• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
24 
25 #include <linux/spi/spi.h>
26 
27 #define SUN6I_FIFO_DEPTH		128
28 #define SUN8I_FIFO_DEPTH		64
29 
30 #define SUN6I_GBL_CTL_REG		0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
32 #define SUN6I_GBL_CTL_MASTER			BIT(1)
33 #define SUN6I_GBL_CTL_TP			BIT(7)
34 #define SUN6I_GBL_CTL_RST			BIT(31)
35 
36 #define SUN6I_TFR_CTL_REG		0x08
37 #define SUN6I_TFR_CTL_CPHA			BIT(0)
38 #define SUN6I_TFR_CTL_CPOL			BIT(1)
39 #define SUN6I_TFR_CTL_SPOL			BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK			0x30
41 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
44 #define SUN6I_TFR_CTL_DHB			BIT(8)
45 #define SUN6I_TFR_CTL_FBS			BIT(12)
46 #define SUN6I_TFR_CTL_XCH			BIT(31)
47 
48 #define SUN6I_INT_CTL_REG		0x10
49 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
52 #define SUN6I_INT_CTL_TC			BIT(12)
53 
54 #define SUN6I_INT_STA_REG		0x14
55 
56 #define SUN6I_FIFO_CTL_REG		0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
59 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
60 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
62 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
63 
64 #define SUN6I_FIFO_STA_REG		0x1c
65 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
66 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
67 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
68 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
69 
70 #define SUN6I_CLK_CTL_REG		0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
72 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
74 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS			BIT(12)
76 
77 #define SUN6I_MAX_XFER_SIZE		0xffffff
78 
79 #define SUN6I_BURST_CNT_REG		0x30
80 #define SUN6I_BURST_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
81 
82 #define SUN6I_XMIT_CNT_REG		0x34
83 #define SUN6I_XMIT_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
84 
85 #define SUN6I_BURST_CTL_CNT_REG		0x38
86 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & SUN6I_MAX_XFER_SIZE)
87 
88 #define SUN6I_TXDATA_REG		0x200
89 #define SUN6I_RXDATA_REG		0x300
90 
91 struct sun6i_spi {
92 	struct spi_master	*master;
93 	void __iomem		*base_addr;
94 	struct clk		*hclk;
95 	struct clk		*mclk;
96 	struct reset_control	*rstc;
97 
98 	struct completion	done;
99 
100 	const u8		*tx_buf;
101 	u8			*rx_buf;
102 	int			len;
103 	unsigned long		fifo_depth;
104 };
105 
sun6i_spi_read(struct sun6i_spi * sspi,u32 reg)106 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
107 {
108 	return readl(sspi->base_addr + reg);
109 }
110 
sun6i_spi_write(struct sun6i_spi * sspi,u32 reg,u32 value)111 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
112 {
113 	writel(value, sspi->base_addr + reg);
114 }
115 
sun6i_spi_get_tx_fifo_count(struct sun6i_spi * sspi)116 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
117 {
118 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
119 
120 	reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
121 
122 	return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
123 }
124 
sun6i_spi_enable_interrupt(struct sun6i_spi * sspi,u32 mask)125 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
126 {
127 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
128 
129 	reg |= mask;
130 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
131 }
132 
sun6i_spi_disable_interrupt(struct sun6i_spi * sspi,u32 mask)133 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
134 {
135 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
136 
137 	reg &= ~mask;
138 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
139 }
140 
sun6i_spi_drain_fifo(struct sun6i_spi * sspi,int len)141 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
142 {
143 	u32 reg, cnt;
144 	u8 byte;
145 
146 	/* See how much data is available */
147 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
148 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
149 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
150 
151 	if (len > cnt)
152 		len = cnt;
153 
154 	while (len--) {
155 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
156 		if (sspi->rx_buf)
157 			*sspi->rx_buf++ = byte;
158 	}
159 }
160 
