• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Released under the GPLv2 only.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15 
16 #define to_urb(d) container_of(d, struct urb, kref)
17 
18 
urb_destroy(struct kref * kref)19 static void urb_destroy(struct kref *kref)
20 {
21 	struct urb *urb = to_urb(kref);
22 
23 	if (urb->transfer_flags & URB_FREE_BUFFER)
24 		kfree(urb->transfer_buffer);
25 
26 	kfree(urb);
27 }
28 
29 /**
30  * usb_init_urb - initializes a urb so that it can be used by a USB driver
31  * @urb: pointer to the urb to initialize
32  *
33  * Initializes a urb so that the USB subsystem can use it properly.
34  *
35  * If a urb is created with a call to usb_alloc_urb() it is not
36  * necessary to call this function.  Only use this if you allocate the
37  * space for a struct urb on your own.  If you call this function, be
38  * careful when freeing the memory for your urb that it is no longer in
39  * use by the USB core.
40  *
41  * Only use this function if you _really_ understand what you are doing.
42  */
usb_init_urb(struct urb * urb)43 void usb_init_urb(struct urb *urb)
44 {
45 	if (urb) {
46 		memset(urb, 0, sizeof(*urb));
47 		kref_init(&urb->kref);
48 		INIT_LIST_HEAD(&urb->urb_list);
49 		INIT_LIST_HEAD(&urb->anchor_list);
50 	}
51 }
52 EXPORT_SYMBOL_GPL(usb_init_urb);
53 
54 /**
55  * usb_alloc_urb - creates a new urb for a USB driver to use
56  * @iso_packets: number of iso packets for this urb
57  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
58  *	valid options for this.
59  *
60  * Creates an urb for the USB driver to use, initializes a few internal
61  * structures, increments the usage counter, and returns a pointer to it.
62  *
63  * If the driver want to use this urb for interrupt, control, or bulk
64  * endpoints, pass '0' as the number of iso packets.
65  *
66  * The driver must call usb_free_urb() when it is finished with the urb.
67  *
68  * Return: A pointer to the new urb, or %NULL if no memory is available.
69  */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
71 {
72 	struct urb *urb;
73 
74 	urb = kmalloc(sizeof(struct urb) +
75 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
76 		mem_flags);
77 	if (!urb)
78 		return NULL;
79 	usb_init_urb(urb);
80 	return urb;
81 }
82 EXPORT_SYMBOL_GPL(usb_alloc_urb);
83 
84 /**
85  * usb_free_urb - frees the memory used by a urb when all users of it are finished
86  * @urb: pointer to the urb to free, may be NULL
87  *
88  * Must be called when a user of a urb is finished with it.  When the last user
89  * of the urb calls this function, the memory of the urb is freed.
90  *
91  * Note: The transfer buffer associated with the urb is not freed unless the
92  * URB_FREE_BUFFER transfer flag is set.
93  */
usb_free_urb(struct urb * urb)94 void usb_free_urb(struct urb *urb)
95 {
96 	if (urb)
97 		kref_put(&urb->kref, urb_destroy);
98 }
99 EXPORT_SYMBOL_GPL(usb_free_urb);
100 
101 /**
102  * usb_get_urb - increments the reference count of the urb
103  * @urb: pointer to the urb to modify, may be NULL
104  *
105  * This must be  called whenever a urb is transferred from a device driver to a
106  * host controller driver.  This allows proper reference counting to happen
107  * for urbs.
108  *
109  * Return: A pointer to the urb with the incremented reference counter.
