• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
dwc2_enable_common_interrupts(struct dwc2_hsotg * hsotg)73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(hsotg, intmsk, GINTMSK);
98 }
99 
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg * hsotg)104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 	u32 hcfg, val;
107 
108 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 	     hsotg->params.ulpi_fs_ls) ||
111 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 		/* Full speed PHY */
113 		val = HCFG_FSLSPCLKSEL_48_MHZ;
114 	} else {
115 		/* High speed PHY running at full speed or high speed */
116 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 	}
118 
119 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 	hcfg = dwc2_readl(hsotg, HCFG);
121 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 	dwc2_writel(hsotg, hcfg, HCFG);
124 }
125 
dwc2_fs_phy_init(struct dwc2_hsotg * hsotg,bool select_phy)126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 	u32 usbcfg, ggpio, i2cctl;
129 	int retval = 0;
130 
131 	/*
132 	 * core_init() is now called on every switch so only call the
133 	 * following for the first time through
134 	 */
135 	if (select_phy) {
136 		dev_dbg(hsotg->dev, "FS PHY selected\n");
137 
138 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 			usbcfg |= GUSBCFG_PHYSEL;
141 			dwc2_writel(hsotg, usbcfg, GUSBCFG);
142 
143 			/* Reset after a PHY select */
144 			retval = dwc2_core_reset(hsotg, false);
145 
146 			if (retval) {
147 				dev_err(hsotg->dev,
148 					"%s: Reset failed, aborting", __func__);
149 				return retval;
150 			}
151 		}
152 
153 		if (hsotg->params.activate_stm_fs_transceiver) {
154 			ggpio = dwc2_readl(hsotg, GGPIO);
155 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 				dev_dbg(hsotg->dev, "Activating transceiver\n");
157 				/*
158 				 * STM32F4x9 uses the GGPIO register as general
159 				 * core configuration register.
160 				 */
161 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 				dwc2_writel(hsotg, ggpio, GGPIO);
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 	 * do this on HNP Dev/Host mode switches (done in dev_init and
170 	 * host_init).
171 	 */
172 	if (dwc2_is_host_mode(hsotg))
173 		dwc2_init_fs_ls_pclk_sel(hsotg);
174 
175 	if (hsotg->params.i2c_enable) {
176 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177 
178 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
180 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
182 
183 		/* Program GI2CCTL.I2CEn */
184 		i2cctl = dwc2_readl(hsotg, GI2CCTL);
185 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 		i2cctl &= ~GI2CCTL_I2CEN;
188 		dwc2_writel(hsotg, i2cctl, GI2CCTL);
189 		i2cctl |= GI2CCTL_I2CEN;
190 		dwc2_writel(hsotg, i2cctl, GI2CCTL);
191 	}
192 
193 	return retval;
194 }
195 
dwc2_hs_phy_init(struct dwc2_hsotg * hsotg,bool select_phy)196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 	u32 usbcfg, usbcfg_old;
199 	int retval = 0;
200 
201 	if (!select_phy)
202 		return 0;
203 
204 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
205 	usbcfg_old = usbcfg;
206 
207 	/*
208 	 * HS PHY parameters. These parameters are preserved during soft reset
209 	 * so only program the first time. Do a soft reset immediately after
210 	 * setting phyif.
211 	 */
212 	switch (hsotg->params.phy_type) {
213 	case DWC2_PHY_TYPE_PARAM_ULPI:
214 		/* ULPI interface */
215 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 		if (hsotg->params.phy_ulpi_ddr)
219 			usbcfg |= GUSBCFG_DDRSEL;
220 
221 		/* Set external VBUS indicator as needed. */
222 		if (hsotg->params.oc_disable)
223 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 				   GUSBCFG_INDICATORPASSTHROUGH);
225 		break;
226 	case DWC2_PHY_TYPE_PARAM_UTMI:
227 		/* UTMI+ interface */
228 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 		if (hsotg->params.phy_utmi_width == 16)
231 			usbcfg |= GUSBCFG_PHYIF16;
232 		break;
233 	default:
234 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 		break;
236 	}
237 
238 	if (usbcfg != usbcfg_old) {
239 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
240 
241 		/* Reset after setting the PHY parameters */
242 		retval = dwc2_core_reset(hsotg, false);
243 		if (retval) {
244 			dev_err(hsotg->dev,
245 				"%s: Reset failed, aborting", __func__);
246 			return retval;
247 		}
248 	}
249 
250 	return retval;
251 }
252 
dwc2_phy_init(struct dwc2_hsotg * hsotg,bool select_phy)253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 	u32 usbcfg;
256 	int retval = 0;
257 
258 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 		/* If FS/LS mode with FS/LS PHY */
262 		retval = dwc2_fs_phy_init(hsotg, select_phy);
263 		if (retval)
264 			return retval;
265 	} else {
266 		/* High speed PHY */
267 		retval = dwc2_hs_phy_init(hsotg, select_phy);
268 		if (retval)
269 			return retval;
270 	}
271 
272 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 	    hsotg->params.ulpi_fs_ls) {
275 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
277 		usbcfg |= GUSBCFG_ULPI_FS_LS;
278 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
280 	} else {
281 		usbcfg = dwc2_readl(hsotg, GUSBCFG);
282 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 		dwc2_writel(hsotg, usbcfg, GUSBCFG);
285 	}
286 
287 	return retval;
288 }
289 
dwc2_gahbcfg_init(struct dwc2_hsotg * hsotg)290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
293 
294 	switch (hsotg->hw_params.arch) {
295 	case GHWCFG2_EXT_DMA_ARCH:
296 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 		return -EINVAL;
298 
299 	case GHWCFG2_INT_DMA_ARCH:
300 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 		if (hsotg->params.ahbcfg != -1) {
302 			ahbcfg &= GAHBCFG_CTRL_MASK;
303 			ahbcfg |= hsotg->params.ahbcfg &
304 				  ~GAHBCFG_CTRL_MASK;
305 		}
306 		break;
307 
308 	case GHWCFG2_SLAVE_ONLY_ARCH:
309 	default:
310 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 		break;
312 	}
313 
314 	if (hsotg->params.host_dma)
315 		ahbcfg |= GAHBCFG_DMA_EN;
316 	else
317 		hsotg->params.dma_desc_enable = false;
318 
319 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
320 
321 	return 0;
322 }
323 
dwc2_gusbcfg_init(struct dwc2_hsotg * hsotg)324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 	u32 usbcfg;
327 
328 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
329 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330 
331 	switch (hsotg->hw_params.op_mode) {
332 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 		if (hsotg->params.otg_cap ==
334 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_HNPCAP;
336 		if (hsotg->params.otg_cap !=
337 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 			usbcfg |= GUSBCFG_SRPCAP;
339 		break;
340 
341 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 		if (hsotg->params.otg_cap !=
345 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 			usbcfg |= GUSBCFG_SRPCAP;
347 		break;
348 
349 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 	default:
353 		break;
354 	}
355 
356 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
357 }
358 
dwc2_vbus_supply_init(struct dwc2_hsotg * hsotg)359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 	int ret;
362 
363 	hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364 	if (IS_ERR(hsotg->vbus_supply)) {
365 		ret = PTR_ERR(hsotg->vbus_supply);
366 		hsotg->vbus_supply = NULL;
367 		return ret == -ENODEV ? 0 : ret;
368 	}
369 
370 	return regulator_enable(hsotg->vbus_supply);
371 }
372 
dwc2_vbus_supply_exit(struct dwc2_hsotg * hsotg)373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375 	if (hsotg->vbus_supply)
376 		return regulator_disable(hsotg->vbus_supply);
377 
378 	return 0;
379 }
380 
381 /**
382  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383  *
384  * @hsotg: Programming view of DWC_otg controller
385  */
dwc2_enable_host_interrupts(struct dwc2_hsotg * hsotg)386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388 	u32 intmsk;
389 
390 	dev_dbg(hsotg->dev, "%s()\n", __func__);
391 
392 	/* Disable all interrupts */
393 	dwc2_writel(hsotg, 0, GINTMSK);
394 	dwc2_writel(hsotg, 0, HAINTMSK);
395 
396 	/* Enable the common interrupts */
397 	dwc2_enable_common_interrupts(hsotg);
398 
399 	/* Enable host mode interrupts without disturbing common interrupts */
400 	intmsk = dwc2_readl(hsotg, GINTMSK);
401 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402 	dwc2_writel(hsotg, intmsk, GINTMSK);
403 }
404 
405 /**
406  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407  *
408  * @hsotg: Programming view of DWC_otg controller
409  */
dwc2_disable_host_interrupts(struct dwc2_hsotg * hsotg)410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412 	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
413 
414 	/* Disable host mode interrupts without disturbing common interrupts */
415 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417 	dwc2_writel(hsotg, intmsk, GINTMSK);
418 }
419 
420 /*
421  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422  * For system that have a total fifo depth that is smaller than the default
423  * RX + TX fifo size.
424  *
425  * @hsotg: Programming view of DWC_otg controller
426  */
dwc2_calculate_dynamic_fifo(struct dwc2_hsotg * hsotg)427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429 	struct dwc2_core_params *params = &hsotg->params;
430 	struct dwc2_hw_params *hw = &hsotg->hw_params;
431 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432 
433 	total_fifo_size = hw->total_fifo_size;
434 	rxfsiz = params->host_rx_fifo_size;
435 	nptxfsiz = params->host_nperio_tx_fifo_size;
436 	ptxfsiz = params->host_perio_tx_fifo_size;
437 
438 	/*
439 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 	 * allocation with support for high bandwidth endpoints. Synopsys
441 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 	 * non-periodic as 512.
443 	 */
444 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445 		/*
446 		 * For Buffer DMA mode/Scatter Gather DMA mode
447 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 		 * with n = number of host channel.
449 		 * 2 * ((1024/4) + 2) = 516
450 		 */
451 		rxfsiz = 516 + hw->host_channels;
452 
453 		/*
454 		 * min non-periodic tx fifo depth
455 		 * 2 * (largest non-periodic USB packet used / 4)
456 		 * 2 * (512/4) = 256
457 		 */
458 		nptxfsiz = 256;
459 
460 		/*
461 		 * min periodic tx fifo depth
462 		 * (largest packet size*MC)/4
463 		 * (1024 * 3)/4 = 768
464 		 */
465 		ptxfsiz = 768;
466 
467 		params->host_rx_fifo_size = rxfsiz;
468 		params->host_nperio_tx_fifo_size = nptxfsiz;
469 		params->host_perio_tx_fifo_size = ptxfsiz;
470 	}
471 
472 	/*
473 	 * If the summation of RX, NPTX and PTX fifo sizes is still
474 	 * bigger than the total_fifo_size, then we have a problem.
475 	 *
476 	 * We won't be able to allocate as many endpoints. Right now,
477 	 * we're just printing an error message, but ideally this FIFO
478 	 * allocation algorithm would be improved in the future.
479 	 *
480 	 * FIXME improve this FIFO allocation algorithm.
481 	 */
482 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483 		dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485 
dwc2_config_fifos(struct dwc2_hsotg * hsotg)486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488 	struct dwc2_core_params *params = &hsotg->params;
489 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490 
491 	if (!params->enable_dynamic_fifo)
492 		return;
493 
494 	dwc2_calculate_dynamic_fifo(hsotg);
495 
496 	/* Rx FIFO */
497 	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
498 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500 	grxfsiz |= params->host_rx_fifo_size <<
501 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502 	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
503 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504 		dwc2_readl(hsotg, GRXFSIZ));
505 
506 	/* Non-periodic Tx FIFO */
507 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508 		dwc2_readl(hsotg, GNPTXFSIZ));
509 	nptxfsiz = params->host_nperio_tx_fifo_size <<
510 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511 	nptxfsiz |= params->host_rx_fifo_size <<
512 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513 	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
514 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515 		dwc2_readl(hsotg, GNPTXFSIZ));
516 
517 	/* Periodic Tx FIFO */
518 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519 		dwc2_readl(hsotg, HPTXFSIZ));
520 	hptxfsiz = params->host_perio_tx_fifo_size <<
521 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522 	hptxfsiz |= (params->host_rx_fifo_size +
523 		     params->host_nperio_tx_fifo_size) <<
524 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525 	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
526 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527 		dwc2_readl(hsotg, HPTXFSIZ));
528 
529 	if (hsotg->params.en_multiple_tx_fifo &&
530 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531 		/*
532 		 * This feature was implemented in 2.91a version
533 		 * Global DFIFOCFG calculation for Host mode -
534 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
535 		 */
536 		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
537 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538 		dfifocfg |= (params->host_rx_fifo_size +
539 			     params->host_nperio_tx_fifo_size +
540 			     params->host_perio_tx_fifo_size) <<
541 			    GDFIFOCFG_EPINFOBASE_SHIFT &
542 			    GDFIFOCFG_EPINFOBASE_MASK;
543 		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
544 	}
545 }
546 
547 /**
548  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549  * the HFIR register according to PHY type and speed
550  *
551  * @hsotg: Programming view of DWC_otg controller
552  *
553  * NOTE: The caller can modify the value of the HFIR register only after the
554  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555  * has been set
556  */
dwc2_calc_frame_interval(struct dwc2_hsotg * hsotg)557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559 	u32 usbcfg;
560 	u32 hprt0;
561 	int clock = 60;	/* default value */
562 
563 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
564 	hprt0 = dwc2_readl(hsotg, HPRT0);
565 
566 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567 	    !(usbcfg & GUSBCFG_PHYIF16))
568 		clock = 60;
569 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571 		clock = 48;
572 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 		clock = 30;
575 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577 		clock = 60;
578 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580 		clock = 48;
581 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583 		clock = 48;
584 	if ((usbcfg & GUSBCFG_PHYSEL) &&
585 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586 		clock = 48;
587 
588 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589 		/* High speed case */
590 		return 125 * clock - 1;
591 
592 	/* FS/LS case */
593 	return 1000 * clock - 1;
594 }
595 
596 /**
597  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598  * buffer
599  *
600  * @hsotg: Programming view of DWC_otg controller
601  * @dest:    Destination buffer for the packet
602  * @bytes:   Number of bytes to copy to the destination
603  */
dwc2_read_packet(struct dwc2_hsotg * hsotg,u8 * dest,u16 bytes)604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606 	u32 *data_buf = (u32 *)dest;
607 	int word_count = (bytes + 3) / 4;
608 	int i;
609 
610 	/*
611 	 * Todo: Account for the case where dest is not dword aligned. This
612 	 * requires reading data from the FIFO into a u32 temp buffer, then
613 	 * moving it into the data buffer.
