• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 		struct se_device *dev, int err, bool write_pending);
70 static void target_complete_ok_work(struct work_struct *work);
71 
init_se_kmem_caches(void)72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
scsi_get_new_index(scsi_index_t type)187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
transport_subsystem_check_init(void)200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
target_release_sess_cmd_refcnt(struct percpu_ref * ref)227 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
228 {
229 	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
230 
231 	wake_up(&sess->cmd_list_wq);
232 }
233 
234 /**
235  * transport_init_session - initialize a session object
236  * @se_sess: Session object pointer.
237  *
238  * The caller must have zero-initialized @se_sess before calling this function.
239  */
transport_init_session(struct se_session * se_sess)240 int transport_init_session(struct se_session *se_sess)
241 {
242 	INIT_LIST_HEAD(&se_sess->sess_list);
243 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
244 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
245 	spin_lock_init(&se_sess->sess_cmd_lock);
246 	init_waitqueue_head(&se_sess->cmd_list_wq);
247 	return percpu_ref_init(&se_sess->cmd_count,
248 			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
249 }
250 EXPORT_SYMBOL(transport_init_session);
251 
252 /**
253  * transport_alloc_session - allocate a session object and initialize it
254  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
255  */
transport_alloc_session(enum target_prot_op sup_prot_ops)256 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
257 {
258 	struct se_session *se_sess;
259 	int ret;
260 
261 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
262 	if (!se_sess) {
263 		pr_err("Unable to allocate struct se_session from"
264 				" se_sess_cache\n");
265 		return ERR_PTR(-ENOMEM);
266 	}
267 	ret = transport_init_session(se_sess);
268 	if (ret < 0) {
269 		kmem_cache_free(se_sess_cache, se_sess);
270 		return ERR_PTR(ret);
271 	}
272 	se_sess->sup_prot_ops = sup_prot_ops;
273 
274 	return se_sess;
275 }
276 EXPORT_SYMBOL(transport_alloc_session);
277 
278 /**
279  * transport_alloc_session_tags - allocate target driver private data
280  * @se_sess:  Session pointer.
281  * @tag_num:  Maximum number of in-flight commands between initiator and target.
282  * @tag_size: Size in bytes of the private data a target driver associates with
283  *	      each command.
284  */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)285 int transport_alloc_session_tags(struct se_session *se_sess,
286 			         unsigned int tag_num, unsigned int tag_size)
287 {
288 	int rc;
289 
290 	se_sess->sess_cmd_map = kcalloc(tag_size, tag_num,
291 					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
292 	if (!se_sess->sess_cmd_map) {
293 		se_sess->sess_cmd_map = vzalloc(array_size(tag_size, tag_num));
294 		if (!se_sess->sess_cmd_map) {
295 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
296 			return -ENOMEM;
297 		}
298 	}
299 
300 	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
301 			false, GFP_KERNEL, NUMA_NO_NODE);
302 	if (rc < 0) {
303 		pr_err("Unable to init se_sess->sess_tag_pool,"
304 			" tag_num: %u\n", tag_num);
305 		kvfree(se_sess->sess_cmd_map);
306 		se_sess->sess_cmd_map = NULL;
307 		return -ENOMEM;
308 	}
309 
310 	return 0;
311 }
312 EXPORT_SYMBOL(transport_alloc_session_tags);
313 
314 /**
315  * transport_init_session_tags - allocate a session and target driver private data
316  * @tag_num:  Maximum number of in-flight commands between initiator and target.
317  * @tag_size: Size in bytes of the private data a target driver associates with
318  *	      each command.
319  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
320  */
321 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)322 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
323 			    enum target_prot_op sup_prot_ops)
324 {
325 	struct se_session *se_sess;
326 	int rc;
327 
328 	if (tag_num != 0 && !tag_size) {
329 		pr_err("init_session_tags called with percpu-ida tag_num:"
330 		       " %u, but zero tag_size\n", tag_num);
331 		return ERR_PTR(-EINVAL);
332 	}
333 	if (!tag_num && tag_size) {
334 		pr_err("init_session_tags called with percpu-ida tag_size:"
335 		       " %u, but zero tag_num\n", tag_size);
336 		return ERR_PTR(-EINVAL);
337 	}
338 
339 	se_sess = transport_alloc_session(sup_prot_ops);
340 	if (IS_ERR(se_sess))
341 		return se_sess;
342 
343 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
344 	if (rc < 0) {
345 		transport_free_session(se_sess);
346 		return ERR_PTR(-ENOMEM);
347 	}
348 
349 	return se_sess;
350 }
351 
352 /*
353  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
354  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)355 void __transport_register_session(
356 	struct se_portal_group *se_tpg,
357 	struct se_node_acl *se_nacl,
358 	struct se_session *se_sess,
359 	void *fabric_sess_ptr)
360 {
361 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
362 	unsigned char buf[PR_REG_ISID_LEN];
363 	unsigned long flags;
364 
365 	se_sess->se_tpg = se_tpg;
366 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
367 	/*
368 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
369 	 *
370 	 * Only set for struct se_session's that will actually be moving I/O.
371 	 * eg: *NOT* discovery sessions.
372 	 */
373 	if (se_nacl) {
374 		/*
375 		 *
376 		 * Determine if fabric allows for T10-PI feature bits exposed to
377 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
378 		 *
379 		 * If so, then always save prot_type on a per se_node_acl node
380 		 * basis and re-instate the previous sess_prot_type to avoid
381 		 * disabling PI from below any previously initiator side
382 		 * registered LUNs.
383 		 */
384 		if (se_nacl->saved_prot_type)
385 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
386 		else if (tfo->tpg_check_prot_fabric_only)
387 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
388 					tfo->tpg_check_prot_fabric_only(se_tpg);
389 		/*
390 		 * If the fabric module supports an ISID based TransportID,
391 		 * save this value in binary from the fabric I_T Nexus now.
392 		 */
393 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
394 			memset(&buf[0], 0, PR_REG_ISID_LEN);
395 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
396 					&buf[0], PR_REG_ISID_LEN);
397 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
398 		}
399 
400 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
401 		/*
402 		 * The se_nacl->nacl_sess pointer will be set to the
403 		 * last active I_T Nexus for each struct se_node_acl.
404 		 */
405 		se_nacl->nacl_sess = se_sess;
406 
407 		list_add_tail(&se_sess->sess_acl_list,
408 			      &se_nacl->acl_sess_list);
409 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
410 	}
411 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
412 
413 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
414 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
415 }
416 EXPORT_SYMBOL(__transport_register_session);
417 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)418 void transport_register_session(
419 	struct se_portal_group *se_tpg,
420 	struct se_node_acl *se_nacl,
421 	struct se_session *se_sess,
422 	void *fabric_sess_ptr)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&se_tpg->session_lock, flags);
427 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
428 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
429 }
430 EXPORT_SYMBOL(transport_register_session);
431 
432 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))433 target_setup_session(struct se_portal_group *tpg,
434 		     unsigned int tag_num, unsigned int tag_size,
435 		     enum target_prot_op prot_op,
436 		     const char *initiatorname, void *private,
437 		     int (*callback)(struct se_portal_group *,
438 				     struct se_session *, void *))
439 {
440 	struct se_session *sess;
441 
442 	/*
443 	 * If the fabric driver is using percpu-ida based pre allocation
444 	 * of I/O descriptor tags, go ahead and perform that setup now..
445 	 */
446 	if (tag_num != 0)
447 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
448 	else
449 		sess = transport_alloc_session(prot_op);
450 
451 	if (IS_ERR(sess))
452 		return sess;
453 
454 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
455 					(unsigned char *)initiatorname);
456 	if (!sess->se_node_acl) {
457 		transport_free_session(sess);
458 		return ERR_PTR(-EACCES);
459 	}
460 	/*
461 	 * Go ahead and perform any remaining fabric setup that is
462 	 * required before transport_register_session().
463 	 */
464 	if (callback != NULL) {
465 		int rc = callback(tpg, sess, private);
466 		if (rc) {
467 			transport_free_session(sess);
468 			return ERR_PTR(rc);
469 		}
470 	}
471 
472 	transport_register_session(tpg, sess->se_node_acl, sess, private);
473 	return sess;
474 }
475 EXPORT_SYMBOL(target_setup_session);
476 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)477 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
478 {
479 	struct se_session *se_sess;
480 	ssize_t len = 0;
481 
482 	spin_lock_bh(&se_tpg->session_lock);
483 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
484 		if (!se_sess->se_node_acl)
485 			continue;
486 		if (!se_sess->se_node_acl->dynamic_node_acl)
487 			continue;
488 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
489 			break;
490 
491 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
492 				se_sess->se_node_acl->initiatorname);
493 		len += 1; /* Include NULL terminator */
494 	}
495 	spin_unlock_bh(&se_tpg->session_lock);
496 
497 	return len;
498 }
499 EXPORT_SYMBOL(target_show_dynamic_sessions);
500 
target_complete_nacl(struct kref * kref)501 static void target_complete_nacl(struct kref *kref)
502 {
503 	struct se_node_acl *nacl = container_of(kref,
504 				struct se_node_acl, acl_kref);
505 	struct se_portal_group *se_tpg = nacl->se_tpg;
506 
507 	if (!nacl->dynamic_stop) {
508 		complete(&nacl->acl_free_comp);
509 		return;
510 	}
511 
512 	mutex_lock(&se_tpg->acl_node_mutex);
513 	list_del_init(&nacl->acl_list);
514 	mutex_unlock(&se_tpg->acl_node_mutex);
515 
516 	core_tpg_wait_for_nacl_pr_ref(nacl);
517 	core_free_device_list_for_node(nacl, se_tpg);
518 	kfree(nacl);
519 }
520 
target_put_nacl(struct se_node_acl * nacl)521 void target_put_nacl(struct se_node_acl *nacl)
522 {
523 	kref_put(&nacl->acl_kref, target_complete_nacl);
524 }
525 EXPORT_SYMBOL(target_put_nacl);
526 
transport_deregister_session_configfs(struct se_session * se_sess)527 void transport_deregister_session_configfs(struct se_session *se_sess)
528 {
529 	struct se_node_acl *se_nacl;
530 	unsigned long flags;
531 	/*
532 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
533 	 */
534 	se_nacl = se_sess->se_node_acl;
535 	if (se_nacl) {
536 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
537 		if (!list_empty(&se_sess->sess_acl_list))
538 			list_del_init(&se_sess->sess_acl_list);
539 		/*
540 		 * If the session list is empty, then clear the pointer.
541 		 * Otherwise, set the struct se_session pointer from the tail
542 		 * element of the per struct se_node_acl active session list.
543 		 */
544 		if (list_empty(&se_nacl->acl_sess_list))
545 			se_nacl->nacl_sess = NULL;
546 		else {
547 			se_nacl->nacl_sess = container_of(
548 					se_nacl->acl_sess_list.prev,
549 					struct se_session, sess_acl_list);
550 		}
551 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
552 	}
553 }
554 EXPORT_SYMBOL(transport_deregister_session_configfs);
555 
transport_free_session(struct se_session * se_sess)556 void transport_free_session(struct se_session *se_sess)
557 {
558 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
559 
560 	/*
561 	 * Drop the se_node_acl->nacl_kref obtained from within
562 	 * core_tpg_get_initiator_node_acl().
563 	 */
564 	if (se_nacl) {
565 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
566 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
567 		unsigned long flags;
568 
569 		se_sess->se_node_acl = NULL;
570 
571 		/*
572 		 * Also determine if we need to drop the extra ->cmd_kref if
573 		 * it had been previously dynamically generated, and
574 		 * the endpoint is not caching dynamic ACLs.
575 		 */
576 		mutex_lock(&se_tpg->acl_node_mutex);
577 		if (se_nacl->dynamic_node_acl &&
578 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
579 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
580 			if (list_empty(&se_nacl->acl_sess_list))
581 				se_nacl->dynamic_stop = true;
582 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
583 
584 			if (se_nacl->dynamic_stop)
585 				list_del_init(&se_nacl->acl_list);
586 		}
587 		mutex_unlock(&se_tpg->acl_node_mutex);
588 
589 		if (se_nacl->dynamic_stop)
590 			target_put_nacl(se_nacl);
591 
592 		target_put_nacl(se_nacl);
593 	}
594 	if (se_sess->sess_cmd_map) {
595 		sbitmap_queue_free(&se_sess->sess_tag_pool);
596 		kvfree(se_sess->sess_cmd_map);
597 	}
598 	percpu_ref_exit(&se_sess->cmd_count);
599 	kmem_cache_free(se_sess_cache, se_sess);
600 }
601 EXPORT_SYMBOL(transport_free_session);
602 
transport_deregister_session(struct se_session * se_sess)603 void transport_deregister_session(struct se_session *se_sess)
604 {
605 	struct se_portal_group *se_tpg = se_sess->se_tpg;
606 	unsigned long flags;
607 
608 	if (!se_tpg) {
609 		transport_free_session(se_sess);
610 		return;
611 	}
612 
613 	spin_lock_irqsave(&se_tpg->session_lock, flags);
614 	list_del(&se_sess->sess_list);
615 	se_sess->se_tpg = NULL;
616 	se_sess->fabric_sess_ptr = NULL;
617 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
618 
619 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
620 		se_tpg->se_tpg_tfo->get_fabric_name());
621 	/*
622 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
623 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
624 	 * removal context from within transport_free_session() code.
