1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/property.h>
36 #include <linux/export.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 #include <linux/highmem.h>
44 #include <linux/idr.h>
45 #include <linux/platform_data/x86/apple.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/spi.h>
49
50 #include "internals.h"
51
52 static DEFINE_IDR(spi_master_idr);
53
spidev_release(struct device * dev)54 static void spidev_release(struct device *dev)
55 {
56 struct spi_device *spi = to_spi_device(dev);
57
58 /* spi controllers may cleanup for released devices */
59 if (spi->controller->cleanup)
60 spi->controller->cleanup(spi);
61
62 spi_controller_put(spi->controller);
63 kfree(spi);
64 }
65
66 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)67 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
68 {
69 const struct spi_device *spi = to_spi_device(dev);
70 int len;
71
72 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73 if (len != -ENODEV)
74 return len;
75
76 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
77 }
78 static DEVICE_ATTR_RO(modalias);
79
80 #define SPI_STATISTICS_ATTRS(field, file) \
81 static ssize_t spi_controller_##field##_show(struct device *dev, \
82 struct device_attribute *attr, \
83 char *buf) \
84 { \
85 struct spi_controller *ctlr = container_of(dev, \
86 struct spi_controller, dev); \
87 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
88 } \
89 static struct device_attribute dev_attr_spi_controller_##field = { \
90 .attr = { .name = file, .mode = 0444 }, \
91 .show = spi_controller_##field##_show, \
92 }; \
93 static ssize_t spi_device_##field##_show(struct device *dev, \
94 struct device_attribute *attr, \
95 char *buf) \
96 { \
97 struct spi_device *spi = to_spi_device(dev); \
98 return spi_statistics_##field##_show(&spi->statistics, buf); \
99 } \
100 static struct device_attribute dev_attr_spi_device_##field = { \
101 .attr = { .name = file, .mode = 0444 }, \
102 .show = spi_device_##field##_show, \
103 }
104
105 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
106 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
107 char *buf) \
108 { \
109 unsigned long flags; \
110 ssize_t len; \
111 spin_lock_irqsave(&stat->lock, flags); \
112 len = sprintf(buf, format_string, stat->field); \
113 spin_unlock_irqrestore(&stat->lock, flags); \
114 return len; \
115 } \
116 SPI_STATISTICS_ATTRS(name, file)
117
118 #define SPI_STATISTICS_SHOW(field, format_string) \
119 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
120 field, format_string)
121
122 SPI_STATISTICS_SHOW(messages, "%lu");
123 SPI_STATISTICS_SHOW(transfers, "%lu");
124 SPI_STATISTICS_SHOW(errors, "%lu");
125 SPI_STATISTICS_SHOW(timedout, "%lu");
126
127 SPI_STATISTICS_SHOW(spi_sync, "%lu");
128 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
129 SPI_STATISTICS_SHOW(spi_async, "%lu");
130
131 SPI_STATISTICS_SHOW(bytes, "%llu");
132 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
133 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
134
135 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
136 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
137 "transfer_bytes_histo_" number, \
138 transfer_bytes_histo[index], "%lu")
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
156
157 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
158
159 static struct attribute *spi_dev_attrs[] = {
160 &dev_attr_modalias.attr,
161 NULL,
162 };
163
164 static const struct attribute_group spi_dev_group = {
165 .attrs = spi_dev_attrs,
166 };
167
168 static struct attribute *spi_device_statistics_attrs[] = {
169 &dev_attr_spi_device_messages.attr,
170 &dev_attr_spi_device_transfers.attr,
171 &dev_attr_spi_device_errors.attr,
172 &dev_attr_spi_device_timedout.attr,
173 &dev_attr_spi_device_spi_sync.attr,
174 &dev_attr_spi_device_spi_sync_immediate.attr,
175 &dev_attr_spi_device_spi_async.attr,
176 &dev_attr_spi_device_bytes.attr,
177 &dev_attr_spi_device_bytes_rx.attr,
178 &dev_attr_spi_device_bytes_tx.attr,
179 &dev_attr_spi_device_transfer_bytes_histo0.attr,
180 &dev_attr_spi_device_transfer_bytes_histo1.attr,
181 &dev_attr_spi_device_transfer_bytes_histo2.attr,
182 &dev_attr_spi_device_transfer_bytes_histo3.attr,
183 &dev_attr_spi_device_transfer_bytes_histo4.attr,
184 &dev_attr_spi_device_transfer_bytes_histo5.attr,
185 &dev_attr_spi_device_transfer_bytes_histo6.attr,
186 &dev_attr_spi_device_transfer_bytes_histo7.attr,
187 &dev_attr_spi_device_transfer_bytes_histo8.attr,
188 &dev_attr_spi_device_transfer_bytes_histo9.attr,
189 &dev_attr_spi_device_transfer_bytes_histo10.attr,
190 &dev_attr_spi_device_transfer_bytes_histo11.attr,
191 &dev_attr_spi_device_transfer_bytes_histo12.attr,
192 &dev_attr_spi_device_transfer_bytes_histo13.attr,
193 &dev_attr_spi_device_transfer_bytes_histo14.attr,
194 &dev_attr_spi_device_transfer_bytes_histo15.attr,
195 &dev_attr_spi_device_transfer_bytes_histo16.attr,
196 &dev_attr_spi_device_transfers_split_maxsize.attr,
197 NULL,
198 };
199
200 static const struct attribute_group spi_device_statistics_group = {
201 .name = "statistics",
202 .attrs = spi_device_statistics_attrs,
203 };
204
205 static const struct attribute_group *spi_dev_groups[] = {
206 &spi_dev_group,
207 &spi_device_statistics_group,
208 NULL,
209 };
210
211 static struct attribute *spi_controller_statistics_attrs[] = {
212 &dev_attr_spi_controller_messages.attr,
213 &dev_attr_spi_controller_transfers.attr,
214 &dev_attr_spi_controller_errors.attr,
215 &dev_attr_spi_controller_timedout.attr,
216 &dev_attr_spi_controller_spi_sync.attr,
217 &dev_attr_spi_controller_spi_sync_immediate.attr,
218 &dev_attr_spi_controller_spi_async.attr,
219 &dev_attr_spi_controller_bytes.attr,
220 &dev_attr_spi_controller_bytes_rx.attr,
221 &dev_attr_spi_controller_bytes_tx.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
236 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
237 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
238 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
239 &dev_attr_spi_controller_transfers_split_maxsize.attr,
240 NULL,
241 };
242
243 static const struct attribute_group spi_controller_statistics_group = {
244 .name = "statistics",
245 .attrs = spi_controller_statistics_attrs,
246 };
247
248 static const struct attribute_group *spi_master_groups[] = {
249 &spi_controller_statistics_group,
250 NULL,
251 };
252
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)253 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
254 struct spi_transfer *xfer,
255 struct spi_controller *ctlr)
256 {
257 unsigned long flags;
258 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
259
260 if (l2len < 0)
261 l2len = 0;
262
263 spin_lock_irqsave(&stats->lock, flags);
264
265 stats->transfers++;
266 stats->transfer_bytes_histo[l2len]++;
267
268 stats->bytes += xfer->len;
269 if ((xfer->tx_buf) &&
270 (xfer->tx_buf != ctlr->dummy_tx))
271 stats->bytes_tx += xfer->len;
272 if ((xfer->rx_buf) &&
273 (xfer->rx_buf != ctlr->dummy_rx))
274 stats->bytes_rx += xfer->len;
275
276 spin_unlock_irqrestore(&stats->lock, flags);
277 }
278 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
279
280 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281 * and the sysfs version makes coldplug work too.
282 */
283
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)284 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
285 const struct spi_device *sdev)
286 {
287 while (id->name[0]) {
288 if (!strcmp(sdev->modalias, id->name))
289 return id;
290 id++;
291 }
292 return NULL;
293 }
294
spi_get_device_id(const struct spi_device * sdev)295 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
296 {
297 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
298
299 return spi_match_id(sdrv->id_table, sdev);
300 }
301 EXPORT_SYMBOL_GPL(spi_get_device_id);
302
spi_match_device(struct device * dev,struct device_driver * drv)303 static int spi_match_device(struct device *dev, struct device_driver *drv)
304 {
305 const struct spi_device *spi = to_spi_device(dev);
306 const struct spi_driver *sdrv = to_spi_driver(drv);
307
308 /* Attempt an OF style match */
309 if (of_driver_match_device(dev, drv))
310 return 1;
311
312 /* Then try ACPI */
313 if (acpi_driver_match_device(dev, drv))
314 return 1;
315
316 if (sdrv->id_table)
317 return !!spi_match_id(sdrv->id_table, spi);
318
319 return strcmp(spi->modalias, drv->name) == 0;
320 }
321
spi_uevent(struct device * dev,struct kobj_uevent_env * env)322 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
323 {
324 const struct spi_device *spi = to_spi_device(dev);
325 int rc;
326
327 rc = acpi_device_uevent_modalias(dev, env);
328 if (rc != -ENODEV)
329 return rc;
330
331 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
332 }
333
334 struct bus_type spi_bus_type = {
335 .name = "spi",
336 .dev_groups = spi_dev_groups,
337 .match = spi_match_device,
338 .uevent = spi_uevent,
339 };
340 EXPORT_SYMBOL_GPL(spi_bus_type);
341
342
spi_drv_probe(struct device * dev)343 static int spi_drv_probe(struct device *dev)
344 {
345 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
346 struct spi_device *spi = to_spi_device(dev);
347 int ret;
348
349 ret = of_clk_set_defaults(dev->of_node, false);
350 if (ret)
351 return ret;
352
353 if (dev->of_node) {
354 spi->irq = of_irq_get(dev->of_node, 0);
355 if (spi->irq == -EPROBE_DEFER)
356 return -EPROBE_DEFER;
357 if (spi->irq < 0)
358 spi->irq = 0;
359 }
360
361 ret = dev_pm_domain_attach(dev, true);
362 if (ret)
363 return ret;
364
365 ret = sdrv->probe(spi);
366 if (ret)
367 dev_pm_domain_detach(dev, true);
368
369 return ret;
370 }
371
spi_drv_remove(struct device * dev)372 static int spi_drv_remove(struct device *dev)
373 {
374 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
375 int ret;
376
377 ret = sdrv->remove(to_spi_device(dev));
378 dev_pm_domain_detach(dev, true);
379
380 return ret;
381 }
382
spi_drv_shutdown(struct device * dev)383 static void spi_drv_shutdown(struct device *dev)
384 {
385 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
386
387 sdrv->shutdown(to_spi_device(dev));
388 }
389
390 /**
391 * __spi_register_driver - register a SPI driver
392 * @owner: owner module of the driver to register
393 * @sdrv: the driver to register
394 * Context: can sleep
395 *
396 * Return: zero on success, else a negative error code.
397 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)398 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
399 {
400 sdrv->driver.owner = owner;
401 sdrv->driver.bus = &spi_bus_type;
402 if (sdrv->probe)
403 sdrv->driver.probe = spi_drv_probe;
404 if (sdrv->remove)
405 sdrv->driver.remove = spi_drv_remove;
406 if (sdrv->shutdown)
407 sdrv->driver.shutdown = spi_drv_shutdown;
408 return driver_register(&sdrv->driver);
409 }
410 EXPORT_SYMBOL_GPL(__spi_register_driver);
411
412 /*-------------------------------------------------------------------------*/
413
414 /* SPI devices should normally not be created by SPI device drivers; that
415 * would make them board-specific. Similarly with SPI controller drivers.
416 * Device registration normally goes into like arch/.../mach.../board-YYY.c
417 * with other readonly (flashable) information about mainboard devices.
418 */
419
420 struct boardinfo {
421 struct list_head list;
422 struct spi_board_info board_info;
423 };
424
425 static LIST_HEAD(board_list);
426 static LIST_HEAD(spi_controller_list);
427
428 /*
429 * Used to protect add/del opertion for board_info list and
430 * spi_controller list, and their matching process
431 * also used to protect object of type struct idr
432 */
433 static DEFINE_MUTEX(board_lock);
434
435 /*
436 * Prevents addition of devices with same chip select and
437 * addition of devices below an unregistering controller.
438 */
439 static DEFINE_MUTEX(spi_add_lock);
440
441 /**
442 * spi_alloc_device - Allocate a new SPI device
443 * @ctlr: Controller to which device is connected
444 * Context: can sleep
445 *
446 * Allows a driver to allocate and initialize a spi_device without
447 * registering it immediately. This allows a driver to directly
448 * fill the spi_device with device parameters before calling
449 * spi_add_device() on it.
450 *
451 * Caller is responsible to call spi_add_device() on the returned
452 * spi_device structure to add it to the SPI controller. If the caller
453 * needs to discard the spi_device without adding it, then it should
454 * call spi_dev_put() on it.
455 *
456 * Return: a pointer to the new device, or NULL.