614 	 */
615 
616 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
617 
618 	for (i = 0; i < word_count; i++, data_buf++)
619 		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
620 }
621 
622 /**
623  * dwc2_dump_channel_info() - Prints the state of a host channel
624  *
625  * @hsotg: Programming view of DWC_otg controller
626  * @chan:  Pointer to the channel to dump
627  *
628  * Must be called with interrupt disabled and spinlock held
629  *
630  * NOTE: This function will be removed once the peripheral controller code
631  * is integrated and the driver is stable
632  */
dwc2_dump_channel_info(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)633 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
634 				   struct dwc2_host_chan *chan)
635 {
636 #ifdef VERBOSE_DEBUG
637 	int num_channels = hsotg->params.host_channels;
638 	struct dwc2_qh *qh;
639 	u32 hcchar;
640 	u32 hcsplt;
641 	u32 hctsiz;
642 	u32 hc_dma;
643 	int i;
644 
645 	if (!chan)
646 		return;
647 
648 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
649 	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
650 	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
651 	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
652 
653 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
654 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
655 		hcchar, hcsplt);
656 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
657 		hctsiz, hc_dma);
658 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
659 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
660 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
661 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
662 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
663 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
664 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
665 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
666 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
667 		(unsigned long)chan->xfer_dma);
668 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
669 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
670 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
671 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
672 			    qh_list_entry)
673 		dev_dbg(hsotg->dev, "    %p\n", qh);
674 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
675 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
676 			    qh_list_entry)
677 		dev_dbg(hsotg->dev, "    %p\n", qh);
678 	dev_dbg(hsotg->dev, "  NP active sched:\n");
679 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
680 			    qh_list_entry)
681 		dev_dbg(hsotg->dev, "    %p\n", qh);
682 	dev_dbg(hsotg->dev, "  Channels:\n");
683 	for (i = 0; i < num_channels; i++) {
684 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
685 
686 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
687 	}
688 #endif /* VERBOSE_DEBUG */
689 }
690 
691 static int _dwc2_hcd_start(struct usb_hcd *hcd);
692 
dwc2_host_start(struct dwc2_hsotg * hsotg)693 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
694 {
695 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
696 
697 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
698 	_dwc2_hcd_start(hcd);
699 }
700 
dwc2_host_disconnect(struct dwc2_hsotg * hsotg)701 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
702 {
703 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
704 
705 	hcd->self.is_b_host = 0;
706 }
707 
dwc2_host_hub_info(struct dwc2_hsotg * hsotg,void * context,int * hub_addr,int * hub_port)708 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
709 			       int *hub_addr, int *hub_port)
710 {
711 	struct urb *urb = context;
712 
713 	if (urb->dev->tt)
714 		*hub_addr = urb->dev->tt->hub->devnum;
715 	else
716 		*hub_addr = 0;
717 	*hub_port = urb->dev->ttport;
718 }
719 
720 /*
721  * =========================================================================
722  *  Low Level Host Channel Access Functions
723  * =========================================================================
724  */
725 
dwc2_hc_enable_slave_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)726 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
727 				      struct dwc2_host_chan *chan)
728 {
729 	u32 hcintmsk = HCINTMSK_CHHLTD;
730 
731 	switch (chan->ep_type) {
732 	case USB_ENDPOINT_XFER_CONTROL:
733 	case USB_ENDPOINT_XFER_BULK:
734 		dev_vdbg(hsotg->dev, "control/bulk\n");
735 		hcintmsk |= HCINTMSK_XFERCOMPL;
736 		hcintmsk |= HCINTMSK_STALL;
737 		hcintmsk |= HCINTMSK_XACTERR;
738 		hcintmsk |= HCINTMSK_DATATGLERR;
739 		if (chan->ep_is_in) {
740 			hcintmsk |= HCINTMSK_BBLERR;
741 		} else {
742 			hcintmsk |= HCINTMSK_NAK;
743 			hcintmsk |= HCINTMSK_NYET;
744 			if (chan->do_ping)
745 				hcintmsk |= HCINTMSK_ACK;
746 		}
747 
748 		if (chan->do_split) {
749 			hcintmsk |= HCINTMSK_NAK;
750 			if (chan->complete_split)
751 				hcintmsk |= HCINTMSK_NYET;
752 			else
753 				hcintmsk |= HCINTMSK_ACK;
754 		}
755 
756 		if (chan->error_state)
757 			hcintmsk |= HCINTMSK_ACK;
758 		break;
759 
760 	case USB_ENDPOINT_XFER_INT:
761 		if (dbg_perio())
762 			dev_vdbg(hsotg->dev, "intr\n");
763 		hcintmsk |= HCINTMSK_XFERCOMPL;
764 		hcintmsk |= HCINTMSK_NAK;
765 		hcintmsk |= HCINTMSK_STALL;
766 		hcintmsk |= HCINTMSK_XACTERR;
767 		hcintmsk |= HCINTMSK_DATATGLERR;
768 		hcintmsk |= HCINTMSK_FRMOVRUN;
769 
770 		if (chan->ep_is_in)
771 			hcintmsk |= HCINTMSK_BBLERR;
772 		if (chan->error_state)
773 			hcintmsk |= HCINTMSK_ACK;
774 		if (chan->do_split) {
775 			if (chan->complete_split)
776 				hcintmsk |= HCINTMSK_NYET;
777 			else
778 				hcintmsk |= HCINTMSK_ACK;
779 		}
780 		break;
781 
782 	case USB_ENDPOINT_XFER_ISOC:
783 		if (dbg_perio())
784 			dev_vdbg(hsotg->dev, "isoc\n");
785 		hcintmsk |= HCINTMSK_XFERCOMPL;
786 		hcintmsk |= HCINTMSK_FRMOVRUN;
787 		hcintmsk |= HCINTMSK_ACK;
788 
789 		if (chan->ep_is_in) {
790 			hcintmsk |= HCINTMSK_XACTERR;
791 			hcintmsk |= HCINTMSK_BBLERR;
792 		}
793 		break;
794 	default:
795 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
796 		break;
797 	}
798 
799 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
800 	if (dbg_hc(chan))
801 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
802 }
803 
dwc2_hc_enable_dma_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)804 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
805 				    struct dwc2_host_chan *chan)
806 {
807 	u32 hcintmsk = HCINTMSK_CHHLTD;
808 
809 	/*
810 	 * For Descriptor DMA mode core halts the channel on AHB error.
811 	 * Interrupt is not required.
812 	 */
813 	if (!hsotg->params.dma_desc_enable) {
814 		if (dbg_hc(chan))
815 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
816 		hcintmsk |= HCINTMSK_AHBERR;
817 	} else {
818 		if (dbg_hc(chan))
819 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
820 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
821 			hcintmsk |= HCINTMSK_XFERCOMPL;
822 	}
823 
824 	if (chan->error_state && !chan->do_split &&
825 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
826 		if (dbg_hc(chan))
827 			dev_vdbg(hsotg->dev, "setting ACK\n");
828 		hcintmsk |= HCINTMSK_ACK;
829 		if (chan->ep_is_in) {
830 			hcintmsk |= HCINTMSK_DATATGLERR;
831 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
832 				hcintmsk |= HCINTMSK_NAK;
833 		}
834 	}
835 
836 	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
837 	if (dbg_hc(chan))
838 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
839 }
840 
dwc2_hc_enable_ints(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)841 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
842 				struct dwc2_host_chan *chan)
843 {
844 	u32 intmsk;
845 
846 	if (hsotg->params.host_dma) {
847 		if (dbg_hc(chan))
848 			dev_vdbg(hsotg->dev, "DMA enabled\n");
849 		dwc2_hc_enable_dma_ints(hsotg, chan);
850 	} else {
851 		if (dbg_hc(chan))
852 			dev_vdbg(hsotg->dev, "DMA disabled\n");
853 		dwc2_hc_enable_slave_ints(hsotg, chan);
854 	}
855 
856 	/* Enable the top level host channel interrupt */
857 	intmsk = dwc2_readl(hsotg, HAINTMSK);
858 	intmsk |= 1 << chan->hc_num;
859 	dwc2_writel(hsotg, intmsk, HAINTMSK);
860 	if (dbg_hc(chan))
861 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
862 
863 	/* Make sure host channel interrupts are enabled */
864 	intmsk = dwc2_readl(hsotg, GINTMSK);
865 	intmsk |= GINTSTS_HCHINT;
866 	dwc2_writel(hsotg, intmsk, GINTMSK);
867 	if (dbg_hc(chan))
868 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
869 }
870 
871 /**
872  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
873  * a specific endpoint
874  *
875  * @hsotg: Programming view of DWC_otg controller
876  * @chan:  Information needed to initialize the host channel
877  *
878  * The HCCHARn register is set up with the characteristics specified in chan.
879  * Host channel interrupts that may need to be serviced while this transfer is
880  * in progress are enabled.
881  */
dwc2_hc_init(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)882 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
883 {
884 	u8 hc_num = chan->hc_num;
885 	u32 hcintmsk;
886 	u32 hcchar;
887 	u32 hcsplt = 0;
888 
889 	if (dbg_hc(chan))
890 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
891 
892 	/* Clear old interrupt conditions for this host channel */
893 	hcintmsk = 0xffffffff;
894 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
895 	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
896 
897 	/* Enable channel interrupts required for this transfer */
898 	dwc2_hc_enable_ints(hsotg, chan);
899 
900 	/*
901 	 * Program the HCCHARn register with the endpoint characteristics for
902 	 * the current transfer
903 	 */
904 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
905 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
906 	if (chan->ep_is_in)
907 		hcchar |= HCCHAR_EPDIR;
908 	if (chan->speed == USB_SPEED_LOW)
909 		hcchar |= HCCHAR_LSPDDEV;
910 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
911 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
912 	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
913 	if (dbg_hc(chan)) {
914 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
915 			 hc_num, hcchar);
916 
917 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
918 			 __func__, hc_num);
919 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
920 			 chan->dev_addr);
921 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
922 			 chan->ep_num);
923 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
924 			 chan->ep_is_in);
925 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
926 			 chan->speed == USB_SPEED_LOW);
927 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
928 			 chan->ep_type);
929 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
930 			 chan->max_packet);
931 	}
932 
933 	/* Program the HCSPLT register for SPLITs */
934 	if (chan->do_split) {
935 		if (dbg_hc(chan))
936 			dev_vdbg(hsotg->dev,
937 				 "Programming HC %d with split --> %s\n",
938 				 hc_num,
939 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
940 		if (chan->complete_split)
941 			hcsplt |= HCSPLT_COMPSPLT;
942 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
943 			  HCSPLT_XACTPOS_MASK;
944 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
945 			  HCSPLT_HUBADDR_MASK;
946 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
947 			  HCSPLT_PRTADDR_MASK;
948 		if (dbg_hc(chan)) {
949 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
950 				 chan->complete_split);
951 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
952 				 chan->xact_pos);
953 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
954 				 chan->hub_addr);
955 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
956 				 chan->hub_port);
957 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
958 				 chan->ep_is_in);
959 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
960 				 chan->max_packet);
961 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
962 				 chan->xfer_len);
963 		}
964 	}
965 
966 	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
967 }
968 
969 /**
970  * dwc2_hc_halt() - Attempts to halt a host channel
971  *
972  * @hsotg:       Controller register interface
973  * @chan:        Host channel to halt
974  * @halt_status: Reason for halting the channel
975  *
976  * This function should only be called in Slave mode or to abort a transfer in
977  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
978  * controller halts the channel when the transfer is complete or a condition
979  * occurs that requires application intervention.
980  *
981  * In slave mode, checks for a free request queue entry, then sets the Channel
982  * Enable and Channel Disable bits of the Host Channel Characteristics
983  * register of the specified channel to intiate the halt. If there is no free
984  * request queue entry, sets only the Channel Disable bit of the HCCHARn
985  * register to flush requests for this channel. In the latter case, sets a
986  * flag to indicate that the host channel needs to be halted when a request
987  * queue slot is open.
988  *
989  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
990  * HCCHARn register. The controller ensures there is space in the request
991  * queue before submitting the halt request.
992  *
993  * Some time may elapse before the core flushes any posted requests for this
994  * host channel and halts. The Channel Halted interrupt handler completes the
995  * deactivation of the host channel.
996  */
dwc2_hc_halt(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,enum dwc2_halt_status halt_status)997 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
998 		  enum dwc2_halt_status halt_status)
999 {
1000 	u32 nptxsts, hptxsts, hcchar;
1001 
1002 	if (dbg_hc(chan))
1003 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1004 
1005 	/*
1006 	 * In buffer DMA or external DMA mode channel can't be halted
1007 	 * for non-split periodic channels. At the end of the next
1008 	 * uframe/frame (in the worst case), the core generates a channel
1009 	 * halted and disables the channel automatically.
1010 	 */
1011 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1012 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1013 		if (!chan->do_split &&
1014 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1015 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1016 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1017 				__func__);
1018 			return;
1019 		}
1020 	}
1021 
1022 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1023 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1024 
1025 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1026 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1027 		/*
1028 		 * Disable all channel interrupts except Ch Halted. The QTD
1029 		 * and QH state associated with this transfer has been cleared
1030 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1031 		 * shut down carefully to prevent crashes.
1032 		 */
1033 		u32 hcintmsk = HCINTMSK_CHHLTD;
1034 
1035 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1036 		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
1037 
1038 		/*
1039 		 * Make sure no other interrupts besides halt are currently
1040 		 * pending. Handling another interrupt could cause a crash due
1041 		 * to the QTD and QH state.
1042 		 */
1043 		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
1044 
1045 		/*
1046 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1047 		 * even if the channel was already halted for some other
1048 		 * reason
1049 		 */
1050 		chan->halt_status = halt_status;
1051 
1052 		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1053 		if (!(hcchar & HCCHAR_CHENA)) {
1054 			/*
1055 			 * The channel is either already halted or it hasn't
1056 			 * started yet. In DMA mode, the transfer may halt if
1057 			 * it finishes normally or a condition occurs that
1058 			 * requires driver intervention. Don't want to halt
1059 			 * the channel again. In either Slave or DMA mode,
1060 			 * it's possible that the transfer has been assigned
1061 			 * to a channel, but not started yet when an URB is
1062 			 * dequeued. Don't want to halt a channel that hasn't
1063 			 * started yet.
1064 			 */
1065 			return;
1066 		}
1067 	}
1068 	if (chan->halt_pending) {
1069 		/*
1070 		 * A halt has already been issued for this channel. This might
1071 		 * happen when a transfer is aborted by a higher level in
1072 		 * the stack.
1073 		 */
1074 		dev_vdbg(hsotg->dev,
1075 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1076 			 __func__, chan->hc_num);
1077 		return;
1078 	}
1079 
1080 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1081 
1082 	/* No need to set the bit in DDMA for disabling the channel */
1083 	/* TODO check it everywhere channel is disabled */
1084 	if (!hsotg->params.dma_desc_enable) {
1085 		if (dbg_hc(chan))
1086 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1087 		hcchar |= HCCHAR_CHENA;
1088 	} else {
1089 		if (dbg_hc(chan))
1090 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1091 	}
1092 	hcchar |= HCCHAR_CHDIS;
1093 
1094 	if (!hsotg->params.host_dma) {
1095 		if (dbg_hc(chan))
1096 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1097 		hcchar |= HCCHAR_CHENA;
1098 
1099 		/* Check for space in the request queue to issue the halt */
1100 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1101 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1102 			dev_vdbg(hsotg->dev, "control/bulk\n");
1103 			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
1104 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1105 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1106 				hcchar &= ~HCCHAR_CHENA;
1107 			}
1108 		} else {
1109 			if (dbg_perio())
1110 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1111 			hptxsts = dwc2_readl(hsotg, HPTXSTS);
1112 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1113 			    hsotg->queuing_high_bandwidth) {
1114 				if (dbg_perio())
1115 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1116 				hcchar &= ~HCCHAR_CHENA;
1117 			}
1118 		}
1119 	} else {
1120 		if (dbg_hc(chan))
1121 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1122 	}
1123 
1124 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1125 	chan->halt_status = halt_status;
1126 
1127 	if (hcchar & HCCHAR_CHENA) {
1128 		if (dbg_hc(chan))
1129 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1130 		chan->halt_pending = 1;
1131 		chan->halt_on_queue = 0;
1132 	} else {
1133 		if (dbg_hc(chan))
1134 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1135 		chan->halt_on_queue = 1;
1136 	}
1137 
1138 	if (dbg_hc(chan)) {
1139 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1140 			 chan->hc_num);
1141 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1142 			 hcchar);
1143 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1144 			 chan->halt_pending);
1145 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1146 			 chan->halt_on_queue);
1147 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1148 			 chan->halt_status);
1149 	}
1150 }
1151 
1152 /**
1153  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1154  *
1155  * @hsotg: Programming view of DWC_otg controller
1156  * @chan:  Identifies the host channel to clean up
1157  *
1158  * This function is normally called after a transfer is done and the host
1159  * channel is being released
1160  */
dwc2_hc_cleanup(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1161 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1162 {
1163 	u32 hcintmsk;
1164 
1165 	chan->xfer_started = 0;
1166 
1167 	list_del_init(&chan->split_order_list_entry);
1168 
1169 	/*
1170 	 * Clear channel interrupt enables and any unhandled channel interrupt
1171 	 * conditions
1172 	 */
1173 	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
1174 	hcintmsk = 0xffffffff;
1175 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1176 	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
1177 }
1178 
1179 /**
1180  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1181  * which frame a periodic transfer should occur
1182  *
1183  * @hsotg:  Programming view of DWC_otg controller
1184  * @chan:   Identifies the host channel to set up and its properties
1185  * @hcchar: Current value of the HCCHAR register for the specified host channel
1186  *
1187  * This function has no effect on non-periodic transfers
1188  */
dwc2_hc_set_even_odd_frame(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u32 * hcchar)1189 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1190 				       struct dwc2_host_chan *chan, u32 *hcchar)
1191 {
1192 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1193 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1194 		int host_speed;
1195 		int xfer_ns;
1196 		int xfer_us;
1197 		int bytes_in_fifo;
1198 		u16 fifo_space;
1199 		u16 frame_number;
1200 		u16 wire_frame;
1201 
1202 		/*
1203 		 * Try to figure out if we're an even or odd frame. If we set
1204 		 * even and the current frame number is even the the transfer
1205 		 * will happen immediately.  Similar if both are odd. If one is
1206 		 * even and the other is odd then the transfer will happen when
1207 		 * the frame number ticks.
1208 		 *
1209 		 * There's a bit of a balancing act to get this right.
1210 		 * Sometimes we may want to send data in the current frame (AK
1211 		 * right away).  We might want to do this if the frame number
1212 		 * _just_ ticked, but we might also want to do this in order
1213 		 * to continue a split transaction that happened late in a
1214 		 * microframe (so we didn't know to queue the next transfer
1215 		 * until the frame number had ticked).  The problem is that we
1216 		 * need a lot of knowledge to know if there's actually still
1217 		 * time to send things or if it would be better to wait until
1218 		 * the next frame.