625 	 *
626 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
627 	 * to release all remaining generate_node_acl=1 created ACL resources.
628 	 */
629 
630 	transport_free_session(se_sess);
631 }
632 EXPORT_SYMBOL(transport_deregister_session);
633 
target_remove_session(struct se_session * se_sess)634 void target_remove_session(struct se_session *se_sess)
635 {
636 	transport_deregister_session_configfs(se_sess);
637 	transport_deregister_session(se_sess);
638 }
639 EXPORT_SYMBOL(target_remove_session);
640 
target_remove_from_state_list(struct se_cmd * cmd)641 static void target_remove_from_state_list(struct se_cmd *cmd)
642 {
643 	struct se_device *dev = cmd->se_dev;
644 	unsigned long flags;
645 
646 	if (!dev)
647 		return;
648 
649 	spin_lock_irqsave(&dev->execute_task_lock, flags);
650 	if (cmd->state_active) {
651 		list_del(&cmd->state_list);
652 		cmd->state_active = false;
653 	}
654 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
655 }
656 
657 /*
658  * This function is called by the target core after the target core has
659  * finished processing a SCSI command or SCSI TMF. Both the regular command
660  * processing code and the code for aborting commands can call this
661  * function. CMD_T_STOP is set if and only if another thread is waiting
662  * inside transport_wait_for_tasks() for t_transport_stop_comp.
663  */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)664 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
665 {
666 	unsigned long flags;
667 
668 	target_remove_from_state_list(cmd);
669 
670 	/*
671 	 * Clear struct se_cmd->se_lun before the handoff to FE.
672 	 */
673 	cmd->se_lun = NULL;
674 
675 	spin_lock_irqsave(&cmd->t_state_lock, flags);
676 	/*
677 	 * Determine if frontend context caller is requesting the stopping of
678 	 * this command for frontend exceptions.
679 	 */
680 	if (cmd->transport_state & CMD_T_STOP) {
681 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
682 			__func__, __LINE__, cmd->tag);
683 
684 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
685 
686 		complete_all(&cmd->t_transport_stop_comp);
687 		return 1;
688 	}
689 	cmd->transport_state &= ~CMD_T_ACTIVE;
690 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
691 
692 	/*
693 	 * Some fabric modules like tcm_loop can release their internally
694 	 * allocated I/O reference and struct se_cmd now.
695 	 *
696 	 * Fabric modules are expected to return '1' here if the se_cmd being
697 	 * passed is released at this point, or zero if not being released.
698 	 */
699 	return cmd->se_tfo->check_stop_free(cmd);
700 }
701 
transport_lun_remove_cmd(struct se_cmd * cmd)702 static void transport_lun_remove_cmd(struct se_cmd *cmd)
703 {
704 	struct se_lun *lun = cmd->se_lun;
705 
706 	if (!lun)
707 		return;
708 
709 	if (cmpxchg(&cmd->lun_ref_active, true, false))
710 		percpu_ref_put(&lun->lun_ref);
711 }
712 
transport_cmd_finish_abort(struct se_cmd * cmd)713 int transport_cmd_finish_abort(struct se_cmd *cmd)
714 {
715 	bool send_tas = cmd->transport_state & CMD_T_TAS;
716 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
717 	int ret = 0;
718 
719 	if (send_tas)
720 		transport_send_task_abort(cmd);
721 
722 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
723 		transport_lun_remove_cmd(cmd);
724 	/*
725 	 * Allow the fabric driver to unmap any resources before
726 	 * releasing the descriptor via TFO->release_cmd()
727 	 */
728 	if (!send_tas)
729 		cmd->se_tfo->aborted_task(cmd);
730 
731 	if (transport_cmd_check_stop_to_fabric(cmd))
732 		return 1;
733 	if (!send_tas && ack_kref)
734 		ret = target_put_sess_cmd(cmd);
735 
736 	return ret;
737 }
738 
target_complete_failure_work(struct work_struct * work)739 static void target_complete_failure_work(struct work_struct *work)
740 {
741 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
742 
743 	transport_generic_request_failure(cmd,
744 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
745 }
746 
747 /*
748  * Used when asking transport to copy Sense Data from the underlying
749  * Linux/SCSI struct scsi_cmnd
750  */
transport_get_sense_buffer(struct se_cmd * cmd)751 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
752 {
753 	struct se_device *dev = cmd->se_dev;
754 
755 	WARN_ON(!cmd->se_lun);
756 
757 	if (!dev)
758 		return NULL;
759 
760 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
761 		return NULL;
762 
763 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
764 
765 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
766 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
767 	return cmd->sense_buffer;
768 }
769 
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)770 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
771 {
772 	unsigned char *cmd_sense_buf;
773 	unsigned long flags;
774 
775 	spin_lock_irqsave(&cmd->t_state_lock, flags);
776 	cmd_sense_buf = transport_get_sense_buffer(cmd);
777 	if (!cmd_sense_buf) {
778 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
779 		return;
780 	}
781 
782 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
783 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
784 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
785 }
786 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
787 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)788 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
789 {
790 	struct se_device *dev = cmd->se_dev;
791 	int success;
792 	unsigned long flags;
793 
794 	cmd->scsi_status = scsi_status;
795 
796 	spin_lock_irqsave(&cmd->t_state_lock, flags);
797 	switch (cmd->scsi_status) {
798 	case SAM_STAT_CHECK_CONDITION:
799 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
800 			success = 1;
801 		else
802 			success = 0;
803 		break;
804 	default:
805 		success = 1;
806 		break;
807 	}
808 
809 	/*
810 	 * Check for case where an explicit ABORT_TASK has been received
811 	 * and transport_wait_for_tasks() will be waiting for completion..
812 	 */
813 	if (cmd->transport_state & CMD_T_ABORTED ||
814 	    cmd->transport_state & CMD_T_STOP) {
815 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
816 		/*
817 		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
818 		 * release se_device->caw_sem obtained by sbc_compare_and_write()
819 		 * since target_complete_ok_work() or target_complete_failure_work()
820 		 * won't be called to invoke the normal CAW completion callbacks.
821 		 */
822 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
823 			up(&dev->caw_sem);
824 		}
825 		complete_all(&cmd->t_transport_stop_comp);
826 		return;
827 	} else if (!success) {
828 		INIT_WORK(&cmd->work, target_complete_failure_work);
829 	} else {
830 		INIT_WORK(&cmd->work, target_complete_ok_work);
831 	}
832 
833 	cmd->t_state = TRANSPORT_COMPLETE;
834 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
835 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
836 
837 	if (cmd->se_cmd_flags & SCF_USE_CPUID)
838 		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
839 	else
840 		queue_work(target_completion_wq, &cmd->work);
841 }
842 EXPORT_SYMBOL(target_complete_cmd);
843 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)844 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
845 {
846 	if ((scsi_status == SAM_STAT_GOOD ||
847 	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
848 	    length < cmd->data_length) {
849 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
850 			cmd->residual_count += cmd->data_length - length;
851 		} else {
852 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
853 			cmd->residual_count = cmd->data_length - length;
854 		}
855 
856 		cmd->data_length = length;
857 	}
858 
859 	target_complete_cmd(cmd, scsi_status);
860 }
861 EXPORT_SYMBOL(target_complete_cmd_with_length);
862 
target_add_to_state_list(struct se_cmd * cmd)863 static void target_add_to_state_list(struct se_cmd *cmd)
864 {
865 	struct se_device *dev = cmd->se_dev;
866 	unsigned long flags;
867 
868 	spin_lock_irqsave(&dev->execute_task_lock, flags);
869 	if (!cmd->state_active) {
870 		list_add_tail(&cmd->state_list, &dev->state_list);
871 		cmd->state_active = true;
872 	}
873 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
874 }
875 
876 /*
877  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
878  */
879 static void transport_write_pending_qf(struct se_cmd *cmd);
880 static void transport_complete_qf(struct se_cmd *cmd);
881 
target_qf_do_work(struct work_struct * work)882 void target_qf_do_work(struct work_struct *work)
883 {
884 	struct se_device *dev = container_of(work, struct se_device,
885 					qf_work_queue);
886 	LIST_HEAD(qf_cmd_list);
887 	struct se_cmd *cmd, *cmd_tmp;
888 
889 	spin_lock_irq(&dev->qf_cmd_lock);
890 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
891 	spin_unlock_irq(&dev->qf_cmd_lock);
892 
893 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
894 		list_del(&cmd->se_qf_node);
895 		atomic_dec_mb(&dev->dev_qf_count);
896 
897 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
898 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
899 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
900 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
901 			: "UNKNOWN");
902 
903 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
904 			transport_write_pending_qf(cmd);
905 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
906 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
907 			transport_complete_qf(cmd);
908 	}
909 }
910 
transport_dump_cmd_direction(struct se_cmd * cmd)911 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
912 {
913 	switch (cmd->data_direction) {
914 	case DMA_NONE:
915 		return "NONE";
916 	case DMA_FROM_DEVICE:
917 		return "READ";
918 	case DMA_TO_DEVICE:
919 		return "WRITE";
920 	case DMA_BIDIRECTIONAL:
921 		return "BIDI";
922 	default:
923 		break;
924 	}
925 
926 	return "UNKNOWN";
927 }
928 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)929 void transport_dump_dev_state(
930 	struct se_device *dev,
931 	char *b,
932 	int *bl)
933 {
934 	*bl += sprintf(b + *bl, "Status: ");
935 	if (dev->export_count)
936 		*bl += sprintf(b + *bl, "ACTIVATED");
937 	else
938 		*bl += sprintf(b + *bl, "DEACTIVATED");
939 
940 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
941 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
942 		dev->dev_attrib.block_size,
943 		dev->dev_attrib.hw_max_sectors);
944 	*bl += sprintf(b + *bl, "        ");
945 }
946 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)947 void transport_dump_vpd_proto_id(
948 	struct t10_vpd *vpd,
949 	unsigned char *p_buf,
950 	int p_buf_len)
951 {
952 	unsigned char buf[VPD_TMP_BUF_SIZE];
953 	int len;
954 
955 	memset(buf, 0, VPD_TMP_BUF_SIZE);
956 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
957 
958 	switch (vpd->protocol_identifier) {
959 	case 0x00:
960 		sprintf(buf+len, "Fibre Channel\n");
961 		break;
962 	case 0x10:
963 		sprintf(buf+len, "Parallel SCSI\n");
964 		break;
965 	case 0x20:
966 		sprintf(buf+len, "SSA\n");
967 		break;
968 	case 0x30:
969 		sprintf(buf+len, "IEEE 1394\n");
970 		break;
971 	case 0x40:
972 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
973 				" Protocol\n");
974 		break;
975 	case 0x50:
976 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
977 		break;
978 	case 0x60:
979 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
980 		break;
981 	case 0x70:
982 		sprintf(buf+len, "Automation/Drive Interface Transport"
983 				" Protocol\n");
984 		break;
985 	case 0x80:
986 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
987 		break;
988 	default:
989 		sprintf(buf+len, "Unknown 0x%02x\n",
990 				vpd->protocol_identifier);
991 		break;
992 	}
993 
994 	if (p_buf)
995 		strncpy(p_buf, buf, p_buf_len);
996 	else
997 		pr_debug("%s", buf);
998 }
999 
1000 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1001 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1002 {
1003 	/*
1004 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1005 	 *
1006 	 * from spc3r23.pdf section 7.5.1
1007 	 */
1008 	 if (page_83[1] & 0x80) {
1009 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1010 		vpd->protocol_identifier_set = 1;
1011 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1012 	}
1013 }
1014 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1015 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1016 int transport_dump_vpd_assoc(
1017 	struct t10_vpd *vpd,
1018 	unsigned char *p_buf,
1019 	int p_buf_len)
1020 {
1021 	unsigned char buf[VPD_TMP_BUF_SIZE];
1022 	int ret = 0;
1023 	int len;
1024 
1025 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1026 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1027 
1028 	switch (vpd->association) {
1029 	case 0x00:
1030 		sprintf(buf+len, "addressed logical unit\n");
1031 		break;
1032 	case 0x10:
1033 		sprintf(buf+len, "target port\n");
1034 		break;
1035 	case 0x20:
1036 		sprintf(buf+len, "SCSI target device\n");
1037 		break;
1038 	default:
1039 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1040 		ret = -EINVAL;
1041 		break;
1042 	}
1043 
1044 	if (p_buf)
1045 		strncpy(p_buf, buf, p_buf_len);
1046 	else
1047 		pr_debug("%s", buf);
1048 
1049 	return ret;
1050 }
1051 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1052 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1053 {
1054 	/*
1055 	 * The VPD identification association..