110  */
usb_get_urb(struct urb * urb)111 struct urb *usb_get_urb(struct urb *urb)
112 {
113 	if (urb)
114 		kref_get(&urb->kref);
115 	return urb;
116 }
117 EXPORT_SYMBOL_GPL(usb_get_urb);
118 
119 /**
120  * usb_anchor_urb - anchors an URB while it is processed
121  * @urb: pointer to the urb to anchor
122  * @anchor: pointer to the anchor
123  *
124  * This can be called to have access to URBs which are to be executed
125  * without bothering to track them
126  */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)127 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128 {
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&anchor->lock, flags);
132 	usb_get_urb(urb);
133 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
134 	urb->anchor = anchor;
135 
136 	if (unlikely(anchor->poisoned))
137 		atomic_inc(&urb->reject);
138 
139 	spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142 
usb_anchor_check_wakeup(struct usb_anchor * anchor)143 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144 {
145 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
146 		list_empty(&anchor->urb_list);
147 }
148 
149 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)150 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151 {
152 	urb->anchor = NULL;
153 	list_del(&urb->anchor_list);
154 	usb_put_urb(urb);
155 	if (usb_anchor_check_wakeup(anchor))
156 		wake_up(&anchor->wait);
157 }
158 
159 /**
160  * usb_unanchor_urb - unanchors an URB
161  * @urb: pointer to the urb to anchor
162  *
163  * Call this to stop the system keeping track of this URB
164  */
usb_unanchor_urb(struct urb * urb)165 void usb_unanchor_urb(struct urb *urb)
166 {
167 	unsigned long flags;
168 	struct usb_anchor *anchor;
169 
170 	if (!urb)
171 		return;
172 
173 	anchor = urb->anchor;
174 	if (!anchor)
175 		return;
176 
177 	spin_lock_irqsave(&anchor->lock, flags);
178 	/*
179 	 * At this point, we could be competing with another thread which
180 	 * has the same intention. To protect the urb from being unanchored
181 	 * twice, only the winner of the race gets the job.
182 	 */
183 	if (likely(anchor == urb->anchor))
184 		__usb_unanchor_urb(urb, anchor);
185 	spin_unlock_irqrestore(&anchor->lock, flags);
186 }
187 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188 
189 /*-------------------------------------------------------------------*/
190 
191 static const int pipetypes[4] = {
192 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193 };
194 
195 /**
196  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
197  * @urb: urb to be checked
198  *
199  * This performs a light-weight sanity check for the endpoint in the
200  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
201  * a negative error code.
202  */
usb_urb_ep_type_check(const struct urb * urb)203 int usb_urb_ep_type_check(const struct urb *urb)
204 {
205 	const struct usb_host_endpoint *ep;
206 
207 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
208 	if (!ep)
209 		return -EINVAL;
210 	if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
211 		return -EINVAL;
212 	return 0;
213 }
214 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
215 
216 /**
217  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
218  * @urb: pointer to the urb describing the request
219  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
220  *	of valid options for this.
221  *
222  * This submits a transfer request, and transfers control of the URB
223  * describing that request to the USB subsystem.  Request completion will
224  * be indicated later, asynchronously, by calling the completion handler.
225  * The three types of completion are success, error, and unlink
226  * (a software-induced fault, also called "request cancellation").
227  *
228  * URBs may be submitted in interrupt context.
229  *
230  * The caller must have correctly initialized the URB before submitting
231  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
232  * available to ensure that most fields are correctly initialized, for
233  * the particular kind of transfer, although they will not initialize
234  * any transfer flags.
235  *
236  * If the submission is successful, the complete() callback from the URB
237  * will be called exactly once, when the USB core and Host Controller Driver
238  * (HCD) are finished with the URB.  When the completion function is called,
239  * control of the URB is returned to the device driver which issued the
240  * request.  The completion handler may then immediately free or reuse that
241  * URB.
242  *
243  * With few exceptions, USB device drivers should never access URB fields
244  * provided by usbcore or the HCD until its complete() is called.
245  * The exceptions relate to periodic transfer scheduling.  For both
246  * interrupt and isochronous urbs, as part of successful URB submission
247  * urb->interval is modified to reflect the actual transfer period used
248  * (normally some power of two units).  And for isochronous urbs,
249  * urb->start_frame is modified to reflect when the URB's transfers were
250  * scheduled to start.
251  *
252  * Not all isochronous transfer scheduling policies will work, but most
253  * host controller drivers should easily handle ISO queues going from now
254  * until 10-200 msec into the future.  Drivers should try to keep at
255  * least one or two msec of data in the queue; many controllers require
256  * that new transfers start at least 1 msec in the future when they are
257  * added.  If the driver is unable to keep up and the queue empties out,
258  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
259  * If the flag is set, or if the queue is idle, then the URB is always
260  * assigned to the first available (and not yet expired) slot in the
261  * endpoint's schedule.  If the flag is not set and the queue is active
262  * then the URB is always assigned to the next slot in the schedule
263  * following the end of the endpoint's previous URB, even if that slot is
264  * in the past.  When a packet is assigned in this way to a slot that has
265  * already expired, the packet is not transmitted and the corresponding
266  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
267  * would happen to all the packets in the URB, submission fails with a
268  * -EXDEV error code.