1219 		 *
1220 		 * We can look at how much time is left in the current frame
1221 		 * and make a guess about whether we'll have time to transfer.
1222 		 * We'll do that.
1223 		 */
1224 
1225 		/* Get speed host is running at */
1226 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1227 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1228 
1229 		/* See how many bytes are in the periodic FIFO right now */
1230 		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1231 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1232 		bytes_in_fifo = sizeof(u32) *
1233 				(hsotg->params.host_perio_tx_fifo_size -
1234 				 fifo_space);
1235 
1236 		/*
1237 		 * Roughly estimate bus time for everything in the periodic
1238 		 * queue + our new transfer.  This is "rough" because we're
1239 		 * using a function that makes takes into account IN/OUT
1240 		 * and INT/ISO and we're just slamming in one value for all
1241 		 * transfers.  This should be an over-estimate and that should
1242 		 * be OK, but we can probably tighten it.
1243 		 */
1244 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1245 					    chan->xfer_len + bytes_in_fifo);
1246 		xfer_us = NS_TO_US(xfer_ns);
1247 
1248 		/* See what frame number we'll be at by the time we finish */
1249 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1250 
1251 		/* This is when we were scheduled to be on the wire */
1252 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1253 
1254 		/*
1255 		 * If we'd finish _after_ the frame we're scheduled in then
1256 		 * it's hopeless.  Just schedule right away and hope for the
1257 		 * best.  Note that it _might_ be wise to call back into the
1258 		 * scheduler to pick a better frame, but this is better than
1259 		 * nothing.
1260 		 */
1261 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1262 			dwc2_sch_vdbg(hsotg,
1263 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1264 				      chan->qh, wire_frame, frame_number,
1265 				      dwc2_frame_num_dec(frame_number,
1266 							 wire_frame));
1267 			wire_frame = frame_number;
1268 
1269 			/*
1270 			 * We picked a different frame number; communicate this
1271 			 * back to the scheduler so it doesn't try to schedule
1272 			 * another in the same frame.
1273 			 *
1274 			 * Remember that next_active_frame is 1 before the wire
1275 			 * frame.
1276 			 */
1277 			chan->qh->next_active_frame =
1278 				dwc2_frame_num_dec(frame_number, 1);
1279 		}
1280 
1281 		if (wire_frame & 1)
1282 			*hcchar |= HCCHAR_ODDFRM;
1283 		else
1284 			*hcchar &= ~HCCHAR_ODDFRM;
1285 	}
1286 }
1287 
dwc2_set_pid_isoc(struct dwc2_host_chan * chan)1288 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1289 {
1290 	/* Set up the initial PID for the transfer */
1291 	if (chan->speed == USB_SPEED_HIGH) {
1292 		if (chan->ep_is_in) {
1293 			if (chan->multi_count == 1)
1294 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1295 			else if (chan->multi_count == 2)
1296 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1297 			else
1298 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1299 		} else {
1300 			if (chan->multi_count == 1)
1301 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1302 			else
1303 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1304 		}
1305 	} else {
1306 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1307 	}
1308 }
1309 
1310 /**
1311  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1312  * the Host Channel
1313  *
1314  * @hsotg: Programming view of DWC_otg controller
1315  * @chan:  Information needed to initialize the host channel
1316  *
1317  * This function should only be called in Slave mode. For a channel associated
1318  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1319  * associated with a periodic EP, the periodic Tx FIFO is written.
1320  *
1321  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1322  * the number of bytes written to the Tx FIFO.
1323  */
dwc2_hc_write_packet(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1324 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1325 				 struct dwc2_host_chan *chan)
1326 {
1327 	u32 i;
1328 	u32 remaining_count;
1329 	u32 byte_count;
1330 	u32 dword_count;
1331 	u32 __iomem *data_fifo;
1332 	u32 *data_buf = (u32 *)chan->xfer_buf;
1333 
1334 	if (dbg_hc(chan))
1335 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1336 
1337 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1338 
1339 	remaining_count = chan->xfer_len - chan->xfer_count;
1340 	if (remaining_count > chan->max_packet)
1341 		byte_count = chan->max_packet;
1342 	else
1343 		byte_count = remaining_count;
1344 
1345 	dword_count = (byte_count + 3) / 4;
1346 
1347 	if (((unsigned long)data_buf & 0x3) == 0) {
1348 		/* xfer_buf is DWORD aligned */
1349 		for (i = 0; i < dword_count; i++, data_buf++)
1350 			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1351 	} else {
1352 		/* xfer_buf is not DWORD aligned */
1353 		for (i = 0; i < dword_count; i++, data_buf++) {
1354 			u32 data = data_buf[0] | data_buf[1] << 8 |
1355 				   data_buf[2] << 16 | data_buf[3] << 24;
1356 			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1357 		}
1358 	}
1359 
1360 	chan->xfer_count += byte_count;
1361 	chan->xfer_buf += byte_count;
1362 }
1363 
1364 /**
1365  * dwc2_hc_do_ping() - Starts a PING transfer
1366  *
1367  * @hsotg: Programming view of DWC_otg controller
1368  * @chan:  Information needed to initialize the host channel
1369  *
1370  * This function should only be called in Slave mode. The Do Ping bit is set in
1371  * the HCTSIZ register, then the channel is enabled.
1372  */
dwc2_hc_do_ping(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1373 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1374 			    struct dwc2_host_chan *chan)
1375 {
1376 	u32 hcchar;
1377 	u32 hctsiz;
1378 
1379 	if (dbg_hc(chan))
1380 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1381 			 chan->hc_num);
1382 
1383 	hctsiz = TSIZ_DOPNG;
1384 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1385 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1386 
1387 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1388 	hcchar |= HCCHAR_CHENA;
1389 	hcchar &= ~HCCHAR_CHDIS;
1390 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1391 }
1392 
1393 /**
1394  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1395  * channel and starts the transfer
1396  *
1397  * @hsotg: Programming view of DWC_otg controller
1398  * @chan:  Information needed to initialize the host channel. The xfer_len value
1399  *         may be reduced to accommodate the max widths of the XferSize and
1400  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1401  *         changed to reflect the final xfer_len value.
1402  *
1403  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1404  * the caller must ensure that there is sufficient space in the request queue
1405  * and Tx Data FIFO.
1406  *
1407  * For an OUT transfer in Slave mode, it loads a data packet into the
1408  * appropriate FIFO. If necessary, additional data packets are loaded in the
1409  * Host ISR.
1410  *
1411  * For an IN transfer in Slave mode, a data packet is requested. The data
1412  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1413  * additional data packets are requested in the Host ISR.
1414  *
1415  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1416  * register along with a packet count of 1 and the channel is enabled. This
1417  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1418  * simply set to 0 since no data transfer occurs in this case.
1419  *
1420  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1421  * all the information required to perform the subsequent data transfer. In
1422  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1423  * controller performs the entire PING protocol, then starts the data
1424  * transfer.
1425  */
dwc2_hc_start_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1426 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1427 				   struct dwc2_host_chan *chan)
1428 {
1429 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1430 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1431 	u32 hcchar;
1432 	u32 hctsiz = 0;
1433 	u16 num_packets;
1434 	u32 ec_mc;
1435 
1436 	if (dbg_hc(chan))
1437 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1438 
1439 	if (chan->do_ping) {
1440 		if (!hsotg->params.host_dma) {
1441 			if (dbg_hc(chan))
1442 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1443 			dwc2_hc_do_ping(hsotg, chan);
1444 			chan->xfer_started = 1;
1445 			return;
1446 		}
1447 
1448 		if (dbg_hc(chan))
1449 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1450 
1451 		hctsiz |= TSIZ_DOPNG;
1452 	}
1453 
1454 	if (chan->do_split) {
1455 		if (dbg_hc(chan))
1456 			dev_vdbg(hsotg->dev, "split\n");
1457 		num_packets = 1;
1458 
1459 		if (chan->complete_split && !chan->ep_is_in)
1460 			/*
1461 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1462 			 * core doesn't expect any data written to the FIFO
1463 			 */
1464 			chan->xfer_len = 0;
1465 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1466 			chan->xfer_len = chan->max_packet;
1467 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1468 			chan->xfer_len = 188;
1469 
1470 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1471 			  TSIZ_XFERSIZE_MASK;
1472 
1473 		/* For split set ec_mc for immediate retries */
1474 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1475 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1476 			ec_mc = 3;
1477 		else
1478 			ec_mc = 1;
1479 	} else {
1480 		if (dbg_hc(chan))
1481 			dev_vdbg(hsotg->dev, "no split\n");
1482 		/*
1483 		 * Ensure that the transfer length and packet count will fit
1484 		 * in the widths allocated for them in the HCTSIZn register
1485 		 */
1486 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1487 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1488 			/*
1489 			 * Make sure the transfer size is no larger than one
1490 			 * (micro)frame's worth of data. (A check was done
1491 			 * when the periodic transfer was accepted to ensure
1492 			 * that a (micro)frame's worth of data can be
1493 			 * programmed into a channel.)
1494 			 */
1495 			u32 max_periodic_len =
1496 				chan->multi_count * chan->max_packet;
1497 
1498 			if (chan->xfer_len > max_periodic_len)
1499 				chan->xfer_len = max_periodic_len;
1500 		} else if (chan->xfer_len > max_hc_xfer_size) {
1501 			/*
1502 			 * Make sure that xfer_len is a multiple of max packet
1503 			 * size
1504 			 */
1505 			chan->xfer_len =
1506 				max_hc_xfer_size - chan->max_packet + 1;
1507 		}
1508 
1509 		if (chan->xfer_len > 0) {
1510 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1511 					chan->max_packet;
1512 			if (num_packets > max_hc_pkt_count) {
1513 				num_packets = max_hc_pkt_count;
1514 				chan->xfer_len = num_packets * chan->max_packet;
1515 			}
1516 		} else {
1517 			/* Need 1 packet for transfer length of 0 */
1518 			num_packets = 1;
1519 		}
1520 
1521 		if (chan->ep_is_in)
1522 			/*
1523 			 * Always program an integral # of max packets for IN
1524 			 * transfers
1525 			 */
1526 			chan->xfer_len = num_packets * chan->max_packet;
1527 
1528 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1529 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1530 			/*
1531 			 * Make sure that the multi_count field matches the
1532 			 * actual transfer length
1533 			 */
1534 			chan->multi_count = num_packets;
1535 
1536 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1537 			dwc2_set_pid_isoc(chan);
1538 
1539 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1540 			  TSIZ_XFERSIZE_MASK;
1541 
1542 		/* The ec_mc gets the multi_count for non-split */
1543 		ec_mc = chan->multi_count;
1544 	}
1545 
1546 	chan->start_pkt_count = num_packets;
1547 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1548 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1549 		  TSIZ_SC_MC_PID_MASK;
1550 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1551 	if (dbg_hc(chan)) {
1552 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1553 			 hctsiz, chan->hc_num);
1554 
1555 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1556 			 chan->hc_num);
1557 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1558 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1559 			 TSIZ_XFERSIZE_SHIFT);
1560 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1561 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1562 			 TSIZ_PKTCNT_SHIFT);
1563 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1564 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1565 			 TSIZ_SC_MC_PID_SHIFT);
1566 	}
1567 
1568 	if (hsotg->params.host_dma) {
1569 		dma_addr_t dma_addr;
1570 
1571 		if (chan->align_buf) {
1572 			if (dbg_hc(chan))
1573 				dev_vdbg(hsotg->dev, "align_buf\n");
1574 			dma_addr = chan->align_buf;
1575 		} else {
1576 			dma_addr = chan->xfer_dma;
1577 		}
1578 		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1579 
1580 		if (dbg_hc(chan))
1581 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1582 				 (unsigned long)dma_addr, chan->hc_num);
1583 	}
1584 
1585 	/* Start the split */
1586 	if (chan->do_split) {
1587 		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1588 
1589 		hcsplt |= HCSPLT_SPLTENA;
1590 		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1591 	}
1592 
1593 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1594 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1595 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1596 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1597 
1598 	if (hcchar & HCCHAR_CHDIS)
1599 		dev_warn(hsotg->dev,
1600 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1601 			 __func__, chan->hc_num, hcchar);
1602 
1603 	/* Set host channel enable after all other setup is complete */
1604 	hcchar |= HCCHAR_CHENA;
1605 	hcchar &= ~HCCHAR_CHDIS;
1606 
1607 	if (dbg_hc(chan))
1608 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1609 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1610 			 HCCHAR_MULTICNT_SHIFT);
1611 
1612 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1613 	if (dbg_hc(chan))
1614 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1615 			 chan->hc_num);
1616 
1617 	chan->xfer_started = 1;
1618 	chan->requests++;
1619 
1620 	if (!hsotg->params.host_dma &&
1621 	    !chan->ep_is_in && chan->xfer_len > 0)
1622 		/* Load OUT packet into the appropriate Tx FIFO */
1623 		dwc2_hc_write_packet(hsotg, chan);
1624 }
1625 
1626 /**
1627  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1628  * host channel and starts the transfer in Descriptor DMA mode
1629  *
1630  * @hsotg: Programming view of DWC_otg controller
1631  * @chan:  Information needed to initialize the host channel
1632  *
1633  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1634  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1635  * with micro-frame bitmap.
1636  *
1637  * Initializes HCDMA register with descriptor list address and CTD value then
1638  * starts the transfer via enabling the channel.
1639  */
dwc2_hc_start_transfer_ddma(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1640 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1641 				 struct dwc2_host_chan *chan)
1642 {
1643 	u32 hcchar;
1644 	u32 hctsiz = 0;
1645 
1646 	if (chan->do_ping)
1647 		hctsiz |= TSIZ_DOPNG;
1648 
1649 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1650 		dwc2_set_pid_isoc(chan);
1651 
1652 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1653 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1654 		  TSIZ_SC_MC_PID_MASK;
1655 
1656 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1657 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1658 
1659 	/* Non-zero only for high-speed interrupt endpoints */
1660 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1661 
1662 	if (dbg_hc(chan)) {
1663 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1664 			 chan->hc_num);
1665 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1666 			 chan->data_pid_start);
1667 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1668 	}
1669 
1670 	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1671 
1672 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1673 				   chan->desc_list_sz, DMA_TO_DEVICE);
1674 
1675 	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1676 
1677 	if (dbg_hc(chan))
1678 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1679 			 &chan->desc_list_addr, chan->hc_num);
1680 
1681 	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1682 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1683 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1684 		  HCCHAR_MULTICNT_MASK;
1685 
1686 	if (hcchar & HCCHAR_CHDIS)
1687 		dev_warn(hsotg->dev,
1688 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1689 			 __func__, chan->hc_num, hcchar);
1690 
1691 	/* Set host channel enable after all other setup is complete */
1692 	hcchar |= HCCHAR_CHENA;
1693 	hcchar &= ~HCCHAR_CHDIS;
1694 
1695 	if (dbg_hc(chan))
1696 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1697 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1698 			 HCCHAR_MULTICNT_SHIFT);
1699 
1700 	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1701 	if (dbg_hc(chan))
1702 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1703 			 chan->hc_num);
1704 
1705 	chan->xfer_started = 1;
1706 	chan->requests++;
1707 }
1708 
1709 /**
1710  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1711  * a previous call to dwc2_hc_start_transfer()
1712  *
1713  * @hsotg: Programming view of DWC_otg controller
1714  * @chan:  Information needed to initialize the host channel
1715  *
1716  * The caller must ensure there is sufficient space in the request queue and Tx
1717  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1718  * the controller acts autonomously to complete transfers programmed to a host
1719  * channel.
1720  *
1721  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1722  * if there is any data remaining to be queued. For an IN transfer, another
1723  * data packet is always requested. For the SETUP phase of a control transfer,
1724  * this function does nothing.
1725  *
1726  * Return: 1 if a new request is queued, 0 if no more requests are required
1727  * for this transfer
1728  */
dwc2_hc_continue_transfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan)1729 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1730 				     struct dwc2_host_chan *chan)
1731 {
1732 	if (dbg_hc(chan))
1733 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1734 			 chan->hc_num);
1735 
1736 	if (chan->do_split)
1737 		/* SPLITs always queue just once per channel */
1738 		return 0;
1739 
1740 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1741 		/* SETUPs are queued only once since they can't be NAK'd */
1742 		return 0;
1743 
1744 	if (chan->ep_is_in) {
1745 		/*
1746 		 * Always queue another request for other IN transfers. If
1747 		 * back-to-back INs are issued and NAKs are received for both,
1748 		 * the driver may still be processing the first NAK when the
1749 		 * second NAK is received. When the interrupt handler clears
1750 		 * the NAK interrupt for the first NAK, the second NAK will
1751 		 * not be seen. So we can't depend on the NAK interrupt
1752 		 * handler to requeue a NAK'd request. Instead, IN requests
1753 		 * are issued each time this function is called. When the
1754 		 * transfer completes, the extra requests for the channel will
1755 		 * be flushed.