1056 	 *
1057 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1058 	 */
1059 	vpd->association = (page_83[1] & 0x30);
1060 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1061 }
1062 EXPORT_SYMBOL(transport_set_vpd_assoc);
1063 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1064 int transport_dump_vpd_ident_type(
1065 	struct t10_vpd *vpd,
1066 	unsigned char *p_buf,
1067 	int p_buf_len)
1068 {
1069 	unsigned char buf[VPD_TMP_BUF_SIZE];
1070 	int ret = 0;
1071 	int len;
1072 
1073 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1074 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1075 
1076 	switch (vpd->device_identifier_type) {
1077 	case 0x00:
1078 		sprintf(buf+len, "Vendor specific\n");
1079 		break;
1080 	case 0x01:
1081 		sprintf(buf+len, "T10 Vendor ID based\n");
1082 		break;
1083 	case 0x02:
1084 		sprintf(buf+len, "EUI-64 based\n");
1085 		break;
1086 	case 0x03:
1087 		sprintf(buf+len, "NAA\n");
1088 		break;
1089 	case 0x04:
1090 		sprintf(buf+len, "Relative target port identifier\n");
1091 		break;
1092 	case 0x08:
1093 		sprintf(buf+len, "SCSI name string\n");
1094 		break;
1095 	default:
1096 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1097 				vpd->device_identifier_type);
1098 		ret = -EINVAL;
1099 		break;
1100 	}
1101 
1102 	if (p_buf) {
1103 		if (p_buf_len < strlen(buf)+1)
1104 			return -EINVAL;
1105 		strncpy(p_buf, buf, p_buf_len);
1106 	} else {
1107 		pr_debug("%s", buf);
1108 	}
1109 
1110 	return ret;
1111 }
1112 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1113 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1114 {
1115 	/*
1116 	 * The VPD identifier type..
1117 	 *
1118 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1119 	 */
1120 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1121 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1122 }
1123 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1124 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1125 int transport_dump_vpd_ident(
1126 	struct t10_vpd *vpd,
1127 	unsigned char *p_buf,
1128 	int p_buf_len)
1129 {
1130 	unsigned char buf[VPD_TMP_BUF_SIZE];
1131 	int ret = 0;
1132 
1133 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1134 
1135 	switch (vpd->device_identifier_code_set) {
1136 	case 0x01: /* Binary */
1137 		snprintf(buf, sizeof(buf),
1138 			"T10 VPD Binary Device Identifier: %s\n",
1139 			&vpd->device_identifier[0]);
1140 		break;
1141 	case 0x02: /* ASCII */
1142 		snprintf(buf, sizeof(buf),
1143 			"T10 VPD ASCII Device Identifier: %s\n",
1144 			&vpd->device_identifier[0]);
1145 		break;
1146 	case 0x03: /* UTF-8 */
1147 		snprintf(buf, sizeof(buf),
1148 			"T10 VPD UTF-8 Device Identifier: %s\n",
1149 			&vpd->device_identifier[0]);
1150 		break;
1151 	default:
1152 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1153 			" 0x%02x", vpd->device_identifier_code_set);
1154 		ret = -EINVAL;
1155 		break;
1156 	}
1157 
1158 	if (p_buf)
1159 		strncpy(p_buf, buf, p_buf_len);
1160 	else
1161 		pr_debug("%s", buf);
1162 
1163 	return ret;
1164 }
1165 
1166 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1167 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1168 {
1169 	static const char hex_str[] = "0123456789abcdef";
1170 	int j = 0, i = 4; /* offset to start of the identifier */
1171 
1172 	/*
1173 	 * The VPD Code Set (encoding)
1174 	 *
1175 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1176 	 */
1177 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1178 	switch (vpd->device_identifier_code_set) {
1179 	case 0x01: /* Binary */
1180 		vpd->device_identifier[j++] =
1181 				hex_str[vpd->device_identifier_type];
1182 		while (i < (4 + page_83[3])) {
1183 			vpd->device_identifier[j++] =
1184 				hex_str[(page_83[i] & 0xf0) >> 4];
1185 			vpd->device_identifier[j++] =
1186 				hex_str[page_83[i] & 0x0f];
1187 			i++;
1188 		}
1189 		break;
1190 	case 0x02: /* ASCII */
1191 	case 0x03: /* UTF-8 */
1192 		while (i < (4 + page_83[3]))
1193 			vpd->device_identifier[j++] = page_83[i++];
1194 		break;
1195 	default:
1196 		break;
1197 	}
1198 
1199 	return transport_dump_vpd_ident(vpd, NULL, 0);
1200 }
1201 EXPORT_SYMBOL(transport_set_vpd_ident);
1202 
1203 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1204 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1205 			       unsigned int size)
1206 {
1207 	u32 mtl;
1208 
1209 	if (!cmd->se_tfo->max_data_sg_nents)
1210 		return TCM_NO_SENSE;
1211 	/*
1212 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1213 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1214 	 * residual_count and reduce original cmd->data_length to maximum
1215 	 * length based on single PAGE_SIZE entry scatter-lists.
1216 	 */
1217 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1218 	if (cmd->data_length > mtl) {
1219 		/*
1220 		 * If an existing CDB overflow is present, calculate new residual
1221 		 * based on CDB size minus fabric maximum transfer length.
1222 		 *
1223 		 * If an existing CDB underflow is present, calculate new residual
1224 		 * based on original cmd->data_length minus fabric maximum transfer
1225 		 * length.
1226 		 *
1227 		 * Otherwise, set the underflow residual based on cmd->data_length
1228 		 * minus fabric maximum transfer length.
1229 		 */
1230 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1231 			cmd->residual_count = (size - mtl);
1232 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1233 			u32 orig_dl = size + cmd->residual_count;
1234 			cmd->residual_count = (orig_dl - mtl);
1235 		} else {
1236 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1237 			cmd->residual_count = (cmd->data_length - mtl);
1238 		}
1239 		cmd->data_length = mtl;
1240 		/*
1241 		 * Reset sbc_check_prot() calculated protection payload
1242 		 * length based upon the new smaller MTL.
1243 		 */
1244 		if (cmd->prot_length) {
1245 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1246 			cmd->prot_length = dev->prot_length * sectors;
1247 		}
1248 	}
1249 	return TCM_NO_SENSE;
1250 }
1251 
1252 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1253 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1254 {
1255 	struct se_device *dev = cmd->se_dev;
1256 
1257 	if (cmd->unknown_data_length) {
1258 		cmd->data_length = size;
1259 	} else if (size != cmd->data_length) {
1260 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1261 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1262 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1263 				cmd->data_length, size, cmd->t_task_cdb[0]);
1264 
1265 		if (cmd->data_direction == DMA_TO_DEVICE) {
1266 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1267 				pr_err_ratelimited("Rejecting underflow/overflow"
1268 						   " for WRITE data CDB\n");
1269 				return TCM_INVALID_CDB_FIELD;
1270 			}
1271 			/*
1272 			 * Some fabric drivers like iscsi-target still expect to
1273 			 * always reject overflow writes.  Reject this case until
1274 			 * full fabric driver level support for overflow writes
1275 			 * is introduced tree-wide.
1276 			 */
1277 			if (size > cmd->data_length) {
1278 				pr_err_ratelimited("Rejecting overflow for"
1279 						   " WRITE control CDB\n");
1280 				return TCM_INVALID_CDB_FIELD;
1281 			}
1282 		}
1283 		/*
1284 		 * Reject READ_* or WRITE_* with overflow/underflow for
1285 		 * type SCF_SCSI_DATA_CDB.
1286 		 */
1287 		if (dev->dev_attrib.block_size != 512)  {
1288 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1289 				" CDB on non 512-byte sector setup subsystem"
1290 				" plugin: %s\n", dev->transport->name);
1291 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1292 			return TCM_INVALID_CDB_FIELD;
1293 		}
1294 		/*
1295 		 * For the overflow case keep the existing fabric provided
1296 		 * ->data_length.  Otherwise for the underflow case, reset
1297 		 * ->data_length to the smaller SCSI expected data transfer
1298 		 * length.
1299 		 */
1300 		if (size > cmd->data_length) {
1301 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1302 			cmd->residual_count = (size - cmd->data_length);
1303 		} else {
1304 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1305 			cmd->residual_count = (cmd->data_length - size);
1306 			cmd->data_length = size;
1307 		}
1308 	}
1309 
1310 	return target_check_max_data_sg_nents(cmd, dev, size);
1311 
1312 }
1313 
1314 /*
1315  * Used by fabric modules containing a local struct se_cmd within their
1316  * fabric dependent per I/O descriptor.
1317  *
1318  * Preserves the value of @cmd->tag.
1319  */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1320 void transport_init_se_cmd(
1321 	struct se_cmd *cmd,
1322 	const struct target_core_fabric_ops *tfo,
1323 	struct se_session *se_sess,
1324 	u32 data_length,
1325 	int data_direction,
1326 	int task_attr,
1327 	unsigned char *sense_buffer)
1328 {
1329 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1330 	INIT_LIST_HEAD(&cmd->se_qf_node);
1331 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1332 	INIT_LIST_HEAD(&cmd->state_list);
1333 	init_completion(&cmd->t_transport_stop_comp);
1334 	cmd->compl = NULL;
1335 	spin_lock_init(&cmd->t_state_lock);
1336 	INIT_WORK(&cmd->work, NULL);
1337 	kref_init(&cmd->cmd_kref);
1338 
1339 	cmd->se_tfo = tfo;
1340 	cmd->se_sess = se_sess;
1341 	cmd->data_length = data_length;
1342 	cmd->data_direction = data_direction;
1343 	cmd->sam_task_attr = task_attr;
1344 	cmd->sense_buffer = sense_buffer;
1345 
1346 	cmd->state_active = false;
1347 }
1348 EXPORT_SYMBOL(transport_init_se_cmd);
1349 
1350 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1351 transport_check_alloc_task_attr(struct se_cmd *cmd)
1352 {
1353 	struct se_device *dev = cmd->se_dev;
1354 
1355 	/*
1356 	 * Check if SAM Task Attribute emulation is enabled for this
1357 	 * struct se_device storage object
1358 	 */
1359 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1360 		return 0;
1361 
1362 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1363 		pr_debug("SAM Task Attribute ACA"
1364 			" emulation is not supported\n");
1365 		return TCM_INVALID_CDB_FIELD;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1372 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1373 {
1374 	struct se_device *dev = cmd->se_dev;
1375 	sense_reason_t ret;
1376 
1377 	/*
1378 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1379 	 * for VARIABLE_LENGTH_CMD
1380 	 */
1381 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1382 		pr_err("Received SCSI CDB with command_size: %d that"
1383 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1384 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1385 		return TCM_INVALID_CDB_FIELD;
1386 	}
1387 	/*
1388 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1389 	 * allocate the additional extended CDB buffer now..  Otherwise
1390 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1391 	 */
1392 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1393 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1394 						GFP_KERNEL);
1395 		if (!cmd->t_task_cdb) {
1396 			pr_err("Unable to allocate cmd->t_task_cdb"
1397 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1398 				scsi_command_size(cdb),
1399 				(unsigned long)sizeof(cmd->__t_task_cdb));
1400 			return TCM_OUT_OF_RESOURCES;
1401 		}
1402 	} else
1403 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1404 	/*
1405 	 * Copy the original CDB into cmd->
1406 	 */
1407 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1408 
1409 	trace_target_sequencer_start(cmd);
1410 
1411 	ret = dev->transport->parse_cdb(cmd);
1412 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1413 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1414 				    cmd->se_tfo->get_fabric_name(),
1415 				    cmd->se_sess->se_node_acl->initiatorname,
1416 				    cmd->t_task_cdb[0]);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = transport_check_alloc_task_attr(cmd);
1421 	if (ret)
1422 		return ret;
1423 
1424 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1425 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1429 
1430 /*
1431  * Used by fabric module frontends to queue tasks directly.
1432  * May only be used from process context.