269  *
270  * For control endpoints, the synchronous usb_control_msg() call is
271  * often used (in non-interrupt context) instead of this call.
272  * That is often used through convenience wrappers, for the requests
273  * that are standardized in the USB 2.0 specification.  For bulk
274  * endpoints, a synchronous usb_bulk_msg() call is available.
275  *
276  * Return:
277  * 0 on successful submissions. A negative error number otherwise.
278  *
279  * Request Queuing:
280  *
281  * URBs may be submitted to endpoints before previous ones complete, to
282  * minimize the impact of interrupt latencies and system overhead on data
283  * throughput.  With that queuing policy, an endpoint's queue would never
284  * be empty.  This is required for continuous isochronous data streams,
285  * and may also be required for some kinds of interrupt transfers. Such
286  * queuing also maximizes bandwidth utilization by letting USB controllers
287  * start work on later requests before driver software has finished the
288  * completion processing for earlier (successful) requests.
289  *
290  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
291  * than one.  This was previously a HCD-specific behavior, except for ISO
292  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
293  * after faults (transfer errors or cancellation).
294  *
295  * Reserved Bandwidth Transfers:
296  *
297  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
298  * using the interval specified in the urb.  Submitting the first urb to
299  * the endpoint reserves the bandwidth necessary to make those transfers.
300  * If the USB subsystem can't allocate sufficient bandwidth to perform
301  * the periodic request, submitting such a periodic request should fail.
302  *
303  * For devices under xHCI, the bandwidth is reserved at configuration time, or
304  * when the alt setting is selected.  If there is not enough bus bandwidth, the
305  * configuration/alt setting request will fail.  Therefore, submissions to
306  * periodic endpoints on devices under xHCI should never fail due to bandwidth
307  * constraints.
308  *
309  * Device drivers must explicitly request that repetition, by ensuring that
310  * some URB is always on the endpoint's queue (except possibly for short
311  * periods during completion callbacks).  When there is no longer an urb
312  * queued, the endpoint's bandwidth reservation is canceled.  This means
313  * drivers can use their completion handlers to ensure they keep bandwidth
314  * they need, by reinitializing and resubmitting the just-completed urb
315  * until the driver longer needs that periodic bandwidth.
316  *
317  * Memory Flags:
318  *
319  * The general rules for how to decide which mem_flags to use
320  * are the same as for kmalloc.  There are four
321  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
322  * GFP_ATOMIC.
323  *
324  * GFP_NOFS is not ever used, as it has not been implemented yet.
325  *
326  * GFP_ATOMIC is used when
327  *   (a) you are inside a completion handler, an interrupt, bottom half,
328  *       tasklet or timer, or
329  *   (b) you are holding a spinlock or rwlock (does not apply to
330  *       semaphores), or
331  *   (c) current->state != TASK_RUNNING, this is the case only after
332  *       you've changed it.
333  *
334  * GFP_NOIO is used in the block io path and error handling of storage
335  * devices.
336  *
337  * All other situations use GFP_KERNEL.
338  *
339  * Some more specific rules for mem_flags can be inferred, such as
340  *  (1) start_xmit, timeout, and receive methods of network drivers must
341  *      use GFP_ATOMIC (they are called with a spinlock held);
342  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
343  *      called with a spinlock held);
344  *  (3) If you use a kernel thread with a network driver you must use
345  *      GFP_NOIO, unless (b) or (c) apply;
346  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
347  *      apply or your are in a storage driver's block io path;
348  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
349  *  (6) changing firmware on a running storage or net device uses
350  *      GFP_NOIO, unless b) or c) apply
351  *
352  */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)353 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
354 {
355 	int				xfertype, max;
356 	struct usb_device		*dev;
357 	struct usb_host_endpoint	*ep;
358 	int				is_out;
359 	unsigned int			allowed;
360 
361 	if (!urb || !urb->complete)
362 		return -EINVAL;
363 	if (urb->hcpriv) {
364 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
365 		return -EBUSY;
366 	}
367 
368 	dev = urb->dev;
369 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
370 		return -ENODEV;
371 
372 	/* For now, get the endpoint from the pipe.  Eventually drivers
373 	 * will be required to set urb->ep directly and we will eliminate
374 	 * urb->pipe.