1756 		 */
1757 		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1758 
1759 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1760 		hcchar |= HCCHAR_CHENA;
1761 		hcchar &= ~HCCHAR_CHDIS;
1762 		if (dbg_hc(chan))
1763 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1764 				 hcchar);
1765 		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1766 		chan->requests++;
1767 		return 1;
1768 	}
1769 
1770 	/* OUT transfers */
1771 
1772 	if (chan->xfer_count < chan->xfer_len) {
1773 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1774 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1775 			u32 hcchar = dwc2_readl(hsotg,
1776 						HCCHAR(chan->hc_num));
1777 
1778 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1779 						   &hcchar);
1780 		}
1781 
1782 		/* Load OUT packet into the appropriate Tx FIFO */
1783 		dwc2_hc_write_packet(hsotg, chan);
1784 		chan->requests++;
1785 		return 1;
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 /*
1792  * =========================================================================
1793  *  HCD
1794  * =========================================================================
1795  */
1796 
1797 /*
1798  * Processes all the URBs in a single list of QHs. Completes them with
1799  * -ETIMEDOUT and frees the QTD.
1800  *
1801  * Must be called with interrupt disabled and spinlock held
1802  */
dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1803 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1804 				      struct list_head *qh_list)
1805 {
1806 	struct dwc2_qh *qh, *qh_tmp;
1807 	struct dwc2_qtd *qtd, *qtd_tmp;
1808 
1809 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1810 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1811 					 qtd_list_entry) {
1812 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1813 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1814 		}
1815 	}
1816 }
1817 
dwc2_qh_list_free(struct dwc2_hsotg * hsotg,struct list_head * qh_list)1818 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1819 			      struct list_head *qh_list)
1820 {
1821 	struct dwc2_qtd *qtd, *qtd_tmp;
1822 	struct dwc2_qh *qh, *qh_tmp;
1823 	unsigned long flags;
1824 
1825 	if (!qh_list->next)
1826 		/* The list hasn't been initialized yet */
1827 		return;
1828 
1829 	spin_lock_irqsave(&hsotg->lock, flags);
1830 
1831 	/* Ensure there are no QTDs or URBs left */
1832 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1833 
1834 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1835 		dwc2_hcd_qh_unlink(hsotg, qh);
1836 
1837 		/* Free each QTD in the QH's QTD list */
1838 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1839 					 qtd_list_entry)
1840 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1841 
1842 		if (qh->channel && qh->channel->qh == qh)
1843 			qh->channel->qh = NULL;
1844 
1845 		spin_unlock_irqrestore(&hsotg->lock, flags);
1846 		dwc2_hcd_qh_free(hsotg, qh);
1847 		spin_lock_irqsave(&hsotg->lock, flags);
1848 	}
1849 
1850 	spin_unlock_irqrestore(&hsotg->lock, flags);
1851 }
1852 
1853 /*
1854  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1855  * and periodic schedules. The QTD associated with each URB is removed from
1856  * the schedule and freed. This function may be called when a disconnect is
1857  * detected or when the HCD is being stopped.
1858  *
1859  * Must be called with interrupt disabled and spinlock held
1860  */
dwc2_kill_all_urbs(struct dwc2_hsotg * hsotg)1861 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1862 {
1863 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1864 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1865 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1866 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1867 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1868 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1869 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1870 }
1871 
1872 /**
1873  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1874  *
1875  * @hsotg: Pointer to struct dwc2_hsotg
1876  */
dwc2_hcd_start(struct dwc2_hsotg * hsotg)1877 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1878 {
1879 	u32 hprt0;
1880 
1881 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1882 		/*
1883 		 * Reset the port. During a HNP mode switch the reset
1884 		 * needs to occur within 1ms and have a duration of at
1885 		 * least 50ms.
1886 		 */
1887 		hprt0 = dwc2_read_hprt0(hsotg);
1888 		hprt0 |= HPRT0_RST;
1889 		dwc2_writel(hsotg, hprt0, HPRT0);
1890 	}
1891 
1892 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1893 			   msecs_to_jiffies(50));
1894 }
1895 
1896 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_cleanup_channels(struct dwc2_hsotg * hsotg)1897 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1898 {
1899 	int num_channels = hsotg->params.host_channels;
1900 	struct dwc2_host_chan *channel;
1901 	u32 hcchar;
1902 	int i;
1903 
1904 	if (!hsotg->params.host_dma) {
1905 		/* Flush out any channel requests in slave mode */
1906 		for (i = 0; i < num_channels; i++) {
1907 			channel = hsotg->hc_ptr_array[i];
1908 			if (!list_empty(&channel->hc_list_entry))
1909 				continue;
1910 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1911 			if (hcchar & HCCHAR_CHENA) {
1912 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1913 				hcchar |= HCCHAR_CHDIS;
1914 				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1915 			}
1916 		}
1917 	}
1918 
1919 	for (i = 0; i < num_channels; i++) {
1920 		channel = hsotg->hc_ptr_array[i];
1921 		if (!list_empty(&channel->hc_list_entry))
1922 			continue;
1923 		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1924 		if (hcchar & HCCHAR_CHENA) {
1925 			/* Halt the channel */
1926 			hcchar |= HCCHAR_CHDIS;
1927 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1928 		}
1929 
1930 		dwc2_hc_cleanup(hsotg, channel);
1931 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1932 		/*
1933 		 * Added for Descriptor DMA to prevent channel double cleanup in
1934 		 * release_channel_ddma(), which is called from ep_disable when
1935 		 * device disconnects
1936 		 */
1937 		channel->qh = NULL;
1938 	}
1939 	/* All channels have been freed, mark them available */
1940 	if (hsotg->params.uframe_sched) {
1941 		hsotg->available_host_channels =
1942 			hsotg->params.host_channels;
1943 	} else {
1944 		hsotg->non_periodic_channels = 0;
1945 		hsotg->periodic_channels = 0;
1946 	}
1947 }
1948 
1949 /**
1950  * dwc2_hcd_connect() - Handles connect of the HCD
1951  *
1952  * @hsotg: Pointer to struct dwc2_hsotg
1953  *
1954  * Must be called with interrupt disabled and spinlock held
1955  */
dwc2_hcd_connect(struct dwc2_hsotg * hsotg)1956 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1957 {
1958 	if (hsotg->lx_state != DWC2_L0)
1959 		usb_hcd_resume_root_hub(hsotg->priv);
1960 
1961 	hsotg->flags.b.port_connect_status_change = 1;
1962 	hsotg->flags.b.port_connect_status = 1;
1963 }
1964 
1965 /**
1966  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1967  *
1968  * @hsotg: Pointer to struct dwc2_hsotg
1969  * @force: If true, we won't try to reconnect even if we see device connected.
1970  *
1971  * Must be called with interrupt disabled and spinlock held
1972  */
dwc2_hcd_disconnect(struct dwc2_hsotg * hsotg,bool force)1973 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1974 {
1975 	u32 intr;
1976 	u32 hprt0;
1977 
1978 	/* Set status flags for the hub driver */
1979 	hsotg->flags.b.port_connect_status_change = 1;
1980 	hsotg->flags.b.port_connect_status = 0;
1981 
1982 	/*
1983 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1984 	 * interrupt mask and status bits and disabling subsequent host
1985 	 * channel interrupts.
1986 	 */
1987 	intr = dwc2_readl(hsotg, GINTMSK);
1988 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1989 	dwc2_writel(hsotg, intr, GINTMSK);
1990 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1991 	dwc2_writel(hsotg, intr, GINTSTS);
1992 
1993 	/*
1994 	 * Turn off the vbus power only if the core has transitioned to device
1995 	 * mode. If still in host mode, need to keep power on to detect a
1996 	 * reconnection.
1997 	 */
1998 	if (dwc2_is_device_mode(hsotg)) {
1999 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
2000 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
2001 			dwc2_writel(hsotg, 0, HPRT0);
2002 		}
2003 
2004 		dwc2_disable_host_interrupts(hsotg);
2005 	}
2006 
2007 	/* Respond with an error status to all URBs in the schedule */
2008 	dwc2_kill_all_urbs(hsotg);
2009 
2010 	if (dwc2_is_host_mode(hsotg))
2011 		/* Clean up any host channels that were in use */
2012 		dwc2_hcd_cleanup_channels(hsotg);
2013 
2014 	dwc2_host_disconnect(hsotg);
2015 
2016 	/*
2017 	 * Add an extra check here to see if we're actually connected but
2018 	 * we don't have a detection interrupt pending.  This can happen if:
2019 	 *   1. hardware sees connect
2020 	 *   2. hardware sees disconnect
2021 	 *   3. hardware sees connect
2022 	 *   4. dwc2_port_intr() - clears connect interrupt
2023 	 *   5. dwc2_handle_common_intr() - calls here
2024 	 *
2025 	 * Without the extra check here we will end calling disconnect
2026 	 * and won't get any future interrupts to handle the connect.
2027 	 */
2028 	if (!force) {
2029 		hprt0 = dwc2_readl(hsotg, HPRT0);
2030 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2031 			dwc2_hcd_connect(hsotg);
2032 	}
2033 }
2034 
2035 /**
2036  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2037  *
2038  * @hsotg: Pointer to struct dwc2_hsotg
2039  */
dwc2_hcd_rem_wakeup(struct dwc2_hsotg * hsotg)2040 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2041 {
2042 	if (hsotg->bus_suspended) {
2043 		hsotg->flags.b.port_suspend_change = 1;
2044 		usb_hcd_resume_root_hub(hsotg->priv);
2045 	}
2046 
2047 	if (hsotg->lx_state == DWC2_L1)
2048 		hsotg->flags.b.port_l1_change = 1;
2049 }
2050 
2051 /**
2052  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2053  *
2054  * @hsotg: Pointer to struct dwc2_hsotg
2055  *
2056  * Must be called with interrupt disabled and spinlock held
2057  */
dwc2_hcd_stop(struct dwc2_hsotg * hsotg)2058 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2059 {
2060 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2061 
2062 	/*
2063 	 * The root hub should be disconnected before this function is called.
2064 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2065 	 * and the QH lists (via ..._hcd_endpoint_disable).
2066 	 */
2067 
2068 	/* Turn off all host-specific interrupts */
2069 	dwc2_disable_host_interrupts(hsotg);
2070 
2071 	/* Turn off the vbus power */
2072 	dev_dbg(hsotg->dev, "PortPower off\n");
2073 	dwc2_writel(hsotg, 0, HPRT0);
2074 }
2075 
2076 /* Caller must hold driver lock */
dwc2_hcd_urb_enqueue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,struct dwc2_qh * qh,struct dwc2_qtd * qtd)2077 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2078 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2079 				struct dwc2_qtd *qtd)
2080 {
2081 	u32 intr_mask;
2082 	int retval;
2083 	int dev_speed;
2084 
2085 	if (!hsotg->flags.b.port_connect_status) {
2086 		/* No longer connected */
2087 		dev_err(hsotg->dev, "Not connected\n");
2088 		return -ENODEV;
2089 	}
2090 
2091 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2092 
2093 	/* Some configurations cannot support LS traffic on a FS root port */
2094 	if ((dev_speed == USB_SPEED_LOW) &&
2095 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2096 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2097 		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
2098 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2099 
2100 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2101 			return -ENODEV;
2102 	}
2103 
2104 	if (!qtd)
2105 		return -EINVAL;
2106 
2107 	dwc2_hcd_qtd_init(qtd, urb);
2108 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2109 	if (retval) {
2110 		dev_err(hsotg->dev,
2111 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2112 			retval);
2113 		return retval;
2114 	}
2115 
2116 	intr_mask = dwc2_readl(hsotg, GINTMSK);
2117 	if (!(intr_mask & GINTSTS_SOF)) {
2118 		enum dwc2_transaction_type tr_type;
2119 
2120 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2121 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2122 			/*
2123 			 * Do not schedule SG transactions until qtd has
2124 			 * URB_GIVEBACK_ASAP set
2125 			 */
2126 			return 0;
2127 
2128 		tr_type = dwc2_hcd_select_transactions(hsotg);
2129 		if (tr_type != DWC2_TRANSACTION_NONE)
2130 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_urb_dequeue(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb)2137 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2138 				struct dwc2_hcd_urb *urb)
2139 {
2140 	struct dwc2_qh *qh;
2141 	struct dwc2_qtd *urb_qtd;
2142 
2143 	urb_qtd = urb->qtd;
2144 	if (!urb_qtd) {
2145 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	qh = urb_qtd->qh;
2150 	if (!qh) {
2151 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2152 		return -EINVAL;
2153 	}
2154 
2155 	urb->priv = NULL;
2156 
2157 	if (urb_qtd->in_process && qh->channel) {
2158 		dwc2_dump_channel_info(hsotg, qh->channel);
2159 
2160 		/* The QTD is in process (it has been assigned to a channel) */
2161 		if (hsotg->flags.b.port_connect_status)
2162 			/*
2163 			 * If still connected (i.e. in host mode), halt the
2164 			 * channel so it can be used for other transfers. If
2165 			 * no longer connected, the host registers can't be
2166 			 * written to halt the channel since the core is in
2167 			 * device mode.
2168 			 */
2169 			dwc2_hc_halt(hsotg, qh->channel,
2170 				     DWC2_HC_XFER_URB_DEQUEUE);
2171 	}
2172 
2173 	/*
2174 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2175 	 * schedule if it has any remaining QTDs.
2176 	 */
2177 	if (!hsotg->params.dma_desc_enable) {
2178 		u8 in_process = urb_qtd->in_process;
2179 
2180 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2181 		if (in_process) {
2182 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2183 			qh->channel = NULL;
2184 		} else if (list_empty(&qh->qtd_list)) {
2185 			dwc2_hcd_qh_unlink(hsotg, qh);
2186 		}
2187 	} else {
2188 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_hcd_endpoint_disable(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep,int retry)2195 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2196 				     struct usb_host_endpoint *ep, int retry)
2197 {
2198 	struct dwc2_qtd *qtd, *qtd_tmp;
2199 	struct dwc2_qh *qh;
2200 	unsigned long flags;
2201 	int rc;
2202 
2203 	spin_lock_irqsave(&hsotg->lock, flags);
2204 
2205 	qh = ep->hcpriv;
2206 	if (!qh) {
2207 		rc = -EINVAL;
2208 		goto err;
2209 	}
2210 
2211 	while (!list_empty(&qh->qtd_list) && retry--) {
2212 		if (retry == 0) {
2213 			dev_err(hsotg->dev,
2214 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2215 			rc = -EBUSY;
2216 			goto err;
2217 		}
2218 
2219 		spin_unlock_irqrestore(&hsotg->lock, flags);
2220 		msleep(20);
2221 		spin_lock_irqsave(&hsotg->lock, flags);
2222 		qh = ep->hcpriv;
2223 		if (!qh) {
2224 			rc = -EINVAL;
2225 			goto err;
2226 		}
2227 	}
2228 
2229 	dwc2_hcd_qh_unlink(hsotg, qh);
2230 
2231 	/* Free each QTD in the QH's QTD list */
2232 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2233 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2234 
2235 	ep->hcpriv = NULL;
2236 
2237 	if (qh->channel && qh->channel->qh == qh)
2238 		qh->channel->qh = NULL;
2239 
2240 	spin_unlock_irqrestore(&hsotg->lock, flags);
2241 
2242 	dwc2_hcd_qh_free(hsotg, qh);
2243 
2244 	return 0;
2245 
2246 err:
2247 	ep->hcpriv = NULL;
2248 	spin_unlock_irqrestore(&hsotg->lock, flags);
2249 
2250 	return rc;
2251 }
2252 
2253 /* Must be called with interrupt disabled and spinlock held */
dwc2_hcd_endpoint_reset(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)2254 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2255 				   struct usb_host_endpoint *ep)
2256 {
2257 	struct dwc2_qh *qh = ep->hcpriv;
2258 
2259 	if (!qh)
2260 		return -EINVAL;
2261 
2262 	qh->data_toggle = DWC2_HC_PID_DATA0;
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2269  * prepares the core for device mode or host mode operation
2270  *
2271  * @hsotg:         Programming view of the DWC_otg controller
2272  * @initial_setup: If true then this is the first init for this instance.