457 */
spi_alloc_device(struct spi_controller * ctlr)458 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
459 {
460 struct spi_device *spi;
461
462 if (!spi_controller_get(ctlr))
463 return NULL;
464
465 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
466 if (!spi) {
467 spi_controller_put(ctlr);
468 return NULL;
469 }
470
471 spi->master = spi->controller = ctlr;
472 spi->dev.parent = &ctlr->dev;
473 spi->dev.bus = &spi_bus_type;
474 spi->dev.release = spidev_release;
475 spi->cs_gpio = -ENOENT;
476
477 spin_lock_init(&spi->statistics.lock);
478
479 device_initialize(&spi->dev);
480 return spi;
481 }
482 EXPORT_SYMBOL_GPL(spi_alloc_device);
483
spi_dev_set_name(struct spi_device * spi)484 static void spi_dev_set_name(struct spi_device *spi)
485 {
486 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
487
488 if (adev) {
489 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
490 return;
491 }
492
493 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
494 spi->chip_select);
495 }
496
spi_dev_check(struct device * dev,void * data)497 static int spi_dev_check(struct device *dev, void *data)
498 {
499 struct spi_device *spi = to_spi_device(dev);
500 struct spi_device *new_spi = data;
501
502 if (spi->controller == new_spi->controller &&
503 spi->chip_select == new_spi->chip_select)
504 return -EBUSY;
505 return 0;
506 }
507
508 /**
509 * spi_add_device - Add spi_device allocated with spi_alloc_device
510 * @spi: spi_device to register
511 *
512 * Companion function to spi_alloc_device. Devices allocated with
513 * spi_alloc_device can be added onto the spi bus with this function.
514 *
515 * Return: 0 on success; negative errno on failure
516 */
spi_add_device(struct spi_device * spi)517 int spi_add_device(struct spi_device *spi)
518 {
519 struct spi_controller *ctlr = spi->controller;
520 struct device *dev = ctlr->dev.parent;
521 int status;
522
523 /* Chipselects are numbered 0..max; validate. */
524 if (spi->chip_select >= ctlr->num_chipselect) {
525 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
526 ctlr->num_chipselect);
527 return -EINVAL;
528 }
529
530 /* Set the bus ID string */
531 spi_dev_set_name(spi);
532
533 /* We need to make sure there's no other device with this
534 * chipselect **BEFORE** we call setup(), else we'll trash
535 * its configuration. Lock against concurrent add() calls.
536 */
537 mutex_lock(&spi_add_lock);
538
539 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
540 if (status) {
541 dev_err(dev, "chipselect %d already in use\n",
542 spi->chip_select);
543 goto done;
544 }
545
546 /* Controller may unregister concurrently */
547 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
548 !device_is_registered(&ctlr->dev)) {
549 status = -ENODEV;
550 goto done;
551 }
552
553 if (ctlr->cs_gpios)
554 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
555
556 /* Drivers may modify this initial i/o setup, but will
557 * normally rely on the device being setup. Devices
558 * using SPI_CS_HIGH can't coexist well otherwise...
559 */
560 status = spi_setup(spi);
561 if (status < 0) {
562 dev_err(dev, "can't setup %s, status %d\n",
563 dev_name(&spi->dev), status);
564 goto done;
565 }
566
567 /* Device may be bound to an active driver when this returns */
568 status = device_add(&spi->dev);
569 if (status < 0)
570 dev_err(dev, "can't add %s, status %d\n",
571 dev_name(&spi->dev), status);
572 else
573 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
574
575 done:
576 mutex_unlock(&spi_add_lock);
577 return status;
578 }
579 EXPORT_SYMBOL_GPL(spi_add_device);
580
581 /**
582 * spi_new_device - instantiate one new SPI device
583 * @ctlr: Controller to which device is connected
584 * @chip: Describes the SPI device
585 * Context: can sleep
586 *
587 * On typical mainboards, this is purely internal; and it's not needed
588 * after board init creates the hard-wired devices. Some development
589 * platforms may not be able to use spi_register_board_info though, and
590 * this is exported so that for example a USB or parport based adapter
591 * driver could add devices (which it would learn about out-of-band).
592 *
593 * Return: the new device, or NULL.
594 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)595 struct spi_device *spi_new_device(struct spi_controller *ctlr,
596 struct spi_board_info *chip)
597 {
598 struct spi_device *proxy;
599 int status;
600
601 /* NOTE: caller did any chip->bus_num checks necessary.
602 *
603 * Also, unless we change the return value convention to use
604 * error-or-pointer (not NULL-or-pointer), troubleshootability
605 * suggests syslogged diagnostics are best here (ugh).
606 */
607
608 proxy = spi_alloc_device(ctlr);
609 if (!proxy)
610 return NULL;
611
612 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
613
614 proxy->chip_select = chip->chip_select;
615 proxy->max_speed_hz = chip->max_speed_hz;
616 proxy->mode = chip->mode;
617 proxy->irq = chip->irq;
618 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
619 proxy->dev.platform_data = (void *) chip->platform_data;
620 proxy->controller_data = chip->controller_data;
621 proxy->controller_state = NULL;
622
623 if (chip->properties) {
624 status = device_add_properties(&proxy->dev, chip->properties);
625 if (status) {
626 dev_err(&ctlr->dev,
627 "failed to add properties to '%s': %d\n",
628 chip->modalias, status);
629 goto err_dev_put;
630 }
631 }
632
633 status = spi_add_device(proxy);
634 if (status < 0)
635 goto err_remove_props;
636
637 return proxy;
638
639 err_remove_props:
640 if (chip->properties)
641 device_remove_properties(&proxy->dev);
642 err_dev_put:
643 spi_dev_put(proxy);
644 return NULL;
645 }
646 EXPORT_SYMBOL_GPL(spi_new_device);
647
648 /**
649 * spi_unregister_device - unregister a single SPI device
650 * @spi: spi_device to unregister
651 *
652 * Start making the passed SPI device vanish. Normally this would be handled
653 * by spi_unregister_controller().
654 */
spi_unregister_device(struct spi_device * spi)655 void spi_unregister_device(struct spi_device *spi)
656 {
657 if (!spi)
658 return;
659
660 if (spi->dev.of_node) {
661 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
662 of_node_put(spi->dev.of_node);
663 }
664 if (ACPI_COMPANION(&spi->dev))
665 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
666 device_unregister(&spi->dev);
667 }
668 EXPORT_SYMBOL_GPL(spi_unregister_device);
669
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)670 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
671 struct spi_board_info *bi)
672 {
673 struct spi_device *dev;
674
675 if (ctlr->bus_num != bi->bus_num)
676 return;
677
678 dev = spi_new_device(ctlr, bi);
679 if (!dev)
680 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
681 bi->modalias);
682 }
683
684 /**
685 * spi_register_board_info - register SPI devices for a given board
686 * @info: array of chip descriptors
687 * @n: how many descriptors are provided
688 * Context: can sleep
689 *
690 * Board-specific early init code calls this (probably during arch_initcall)
691 * with segments of the SPI device table. Any device nodes are created later,
692 * after the relevant parent SPI controller (bus_num) is defined. We keep
693 * this table of devices forever, so that reloading a controller driver will
694 * not make Linux forget about these hard-wired devices.
695 *
696 * Other code can also call this, e.g. a particular add-on board might provide
697 * SPI devices through its expansion connector, so code initializing that board
698 * would naturally declare its SPI devices.
699 *
700 * The board info passed can safely be __initdata ... but be careful of
701 * any embedded pointers (platform_data, etc), they're copied as-is.
702 * Device properties are deep-copied though.
703 *
704 * Return: zero on success, else a negative error code.
705 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)706 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
707 {
708 struct boardinfo *bi;
709 int i;
710
711 if (!n)
712 return 0;
713
714 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
715 if (!bi)
716 return -ENOMEM;
717
718 for (i = 0; i < n; i++, bi++, info++) {
719 struct spi_controller *ctlr;
720
721 memcpy(&bi->board_info, info, sizeof(*info));
722 if (info->properties) {
723 bi->board_info.properties =
724 property_entries_dup(info->properties);
725 if (IS_ERR(bi->board_info.properties))
726 return PTR_ERR(bi->board_info.properties);
727 }
728
729 mutex_lock(&board_lock);
730 list_add_tail(&bi->list, &board_list);
731 list_for_each_entry(ctlr, &spi_controller_list, list)
732 spi_match_controller_to_boardinfo(ctlr,
733 &bi->board_info);
734 mutex_unlock(&board_lock);
735 }
736
737 return 0;
738 }
739
740 /*-------------------------------------------------------------------------*/
741
spi_set_cs(struct spi_device * spi,bool enable)742 static void spi_set_cs(struct spi_device *spi, bool enable)
743 {
744 if (spi->mode & SPI_CS_HIGH)
745 enable = !enable;
746
747 if (gpio_is_valid(spi->cs_gpio)) {
748 gpio_set_value(spi->cs_gpio, !enable);
749 /* Some SPI masters need both GPIO CS & slave_select */
750 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
751 spi->controller->set_cs)
752 spi->controller->set_cs(spi, !enable);
753 } else if (spi->controller->set_cs) {
754 spi->controller->set_cs(spi, !enable);
755 }
756 }
757
758 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)759 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
760 struct sg_table *sgt, void *buf, size_t len,
761 enum dma_data_direction dir)
762 {
763 const bool vmalloced_buf = is_vmalloc_addr(buf);
764 unsigned int max_seg_size = dma_get_max_seg_size(dev);
765 #ifdef CONFIG_HIGHMEM
766 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
767 (unsigned long)buf < (PKMAP_BASE +
768 (LAST_PKMAP * PAGE_SIZE)));
769 #else
770 const bool kmap_buf = false;
771 #endif
772 int desc_len;
773 int sgs;
774 struct page *vm_page;
775 struct scatterlist *sg;
776 void *sg_buf;
777 size_t min;
778 int i, ret;
779
780 if (vmalloced_buf || kmap_buf) {
781 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
782 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
783 } else if (virt_addr_valid(buf)) {
784 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
785 sgs = DIV_ROUND_UP(len, desc_len);
786 } else {
787 return -EINVAL;
788 }
789
790 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
791 if (ret != 0)
792 return ret;
793
794 sg = &sgt->sgl[0];
795 for (i = 0; i < sgs; i++) {
796
797 if (vmalloced_buf || kmap_buf) {
798 /*
799 * Next scatterlist entry size is the minimum between
800 * the desc_len and the remaining buffer length that
801 * fits in a page.
802 */
803 min = min_t(size_t, desc_len,
804 min_t(size_t, len,
805 PAGE_SIZE - offset_in_page(buf)));
806 if (vmalloced_buf)
807 vm_page = vmalloc_to_page(buf);
808 else
809 vm_page = kmap_to_page(buf);
810 if (!vm_page) {
811 sg_free_table(sgt);
812 return -ENOMEM;
813 }
814 sg_set_page(sg, vm_page,
815 min, offset_in_page(buf));
816 } else {
817 min = min_t(size_t, len, desc_len);
818 sg_buf = buf;
819 sg_set_buf(sg, sg_buf, min);
820 }
821
822 buf += min;
823 len -= min;
824 sg = sg_next(sg);
825 }
826
827 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
828 if (!ret)
829 ret = -ENOMEM;
830 if (ret < 0) {
831 sg_free_table(sgt);
832 return ret;
833 }
834
835 sgt->nents = ret;
836
837 return 0;
838 }
839
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)840 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
841 struct sg_table *sgt, enum dma_data_direction dir)
842 {
843 if (sgt->orig_nents) {
844 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
845 sg_free_table(sgt);
846 }
847 }
848
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)849 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
850 {
851 struct device *tx_dev, *rx_dev;
852 struct spi_transfer *xfer;
853 int ret;
854
855 if (!ctlr->can_dma)
856 return 0;
857
858 if (ctlr->dma_tx)
859 tx_dev = ctlr->dma_tx->device->dev;
860 else
861 tx_dev = ctlr->dev.parent;
862
863 if (ctlr->dma_rx)
864 rx_dev = ctlr->dma_rx->device->dev;
865 else
866 rx_dev = ctlr->dev.parent;
867
868 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
869 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
870 continue;
871
872 if (xfer->tx_buf != NULL) {
873 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
874 (void *)xfer->tx_buf, xfer->len,
875 DMA_TO_DEVICE);
876 if (ret != 0)
877 return ret;
878 }
879
880 if (xfer->rx_buf != NULL) {
881 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
882 xfer->rx_buf, xfer->len,
883 DMA_FROM_DEVICE);
884 if (ret != 0) {
885 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
886 DMA_TO_DEVICE);
887 return ret;
888 }
889 }
890 }
891
892 ctlr->cur_msg_mapped = true;
893
894 return 0;
895 }
896
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)897 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
898 {
899 struct spi_transfer *xfer;
900 struct device *tx_dev, *rx_dev;
901
902 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
903 return 0;
904
905 if (ctlr->dma_tx)
906 tx_dev = ctlr->dma_tx->device->dev;
907 else
908 tx_dev = ctlr->dev.parent;
909
910 if (ctlr->dma_rx)
911 rx_dev = ctlr->dma_rx->device->dev;
912 else
913 rx_dev = ctlr->dev.parent;
914
915 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 continue;
918
919 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
920 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
921 }
922
923 return 0;
924 }
925 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)926 static inline int __spi_map_msg(struct spi_controller *ctlr,
927 struct spi_message *msg)
928 {
929 return 0;
930 }
931
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)932 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
933 struct spi_message *msg)
934 {
935 return 0;
936 }
937 #endif /* !CONFIG_HAS_DMA */
938
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)939 static inline int spi_unmap_msg(struct spi_controller *ctlr,
940 struct spi_message *msg)
941 {
942 struct spi_transfer *xfer;
943
944 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
945 /*
946 * Restore the original value of tx_buf or rx_buf if they are
947 * NULL.
