xx_spi_txfifo_full(drv_data)
499 		|| (drv_data->tx == drv_data->tx_end))
500 		return 0;
501 
502 	pxa2xx_spi_write(drv_data, SSDR, 0);
503 	drv_data->tx += n_bytes;
504 
505 	return 1;
506 }
507 
null_reader(struct driver_data * drv_data)508 static int null_reader(struct driver_data *drv_data)
509 {
510 	u8 n_bytes = drv_data->n_bytes;
511 
512 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
513 	       && (drv_data->rx < drv_data->rx_end)) {
514 		pxa2xx_spi_read(drv_data, SSDR);
515 		drv_data->rx += n_bytes;
516 	}
517 
518 	return drv_data->rx == drv_data->rx_end;
519 }
520 
u8_writer(struct driver_data * drv_data)521 static int u8_writer(struct driver_data *drv_data)
522 {
523 	if (pxa2xx_spi_txfifo_full(drv_data)
524 		|| (drv_data->tx == drv_data->tx_end))
525 		return 0;
526 
527 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
528 	++drv_data->tx;
529 
530 	return 1;
531 }
532 
u8_reader(struct driver_data * drv_data)533 static int u8_reader(struct driver_data *drv_data)
534 {
535 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
536 	       && (drv_data->rx < drv_data->rx_end)) {
537 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
538 		++drv_data->rx;
539 	}
540 
541 	return drv_data->rx == drv_data->rx_end;
542 }
543 
u16_writer(struct driver_data * drv_data)544 static int u16_writer(struct driver_data *drv_data)
545 {
546 	if (pxa2xx_spi_txfifo_full(drv_data)
547 		|| (drv_data->tx == drv_data->tx_end))
548 		return 0;
549 
550 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
551 	drv_data->tx += 2;
552 
553 	return 1;
554 }
555 
u16_reader(struct driver_data * drv_data)556 static int u16_reader(struct driver_data *drv_data)
557 {
558 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
559 	       && (drv_data->rx < drv_data->rx_end)) {
560 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
561 		drv_data->rx += 2;
562 	}
563 
564 	return drv_data->rx == drv_data->rx_end;
565 }
566 
u32_writer(struct driver_data * drv_data)567 static int u32_writer(struct driver_data *drv_data)
568 {
569 	if (pxa2xx_spi_txfifo_full(drv_data)
570 		|| (drv_data->tx == drv_data->tx_end))
571 		return 0;
572 
573 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
574 	drv_data->tx += 4;
575 
576 	return 1;
577 }
578 
u32_reader(struct driver_data * drv_data)579 static int u32_reader(struct driver_data *drv_data)
580 {
581 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
582 	       && (drv_data->rx < drv_data->rx_end)) {
583 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
584 		drv_data->rx += 4;
585 	}
586 
587 	return drv_data->rx == drv_data->rx_end;
588 }
589 
reset_sccr1(struct driver_data * drv_data)590 static void reset_sccr1(struct driver_data *drv_data)
591 {
592 	struct chip_data *chip =
593 		spi_get_ctldata(drv_data->master->cur_msg->spi);
594 	u32 sccr1_reg;
595 
596 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
597 	switch (drv_data->ssp_type) {
598 	case QUARK_X1000_SSP:
599 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
600 		break;
601 	case CE4100_SSP:
602 		sccr1_reg &= ~CE4100_SSCR1_RFT;
603 		break;
604 	default:
605 		sccr1_reg &= ~SSCR1_RFT;
606 		break;
607 	}
608 	sccr1_reg |= chip->threshold;
609 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
610 }
611 
int_error_stop(struct driver_data * drv_data,const char * msg)612 static void int_error_stop(struct driver_data *drv_data, const char* msg)
613 {
614 	/* Stop and reset SSP */
615 	write_SSSR_CS(drv_data, drv_data->clear_sr);
616 	reset_sccr1(drv_data);
617 	if (!pxa25x_ssp_comp(drv_data))
618 		pxa2xx_spi_write(drv_data, SSTO, 0);
619 	pxa2xx_spi_flush(drv_data);
620 	pxa2xx_spi_write(drv_data, SSCR0,
621 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
622 
623 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
624 
625 	drv_data->master->cur_msg->status = -EIO;
626 	spi_finalize_current_transfer(drv_data->master);
627 }
628 
int_transfer_complete(struct driver_data * drv_data)629 static void int_transfer_complete(struct driver_data *drv_data)
630 {
631 	/* Clear and disable interrupts */
632 	write_SSSR_CS(drv_data, drv_data->clear_sr);
633 	reset_sccr1(drv_data);
634 	if (!pxa25x_ssp_comp(drv_data))
635 		pxa2xx_spi_write(drv_data, SSTO, 0);
636 
637 	spi_finalize_current_transfer(drv_data->master);
638 }
639 
interrupt_transfer(struct driver_data * drv_data)640 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
641 {
642 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
643 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
644 
645 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
646 
647 	if (irq_status & SSSR_ROR) {
648 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
649 		return IRQ_HANDLED;
650 	}
651 
652 	if (irq_status & SSSR_TINT) {
653 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
654 		if (drv_data->read(drv_data)) {
655 			int_transfer_complete(drv_data);
656 			return IRQ_HANDLED;
657 		}
658 	}
659 
660 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
661 	do {
662 		if (drv_data->read(drv_data)) {
663 			int_transfer_complete(drv_data);
664 			return IRQ_HANDLED;
665 		}
666 	} while (drv_data->write(drv_data));
667 
668 	if (drv_data->read(drv_data)) {
669 		int_transfer_complete(drv_data);
670 		return IRQ_HANDLED;
671 	}
672 
673 	if (drv_data->tx == drv_data->tx_end) {
674 		u32 bytes_left;
675 		u32 sccr1_reg;
676 
677 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
678 		sccr1_reg &= ~SSCR1_TIE;
679 
680 		/*
681 		 * PXA25x_SSP has no timeout, set up rx threshould for the
682 		 * remaining RX bytes.