2273  */
dwc2_core_init(struct dwc2_hsotg * hsotg,bool initial_setup)2274 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2275 {
2276 	u32 usbcfg, otgctl;
2277 	int retval;
2278 
2279 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2280 
2281 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2282 
2283 	/* Set ULPI External VBUS bit if needed */
2284 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2285 	if (hsotg->params.phy_ulpi_ext_vbus)
2286 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2287 
2288 	/* Set external TS Dline pulsing bit if needed */
2289 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2290 	if (hsotg->params.ts_dline)
2291 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2292 
2293 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2294 
2295 	/*
2296 	 * Reset the Controller
2297 	 *
2298 	 * We only need to reset the controller if this is a re-init.
2299 	 * For the first init we know for sure that earlier code reset us (it
2300 	 * needed to in order to properly detect various parameters).
2301 	 */
2302 	if (!initial_setup) {
2303 		retval = dwc2_core_reset(hsotg, false);
2304 		if (retval) {
2305 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2306 				__func__);
2307 			return retval;
2308 		}
2309 	}
2310 
2311 	/*
2312 	 * This needs to happen in FS mode before any other programming occurs
2313 	 */
2314 	retval = dwc2_phy_init(hsotg, initial_setup);
2315 	if (retval)
2316 		return retval;
2317 
2318 	/* Program the GAHBCFG Register */
2319 	retval = dwc2_gahbcfg_init(hsotg);
2320 	if (retval)
2321 		return retval;
2322 
2323 	/* Program the GUSBCFG register */
2324 	dwc2_gusbcfg_init(hsotg);
2325 
2326 	/* Program the GOTGCTL register */
2327 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2328 	otgctl &= ~GOTGCTL_OTGVER;
2329 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2330 
2331 	/* Clear the SRP success bit for FS-I2c */
2332 	hsotg->srp_success = 0;
2333 
2334 	/* Enable common interrupts */
2335 	dwc2_enable_common_interrupts(hsotg);
2336 
2337 	/*
2338 	 * Do device or host initialization based on mode during PCD and
2339 	 * HCD initialization
2340 	 */
2341 	if (dwc2_is_host_mode(hsotg)) {
2342 		dev_dbg(hsotg->dev, "Host Mode\n");
2343 		hsotg->op_state = OTG_STATE_A_HOST;
2344 	} else {
2345 		dev_dbg(hsotg->dev, "Device Mode\n");
2346 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 /**
2353  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2354  * Host mode
2355  *
2356  * @hsotg: Programming view of DWC_otg controller
2357  *
2358  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2359  * request queues. Host channels are reset to ensure that they are ready for
2360  * performing transfers.
2361  */
dwc2_core_host_init(struct dwc2_hsotg * hsotg)2362 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2363 {
2364 	u32 hcfg, hfir, otgctl, usbcfg;
2365 
2366 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2367 
2368 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2369 	 * The number of PHY clocks that the application programs in
2370 	 * this field is added to the high/full speed interpacket timeout
2371 	 * duration in the core to account for any additional delays
2372 	 * introduced by the PHY. This can be required, because the delay
2373 	 * introduced by the PHY in generating the linestate condition
2374 	 * can vary from one PHY to another.
2375 	 */
2376 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2377 	usbcfg |= GUSBCFG_TOUTCAL(7);
2378 	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2379 
2380 	/* Restart the Phy Clock */
2381 	dwc2_writel(hsotg, 0, PCGCTL);
2382 
2383 	/* Initialize Host Configuration Register */
2384 	dwc2_init_fs_ls_pclk_sel(hsotg);
2385 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2386 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2387 		hcfg = dwc2_readl(hsotg, HCFG);
2388 		hcfg |= HCFG_FSLSSUPP;
2389 		dwc2_writel(hsotg, hcfg, HCFG);
2390 	}
2391 
2392 	/*
2393 	 * This bit allows dynamic reloading of the HFIR register during
2394 	 * runtime. This bit needs to be programmed during initial configuration
2395 	 * and its value must not be changed during runtime.
2396 	 */
2397 	if (hsotg->params.reload_ctl) {
2398 		hfir = dwc2_readl(hsotg, HFIR);
2399 		hfir |= HFIR_RLDCTRL;
2400 		dwc2_writel(hsotg, hfir, HFIR);
2401 	}
2402 
2403 	if (hsotg->params.dma_desc_enable) {
2404 		u32 op_mode = hsotg->hw_params.op_mode;
2405 
2406 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2407 		    !hsotg->hw_params.dma_desc_enable ||
2408 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2409 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2410 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2411 			dev_err(hsotg->dev,
2412 				"Hardware does not support descriptor DMA mode -\n");
2413 			dev_err(hsotg->dev,
2414 				"falling back to buffer DMA mode.\n");
2415 			hsotg->params.dma_desc_enable = false;
2416 		} else {
2417 			hcfg = dwc2_readl(hsotg, HCFG);
2418 			hcfg |= HCFG_DESCDMA;
2419 			dwc2_writel(hsotg, hcfg, HCFG);
2420 		}
2421 	}
2422 
2423 	/* Configure data FIFO sizes */
2424 	dwc2_config_fifos(hsotg);
2425 
2426 	/* TODO - check this */
2427 	/* Clear Host Set HNP Enable in the OTG Control Register */
2428 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2429 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2430 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2431 
2432 	/* Make sure the FIFOs are flushed */
2433 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2434 	dwc2_flush_rx_fifo(hsotg);
2435 
2436 	/* Clear Host Set HNP Enable in the OTG Control Register */
2437 	otgctl = dwc2_readl(hsotg, GOTGCTL);
2438 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2439 	dwc2_writel(hsotg, otgctl, GOTGCTL);
2440 
2441 	if (!hsotg->params.dma_desc_enable) {
2442 		int num_channels, i;
2443 		u32 hcchar;
2444 
2445 		/* Flush out any leftover queued requests */
2446 		num_channels = hsotg->params.host_channels;
2447 		for (i = 0; i < num_channels; i++) {
2448 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2449 			hcchar &= ~HCCHAR_CHENA;
2450 			hcchar |= HCCHAR_CHDIS;
2451 			hcchar &= ~HCCHAR_EPDIR;
2452 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
2453 		}
2454 
2455 		/* Halt all channels to put them into a known state */
2456 		for (i = 0; i < num_channels; i++) {
2457 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2458 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2459 			hcchar &= ~HCCHAR_EPDIR;
2460 			dwc2_writel(hsotg, hcchar, HCCHAR(i));
2461 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2462 				__func__, i);
2463 
2464 			if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2465 						      HCCHAR_CHENA, 1000)) {
2466 				dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2467 					 i);
2468 			}
2469 		}
2470 	}
2471 
2472 	/* Enable ACG feature in host mode, if supported */
2473 	dwc2_enable_acg(hsotg);
2474 
2475 	/* Turn on the vbus power */
2476 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2477 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2478 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2479 
2480 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2481 			!!(hprt0 & HPRT0_PWR));
2482 		if (!(hprt0 & HPRT0_PWR)) {
2483 			hprt0 |= HPRT0_PWR;
2484 			dwc2_writel(hsotg, hprt0, HPRT0);
2485 		}
2486 	}
2487 
2488 	dwc2_enable_host_interrupts(hsotg);
2489 }
2490 
2491 /*
2492  * Initializes dynamic portions of the DWC_otg HCD state
2493  *
2494  * Must be called with interrupt disabled and spinlock held
2495  */
dwc2_hcd_reinit(struct dwc2_hsotg * hsotg)2496 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2497 {
2498 	struct dwc2_host_chan *chan, *chan_tmp;
2499 	int num_channels;
2500 	int i;
2501 
2502 	hsotg->flags.d32 = 0;
2503 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2504 
2505 	if (hsotg->params.uframe_sched) {
2506 		hsotg->available_host_channels =
2507 			hsotg->params.host_channels;
2508 	} else {
2509 		hsotg->non_periodic_channels = 0;
2510 		hsotg->periodic_channels = 0;
2511 	}
2512 
2513 	/*
2514 	 * Put all channels in the free channel list and clean up channel
2515 	 * states
2516 	 */
2517 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2518 				 hc_list_entry)
2519 		list_del_init(&chan->hc_list_entry);
2520 
2521 	num_channels = hsotg->params.host_channels;
2522 	for (i = 0; i < num_channels; i++) {
2523 		chan = hsotg->hc_ptr_array[i];
2524 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2525 		dwc2_hc_cleanup(hsotg, chan);
2526 	}
2527 
2528 	/* Initialize the DWC core for host mode operation */
2529 	dwc2_core_host_init(hsotg);
2530 }
2531 
dwc2_hc_init_split(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd,struct dwc2_hcd_urb * urb)2532 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2533 			       struct dwc2_host_chan *chan,
2534 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2535 {
2536 	int hub_addr, hub_port;
2537 
2538 	chan->do_split = 1;
2539 	chan->xact_pos = qtd->isoc_split_pos;
2540 	chan->complete_split = qtd->complete_split;
2541 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2542 	chan->hub_addr = (u8)hub_addr;
2543 	chan->hub_port = (u8)hub_port;
2544 }
2545 
dwc2_hc_init_xfer(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,struct dwc2_qtd * qtd)2546 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2547 			      struct dwc2_host_chan *chan,
2548 			      struct dwc2_qtd *qtd)
2549 {
2550 	struct dwc2_hcd_urb *urb = qtd->urb;
2551 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2552 
2553 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2554 	case USB_ENDPOINT_XFER_CONTROL:
2555 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2556 
2557 		switch (qtd->control_phase) {
2558 		case DWC2_CONTROL_SETUP:
2559 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2560 			chan->do_ping = 0;
2561 			chan->ep_is_in = 0;
2562 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2563 			if (hsotg->params.host_dma)
2564 				chan->xfer_dma = urb->setup_dma;
2565 			else
2566 				chan->xfer_buf = urb->setup_packet;
2567 			chan->xfer_len = 8;
2568 			break;
2569 
2570 		case DWC2_CONTROL_DATA:
2571 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2572 			chan->data_pid_start = qtd->data_toggle;
2573 			break;
2574 
2575 		case DWC2_CONTROL_STATUS:
2576 			/*
2577 			 * Direction is opposite of data direction or IN if no
2578 			 * data
2579 			 */
2580 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2581 			if (urb->length == 0)
2582 				chan->ep_is_in = 1;
2583 			else
2584 				chan->ep_is_in =
2585 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2586 			if (chan->ep_is_in)
2587 				chan->do_ping = 0;
2588 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2589 			chan->xfer_len = 0;
2590 			if (hsotg->params.host_dma)
2591 				chan->xfer_dma = hsotg->status_buf_dma;
2592 			else
2593 				chan->xfer_buf = hsotg->status_buf;
2594 			break;
2595 		}
2596 		break;
2597 
2598 	case USB_ENDPOINT_XFER_BULK:
2599 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2600 		break;
2601 
2602 	case USB_ENDPOINT_XFER_INT:
2603 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2604 		break;
2605 
2606 	case USB_ENDPOINT_XFER_ISOC:
2607 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2608 		if (hsotg->params.dma_desc_enable)
2609 			break;
2610 
2611 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2612 		frame_desc->status = 0;
2613 
2614 		if (hsotg->params.host_dma) {
2615 			chan->xfer_dma = urb->dma;
2616 			chan->xfer_dma += frame_desc->offset +
2617 					qtd->isoc_split_offset;
2618 		} else {
2619 			chan->xfer_buf = urb->buf;
2620 			chan->xfer_buf += frame_desc->offset +
2621 					qtd->isoc_split_offset;
2622 		}
2623 
2624 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2625 
2626 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2627 			if (chan->xfer_len <= 188)
2628 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2629 			else
2630 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2631 		}
2632 		break;
2633 	}
2634 }
2635 
dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh,struct dwc2_host_chan * chan)2636 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2637 					    struct dwc2_qh *qh,
2638 					    struct dwc2_host_chan *chan)
2639 {
2640 	if (!hsotg->unaligned_cache ||
2641 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2642 		return -ENOMEM;
2643 
2644 	if (!qh->dw_align_buf) {
2645 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2646 						    GFP_ATOMIC | GFP_DMA);
2647 		if (!qh->dw_align_buf)
2648 			return -ENOMEM;
2649 	}
2650 
2651 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2652 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2653 					      DMA_FROM_DEVICE);
2654 
2655 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2656 		dev_err(hsotg->dev, "can't map align_buf\n");
2657 		chan->align_buf = 0;
2658 		return -EINVAL;
2659 	}
2660 
2661 	chan->align_buf = qh->dw_align_buf_dma;
2662 	return 0;
2663 }
2664 
2665 #define DWC2_USB_DMA_ALIGN 4
2666 
dwc2_free_dma_aligned_buffer(struct urb * urb)2667 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2668 {
2669 	void *stored_xfer_buffer;
2670 	size_t length;
2671 
2672 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2673 		return;
2674 
2675 	/* Restore urb->transfer_buffer from the end of the allocated area */
2676 	memcpy(&stored_xfer_buffer,
2677 	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2678 			 dma_get_cache_alignment()),
2679 	       sizeof(urb->transfer_buffer));
2680 
2681 	if (usb_urb_dir_in(urb)) {
2682 		if (usb_pipeisoc(urb->pipe))
2683 			length = urb->transfer_buffer_length;
2684 		else
2685 			length = urb->actual_length;
2686 
2687 		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2688 	}
2689 	kfree(urb->transfer_buffer);
2690 	urb->transfer_buffer = stored_xfer_buffer;
2691 
2692 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2693 }
2694 
dwc2_alloc_dma_aligned_buffer(struct urb * urb,gfp_t mem_flags)2695 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2696 {
2697 	void *kmalloc_ptr;
2698 	size_t kmalloc_size;
2699 
2700 	if (urb->num_sgs || urb->sg ||
2701 	    urb->transfer_buffer_length == 0 ||
2702 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2703 		return 0;
2704 
2705 	/*
2706 	 * Allocate a buffer with enough padding for original transfer_buffer
2707 	 * pointer. This allocation is guaranteed to be aligned properly for
2708 	 * DMA
2709 	 */
2710 	kmalloc_size = urb->transfer_buffer_length +
2711 		(dma_get_cache_alignment() - 1) +
2712 		sizeof(urb->transfer_buffer);
2713 
2714 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2715 	if (!kmalloc_ptr)
2716 		return -ENOMEM;
2717 
2718 	/*
2719 	 * Position value of original urb->transfer_buffer pointer to the end
2720 	 * of allocation for later referencing
2721 	 */
2722 	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2723 			 dma_get_cache_alignment()),
2724 	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2725 
2726 	if (usb_urb_dir_out(urb))
2727 		memcpy(kmalloc_ptr, urb->transfer_buffer,
2728 		       urb->transfer_buffer_length);
2729 	urb->transfer_buffer = kmalloc_ptr;
2730 
2731 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2732 
2733 	return 0;
2734 }
2735 
dwc2_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)2736 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2737 				gfp_t mem_flags)
2738 {
2739 	int ret;
2740 
2741 	/* We assume setup_dma is always aligned; warn if not */
2742 	WARN_ON_ONCE(urb->setup_dma &&
2743 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2744 
2745 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2746 	if (ret)
2747 		return ret;
2748 
2749 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2750 	if (ret)
2751 		dwc2_free_dma_aligned_buffer(urb);
2752 
2753 	return ret;
2754 }
2755 
dwc2_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)2756 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2757 {
2758 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2759 	dwc2_free_dma_aligned_buffer(urb);
2760 }
2761 
2762 /**
2763  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2764  * channel and initializes the host channel to perform the transactions. The
2765  * host channel is removed from the free list.
2766  *
2767  * @hsotg: The HCD state structure
2768  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2769  *         to a free host channel
2770  */
dwc2_assign_and_init_hc(struct dwc2_hsotg * hsotg,struct dwc2_qh * qh)2771 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2772 {
2773 	struct dwc2_host_chan *chan;
2774 	struct dwc2_hcd_urb *urb;
2775 	struct dwc2_qtd *qtd;
2776 
2777 	if (dbg_qh(qh))
2778 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2779 
2780 	if (list_empty(&qh->qtd_list)) {
2781 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2782 		return -ENOMEM;
2783 	}
2784 
2785 	if (list_empty(&hsotg->free_hc_list)) {
2786 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2787 		return -ENOMEM;
2788 	}
2789 
2790 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2791 				hc_list_entry);
2792 
2793 	/* Remove host channel from free list */
2794 	list_del_init(&chan->hc_list_entry);
2795 
2796 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2797 	urb = qtd->urb;
2798 	qh->channel = chan;
2799 	qtd->in_process = 1;
2800 
2801 	/*
2802 	 * Use usb_pipedevice to determine device address. This address is
2803 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2804 	 */
2805 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2806 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2807 	chan->speed = qh->dev_speed;
2808 	chan->max_packet = qh->maxp;
2809 
2810 	chan->xfer_started = 0;
2811 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2812 	chan->error_state = (qtd->error_count > 0);
2813 	chan->halt_on_queue = 0;
2814 	chan->halt_pending = 0;
2815 	chan->requests = 0;
2816 
2817 	/*
2818 	 * The following values may be modified in the transfer type section
2819 	 * below. The xfer_len value may be reduced when the transfer is
2820 	 * started to accommodate the max widths of the XferSize and PktCnt
2821 	 * fields in the HCTSIZn register.