375 	 */
376 	ep = usb_pipe_endpoint(dev, urb->pipe);
377 	if (!ep)
378 		return -ENOENT;
379 
380 	urb->ep = ep;
381 	urb->status = -EINPROGRESS;
382 	urb->actual_length = 0;
383 
384 	/* Lots of sanity checks, so HCDs can rely on clean data
385 	 * and don't need to duplicate tests
386 	 */
387 	xfertype = usb_endpoint_type(&ep->desc);
388 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
389 		struct usb_ctrlrequest *setup =
390 				(struct usb_ctrlrequest *) urb->setup_packet;
391 
392 		if (!setup)
393 			return -ENOEXEC;
394 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
395 				!setup->wLength;
396 	} else {
397 		is_out = usb_endpoint_dir_out(&ep->desc);
398 	}
399 
400 	/* Clear the internal flags and cache the direction for later use */
401 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
402 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
403 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
404 			URB_DMA_SG_COMBINED);
405 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
406 
407 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
408 			dev->state < USB_STATE_CONFIGURED)
409 		return -ENODEV;
410 
411 	max = usb_endpoint_maxp(&ep->desc);
412 	if (max <= 0) {
413 		dev_dbg(&dev->dev,
414 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
415 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
416 			__func__, max);
417 		return -EMSGSIZE;
418 	}
419 
420 	/* periodic transfers limit size per frame/uframe,
421 	 * but drivers only control those sizes for ISO.
422 	 * while we're checking, initialize return status.
423 	 */
424 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
425 		int	n, len;
426 
427 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
428 		 * 3 packets each
429 		 */
430 		if (dev->speed >= USB_SPEED_SUPER) {
431 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
432 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
433 			max *= burst;
434 			max *= mult;
435 		}
436 
437 		if (dev->speed == USB_SPEED_SUPER_PLUS &&
438 		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
439 			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
440 
441 			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
442 			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
443 		}
444 
445 		/* "high bandwidth" mode, 1-3 packets/uframe? */
446 		if (dev->speed == USB_SPEED_HIGH)
447 			max *= usb_endpoint_maxp_mult(&ep->desc);
448 
449 		if (urb->number_of_packets <= 0)
450 			return -EINVAL;
451 		for (n = 0; n < urb->number_of_packets; n++) {
452 			len = urb->iso_frame_desc[n].length;
453 			if (len < 0 || len > max)
454 				return -EMSGSIZE;
455 			urb->iso_frame_desc[n].status = -EXDEV;
456 			urb->iso_frame_desc[n].actual_length = 0;
457 		}
458 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
459 			dev->speed != USB_SPEED_WIRELESS) {
460 		struct scatterlist *sg;
461 		int i;
462 
463 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
464 			if (sg->length % max)
465 				return -EINVAL;
466 	}
467 
468 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
469 	if (urb->transfer_buffer_length > INT_MAX)
470 		return -EMSGSIZE;
471 
472 	/*
473 	 * stuff that drivers shouldn't do, but which shouldn't
474 	 * cause problems in HCDs if they get it wrong.
475 	 */
476 
477 	/* Check that the pipe's type matches the endpoint's type */
478 	if (usb_urb_ep_type_check(urb))
479 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
480 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
481 
482 	/* Check against a simple/standard policy */
483 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
484 			URB_FREE_BUFFER);
485 	switch (xfertype) {
486 	case USB_ENDPOINT_XFER_BULK:
487 	case USB_ENDPOINT_XFER_INT:
488 		if (is_out)
489 			allowed |= URB_ZERO_PACKET;
490 		/* FALLTHROUGH */
491 	default:			/* all non-iso endpoints */
492 		if (!is_out)
493 			allowed |= URB_SHORT_NOT_OK;
494 		break;
495 	case USB_ENDPOINT_XFER_ISOC:
496 		allowed |= URB_ISO_ASAP;
497 		break;
498 	}
499 	allowed &= urb->transfer_flags;
500 
501 	/* warn if submitter gave bogus flags */
502 	if (allowed != urb->transfer_flags)
503 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
504 			urb->transfer_flags, allowed);
505 
506 	/*
507 	 * Force periodic transfer intervals to be legal values that are
508 	 * a power of two (so HCDs don't need to).
509 	 *
510 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
511 	 * supports different values... this uses EHCI/UHCI defaults (and
512 	 * EHCI can use smaller non-default values).