sun6i_spi_fill_fifo(struct sun6i_spi * sspi,int len)161 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
162 {
163 	u32 cnt;
164 	u8 byte;
165 
166 	/* See how much data we can fit */
167 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
168 
169 	len = min3(len, (int)cnt, sspi->len);
170 
171 	while (len--) {
172 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
173 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
174 		sspi->len--;
175 	}
176 }
177 
sun6i_spi_set_cs(struct spi_device * spi,bool enable)178 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
179 {
180 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
181 	u32 reg;
182 
183 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
184 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
185 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
186 
187 	if (enable)
188 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
189 	else
190 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
191 
192 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
193 }
194 
sun6i_spi_max_transfer_size(struct spi_device * spi)195 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
196 {
197 	return SUN6I_MAX_XFER_SIZE - 1;
198 }
199 
sun6i_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)200 static int sun6i_spi_transfer_one(struct spi_master *master,
201 				  struct spi_device *spi,
202 				  struct spi_transfer *tfr)
203 {
204 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
205 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
206 	unsigned int start, end, tx_time;
207 	unsigned int trig_level;
208 	unsigned int tx_len = 0;
209 	int ret = 0;
210 	u32 reg;
211 
212 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
213 		return -EINVAL;
214 
215 	reinit_completion(&sspi->done);
216 	sspi->tx_buf = tfr->tx_buf;
217 	sspi->rx_buf = tfr->rx_buf;
218 	sspi->len = tfr->len;
219 
220 	/* Clear pending interrupts */
221 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
222 
223 	/* Reset FIFO */
224 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
225 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
226 
227 	/*
228 	 * Setup FIFO interrupt trigger level
229 	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
230 	 * value used in old generation of Allwinner SPI controller.
231 	 * (See spi-sun4i.c)
232 	 */
233 	trig_level = sspi->fifo_depth / 4 * 3;
234 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
235 			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
236 			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
237 
238 	/*
239 	 * Setup the transfer control register: Chip Select,
240 	 * polarities, etc.
241 	 */
242 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
243 
244 	if (spi->mode & SPI_CPOL)
245 		reg |= SUN6I_TFR_CTL_CPOL;
246 	else
247 		reg &= ~SUN6I_TFR_CTL_CPOL;
248 
249 	if (spi->mode & SPI_CPHA)
250 		reg |= SUN6I_TFR_CTL_CPHA;
251 	else
252 		reg &= ~SUN6I_TFR_CTL_CPHA;
253 
254 	if (spi->mode & SPI_LSB_FIRST)
255 		reg |= SUN6I_TFR_CTL_FBS;
256 	else
257 		reg &= ~SUN6I_TFR_CTL_FBS;
258 
259 	/*
260 	 * If it's a TX only transfer, we don't want to fill the RX
261 	 * FIFO with bogus data
262 	 */
263 	if (sspi->rx_buf)
264 		reg &= ~SUN6I_TFR_CTL_DHB;
265 	else
266 		reg |= SUN6I_TFR_CTL_DHB;
267 
268 	/* We want to control the chip select manually */
269 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
270 
271 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
272 
273 	/* Ensure that we have a parent clock fast enough */
274 	mclk_rate = clk_get_rate(sspi->mclk);
275 	if (mclk_rate < (2 * tfr->speed_hz)) {
276 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
277 		mclk_rate = clk_get_rate(sspi->mclk);
278 	}
279 
280 	/*
281 	 * Setup clock divider.
282 	 *
283 	 * We have two choices there. Either we can use the clock
284 	 * divide rate 1, which is calculated thanks to this formula:
285 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
286 	 * Or we can use CDR2, which is calculated with the formula:
287 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
288 	 * Wether we use the former or the latter is set through the
289 	 * DRS bit.
290 	 *
291 	 * First try CDR2, and if we can't reach the expected
292 	 * frequency, fall back to CDR1.