2822 	 */
2823 
2824 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2825 	if (chan->ep_is_in)
2826 		chan->do_ping = 0;
2827 	else
2828 		chan->do_ping = qh->ping_state;
2829 
2830 	chan->data_pid_start = qh->data_toggle;
2831 	chan->multi_count = 1;
2832 
2833 	if (urb->actual_length > urb->length &&
2834 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2835 		urb->actual_length = urb->length;
2836 
2837 	if (hsotg->params.host_dma)
2838 		chan->xfer_dma = urb->dma + urb->actual_length;
2839 	else
2840 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2841 
2842 	chan->xfer_len = urb->length - urb->actual_length;
2843 	chan->xfer_count = 0;
2844 
2845 	/* Set the split attributes if required */
2846 	if (qh->do_split)
2847 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2848 	else
2849 		chan->do_split = 0;
2850 
2851 	/* Set the transfer attributes */
2852 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2853 
2854 	/* For non-dword aligned buffers */
2855 	if (hsotg->params.host_dma && qh->do_split &&
2856 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2857 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2858 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2859 			dev_err(hsotg->dev,
2860 				"Failed to allocate memory to handle non-aligned buffer\n");
2861 			/* Add channel back to free list */
2862 			chan->align_buf = 0;
2863 			chan->multi_count = 0;
2864 			list_add_tail(&chan->hc_list_entry,
2865 				      &hsotg->free_hc_list);
2866 			qtd->in_process = 0;
2867 			qh->channel = NULL;
2868 			return -ENOMEM;
2869 		}
2870 	} else {
2871 		/*
2872 		 * We assume that DMA is always aligned in non-split
2873 		 * case or split out case. Warn if not.
2874 		 */
2875 		WARN_ON_ONCE(hsotg->params.host_dma &&
2876 			     (chan->xfer_dma & 0x3));
2877 		chan->align_buf = 0;
2878 	}
2879 
2880 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2881 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2882 		/*
2883 		 * This value may be modified when the transfer is started
2884 		 * to reflect the actual transfer length
2885 		 */
2886 		chan->multi_count = qh->maxp_mult;
2887 
2888 	if (hsotg->params.dma_desc_enable) {
2889 		chan->desc_list_addr = qh->desc_list_dma;
2890 		chan->desc_list_sz = qh->desc_list_sz;
2891 	}
2892 
2893 	dwc2_hc_init(hsotg, chan);
2894 	chan->qh = qh;
2895 
2896 	return 0;
2897 }
2898 
2899 /**
2900  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2901  * schedule and assigns them to available host channels. Called from the HCD
2902  * interrupt handler functions.
2903  *
2904  * @hsotg: The HCD state structure
2905  *
2906  * Return: The types of new transactions that were assigned to host channels
2907  */
dwc2_hcd_select_transactions(struct dwc2_hsotg * hsotg)2908 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2909 		struct dwc2_hsotg *hsotg)
2910 {
2911 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2912 	struct list_head *qh_ptr;
2913 	struct dwc2_qh *qh;
2914 	int num_channels;
2915 
2916 #ifdef DWC2_DEBUG_SOF
2917 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2918 #endif
2919 
2920 	/* Process entries in the periodic ready list */
2921 	qh_ptr = hsotg->periodic_sched_ready.next;
2922 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2923 		if (list_empty(&hsotg->free_hc_list))
2924 			break;
2925 		if (hsotg->params.uframe_sched) {
2926 			if (hsotg->available_host_channels <= 1)
2927 				break;
2928 			hsotg->available_host_channels--;
2929 		}
2930 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2931 		if (dwc2_assign_and_init_hc(hsotg, qh))
2932 			break;
2933 
2934 		/*
2935 		 * Move the QH from the periodic ready schedule to the
2936 		 * periodic assigned schedule
2937 		 */
2938 		qh_ptr = qh_ptr->next;
2939 		list_move_tail(&qh->qh_list_entry,
2940 			       &hsotg->periodic_sched_assigned);
2941 		ret_val = DWC2_TRANSACTION_PERIODIC;
2942 	}
2943 
2944 	/*
2945 	 * Process entries in the inactive portion of the non-periodic
2946 	 * schedule. Some free host channels may not be used if they are
2947 	 * reserved for periodic transfers.
2948 	 */
2949 	num_channels = hsotg->params.host_channels;
2950 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2951 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2952 		if (!hsotg->params.uframe_sched &&
2953 		    hsotg->non_periodic_channels >= num_channels -
2954 						hsotg->periodic_channels)
2955 			break;
2956 		if (list_empty(&hsotg->free_hc_list))
2957 			break;
2958 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2959 		if (hsotg->params.uframe_sched) {
2960 			if (hsotg->available_host_channels < 1)
2961 				break;
2962 			hsotg->available_host_channels--;
2963 		}
2964 
2965 		if (dwc2_assign_and_init_hc(hsotg, qh))
2966 			break;
2967 
2968 		/*
2969 		 * Move the QH from the non-periodic inactive schedule to the
2970 		 * non-periodic active schedule
2971 		 */
2972 		qh_ptr = qh_ptr->next;
2973 		list_move_tail(&qh->qh_list_entry,
2974 			       &hsotg->non_periodic_sched_active);
2975 
2976 		if (ret_val == DWC2_TRANSACTION_NONE)
2977 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2978 		else
2979 			ret_val = DWC2_TRANSACTION_ALL;
2980 
2981 		if (!hsotg->params.uframe_sched)
2982 			hsotg->non_periodic_channels++;
2983 	}
2984 
2985 	return ret_val;
2986 }
2987 
2988 /**
2989  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2990  * a host channel associated with either a periodic or non-periodic transfer
2991  *
2992  * @hsotg: The HCD state structure
2993  * @chan:  Host channel descriptor associated with either a periodic or
2994  *         non-periodic transfer
2995  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2996  *                     for periodic transfers or the non-periodic Tx FIFO
2997  *                     for non-periodic transfers
2998  *
2999  * Return: 1 if a request is queued and more requests may be needed to
3000  * complete the transfer, 0 if no more requests are required for this
3001  * transfer, -1 if there is insufficient space in the Tx FIFO
3002  *
3003  * This function assumes that there is space available in the appropriate
3004  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
3005  * it checks whether space is available in the appropriate Tx FIFO.
3006  *
3007  * Must be called with interrupt disabled and spinlock held
3008  */
dwc2_queue_transaction(struct dwc2_hsotg * hsotg,struct dwc2_host_chan * chan,u16 fifo_dwords_avail)3009 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
3010 				  struct dwc2_host_chan *chan,
3011 				  u16 fifo_dwords_avail)
3012 {
3013 	int retval = 0;
3014 
3015 	if (chan->do_split)
3016 		/* Put ourselves on the list to keep order straight */
3017 		list_move_tail(&chan->split_order_list_entry,
3018 			       &hsotg->split_order);
3019 
3020 	if (hsotg->params.host_dma) {
3021 		if (hsotg->params.dma_desc_enable) {
3022 			if (!chan->xfer_started ||
3023 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3024 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3025 				chan->qh->ping_state = 0;
3026 			}
3027 		} else if (!chan->xfer_started) {
3028 			dwc2_hc_start_transfer(hsotg, chan);
3029 			chan->qh->ping_state = 0;
3030 		}
3031 	} else if (chan->halt_pending) {
3032 		/* Don't queue a request if the channel has been halted */
3033 	} else if (chan->halt_on_queue) {
3034 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
3035 	} else if (chan->do_ping) {
3036 		if (!chan->xfer_started)
3037 			dwc2_hc_start_transfer(hsotg, chan);
3038 	} else if (!chan->ep_is_in ||
3039 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
3040 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3041 			if (!chan->xfer_started) {
3042 				dwc2_hc_start_transfer(hsotg, chan);
3043 				retval = 1;
3044 			} else {
3045 				retval = dwc2_hc_continue_transfer(hsotg, chan);
3046 			}
3047 		} else {
3048 			retval = -1;
3049 		}
3050 	} else {
3051 		if (!chan->xfer_started) {
3052 			dwc2_hc_start_transfer(hsotg, chan);
3053 			retval = 1;
3054 		} else {
3055 			retval = dwc2_hc_continue_transfer(hsotg, chan);
3056 		}
3057 	}
3058 
3059 	return retval;
3060 }
3061 
3062 /*
3063  * Processes periodic channels for the next frame and queues transactions for
3064  * these channels to the DWC_otg controller. After queueing transactions, the
3065  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3066  * to queue as Periodic Tx FIFO or request queue space becomes available.
3067  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3068  *
3069  * Must be called with interrupt disabled and spinlock held
3070  */
dwc2_process_periodic_channels(struct dwc2_hsotg * hsotg)3071 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3072 {
3073 	struct list_head *qh_ptr;
3074 	struct dwc2_qh *qh;
3075 	u32 tx_status;
3076 	u32 fspcavail;
3077 	u32 gintmsk;
3078 	int status;
3079 	bool no_queue_space = false;
3080 	bool no_fifo_space = false;
3081 	u32 qspcavail;
3082 
3083 	/* If empty list then just adjust interrupt enables */
3084 	if (list_empty(&hsotg->periodic_sched_assigned))
3085 		goto exit;
3086 
3087 	if (dbg_perio())
3088 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3089 
3090 	tx_status = dwc2_readl(hsotg, HPTXSTS);
3091 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3092 		    TXSTS_QSPCAVAIL_SHIFT;
3093 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3094 		    TXSTS_FSPCAVAIL_SHIFT;
3095 
3096 	if (dbg_perio()) {
3097 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3098 			 qspcavail);
3099 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3100 			 fspcavail);
3101 	}
3102 
3103 	qh_ptr = hsotg->periodic_sched_assigned.next;
3104 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
3105 		tx_status = dwc2_readl(hsotg, HPTXSTS);
3106 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3107 			    TXSTS_QSPCAVAIL_SHIFT;
3108 		if (qspcavail == 0) {
3109 			no_queue_space = true;
3110 			break;
3111 		}
3112 
3113 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3114 		if (!qh->channel) {
3115 			qh_ptr = qh_ptr->next;
3116 			continue;
3117 		}
3118 
3119 		/* Make sure EP's TT buffer is clean before queueing qtds */
3120 		if (qh->tt_buffer_dirty) {
3121 			qh_ptr = qh_ptr->next;
3122 			continue;
3123 		}
3124 
3125 		/*
3126 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3127 		 * The flag prevents any halts to get into the request queue in
3128 		 * the middle of multiple high-bandwidth packets getting queued.
3129 		 */
3130 		if (!hsotg->params.host_dma &&
3131 		    qh->channel->multi_count > 1)
3132 			hsotg->queuing_high_bandwidth = 1;
3133 
3134 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3135 			    TXSTS_FSPCAVAIL_SHIFT;
3136 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3137 		if (status < 0) {
3138 			no_fifo_space = true;
3139 			break;
3140 		}
3141 
3142 		/*
3143 		 * In Slave mode, stay on the current transfer until there is
3144 		 * nothing more to do or the high-bandwidth request count is
3145 		 * reached. In DMA mode, only need to queue one request. The
3146 		 * controller automatically handles multiple packets for
3147 		 * high-bandwidth transfers.
3148 		 */
3149 		if (hsotg->params.host_dma || status == 0 ||
3150 		    qh->channel->requests == qh->channel->multi_count) {
3151 			qh_ptr = qh_ptr->next;
3152 			/*
3153 			 * Move the QH from the periodic assigned schedule to
3154 			 * the periodic queued schedule
3155 			 */
3156 			list_move_tail(&qh->qh_list_entry,
3157 				       &hsotg->periodic_sched_queued);
3158 
3159 			/* done queuing high bandwidth */
3160 			hsotg->queuing_high_bandwidth = 0;
3161 		}
3162 	}
3163 
3164 exit:
3165 	if (no_queue_space || no_fifo_space ||
3166 	    (!hsotg->params.host_dma &&
3167 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3168 		/*
3169 		 * May need to queue more transactions as the request
3170 		 * queue or Tx FIFO empties. Enable the periodic Tx
3171 		 * FIFO empty interrupt. (Always use the half-empty
3172 		 * level to ensure that new requests are loaded as
3173 		 * soon as possible.)
3174 		 */
3175 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3176 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3177 			gintmsk |= GINTSTS_PTXFEMP;
3178 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3179 		}
3180 	} else {
3181 		/*
3182 		 * Disable the Tx FIFO empty interrupt since there are
3183 		 * no more transactions that need to be queued right
3184 		 * now. This function is called from interrupt
3185 		 * handlers to queue more transactions as transfer
3186 		 * states change.
3187 		 */
3188 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3189 		if (gintmsk & GINTSTS_PTXFEMP) {
3190 			gintmsk &= ~GINTSTS_PTXFEMP;
3191 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3192 		}
3193 	}
3194 }
3195 
3196 /*
3197  * Processes active non-periodic channels and queues transactions for these
3198  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3199  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3200  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3201  * FIFO Empty interrupt is disabled.
3202  *
3203  * Must be called with interrupt disabled and spinlock held
3204  */
dwc2_process_non_periodic_channels(struct dwc2_hsotg * hsotg)3205 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3206 {
3207 	struct list_head *orig_qh_ptr;
3208 	struct dwc2_qh *qh;
3209 	u32 tx_status;
3210 	u32 qspcavail;
3211 	u32 fspcavail;
3212 	u32 gintmsk;
3213 	int status;
3214 	int no_queue_space = 0;
3215 	int no_fifo_space = 0;
3216 	int more_to_do = 0;
3217 
3218 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3219 
3220 	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3221 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3222 		    TXSTS_QSPCAVAIL_SHIFT;
3223 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3224 		    TXSTS_FSPCAVAIL_SHIFT;
3225 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3226 		 qspcavail);
3227 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3228 		 fspcavail);
3229 
3230 	/*
3231 	 * Keep track of the starting point. Skip over the start-of-list
3232 	 * entry.
3233 	 */
3234 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3235 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3236 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3237 
3238 	/*
3239 	 * Process once through the active list or until no more space is
3240 	 * available in the request queue or the Tx FIFO
3241 	 */
3242 	do {
3243 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3244 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3245 			    TXSTS_QSPCAVAIL_SHIFT;
3246 		if (!hsotg->params.host_dma && qspcavail == 0) {
3247 			no_queue_space = 1;
3248 			break;
3249 		}
3250 
3251 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3252 				qh_list_entry);
3253 		if (!qh->channel)
3254 			goto next;
3255 
3256 		/* Make sure EP's TT buffer is clean before queueing qtds */
3257 		if (qh->tt_buffer_dirty)
3258 			goto next;
3259 
3260 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3261 			    TXSTS_FSPCAVAIL_SHIFT;
3262 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3263 
3264 		if (status > 0) {
3265 			more_to_do = 1;
3266 		} else if (status < 0) {
3267 			no_fifo_space = 1;
3268 			break;
3269 		}
3270 next:
3271 		/* Advance to next QH, skipping start-of-list entry */
3272 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3273 		if (hsotg->non_periodic_qh_ptr ==
3274 				&hsotg->non_periodic_sched_active)
3275 			hsotg->non_periodic_qh_ptr =
3276 					hsotg->non_periodic_qh_ptr->next;
3277 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3278 
3279 	if (!hsotg->params.host_dma) {
3280 		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3281 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3282 			    TXSTS_QSPCAVAIL_SHIFT;
3283 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3284 			    TXSTS_FSPCAVAIL_SHIFT;
3285 		dev_vdbg(hsotg->dev,
3286 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3287 			 qspcavail);
3288 		dev_vdbg(hsotg->dev,
3289 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3290 			 fspcavail);
3291 
3292 		if (more_to_do || no_queue_space || no_fifo_space) {
3293 			/*
3294 			 * May need to queue more transactions as the request
3295 			 * queue or Tx FIFO empties. Enable the non-periodic
3296 			 * Tx FIFO empty interrupt. (Always use the half-empty
3297 			 * level to ensure that new requests are loaded as
3298 			 * soon as possible.)
3299 			 */
3300 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3301 			gintmsk |= GINTSTS_NPTXFEMP;
3302 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3303 		} else {
3304 			/*
3305 			 * Disable the Tx FIFO empty interrupt since there are
3306 			 * no more transactions that need to be queued right
3307 			 * now. This function is called from interrupt
3308 			 * handlers to queue more transactions as transfer
3309 			 * states change.