948 */
949 if (xfer->tx_buf == ctlr->dummy_tx)
950 xfer->tx_buf = NULL;
951 if (xfer->rx_buf == ctlr->dummy_rx)
952 xfer->rx_buf = NULL;
953 }
954
955 return __spi_unmap_msg(ctlr, msg);
956 }
957
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)958 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
959 {
960 struct spi_transfer *xfer;
961 void *tmp;
962 unsigned int max_tx, max_rx;
963
964 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
965 max_tx = 0;
966 max_rx = 0;
967
968 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
969 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
970 !xfer->tx_buf)
971 max_tx = max(xfer->len, max_tx);
972 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
973 !xfer->rx_buf)
974 max_rx = max(xfer->len, max_rx);
975 }
976
977 if (max_tx) {
978 tmp = krealloc(ctlr->dummy_tx, max_tx,
979 GFP_KERNEL | GFP_DMA);
980 if (!tmp)
981 return -ENOMEM;
982 ctlr->dummy_tx = tmp;
983 memset(tmp, 0, max_tx);
984 }
985
986 if (max_rx) {
987 tmp = krealloc(ctlr->dummy_rx, max_rx,
988 GFP_KERNEL | GFP_DMA);
989 if (!tmp)
990 return -ENOMEM;
991 ctlr->dummy_rx = tmp;
992 }
993
994 if (max_tx || max_rx) {
995 list_for_each_entry(xfer, &msg->transfers,
996 transfer_list) {
997 if (!xfer->len)
998 continue;
999 if (!xfer->tx_buf)
1000 xfer->tx_buf = ctlr->dummy_tx;
1001 if (!xfer->rx_buf)
1002 xfer->rx_buf = ctlr->dummy_rx;
1003 }
1004 }
1005 }
1006
1007 return __spi_map_msg(ctlr, msg);
1008 }
1009
1010 /*
1011 * spi_transfer_one_message - Default implementation of transfer_one_message()
1012 *
1013 * This is a standard implementation of transfer_one_message() for
1014 * drivers which implement a transfer_one() operation. It provides
1015 * standard handling of delays and chip select management.
1016 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1017 static int spi_transfer_one_message(struct spi_controller *ctlr,
1018 struct spi_message *msg)
1019 {
1020 struct spi_transfer *xfer;
1021 bool keep_cs = false;
1022 int ret = 0;
1023 unsigned long long ms = 1;
1024 struct spi_statistics *statm = &ctlr->statistics;
1025 struct spi_statistics *stats = &msg->spi->statistics;
1026
1027 spi_set_cs(msg->spi, true);
1028
1029 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1030 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1031
1032 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1033 trace_spi_transfer_start(msg, xfer);
1034
1035 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1036 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1037
1038 if (xfer->tx_buf || xfer->rx_buf) {
1039 reinit_completion(&ctlr->xfer_completion);
1040
1041 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1042 if (ret < 0) {
1043 SPI_STATISTICS_INCREMENT_FIELD(statm,
1044 errors);
1045 SPI_STATISTICS_INCREMENT_FIELD(stats,
1046 errors);
1047 dev_err(&msg->spi->dev,
1048 "SPI transfer failed: %d\n", ret);
1049 goto out;
1050 }
1051
1052 if (ret > 0) {
1053 ret = 0;
1054 ms = 8LL * 1000LL * xfer->len;
1055 do_div(ms, xfer->speed_hz);
1056 ms += ms + 200; /* some tolerance */
1057
1058 if (ms > UINT_MAX)
1059 ms = UINT_MAX;
1060
1061 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1062 msecs_to_jiffies(ms));
1063 }
1064
1065 if (ms == 0) {
1066 SPI_STATISTICS_INCREMENT_FIELD(statm,
1067 timedout);
1068 SPI_STATISTICS_INCREMENT_FIELD(stats,
1069 timedout);
1070 dev_err(&msg->spi->dev,
1071 "SPI transfer timed out\n");
1072 msg->status = -ETIMEDOUT;
1073 }
1074 } else {
1075 if (xfer->len)
1076 dev_err(&msg->spi->dev,
1077 "Bufferless transfer has length %u\n",
1078 xfer->len);
1079 }
1080
1081 trace_spi_transfer_stop(msg, xfer);
1082
1083 if (msg->status != -EINPROGRESS)
1084 goto out;
1085
1086 if (xfer->delay_usecs) {
1087 u16 us = xfer->delay_usecs;
1088
1089 if (us <= 10)
1090 udelay(us);
1091 else
1092 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1093 }
1094
1095 if (xfer->cs_change) {
1096 if (list_is_last(&xfer->transfer_list,
1097 &msg->transfers)) {
1098 keep_cs = true;
1099 } else {
1100 spi_set_cs(msg->spi, false);
1101 udelay(10);
1102 spi_set_cs(msg->spi, true);
1103 }
1104 }
1105
1106 msg->actual_length += xfer->len;
1107 }
1108
1109 out:
1110 if (ret != 0 || !keep_cs)
1111 spi_set_cs(msg->spi, false);
1112
1113 if (msg->status == -EINPROGRESS)
1114 msg->status = ret;
1115
1116 if (msg->status && ctlr->handle_err)
1117 ctlr->handle_err(ctlr, msg);
1118
1119 spi_finalize_current_message(ctlr);
1120
1121 return ret;
1122 }
1123
1124 /**
1125 * spi_finalize_current_transfer - report completion of a transfer
1126 * @ctlr: the controller reporting completion
1127 *
1128 * Called by SPI drivers using the core transfer_one_message()
1129 * implementation to notify it that the current interrupt driven
1130 * transfer has finished and the next one may be scheduled.
1131 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1132 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1133 {
1134 complete(&ctlr->xfer_completion);
1135 }
1136 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1137
1138 /**
1139 * __spi_pump_messages - function which processes spi message queue
1140 * @ctlr: controller to process queue for
1141 * @in_kthread: true if we are in the context of the message pump thread
1142 *
1143 * This function checks if there is any spi message in the queue that
1144 * needs processing and if so call out to the driver to initialize hardware
1145 * and transfer each message.
1146 *
1147 * Note that it is called both from the kthread itself and also from
1148 * inside spi_sync(); the queue extraction handling at the top of the
1149 * function should deal with this safely.
1150 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1151 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1152 {
1153 unsigned long flags;
1154 bool was_busy = false;
1155 int ret;
1156
1157 /* Lock queue */
1158 spin_lock_irqsave(&ctlr->queue_lock, flags);
1159
1160 /* Make sure we are not already running a message */
1161 if (ctlr->cur_msg) {
1162 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1163 return;
1164 }
1165
1166 /* If another context is idling the device then defer */
1167 if (ctlr->idling) {
1168 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1169 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1170 return;
1171 }
1172
1173 /* Check if the queue is idle */
1174 if (list_empty(&ctlr->queue) || !ctlr->running) {
1175 if (!ctlr->busy) {
1176 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1177 return;
1178 }
1179
1180 /* Only do teardown in the thread */
1181 if (!in_kthread) {
1182 kthread_queue_work(&ctlr->kworker,
1183 &ctlr->pump_messages);
1184 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1185 return;
1186 }
1187
1188 ctlr->busy = false;
1189 ctlr->idling = true;
1190 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1191
1192 kfree(ctlr->dummy_rx);
1193 ctlr->dummy_rx = NULL;
1194 kfree(ctlr->dummy_tx);
1195 ctlr->dummy_tx = NULL;
1196 if (ctlr->unprepare_transfer_hardware &&
1197 ctlr->unprepare_transfer_hardware(ctlr))
1198 dev_err(&ctlr->dev,
1199 "failed to unprepare transfer hardware\n");
1200 if (ctlr->auto_runtime_pm) {
1201 pm_runtime_mark_last_busy(ctlr->dev.parent);
1202 pm_runtime_put_autosuspend(ctlr->dev.parent);
1203 }
1204 trace_spi_controller_idle(ctlr);
1205
1206 spin_lock_irqsave(&ctlr->queue_lock, flags);
1207 ctlr->idling = false;
1208 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1209 return;
1210 }
1211
1212 /* Extract head of queue */
1213 ctlr->cur_msg =
1214 list_first_entry(&ctlr->queue, struct spi_message, queue);
1215
1216 list_del_init(&ctlr->cur_msg->queue);
1217 if (ctlr->busy)
1218 was_busy = true;
1219 else
1220 ctlr->busy = true;
1221 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1222
1223 mutex_lock(&ctlr->io_mutex);
1224
1225 if (!was_busy && ctlr->auto_runtime_pm) {
1226 ret = pm_runtime_get_sync(ctlr->dev.parent);
1227 if (ret < 0) {
1228 pm_runtime_put_noidle(ctlr->dev.parent);
1229 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1230 ret);
1231 mutex_unlock(&ctlr->io_mutex);
1232 return;
1233 }
1234 }
1235
1236 if (!was_busy)
1237 trace_spi_controller_busy(ctlr);
1238
1239 if (!was_busy && ctlr->prepare_transfer_hardware) {
1240 ret = ctlr->prepare_transfer_hardware(ctlr);
1241 if (ret) {
1242 dev_err(&ctlr->dev,
1243 "failed to prepare transfer hardware\n");
1244
1245 if (ctlr->auto_runtime_pm)
1246 pm_runtime_put(ctlr->dev.parent);
1247 mutex_unlock(&ctlr->io_mutex);
1248 return;
1249 }
1250 }
1251
1252 trace_spi_message_start(ctlr->cur_msg);
1253
1254 if (ctlr->prepare_message) {
1255 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1256 if (ret) {
1257 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1258 ret);
1259 ctlr->cur_msg->status = ret;
1260 spi_finalize_current_message(ctlr);
1261 goto out;
1262 }
1263 ctlr->cur_msg_prepared = true;
1264 }
1265
1266 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1267 if (ret) {
1268 ctlr->cur_msg->status = ret;
1269 spi_finalize_current_message(ctlr);
1270 goto out;
1271 }
1272
1273 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1274 if (ret) {
1275 dev_err(&ctlr->dev,
1276 "failed to transfer one message from queue\n");
1277 goto out;
1278 }
1279
1280 out:
1281 mutex_unlock(&ctlr->io_mutex);
1282
1283 /* Prod the scheduler in case transfer_one() was busy waiting */
1284 if (!ret)
1285 cond_resched();
1286 }
1287
1288 /**
1289 * spi_pump_messages - kthread work function which processes spi message queue
1290 * @work: pointer to kthread work struct contained in the controller struct
1291 */
spi_pump_messages(struct kthread_work * work)1292 static void spi_pump_messages(struct kthread_work *work)
1293 {
1294 struct spi_controller *ctlr =
1295 container_of(work, struct spi_controller, pump_messages);
1296
1297 __spi_pump_messages(ctlr, true);
1298 }
1299
spi_init_queue(struct spi_controller * ctlr)1300 static int spi_init_queue(struct spi_controller *ctlr)
1301 {
1302 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1303
1304 ctlr->running = false;
1305 ctlr->busy = false;
1306
1307 kthread_init_worker(&ctlr->kworker);
1308 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1309 "%s", dev_name(&ctlr->dev));
1310 if (IS_ERR(ctlr->kworker_task)) {
1311 dev_err(&ctlr->dev, "failed to create message pump task\n");
1312 return PTR_ERR(ctlr->kworker_task);
1313 }
1314 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1315
1316 /*
1317 * Controller config will indicate if this controller should run the
1318 * message pump with high (realtime) priority to reduce the transfer
1319 * latency on the bus by minimising the delay between a transfer
1320 * request and the scheduling of the message pump thread. Without this
1321 * setting the message pump thread will remain at default priority.
1322 */
1323 if (ctlr->rt) {
1324 dev_info(&ctlr->dev,
1325 "will run message pump with realtime priority\n");
1326 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
1327 }
1328
1329 return 0;
1330 }
1331
1332 /**
1333 * spi_get_next_queued_message() - called by driver to check for queued
1334 * messages
1335 * @ctlr: the controller to check for queued messages
1336 *
1337 * If there are more messages in the queue, the next message is returned from
1338 * this call.
1339 *
1340 * Return: the next message in the queue, else NULL if the queue is empty.
1341 */
spi_get_next_queued_message(struct spi_controller * ctlr)1342 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1343 {
1344 struct spi_message *next;
1345 unsigned long flags;
1346
1347 /* get a pointer to the next message, if any */
1348 spin_lock_irqsave(&ctlr->queue_lock, flags);
1349 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1350 queue);
1351 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1352
1353 return next;
1354 }
1355 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1356
1357 /**
1358 * spi_finalize_current_message() - the current message is complete
1359 * @ctlr: the controller to return the message to
1360 *
1361 * Called by the driver to notify the core that the message in the front of the
1362 * queue is complete and can be removed from the queue.
1363 */
spi_finalize_current_message(struct spi_controller * ctlr)1364 void spi_finalize_current_message(struct spi_controller *ctlr)
1365 {
1366 struct spi_message *mesg;
1367 unsigned long flags;
1368 int ret;
1369
1370 spin_lock_irqsave(&ctlr->queue_lock, flags);
1371 mesg = ctlr->cur_msg;
1372 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1373
1374 spi_unmap_msg(ctlr, mesg);
1375
1376 /* In the prepare_messages callback the spi bus has the opportunity to
1377 * split a transfer to smaller chunks.
1378 * Release splited transfers here since spi_map_msg is done on the
1379 * splited transfers.