293 	 */
294 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
295 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
296 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
297 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
298 	} else {
299 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
300 		reg = SUN6I_CLK_CTL_CDR1(div);
301 	}
302 
303 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
304 
305 	/* Setup the transfer now... */
306 	if (sspi->tx_buf)
307 		tx_len = tfr->len;
308 
309 	/* Setup the counters */
310 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
311 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
312 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
313 			SUN6I_BURST_CTL_CNT_STC(tx_len));
314 
315 	/* Fill the TX FIFO */
316 	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
317 
318 	/* Enable the interrupts */
319 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
320 	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
321 					 SUN6I_INT_CTL_RF_RDY);
322 	if (tx_len > sspi->fifo_depth)
323 		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
324 
325 	/* Start the transfer */
326 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
327 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
328 
329 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
330 	start = jiffies;
331 	timeout = wait_for_completion_timeout(&sspi->done,
332 					      msecs_to_jiffies(tx_time));
333 	end = jiffies;
334 	if (!timeout) {
335 		dev_warn(&master->dev,
336 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
337 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
338 			 jiffies_to_msecs(end - start), tx_time);
339 		ret = -ETIMEDOUT;
340 		goto out;
341 	}
342 
343 out:
344 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
345 
346 	return ret;
347 }
348 
sun6i_spi_handler(int irq,void * dev_id)349 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
350 {
351 	struct sun6i_spi *sspi = dev_id;
352 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
353 
354 	/* Transfer complete */
355 	if (status & SUN6I_INT_CTL_TC) {
356 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
357 		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
358 		complete(&sspi->done);
359 		return IRQ_HANDLED;
360 	}
361 
362 	/* Receive FIFO 3/4 full */
363 	if (status & SUN6I_INT_CTL_RF_RDY) {
364 		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
365 		/* Only clear the interrupt _after_ draining the FIFO */
366 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
367 		return IRQ_HANDLED;
368 	}
369 
370 	/* Transmit FIFO 3/4 empty */
371 	if (status & SUN6I_INT_CTL_TF_ERQ) {
372 		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
373 
374 		if (!sspi->len)
375 			/* nothing left to transmit */
376 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
377 
378 		/* Only clear the interrupt _after_ re-seeding the FIFO */
379 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
380 
381 		return IRQ_HANDLED;
382 	}
383 
384 	return IRQ_NONE;
385 }
386 
sun6i_spi_runtime_resume(struct device * dev)387 static int sun6i_spi_runtime_resume(struct device *dev)
388 {
389 	struct spi_master *master = dev_get_drvdata(dev);
390 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
391 	int ret;
392 
393 	ret = clk_prepare_enable(sspi->hclk);
394 	if (ret) {
395 		dev_err(dev, "Couldn't enable AHB clock\n");
396 		goto out;
397 	}
398 
399 	ret = clk_prepare_enable(sspi->mclk);
400 	if (ret) {
401 		dev_err(dev, "Couldn't enable module clock\n");
402 		goto err;
403 	}
404 
405 	ret = reset_control_deassert(sspi->rstc);
406 	if (ret) {
407 		dev_err(dev, "Couldn't deassert the device from reset\n");
408 		goto err2;
409 	}
410 
411 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
412 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
413 
414 	return 0;
415 
416 err2:
417 	clk_disable_unprepare(sspi->mclk);
418 err:
419 	clk_disable_unprepare(sspi->hclk);
420 out:
421 	return ret;
422 }
423 
sun6i_spi_runtime_suspend(struct device * dev)424 static int sun6i_spi_runtime_suspend(struct device *dev)
425 {
426 	struct spi_master *master = dev_get_drvdata(dev);
427 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
428 
429 	reset_control_assert(sspi->rstc);
430 	clk_disable_unprepare(sspi->mclk);