683 		 */
684 		if (pxa25x_ssp_comp(drv_data)) {
685 			u32 rx_thre;
686 
687 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
688 
689 			bytes_left = drv_data->rx_end - drv_data->rx;
690 			switch (drv_data->n_bytes) {
691 			case 4:
692 				bytes_left >>= 1;
693 			case 2:
694 				bytes_left >>= 1;
695 			}
696 
697 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
698 			if (rx_thre > bytes_left)
699 				rx_thre = bytes_left;
700 
701 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
702 		}
703 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
704 	}
705 
706 	/* We did something */
707 	return IRQ_HANDLED;
708 }
709 
handle_bad_msg(struct driver_data * drv_data)710 static void handle_bad_msg(struct driver_data *drv_data)
711 {
712 	pxa2xx_spi_write(drv_data, SSCR0,
713 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
714 	pxa2xx_spi_write(drv_data, SSCR1,
715 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
716 	if (!pxa25x_ssp_comp(drv_data))
717 		pxa2xx_spi_write(drv_data, SSTO, 0);
718 	write_SSSR_CS(drv_data, drv_data->clear_sr);
719 
720 	dev_err(&drv_data->pdev->dev,
721 		"bad message state in interrupt handler\n");
722 }
723 
ssp_int(int irq,void * dev_id)724 static irqreturn_t ssp_int(int irq, void *dev_id)
725 {
726 	struct driver_data *drv_data = dev_id;
727 	u32 sccr1_reg;
728 	u32 mask = drv_data->mask_sr;
729 	u32 status;
730 
731 	/*
732 	 * The IRQ might be shared with other peripherals so we must first
733 	 * check that are we RPM suspended or not. If we are we assume that
734 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
735 	 * interrupt is enabled).
736 	 */
737 	if (pm_runtime_suspended(&drv_data->pdev->dev))
738 		return IRQ_NONE;
739 
740 	/*
741 	 * If the device is not yet in RPM suspended state and we get an
742 	 * interrupt that is meant for another device, check if status bits
743 	 * are all set to one. That means that the device is already
744 	 * powered off.
745 	 */
746 	status = pxa2xx_spi_read(drv_data, SSSR);
747 	if (status == ~0)
748 		return IRQ_NONE;
749 
750 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751 
752 	/* Ignore possible writes if we don't need to write */
753 	if (!(sccr1_reg & SSCR1_TIE))
754 		mask &= ~SSSR_TFS;
755 
756 	/* Ignore RX timeout interrupt if it is disabled */
757 	if (!(sccr1_reg & SSCR1_TINTE))
758 		mask &= ~SSSR_TINT;
759 
760 	if (!(status & mask))
761 		return IRQ_NONE;
762 
763 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765 
766 	if (!drv_data->master->cur_msg) {
767 		handle_bad_msg(drv_data);
768 		/* Never fail */
769 		return IRQ_HANDLED;
770 	}
771 
772 	return drv_data->transfer_handler(drv_data);
773 }
774 
775 /*
776  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777  * input frequency by fractions of 2^24. It also has a divider by 5.
778  *
779  * There are formulas to get baud rate value for given input frequency and
780  * divider parameters, such as DDS_CLK_RATE and SCR:
781  *
782  * Fsys = 200MHz
783  *
784  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
785  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
786  *
787  * DDS_CLK_RATE either 2^n or 2^n / 5.
788  * SCR is in range 0 .. 255
789  *
790  * Divisor = 5^i * 2^j * 2 * k
791  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
792  *       j = [0, 23]     j = 0 iff i = 1
793  *       k = [1, 256]
794  * Special case: j = 0, i = 1: Divisor = 2 / 5
795  *
796  * Accordingly to the specification the recommended values for DDS_CLK_RATE
797  * are:
798  *	Case 1:		2^n, n = [0, 23]
799  *	Case 2:		2^24 * 2 / 5 (0x666666)
800  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
801  *
802  * In all cases the lowest possible value is better.
803  *
804  * The function calculates parameters for all cases and chooses the one closest
805  * to the asked baud rate.
806  */
quark_x1000_get_clk_div(int rate,u32 * dds)807 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808 {
809 	unsigned long xtal = 200000000;
810 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
811 						   see (2) */
812 						/* case 3 */
813 	unsigned long fref1 = fref / 2;		/* case 1 */
814 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
815 	unsigned long scale;
816 	unsigned long q, q1, q2;
817 	long r, r1, r2;
818 	u32 mul;
819 
820 	/* Case 1 */
821 
822 	/* Set initial value for DDS_CLK_RATE */
823 	mul = (1 << 24) >> 1;
824 
825 	/* Calculate initial quot */
826 	q1 = DIV_ROUND_UP(fref1, rate);
827 
828 	/* Scale q1 if it's too big */
829 	if (q1 > 256) {
830 		/* Scale q1 to range [1, 512] */
831 		scale = fls_long(q1 - 1);
832 		if (scale > 9) {
833 			q1 >>= scale - 9;
834 			mul >>= scale - 9;
835 		}
836 
837 		/* Round the result if we have a remainder */
838 		q1 += q1 & 1;
839 	}
840 
841 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842 	scale = __ffs(q1);
843 	q1 >>= scale;
844 	mul >>= scale;
845 
846 	/* Get the remainder */
847 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848 
849 	/* Case 2 */
850 
851 	q2 = DIV_ROUND_UP(fref2, rate);
852 	r2 = abs(fref2 / q2 - rate);
853 
854 	/*
855 	 * Choose the best between two: less remainder we have the better. We
856 	 * can't go case 2 if q2 is greater than 256 since SCR register can
857 	 * hold only values 0 .. 255.