1380 */
1381 spi_res_release(ctlr, mesg);
1382
1383 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1384 ret = ctlr->unprepare_message(ctlr, mesg);
1385 if (ret) {
1386 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1387 ret);
1388 }
1389 }
1390
1391 spin_lock_irqsave(&ctlr->queue_lock, flags);
1392 ctlr->cur_msg = NULL;
1393 ctlr->cur_msg_prepared = false;
1394 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1395 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396
1397 trace_spi_message_done(mesg);
1398
1399 mesg->state = NULL;
1400 if (mesg->complete)
1401 mesg->complete(mesg->context);
1402 }
1403 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1404
spi_start_queue(struct spi_controller * ctlr)1405 static int spi_start_queue(struct spi_controller *ctlr)
1406 {
1407 unsigned long flags;
1408
1409 spin_lock_irqsave(&ctlr->queue_lock, flags);
1410
1411 if (ctlr->running || ctlr->busy) {
1412 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1413 return -EBUSY;
1414 }
1415
1416 ctlr->running = true;
1417 ctlr->cur_msg = NULL;
1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1419
1420 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1421
1422 return 0;
1423 }
1424
spi_stop_queue(struct spi_controller * ctlr)1425 static int spi_stop_queue(struct spi_controller *ctlr)
1426 {
1427 unsigned long flags;
1428 unsigned limit = 500;
1429 int ret = 0;
1430
1431 spin_lock_irqsave(&ctlr->queue_lock, flags);
1432
1433 /*
1434 * This is a bit lame, but is optimized for the common execution path.
1435 * A wait_queue on the ctlr->busy could be used, but then the common
1436 * execution path (pump_messages) would be required to call wake_up or
1437 * friends on every SPI message. Do this instead.
1438 */
1439 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1440 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1441 usleep_range(10000, 11000);
1442 spin_lock_irqsave(&ctlr->queue_lock, flags);
1443 }
1444
1445 if (!list_empty(&ctlr->queue) || ctlr->busy)
1446 ret = -EBUSY;
1447 else
1448 ctlr->running = false;
1449
1450 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1451
1452 if (ret) {
1453 dev_warn(&ctlr->dev, "could not stop message queue\n");
1454 return ret;
1455 }
1456 return ret;
1457 }
1458
spi_destroy_queue(struct spi_controller * ctlr)1459 static int spi_destroy_queue(struct spi_controller *ctlr)
1460 {
1461 int ret;
1462
1463 ret = spi_stop_queue(ctlr);
1464
1465 /*
1466 * kthread_flush_worker will block until all work is done.
1467 * If the reason that stop_queue timed out is that the work will never
1468 * finish, then it does no good to call flush/stop thread, so
1469 * return anyway.
1470 */
1471 if (ret) {
1472 dev_err(&ctlr->dev, "problem destroying queue\n");
1473 return ret;
1474 }
1475
1476 kthread_flush_worker(&ctlr->kworker);
1477 kthread_stop(ctlr->kworker_task);
1478
1479 return 0;
1480 }
1481
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1482 static int __spi_queued_transfer(struct spi_device *spi,
1483 struct spi_message *msg,
1484 bool need_pump)
1485 {
1486 struct spi_controller *ctlr = spi->controller;
1487 unsigned long flags;
1488
1489 spin_lock_irqsave(&ctlr->queue_lock, flags);
1490
1491 if (!ctlr->running) {
1492 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1493 return -ESHUTDOWN;
1494 }
1495 msg->actual_length = 0;
1496 msg->status = -EINPROGRESS;
1497
1498 list_add_tail(&msg->queue, &ctlr->queue);
1499 if (!ctlr->busy && need_pump)
1500 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1501
1502 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1503 return 0;
1504 }
1505
1506 /**
1507 * spi_queued_transfer - transfer function for queued transfers
1508 * @spi: spi device which is requesting transfer
1509 * @msg: spi message which is to handled is queued to driver queue
1510 *
1511 * Return: zero on success, else a negative error code.
1512 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1513 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1514 {
1515 return __spi_queued_transfer(spi, msg, true);
1516 }
1517
spi_controller_initialize_queue(struct spi_controller * ctlr)1518 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1519 {
1520 int ret;
1521
1522 ctlr->transfer = spi_queued_transfer;
1523 if (!ctlr->transfer_one_message)
1524 ctlr->transfer_one_message = spi_transfer_one_message;
1525
1526 /* Initialize and start queue */
1527 ret = spi_init_queue(ctlr);
1528 if (ret) {
1529 dev_err(&ctlr->dev, "problem initializing queue\n");
1530 goto err_init_queue;
1531 }
1532 ctlr->queued = true;
1533 ret = spi_start_queue(ctlr);
1534 if (ret) {
1535 dev_err(&ctlr->dev, "problem starting queue\n");
1536 goto err_start_queue;
1537 }
1538
1539 return 0;
1540
1541 err_start_queue:
1542 spi_destroy_queue(ctlr);
1543 err_init_queue:
1544 return ret;
1545 }
1546
1547 /**
1548 * spi_flush_queue - Send all pending messages in the queue from the callers'
1549 * context
1550 * @ctlr: controller to process queue for
1551 *
1552 * This should be used when one wants to ensure all pending messages have been
1553 * sent before doing something. Is used by the spi-mem code to make sure SPI
1554 * memory operations do not preempt regular SPI transfers that have been queued
1555 * before the spi-mem operation.
1556 */
spi_flush_queue(struct spi_controller * ctlr)1557 void spi_flush_queue(struct spi_controller *ctlr)
1558 {
1559 if (ctlr->transfer == spi_queued_transfer)
1560 __spi_pump_messages(ctlr, false);
1561 }
1562
1563 /*-------------------------------------------------------------------------*/
1564
1565 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1566 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1567 struct device_node *nc)
1568 {
1569 u32 value;
1570 int rc;
1571
1572 /* Mode (clock phase/polarity/etc.) */
1573 if (of_property_read_bool(nc, "spi-cpha"))
1574 spi->mode |= SPI_CPHA;
1575 if (of_property_read_bool(nc, "spi-cpol"))
1576 spi->mode |= SPI_CPOL;
1577 if (of_property_read_bool(nc, "spi-cs-high"))
1578 spi->mode |= SPI_CS_HIGH;
1579 if (of_property_read_bool(nc, "spi-3wire"))
1580 spi->mode |= SPI_3WIRE;
1581 if (of_property_read_bool(nc, "spi-lsb-first"))
1582 spi->mode |= SPI_LSB_FIRST;
1583
1584 /* Device DUAL/QUAD mode */
1585 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1586 switch (value) {
1587 case 1:
1588 break;
1589 case 2:
1590 spi->mode |= SPI_TX_DUAL;
1591 break;
1592 case 4:
1593 spi->mode |= SPI_TX_QUAD;
1594 break;
1595 default:
1596 dev_warn(&ctlr->dev,
1597 "spi-tx-bus-width %d not supported\n",
1598 value);
1599 break;
1600 }
1601 }
1602
1603 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1604 switch (value) {
1605 case 1:
1606 break;
1607 case 2:
1608 spi->mode |= SPI_RX_DUAL;
1609 break;
1610 case 4:
1611 spi->mode |= SPI_RX_QUAD;
1612 break;
1613 default:
1614 dev_warn(&ctlr->dev,
1615 "spi-rx-bus-width %d not supported\n",
1616 value);
1617 break;
1618 }
1619 }
1620
1621 if (spi_controller_is_slave(ctlr)) {
1622 if (strcmp(nc->name, "slave")) {
1623 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1624 nc);
1625 return -EINVAL;
1626 }
1627 return 0;
1628 }
1629
1630 /* Device address */
1631 rc = of_property_read_u32(nc, "reg", &value);
1632 if (rc) {
1633 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1634 nc, rc);
1635 return rc;
1636 }
1637 spi->chip_select = value;
1638
1639 /* Device speed */
1640 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1641 if (rc) {
1642 dev_err(&ctlr->dev,
1643 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1644 return rc;
1645 }
1646 spi->max_speed_hz = value;
1647
1648 return 0;
1649 }
1650
1651 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)1652 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1653 {
1654 struct spi_device *spi;
1655 int rc;
1656
1657 /* Alloc an spi_device */
1658 spi = spi_alloc_device(ctlr);
1659 if (!spi) {
1660 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1661 rc = -ENOMEM;
1662 goto err_out;
1663 }
1664
1665 /* Select device driver */
1666 rc = of_modalias_node(nc, spi->modalias,
1667 sizeof(spi->modalias));
1668 if (rc < 0) {
1669 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1670 goto err_out;
1671 }
1672
1673 rc = of_spi_parse_dt(ctlr, spi, nc);
1674 if (rc)
1675 goto err_out;
1676
1677 /* Store a pointer to the node in the device structure */
1678 of_node_get(nc);
1679 spi->dev.of_node = nc;
1680
1681 /* Register the new device */
1682 rc = spi_add_device(spi);
1683 if (rc) {
1684 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1685 goto err_of_node_put;
1686 }
1687
1688 return spi;
1689
1690 err_of_node_put:
1691 of_node_put(nc);
1692 err_out:
1693 spi_dev_put(spi);
1694 return ERR_PTR(rc);
1695 }
1696
1697 /**
1698 * of_register_spi_devices() - Register child devices onto the SPI bus
1699 * @ctlr: Pointer to spi_controller device
1700 *
1701 * Registers an spi_device for each child node of controller node which
1702 * represents a valid SPI slave.
1703 */
of_register_spi_devices(struct spi_controller * ctlr)1704 static void of_register_spi_devices(struct spi_controller *ctlr)
1705 {
1706 struct spi_device *spi;
1707 struct device_node *nc;
1708
1709 if (!ctlr->dev.of_node)
1710 return;
1711
1712 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1713 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1714 continue;
1715 spi = of_register_spi_device(ctlr, nc);
1716 if (IS_ERR(spi)) {
1717 dev_warn(&ctlr->dev,
1718 "Failed to create SPI device for %pOF\n", nc);
1719 of_node_clear_flag(nc, OF_POPULATED);
1720 }
1721 }
1722 }
1723 #else
of_register_spi_devices(struct spi_controller * ctlr)1724 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1725 #endif
1726
1727 #ifdef CONFIG_ACPI
acpi_spi_parse_apple_properties(struct spi_device * spi)1728 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1729 {
1730 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1731 const union acpi_object *obj;
1732
1733 if (!x86_apple_machine)
1734 return;
1735
1736 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1737 && obj->buffer.length >= 4)
1738 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1739
1740 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1741 && obj->buffer.length == 8)
1742 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1743
1744 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1745 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1746 spi->mode |= SPI_LSB_FIRST;
1747
1748 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1749 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1750 spi->mode |= SPI_CPOL;
1751
1752 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1753 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1754 spi->mode |= SPI_CPHA;
1755 }
1756
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1757 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1758 {
1759 struct spi_device *spi = data;
1760 struct spi_controller *ctlr = spi->controller;
1761
1762 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1763 struct acpi_resource_spi_serialbus *sb;
1764
1765 sb = &ares->data.spi_serial_bus;
1766 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1767 /*
1768 * ACPI DeviceSelection numbering is handled by the
1769 * host controller driver in Windows and can vary
1770 * from driver to driver. In Linux we always expect
1771 * 0 .. max - 1 so we need to ask the driver to
1772 * translate between the two schemes.