1433  */
transport_handle_cdb_direct(struct se_cmd * cmd)1434 int transport_handle_cdb_direct(
1435 	struct se_cmd *cmd)
1436 {
1437 	sense_reason_t ret;
1438 
1439 	if (!cmd->se_lun) {
1440 		dump_stack();
1441 		pr_err("cmd->se_lun is NULL\n");
1442 		return -EINVAL;
1443 	}
1444 	if (in_interrupt()) {
1445 		dump_stack();
1446 		pr_err("transport_generic_handle_cdb cannot be called"
1447 				" from interrupt context\n");
1448 		return -EINVAL;
1449 	}
1450 	/*
1451 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1452 	 * outstanding descriptors are handled correctly during shutdown via
1453 	 * transport_wait_for_tasks()
1454 	 *
1455 	 * Also, we don't take cmd->t_state_lock here as we only expect
1456 	 * this to be called for initial descriptor submission.
1457 	 */
1458 	cmd->t_state = TRANSPORT_NEW_CMD;
1459 	cmd->transport_state |= CMD_T_ACTIVE;
1460 
1461 	/*
1462 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1463 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1464 	 * and call transport_generic_request_failure() if necessary..
1465 	 */
1466 	ret = transport_generic_new_cmd(cmd);
1467 	if (ret)
1468 		transport_generic_request_failure(cmd, ret);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(transport_handle_cdb_direct);
1472 
1473 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1474 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1475 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1476 {
1477 	if (!sgl || !sgl_count)
1478 		return 0;
1479 
1480 	/*
1481 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1482 	 * scatterlists already have been set to follow what the fabric
1483 	 * passes for the original expected data transfer length.
1484 	 */
1485 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1486 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1487 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1488 		return TCM_INVALID_CDB_FIELD;
1489 	}
1490 
1491 	cmd->t_data_sg = sgl;
1492 	cmd->t_data_nents = sgl_count;
1493 	cmd->t_bidi_data_sg = sgl_bidi;
1494 	cmd->t_bidi_data_nents = sgl_bidi_count;
1495 
1496 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1497 	return 0;
1498 }
1499 
1500 /**
1501  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1502  * 			 se_cmd + use pre-allocated SGL memory.
1503  *
1504  * @se_cmd: command descriptor to submit
1505  * @se_sess: associated se_sess for endpoint
1506  * @cdb: pointer to SCSI CDB
1507  * @sense: pointer to SCSI sense buffer
1508  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1509  * @data_length: fabric expected data transfer length
1510  * @task_attr: SAM task attribute
1511  * @data_dir: DMA data direction
1512  * @flags: flags for command submission from target_sc_flags_tables
1513  * @sgl: struct scatterlist memory for unidirectional mapping
1514  * @sgl_count: scatterlist count for unidirectional mapping
1515  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1516  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1517  * @sgl_prot: struct scatterlist memory protection information
1518  * @sgl_prot_count: scatterlist count for protection information
1519  *
1520  * Task tags are supported if the caller has set @se_cmd->tag.
1521  *
1522  * Returns non zero to signal active I/O shutdown failure.  All other
1523  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1524  * but still return zero here.
1525  *
1526  * This may only be called from process context, and also currently
1527  * assumes internal allocation of fabric payload buffer by target-core.
1528  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1529 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1530 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1531 		u32 data_length, int task_attr, int data_dir, int flags,
1532 		struct scatterlist *sgl, u32 sgl_count,
1533 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1534 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1535 {
1536 	struct se_portal_group *se_tpg;
1537 	sense_reason_t rc;
1538 	int ret;
1539 
1540 	se_tpg = se_sess->se_tpg;
1541 	BUG_ON(!se_tpg);
1542 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1543 	BUG_ON(in_interrupt());
1544 	/*
1545 	 * Initialize se_cmd for target operation.  From this point
1546 	 * exceptions are handled by sending exception status via
1547 	 * target_core_fabric_ops->queue_status() callback
1548 	 */
1549 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1550 				data_length, data_dir, task_attr, sense);
1551 
1552 	if (flags & TARGET_SCF_USE_CPUID)
1553 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1554 	else
1555 		se_cmd->cpuid = WORK_CPU_UNBOUND;
1556 
1557 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1558 		se_cmd->unknown_data_length = 1;
1559 	/*
1560 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1561 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1562 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1563 	 * kref_put() to happen during fabric packet acknowledgement.
1564 	 */
1565 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1566 	if (ret)
1567 		return ret;
1568 	/*
1569 	 * Signal bidirectional data payloads to target-core
1570 	 */
1571 	if (flags & TARGET_SCF_BIDI_OP)
1572 		se_cmd->se_cmd_flags |= SCF_BIDI;
1573 	/*
1574 	 * Locate se_lun pointer and attach it to struct se_cmd
1575 	 */
1576 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1577 	if (rc) {
1578 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1579 		target_put_sess_cmd(se_cmd);
1580 		return 0;
1581 	}
1582 
1583 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1584 	if (rc != 0) {
1585 		transport_generic_request_failure(se_cmd, rc);
1586 		return 0;
1587 	}
1588 
1589 	/*
1590 	 * Save pointers for SGLs containing protection information,
1591 	 * if present.
1592 	 */
1593 	if (sgl_prot_count) {
1594 		se_cmd->t_prot_sg = sgl_prot;
1595 		se_cmd->t_prot_nents = sgl_prot_count;
1596 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1597 	}
1598 
1599 	/*
1600 	 * When a non zero sgl_count has been passed perform SGL passthrough
1601 	 * mapping for pre-allocated fabric memory instead of having target
1602 	 * core perform an internal SGL allocation..
1603 	 */
1604 	if (sgl_count != 0) {
1605 		BUG_ON(!sgl);
1606 
1607 		/*
1608 		 * A work-around for tcm_loop as some userspace code via
1609 		 * scsi-generic do not memset their associated read buffers,
1610 		 * so go ahead and do that here for type non-data CDBs.  Also
1611 		 * note that this is currently guaranteed to be a single SGL
1612 		 * for this case by target core in target_setup_cmd_from_cdb()
1613 		 * -> transport_generic_cmd_sequencer().
1614 		 */
1615 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1616 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1617 			unsigned char *buf = NULL;
1618 
1619 			if (sgl)
1620 				buf = kmap(sg_page(sgl)) + sgl->offset;
1621 
1622 			if (buf) {
1623 				memset(buf, 0, sgl->length);
1624 				kunmap(sg_page(sgl));
1625 			}
1626 		}
1627 
1628 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1629 				sgl_bidi, sgl_bidi_count);
1630 		if (rc != 0) {
1631 			transport_generic_request_failure(se_cmd, rc);
1632 			return 0;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * Check if we need to delay processing because of ALUA
1638 	 * Active/NonOptimized primary access state..
1639 	 */
1640 	core_alua_check_nonop_delay(se_cmd);
1641 
1642 	transport_handle_cdb_direct(se_cmd);
1643 	return 0;
1644 }
1645 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1646 
1647 /**
1648  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1649  *
1650  * @se_cmd: command descriptor to submit
1651  * @se_sess: associated se_sess for endpoint
1652  * @cdb: pointer to SCSI CDB
1653  * @sense: pointer to SCSI sense buffer
1654  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1655  * @data_length: fabric expected data transfer length
1656  * @task_attr: SAM task attribute
1657  * @data_dir: DMA data direction
1658  * @flags: flags for command submission from target_sc_flags_tables
1659  *
1660  * Task tags are supported if the caller has set @se_cmd->tag.
1661  *
1662  * Returns non zero to signal active I/O shutdown failure.  All other
1663  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1664  * but still return zero here.
1665  *
1666  * This may only be called from process context, and also currently
1667  * assumes internal allocation of fabric payload buffer by target-core.
1668  *
1669  * It also assumes interal target core SGL memory allocation.
1670  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1671 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1672 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1673 		u32 data_length, int task_attr, int data_dir, int flags)
1674 {
1675 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1676 			unpacked_lun, data_length, task_attr, data_dir,
1677 			flags, NULL, 0, NULL, 0, NULL, 0);
1678 }
1679 EXPORT_SYMBOL(target_submit_cmd);
1680 
target_complete_tmr_failure(struct work_struct * work)1681 static void target_complete_tmr_failure(struct work_struct *work)
1682 {
1683 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1684 
1685 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1686 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1687 
1688 	transport_lun_remove_cmd(se_cmd);
1689 	transport_cmd_check_stop_to_fabric(se_cmd);
1690 }
1691 
target_lookup_lun_from_tag(struct se_session * se_sess,u64 tag,u64 * unpacked_lun)1692 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1693 				       u64 *unpacked_lun)
1694 {
1695 	struct se_cmd *se_cmd;
1696 	unsigned long flags;
1697 	bool ret = false;
1698 
1699 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1700 	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1701 		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1702 			continue;
1703 
1704 		if (se_cmd->tag == tag) {
1705 			*unpacked_lun = se_cmd->orig_fe_lun;
1706 			ret = true;
1707 			break;
1708 		}
1709 	}
1710 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1711 
1712 	return ret;
1713 }
1714 
1715 /**
1716  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1717  *                     for TMR CDBs
1718  *
1719  * @se_cmd: command descriptor to submit
1720  * @se_sess: associated se_sess for endpoint
1721  * @sense: pointer to SCSI sense buffer
1722  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1723  * @fabric_tmr_ptr: fabric context for TMR req
1724  * @tm_type: Type of TM request
1725  * @gfp: gfp type for caller
1726  * @tag: referenced task tag for TMR_ABORT_TASK
1727  * @flags: submit cmd flags
1728  *
1729  * Callable from all contexts.
1730  **/
1731 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1732 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1733 		unsigned char *sense, u64 unpacked_lun,
1734 		void *fabric_tmr_ptr, unsigned char tm_type,
1735 		gfp_t gfp, u64 tag, int flags)
1736 {
1737 	struct se_portal_group *se_tpg;
1738 	int ret;
1739 
1740 	se_tpg = se_sess->se_tpg;
1741 	BUG_ON(!se_tpg);
1742 
1743 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1744 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1745 	/*
1746 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1747 	 * allocation failure.
1748 	 */
1749 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1750 	if (ret < 0)
1751 		return -ENOMEM;
1752 
1753 	if (tm_type == TMR_ABORT_TASK)
1754 		se_cmd->se_tmr_req->ref_task_tag = tag;
1755 
1756 	/* See target_submit_cmd for commentary */
1757 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1758 	if (ret) {
1759 		core_tmr_release_req(se_cmd->se_tmr_req);
1760 		return ret;
1761 	}
1762 	/*
1763 	 * If this is ABORT_TASK with no explicit fabric provided LUN,
1764 	 * go ahead and search active session tags for a match to figure
1765 	 * out unpacked_lun for the original se_cmd.
1766 	 */
1767 	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1768 		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1769 			goto failure;
1770 	}
1771 
1772 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1773 	if (ret)
1774 		goto failure;
1775 
1776 	transport_generic_handle_tmr(se_cmd);
1777 	return 0;
1778 
1779 	/*
1780 	 * For callback during failure handling, push this work off
1781 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1782 	 */
1783 failure:
1784 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1785 	schedule_work(&se_cmd->work);
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(target_submit_tmr);
1789 
1790 /*
1791  * Handle SAM-esque emulation for generic transport request failures.
1792  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1793 void transport_generic_request_failure(struct se_cmd *cmd,
1794 		sense_reason_t sense_reason)
1795 {
1796 	int ret = 0, post_ret = 0;
1797 
1798 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1799 		 sense_reason);
1800 	target_show_cmd("-----[ ", cmd);
1801 
1802 	/*
1803 	 * For SAM Task Attribute emulation for failed struct se_cmd
1804 	 */
1805 	transport_complete_task_attr(cmd);
1806 
1807 	/*
1808 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1809 	 * callback is expected to drop the per device ->caw_sem.
1810 	 */
1811 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1812 	     cmd->transport_complete_callback)
1813 		cmd->transport_complete_callback(cmd, false, &post_ret);
1814 
1815 	if (transport_check_aborted_status(cmd, 1))
1816 		return;
1817 
1818 	switch (sense_reason) {
1819 	case TCM_NON_EXISTENT_LUN:
1820 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1821 	case TCM_INVALID_CDB_FIELD:
1822 	case TCM_INVALID_PARAMETER_LIST:
1823 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1824 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1825 	case TCM_UNKNOWN_MODE_PAGE:
1826 	case TCM_WRITE_PROTECTED:
1827 	case TCM_ADDRESS_OUT_OF_RANGE:
1828 	case TCM_CHECK_CONDITION_ABORT_CMD:
1829 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1830 	case TCM_CHECK_CONDITION_NOT_READY:
1831 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1832 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1833 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1834 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1835 	case TCM_TOO_MANY_TARGET_DESCS:
1836 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1837 	case TCM_TOO_MANY_SEGMENT_DESCS:
1838 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1839 		break;
1840 	case TCM_OUT_OF_RESOURCES:
1841 		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1842 		goto queue_status;
1843 	case TCM_LUN_BUSY:
1844 		cmd->scsi_status = SAM_STAT_BUSY;
1845 		goto queue_status;
1846 	case TCM_RESERVATION_CONFLICT:
1847 		/*
1848 		 * No SENSE Data payload for this case, set SCSI Status
1849 		 * and queue the response to $FABRIC_MOD.