513 	 */
514 	switch (xfertype) {
515 	case USB_ENDPOINT_XFER_ISOC:
516 	case USB_ENDPOINT_XFER_INT:
517 		/* too small? */
518 		switch (dev->speed) {
519 		case USB_SPEED_WIRELESS:
520 			if ((urb->interval < 6)
521 				&& (xfertype == USB_ENDPOINT_XFER_INT))
522 				return -EINVAL;
523 			/* fall through */
524 		default:
525 			if (urb->interval <= 0)
526 				return -EINVAL;
527 			break;
528 		}
529 		/* too big? */
530 		switch (dev->speed) {
531 		case USB_SPEED_SUPER_PLUS:
532 		case USB_SPEED_SUPER:	/* units are 125us */
533 			/* Handle up to 2^(16-1) microframes */
534 			if (urb->interval > (1 << 15))
535 				return -EINVAL;
536 			max = 1 << 15;
537 			break;
538 		case USB_SPEED_WIRELESS:
539 			if (urb->interval > 16)
540 				return -EINVAL;
541 			break;
542 		case USB_SPEED_HIGH:	/* units are microframes */
543 			/* NOTE usb handles 2^15 */
544 			if (urb->interval > (1024 * 8))
545 				urb->interval = 1024 * 8;
546 			max = 1024 * 8;
547 			break;
548 		case USB_SPEED_FULL:	/* units are frames/msec */
549 		case USB_SPEED_LOW:
550 			if (xfertype == USB_ENDPOINT_XFER_INT) {
551 				if (urb->interval > 255)
552 					return -EINVAL;
553 				/* NOTE ohci only handles up to 32 */
554 				max = 128;
555 			} else {
556 				if (urb->interval > 1024)
557 					urb->interval = 1024;
558 				/* NOTE usb and ohci handle up to 2^15 */
559 				max = 1024;
560 			}
561 			break;
562 		default:
563 			return -EINVAL;
564 		}
565 		if (dev->speed != USB_SPEED_WIRELESS) {
566 			/* Round down to a power of 2, no more than max */
567 			urb->interval = min(max, 1 << ilog2(urb->interval));
568 		}
569 	}
570 
571 	return usb_hcd_submit_urb(urb, mem_flags);
572 }
573 EXPORT_SYMBOL_GPL(usb_submit_urb);
574 
575 /*-------------------------------------------------------------------*/
576 
577 /**
578  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
579  * @urb: pointer to urb describing a previously submitted request,
580  *	may be NULL
581  *
582  * This routine cancels an in-progress request.  URBs complete only once
583  * per submission, and may be canceled only once per submission.
584  * Successful cancellation means termination of @urb will be expedited
585  * and the completion handler will be called with a status code
586  * indicating that the request has been canceled (rather than any other
587  * code).
588  *
589  * Drivers should not call this routine or related routines, such as
590  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
591  * method has returned.  The disconnect function should synchronize with
592  * a driver's I/O routines to insure that all URB-related activity has
593  * completed before it returns.
594  *
595  * This request is asynchronous, however the HCD might call the ->complete()
596  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
597  * must not hold any locks that may be taken by the completion function.
598  * Success is indicated by returning -EINPROGRESS, at which time the URB will
599  * probably not yet have been given back to the device driver. When it is
600  * eventually called, the completion function will see @urb->status ==
601  * -ECONNRESET.
602  * Failure is indicated by usb_unlink_urb() returning any other value.
603  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
604  * never submitted, or it was unlinked before, or the hardware is already
605  * finished with it), even if the completion handler has not yet run.
606  *
607  * The URB must not be deallocated while this routine is running.  In
608  * particular, when a driver calls this routine, it must insure that the
609  * completion handler cannot deallocate the URB.
610  *
611  * Return: -EINPROGRESS on success. See description for other values on
612  * failure.
613  *
614  * Unlinking and Endpoint Queues:
615  *
616  * [The behaviors and guarantees described below do not apply to virtual
617  * root hubs but only to endpoint queues for physical USB devices.]
618  *
619  * Host Controller Drivers (HCDs) place all the URBs for a particular
620  * endpoint in a queue.  Normally the queue advances as the controller
621  * hardware processes each request.  But when an URB terminates with an
622  * error its queue generally stops (see below), at least until that URB's
623  * completion routine returns.  It is guaranteed that a stopped queue
624  * will not restart until all its unlinked URBs have been fully retired,
625  * with their completion routines run, even if that's not until some time
626  * after the original completion handler returns.  The same behavior and
627  * guarantee apply when an URB terminates because it was unlinked.