1773 */
1774 if (ctlr->fw_translate_cs) {
1775 int cs = ctlr->fw_translate_cs(ctlr,
1776 sb->device_selection);
1777 if (cs < 0)
1778 return cs;
1779 spi->chip_select = cs;
1780 } else {
1781 spi->chip_select = sb->device_selection;
1782 }
1783
1784 spi->max_speed_hz = sb->connection_speed;
1785
1786 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1787 spi->mode |= SPI_CPHA;
1788 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1789 spi->mode |= SPI_CPOL;
1790 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1791 spi->mode |= SPI_CS_HIGH;
1792 }
1793 } else if (spi->irq < 0) {
1794 struct resource r;
1795
1796 if (acpi_dev_resource_interrupt(ares, 0, &r))
1797 spi->irq = r.start;
1798 }
1799
1800 /* Always tell the ACPI core to skip this resource */
1801 return 1;
1802 }
1803
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)1804 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1805 struct acpi_device *adev)
1806 {
1807 struct list_head resource_list;
1808 struct spi_device *spi;
1809 int ret;
1810
1811 if (acpi_bus_get_status(adev) || !adev->status.present ||
1812 acpi_device_enumerated(adev))
1813 return AE_OK;
1814
1815 spi = spi_alloc_device(ctlr);
1816 if (!spi) {
1817 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1818 dev_name(&adev->dev));
1819 return AE_NO_MEMORY;
1820 }
1821
1822 ACPI_COMPANION_SET(&spi->dev, adev);
1823 spi->irq = -1;
1824
1825 INIT_LIST_HEAD(&resource_list);
1826 ret = acpi_dev_get_resources(adev, &resource_list,
1827 acpi_spi_add_resource, spi);
1828 acpi_dev_free_resource_list(&resource_list);
1829
1830 acpi_spi_parse_apple_properties(spi);
1831
1832 if (ret < 0 || !spi->max_speed_hz) {
1833 spi_dev_put(spi);
1834 return AE_OK;
1835 }
1836
1837 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1838 sizeof(spi->modalias));
1839
1840 if (spi->irq < 0)
1841 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1842
1843 acpi_device_set_enumerated(adev);
1844
1845 adev->power.flags.ignore_parent = true;
1846 if (spi_add_device(spi)) {
1847 adev->power.flags.ignore_parent = false;
1848 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1849 dev_name(&adev->dev));
1850 spi_dev_put(spi);
1851 }
1852
1853 return AE_OK;
1854 }
1855
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)1856 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1857 void *data, void **return_value)
1858 {
1859 struct spi_controller *ctlr = data;
1860 struct acpi_device *adev;
1861
1862 if (acpi_bus_get_device(handle, &adev))
1863 return AE_OK;
1864
1865 return acpi_register_spi_device(ctlr, adev);
1866 }
1867
acpi_register_spi_devices(struct spi_controller * ctlr)1868 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1869 {
1870 acpi_status status;
1871 acpi_handle handle;
1872
1873 handle = ACPI_HANDLE(ctlr->dev.parent);
1874 if (!handle)
1875 return;
1876
1877 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1878 acpi_spi_add_device, NULL, ctlr, NULL);
1879 if (ACPI_FAILURE(status))
1880 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1881 }
1882 #else
acpi_register_spi_devices(struct spi_controller * ctlr)1883 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1884 #endif /* CONFIG_ACPI */
1885
spi_controller_release(struct device * dev)1886 static void spi_controller_release(struct device *dev)
1887 {
1888 struct spi_controller *ctlr;
1889
1890 ctlr = container_of(dev, struct spi_controller, dev);
1891 kfree(ctlr);
1892 }
1893
1894 static struct class spi_master_class = {
1895 .name = "spi_master",
1896 .owner = THIS_MODULE,
1897 .dev_release = spi_controller_release,
1898 .dev_groups = spi_master_groups,
1899 };
1900
1901 #ifdef CONFIG_SPI_SLAVE
1902 /**
1903 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1904 * controller
1905 * @spi: device used for the current transfer
1906 */
spi_slave_abort(struct spi_device * spi)1907 int spi_slave_abort(struct spi_device *spi)
1908 {
1909 struct spi_controller *ctlr = spi->controller;
1910
1911 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1912 return ctlr->slave_abort(ctlr);
1913
1914 return -ENOTSUPP;
1915 }
1916 EXPORT_SYMBOL_GPL(spi_slave_abort);
1917
match_true(struct device * dev,void * data)1918 static int match_true(struct device *dev, void *data)
1919 {
1920 return 1;
1921 }
1922
spi_slave_show(struct device * dev,struct device_attribute * attr,char * buf)1923 static ssize_t spi_slave_show(struct device *dev,
1924 struct device_attribute *attr, char *buf)
1925 {
1926 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1927 dev);
1928 struct device *child;
1929
1930 child = device_find_child(&ctlr->dev, NULL, match_true);
1931 return sprintf(buf, "%s\n",
1932 child ? to_spi_device(child)->modalias : NULL);
1933 }
1934
spi_slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1935 static ssize_t spi_slave_store(struct device *dev,
1936 struct device_attribute *attr, const char *buf,
1937 size_t count)
1938 {
1939 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1940 dev);
1941 struct spi_device *spi;
1942 struct device *child;
1943 char name[32];
1944 int rc;
1945
1946 rc = sscanf(buf, "%31s", name);
1947 if (rc != 1 || !name[0])
1948 return -EINVAL;
1949
1950 child = device_find_child(&ctlr->dev, NULL, match_true);
1951 if (child) {
1952 /* Remove registered slave */
1953 device_unregister(child);
1954 put_device(child);
1955 }
1956
1957 if (strcmp(name, "(null)")) {
1958 /* Register new slave */
1959 spi = spi_alloc_device(ctlr);
1960 if (!spi)
1961 return -ENOMEM;
1962
1963 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1964
1965 rc = spi_add_device(spi);
1966 if (rc) {
1967 spi_dev_put(spi);
1968 return rc;
1969 }
1970 }
1971
1972 return count;
1973 }
1974
1975 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1976
1977 static struct attribute *spi_slave_attrs[] = {
1978 &dev_attr_slave.attr,
1979 NULL,
1980 };
1981
1982 static const struct attribute_group spi_slave_group = {
1983 .attrs = spi_slave_attrs,
1984 };
1985
1986 static const struct attribute_group *spi_slave_groups[] = {
1987 &spi_controller_statistics_group,
1988 &spi_slave_group,
1989 NULL,
1990 };
1991
1992 static struct class spi_slave_class = {
1993 .name = "spi_slave",
1994 .owner = THIS_MODULE,
1995 .dev_release = spi_controller_release,
1996 .dev_groups = spi_slave_groups,
1997 };
1998 #else
1999 extern struct class spi_slave_class; /* dummy */
2000 #endif
2001
2002 /**
2003 * __spi_alloc_controller - allocate an SPI master or slave controller
2004 * @dev: the controller, possibly using the platform_bus
2005 * @size: how much zeroed driver-private data to allocate; the pointer to this
2006 * memory is in the driver_data field of the returned device,
2007 * accessible with spi_controller_get_devdata().
2008 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2009 * slave (true) controller
2010 * Context: can sleep
2011 *
2012 * This call is used only by SPI controller drivers, which are the
2013 * only ones directly touching chip registers. It's how they allocate
2014 * an spi_controller structure, prior to calling spi_register_controller().
2015 *
2016 * This must be called from context that can sleep.
2017 *
2018 * The caller is responsible for assigning the bus number and initializing the
2019 * controller's methods before calling spi_register_controller(); and (after
2020 * errors adding the device) calling spi_controller_put() to prevent a memory
2021 * leak.
2022 *
2023 * Return: the SPI controller structure on success, else NULL.
2024 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2025 struct spi_controller *__spi_alloc_controller(struct device *dev,
2026 unsigned int size, bool slave)
2027 {
2028 struct spi_controller *ctlr;
2029
2030 if (!dev)
2031 return NULL;
2032
2033 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2034 if (!ctlr)
2035 return NULL;
2036
2037 device_initialize(&ctlr->dev);
2038 ctlr->bus_num = -1;
2039 ctlr->num_chipselect = 1;
2040 ctlr->slave = slave;
2041 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2042 ctlr->dev.class = &spi_slave_class;
2043 else
2044 ctlr->dev.class = &spi_master_class;
2045 ctlr->dev.parent = dev;
2046 pm_suspend_ignore_children(&ctlr->dev, true);
2047 spi_controller_set_devdata(ctlr, &ctlr[1]);
2048
2049 return ctlr;
2050 }
2051 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2052
2053 #ifdef CONFIG_OF
of_spi_register_master(struct spi_controller * ctlr)2054 static int of_spi_register_master(struct spi_controller *ctlr)
2055 {
2056 int nb, i, *cs;
2057 struct device_node *np = ctlr->dev.of_node;
2058
2059 if (!np)
2060 return 0;
2061
2062 nb = of_gpio_named_count(np, "cs-gpios");
2063 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2064
2065 /* Return error only for an incorrectly formed cs-gpios property */
2066 if (nb == 0 || nb == -ENOENT)
2067 return 0;
2068 else if (nb < 0)
2069 return nb;
2070
2071 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2072 GFP_KERNEL);
2073 ctlr->cs_gpios = cs;
2074
2075 if (!ctlr->cs_gpios)
2076 return -ENOMEM;
2077
2078 for (i = 0; i < ctlr->num_chipselect; i++)
2079 cs[i] = -ENOENT;
2080
2081 for (i = 0; i < nb; i++)
2082 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2083
2084 return 0;
2085 }
2086 #else
of_spi_register_master(struct spi_controller * ctlr)2087 static int of_spi_register_master(struct spi_controller *ctlr)
2088 {
2089 return 0;
2090 }
2091 #endif
2092
spi_controller_check_ops(struct spi_controller * ctlr)2093 static int spi_controller_check_ops(struct spi_controller *ctlr)
2094 {
2095 /*
2096 * The controller may implement only the high-level SPI-memory like
2097 * operations if it does not support regular SPI transfers, and this is
2098 * valid use case.
2099 * If ->mem_ops is NULL, we request that at least one of the
2100 * ->transfer_xxx() method be implemented.
2101 */
2102 if (ctlr->mem_ops) {
2103 if (!ctlr->mem_ops->exec_op)
2104 return -EINVAL;
2105 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2106 !ctlr->transfer_one_message) {
2107 return -EINVAL;
2108 }
2109
2110 return 0;
2111 }
2112
2113 /**
2114 * spi_register_controller - register SPI master or slave controller
2115 * @ctlr: initialized master, originally from spi_alloc_master() or
2116 * spi_alloc_slave()
2117 * Context: can sleep
2118 *
2119 * SPI controllers connect to their drivers using some non-SPI bus,
2120 * such as the platform bus. The final stage of probe() in that code
2121 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2122 *
2123 * SPI controllers use board specific (often SOC specific) bus numbers,
2124 * and board-specific addressing for SPI devices combines those numbers
2125 * with chip select numbers. Since SPI does not directly support dynamic
2126 * device identification, boards need configuration tables telling which
2127 * chip is at which address.
2128 *
2129 * This must be called from context that can sleep. It returns zero on
2130 * success, else a negative error code (dropping the controller's refcount).
2131 * After a successful return, the caller is responsible for calling
2132 * spi_unregister_controller().
2133 *
2134 * Return: zero on success, else a negative error code.
2135 */
spi_register_controller(struct spi_controller * ctlr)2136 int spi_register_controller(struct spi_controller *ctlr)
2137 {
2138 struct device *dev = ctlr->dev.parent;
2139 struct boardinfo *bi;
2140 int status = -ENODEV;
2141 int id, first_dynamic;
2142
2143 if (!dev)
2144 return -ENODEV;
2145
2146 /*
2147 * Make sure all necessary hooks are implemented before registering
2148 * the SPI controller.
2149 */
2150 status = spi_controller_check_ops(ctlr);
2151 if (status)
2152 return status;
2153
2154 if (!spi_controller_is_slave(ctlr)) {
2155 status = of_spi_register_master(ctlr);
2156 if (status)
2157 return status;
2158 }
2159
2160 /* even if it's just one always-selected device, there must
2161 * be at least one chipselect
2162 */
2163 if (ctlr->num_chipselect == 0)
2164 return -EINVAL;
2165 if (ctlr->bus_num >= 0) {
2166 /* devices with a fixed bus num must check-in with the num */
2167 mutex_lock(&board_lock);
2168 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2169 ctlr->bus_num + 1, GFP_KERNEL);
2170 mutex_unlock(&board_lock);
2171 if (WARN(id < 0, "couldn't get idr"))
2172 return id == -ENOSPC ? -EBUSY : id;
2173 ctlr->bus_num = id;
2174 } else if (ctlr->dev.of_node) {
2175 /* allocate dynamic bus number using Linux idr */
2176 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2177 if (id >= 0) {
2178 ctlr->bus_num = id;
2179 mutex_lock(&board_lock);
2180 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2181 ctlr->bus_num + 1, GFP_KERNEL);
2182 mutex_unlock(&board_lock);
2183 if (WARN(id < 0, "couldn't get idr"))
2184 return id == -ENOSPC ? -EBUSY : id;
2185 }
2186 }
2187 if (ctlr->bus_num < 0) {
2188 first_dynamic = of_alias_get_highest_id("spi");
2189 if (first_dynamic < 0)
2190 first_dynamic = 0;
2191 else
2192 first_dynamic++;
2193
2194 mutex_lock(&board_lock);
2195 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2196 0, GFP_KERNEL);
2197 mutex_unlock(&board_lock);
2198 if (WARN(id < 0, "couldn't get idr"))
2199 return id;
2200 ctlr->bus_num = id;
2201 }
2202 INIT_LIST_HEAD(&ctlr->queue);
2203 spin_lock_init(&ctlr->queue_lock);
2204 spin_lock_init(&ctlr->bus_lock_spinlock);
2205 mutex_init(&ctlr->bus_lock_mutex);
2206 mutex_init(&ctlr->io_mutex);
2207 ctlr->bus_lock_flag = 0;
2208 init_completion(&ctlr->xfer_completion);
2209 if (!ctlr->max_dma_len)
2210 ctlr->max_dma_len = INT_MAX;
2211
2212 /* register the device, then userspace will see it.
2213 * registration fails if the bus ID is in use.
2214 */
2215 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2216 status = device_add(&ctlr->dev);
2217 if (status < 0) {
2218 /* free bus id */
2219 mutex_lock(&board_lock);
2220 idr_remove(&spi_master_idr, ctlr->bus_num);
2221 mutex_unlock(&board_lock);
2222 goto done;
2223 }
2224 dev_dbg(dev, "registered %s %s\n",
2225 spi_controller_is_slave(ctlr) ? "slave" : "master",
2226 dev_name(&ctlr->dev));
2227
2228 /*
2229 * If we're using a queued driver, start the queue. Note that we don't
2230 * need the queueing logic if the driver is only supporting high-level
2231 * memory operations.
2232 */
2233 if (ctlr->transfer) {
2234 dev_info(dev, "controller is unqueued, this is deprecated\n");
2235 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2236 status = spi_controller_initialize_queue(ctlr);
2237 if (status) {
2238 device_del(&ctlr->dev);
2239 /* free bus id */
2240 mutex_lock(&board_lock);
2241 idr_remove(&spi_master_idr, ctlr->bus_num);
2242 mutex_unlock(&board_lock);
2243 goto done;
2244 }
2245 }
2246 /* add statistics */
2247 spin_lock_init(&ctlr->statistics.lock);
2248
2249 mutex_lock(&board_lock);
2250 list_add_tail(&ctlr->list, &spi_controller_list);
2251 list_for_each_entry(bi, &board_list, list)
2252 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2253 mutex_unlock(&board_lock);
2254
2255 /* Register devices from the device tree and ACPI */
2256 of_register_spi_devices(ctlr);
2257 acpi_register_spi_devices(ctlr);
2258 done:
2259 return status;
2260 }
2261 EXPORT_SYMBOL_GPL(spi_register_controller);
2262
devm_spi_unregister(struct device * dev,void * res)2263 static void devm_spi_unregister(struct device *dev, void *res)
2264 {
2265 spi_unregister_controller(*(struct spi_controller **)res);
2266 }
2267
2268 /**
2269 * devm_spi_register_controller - register managed SPI master or slave
2270 * controller
2271 * @dev: device managing SPI controller
2272 * @ctlr: initialized controller, originally from spi_alloc_master() or
2273 * spi_alloc_slave()
2274 * Context: can sleep
2275 *
2276 * Register a SPI device as with spi_register_controller() which will
2277 * automatically be unregistered and freed.