858 	 */
859 	if (r2 >= r1 || q2 > 256) {
860 		/* case 1 is better */
861 		r = r1;
862 		q = q1;
863 	} else {
864 		/* case 2 is better */
865 		r = r2;
866 		q = q2;
867 		mul = (1 << 24) * 2 / 5;
868 	}
869 
870 	/* Check case 3 only if the divisor is big enough */
871 	if (fref / rate >= 80) {
872 		u64 fssp;
873 		u32 m;
874 
875 		/* Calculate initial quot */
876 		q1 = DIV_ROUND_UP(fref, rate);
877 		m = (1 << 24) / q1;
878 
879 		/* Get the remainder */
880 		fssp = (u64)fref * m;
881 		do_div(fssp, 1 << 24);
882 		r1 = abs(fssp - rate);
883 
884 		/* Choose this one if it suits better */
885 		if (r1 < r) {
886 			/* case 3 is better */
887 			q = 1;
888 			mul = m;
889 		}
890 	}
891 
892 	*dds = mul;
893 	return q - 1;
894 }
895 
ssp_get_clk_div(struct driver_data * drv_data,int rate)896 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897 {
898 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
899 	const struct ssp_device *ssp = drv_data->ssp;
900 
901 	rate = min_t(int, ssp_clk, rate);
902 
903 	/*
904 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905 	 * that the SSP transmission rate can be greater than the device rate
906 	 */
907 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909 	else
910 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
911 }
912 
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,int rate)913 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914 					   int rate)
915 {
916 	struct chip_data *chip =
917 		spi_get_ctldata(drv_data->master->cur_msg->spi);
918 	unsigned int clk_div;
919 
920 	switch (drv_data->ssp_type) {
921 	case QUARK_X1000_SSP:
922 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923 		break;
924 	default:
925 		clk_div = ssp_get_clk_div(drv_data, rate);
926 		break;
927 	}
928 	return clk_div << 8;
929 }
930 
pxa2xx_spi_can_dma(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * xfer)931 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
932 			       struct spi_device *spi,
933 			       struct spi_transfer *xfer)
934 {
935 	struct chip_data *chip = spi_get_ctldata(spi);
936 
937 	return chip->enable_dma &&
938 	       xfer->len <= MAX_DMA_LEN &&
939 	       xfer->len >= chip->dma_burst_size;
940 }
941 
pxa2xx_spi_transfer_one(struct spi_controller * master,struct spi_device * spi,struct spi_transfer * transfer)942 static int pxa2xx_spi_transfer_one(struct spi_controller *master,
943 				   struct spi_device *spi,
944 				   struct spi_transfer *transfer)
945 {
946 	struct driver_data *drv_data = spi_controller_get_devdata(master);
947 	struct spi_message *message = master->cur_msg;
948 	struct chip_data *chip = spi_get_ctldata(message->spi);
949 	u32 dma_thresh = chip->dma_threshold;
950 	u32 dma_burst = chip->dma_burst_size;
951 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
952 	u32 clk_div;
953 	u8 bits;
954 	u32 speed;
955 	u32 cr0;
956 	u32 cr1;
957 	int err;
958 	int dma_mapped;
959 
960 	/* Check if we can DMA this transfer */
961 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
962 
963 		/* reject already-mapped transfers; PIO won't always work */
964 		if (message->is_dma_mapped
965 				|| transfer->rx_dma || transfer->tx_dma) {
966 			dev_err(&drv_data->pdev->dev,
967 				"Mapped transfer length of %u is greater than %d\n",
968 				transfer->len, MAX_DMA_LEN);
969 			return -EINVAL;
970 		}
971 
972 		/* warn ... we force this to PIO mode */
973 		dev_warn_ratelimited(&message->spi->dev,
974 				     "DMA disabled for transfer length %ld greater than %d\n",
975 				     (long)transfer->len, MAX_DMA_LEN);
976 	}
977 
978 	/* Setup the transfer state based on the type of transfer */
979 	if (pxa2xx_spi_flush(drv_data) == 0) {
980 		dev_err(&drv_data->pdev->dev, "Flush failed\n");
981 		return -EIO;
982 	}
983 	drv_data->n_bytes = chip->n_bytes;
984 	drv_data->tx = (void *)transfer->tx_buf;
985 	drv_data->tx_end = drv_data->tx + transfer->len;
986 	drv_data->rx = transfer->rx_buf;
987 	drv_data->rx_end = drv_data->rx + transfer->len;
988 	drv_data->write = drv_data->tx ? chip->write : null_writer;
989 	drv_data->read = drv_data->rx ? chip->read : null_reader;
990 
991 	/* Change speed and bit per word on a per transfer */
992 	bits = transfer->bits_per_word;
993 	speed = transfer->speed_hz;
994 
995 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
996 
997 	if (bits <= 8) {
998 		drv_data->n_bytes = 1;
999 		drv_data->read = drv_data->read != null_reader ?
1000 					u8_reader : null_reader;
1001 		drv_data->write = drv_data->write != null_writer ?
1002 					u8_writer : null_writer;
1003 	} else if (bits <= 16) {
1004 		drv_data->n_bytes = 2;
1005 		drv_data->read = drv_data->read != null_reader ?
1006 					u16_reader : null_reader;
1007 		drv_data->write = drv_data->write != null_writer ?
1008 					u16_writer : null_writer;
1009 	} else if (bits <= 32) {
1010 		drv_data->n_bytes = 4;
1011 		drv_data->read = drv_data->read != null_reader ?
1012 					u32_reader : null_reader;
1013 		drv_data->write = drv_data->write != null_writer ?