3310 			 */
3311 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3312 			gintmsk &= ~GINTSTS_NPTXFEMP;
3313 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3314 		}
3315 	}
3316 }
3317 
3318 /**
3319  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3320  * and queues transactions for these channels to the DWC_otg controller. Called
3321  * from the HCD interrupt handler functions.
3322  *
3323  * @hsotg:   The HCD state structure
3324  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3325  *           or both)
3326  *
3327  * Must be called with interrupt disabled and spinlock held
3328  */
dwc2_hcd_queue_transactions(struct dwc2_hsotg * hsotg,enum dwc2_transaction_type tr_type)3329 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3330 				 enum dwc2_transaction_type tr_type)
3331 {
3332 #ifdef DWC2_DEBUG_SOF
3333 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3334 #endif
3335 	/* Process host channels associated with periodic transfers */
3336 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3337 	    tr_type == DWC2_TRANSACTION_ALL)
3338 		dwc2_process_periodic_channels(hsotg);
3339 
3340 	/* Process host channels associated with non-periodic transfers */
3341 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3342 	    tr_type == DWC2_TRANSACTION_ALL) {
3343 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3344 			dwc2_process_non_periodic_channels(hsotg);
3345 		} else {
3346 			/*
3347 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3348 			 * there are no non-periodic transfers to process
3349 			 */
3350 			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3351 
3352 			gintmsk &= ~GINTSTS_NPTXFEMP;
3353 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3354 		}
3355 	}
3356 }
3357 
dwc2_conn_id_status_change(struct work_struct * work)3358 static void dwc2_conn_id_status_change(struct work_struct *work)
3359 {
3360 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3361 						wf_otg);
3362 	u32 count = 0;
3363 	u32 gotgctl;
3364 	unsigned long flags;
3365 
3366 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3367 
3368 	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3369 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3370 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3371 		!!(gotgctl & GOTGCTL_CONID_B));
3372 
3373 	/* B-Device connector (Device Mode) */
3374 	if (gotgctl & GOTGCTL_CONID_B) {
3375 		dwc2_vbus_supply_exit(hsotg);
3376 		/* Wait for switch to device mode */
3377 		dev_dbg(hsotg->dev, "connId B\n");
3378 		if (hsotg->bus_suspended) {
3379 			dev_info(hsotg->dev,
3380 				 "Do port resume before switching to device mode\n");
3381 			dwc2_port_resume(hsotg);
3382 		}
3383 		while (!dwc2_is_device_mode(hsotg)) {
3384 			dev_info(hsotg->dev,
3385 				 "Waiting for Peripheral Mode, Mode=%s\n",
3386 				 dwc2_is_host_mode(hsotg) ? "Host" :
3387 				 "Peripheral");
3388 			msleep(20);
3389 			/*
3390 			 * Sometimes the initial GOTGCTRL read is wrong, so
3391 			 * check it again and jump to host mode if that was
3392 			 * the case.
3393 			 */
3394 			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3395 			if (!(gotgctl & GOTGCTL_CONID_B))
3396 				goto host;
3397 			if (++count > 250)
3398 				break;
3399 		}
3400 		if (count > 250)
3401 			dev_err(hsotg->dev,
3402 				"Connection id status change timed out\n");
3403 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3404 		dwc2_core_init(hsotg, false);
3405 		dwc2_enable_global_interrupts(hsotg);
3406 		spin_lock_irqsave(&hsotg->lock, flags);
3407 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3408 		spin_unlock_irqrestore(&hsotg->lock, flags);
3409 		/* Enable ACG feature in device mode,if supported */
3410 		dwc2_enable_acg(hsotg);
3411 		dwc2_hsotg_core_connect(hsotg);
3412 	} else {
3413 host:
3414 		/* A-Device connector (Host Mode) */
3415 		dev_dbg(hsotg->dev, "connId A\n");
3416 		while (!dwc2_is_host_mode(hsotg)) {
3417 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3418 				 dwc2_is_host_mode(hsotg) ?
3419 				 "Host" : "Peripheral");
3420 			msleep(20);
3421 			if (++count > 250)
3422 				break;
3423 		}
3424 		if (count > 250)
3425 			dev_err(hsotg->dev,
3426 				"Connection id status change timed out\n");
3427 
3428 		spin_lock_irqsave(&hsotg->lock, flags);
3429 		dwc2_hsotg_disconnect(hsotg);
3430 		spin_unlock_irqrestore(&hsotg->lock, flags);
3431 
3432 		hsotg->op_state = OTG_STATE_A_HOST;
3433 		/* Initialize the Core for Host mode */
3434 		dwc2_core_init(hsotg, false);
3435 		dwc2_enable_global_interrupts(hsotg);
3436 		dwc2_hcd_start(hsotg);
3437 	}
3438 }
3439 
dwc2_wakeup_detected(struct timer_list * t)3440 static void dwc2_wakeup_detected(struct timer_list *t)
3441 {
3442 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3443 	u32 hprt0;
3444 
3445 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3446 
3447 	/*
3448 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3449 	 * so that OPT tests pass with all PHYs.)
3450 	 */
3451 	hprt0 = dwc2_read_hprt0(hsotg);
3452 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3453 	hprt0 &= ~HPRT0_RES;
3454 	dwc2_writel(hsotg, hprt0, HPRT0);
3455 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3456 		dwc2_readl(hsotg, HPRT0));
3457 
3458 	dwc2_hcd_rem_wakeup(hsotg);
3459 	hsotg->bus_suspended = false;
3460 
3461 	/* Change to L0 state */
3462 	hsotg->lx_state = DWC2_L0;
3463 }
3464 
dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg * hsotg)3465 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3466 {
3467 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3468 
3469 	return hcd->self.b_hnp_enable;
3470 }
3471 
3472 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_port_suspend(struct dwc2_hsotg * hsotg,u16 windex)3473 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3474 {
3475 	unsigned long flags;
3476 	u32 hprt0;
3477 	u32 pcgctl;
3478 	u32 gotgctl;
3479 
3480 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3481 
3482 	spin_lock_irqsave(&hsotg->lock, flags);
3483 
3484 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3485 		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3486 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3487 		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3488 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3489 	}
3490 
3491 	hprt0 = dwc2_read_hprt0(hsotg);
3492 	hprt0 |= HPRT0_SUSP;
3493 	dwc2_writel(hsotg, hprt0, HPRT0);
3494 
3495 	hsotg->bus_suspended = true;
3496 
3497 	/*
3498 	 * If power_down is supported, Phy clock will be suspended
3499 	 * after registers are backuped.
3500 	 */
3501 	if (!hsotg->params.power_down) {
3502 		/* Suspend the Phy Clock */
3503 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3504 		pcgctl |= PCGCTL_STOPPCLK;
3505 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3506 		udelay(10);
3507 	}
3508 
3509 	/* For HNP the bus must be suspended for at least 200ms */
3510 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3511 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3512 		pcgctl &= ~PCGCTL_STOPPCLK;
3513 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3514 
3515 		spin_unlock_irqrestore(&hsotg->lock, flags);
3516 
3517 		msleep(200);
3518 	} else {
3519 		spin_unlock_irqrestore(&hsotg->lock, flags);
3520 	}
3521 }
3522 
3523 /* Must NOT be called with interrupt disabled or spinlock held */
dwc2_port_resume(struct dwc2_hsotg * hsotg)3524 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3525 {
3526 	unsigned long flags;
3527 	u32 hprt0;
3528 	u32 pcgctl;
3529 
3530 	spin_lock_irqsave(&hsotg->lock, flags);
3531 
3532 	/*
3533 	 * If power_down is supported, Phy clock is already resumed
3534 	 * after registers restore.
3535 	 */
3536 	if (!hsotg->params.power_down) {
3537 		pcgctl = dwc2_readl(hsotg, PCGCTL);
3538 		pcgctl &= ~PCGCTL_STOPPCLK;
3539 		dwc2_writel(hsotg, pcgctl, PCGCTL);
3540 		spin_unlock_irqrestore(&hsotg->lock, flags);
3541 		msleep(20);
3542 		spin_lock_irqsave(&hsotg->lock, flags);
3543 	}
3544 
3545 	hprt0 = dwc2_read_hprt0(hsotg);
3546 	hprt0 |= HPRT0_RES;
3547 	hprt0 &= ~HPRT0_SUSP;
3548 	dwc2_writel(hsotg, hprt0, HPRT0);
3549 	spin_unlock_irqrestore(&hsotg->lock, flags);
3550 
3551 	msleep(USB_RESUME_TIMEOUT);
3552 
3553 	spin_lock_irqsave(&hsotg->lock, flags);
3554 	hprt0 = dwc2_read_hprt0(hsotg);
3555 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3556 	dwc2_writel(hsotg, hprt0, HPRT0);
3557 	hsotg->bus_suspended = false;
3558 	spin_unlock_irqrestore(&hsotg->lock, flags);
3559 }
3560 
3561 /* Handles hub class-specific requests */
dwc2_hcd_hub_control(struct dwc2_hsotg * hsotg,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)3562 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3563 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3564 {
3565 	struct usb_hub_descriptor *hub_desc;
3566 	int retval = 0;
3567 	u32 hprt0;
3568 	u32 port_status;
3569 	u32 speed;
3570 	u32 pcgctl;
3571 	u32 pwr;
3572 
3573 	switch (typereq) {
3574 	case ClearHubFeature:
3575 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3576 
3577 		switch (wvalue) {
3578 		case C_HUB_LOCAL_POWER:
3579 		case C_HUB_OVER_CURRENT:
3580 			/* Nothing required here */
3581 			break;
3582 
3583 		default:
3584 			retval = -EINVAL;
3585 			dev_err(hsotg->dev,
3586 				"ClearHubFeature request %1xh unknown\n",
3587 				wvalue);
3588 		}
3589 		break;
3590 
3591 	case ClearPortFeature:
3592 		if (wvalue != USB_PORT_FEAT_L1)
3593 			if (!windex || windex > 1)
3594 				goto error;
3595 		switch (wvalue) {
3596 		case USB_PORT_FEAT_ENABLE:
3597 			dev_dbg(hsotg->dev,
3598 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3599 			hprt0 = dwc2_read_hprt0(hsotg);
3600 			hprt0 |= HPRT0_ENA;
3601 			dwc2_writel(hsotg, hprt0, HPRT0);
3602 			break;
3603 
3604 		case USB_PORT_FEAT_SUSPEND:
3605 			dev_dbg(hsotg->dev,
3606 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3607 
3608 			if (hsotg->bus_suspended) {
3609 				if (hsotg->hibernated)
3610 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3611 				else
3612 					dwc2_port_resume(hsotg);
3613 			}
3614 			break;
3615 
3616 		case USB_PORT_FEAT_POWER:
3617 			dev_dbg(hsotg->dev,
3618 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3619 			hprt0 = dwc2_read_hprt0(hsotg);
3620 			pwr = hprt0 & HPRT0_PWR;
3621 			hprt0 &= ~HPRT0_PWR;
3622 			dwc2_writel(hsotg, hprt0, HPRT0);
3623 			if (pwr)
3624 				dwc2_vbus_supply_exit(hsotg);
3625 			break;
3626 
3627 		case USB_PORT_FEAT_INDICATOR:
3628 			dev_dbg(hsotg->dev,
3629 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3630 			/* Port indicator not supported */
3631 			break;
3632 
3633 		case USB_PORT_FEAT_C_CONNECTION:
3634 			/*
3635 			 * Clears driver's internal Connect Status Change flag
3636 			 */
3637 			dev_dbg(hsotg->dev,
3638 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3639 			hsotg->flags.b.port_connect_status_change = 0;
3640 			break;
3641 
3642 		case USB_PORT_FEAT_C_RESET:
3643 			/* Clears driver's internal Port Reset Change flag */
3644 			dev_dbg(hsotg->dev,
3645 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3646 			hsotg->flags.b.port_reset_change = 0;
3647 			break;
3648 
3649 		case USB_PORT_FEAT_C_ENABLE:
3650 			/*
3651 			 * Clears the driver's internal Port Enable/Disable
3652 			 * Change flag
3653 			 */
3654 			dev_dbg(hsotg->dev,
3655 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3656 			hsotg->flags.b.port_enable_change = 0;
3657 			break;
3658 
3659 		case USB_PORT_FEAT_C_SUSPEND:
3660 			/*
3661 			 * Clears the driver's internal Port Suspend Change
3662 			 * flag, which is set when resume signaling on the host
3663 			 * port is complete
3664 			 */
3665 			dev_dbg(hsotg->dev,
3666 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3667 			hsotg->flags.b.port_suspend_change = 0;
3668 			break;
3669 
3670 		case USB_PORT_FEAT_C_PORT_L1:
3671 			dev_dbg(hsotg->dev,
3672 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3673 			hsotg->flags.b.port_l1_change = 0;
3674 			break;
3675 
3676 		case USB_PORT_FEAT_C_OVER_CURRENT:
3677 			dev_dbg(hsotg->dev,
3678 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3679 			hsotg->flags.b.port_over_current_change = 0;
3680 			break;
3681 
3682 		default:
3683 			retval = -EINVAL;
3684 			dev_err(hsotg->dev,
3685 				"ClearPortFeature request %1xh unknown or unsupported\n",
3686 				wvalue);
3687 		}
3688 		break;
3689 
3690 	case GetHubDescriptor:
3691 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3692 		hub_desc = (struct usb_hub_descriptor *)buf;
3693 		hub_desc->bDescLength = 9;
3694 		hub_desc->bDescriptorType = USB_DT_HUB;
3695 		hub_desc->bNbrPorts = 1;
3696 		hub_desc->wHubCharacteristics =
3697 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3698 				    HUB_CHAR_INDV_PORT_OCPM);
3699 		hub_desc->bPwrOn2PwrGood = 1;
3700 		hub_desc->bHubContrCurrent = 0;
3701 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3702 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3703 		break;
3704 
3705 	case GetHubStatus:
3706 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3707 		memset(buf, 0, 4);
3708 		break;
3709 
3710 	case GetPortStatus:
3711 		dev_vdbg(hsotg->dev,
3712 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3713 			 hsotg->flags.d32);
3714 		if (!windex || windex > 1)
3715 			goto error;
3716 
3717 		port_status = 0;
3718 		if (hsotg->flags.b.port_connect_status_change)
3719 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3720 		if (hsotg->flags.b.port_enable_change)
3721 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3722 		if (hsotg->flags.b.port_suspend_change)
3723 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3724 		if (hsotg->flags.b.port_l1_change)
3725 			port_status |= USB_PORT_STAT_C_L1 << 16;
3726 		if (hsotg->flags.b.port_reset_change)
3727 			port_status |= USB_PORT_STAT_C_RESET << 16;
3728 		if (hsotg->flags.b.port_over_current_change) {
3729 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3730 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3731 		}
3732 
3733 		if (!hsotg->flags.b.port_connect_status) {
3734 			/*
3735 			 * The port is disconnected, which means the core is
3736 			 * either in device mode or it soon will be. Just
3737 			 * return 0's for the remainder of the port status
3738 			 * since the port register can't be read if the core
3739 			 * is in device mode.
3740 			 */
3741 			*(__le32 *)buf = cpu_to_le32(port_status);
3742 			break;
3743 		}
3744 
3745 		hprt0 = dwc2_readl(hsotg, HPRT0);
3746 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3747 
3748 		if (hprt0 & HPRT0_CONNSTS)
3749 			port_status |= USB_PORT_STAT_CONNECTION;
3750 		if (hprt0 & HPRT0_ENA)
3751 			port_status |= USB_PORT_STAT_ENABLE;
3752 		if (hprt0 & HPRT0_SUSP)
3753 			port_status |= USB_PORT_STAT_SUSPEND;
3754 		if (hprt0 & HPRT0_OVRCURRACT)
3755 			port_status |= USB_PORT_STAT_OVERCURRENT;
3756 		if (hprt0 & HPRT0_RST)
3757 			port_status |= USB_PORT_STAT_RESET;
3758 		if (hprt0 & HPRT0_PWR)
3759 			port_status |= USB_PORT_STAT_POWER;
3760 
3761 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3762 		if (speed == HPRT0_SPD_HIGH_SPEED)
3763 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3764 		else if (speed == HPRT0_SPD_LOW_SPEED)
3765 			port_status |= USB_PORT_STAT_LOW_SPEED;
3766 
3767 		if (hprt0 & HPRT0_TSTCTL_MASK)
3768 			port_status |= USB_PORT_STAT_TEST;
3769 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3770 
3771 		if (hsotg->params.dma_desc_fs_enable) {
3772 			/*
3773 			 * Enable descriptor DMA only if a full speed
3774 			 * device is connected.