2278 *
2279 * Return: zero on success, else a negative error code.
2280 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2281 int devm_spi_register_controller(struct device *dev,
2282 struct spi_controller *ctlr)
2283 {
2284 struct spi_controller **ptr;
2285 int ret;
2286
2287 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2288 if (!ptr)
2289 return -ENOMEM;
2290
2291 ret = spi_register_controller(ctlr);
2292 if (!ret) {
2293 *ptr = ctlr;
2294 devres_add(dev, ptr);
2295 } else {
2296 devres_free(ptr);
2297 }
2298
2299 return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2302
__unregister(struct device * dev,void * null)2303 static int __unregister(struct device *dev, void *null)
2304 {
2305 spi_unregister_device(to_spi_device(dev));
2306 return 0;
2307 }
2308
2309 /**
2310 * spi_unregister_controller - unregister SPI master or slave controller
2311 * @ctlr: the controller being unregistered
2312 * Context: can sleep
2313 *
2314 * This call is used only by SPI controller drivers, which are the
2315 * only ones directly touching chip registers.
2316 *
2317 * This must be called from context that can sleep.
2318 *
2319 * Note that this function also drops a reference to the controller.
2320 */
spi_unregister_controller(struct spi_controller * ctlr)2321 void spi_unregister_controller(struct spi_controller *ctlr)
2322 {
2323 struct spi_controller *found;
2324 int id = ctlr->bus_num;
2325
2326 /* Prevent addition of new devices, unregister existing ones */
2327 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2328 mutex_lock(&spi_add_lock);
2329
2330 device_for_each_child(&ctlr->dev, NULL, __unregister);
2331
2332 /* First make sure that this controller was ever added */
2333 mutex_lock(&board_lock);
2334 found = idr_find(&spi_master_idr, id);
2335 mutex_unlock(&board_lock);
2336 if (ctlr->queued) {
2337 if (spi_destroy_queue(ctlr))
2338 dev_err(&ctlr->dev, "queue remove failed\n");
2339 }
2340 mutex_lock(&board_lock);
2341 list_del(&ctlr->list);
2342 mutex_unlock(&board_lock);
2343
2344 device_unregister(&ctlr->dev);
2345 /* free bus id */
2346 mutex_lock(&board_lock);
2347 if (found == ctlr)
2348 idr_remove(&spi_master_idr, id);
2349 mutex_unlock(&board_lock);
2350
2351 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2352 mutex_unlock(&spi_add_lock);
2353 }
2354 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2355
spi_controller_suspend(struct spi_controller * ctlr)2356 int spi_controller_suspend(struct spi_controller *ctlr)
2357 {
2358 int ret;
2359
2360 /* Basically no-ops for non-queued controllers */
2361 if (!ctlr->queued)
2362 return 0;
2363
2364 ret = spi_stop_queue(ctlr);
2365 if (ret)
2366 dev_err(&ctlr->dev, "queue stop failed\n");
2367
2368 return ret;
2369 }
2370 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2371
spi_controller_resume(struct spi_controller * ctlr)2372 int spi_controller_resume(struct spi_controller *ctlr)
2373 {
2374 int ret;
2375
2376 if (!ctlr->queued)
2377 return 0;
2378
2379 ret = spi_start_queue(ctlr);
2380 if (ret)
2381 dev_err(&ctlr->dev, "queue restart failed\n");
2382
2383 return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(spi_controller_resume);
2386
__spi_controller_match(struct device * dev,const void * data)2387 static int __spi_controller_match(struct device *dev, const void *data)
2388 {
2389 struct spi_controller *ctlr;
2390 const u16 *bus_num = data;
2391
2392 ctlr = container_of(dev, struct spi_controller, dev);
2393 return ctlr->bus_num == *bus_num;
2394 }
2395
2396 /**
2397 * spi_busnum_to_master - look up master associated with bus_num
2398 * @bus_num: the master's bus number
2399 * Context: can sleep
2400 *
2401 * This call may be used with devices that are registered after
2402 * arch init time. It returns a refcounted pointer to the relevant
2403 * spi_controller (which the caller must release), or NULL if there is
2404 * no such master registered.
2405 *
2406 * Return: the SPI master structure on success, else NULL.
2407 */
spi_busnum_to_master(u16 bus_num)2408 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2409 {
2410 struct device *dev;
2411 struct spi_controller *ctlr = NULL;
2412
2413 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2414 __spi_controller_match);
2415 if (dev)
2416 ctlr = container_of(dev, struct spi_controller, dev);
2417 /* reference got in class_find_device */
2418 return ctlr;
2419 }
2420 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2421
2422 /*-------------------------------------------------------------------------*/
2423
2424 /* Core methods for SPI resource management */
2425
2426 /**
2427 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2428 * during the processing of a spi_message while using
2429 * spi_transfer_one
2430 * @spi: the spi device for which we allocate memory
2431 * @release: the release code to execute for this resource
2432 * @size: size to alloc and return
2433 * @gfp: GFP allocation flags
2434 *
2435 * Return: the pointer to the allocated data
2436 *
2437 * This may get enhanced in the future to allocate from a memory pool
2438 * of the @spi_device or @spi_controller to avoid repeated allocations.
2439 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2440 void *spi_res_alloc(struct spi_device *spi,
2441 spi_res_release_t release,
2442 size_t size, gfp_t gfp)
2443 {
2444 struct spi_res *sres;
2445
2446 sres = kzalloc(sizeof(*sres) + size, gfp);
2447 if (!sres)
2448 return NULL;
2449
2450 INIT_LIST_HEAD(&sres->entry);
2451 sres->release = release;
2452
2453 return sres->data;
2454 }
2455 EXPORT_SYMBOL_GPL(spi_res_alloc);
2456
2457 /**
2458 * spi_res_free - free an spi resource
2459 * @res: pointer to the custom data of a resource
2460 *
2461 */
spi_res_free(void * res)2462 void spi_res_free(void *res)
2463 {
2464 struct spi_res *sres = container_of(res, struct spi_res, data);
2465
2466 if (!res)
2467 return;
2468
2469 WARN_ON(!list_empty(&sres->entry));
2470 kfree(sres);
2471 }
2472 EXPORT_SYMBOL_GPL(spi_res_free);
2473
2474 /**
2475 * spi_res_add - add a spi_res to the spi_message
2476 * @message: the spi message
2477 * @res: the spi_resource
2478 */
spi_res_add(struct spi_message * message,void * res)2479 void spi_res_add(struct spi_message *message, void *res)
2480 {
2481 struct spi_res *sres = container_of(res, struct spi_res, data);
2482
2483 WARN_ON(!list_empty(&sres->entry));
2484 list_add_tail(&sres->entry, &message->resources);
2485 }
2486 EXPORT_SYMBOL_GPL(spi_res_add);
2487
2488 /**
2489 * spi_res_release - release all spi resources for this message
2490 * @ctlr: the @spi_controller
2491 * @message: the @spi_message
2492 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)2493 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2494 {
2495 struct spi_res *res;
2496
2497 while (!list_empty(&message->resources)) {
2498 res = list_last_entry(&message->resources,
2499 struct spi_res, entry);
2500
2501 if (res->release)
2502 res->release(ctlr, message, res->data);
2503
2504 list_del(&res->entry);
2505
2506 kfree(res);
2507 }
2508 }
2509 EXPORT_SYMBOL_GPL(spi_res_release);
2510
2511 /*-------------------------------------------------------------------------*/
2512
2513 /* Core methods for spi_message alterations */
2514
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)2515 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2516 struct spi_message *msg,
2517 void *res)
2518 {
2519 struct spi_replaced_transfers *rxfer = res;
2520 size_t i;
2521
2522 /* call extra callback if requested */
2523 if (rxfer->release)
2524 rxfer->release(ctlr, msg, res);
2525
2526 /* insert replaced transfers back into the message */
2527 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2528
2529 /* remove the formerly inserted entries */
2530 for (i = 0; i < rxfer->inserted; i++)
2531 list_del(&rxfer->inserted_transfers[i].transfer_list);
2532 }
2533
2534 /**
2535 * spi_replace_transfers - replace transfers with several transfers
2536 * and register change with spi_message.resources
2537 * @msg: the spi_message we work upon
2538 * @xfer_first: the first spi_transfer we want to replace
2539 * @remove: number of transfers to remove
2540 * @insert: the number of transfers we want to insert instead
2541 * @release: extra release code necessary in some circumstances
2542 * @extradatasize: extra data to allocate (with alignment guarantees
2543 * of struct @spi_transfer)
2544 * @gfp: gfp flags
2545 *
2546 * Returns: pointer to @spi_replaced_transfers,
2547 * PTR_ERR(...) in case of errors.
2548 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)2549 struct spi_replaced_transfers *spi_replace_transfers(
2550 struct spi_message *msg,
2551 struct spi_transfer *xfer_first,
2552 size_t remove,
2553 size_t insert,
2554 spi_replaced_release_t release,
2555 size_t extradatasize,
2556 gfp_t gfp)
2557 {
2558 struct spi_replaced_transfers *rxfer;
2559 struct spi_transfer *xfer;
2560 size_t i;
2561
2562 /* allocate the structure using spi_res */
2563 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2564 insert * sizeof(struct spi_transfer)
2565 + sizeof(struct spi_replaced_transfers)
2566 + extradatasize,
2567 gfp);
2568 if (!rxfer)
2569 return ERR_PTR(-ENOMEM);
2570
2571 /* the release code to invoke before running the generic release */
2572 rxfer->release = release;
2573
2574 /* assign extradata */
2575 if (extradatasize)
2576 rxfer->extradata =
2577 &rxfer->inserted_transfers[insert];
2578
2579 /* init the replaced_transfers list */
2580 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2581
2582 /* assign the list_entry after which we should reinsert
2583 * the @replaced_transfers - it may be spi_message.messages!
2584 */
2585 rxfer->replaced_after = xfer_first->transfer_list.prev;
2586
2587 /* remove the requested number of transfers */
2588 for (i = 0; i < remove; i++) {
2589 /* if the entry after replaced_after it is msg->transfers
2590 * then we have been requested to remove more transfers
2591 * than are in the list
2592 */
2593 if (rxfer->replaced_after->next == &msg->transfers) {
2594 dev_err(&msg->spi->dev,
2595 "requested to remove more spi_transfers than are available\n");
2596 /* insert replaced transfers back into the message */
2597 list_splice(&rxfer->replaced_transfers,
2598 rxfer->replaced_after);
2599
2600 /* free the spi_replace_transfer structure */
2601 spi_res_free(rxfer);
2602
2603 /* and return with an error */
2604 return ERR_PTR(-EINVAL);
2605 }
2606
2607 /* remove the entry after replaced_after from list of
2608 * transfers and add it to list of replaced_transfers
2609 */
2610 list_move_tail(rxfer->replaced_after->next,
2611 &rxfer->replaced_transfers);
2612 }
2613
2614 /* create copy of the given xfer with identical settings
2615 * based on the first transfer to get removed
2616 */
2617 for (i = 0; i < insert; i++) {
2618 /* we need to run in reverse order */
2619 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2620
2621 /* copy all spi_transfer data */
2622 memcpy(xfer, xfer_first, sizeof(*xfer));
2623
2624 /* add to list */
2625 list_add(&xfer->transfer_list, rxfer->replaced_after);
2626
2627 /* clear cs_change and delay_usecs for all but the last */
2628 if (i) {
2629 xfer->cs_change = false;
2630 xfer->delay_usecs = 0;
2631 }
2632 }
2633
2634 /* set up inserted */
2635 rxfer->inserted = insert;
2636
2637 /* and register it with spi_res/spi_message */
2638 spi_res_add(msg, rxfer);
2639
2640 return rxfer;
2641 }
2642 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2643
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)2644 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2645 struct spi_message *msg,
2646 struct spi_transfer **xferp,
2647 size_t maxsize,
2648 gfp_t gfp)
2649 {
2650 struct spi_transfer *xfer = *xferp, *xfers;
2651 struct spi_replaced_transfers *srt;
2652 size_t offset;
2653 size_t count, i;
2654
2655 /* warn once about this fact that we are splitting a transfer */
2656 dev_warn_once(&msg->spi->dev,
2657 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2658 xfer->len, maxsize);
2659
2660 /* calculate how many we have to replace */
2661 count = DIV_ROUND_UP(xfer->len, maxsize);
2662
2663 /* create replacement */
2664 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2665 if (IS_ERR(srt))
2666 return PTR_ERR(srt);
2667 xfers = srt->inserted_transfers;
2668
2669 /* now handle each of those newly inserted spi_transfers
2670 * note that the replacements spi_transfers all are preset
2671 * to the same values as *xferp, so tx_buf, rx_buf and len
2672 * are all identical (as well as most others)
2673 * so we just have to fix up len and the pointers.