1014 					u32_writer : null_writer;
1015 	}
1016 	/*
1017 	 * if bits/word is changed in dma mode, then must check the
1018 	 * thresholds and burst also
1019 	 */
1020 	if (chip->enable_dma) {
1021 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1022 						message->spi,
1023 						bits, &dma_burst,
1024 						&dma_thresh))
1025 			dev_warn_ratelimited(&message->spi->dev,
1026 					     "DMA burst size reduced to match bits_per_word\n");
1027 	}
1028 
1029 	dma_mapped = master->can_dma &&
1030 		     master->can_dma(master, message->spi, transfer) &&
1031 		     master->cur_msg_mapped;
1032 	if (dma_mapped) {
1033 
1034 		/* Ensure we have the correct interrupt handler */
1035 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1036 
1037 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1038 		if (err)
1039 			return err;
1040 
1041 		/* Clear status and start DMA engine */
1042 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1043 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1044 
1045 		pxa2xx_spi_dma_start(drv_data);
1046 	} else {
1047 		/* Ensure we have the correct interrupt handler	*/
1048 		drv_data->transfer_handler = interrupt_transfer;
1049 
1050 		/* Clear status  */
1051 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1052 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1053 	}
1054 
1055 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1056 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1057 	if (!pxa25x_ssp_comp(drv_data))
1058 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1059 			master->max_speed_hz
1060 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1061 			dma_mapped ? "DMA" : "PIO");
1062 	else
1063 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1064 			master->max_speed_hz / 2
1065 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1066 			dma_mapped ? "DMA" : "PIO");
1067 
1068 	if (is_lpss_ssp(drv_data)) {
1069 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1070 		    != chip->lpss_rx_threshold)
1071 			pxa2xx_spi_write(drv_data, SSIRF,
1072 					 chip->lpss_rx_threshold);
1073 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1074 		    != chip->lpss_tx_threshold)
1075 			pxa2xx_spi_write(drv_data, SSITF,
1076 					 chip->lpss_tx_threshold);
1077 	}
1078 
1079 	if (is_quark_x1000_ssp(drv_data) &&
1080 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1081 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1082 
1083 	/* see if we need to reload the config registers */
1084 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1085 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1086 	    != (cr1 & change_mask)) {
1087 		/* stop the SSP, and update the other bits */
1088 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1089 		if (!pxa25x_ssp_comp(drv_data))
1090 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1091 		/* first set CR1 without interrupt and service enables */
1092 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1093 		/* restart the SSP */
1094 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1095 
1096 	} else {
1097 		if (!pxa25x_ssp_comp(drv_data))
1098 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1099 	}
1100 
1101 	/*
1102 	 * Release the data by enabling service requests and interrupts,
1103 	 * without changing any mode bits
1104 	 */
1105 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1106 
1107 	return 1;
1108 }
1109 
pxa2xx_spi_handle_err(struct spi_controller * master,struct spi_message * msg)1110 static void pxa2xx_spi_handle_err(struct spi_controller *master,
1111 				 struct spi_message *msg)
1112 {
1113 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1114 
1115 	/* Disable the SSP */
1116 	pxa2xx_spi_write(drv_data, SSCR0,
1117 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1118 	/* Clear and disable interrupts and service requests */
1119 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1120 	pxa2xx_spi_write(drv_data, SSCR1,
1121 			 pxa2xx_spi_read(drv_data, SSCR1)
1122 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1123 	if (!pxa25x_ssp_comp(drv_data))
1124 		pxa2xx_spi_write(drv_data, SSTO, 0);
1125 
1126 	/*
1127 	 * Stop the DMA if running. Note DMA callback handler may have unset
1128 	 * the dma_running already, which is fine as stopping is not needed
1129 	 * then but we shouldn't rely this flag for anything else than
1130 	 * stopping. For instance to differentiate between PIO and DMA
1131 	 * transfers.
1132 	 */
1133 	if (atomic_read(&drv_data->dma_running))
1134 		pxa2xx_spi_dma_stop(drv_data);
1135 }
1136 
pxa2xx_spi_unprepare_transfer(struct spi_controller * master)1137 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1138 {
1139 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1140 
1141 	/* Disable the SSP now */
1142 	pxa2xx_spi_write(drv_data, SSCR0,
1143 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1144 
1145 	return 0;
1146 }
1147 
setup_cs(struct spi_device * spi,struct chip_data * chip,struct pxa2xx_spi_chip * chip_info)1148 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1149 		    struct pxa2xx_spi_chip *chip_info)
1150 {
1151 	struct driver_data *drv_data =
1152 		spi_controller_get_devdata(spi->controller);
1153 	struct gpio_desc *gpiod;
1154 	int err = 0;
1155 
1156 	if (chip == NULL)
1157 		return 0;
1158 
1159 	if (drv_data->cs_gpiods) {
1160 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1161 		if (gpiod) {
1162 			chip->gpiod_cs = gpiod;
1163 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1164 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1165 		}
1166 
1167 		return 0;
1168 	}
1169 
1170 	if (chip_info == NULL)
1171 		return 0;
1172 
1173 	/* NOTE: setup() can be called multiple times, possibly with
1174 	 * different chip_info, release previously requested GPIO
1175 	 */
1176 	if (chip->gpiod_cs) {
1177 		gpiod_put(chip->gpiod_cs);
1178 		chip->gpiod_cs = NULL;
1179 	}
1180 
1181 	/* If (*cs_control) is provided, ignore GPIO chip select */
1182 	if (chip_info->cs_control) {
1183 		chip->cs_control = chip_info->cs_control;
1184 		return 0;
1185 	}
1186 
1187 	if (gpio_is_valid(chip_info->gpio_cs)) {
1188 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1189 		if (err) {
1190 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1191 				chip_info->gpio_cs);
1192 			return err;
1193 		}
1194 