628  *
629  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
630  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
631  * and -EREMOTEIO.  Control endpoint queues behave the same way except
632  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
633  * for isochronous endpoints are treated differently, because they must
634  * advance at fixed rates.  Such queues do not stop when an URB
635  * encounters an error or is unlinked.  An unlinked isochronous URB may
636  * leave a gap in the stream of packets; it is undefined whether such
637  * gaps can be filled in.
638  *
639  * Note that early termination of an URB because a short packet was
640  * received will generate a -EREMOTEIO error if and only if the
641  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
642  * drivers can build deep queues for large or complex bulk transfers
643  * and clean them up reliably after any sort of aborted transfer by
644  * unlinking all pending URBs at the first fault.
645  *
646  * When a control URB terminates with an error other than -EREMOTEIO, it
647  * is quite likely that the status stage of the transfer will not take
648  * place.
649  */
usb_unlink_urb(struct urb * urb)650 int usb_unlink_urb(struct urb *urb)
651 {
652 	if (!urb)
653 		return -EINVAL;
654 	if (!urb->dev)
655 		return -ENODEV;
656 	if (!urb->ep)
657 		return -EIDRM;
658 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
659 }
660 EXPORT_SYMBOL_GPL(usb_unlink_urb);
661 
662 /**
663  * usb_kill_urb - cancel a transfer request and wait for it to finish
664  * @urb: pointer to URB describing a previously submitted request,
665  *	may be NULL
666  *
667  * This routine cancels an in-progress request.  It is guaranteed that
668  * upon return all completion handlers will have finished and the URB
669  * will be totally idle and available for reuse.  These features make
670  * this an ideal way to stop I/O in a disconnect() callback or close()
671  * function.  If the request has not already finished or been unlinked
672  * the completion handler will see urb->status == -ENOENT.
673  *
674  * While the routine is running, attempts to resubmit the URB will fail
675  * with error -EPERM.  Thus even if the URB's completion handler always
676  * tries to resubmit, it will not succeed and the URB will become idle.
677  *
678  * The URB must not be deallocated while this routine is running.  In
679  * particular, when a driver calls this routine, it must insure that the
680  * completion handler cannot deallocate the URB.
681  *
682  * This routine may not be used in an interrupt context (such as a bottom
683  * half or a completion handler), or when holding a spinlock, or in other
684  * situations where the caller can't schedule().
685  *
686  * This routine should not be called by a driver after its disconnect
687  * method has returned.
688  */
usb_kill_urb(struct urb * urb)689 void usb_kill_urb(struct urb *urb)
690 {
691 	might_sleep();
692 	if (!(urb && urb->dev && urb->ep))
693 		return;
694 	atomic_inc(&urb->reject);
695 
696 	usb_hcd_unlink_urb(urb, -ENOENT);
697 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
698 
699 	atomic_dec(&urb->reject);
700 }
701 EXPORT_SYMBOL_GPL(usb_kill_urb);
702 
703 /**
704  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
705  * @urb: pointer to URB describing a previously submitted request,
706  *	may be NULL
707  *
708  * This routine cancels an in-progress request.  It is guaranteed that
709  * upon return all completion handlers will have finished and the URB
710  * will be totally idle and cannot be reused.  These features make
711  * this an ideal way to stop I/O in a disconnect() callback.
712  * If the request has not already finished or been unlinked
713  * the completion handler will see urb->status == -ENOENT.
714  *
715  * After and while the routine runs, attempts to resubmit the URB will fail
716  * with error -EPERM.  Thus even if the URB's completion handler always
717  * tries to resubmit, it will not succeed and the URB will become idle.
718  *
719  * The URB must not be deallocated while this routine is running.  In
720  * particular, when a driver calls this routine, it must insure that the
721  * completion handler cannot deallocate the URB.
722  *
723  * This routine may not be used in an interrupt context (such as a bottom
724  * half or a completion handler), or when holding a spinlock, or in other
725  * situations where the caller can't schedule().
726  *
727  * This routine should not be called by a driver after its disconnect
728  * method has returned.