2674 *
2675 * this also includes support for the depreciated
2676 * spi_message.is_dma_mapped interface
2677 */
2678
2679 /* the first transfer just needs the length modified, so we
2680 * run it outside the loop
2681 */
2682 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2683
2684 /* all the others need rx_buf/tx_buf also set */
2685 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2686 /* update rx_buf, tx_buf and dma */
2687 if (xfers[i].rx_buf)
2688 xfers[i].rx_buf += offset;
2689 if (xfers[i].rx_dma)
2690 xfers[i].rx_dma += offset;
2691 if (xfers[i].tx_buf)
2692 xfers[i].tx_buf += offset;
2693 if (xfers[i].tx_dma)
2694 xfers[i].tx_dma += offset;
2695
2696 /* update length */
2697 xfers[i].len = min(maxsize, xfers[i].len - offset);
2698 }
2699
2700 /* we set up xferp to the last entry we have inserted,
2701 * so that we skip those already split transfers
2702 */
2703 *xferp = &xfers[count - 1];
2704
2705 /* increment statistics counters */
2706 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2707 transfers_split_maxsize);
2708 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2709 transfers_split_maxsize);
2710
2711 return 0;
2712 }
2713
2714 /**
2715 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2716 * when an individual transfer exceeds a
2717 * certain size
2718 * @ctlr: the @spi_controller for this transfer
2719 * @msg: the @spi_message to transform
2720 * @maxsize: the maximum when to apply this
2721 * @gfp: GFP allocation flags
2722 *
2723 * Return: status of transformation
2724 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)2725 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2726 struct spi_message *msg,
2727 size_t maxsize,
2728 gfp_t gfp)
2729 {
2730 struct spi_transfer *xfer;
2731 int ret;
2732
2733 /* iterate over the transfer_list,
2734 * but note that xfer is advanced to the last transfer inserted
2735 * to avoid checking sizes again unnecessarily (also xfer does
2736 * potentiall belong to a different list by the time the
2737 * replacement has happened
2738 */
2739 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2740 if (xfer->len > maxsize) {
2741 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2742 maxsize, gfp);
2743 if (ret)
2744 return ret;
2745 }
2746 }
2747
2748 return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2751
2752 /*-------------------------------------------------------------------------*/
2753
2754 /* Core methods for SPI controller protocol drivers. Some of the
2755 * other core methods are currently defined as inline functions.
2756 */
2757
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)2758 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2759 u8 bits_per_word)
2760 {
2761 if (ctlr->bits_per_word_mask) {
2762 /* Only 32 bits fit in the mask */
2763 if (bits_per_word > 32)
2764 return -EINVAL;
2765 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2766 return -EINVAL;
2767 }
2768
2769 return 0;
2770 }
2771
2772 /**
2773 * spi_setup - setup SPI mode and clock rate
2774 * @spi: the device whose settings are being modified
2775 * Context: can sleep, and no requests are queued to the device
2776 *
2777 * SPI protocol drivers may need to update the transfer mode if the
2778 * device doesn't work with its default. They may likewise need
2779 * to update clock rates or word sizes from initial values. This function
2780 * changes those settings, and must be called from a context that can sleep.
2781 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2782 * effect the next time the device is selected and data is transferred to
2783 * or from it. When this function returns, the spi device is deselected.
2784 *
2785 * Note that this call will fail if the protocol driver specifies an option
2786 * that the underlying controller or its driver does not support. For
2787 * example, not all hardware supports wire transfers using nine bit words,
2788 * LSB-first wire encoding, or active-high chipselects.
2789 *
2790 * Return: zero on success, else a negative error code.
2791 */
spi_setup(struct spi_device * spi)2792 int spi_setup(struct spi_device *spi)
2793 {
2794 unsigned bad_bits, ugly_bits;
2795 int status;
2796
2797 /* check mode to prevent that DUAL and QUAD set at the same time
2798 */
2799 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2800 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2801 dev_err(&spi->dev,
2802 "setup: can not select dual and quad at the same time\n");
2803 return -EINVAL;
2804 }
2805 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2806 */
2807 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2808 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2809 return -EINVAL;
2810 /* help drivers fail *cleanly* when they need options
2811 * that aren't supported with their current controller
2812 */
2813 bad_bits = spi->mode & ~spi->controller->mode_bits;
2814 ugly_bits = bad_bits &
2815 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2816 if (ugly_bits) {
2817 dev_warn(&spi->dev,
2818 "setup: ignoring unsupported mode bits %x\n",
2819 ugly_bits);
2820 spi->mode &= ~ugly_bits;
2821 bad_bits &= ~ugly_bits;
2822 }
2823 if (bad_bits) {
2824 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2825 bad_bits);
2826 return -EINVAL;
2827 }
2828
2829 if (!spi->bits_per_word)
2830 spi->bits_per_word = 8;
2831
2832 status = __spi_validate_bits_per_word(spi->controller,
2833 spi->bits_per_word);
2834 if (status)
2835 return status;
2836
2837 if (!spi->max_speed_hz)
2838 spi->max_speed_hz = spi->controller->max_speed_hz;
2839
2840 if (spi->controller->setup)
2841 status = spi->controller->setup(spi);
2842
2843 spi_set_cs(spi, false);
2844
2845 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2846 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2847 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2848 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2849 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2850 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2851 spi->bits_per_word, spi->max_speed_hz,
2852 status);
2853
2854 return status;
2855 }
2856 EXPORT_SYMBOL_GPL(spi_setup);
2857
__spi_validate(struct spi_device * spi,struct spi_message * message)2858 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2859 {
2860 struct spi_controller *ctlr = spi->controller;
2861 struct spi_transfer *xfer;
2862 int w_size;
2863
2864 if (list_empty(&message->transfers))
2865 return -EINVAL;
2866
2867 /* Half-duplex links include original MicroWire, and ones with
2868 * only one data pin like SPI_3WIRE (switches direction) or where
2869 * either MOSI or MISO is missing. They can also be caused by
2870 * software limitations.
2871 */
2872 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2873 (spi->mode & SPI_3WIRE)) {
2874 unsigned flags = ctlr->flags;
2875
2876 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2877 if (xfer->rx_buf && xfer->tx_buf)
2878 return -EINVAL;
2879 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2880 return -EINVAL;
2881 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2882 return -EINVAL;
2883 }
2884 }
2885
2886 /**
2887 * Set transfer bits_per_word and max speed as spi device default if
2888 * it is not set for this transfer.
2889 * Set transfer tx_nbits and rx_nbits as single transfer default
2890 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2891 */
2892 message->frame_length = 0;
2893 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2894 message->frame_length += xfer->len;
2895 if (!xfer->bits_per_word)
2896 xfer->bits_per_word = spi->bits_per_word;
2897
2898 if (!xfer->speed_hz)
2899 xfer->speed_hz = spi->max_speed_hz;
2900 if (!xfer->speed_hz)
2901 xfer->speed_hz = ctlr->max_speed_hz;
2902
2903 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2904 xfer->speed_hz = ctlr->max_speed_hz;
2905
2906 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2907 return -EINVAL;
2908
2909 /*
2910 * SPI transfer length should be multiple of SPI word size
2911 * where SPI word size should be power-of-two multiple
2912 */
2913 if (xfer->bits_per_word <= 8)
2914 w_size = 1;
2915 else if (xfer->bits_per_word <= 16)
2916 w_size = 2;
2917 else
2918 w_size = 4;
2919
2920 /* No partial transfers accepted */
2921 if (xfer->len % w_size)
2922 return -EINVAL;
2923
2924 if (xfer->speed_hz && ctlr->min_speed_hz &&
2925 xfer->speed_hz < ctlr->min_speed_hz)
2926 return -EINVAL;
2927
2928 if (xfer->tx_buf && !xfer->tx_nbits)
2929 xfer->tx_nbits = SPI_NBITS_SINGLE;
2930 if (xfer->rx_buf && !xfer->rx_nbits)
2931 xfer->rx_nbits = SPI_NBITS_SINGLE;
2932 /* check transfer tx/rx_nbits:
2933 * 1. check the value matches one of single, dual and quad
2934 * 2. check tx/rx_nbits match the mode in spi_device
2935 */
2936 if (xfer->tx_buf) {
2937 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2938 xfer->tx_nbits != SPI_NBITS_DUAL &&
2939 xfer->tx_nbits != SPI_NBITS_QUAD)
2940 return -EINVAL;
2941 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2942 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2943 return -EINVAL;
2944 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2945 !(spi->mode & SPI_TX_QUAD))
2946 return -EINVAL;
2947 }
2948 /* check transfer rx_nbits */
2949 if (xfer->rx_buf) {
2950 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2951 xfer->rx_nbits != SPI_NBITS_DUAL &&
2952 xfer->rx_nbits != SPI_NBITS_QUAD)
2953 return -EINVAL;
2954 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2955 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2956 return -EINVAL;
2957 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2958 !(spi->mode & SPI_RX_QUAD))
2959 return -EINVAL;
2960 }
2961 }
2962
2963 message->status = -EINPROGRESS;
2964
2965 return 0;
2966 }
2967
__spi_async(struct spi_device * spi,struct spi_message * message)2968 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2969 {
2970 struct spi_controller *ctlr = spi->controller;
2971
2972 /*
2973 * Some controllers do not support doing regular SPI transfers. Return
2974 * ENOTSUPP when this is the case.
2975 */
2976 if (!ctlr->transfer)
2977 return -ENOTSUPP;
2978
2979 message->spi = spi;
2980
2981 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2982 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2983
2984 trace_spi_message_submit(message);
2985
2986 return ctlr->transfer(spi, message);
2987 }
2988
2989 /**
2990 * spi_async - asynchronous SPI transfer
2991 * @spi: device with which data will be exchanged
2992 * @message: describes the data transfers, including completion callback
2993 * Context: any (irqs may be blocked, etc)
2994 *
2995 * This call may be used in_irq and other contexts which can't sleep,
2996 * as well as from task contexts which can sleep.
2997 *
2998 * The completion callback is invoked in a context which can't sleep.
2999 * Before that invocation, the value of message->status is undefined.
3000 * When the callback is issued, message->status holds either zero (to
3001 * indicate complete success) or a negative error code. After that
3002 * callback returns, the driver which issued the transfer request may
3003 * deallocate the associated memory; it's no longer in use by any SPI
3004 * core or controller driver code.
3005 *
3006 * Note that although all messages to a spi_device are handled in
3007 * FIFO order, messages may go to different devices in other orders.
3008 * Some device might be higher priority, or have various "hard" access
3009 * time requirements, for example.
3010 *
3011 * On detection of any fault during the transfer, processing of
3012 * the entire message is aborted, and the device is deselected.
3013 * Until returning from the associated message completion callback,
3014 * no other spi_message queued to that device will be processed.
3015 * (This rule applies equally to all the synchronous transfer calls,
3016 * which are wrappers around this core asynchronous primitive.)
3017 *
3018 * Return: zero on success, else a negative error code.
3019 */
spi_async(struct spi_device * spi,struct spi_message * message)3020 int spi_async(struct spi_device *spi, struct spi_message *message)
3021 {
3022 struct spi_controller *ctlr = spi->controller;
3023 int ret;
3024 unsigned long flags;
3025
3026 ret = __spi_validate(spi, message);
3027 if (ret != 0)
3028 return ret;
3029
3030 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3031
3032 if (ctlr->bus_lock_flag)
3033 ret = -EBUSY;
3034 else
3035 ret = __spi_async(spi, message);
3036
3037 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3038
3039 return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(spi_async);
3042
3043 /**
3044 * spi_async_locked - version of spi_async with exclusive bus usage
3045 * @spi: device with which data will be exchanged
3046 * @message: describes the data transfers, including completion callback
3047 * Context: any (irqs may be blocked, etc)
3048 *
3049 * This call may be used in_irq and other contexts which can't sleep,
3050 * as well as from task contexts which can sleep.
3051 *
3052 * The completion callback is invoked in a context which can't sleep.
3053 * Before that invocation, the value of message->status is undefined.
3054 * When the callback is issued, message->status holds either zero (to
3055 * indicate complete success) or a negative error code. After that
3056 * callback returns, the driver which issued the transfer request may
3057 * deallocate the associated memory; it's no longer in use by any SPI
3058 * core or controller driver code.
3059 *
3060 * Note that although all messages to a spi_device are handled in
3061 * FIFO order, messages may go to different devices in other orders.
3062 * Some device might be higher priority, or have various "hard" access
3063 * time requirements, for example.
3064 *
3065 * On detection of any fault during the transfer, processing of
3066 * the entire message is aborted, and the device is deselected.
3067 * Until returning from the associated message completion callback,
3068 * no other spi_message queued to that device will be processed.
3069 * (This rule applies equally to all the synchronous transfer calls,
3070 * which are wrappers around this core asynchronous primitive.)
3071 *
3072 * Return: zero on success, else a negative error code.
3073 */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3074 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3075 {
3076 struct spi_controller *ctlr = spi->controller;
3077 int ret;
3078 unsigned long flags;
3079
3080 ret = __spi_validate(spi, message);
3081 if (ret != 0)
3082 return ret;
3083
3084 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3085
3086 ret = __spi_async(spi, message);
3087
3088 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3089
3090 return ret;
3091
3092 }
3093 EXPORT_SYMBOL_GPL(spi_async_locked);
3094
3095 /*-------------------------------------------------------------------------*/
3096
3097 /* Utility methods for SPI protocol drivers, layered on
3098 * top of the core. Some other utility methods are defined as
3099 * inline functions.
3100 */
3101
spi_complete(void * arg)3102 static void spi_complete(void *arg)
3103 {
3104 complete(arg);
3105 }
3106
__spi_sync(struct spi_device * spi,struct spi_message * message)3107 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3108 {
3109 DECLARE_COMPLETION_ONSTACK(done);
3110 int status;
3111 struct spi_controller *ctlr = spi->controller;
3112 unsigned long flags;
3113
3114 status = __spi_validate(spi, message);
3115 if (status != 0)
3116 return status;
3117
3118 message->complete = spi_complete;
3119 message->context = &done;
3120 message->spi = spi;
3121
3122 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3123 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3124
3125 /* If we're not using the legacy transfer method then we will
3126 * try to transfer in the calling context so special case.