1195 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1196 		chip->gpiod_cs = gpiod;
1197 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1198 
1199 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1200 	}
1201 
1202 	return err;
1203 }
1204 
setup(struct spi_device * spi)1205 static int setup(struct spi_device *spi)
1206 {
1207 	struct pxa2xx_spi_chip *chip_info;
1208 	struct chip_data *chip;
1209 	const struct lpss_config *config;
1210 	struct driver_data *drv_data =
1211 		spi_controller_get_devdata(spi->controller);
1212 	uint tx_thres, tx_hi_thres, rx_thres;
1213 
1214 	switch (drv_data->ssp_type) {
1215 	case QUARK_X1000_SSP:
1216 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1217 		tx_hi_thres = 0;
1218 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1219 		break;
1220 	case CE4100_SSP:
1221 		tx_thres = TX_THRESH_CE4100_DFLT;
1222 		tx_hi_thres = 0;
1223 		rx_thres = RX_THRESH_CE4100_DFLT;
1224 		break;
1225 	case LPSS_LPT_SSP:
1226 	case LPSS_BYT_SSP:
1227 	case LPSS_BSW_SSP:
1228 	case LPSS_SPT_SSP:
1229 	case LPSS_BXT_SSP:
1230 	case LPSS_CNL_SSP:
1231 		config = lpss_get_config(drv_data);
1232 		tx_thres = config->tx_threshold_lo;
1233 		tx_hi_thres = config->tx_threshold_hi;
1234 		rx_thres = config->rx_threshold;
1235 		break;
1236 	default:
1237 		tx_thres = TX_THRESH_DFLT;
1238 		tx_hi_thres = 0;
1239 		rx_thres = RX_THRESH_DFLT;
1240 		break;
1241 	}
1242 
1243 	/* Only alloc on first setup */
1244 	chip = spi_get_ctldata(spi);
1245 	if (!chip) {
1246 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1247 		if (!chip)
1248 			return -ENOMEM;
1249 
1250 		if (drv_data->ssp_type == CE4100_SSP) {
1251 			if (spi->chip_select > 4) {
1252 				dev_err(&spi->dev,
1253 					"failed setup: cs number must not be > 4.\n");
1254 				kfree(chip);
1255 				return -EINVAL;
1256 			}
1257 
1258 			chip->frm = spi->chip_select;
1259 		}
1260 		chip->enable_dma = drv_data->master_info->enable_dma;
1261 		chip->timeout = TIMOUT_DFLT;
1262 	}
1263 
1264 	/* protocol drivers may change the chip settings, so...
1265 	 * if chip_info exists, use it */
1266 	chip_info = spi->controller_data;
1267 
1268 	/* chip_info isn't always needed */
1269 	chip->cr1 = 0;
1270 	if (chip_info) {
1271 		if (chip_info->timeout)
1272 			chip->timeout = chip_info->timeout;
1273 		if (chip_info->tx_threshold)
1274 			tx_thres = chip_info->tx_threshold;
1275 		if (chip_info->tx_hi_threshold)
1276 			tx_hi_thres = chip_info->tx_hi_threshold;
1277 		if (chip_info->rx_threshold)
1278 			rx_thres = chip_info->rx_threshold;
1279 		chip->dma_threshold = 0;
1280 		if (chip_info->enable_loopback)
1281 			chip->cr1 = SSCR1_LBM;
1282 	}
1283 
1284 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1285 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1286 				| SSITF_TxHiThresh(tx_hi_thres);
1287 
1288 	/* set dma burst and threshold outside of chip_info path so that if
1289 	 * chip_info goes away after setting chip->enable_dma, the
1290 	 * burst and threshold can still respond to changes in bits_per_word */
1291 	if (chip->enable_dma) {
1292 		/* set up legal burst and threshold for dma */
1293 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1294 						spi->bits_per_word,
1295 						&chip->dma_burst_size,
1296 						&chip->dma_threshold)) {
1297 			dev_warn(&spi->dev,
1298 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1299 		}
1300 	}
1301 
1302 	switch (drv_data->ssp_type) {
1303 	case QUARK_X1000_SSP:
1304 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1305 				   & QUARK_X1000_SSCR1_RFT)
1306 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1307 				   & QUARK_X1000_SSCR1_TFT);
1308 		break;
1309 	case CE4100_SSP:
1310 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1311 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1312 		break;
1313 	default:
1314 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1315 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1316 		break;
1317 	}
1318 
1319 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1320 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1321 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1322 
1323 	if (spi->mode & SPI_LOOP)
1324 		chip->cr1 |= SSCR1_LBM;
1325 
1326 	if (spi->bits_per_word <= 8) {
1327 		chip->n_bytes = 1;
1328 		chip->read = u8_reader;
1329 		chip->write = u8_writer;
1330 	} else if (spi->bits_per_word <= 16) {
1331 		chip->n_bytes = 2;
1332 		chip->read = u16_reader;
1333 		chip->write = u16_writer;
1334 	} else if (spi->bits_per_word <= 32) {
1335 		chip->n_bytes = 4;
1336 		chip->read = u32_reader;
1337 		chip->write = u32_writer;
1338 	}
1339 
1340 	spi_set_ctldata(spi, chip);
1341 
1342 	if (drv_data->ssp_type == CE4100_SSP)
1343 		return 0;
1344 
1345 	return setup_cs(spi, chip, chip_info);
1346 }
1347 
cleanup(struct spi_device * spi)1348 static void cleanup(struct spi_device *spi)
1349 {
1350 	struct chip_data *chip = spi_get_ctldata(spi);
1351 	struct driver_data *drv_data =
1352 		spi_controller_get_devdata(spi->controller);
1353 
1354 	if (!chip)
1355 		return;
1356 
1357 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1358 	    chip->gpiod_cs)
1359 		gpiod_put(chip->gpiod_cs);
1360 
1361 	kfree(chip);
1362 }
1363 
1364 #ifdef CONFIG_PCI
1365 #ifdef CONFIG_ACPI
1366 
1367 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1368 	{ "INT33C0", LPSS_LPT_SSP },
1369 	{ "INT33C1", LPSS_LPT_SSP },
1370 	{ "INT3430", LPSS_LPT_SSP },
1371 	{ "INT3431", LPSS_LPT_SSP },
1372 	{ "80860F0E", LPSS_BYT_SSP },
1373 	{ "8086228E", LPSS_BSW_SSP },
1374 	{ },
1375 };
1376 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1377 
pxa2xx_spi_get_port_id(struct acpi_device * adev)1378 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1379 {
1380 	unsigned int devid;
1381 	int port_id = -1;
1382 
1383 	if (adev && adev->pnp.unique_id &&
1384 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1385 		port_id = devid;
1386 	return port_id;
1387 }
1388 #else /* !CONFIG_ACPI */
pxa2xx_spi_get_port_id(struct acpi_device * adev)1389 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1390 {
1391 	return -1;
1392 }
1393 #endif
1394 
1395 /*
1396  * PCI IDs of compound devices that integrate both host controller and private
1397  * integrated DMA engine. Please note these are not used in module
1398  * autoloading and probing in this module but matching the LPSS SSP type.