1850 		 *
1851 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1852 		 */
1853 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1854 		/*
1855 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1856 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1857 		 * CONFLICT STATUS.
1858 		 *
1859 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1860 		 */
1861 		if (cmd->se_sess &&
1862 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1863 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1864 					       cmd->orig_fe_lun, 0x2C,
1865 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1866 		}
1867 
1868 		goto queue_status;
1869 	default:
1870 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1871 			cmd->t_task_cdb[0], sense_reason);
1872 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1873 		break;
1874 	}
1875 
1876 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1877 	if (ret)
1878 		goto queue_full;
1879 
1880 check_stop:
1881 	transport_lun_remove_cmd(cmd);
1882 	transport_cmd_check_stop_to_fabric(cmd);
1883 	return;
1884 
1885 queue_status:
1886 	trace_target_cmd_complete(cmd);
1887 	ret = cmd->se_tfo->queue_status(cmd);
1888 	if (!ret)
1889 		goto check_stop;
1890 queue_full:
1891 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1892 }
1893 EXPORT_SYMBOL(transport_generic_request_failure);
1894 
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1895 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1896 {
1897 	sense_reason_t ret;
1898 
1899 	if (!cmd->execute_cmd) {
1900 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1901 		goto err;
1902 	}
1903 	if (do_checks) {
1904 		/*
1905 		 * Check for an existing UNIT ATTENTION condition after
1906 		 * target_handle_task_attr() has done SAM task attr
1907 		 * checking, and possibly have already defered execution
1908 		 * out to target_restart_delayed_cmds() context.
1909 		 */
1910 		ret = target_scsi3_ua_check(cmd);
1911 		if (ret)
1912 			goto err;
1913 
1914 		ret = target_alua_state_check(cmd);
1915 		if (ret)
1916 			goto err;
1917 
1918 		ret = target_check_reservation(cmd);
1919 		if (ret) {
1920 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1921 			goto err;
1922 		}
1923 	}
1924 
1925 	ret = cmd->execute_cmd(cmd);
1926 	if (!ret)
1927 		return;
1928 err:
1929 	spin_lock_irq(&cmd->t_state_lock);
1930 	cmd->transport_state &= ~CMD_T_SENT;
1931 	spin_unlock_irq(&cmd->t_state_lock);
1932 
1933 	transport_generic_request_failure(cmd, ret);
1934 }
1935 
target_write_prot_action(struct se_cmd * cmd)1936 static int target_write_prot_action(struct se_cmd *cmd)
1937 {
1938 	u32 sectors;
1939 	/*
1940 	 * Perform WRITE_INSERT of PI using software emulation when backend
1941 	 * device has PI enabled, if the transport has not already generated
1942 	 * PI using hardware WRITE_INSERT offload.
1943 	 */
1944 	switch (cmd->prot_op) {
1945 	case TARGET_PROT_DOUT_INSERT:
1946 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1947 			sbc_dif_generate(cmd);
1948 		break;
1949 	case TARGET_PROT_DOUT_STRIP:
1950 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1951 			break;
1952 
1953 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1954 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1955 					     sectors, 0, cmd->t_prot_sg, 0);
1956 		if (unlikely(cmd->pi_err)) {
1957 			spin_lock_irq(&cmd->t_state_lock);
1958 			cmd->transport_state &= ~CMD_T_SENT;
1959 			spin_unlock_irq(&cmd->t_state_lock);
1960 			transport_generic_request_failure(cmd, cmd->pi_err);
1961 			return -1;
1962 		}
1963 		break;
1964 	default:
1965 		break;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
target_handle_task_attr(struct se_cmd * cmd)1971 static bool target_handle_task_attr(struct se_cmd *cmd)
1972 {
1973 	struct se_device *dev = cmd->se_dev;
1974 
1975 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1976 		return false;
1977 
1978 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1979 
1980 	/*
1981 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1982 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1983 	 */
1984 	switch (cmd->sam_task_attr) {
1985 	case TCM_HEAD_TAG:
1986 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1987 			 cmd->t_task_cdb[0]);
1988 		return false;
1989 	case TCM_ORDERED_TAG:
1990 		atomic_inc_mb(&dev->dev_ordered_sync);
1991 
1992 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1993 			 cmd->t_task_cdb[0]);
1994 
1995 		/*
1996 		 * Execute an ORDERED command if no other older commands
1997 		 * exist that need to be completed first.
1998 		 */
1999 		if (!atomic_read(&dev->simple_cmds))
2000 			return false;
2001 		break;
2002 	default:
2003 		/*
2004 		 * For SIMPLE and UNTAGGED Task Attribute commands
2005 		 */
2006 		atomic_inc_mb(&dev->simple_cmds);
2007 		break;
2008 	}
2009 
2010 	if (atomic_read(&dev->dev_ordered_sync) == 0)
2011 		return false;
2012 
2013 	spin_lock(&dev->delayed_cmd_lock);
2014 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2015 	spin_unlock(&dev->delayed_cmd_lock);
2016 
2017 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2018 		cmd->t_task_cdb[0], cmd->sam_task_attr);
2019 	return true;
2020 }
2021 
2022 static int __transport_check_aborted_status(struct se_cmd *, int);
2023 
target_execute_cmd(struct se_cmd * cmd)2024 void target_execute_cmd(struct se_cmd *cmd)
2025 {
2026 	/*
2027 	 * Determine if frontend context caller is requesting the stopping of
2028 	 * this command for frontend exceptions.
2029 	 *
2030 	 * If the received CDB has aleady been aborted stop processing it here.
2031 	 */
2032 	spin_lock_irq(&cmd->t_state_lock);
2033 	if (__transport_check_aborted_status(cmd, 1)) {
2034 		spin_unlock_irq(&cmd->t_state_lock);
2035 		return;
2036 	}
2037 	if (cmd->transport_state & CMD_T_STOP) {
2038 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2039 			__func__, __LINE__, cmd->tag);
2040 
2041 		spin_unlock_irq(&cmd->t_state_lock);
2042 		complete_all(&cmd->t_transport_stop_comp);
2043 		return;
2044 	}
2045 
2046 	cmd->t_state = TRANSPORT_PROCESSING;
2047 	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
2048 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2049 	spin_unlock_irq(&cmd->t_state_lock);
2050 
2051 	if (target_write_prot_action(cmd))
2052 		return;
2053 
2054 	if (target_handle_task_attr(cmd)) {
2055 		spin_lock_irq(&cmd->t_state_lock);
2056 		cmd->transport_state &= ~CMD_T_SENT;
2057 		spin_unlock_irq(&cmd->t_state_lock);
2058 		return;
2059 	}
2060 
2061 	__target_execute_cmd(cmd, true);
2062 }
2063 EXPORT_SYMBOL(target_execute_cmd);
2064 
2065 /*
2066  * Process all commands up to the last received ORDERED task attribute which
2067  * requires another blocking boundary
2068  */
target_restart_delayed_cmds(struct se_device * dev)2069 static void target_restart_delayed_cmds(struct se_device *dev)
2070 {
2071 	for (;;) {
2072 		struct se_cmd *cmd;
2073 
2074 		spin_lock(&dev->delayed_cmd_lock);
2075 		if (list_empty(&dev->delayed_cmd_list)) {
2076 			spin_unlock(&dev->delayed_cmd_lock);
2077 			break;
2078 		}
2079 
2080 		cmd = list_entry(dev->delayed_cmd_list.next,
2081 				 struct se_cmd, se_delayed_node);
2082 		list_del(&cmd->se_delayed_node);
2083 		spin_unlock(&dev->delayed_cmd_lock);
2084 
2085 		cmd->transport_state |= CMD_T_SENT;
2086 
2087 		__target_execute_cmd(cmd, true);
2088 
2089 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2090 			break;
2091 	}
2092 }
2093 
2094 /*
2095  * Called from I/O completion to determine which dormant/delayed
2096  * and ordered cmds need to have their tasks added to the execution queue.
2097  */
transport_complete_task_attr(struct se_cmd * cmd)2098 static void transport_complete_task_attr(struct se_cmd *cmd)
2099 {
2100 	struct se_device *dev = cmd->se_dev;
2101 
2102 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2103 		return;
2104 
2105 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2106 		goto restart;
2107 
2108 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2109 		atomic_dec_mb(&dev->simple_cmds);
2110 		dev->dev_cur_ordered_id++;
2111 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2112 		dev->dev_cur_ordered_id++;
2113 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2114 			 dev->dev_cur_ordered_id);
2115 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2116 		atomic_dec_mb(&dev->dev_ordered_sync);
2117 
2118 		dev->dev_cur_ordered_id++;
2119 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2120 			 dev->dev_cur_ordered_id);
2121 	}
2122 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2123 
2124 restart:
2125 	target_restart_delayed_cmds(dev);
2126 }
2127 
transport_complete_qf(struct se_cmd * cmd)2128 static void transport_complete_qf(struct se_cmd *cmd)
2129 {
2130 	int ret = 0;
2131 
2132 	transport_complete_task_attr(cmd);
2133 	/*
2134 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2135 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2136 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2137 	 * if a scsi_status is not already set.
2138 	 *
2139 	 * If a fabric driver ->queue_status() has returned non zero, always
2140 	 * keep retrying no matter what..
2141 	 */
2142 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2143 		if (cmd->scsi_status)
2144 			goto queue_status;
2145 
2146 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2147 		goto queue_status;
2148 	}
2149 
2150 	/*
2151 	 * Check if we need to send a sense buffer from
2152 	 * the struct se_cmd in question. We do NOT want
2153 	 * to take this path of the IO has been marked as
2154 	 * needing to be treated like a "normal read". This
2155 	 * is the case if it's a tape read, and either the
2156 	 * FM, EOM, or ILI bits are set, but there is no
2157 	 * sense data.
2158 	 */
2159 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2160 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2161 		goto queue_status;
2162 
2163 	switch (cmd->data_direction) {
2164 	case DMA_FROM_DEVICE:
2165 		/* queue status if not treating this as a normal read */
2166 		if (cmd->scsi_status &&
2167 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2168 			goto queue_status;
2169 
2170 		trace_target_cmd_complete(cmd);
2171 		ret = cmd->se_tfo->queue_data_in(cmd);
2172 		break;
2173 	case DMA_TO_DEVICE:
2174 		if (cmd->se_cmd_flags & SCF_BIDI) {
2175 			ret = cmd->se_tfo->queue_data_in(cmd);
2176 			break;
2177 		}
2178 		/* fall through */
2179 	case DMA_NONE:
2180 queue_status:
2181 		trace_target_cmd_complete(cmd);
2182 		ret = cmd->se_tfo->queue_status(cmd);
2183 		break;
2184 	default:
2185 		break;
2186 	}
2187 
2188 	if (ret < 0) {
2189 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2190 		return;
2191 	}
2192 	transport_lun_remove_cmd(cmd);
2193 	transport_cmd_check_stop_to_fabric(cmd);
2194 }
2195 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2196 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2197 					int err, bool write_pending)
2198 {
2199 	/*
2200 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2201 	 * ->queue_data_in() callbacks from new process context.
2202 	 *
2203 	 * Otherwise for other errors, transport_complete_qf() will send
2204 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2205 	 * retry associated fabric driver data-transfer callbacks.
2206 	 */
2207 	if (err == -EAGAIN || err == -ENOMEM) {
2208 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2209 						 TRANSPORT_COMPLETE_QF_OK;
2210 	} else {
2211 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2212 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2213 	}
2214 
2215 	spin_lock_irq(&dev->qf_cmd_lock);
2216 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2217 	atomic_inc_mb(&dev->dev_qf_count);
2218 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2219 
2220 	schedule_work(&cmd->se_dev->qf_work_queue);
2221 }
2222 
target_read_prot_action(struct se_cmd * cmd)2223 static bool target_read_prot_action(struct se_cmd *cmd)
2224 {
2225 	switch (cmd->prot_op) {
2226 	case TARGET_PROT_DIN_STRIP:
2227 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2228 			u32 sectors = cmd->data_length >>
2229 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2230 
2231 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2232 						     sectors, 0, cmd->t_prot_sg,
2233 						     0);
2234 			if (cmd->pi_err)
2235 				return true;
2236 		}
2237 		break;
2238 	case TARGET_PROT_DIN_INSERT:
2239 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2240 			break;
2241 
2242 		sbc_dif_generate(cmd);
2243 		break;
2244 	default:
2245 		break;
2246 	}
2247 
2248 	return false;
2249 }
2250 
target_complete_ok_work(struct work_struct * work)2251 static void target_complete_ok_work(struct work_struct *work)
2252 {
2253 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2254 	int ret;
2255 
2256 	/*
2257 	 * Check if we need to move delayed/dormant tasks from cmds on the
2258 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2259 	 * Attribute.