3127 * This code would be less tricky if we could remove the
3128 * support for driver implemented message queues.
3129 */
3130 if (ctlr->transfer == spi_queued_transfer) {
3131 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3132
3133 trace_spi_message_submit(message);
3134
3135 status = __spi_queued_transfer(spi, message, false);
3136
3137 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3138 } else {
3139 status = spi_async_locked(spi, message);
3140 }
3141
3142 if (status == 0) {
3143 /* Push out the messages in the calling context if we
3144 * can.
3145 */
3146 if (ctlr->transfer == spi_queued_transfer) {
3147 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3148 spi_sync_immediate);
3149 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3150 spi_sync_immediate);
3151 __spi_pump_messages(ctlr, false);
3152 }
3153
3154 wait_for_completion(&done);
3155 status = message->status;
3156 }
3157 message->context = NULL;
3158 return status;
3159 }
3160
3161 /**
3162 * spi_sync - blocking/synchronous SPI data transfers
3163 * @spi: device with which data will be exchanged
3164 * @message: describes the data transfers
3165 * Context: can sleep
3166 *
3167 * This call may only be used from a context that may sleep. The sleep
3168 * is non-interruptible, and has no timeout. Low-overhead controller
3169 * drivers may DMA directly into and out of the message buffers.
3170 *
3171 * Note that the SPI device's chip select is active during the message,
3172 * and then is normally disabled between messages. Drivers for some
3173 * frequently-used devices may want to minimize costs of selecting a chip,
3174 * by leaving it selected in anticipation that the next message will go
3175 * to the same chip. (That may increase power usage.)
3176 *
3177 * Also, the caller is guaranteeing that the memory associated with the
3178 * message will not be freed before this call returns.
3179 *
3180 * Return: zero on success, else a negative error code.
3181 */
spi_sync(struct spi_device * spi,struct spi_message * message)3182 int spi_sync(struct spi_device *spi, struct spi_message *message)
3183 {
3184 int ret;
3185
3186 mutex_lock(&spi->controller->bus_lock_mutex);
3187 ret = __spi_sync(spi, message);
3188 mutex_unlock(&spi->controller->bus_lock_mutex);
3189
3190 return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(spi_sync);
3193
3194 /**
3195 * spi_sync_locked - version of spi_sync with exclusive bus usage
3196 * @spi: device with which data will be exchanged
3197 * @message: describes the data transfers
3198 * Context: can sleep
3199 *
3200 * This call may only be used from a context that may sleep. The sleep
3201 * is non-interruptible, and has no timeout. Low-overhead controller
3202 * drivers may DMA directly into and out of the message buffers.
3203 *
3204 * This call should be used by drivers that require exclusive access to the
3205 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3206 * be released by a spi_bus_unlock call when the exclusive access is over.
3207 *
3208 * Return: zero on success, else a negative error code.
3209 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3210 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3211 {
3212 return __spi_sync(spi, message);
3213 }
3214 EXPORT_SYMBOL_GPL(spi_sync_locked);
3215
3216 /**
3217 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3218 * @ctlr: SPI bus master that should be locked for exclusive bus access
3219 * Context: can sleep
3220 *
3221 * This call may only be used from a context that may sleep. The sleep
3222 * is non-interruptible, and has no timeout.
3223 *
3224 * This call should be used by drivers that require exclusive access to the
3225 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3226 * exclusive access is over. Data transfer must be done by spi_sync_locked
3227 * and spi_async_locked calls when the SPI bus lock is held.
3228 *
3229 * Return: always zero.
3230 */
spi_bus_lock(struct spi_controller * ctlr)3231 int spi_bus_lock(struct spi_controller *ctlr)
3232 {
3233 unsigned long flags;
3234
3235 mutex_lock(&ctlr->bus_lock_mutex);
3236
3237 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3238 ctlr->bus_lock_flag = 1;
3239 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3240
3241 /* mutex remains locked until spi_bus_unlock is called */
3242
3243 return 0;
3244 }
3245 EXPORT_SYMBOL_GPL(spi_bus_lock);
3246
3247 /**
3248 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3249 * @ctlr: SPI bus master that was locked for exclusive bus access
3250 * Context: can sleep
3251 *
3252 * This call may only be used from a context that may sleep. The sleep
3253 * is non-interruptible, and has no timeout.
3254 *
3255 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3256 * call.
3257 *
3258 * Return: always zero.
3259 */
spi_bus_unlock(struct spi_controller * ctlr)3260 int spi_bus_unlock(struct spi_controller *ctlr)
3261 {
3262 ctlr->bus_lock_flag = 0;
3263
3264 mutex_unlock(&ctlr->bus_lock_mutex);
3265
3266 return 0;
3267 }
3268 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3269
3270 /* portable code must never pass more than 32 bytes */
3271 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3272
3273 static u8 *buf;
3274
3275 /**
3276 * spi_write_then_read - SPI synchronous write followed by read
3277 * @spi: device with which data will be exchanged
3278 * @txbuf: data to be written (need not be dma-safe)
3279 * @n_tx: size of txbuf, in bytes
3280 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3281 * @n_rx: size of rxbuf, in bytes
3282 * Context: can sleep
3283 *
3284 * This performs a half duplex MicroWire style transaction with the
3285 * device, sending txbuf and then reading rxbuf. The return value
3286 * is zero for success, else a negative errno status code.
3287 * This call may only be used from a context that may sleep.
3288 *
3289 * Parameters to this routine are always copied using a small buffer;
3290 * portable code should never use this for more than 32 bytes.
3291 * Performance-sensitive or bulk transfer code should instead use
3292 * spi_{async,sync}() calls with dma-safe buffers.
3293 *
3294 * Return: zero on success, else a negative error code.
3295 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3296 int spi_write_then_read(struct spi_device *spi,
3297 const void *txbuf, unsigned n_tx,
3298 void *rxbuf, unsigned n_rx)
3299 {
3300 static DEFINE_MUTEX(lock);
3301
3302 int status;
3303 struct spi_message message;
3304 struct spi_transfer x[2];
3305 u8 *local_buf;
3306
3307 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3308 * copying here, (as a pure convenience thing), but we can
3309 * keep heap costs out of the hot path unless someone else is
3310 * using the pre-allocated buffer or the transfer is too large.
3311 */
3312 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3313 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3314 GFP_KERNEL | GFP_DMA);
3315 if (!local_buf)
3316 return -ENOMEM;
3317 } else {
3318 local_buf = buf;
3319 }
3320
3321 spi_message_init(&message);
3322 memset(x, 0, sizeof(x));
3323 if (n_tx) {
3324 x[0].len = n_tx;
3325 spi_message_add_tail(&x[0], &message);
3326 }
3327 if (n_rx) {
3328 x[1].len = n_rx;
3329 spi_message_add_tail(&x[1], &message);
3330 }
3331
3332 memcpy(local_buf, txbuf, n_tx);
3333 x[0].tx_buf = local_buf;
3334 x[1].rx_buf = local_buf + n_tx;
3335
3336 /* do the i/o */
3337 status = spi_sync(spi, &message);
3338 if (status == 0)
3339 memcpy(rxbuf, x[1].rx_buf, n_rx);
3340
3341 if (x[0].tx_buf == buf)
3342 mutex_unlock(&lock);
3343 else
3344 kfree(local_buf);
3345
3346 return status;
3347 }
3348 EXPORT_SYMBOL_GPL(spi_write_then_read);
3349
3350 /*-------------------------------------------------------------------------*/
3351
3352 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
__spi_of_device_match(struct device * dev,void * data)3353 static int __spi_of_device_match(struct device *dev, void *data)
3354 {
3355 return dev->of_node == data;
3356 }
3357
3358 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)3359 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3360 {
3361 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3362 __spi_of_device_match);
3363 return dev ? to_spi_device(dev) : NULL;
3364 }
3365
__spi_of_controller_match(struct device * dev,const void * data)3366 static int __spi_of_controller_match(struct device *dev, const void *data)
3367 {
3368 return dev->of_node == data;
3369 }
3370
3371 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)3372 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3373 {
3374 struct device *dev;
3375
3376 dev = class_find_device(&spi_master_class, NULL, node,
3377 __spi_of_controller_match);
3378 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3379 dev = class_find_device(&spi_slave_class, NULL, node,
3380 __spi_of_controller_match);
3381 if (!dev)
3382 return NULL;
3383
3384 /* reference got in class_find_device */
3385 return container_of(dev, struct spi_controller, dev);
3386 }
3387
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)3388 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3389 void *arg)
3390 {
3391 struct of_reconfig_data *rd = arg;
3392 struct spi_controller *ctlr;
3393 struct spi_device *spi;
3394
3395 switch (of_reconfig_get_state_change(action, arg)) {
3396 case OF_RECONFIG_CHANGE_ADD:
3397 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3398 if (ctlr == NULL)
3399 return NOTIFY_OK; /* not for us */
3400
3401 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3402 put_device(&ctlr->dev);
3403 return NOTIFY_OK;
3404 }
3405
3406 spi = of_register_spi_device(ctlr, rd->dn);
3407 put_device(&ctlr->dev);
3408
3409 if (IS_ERR(spi)) {
3410 pr_err("%s: failed to create for '%pOF'\n",
3411 __func__, rd->dn);
3412 of_node_clear_flag(rd->dn, OF_POPULATED);
3413 return notifier_from_errno(PTR_ERR(spi));
3414 }
3415 break;
3416
3417 case OF_RECONFIG_CHANGE_REMOVE:
3418 /* already depopulated? */
3419 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3420 return NOTIFY_OK;
3421
3422 /* find our device by node */
3423 spi = of_find_spi_device_by_node(rd->dn);
3424 if (spi == NULL)
3425 return NOTIFY_OK; /* no? not meant for us */
3426
3427 /* unregister takes one ref away */
3428 spi_unregister_device(spi);
3429
3430 /* and put the reference of the find */
3431 put_device(&spi->dev);
3432 break;
3433 }
3434
3435 return NOTIFY_OK;
3436 }
3437
3438 static struct notifier_block spi_of_notifier = {
3439 .notifier_call = of_spi_notify,
3440 };
3441 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3442 extern struct notifier_block spi_of_notifier;
3443 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3444
3445 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)3446 static int spi_acpi_controller_match(struct device *dev, const void *data)
3447 {
3448 return ACPI_COMPANION(dev->parent) == data;
3449 }
3450
spi_acpi_device_match(struct device * dev,void * data)3451 static int spi_acpi_device_match(struct device *dev, void *data)
3452 {
3453 return ACPI_COMPANION(dev) == data;
3454 }
3455
acpi_spi_find_controller_by_adev(struct acpi_device * adev)3456 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3457 {
3458 struct device *dev;
3459
3460 dev = class_find_device(&spi_master_class, NULL, adev,
3461 spi_acpi_controller_match);
3462 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3463 dev = class_find_device(&spi_slave_class, NULL, adev,
3464 spi_acpi_controller_match);
3465 if (!dev)
3466 return NULL;
3467
3468 return container_of(dev, struct spi_controller, dev);
3469 }
3470
acpi_spi_find_device_by_adev(struct acpi_device * adev)3471 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3472 {
3473 struct device *dev;
3474
3475 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3476
3477 return dev ? to_spi_device(dev) : NULL;
3478 }
3479
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)3480 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3481 void *arg)
3482 {
3483 struct acpi_device *adev = arg;
3484 struct spi_controller *ctlr;
3485 struct spi_device *spi;
3486
3487 switch (value) {
3488 case ACPI_RECONFIG_DEVICE_ADD:
3489 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3490 if (!ctlr)
3491 break;
3492
3493 acpi_register_spi_device(ctlr, adev);
3494 put_device(&ctlr->dev);
3495 break;
3496 case ACPI_RECONFIG_DEVICE_REMOVE:
3497 if (!acpi_device_enumerated(adev))
3498 break;
3499
3500 spi = acpi_spi_find_device_by_adev(adev);
3501 if (!spi)
3502 break;
3503
3504 spi_unregister_device(spi);
3505 put_device(&spi->dev);
3506 break;
3507 }
3508
3509 return NOTIFY_OK;
3510 }
3511
3512 static struct notifier_block spi_acpi_notifier = {
3513 .notifier_call = acpi_spi_notify,
3514 };
3515 #else
3516 extern struct notifier_block spi_acpi_notifier;
3517 #endif
3518
spi_init(void)3519 static int __init spi_init(void)
3520 {
3521 int status;
3522
3523 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3524 if (!buf) {
3525 status = -ENOMEM;
3526 goto err0;
3527 }
3528
3529 status = bus_register(&spi_bus_type);
3530 if (status < 0)
3531 goto err1;
3532
3533 status = class_register(&spi_master_class);
3534 if (status < 0)
3535 goto err2;
3536
3537 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3538 status = class_register(&spi_slave_class);
3539 if (status < 0)
3540 goto err3;
3541 }
3542
3543 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3544 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3545 if (IS_ENABLED(CONFIG_ACPI))
3546 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3547
3548 return 0;
3549
3550 err3:
3551 class_unregister(&spi_master_class);
3552 err2:
3553 bus_unregister(&spi_bus_type);
3554 err1:
3555 kfree(buf);
3556 buf = NULL;
3557 err0:
3558 return status;
3559 }
3560
3561 /* board_info is normally registered in arch_initcall(),
3562 * but even essential drivers wait till later
3563 *
3564 * REVISIT only boardinfo really needs static linking. the rest (device and
3565 * driver registration) _could_ be dynamically linked (modular) ... costs
3566 * include needing to have boardinfo data structures be much more public.
3567 */
3568 postcore_initcall(spi_init);
3569
3570