1399  */
1400 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1401 	/* SPT-LP */
1402 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1403 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1404 	/* SPT-H */
1405 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1406 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1407 	/* KBL-H */
1408 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1409 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1410 	/* BXT A-Step */
1411 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1412 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1413 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1414 	/* BXT B-Step */
1415 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1416 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1417 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1418 	/* GLK */
1419 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1420 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1421 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1422 	/* ICL-LP */
1423 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1424 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1425 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1426 	/* APL */
1427 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1428 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1429 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1430 	/* CNL-LP */
1431 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1432 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1433 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1434 	/* CNL-H */
1435 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1436 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1437 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1438 	{ },
1439 };
1440 
pxa2xx_spi_idma_filter(struct dma_chan * chan,void * param)1441 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1442 {
1443 	return param == chan->device->dev;
1444 }
1445 
1446 static struct pxa2xx_spi_master *
pxa2xx_spi_init_pdata(struct platform_device * pdev)1447 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1448 {
1449 	struct pxa2xx_spi_master *pdata;
1450 	struct acpi_device *adev;
1451 	struct ssp_device *ssp;
1452 	struct resource *res;
1453 	const struct acpi_device_id *adev_id = NULL;
1454 	const struct pci_device_id *pcidev_id = NULL;
1455 	int type;
1456 
1457 	adev = ACPI_COMPANION(&pdev->dev);
1458 
1459 	if (dev_is_pci(pdev->dev.parent))
1460 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1461 					 to_pci_dev(pdev->dev.parent));
1462 	else if (adev)
1463 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1464 					    &pdev->dev);
1465 	else
1466 		return NULL;
1467 
1468 	if (adev_id)
1469 		type = (int)adev_id->driver_data;
1470 	else if (pcidev_id)
1471 		type = (int)pcidev_id->driver_data;
1472 	else
1473 		return NULL;
1474 
1475 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1476 	if (!pdata)
1477 		return NULL;
1478 
1479 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480 	if (!res)
1481 		return NULL;
1482 
1483 	ssp = &pdata->ssp;
1484 
1485 	ssp->phys_base = res->start;
1486 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1487 	if (IS_ERR(ssp->mmio_base))
1488 		return NULL;
1489 
1490 	if (pcidev_id) {
1491 		pdata->tx_param = pdev->dev.parent;
1492 		pdata->rx_param = pdev->dev.parent;
1493 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1494 	}
1495 
1496 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1497 	if (IS_ERR(ssp->clk))
1498 		return NULL;
1499 
1500 	ssp->irq = platform_get_irq(pdev, 0);
1501 	if (ssp->irq < 0)
1502 		return NULL;
1503 
1504 	ssp->type = type;
1505 	ssp->pdev = pdev;
1506 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1507 
1508 	pdata->num_chipselect = 1;
1509 	pdata->enable_dma = true;
1510 
1511 	return pdata;
1512 }
1513 
1514 #else /* !CONFIG_PCI */
1515 static inline struct pxa2xx_spi_master *
pxa2xx_spi_init_pdata(struct platform_device * pdev)1516 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1517 {
1518 	return NULL;
1519 }
1520 #endif
1521 
pxa2xx_spi_fw_translate_cs(struct spi_controller * master,unsigned int cs)1522 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1523 				      unsigned int cs)
1524 {
1525 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1526 
1527 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1528 		switch (drv_data->ssp_type) {
1529 		/*
1530 		 * For Atoms the ACPI DeviceSelection used by the Windows
1531 		 * driver starts from 1 instead of 0 so translate it here
1532 		 * to match what Linux expects.