2260 	 */
2261 	transport_complete_task_attr(cmd);
2262 
2263 	/*
2264 	 * Check to schedule QUEUE_FULL work, or execute an existing
2265 	 * cmd->transport_qf_callback()
2266 	 */
2267 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2268 		schedule_work(&cmd->se_dev->qf_work_queue);
2269 
2270 	/*
2271 	 * Check if we need to send a sense buffer from
2272 	 * the struct se_cmd in question. We do NOT want
2273 	 * to take this path of the IO has been marked as
2274 	 * needing to be treated like a "normal read". This
2275 	 * is the case if it's a tape read, and either the
2276 	 * FM, EOM, or ILI bits are set, but there is no
2277 	 * sense data.
2278 	 */
2279 	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2280 	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2281 		WARN_ON(!cmd->scsi_status);
2282 		ret = transport_send_check_condition_and_sense(
2283 					cmd, 0, 1);
2284 		if (ret)
2285 			goto queue_full;
2286 
2287 		transport_lun_remove_cmd(cmd);
2288 		transport_cmd_check_stop_to_fabric(cmd);
2289 		return;
2290 	}
2291 	/*
2292 	 * Check for a callback, used by amongst other things
2293 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2294 	 */
2295 	if (cmd->transport_complete_callback) {
2296 		sense_reason_t rc;
2297 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2298 		bool zero_dl = !(cmd->data_length);
2299 		int post_ret = 0;
2300 
2301 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2302 		if (!rc && !post_ret) {
2303 			if (caw && zero_dl)
2304 				goto queue_rsp;
2305 
2306 			return;
2307 		} else if (rc) {
2308 			ret = transport_send_check_condition_and_sense(cmd,
2309 						rc, 0);
2310 			if (ret)
2311 				goto queue_full;
2312 
2313 			transport_lun_remove_cmd(cmd);
2314 			transport_cmd_check_stop_to_fabric(cmd);
2315 			return;
2316 		}
2317 	}
2318 
2319 queue_rsp:
2320 	switch (cmd->data_direction) {
2321 	case DMA_FROM_DEVICE:
2322 		/*
2323 		 * if this is a READ-type IO, but SCSI status
2324 		 * is set, then skip returning data and just
2325 		 * return the status -- unless this IO is marked
2326 		 * as needing to be treated as a normal read,
2327 		 * in which case we want to go ahead and return
2328 		 * the data. This happens, for example, for tape
2329 		 * reads with the FM, EOM, or ILI bits set, with
2330 		 * no sense data.
2331 		 */
2332 		if (cmd->scsi_status &&
2333 		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2334 			goto queue_status;
2335 
2336 		atomic_long_add(cmd->data_length,
2337 				&cmd->se_lun->lun_stats.tx_data_octets);
2338 		/*
2339 		 * Perform READ_STRIP of PI using software emulation when
2340 		 * backend had PI enabled, if the transport will not be
2341 		 * performing hardware READ_STRIP offload.
2342 		 */
2343 		if (target_read_prot_action(cmd)) {
2344 			ret = transport_send_check_condition_and_sense(cmd,
2345 						cmd->pi_err, 0);
2346 			if (ret)
2347 				goto queue_full;
2348 
2349 			transport_lun_remove_cmd(cmd);
2350 			transport_cmd_check_stop_to_fabric(cmd);
2351 			return;
2352 		}
2353 
2354 		trace_target_cmd_complete(cmd);
2355 		ret = cmd->se_tfo->queue_data_in(cmd);
2356 		if (ret)
2357 			goto queue_full;
2358 		break;
2359 	case DMA_TO_DEVICE:
2360 		atomic_long_add(cmd->data_length,
2361 				&cmd->se_lun->lun_stats.rx_data_octets);
2362 		/*
2363 		 * Check if we need to send READ payload for BIDI-COMMAND
2364 		 */
2365 		if (cmd->se_cmd_flags & SCF_BIDI) {
2366 			atomic_long_add(cmd->data_length,
2367 					&cmd->se_lun->lun_stats.tx_data_octets);
2368 			ret = cmd->se_tfo->queue_data_in(cmd);
2369 			if (ret)
2370 				goto queue_full;
2371 			break;
2372 		}
2373 		/* fall through */
2374 	case DMA_NONE:
2375 queue_status:
2376 		trace_target_cmd_complete(cmd);
2377 		ret = cmd->se_tfo->queue_status(cmd);
2378 		if (ret)
2379 			goto queue_full;
2380 		break;
2381 	default:
2382 		break;
2383 	}
2384 
2385 	transport_lun_remove_cmd(cmd);
2386 	transport_cmd_check_stop_to_fabric(cmd);
2387 	return;
2388 
2389 queue_full:
2390 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2391 		" data_direction: %d\n", cmd, cmd->data_direction);
2392 
2393 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2394 }
2395 
target_free_sgl(struct scatterlist * sgl,int nents)2396 void target_free_sgl(struct scatterlist *sgl, int nents)
2397 {
2398 	sgl_free_n_order(sgl, nents, 0);
2399 }
2400 EXPORT_SYMBOL(target_free_sgl);
2401 
transport_reset_sgl_orig(struct se_cmd * cmd)2402 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2403 {
2404 	/*
2405 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2406 	 * emulation, and free + reset pointers if necessary..
2407 	 */
2408 	if (!cmd->t_data_sg_orig)
2409 		return;
2410 
2411 	kfree(cmd->t_data_sg);
2412 	cmd->t_data_sg = cmd->t_data_sg_orig;
2413 	cmd->t_data_sg_orig = NULL;
2414 	cmd->t_data_nents = cmd->t_data_nents_orig;
2415 	cmd->t_data_nents_orig = 0;
2416 }
2417 
transport_free_pages(struct se_cmd * cmd)2418 static inline void transport_free_pages(struct se_cmd *cmd)
2419 {
2420 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2421 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2422 		cmd->t_prot_sg = NULL;
2423 		cmd->t_prot_nents = 0;
2424 	}
2425 
2426 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2427 		/*
2428 		 * Release special case READ buffer payload required for
2429 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2430 		 */
2431 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2432 			target_free_sgl(cmd->t_bidi_data_sg,
2433 					   cmd->t_bidi_data_nents);
2434 			cmd->t_bidi_data_sg = NULL;
2435 			cmd->t_bidi_data_nents = 0;
2436 		}
2437 		transport_reset_sgl_orig(cmd);
2438 		return;
2439 	}
2440 	transport_reset_sgl_orig(cmd);
2441 
2442 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2443 	cmd->t_data_sg = NULL;
2444 	cmd->t_data_nents = 0;
2445 
2446 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2447 	cmd->t_bidi_data_sg = NULL;
2448 	cmd->t_bidi_data_nents = 0;
2449 }
2450 
transport_kmap_data_sg(struct se_cmd * cmd)2451 void *transport_kmap_data_sg(struct se_cmd *cmd)
2452 {
2453 	struct scatterlist *sg = cmd->t_data_sg;
2454 	struct page **pages;
2455 	int i;
2456 
2457 	/*
2458 	 * We need to take into account a possible offset here for fabrics like
2459 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2460 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2461 	 */
2462 	if (!cmd->t_data_nents)
2463 		return NULL;
2464 
2465 	BUG_ON(!sg);
2466 	if (cmd->t_data_nents == 1)
2467 		return kmap(sg_page(sg)) + sg->offset;
2468 
2469 	/* >1 page. use vmap */
2470 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2471 	if (!pages)
2472 		return NULL;
2473 
2474 	/* convert sg[] to pages[] */
2475 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2476 		pages[i] = sg_page(sg);
2477 	}
2478 
2479 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2480 	kfree(pages);
2481 	if (!cmd->t_data_vmap)
2482 		return NULL;
2483 
2484 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2485 }
2486 EXPORT_SYMBOL(transport_kmap_data_sg);
2487 
transport_kunmap_data_sg(struct se_cmd * cmd)2488 void transport_kunmap_data_sg(struct se_cmd *cmd)
2489 {
2490 	if (!cmd->t_data_nents) {
2491 		return;
2492 	} else if (cmd->t_data_nents == 1) {
2493 		kunmap(sg_page(cmd->t_data_sg));
2494 		return;
2495 	}
2496 
2497 	vunmap(cmd->t_data_vmap);
2498 	cmd->t_data_vmap = NULL;
2499 }
2500 EXPORT_SYMBOL(transport_kunmap_data_sg);
2501 
2502 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2503 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2504 		 bool zero_page, bool chainable)
2505 {
2506 	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2507 
2508 	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2509 	return *sgl ? 0 : -ENOMEM;
2510 }
2511 EXPORT_SYMBOL(target_alloc_sgl);
2512 
2513 /*
2514  * Allocate any required resources to execute the command.  For writes we
2515  * might not have the payload yet, so notify the fabric via a call to
2516  * ->write_pending instead. Otherwise place it on the execution queue.
2517  */
2518 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2519 transport_generic_new_cmd(struct se_cmd *cmd)
2520 {
2521 	unsigned long flags;
2522 	int ret = 0;
2523 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2524 
2525 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2526 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2527 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2528 				       cmd->prot_length, true, false);
2529 		if (ret < 0)
2530 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2531 	}
2532 
2533 	/*
2534 	 * Determine is the TCM fabric module has already allocated physical
2535 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2536 	 * beforehand.
2537 	 */
2538 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2539 	    cmd->data_length) {
2540 
2541 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2542 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2543 			u32 bidi_length;
2544 
2545 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2546 				bidi_length = cmd->t_task_nolb *
2547 					      cmd->se_dev->dev_attrib.block_size;
2548 			else
2549 				bidi_length = cmd->data_length;
2550 
2551 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2552 					       &cmd->t_bidi_data_nents,
2553 					       bidi_length, zero_flag, false);
2554 			if (ret < 0)
2555 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2556 		}
2557 
2558 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2559 				       cmd->data_length, zero_flag, false);
2560 		if (ret < 0)
2561 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2562 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2563 		    cmd->data_length) {
2564 		/*
2565 		 * Special case for COMPARE_AND_WRITE with fabrics
2566 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2567 		 */
2568 		u32 caw_length = cmd->t_task_nolb *
2569 				 cmd->se_dev->dev_attrib.block_size;
2570 
2571 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2572 				       &cmd->t_bidi_data_nents,
2573 				       caw_length, zero_flag, false);
2574 		if (ret < 0)
2575 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2576 	}
2577 	/*
2578 	 * If this command is not a write we can execute it right here,
2579 	 * for write buffers we need to notify the fabric driver first
2580 	 * and let it call back once the write buffers are ready.
2581 	 */
2582 	target_add_to_state_list(cmd);
2583 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2584 		target_execute_cmd(cmd);
2585 		return 0;
2586 	}
2587 
2588 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2589 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2590 	/*
2591 	 * Determine if frontend context caller is requesting the stopping of
2592 	 * this command for frontend exceptions.
2593 	 */
2594 	if (cmd->transport_state & CMD_T_STOP) {
2595 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2596 			 __func__, __LINE__, cmd->tag);
2597 
2598 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2599 
2600 		complete_all(&cmd->t_transport_stop_comp);
2601 		return 0;
2602 	}
2603 	cmd->transport_state &= ~CMD_T_ACTIVE;
2604 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2605 
2606 	ret = cmd->se_tfo->write_pending(cmd);
2607 	if (ret)
2608 		goto queue_full;
2609 
2610 	return 0;
2611 
2612 queue_full:
2613 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2614 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2615 	return 0;
2616 }
2617 EXPORT_SYMBOL(transport_generic_new_cmd);
2618 
transport_write_pending_qf(struct se_cmd * cmd)2619 static void transport_write_pending_qf(struct se_cmd *cmd)
2620 {
2621 	unsigned long flags;
2622 	int ret;
2623 	bool stop;
2624 
2625 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2626 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2627 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2628 
2629 	if (stop) {
2630 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2631 			__func__, __LINE__, cmd->tag);
2632 		complete_all(&cmd->t_transport_stop_comp);
2633 		return;
2634 	}
2635 
2636 	ret = cmd->se_tfo->write_pending(cmd);
2637 	if (ret) {
2638 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2639 			 cmd);
2640 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2641 	}
2642 }
2643 
2644 static bool
2645 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2646 			   unsigned long *flags);
2647 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2648 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2649 {
2650 	unsigned long flags;
2651 
2652 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2653 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2654 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2655 }
2656 
2657 /*
2658  * This function is called by frontend drivers after processing of a command
2659  * has finished.