729  */
usb_poison_urb(struct urb * urb)730 void usb_poison_urb(struct urb *urb)
731 {
732 	might_sleep();
733 	if (!urb)
734 		return;
735 	atomic_inc(&urb->reject);
736 
737 	if (!urb->dev || !urb->ep)
738 		return;
739 
740 	usb_hcd_unlink_urb(urb, -ENOENT);
741 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
742 }
743 EXPORT_SYMBOL_GPL(usb_poison_urb);
744 
usb_unpoison_urb(struct urb * urb)745 void usb_unpoison_urb(struct urb *urb)
746 {
747 	if (!urb)
748 		return;
749 
750 	atomic_dec(&urb->reject);
751 }
752 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
753 
754 /**
755  * usb_block_urb - reliably prevent further use of an URB
756  * @urb: pointer to URB to be blocked, may be NULL
757  *
758  * After the routine has run, attempts to resubmit the URB will fail
759  * with error -EPERM.  Thus even if the URB's completion handler always
760  * tries to resubmit, it will not succeed and the URB will become idle.
761  *
762  * The URB must not be deallocated while this routine is running.  In
763  * particular, when a driver calls this routine, it must insure that the
764  * completion handler cannot deallocate the URB.
765  */
usb_block_urb(struct urb * urb)766 void usb_block_urb(struct urb *urb)
767 {
768 	if (!urb)
769 		return;
770 
771 	atomic_inc(&urb->reject);
772 }
773 EXPORT_SYMBOL_GPL(usb_block_urb);
774 
775 /**
776  * usb_kill_anchored_urbs - kill all URBs associated with an anchor
777  * @anchor: anchor the requests are bound to
778  *
779  * This kills all outstanding URBs starting from the back of the queue,
780  * with guarantee that no completer callbacks will take place from the
781  * anchor after this function returns.
782  *
783  * This routine should not be called by a driver after its disconnect
784  * method has returned.
785  */
usb_kill_anchored_urbs(struct usb_anchor * anchor)786 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
787 {
788 	struct urb *victim;
789 	int surely_empty;
790 
791 	do {
792 		spin_lock_irq(&anchor->lock);
793 		while (!list_empty(&anchor->urb_list)) {
794 			victim = list_entry(anchor->urb_list.prev,
795 					    struct urb, anchor_list);
796 			/* make sure the URB isn't freed before we kill it */
797 			usb_get_urb(victim);
798 			spin_unlock_irq(&anchor->lock);
799 			/* this will unanchor the URB */
800 			usb_kill_urb(victim);
801 			usb_put_urb(victim);
802 			spin_lock_irq(&anchor->lock);
803 		}
804 		surely_empty = usb_anchor_check_wakeup(anchor);
805 
806 		spin_unlock_irq(&anchor->lock);
807 		cpu_relax();
808 	} while (!surely_empty);
809 }
810 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
811 
812 
813 /**
814  * usb_poison_anchored_urbs - cease all traffic from an anchor
815  * @anchor: anchor the requests are bound to
816  *
817  * this allows all outstanding URBs to be poisoned starting
818  * from the back of the queue. Newly added URBs will also be
819  * poisoned
820  *
821  * This routine should not be called by a driver after its disconnect
822  * method has returned.
823  */
usb_poison_anchored_urbs(struct usb_anchor * anchor)824 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
825 {
826 	struct urb *victim;
827 	int surely_empty;
828 
829 	do {
830 		spin_lock_irq(&anchor->lock);
831 		anchor->poisoned = 1;
832 		while (!list_empty(&anchor->urb_list)) {
833 			victim = list_entry(anchor->urb_list.prev,
834 					    struct urb, anchor_list);
835 			/* make sure the URB isn't freed before we kill it */
836 			usb_get_urb(victim);
837 			spin_unlock_irq(&anchor->lock);
838 			/* this will unanchor the URB */
839 			usb_poison_urb(victim);
840 			usb_put_urb(victim);
841 			spin_lock_irq(&anchor->lock);
842 		}
843 		surely_empty = usb_anchor_check_wakeup(anchor);
844 
845 		spin_unlock_irq(&anchor->lock);
846 		cpu_relax();
847 	} while (!surely_empty);
848 }
849 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
850 
851 /**
852  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
853  * @anchor: anchor the requests are bound to
854  *
855  * Reverses the effect of usb_poison_anchored_urbs
856  * the anchor can be used normally after it returns
857  */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)858 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
859 {
860 	unsigned long flags;
861 	struct urb *lazarus;
862 
863 	spin_lock_irqsave(&anchor->lock, flags);
864 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
865 		usb_unpoison_urb(lazarus);
866 	}
867 	anchor->poisoned = 0;
868 	spin_unlock_irqrestore(&anchor->lock, flags);
869 }
870 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
871 /**
872  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
873  * @anchor: anchor the requests are bound to
874  *
875  * this allows all outstanding URBs to be unlinked starting
876  * from the back of the queue. This function is asynchronous.