1533 		 */
1534 		case LPSS_BYT_SSP:
1535 		case LPSS_BSW_SSP:
1536 			return cs - 1;
1537 
1538 		default:
1539 			break;
1540 		}
1541 	}
1542 
1543 	return cs;
1544 }
1545 
pxa2xx_spi_probe(struct platform_device * pdev)1546 static int pxa2xx_spi_probe(struct platform_device *pdev)
1547 {
1548 	struct device *dev = &pdev->dev;
1549 	struct pxa2xx_spi_master *platform_info;
1550 	struct spi_controller *master;
1551 	struct driver_data *drv_data;
1552 	struct ssp_device *ssp;
1553 	const struct lpss_config *config;
1554 	int status, count;
1555 	u32 tmp;
1556 
1557 	platform_info = dev_get_platdata(dev);
1558 	if (!platform_info) {
1559 		platform_info = pxa2xx_spi_init_pdata(pdev);
1560 		if (!platform_info) {
1561 			dev_err(&pdev->dev, "missing platform data\n");
1562 			return -ENODEV;
1563 		}
1564 	}
1565 
1566 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1567 	if (!ssp)
1568 		ssp = &platform_info->ssp;
1569 
1570 	if (!ssp->mmio_base) {
1571 		dev_err(&pdev->dev, "failed to get ssp\n");
1572 		return -ENODEV;
1573 	}
1574 
1575 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1576 	if (!master) {
1577 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1578 		pxa_ssp_free(ssp);
1579 		return -ENOMEM;
1580 	}
1581 	drv_data = spi_controller_get_devdata(master);
1582 	drv_data->master = master;
1583 	drv_data->master_info = platform_info;
1584 	drv_data->pdev = pdev;
1585 	drv_data->ssp = ssp;
1586 
1587 	master->dev.of_node = pdev->dev.of_node;
1588 	/* the spi->mode bits understood by this driver: */
1589 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1590 
1591 	master->bus_num = ssp->port_id;
1592 	master->dma_alignment = DMA_ALIGNMENT;
1593 	master->cleanup = cleanup;
1594 	master->setup = setup;
1595 	master->set_cs = pxa2xx_spi_set_cs;
1596 	master->transfer_one = pxa2xx_spi_transfer_one;
1597 	master->handle_err = pxa2xx_spi_handle_err;
1598 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1599 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1600 	master->auto_runtime_pm = true;
1601 	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1602 
1603 	drv_data->ssp_type = ssp->type;
1604 
1605 	drv_data->ioaddr = ssp->mmio_base;
1606 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1607 	if (pxa25x_ssp_comp(drv_data)) {
1608 		switch (drv_data->ssp_type) {
1609 		case QUARK_X1000_SSP:
1610 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1611 			break;
1612 		default:
1613 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1614 			break;
1615 		}
1616 
1617 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1618 		drv_data->dma_cr1 = 0;
1619 		drv_data->clear_sr = SSSR_ROR;
1620 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1621 	} else {
1622 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1623 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1624 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1625 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1626 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1627 	}
1628 
1629 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1630 			drv_data);
1631 	if (status < 0) {
1632 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1633 		goto out_error_master_alloc;
1634 	}
1635 
1636 	/* Setup DMA if requested */
1637 	if (platform_info->enable_dma) {
1638 		status = pxa2xx_spi_dma_setup(drv_data);
1639 		if (status) {
1640 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1641 			platform_info->enable_dma = false;
1642 		} else {
1643 			master->can_dma = pxa2xx_spi_can_dma;
1644 			master->max_dma_len = MAX_DMA_LEN;
1645 		}
1646 	}
1647 
1648 	/* Enable SOC clock */
1649 	status = clk_prepare_enable(ssp->clk);
1650 	if (status)
1651 		goto out_error_dma_irq_alloc;
1652 
1653 	master->max_speed_hz = clk_get_rate(ssp->clk);
1654 
1655 	/* Load default SSP configuration */
1656 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1657 	switch (drv_data->ssp_type) {
1658 	case QUARK_X1000_SSP:
1659 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1660 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1661 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1662 
1663 		/* using the Motorola SPI protocol and use 8 bit frame */
1664 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1665 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1666 		break;
1667 	case CE4100_SSP:
1668 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1669 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1670 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1671 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1672 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1673 		break;
1674 	default:
1675 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1676 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1677 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1678 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1679 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1680 		break;
1681 	}
1682 
1683 	if (!pxa25x_ssp_comp(drv_data))
1684 		pxa2xx_spi_write(drv_data, SSTO, 0);
1685 
1686 	if (!is_quark_x1000_ssp(drv_data))
1687 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1688 
1689 	if (is_lpss_ssp(drv_data)) {
1690 		lpss_ssp_setup(drv_data);
1691 		config = lpss_get_config(drv_data);
1692 		if (config->reg_capabilities >= 0) {
1693 			tmp = __lpss_ssp_read_priv(drv_data,
1694 						   config->reg_capabilities);
1695 			tmp &= LPSS_CAPS_CS_EN_MASK;
1696 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1697 			platform_info->num_chipselect = ffz(tmp);
1698 		} else if (config->cs_num) {
1699 			platform_info->num_chipselect = config->cs_num;
1700 		}
1701 	}
1702 	master->num_chipselect = platform_info->num_chipselect;