2660  *
2661  * The protocol for ensuring that either the regular flow or the TMF
2662  * code drops one reference is as follows:
2663  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2664  *   the frontend driver to drop one reference, synchronously or asynchronously.
2665  * - During regular command processing the target core sets CMD_T_COMPLETE
2666  *   before invoking one of the .queue_*() functions.
2667  * - The code that aborts commands skips commands and TMFs for which
2668  *   CMD_T_COMPLETE has been set.
2669  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2670  *   commands that will be aborted.
2671  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2672  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2673  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2674  *   be called and will drop a reference.
2675  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2676  *   will be called. transport_cmd_finish_abort() will drop the final reference.
2677  */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2678 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2679 {
2680 	DECLARE_COMPLETION_ONSTACK(compl);
2681 	int ret = 0;
2682 	bool aborted = false, tas = false;
2683 
2684 	if (wait_for_tasks)
2685 		target_wait_free_cmd(cmd, &aborted, &tas);
2686 
2687 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2688 		/*
2689 		 * Handle WRITE failure case where transport_generic_new_cmd()
2690 		 * has already added se_cmd to state_list, but fabric has
2691 		 * failed command before I/O submission.
2692 		 */
2693 		if (cmd->state_active)
2694 			target_remove_from_state_list(cmd);
2695 
2696 		if (cmd->se_lun)
2697 			transport_lun_remove_cmd(cmd);
2698 	}
2699 	if (aborted)
2700 		cmd->compl = &compl;
2701 	if (!aborted || tas)
2702 		ret = target_put_sess_cmd(cmd);
2703 	if (aborted) {
2704 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2705 		wait_for_completion(&compl);
2706 		ret = 1;
2707 	}
2708 	return ret;
2709 }
2710 EXPORT_SYMBOL(transport_generic_free_cmd);
2711 
2712 /**
2713  * target_get_sess_cmd - Add command to active ->sess_cmd_list
2714  * @se_cmd:	command descriptor to add
2715  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2716  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2717 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2718 {
2719 	struct se_session *se_sess = se_cmd->se_sess;
2720 	unsigned long flags;
2721 	int ret = 0;
2722 
2723 	/*
2724 	 * Add a second kref if the fabric caller is expecting to handle
2725 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2726 	 * invocations before se_cmd descriptor release.
2727 	 */
2728 	if (ack_kref) {
2729 		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2730 			return -EINVAL;
2731 
2732 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2733 	}
2734 
2735 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2736 	if (se_sess->sess_tearing_down) {
2737 		ret = -ESHUTDOWN;
2738 		goto out;
2739 	}
2740 	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2741 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2742 	percpu_ref_get(&se_sess->cmd_count);
2743 out:
2744 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2745 
2746 	if (ret && ack_kref)
2747 		target_put_sess_cmd(se_cmd);
2748 
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL(target_get_sess_cmd);
2752 
target_free_cmd_mem(struct se_cmd * cmd)2753 static void target_free_cmd_mem(struct se_cmd *cmd)
2754 {
2755 	transport_free_pages(cmd);
2756 
2757 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2758 		core_tmr_release_req(cmd->se_tmr_req);
2759 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2760 		kfree(cmd->t_task_cdb);
2761 }
2762 
target_release_cmd_kref(struct kref * kref)2763 static void target_release_cmd_kref(struct kref *kref)
2764 {
2765 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2766 	struct se_session *se_sess = se_cmd->se_sess;
2767 	struct completion *compl = se_cmd->compl;
2768 	unsigned long flags;
2769 
2770 	if (se_sess) {
2771 		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2772 		list_del_init(&se_cmd->se_cmd_list);
2773 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2774 	}
2775 
2776 	target_free_cmd_mem(se_cmd);
2777 	se_cmd->se_tfo->release_cmd(se_cmd);
2778 	if (compl)
2779 		complete(compl);
2780 
2781 	percpu_ref_put(&se_sess->cmd_count);
2782 }
2783 
2784 /**
2785  * target_put_sess_cmd - decrease the command reference count
2786  * @se_cmd:	command to drop a reference from
2787  *
2788  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2789  * refcount to drop to zero. Returns zero otherwise.
2790  */
target_put_sess_cmd(struct se_cmd * se_cmd)2791 int target_put_sess_cmd(struct se_cmd *se_cmd)
2792 {
2793 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2794 }
2795 EXPORT_SYMBOL(target_put_sess_cmd);
2796 
data_dir_name(enum dma_data_direction d)2797 static const char *data_dir_name(enum dma_data_direction d)
2798 {
2799 	switch (d) {
2800 	case DMA_BIDIRECTIONAL:	return "BIDI";
2801 	case DMA_TO_DEVICE:	return "WRITE";
2802 	case DMA_FROM_DEVICE:	return "READ";
2803 	case DMA_NONE:		return "NONE";
2804 	}
2805 
2806 	return "(?)";
2807 }
2808 
cmd_state_name(enum transport_state_table t)2809 static const char *cmd_state_name(enum transport_state_table t)
2810 {
2811 	switch (t) {
2812 	case TRANSPORT_NO_STATE:	return "NO_STATE";
2813 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
2814 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
2815 	case TRANSPORT_PROCESSING:	return "PROCESSING";
2816 	case TRANSPORT_COMPLETE:	return "COMPLETE";
2817 	case TRANSPORT_ISTATE_PROCESSING:
2818 					return "ISTATE_PROCESSING";
2819 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
2820 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
2821 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
2822 	}
2823 
2824 	return "(?)";
2825 }
2826 
target_append_str(char ** str,const char * txt)2827 static void target_append_str(char **str, const char *txt)
2828 {
2829 	char *prev = *str;
2830 
2831 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2832 		kstrdup(txt, GFP_ATOMIC);
2833 	kfree(prev);
2834 }
2835 
2836 /*
2837  * Convert a transport state bitmask into a string. The caller is
2838  * responsible for freeing the returned pointer.
2839  */
target_ts_to_str(u32 ts)2840 static char *target_ts_to_str(u32 ts)
2841 {
2842 	char *str = NULL;
2843 
2844 	if (ts & CMD_T_ABORTED)
2845 		target_append_str(&str, "aborted");
2846 	if (ts & CMD_T_ACTIVE)
2847 		target_append_str(&str, "active");
2848 	if (ts & CMD_T_COMPLETE)
2849 		target_append_str(&str, "complete");
2850 	if (ts & CMD_T_SENT)
2851 		target_append_str(&str, "sent");
2852 	if (ts & CMD_T_STOP)
2853 		target_append_str(&str, "stop");
2854 	if (ts & CMD_T_FABRIC_STOP)
2855 		target_append_str(&str, "fabric_stop");
2856 
2857 	return str;
2858 }
2859 
target_tmf_name(enum tcm_tmreq_table tmf)2860 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2861 {
2862 	switch (tmf) {
2863 	case TMR_ABORT_TASK:		return "ABORT_TASK";
2864 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
2865 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
2866 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
2867 	case TMR_LUN_RESET:		return "LUN_RESET";
2868 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
2869 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
2870 	case TMR_UNKNOWN:		break;
2871 	}
2872 	return "(?)";
2873 }
2874 
target_show_cmd(const char * pfx,struct se_cmd * cmd)2875 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2876 {
2877 	char *ts_str = target_ts_to_str(cmd->transport_state);
2878 	const u8 *cdb = cmd->t_task_cdb;
2879 	struct se_tmr_req *tmf = cmd->se_tmr_req;
2880 
2881 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2882 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2883 			 pfx, cdb[0], cdb[1], cmd->tag,
2884 			 data_dir_name(cmd->data_direction),
2885 			 cmd->se_tfo->get_cmd_state(cmd),
2886 			 cmd_state_name(cmd->t_state), cmd->data_length,
2887 			 kref_read(&cmd->cmd_kref), ts_str);
2888 	} else {
2889 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2890 			 pfx, target_tmf_name(tmf->function), cmd->tag,
2891 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2892 			 cmd_state_name(cmd->t_state),
2893 			 kref_read(&cmd->cmd_kref), ts_str);
2894 	}
2895 	kfree(ts_str);
2896 }
2897 EXPORT_SYMBOL(target_show_cmd);
2898 
2899 /**
2900  * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2901  * @se_sess:	session to flag
2902  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2903 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2904 {
2905 	unsigned long flags;
2906 
2907 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2908 	se_sess->sess_tearing_down = 1;
2909 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2910 
2911 	percpu_ref_kill(&se_sess->cmd_count);
2912 }
2913 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2914 
2915 /**
2916  * target_wait_for_sess_cmds - Wait for outstanding commands
2917  * @se_sess:    session to wait for active I/O
2918  */
target_wait_for_sess_cmds(struct se_session * se_sess)2919 void target_wait_for_sess_cmds(struct se_session *se_sess)
2920 {
2921 	struct se_cmd *cmd;
2922 	int ret;
2923 
2924 	WARN_ON_ONCE(!se_sess->sess_tearing_down);
2925 
2926 	do {
2927 		ret = wait_event_timeout(se_sess->cmd_list_wq,
2928 				percpu_ref_is_zero(&se_sess->cmd_count),
2929 				180 * HZ);
2930 		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
2931 			target_show_cmd("session shutdown: still waiting for ",
2932 					cmd);
2933 	} while (ret <= 0);
2934 }
2935 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2936 
target_lun_confirm(struct percpu_ref * ref)2937 static void target_lun_confirm(struct percpu_ref *ref)
2938 {
2939 	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2940 
2941 	complete(&lun->lun_ref_comp);
2942 }
2943 
transport_clear_lun_ref(struct se_lun * lun)2944 void transport_clear_lun_ref(struct se_lun *lun)
2945 {
2946 	/*
2947 	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2948 	 * the initial reference and schedule confirm kill to be
2949 	 * executed after one full RCU grace period has completed.
2950 	 */
2951 	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2952 	/*
2953 	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2954 	 * to call target_lun_confirm after lun->lun_ref has been marked
2955 	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2956 	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2957 	 * fails for all new incoming I/O.
2958 	 */
2959 	wait_for_completion(&lun->lun_ref_comp);
2960 	/*
2961 	 * The second completion waits for percpu_ref_put_many() to
2962 	 * invoke ->release() after lun->lun_ref has switched to
2963 	 * atomic_t mode, and lun->lun_ref.count has reached zero.
2964 	 *
2965 	 * At this point all target-core lun->lun_ref references have
2966 	 * been dropped via transport_lun_remove_cmd(), and it's safe
2967 	 * to proceed with the remaining LUN shutdown.