877  * The unlinking is just triggered. It may happen after this
878  * function has returned.
879  *
880  * This routine should not be called by a driver after its disconnect
881  * method has returned.
882  */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)883 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
884 {
885 	struct urb *victim;
886 
887 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
888 		usb_unlink_urb(victim);
889 		usb_put_urb(victim);
890 	}
891 }
892 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
893 
894 /**
895  * usb_anchor_suspend_wakeups
896  * @anchor: the anchor you want to suspend wakeups on
897  *
898  * Call this to stop the last urb being unanchored from waking up any
899  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
900  * back path to delay waking up until after the completion handler has run.
901  */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)902 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
903 {
904 	if (anchor)
905 		atomic_inc(&anchor->suspend_wakeups);
906 }
907 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
908 
909 /**
910  * usb_anchor_resume_wakeups
911  * @anchor: the anchor you want to resume wakeups on
912  *
913  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
914  * wake up any current waiters if the anchor is empty.
915  */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)916 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
917 {
918 	if (!anchor)
919 		return;
920 
921 	atomic_dec(&anchor->suspend_wakeups);
922 	if (usb_anchor_check_wakeup(anchor))
923 		wake_up(&anchor->wait);
924 }
925 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
926 
927 /**
928  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
929  * @anchor: the anchor you want to become unused
930  * @timeout: how long you are willing to wait in milliseconds
931  *
932  * Call this is you want to be sure all an anchor's
933  * URBs have finished
934  *
935  * Return: Non-zero if the anchor became unused. Zero on timeout.
936  */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)937 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
938 				  unsigned int timeout)
939 {
940 	return wait_event_timeout(anchor->wait,
941 				  usb_anchor_check_wakeup(anchor),
942 				  msecs_to_jiffies(timeout));
943 }
944 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
945 
946 /**
947  * usb_get_from_anchor - get an anchor's oldest urb
948  * @anchor: the anchor whose urb you want
949  *
950  * This will take the oldest urb from an anchor,
951  * unanchor and return it
952  *
953  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
954  * urbs associated with it.
955  */
usb_get_from_anchor(struct usb_anchor * anchor)956 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
957 {
958 	struct urb *victim;
959 	unsigned long flags;
960 
961 	spin_lock_irqsave(&anchor->lock, flags);
962 	if (!list_empty(&anchor->urb_list)) {
963 		victim = list_entry(anchor->urb_list.next, struct urb,
964 				    anchor_list);
965 		usb_get_urb(victim);
966 		__usb_unanchor_urb(victim, anchor);
967 	} else {
968 		victim = NULL;
969 	}
970 	spin_unlock_irqrestore(&anchor->lock, flags);
971 
972 	return victim;
973 }
974 
975 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
976 
977 /**
978  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
979  * @anchor: the anchor whose urbs you want to unanchor
980  *
981  * use this to get rid of all an anchor's urbs
982  */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)983 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
984 {
985 	struct urb *victim;
986 	unsigned long flags;
987 	int surely_empty;
988 
989 	do {
990 		spin_lock_irqsave(&anchor->lock, flags);
991 		while (!list_empty(&anchor->urb_list)) {
992 			victim = list_entry(anchor->urb_list.prev,
993 					    struct urb, anchor_list);
994 			__usb_unanchor_urb(victim, anchor);
995 		}
996 		surely_empty = usb_anchor_check_wakeup(anchor);
997 
998 		spin_unlock_irqrestore(&anchor->lock, flags);
999 		cpu_relax();
1000 	} while (!surely_empty);
1001 }
1002 
1003 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1004 
1005 /**
1006  * usb_anchor_empty - is an anchor empty
1007  * @anchor: the anchor you want to query
1008  *
1009  * Return: 1 if the anchor has no urbs associated with it.
1010  */
usb_anchor_empty(struct usb_anchor * anchor)1011 int usb_anchor_empty(struct usb_anchor *anchor)
1012 {
1013 	return list_empty(&anchor->urb_list);
1014 }
1015 
1016 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1017 
1018