1703 
1704 	count = gpiod_count(&pdev->dev, "cs");
1705 	if (count > 0) {
1706 		int i;
1707 
1708 		master->num_chipselect = max_t(int, count,
1709 			master->num_chipselect);
1710 
1711 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1712 			master->num_chipselect, sizeof(struct gpio_desc *),
1713 			GFP_KERNEL);
1714 		if (!drv_data->cs_gpiods) {
1715 			status = -ENOMEM;
1716 			goto out_error_clock_enabled;
1717 		}
1718 
1719 		for (i = 0; i < master->num_chipselect; i++) {
1720 			struct gpio_desc *gpiod;
1721 
1722 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1723 			if (IS_ERR(gpiod)) {
1724 				/* Means use native chip select */
1725 				if (PTR_ERR(gpiod) == -ENOENT)
1726 					continue;
1727 
1728 				status = (int)PTR_ERR(gpiod);
1729 				goto out_error_clock_enabled;
1730 			} else {
1731 				drv_data->cs_gpiods[i] = gpiod;
1732 			}
1733 		}
1734 	}
1735 
1736 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1737 	pm_runtime_use_autosuspend(&pdev->dev);
1738 	pm_runtime_set_active(&pdev->dev);
1739 	pm_runtime_enable(&pdev->dev);
1740 
1741 	/* Register with the SPI framework */
1742 	platform_set_drvdata(pdev, drv_data);
1743 	status = spi_register_controller(master);
1744 	if (status != 0) {
1745 		dev_err(&pdev->dev, "problem registering spi master\n");
1746 		goto out_error_pm_runtime_enabled;
1747 	}
1748 
1749 	return status;
1750 
1751 out_error_pm_runtime_enabled:
1752 	pm_runtime_disable(&pdev->dev);
1753 
1754 out_error_clock_enabled:
1755 	clk_disable_unprepare(ssp->clk);
1756 
1757 out_error_dma_irq_alloc:
1758 	pxa2xx_spi_dma_release(drv_data);
1759 	free_irq(ssp->irq, drv_data);
1760 
1761 out_error_master_alloc:
1762 	spi_controller_put(master);
1763 	pxa_ssp_free(ssp);
1764 	return status;
1765 }
1766 
pxa2xx_spi_remove(struct platform_device * pdev)1767 static int pxa2xx_spi_remove(struct platform_device *pdev)
1768 {
1769 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1770 	struct ssp_device *ssp;
1771 
1772 	if (!drv_data)
1773 		return 0;
1774 	ssp = drv_data->ssp;
1775 
1776 	pm_runtime_get_sync(&pdev->dev);
1777 
1778 	spi_unregister_controller(drv_data->master);
1779 
1780 	/* Disable the SSP at the peripheral and SOC level */
1781 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1782 	clk_disable_unprepare(ssp->clk);
1783 
1784 	/* Release DMA */
1785 	if (drv_data->master_info->enable_dma)
1786 		pxa2xx_spi_dma_release(drv_data);
1787 
1788 	pm_runtime_put_noidle(&pdev->dev);
1789 	pm_runtime_disable(&pdev->dev);
1790 
1791 	/* Release IRQ */
1792 	free_irq(ssp->irq, drv_data);
1793 
1794 	/* Release SSP */
1795 	pxa_ssp_free(ssp);
1796 
1797 	return 0;
1798 }
1799 
pxa2xx_spi_shutdown(struct platform_device * pdev)1800 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1801 {
1802 	int status = 0;
1803 
1804 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1805 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1806 }
1807 
1808 #ifdef CONFIG_PM_SLEEP
pxa2xx_spi_suspend(struct device * dev)1809 static int pxa2xx_spi_suspend(struct device *dev)
1810 {
1811 	struct driver_data *drv_data = dev_get_drvdata(dev);
1812 	struct ssp_device *ssp = drv_data->ssp;
1813 	int status;
1814 
1815 	status = spi_controller_suspend(drv_data->master);
1816 	if (status != 0)
1817 		return status;
1818 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1819 
1820 	if (!pm_runtime_suspended(dev))
1821 		clk_disable_unprepare(ssp->clk);
1822 
1823 	return 0;
1824 }
1825 
pxa2xx_spi_resume(struct device * dev)1826 static int pxa2xx_spi_resume(struct device *dev)
1827 {
1828 	struct driver_data *drv_data = dev_get_drvdata(dev);
1829 	struct ssp_device *ssp = drv_data->ssp;
1830 	int status;
1831 
1832 	/* Enable the SSP clock */
1833 	if (!pm_runtime_suspended(dev)) {
1834 		status = clk_prepare_enable(ssp->clk);
1835 		if (status)
1836 			return status;
1837 	}
1838 
1839 	/* Restore LPSS private register bits */
1840 	if (is_lpss_ssp(drv_data))
1841 		lpss_ssp_setup(drv_data);
1842 
1843 	/* Start the queue running */
1844 	status = spi_controller_resume(drv_data->master);
1845 	if (status != 0) {
1846 		dev_err(dev, "problem starting queue (%d)\n", status);
1847 		return status;
1848 	}
1849 
1850 	return 0;
1851 }
1852 #endif
1853 
1854 #ifdef CONFIG_PM
pxa2xx_spi_runtime_suspend(struct device * dev)1855 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1856 {
1857 	struct driver_data *drv_data = dev_get_drvdata(dev);
1858 
1859 	clk_disable_unprepare(drv_data->ssp->clk);
1860 	return 0;
1861 }
1862 
pxa2xx_spi_runtime_resume(struct device * dev)1863 static int pxa2xx_spi_runtime_resume(struct device *dev)
1864 {
1865 	struct driver_data *drv_data = dev_get_drvdata(dev);
1866 	int status;
1867 
1868 	status = clk_prepare_enable(drv_data->ssp->clk);
1869 	return status;
1870 }
1871 #endif
1872 
1873 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1874 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1875 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1876 			   pxa2xx_spi_runtime_resume, NULL)
1877 };
1878 
1879 static struct platform_driver driver = {
1880 	.driver = {
1881 		.name	= "pxa2xx-spi",
1882 		.pm	= &pxa2xx_spi_pm_ops,
1883 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1884 	},
1885 	.probe = pxa2xx_spi_probe,
1886 	.remove = pxa2xx_spi_remove,
1887 	.shutdown = pxa2xx_spi_shutdown,
1888 };
1889 
pxa2xx_spi_init(void)1890 static int __init pxa2xx_spi_init(void)
1891 {
1892 	return platform_driver_register(&driver);
1893 }
1894 subsys_initcall(pxa2xx_spi_init);
1895 
pxa2xx_spi_exit(void)1896 static void __exit pxa2xx_spi_exit(void)
1897 {
1898 	platform_driver_unregister(&driver);
1899 }
1900 module_exit(pxa2xx_spi_exit);
1901