2968 	 */
2969 	wait_for_completion(&lun->lun_shutdown_comp);
2970 }
2971 
2972 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2973 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2974 			   bool *aborted, bool *tas, unsigned long *flags)
2975 	__releases(&cmd->t_state_lock)
2976 	__acquires(&cmd->t_state_lock)
2977 {
2978 
2979 	assert_spin_locked(&cmd->t_state_lock);
2980 	WARN_ON_ONCE(!irqs_disabled());
2981 
2982 	if (fabric_stop)
2983 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2984 
2985 	if (cmd->transport_state & CMD_T_ABORTED)
2986 		*aborted = true;
2987 
2988 	if (cmd->transport_state & CMD_T_TAS)
2989 		*tas = true;
2990 
2991 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2992 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2993 		return false;
2994 
2995 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2996 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2997 		return false;
2998 
2999 	if (!(cmd->transport_state & CMD_T_ACTIVE))
3000 		return false;
3001 
3002 	if (fabric_stop && *aborted)
3003 		return false;
3004 
3005 	cmd->transport_state |= CMD_T_STOP;
3006 
3007 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3008 
3009 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3010 
3011 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3012 					    180 * HZ))
3013 		target_show_cmd("wait for tasks: ", cmd);
3014 
3015 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3016 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3017 
3018 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3019 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3020 
3021 	return true;
3022 }
3023 
3024 /**
3025  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3026  * @cmd: command to wait on
3027  */
transport_wait_for_tasks(struct se_cmd * cmd)3028 bool transport_wait_for_tasks(struct se_cmd *cmd)
3029 {
3030 	unsigned long flags;
3031 	bool ret, aborted = false, tas = false;
3032 
3033 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3034 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3035 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3036 
3037 	return ret;
3038 }
3039 EXPORT_SYMBOL(transport_wait_for_tasks);
3040 
3041 struct sense_info {
3042 	u8 key;
3043 	u8 asc;
3044 	u8 ascq;
3045 	bool add_sector_info;
3046 };
3047 
3048 static const struct sense_info sense_info_table[] = {
3049 	[TCM_NO_SENSE] = {
3050 		.key = NOT_READY
3051 	},
3052 	[TCM_NON_EXISTENT_LUN] = {
3053 		.key = ILLEGAL_REQUEST,
3054 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3055 	},
3056 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3057 		.key = ILLEGAL_REQUEST,
3058 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3059 	},
3060 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3061 		.key = ILLEGAL_REQUEST,
3062 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3063 	},
3064 	[TCM_UNKNOWN_MODE_PAGE] = {
3065 		.key = ILLEGAL_REQUEST,
3066 		.asc = 0x24, /* INVALID FIELD IN CDB */
3067 	},
3068 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3069 		.key = ABORTED_COMMAND,
3070 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3071 		.ascq = 0x03,
3072 	},
3073 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3074 		.key = ABORTED_COMMAND,
3075 		.asc = 0x0c, /* WRITE ERROR */
3076 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3077 	},
3078 	[TCM_INVALID_CDB_FIELD] = {
3079 		.key = ILLEGAL_REQUEST,
3080 		.asc = 0x24, /* INVALID FIELD IN CDB */
3081 	},
3082 	[TCM_INVALID_PARAMETER_LIST] = {
3083 		.key = ILLEGAL_REQUEST,
3084 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3085 	},
3086 	[TCM_TOO_MANY_TARGET_DESCS] = {
3087 		.key = ILLEGAL_REQUEST,
3088 		.asc = 0x26,
3089 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3090 	},
3091 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3092 		.key = ILLEGAL_REQUEST,
3093 		.asc = 0x26,
3094 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3095 	},
3096 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3097 		.key = ILLEGAL_REQUEST,
3098 		.asc = 0x26,
3099 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3100 	},
3101 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3102 		.key = ILLEGAL_REQUEST,
3103 		.asc = 0x26,
3104 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3105 	},
3106 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3107 		.key = ILLEGAL_REQUEST,
3108 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3109 	},
3110 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3111 		.key = ILLEGAL_REQUEST,
3112 		.asc = 0x0c, /* WRITE ERROR */
3113 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3114 	},
3115 	[TCM_SERVICE_CRC_ERROR] = {
3116 		.key = ABORTED_COMMAND,
3117 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3118 		.ascq = 0x05, /* N/A */
3119 	},
3120 	[TCM_SNACK_REJECTED] = {
3121 		.key = ABORTED_COMMAND,
3122 		.asc = 0x11, /* READ ERROR */
3123 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3124 	},
3125 	[TCM_WRITE_PROTECTED] = {
3126 		.key = DATA_PROTECT,
3127 		.asc = 0x27, /* WRITE PROTECTED */
3128 	},
3129 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3130 		.key = ILLEGAL_REQUEST,
3131 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3132 	},
3133 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3134 		.key = UNIT_ATTENTION,
3135 	},
3136 	[TCM_CHECK_CONDITION_NOT_READY] = {
3137 		.key = NOT_READY,
3138 	},
3139 	[TCM_MISCOMPARE_VERIFY] = {
3140 		.key = MISCOMPARE,
3141 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3142 		.ascq = 0x00,
3143 	},
3144 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3145 		.key = ABORTED_COMMAND,
3146 		.asc = 0x10,
3147 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3148 		.add_sector_info = true,
3149 	},
3150 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3151 		.key = ABORTED_COMMAND,
3152 		.asc = 0x10,
3153 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3154 		.add_sector_info = true,
3155 	},
3156 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3157 		.key = ABORTED_COMMAND,
3158 		.asc = 0x10,
3159 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3160 		.add_sector_info = true,
3161 	},
3162 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3163 		.key = COPY_ABORTED,
3164 		.asc = 0x0d,
3165 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3166 
3167 	},
3168 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3169 		/*
3170 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3171 		 * Solaris initiators.  Returning NOT READY instead means the
3172 		 * operations will be retried a finite number of times and we
3173 		 * can survive intermittent errors.
3174 		 */
3175 		.key = NOT_READY,
3176 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3177 	},
3178 	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3179 		/*
3180 		 * From spc4r22 section5.7.7,5.7.8
3181 		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3182 		 * or a REGISTER AND IGNORE EXISTING KEY service action or
3183 		 * REGISTER AND MOVE service actionis attempted,
3184 		 * but there are insufficient device server resources to complete the
3185 		 * operation, then the command shall be terminated with CHECK CONDITION
3186 		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3187 		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3188 		 */
3189 		.key = ILLEGAL_REQUEST,
3190 		.asc = 0x55,
3191 		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3192 	},
3193 };
3194 
3195 /**
3196  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3197  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3198  *   be stored.
3199  * @reason: LIO sense reason code. If this argument has the value
3200  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3201  *   dequeuing a unit attention fails due to multiple commands being processed
3202  *   concurrently, set the command status to BUSY.
3203  *
3204  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3205  */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3206 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3207 {
3208 	const struct sense_info *si;
3209 	u8 *buffer = cmd->sense_buffer;
3210 	int r = (__force int)reason;
3211 	u8 key, asc, ascq;
3212 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3213 
3214 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3215 		si = &sense_info_table[r];
3216 	else
3217 		si = &sense_info_table[(__force int)
3218 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3219 
3220 	key = si->key;
3221 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3222 		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3223 						       &ascq)) {
3224 			cmd->scsi_status = SAM_STAT_BUSY;
3225 			return;
3226 		}
3227 	} else if (si->asc == 0) {
3228 		WARN_ON_ONCE(cmd->scsi_asc == 0);
3229 		asc = cmd->scsi_asc;
3230 		ascq = cmd->scsi_ascq;
3231 	} else {
3232 		asc = si->asc;
3233 		ascq = si->ascq;
3234 	}
3235 
3236 	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3237 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3238 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3239 	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3240 	if (si->add_sector_info)
3241 		WARN_ON_ONCE(scsi_set_sense_information(buffer,
3242 							cmd->scsi_sense_length,
3243 							cmd->bad_sector) < 0);
3244 }
3245 
3246 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3247 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3248 		sense_reason_t reason, int from_transport)
3249 {
3250 	unsigned long flags;
3251 
3252 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3253 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3254 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3255 		return 0;
3256 	}
3257 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3258 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3259 
3260 	if (!from_transport)
3261 		translate_sense_reason(cmd, reason);
3262 
3263 	trace_target_cmd_complete(cmd);
3264 	return cmd->se_tfo->queue_status(cmd);
3265 }
3266 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3267 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3268 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3269 	__releases(&cmd->t_state_lock)
3270 	__acquires(&cmd->t_state_lock)
3271 {
3272 	int ret;
3273 
3274 	assert_spin_locked(&cmd->t_state_lock);
3275 	WARN_ON_ONCE(!irqs_disabled());
3276 
3277 	if (!(cmd->transport_state & CMD_T_ABORTED))
3278 		return 0;
3279 	/*
3280 	 * If cmd has been aborted but either no status is to be sent or it has
3281 	 * already been sent, just return
3282 	 */
3283 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3284 		if (send_status)
3285 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3286 		return 1;
3287 	}
3288 
3289 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3290 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3291 
3292 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3293 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3294 	trace_target_cmd_complete(cmd);
3295 
3296 	spin_unlock_irq(&cmd->t_state_lock);
3297 	ret = cmd->se_tfo->queue_status(cmd);
3298 	if (ret)
3299 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3300 	spin_lock_irq(&cmd->t_state_lock);
3301 
3302 	return 1;
3303 }
3304 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3305 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3306 {
3307 	int ret;
3308 
3309 	spin_lock_irq(&cmd->t_state_lock);
3310 	ret = __transport_check_aborted_status(cmd, send_status);
3311 	spin_unlock_irq(&cmd->t_state_lock);
3312 
3313 	return ret;
3314 }
3315 EXPORT_SYMBOL(transport_check_aborted_status);
3316 
transport_send_task_abort(struct se_cmd * cmd)3317 void transport_send_task_abort(struct se_cmd *cmd)
3318 {
3319 	unsigned long flags;
3320 	int ret;
3321 
3322 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3323 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3324 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3325 		return;
3326 	}
3327 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3328 
3329 	/*
3330 	 * If there are still expected incoming fabric WRITEs, we wait
3331 	 * until until they have completed before sending a TASK_ABORTED
3332 	 * response.  This response with TASK_ABORTED status will be
3333 	 * queued back to fabric module by transport_check_aborted_status().
3334 	 */
3335 	if (cmd->data_direction == DMA_TO_DEVICE) {
3336 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3337 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3338 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3339 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3340 				goto send_abort;
3341 			}
3342 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3343 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3344 			return;
3345 		}
3346 	}
3347 send_abort:
3348 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3349 
3350 	transport_lun_remove_cmd(cmd);
3351 
3352 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3353 		 cmd->t_task_cdb[0], cmd->tag);
3354 
3355 	trace_target_cmd_complete(cmd);
3356 	ret = cmd->se_tfo->queue_status(cmd);
3357 	if (ret)
3358 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3359 }
3360 
target_tmr_work(struct work_struct * work)3361 static void target_tmr_work(struct work_struct *work)
3362 {
3363 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3364 	struct se_device *dev = cmd->se_dev;
3365 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3366 	unsigned long flags;
3367 	int ret;
3368 
3369 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3370 	if (cmd->transport_state & CMD_T_ABORTED) {
3371 		tmr->response = TMR_FUNCTION_REJECTED;
3372 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3373 		goto check_stop;
3374 	}
3375 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3376 
3377 	switch (tmr->function) {
3378 	case TMR_ABORT_TASK:
3379 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3380 		break;
3381 	case TMR_ABORT_TASK_SET:
3382 	case TMR_CLEAR_ACA:
3383 	case TMR_CLEAR_TASK_SET:
3384 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3385 		break;
3386 	case TMR_LUN_RESET:
3387 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3388 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3389 					 TMR_FUNCTION_REJECTED;
3390 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3391 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3392 					       cmd->orig_fe_lun, 0x29,
3393 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3394 		}
3395 		break;
3396 	case TMR_TARGET_WARM_RESET:
3397 		tmr->response = TMR_FUNCTION_REJECTED;
3398 		break;
3399 	case TMR_TARGET_COLD_RESET:
3400 		tmr->response = TMR_FUNCTION_REJECTED;
3401 		break;
3402 	default:
3403 		pr_err("Unknown TMR function: 0x%02x.\n",
3404 				tmr->function);
3405 		tmr->response = TMR_FUNCTION_REJECTED;
3406 		break;
3407 	}
3408 
3409 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3410 	if (cmd->transport_state & CMD_T_ABORTED) {
3411 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3412 		goto check_stop;
3413 	}
3414 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3415 
3416 	cmd->se_tfo->queue_tm_rsp(cmd);
3417 
3418 check_stop:
3419 	transport_lun_remove_cmd(cmd);
3420 	transport_cmd_check_stop_to_fabric(cmd);
3421 }
3422 
transport_generic_handle_tmr(struct se_cmd * cmd)3423 int transport_generic_handle_tmr(
3424 	struct se_cmd *cmd)
3425 {
3426 	unsigned long flags;
3427 	bool aborted = false;
3428 
3429 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3430 	if (cmd->transport_state & CMD_T_ABORTED) {
3431 		aborted = true;
3432 	} else {
3433 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3434 		cmd->transport_state |= CMD_T_ACTIVE;
3435 	}
3436 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437 
3438 	if (aborted) {
3439 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3440 			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3441 			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3442 		transport_lun_remove_cmd(cmd);
3443 		transport_cmd_check_stop_to_fabric(cmd);
3444 		return 0;
3445 	}
3446 
3447 	INIT_WORK(&cmd->work, target_tmr_work);
3448 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3449 	return 0;
3450 }
3451 EXPORT_SYMBOL(transport_generic_handle_tmr);
3452 
3453 bool
target_check_wce(struct se_device * dev)3454 target_check_wce(struct se_device *dev)
3455 {
3456 	bool wce = false;
3457 
3458 	if (dev->transport->get_write_cache)
3459 		wce = dev->transport->get_write_cache(dev);
3460 	else if (dev->dev_attrib.emulate_write_cache > 0)
3461 		wce = true;
3462 
3463 	return wce;
3464 }
3465 
3466 bool
target_check_fua(struct se_device * dev)3467 target_check_fua(struct se_device *dev)
3468 {
3469 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3470 }
3471