431 	clk_disable_unprepare(sspi->hclk);
432 
433 	return 0;
434 }
435 
sun6i_spi_probe(struct platform_device * pdev)436 static int sun6i_spi_probe(struct platform_device *pdev)
437 {
438 	struct spi_master *master;
439 	struct sun6i_spi *sspi;
440 	struct resource	*res;
441 	int ret = 0, irq;
442 
443 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
444 	if (!master) {
445 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
446 		return -ENOMEM;
447 	}
448 
449 	platform_set_drvdata(pdev, master);
450 	sspi = spi_master_get_devdata(master);
451 
452 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
453 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
454 	if (IS_ERR(sspi->base_addr)) {
455 		ret = PTR_ERR(sspi->base_addr);
456 		goto err_free_master;
457 	}
458 
459 	irq = platform_get_irq(pdev, 0);
460 	if (irq < 0) {
461 		dev_err(&pdev->dev, "No spi IRQ specified\n");
462 		ret = -ENXIO;
463 		goto err_free_master;
464 	}
465 
466 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
467 			       0, "sun6i-spi", sspi);
468 	if (ret) {
469 		dev_err(&pdev->dev, "Cannot request IRQ\n");
470 		goto err_free_master;
471 	}
472 
473 	sspi->master = master;
474 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
475 
476 	master->max_speed_hz = 100 * 1000 * 1000;
477 	master->min_speed_hz = 3 * 1000;
478 	master->set_cs = sun6i_spi_set_cs;
479 	master->transfer_one = sun6i_spi_transfer_one;
480 	master->num_chipselect = 4;
481 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
482 	master->bits_per_word_mask = SPI_BPW_MASK(8);
483 	master->dev.of_node = pdev->dev.of_node;
484 	master->auto_runtime_pm = true;
485 	master->max_transfer_size = sun6i_spi_max_transfer_size;
486 
487 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
488 	if (IS_ERR(sspi->hclk)) {
489 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
490 		ret = PTR_ERR(sspi->hclk);
491 		goto err_free_master;
492 	}
493 
494 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
495 	if (IS_ERR(sspi->mclk)) {
496 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
497 		ret = PTR_ERR(sspi->mclk);
498 		goto err_free_master;
499 	}
500 
501 	init_completion(&sspi->done);
502 
503 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
504 	if (IS_ERR(sspi->rstc)) {
505 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
506 		ret = PTR_ERR(sspi->rstc);
507 		goto err_free_master;
508 	}
509 
510 	/*
511 	 * This wake-up/shutdown pattern is to be able to have the
512 	 * device woken up, even if runtime_pm is disabled
513 	 */
514 	ret = sun6i_spi_runtime_resume(&pdev->dev);
515 	if (ret) {
516 		dev_err(&pdev->dev, "Couldn't resume the device\n");
517 		goto err_free_master;
518 	}
519 
520 	pm_runtime_set_active(&pdev->dev);
521 	pm_runtime_enable(&pdev->dev);
522 	pm_runtime_idle(&pdev->dev);
523 
524 	ret = devm_spi_register_master(&pdev->dev, master);
525 	if (ret) {
526 		dev_err(&pdev->dev, "cannot register SPI master\n");
527 		goto err_pm_disable;
528 	}
529 
530 	return 0;
531 
532 err_pm_disable:
533 	pm_runtime_disable(&pdev->dev);
534 	sun6i_spi_runtime_suspend(&pdev->dev);
535 err_free_master:
536 	spi_master_put(master);
537 	return ret;
538 }
539 
sun6i_spi_remove(struct platform_device * pdev)540 static int sun6i_spi_remove(struct platform_device *pdev)
541 {
542 	pm_runtime_force_suspend(&pdev->dev);
543 
544 	return 0;
545 }
546 
547 static const struct of_device_id sun6i_spi_match[] = {
548 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
549 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
550 	{}
551 };
552 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
553 
554 static const struct dev_pm_ops sun6i_spi_pm_ops = {
555 	.runtime_resume		= sun6i_spi_runtime_resume,
556 	.runtime_suspend	= sun6i_spi_runtime_suspend,
557 };
558 
559 static struct platform_driver sun6i_spi_driver = {
560 	.probe	= sun6i_spi_probe,
561 	.remove	= sun6i_spi_remove,
562 	.driver	= {
563 		.name		= "sun6i-spi",
564 		.of_match_table	= sun6i_spi_match,
565 		.pm		= &sun6i_spi_pm_ops,
566 	},
567 };
568 module_platform_driver(sun6i_spi_driver);
569 
570 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
571 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
572 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
573 MODULE_LICENSE("GPL");
574