3775 			 */
3776 			if (hsotg->new_connection &&
3777 			    ((port_status &
3778 			      (USB_PORT_STAT_CONNECTION |
3779 			       USB_PORT_STAT_HIGH_SPEED |
3780 			       USB_PORT_STAT_LOW_SPEED)) ==
3781 			       USB_PORT_STAT_CONNECTION)) {
3782 				u32 hcfg;
3783 
3784 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3785 				hsotg->params.dma_desc_enable = true;
3786 				hcfg = dwc2_readl(hsotg, HCFG);
3787 				hcfg |= HCFG_DESCDMA;
3788 				dwc2_writel(hsotg, hcfg, HCFG);
3789 				hsotg->new_connection = false;
3790 			}
3791 		}
3792 
3793 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3794 		*(__le32 *)buf = cpu_to_le32(port_status);
3795 		break;
3796 
3797 	case SetHubFeature:
3798 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3799 		/* No HUB features supported */
3800 		break;
3801 
3802 	case SetPortFeature:
3803 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3804 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3805 			goto error;
3806 
3807 		if (!hsotg->flags.b.port_connect_status) {
3808 			/*
3809 			 * The port is disconnected, which means the core is
3810 			 * either in device mode or it soon will be. Just
3811 			 * return without doing anything since the port
3812 			 * register can't be written if the core is in device
3813 			 * mode.
3814 			 */
3815 			break;
3816 		}
3817 
3818 		switch (wvalue) {
3819 		case USB_PORT_FEAT_SUSPEND:
3820 			dev_dbg(hsotg->dev,
3821 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3822 			if (windex != hsotg->otg_port)
3823 				goto error;
3824 			if (hsotg->params.power_down == 2)
3825 				dwc2_enter_hibernation(hsotg, 1);
3826 			else
3827 				dwc2_port_suspend(hsotg, windex);
3828 			break;
3829 
3830 		case USB_PORT_FEAT_POWER:
3831 			dev_dbg(hsotg->dev,
3832 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3833 			hprt0 = dwc2_read_hprt0(hsotg);
3834 			pwr = hprt0 & HPRT0_PWR;
3835 			hprt0 |= HPRT0_PWR;
3836 			dwc2_writel(hsotg, hprt0, HPRT0);
3837 			if (!pwr)
3838 				dwc2_vbus_supply_init(hsotg);
3839 			break;
3840 
3841 		case USB_PORT_FEAT_RESET:
3842 			if (hsotg->params.power_down == 2 &&
3843 			    hsotg->hibernated)
3844 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3845 			hprt0 = dwc2_read_hprt0(hsotg);
3846 			dev_dbg(hsotg->dev,
3847 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3848 			pcgctl = dwc2_readl(hsotg, PCGCTL);
3849 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3850 			dwc2_writel(hsotg, pcgctl, PCGCTL);
3851 			/* ??? Original driver does this */
3852 			dwc2_writel(hsotg, 0, PCGCTL);
3853 
3854 			hprt0 = dwc2_read_hprt0(hsotg);
3855 			pwr = hprt0 & HPRT0_PWR;
3856 			/* Clear suspend bit if resetting from suspend state */
3857 			hprt0 &= ~HPRT0_SUSP;
3858 
3859 			/*
3860 			 * When B-Host the Port reset bit is set in the Start
3861 			 * HCD Callback function, so that the reset is started
3862 			 * within 1ms of the HNP success interrupt
3863 			 */
3864 			if (!dwc2_hcd_is_b_host(hsotg)) {
3865 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3866 				dev_dbg(hsotg->dev,
3867 					"In host mode, hprt0=%08x\n", hprt0);
3868 				dwc2_writel(hsotg, hprt0, HPRT0);
3869 				if (!pwr)
3870 					dwc2_vbus_supply_init(hsotg);
3871 			}
3872 
3873 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3874 			msleep(50);
3875 			hprt0 &= ~HPRT0_RST;
3876 			dwc2_writel(hsotg, hprt0, HPRT0);
3877 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3878 			break;
3879 
3880 		case USB_PORT_FEAT_INDICATOR:
3881 			dev_dbg(hsotg->dev,
3882 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3883 			/* Not supported */
3884 			break;
3885 
3886 		case USB_PORT_FEAT_TEST:
3887 			hprt0 = dwc2_read_hprt0(hsotg);
3888 			dev_dbg(hsotg->dev,
3889 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3890 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3891 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3892 			dwc2_writel(hsotg, hprt0, HPRT0);
3893 			break;
3894 
3895 		default:
3896 			retval = -EINVAL;
3897 			dev_err(hsotg->dev,
3898 				"SetPortFeature %1xh unknown or unsupported\n",
3899 				wvalue);
3900 			break;
3901 		}
3902 		break;
3903 
3904 	default:
3905 error:
3906 		retval = -EINVAL;
3907 		dev_dbg(hsotg->dev,
3908 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3909 			typereq, windex, wvalue);
3910 		break;
3911 	}
3912 
3913 	return retval;
3914 }
3915 
dwc2_hcd_is_status_changed(struct dwc2_hsotg * hsotg,int port)3916 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3917 {
3918 	int retval;
3919 
3920 	if (port != 1)
3921 		return -EINVAL;
3922 
3923 	retval = (hsotg->flags.b.port_connect_status_change ||
3924 		  hsotg->flags.b.port_reset_change ||
3925 		  hsotg->flags.b.port_enable_change ||
3926 		  hsotg->flags.b.port_suspend_change ||
3927 		  hsotg->flags.b.port_over_current_change);
3928 
3929 	if (retval) {
3930 		dev_dbg(hsotg->dev,
3931 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3932 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3933 			hsotg->flags.b.port_connect_status_change);
3934 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3935 			hsotg->flags.b.port_reset_change);
3936 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3937 			hsotg->flags.b.port_enable_change);
3938 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3939 			hsotg->flags.b.port_suspend_change);
3940 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3941 			hsotg->flags.b.port_over_current_change);
3942 	}
3943 
3944 	return retval;
3945 }
3946 
dwc2_hcd_get_frame_number(struct dwc2_hsotg * hsotg)3947 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3948 {
3949 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3950 
3951 #ifdef DWC2_DEBUG_SOF
3952 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3953 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3954 #endif
3955 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3956 }
3957 
dwc2_hcd_get_future_frame_number(struct dwc2_hsotg * hsotg,int us)3958 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3959 {
3960 	u32 hprt = dwc2_readl(hsotg, HPRT0);
3961 	u32 hfir = dwc2_readl(hsotg, HFIR);
3962 	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3963 	unsigned int us_per_frame;
3964 	unsigned int frame_number;
3965 	unsigned int remaining;
3966 	unsigned int interval;
3967 	unsigned int phy_clks;
3968 
3969 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3970 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3971 
3972 	/* Extract fields */
3973 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3974 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3975 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3976 
3977 	/*
3978 	 * Number of phy clocks since the last tick of the frame number after
3979 	 * "us" has passed.
3980 	 */
3981 	phy_clks = (interval - remaining) +
3982 		   DIV_ROUND_UP(interval * us, us_per_frame);
3983 
3984 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3985 }
3986 
dwc2_hcd_is_b_host(struct dwc2_hsotg * hsotg)3987 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3988 {
3989 	return hsotg->op_state == OTG_STATE_B_HOST;
3990 }
3991 
dwc2_hcd_urb_alloc(struct dwc2_hsotg * hsotg,int iso_desc_count,gfp_t mem_flags)3992 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3993 					       int iso_desc_count,
3994 					       gfp_t mem_flags)
3995 {
3996 	struct dwc2_hcd_urb *urb;
3997 	u32 size = sizeof(*urb) + iso_desc_count *
3998 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3999 
4000 	urb = kzalloc(size, mem_flags);
4001 	if (urb)
4002 		urb->packet_count = iso_desc_count;
4003 	return urb;
4004 }
4005 
dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg * hsotg,struct dwc2_hcd_urb * urb,u8 dev_addr,u8 ep_num,u8 ep_type,u8 ep_dir,u16 maxp,u16 maxp_mult)4006 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
4007 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
4008 				      u8 ep_num, u8 ep_type, u8 ep_dir,
4009 				      u16 maxp, u16 maxp_mult)
4010 {
4011 	if (dbg_perio() ||
4012 	    ep_type == USB_ENDPOINT_XFER_BULK ||
4013 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
4014 		dev_vdbg(hsotg->dev,
4015 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
4016 			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
4017 	urb->pipe_info.dev_addr = dev_addr;
4018 	urb->pipe_info.ep_num = ep_num;
4019 	urb->pipe_info.pipe_type = ep_type;
4020 	urb->pipe_info.pipe_dir = ep_dir;
4021 	urb->pipe_info.maxp = maxp;
4022 	urb->pipe_info.maxp_mult = maxp_mult;
4023 }
4024 
4025 /*
4026  * NOTE: This function will be removed once the peripheral controller code
4027  * is integrated and the driver is stable
4028  */
dwc2_hcd_dump_state(struct dwc2_hsotg * hsotg)4029 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4030 {
4031 #ifdef DEBUG
4032 	struct dwc2_host_chan *chan;
4033 	struct dwc2_hcd_urb *urb;
4034 	struct dwc2_qtd *qtd;
4035 	int num_channels;
4036 	u32 np_tx_status;
4037 	u32 p_tx_status;
4038 	int i;
4039 
4040 	num_channels = hsotg->params.host_channels;
4041 	dev_dbg(hsotg->dev, "\n");
4042 	dev_dbg(hsotg->dev,
4043 		"************************************************************\n");
4044 	dev_dbg(hsotg->dev, "HCD State:\n");
4045 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
4046 
4047 	for (i = 0; i < num_channels; i++) {
4048 		chan = hsotg->hc_ptr_array[i];
4049 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
4050 		dev_dbg(hsotg->dev,
4051 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4052 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
4053 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
4054 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
4055 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
4056 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
4057 			chan->data_pid_start);
4058 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
4059 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
4060 			chan->xfer_started);
4061 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
4062 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
4063 			(unsigned long)chan->xfer_dma);
4064 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
4065 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
4066 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
4067 			chan->halt_on_queue);
4068 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
4069 			chan->halt_pending);
4070 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
4071 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
4072 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
4073 			chan->complete_split);
4074 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
4075 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
4076 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
4077 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
4078 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
4079 
4080 		if (chan->xfer_started) {
4081 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4082 
4083 			hfnum = dwc2_readl(hsotg, HFNUM);
4084 			hcchar = dwc2_readl(hsotg, HCCHAR(i));
4085 			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
4086 			hcint = dwc2_readl(hsotg, HCINT(i));
4087 			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
4088 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4089 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4090 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4091 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4092 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4093 		}
4094 
4095 		if (!(chan->xfer_started && chan->qh))
4096 			continue;
4097 
4098 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4099 			if (!qtd->in_process)
4100 				break;
4101 			urb = qtd->urb;
4102 			dev_dbg(hsotg->dev, "    URB Info:\n");
4103 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4104 				qtd, urb);
4105 			if (urb) {
4106 				dev_dbg(hsotg->dev,
4107 					"      Dev: %d, EP: %d %s\n",
4108 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
4109 					dwc2_hcd_get_ep_num(&urb->pipe_info),
4110 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4111 					"IN" : "OUT");
4112 				dev_dbg(hsotg->dev,
4113 					"      Max packet size: %d (%d mult)\n",
4114 					dwc2_hcd_get_maxp(&urb->pipe_info),
4115 					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
4116 				dev_dbg(hsotg->dev,
4117 					"      transfer_buffer: %p\n",
4118 					urb->buf);
4119 				dev_dbg(hsotg->dev,
4120 					"      transfer_dma: %08lx\n",
4121 					(unsigned long)urb->dma);
4122 				dev_dbg(hsotg->dev,
4123 					"      transfer_buffer_length: %d\n",
4124 					urb->length);
4125 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
4126 					urb->actual_length);
4127 			}
4128 		}
4129 	}
4130 
4131 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4132 		hsotg->non_periodic_channels);
4133 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4134 		hsotg->periodic_channels);
4135 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4136 	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
4137 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4138 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4139 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4140 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4141 	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
4142 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4143 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4144 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4145 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4146 	dwc2_dump_global_registers(hsotg);
4147 	dwc2_dump_host_registers(hsotg);
4148 	dev_dbg(hsotg->dev,
4149 		"************************************************************\n");
4150 	dev_dbg(hsotg->dev, "\n");
4151 #endif
4152 }
4153 
4154 struct wrapper_priv_data {
4155 	struct dwc2_hsotg *hsotg;
4156 };
4157 
4158 /* Gets the dwc2_hsotg from a usb_hcd */
dwc2_hcd_to_hsotg(struct usb_hcd * hcd)4159 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4160 {
4161 	struct wrapper_priv_data *p;
4162 
4163 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4164 	return p->hsotg;
4165 }
4166 
4167 /**
4168  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4169  *
4170  * This will get the dwc2_tt structure (and ttport) associated with the given
4171  * context (which is really just a struct urb pointer).
4172  *
4173  * The first time this is called for a given TT we allocate memory for our
4174  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4175  * then the refcount for the structure will go to 0 and we'll free it.
4176  *
4177  * @hsotg:     The HCD state structure for the DWC OTG controller.
4178  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4179  * @mem_flags: Flags for allocating memory.
4180  * @ttport:    We'll return this device's port number here.  That's used to
4181  *             reference into the bitmap if we're on a multi_tt hub.
4182  *
4183  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4184  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4185  */
4186 
dwc2_host_get_tt_info(struct dwc2_hsotg * hsotg,void * context,gfp_t mem_flags,int * ttport)4187 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4188 				      gfp_t mem_flags, int *ttport)
4189 {
4190 	struct urb *urb = context;
4191 	struct dwc2_tt *dwc_tt = NULL;
4192 
4193 	if (urb->dev->tt) {
4194 		*ttport = urb->dev->ttport;
4195 
4196 		dwc_tt = urb->dev->tt->hcpriv;
4197 		if (!dwc_tt) {
4198 			size_t bitmap_size;
4199 
4200 			/*
4201 			 * For single_tt we need one schedule.  For multi_tt
4202 			 * we need one per port.
4203 			 */
4204 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4205 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4206 			if (urb->dev->tt->multi)
4207 				bitmap_size *= urb->dev->tt->hub->maxchild;
4208 
4209 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4210 					 mem_flags);
4211 			if (!dwc_tt)
4212 				return NULL;
4213 
4214 			dwc_tt->usb_tt = urb->dev->tt;
4215 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4216 		}
4217 
4218 		dwc_tt->refcount++;
4219 	}
4220 
4221 	return dwc_tt;
4222 }
4223 
4224 /**
4225  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4226  *
4227  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4228  * of the structure are done.
4229  *
4230  * It's OK to call this with NULL.
4231  *
4232  * @hsotg:     The HCD state structure for the DWC OTG controller.
4233  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4234  */
dwc2_host_put_tt_info(struct dwc2_hsotg * hsotg,struct dwc2_tt * dwc_tt)4235 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4236 {
4237 	/* Model kfree and make put of NULL a no-op */
4238 	if (!dwc_tt)
4239 		return;
4240 
4241 	WARN_ON(dwc_tt->refcount < 1);
4242 
4243 	dwc_tt->refcount--;
4244 	if (!dwc_tt->refcount) {
4245 		dwc_tt->usb_tt->hcpriv = NULL;
4246 		kfree(dwc_tt);
4247 	}
4248 }
4249 
dwc2_host_get_speed(struct dwc2_hsotg * hsotg,void * context)4250 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4251 {
4252 	struct urb *urb = context;
4253 
4254 	return urb->dev->speed;
4255 }
4256 
dwc2_allocate_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4257 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4258 					struct urb *urb)
4259 {
4260 	struct usb_bus *bus = hcd_to_bus(hcd);
4261 
4262 	if (urb->interval)
4263 		bus->bandwidth_allocated += bw / urb->interval;
4264 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4265 		bus->bandwidth_isoc_reqs++;
4266 	else
4267 		bus->bandwidth_int_reqs++;
4268 }
4269 
dwc2_free_bus_bandwidth(struct usb_hcd * hcd,u16 bw,struct urb * urb)4270 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4271 				    struct urb *urb)
4272 {
4273 	struct usb_bus *bus = hcd_to_bus(hcd);
4274 
4275 	if (urb->interval)
4276 		bus->bandwidth_allocated -= bw / urb->interval;
4277 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4278 		bus->bandwidth_isoc_reqs--;
4279 	else
4280 		bus->bandwidth_int_reqs--;
4281 }
4282 
4283 /*
4284  * Sets the final status of an URB and returns it to the upper layer. Any
4285  * required cleanup of the URB is performed.
4286  *
4287  * Must be called with interrupt disabled and spinlock held
4288  */
dwc2_host_complete(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,int status)4289 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4290 			int status)
4291 {
4292 	struct urb *urb;
4293 	int i;
4294 
4295 	if (!qtd) {
4296 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4297 		return;
4298 	}
4299 
4300 	if (!qtd->urb) {
4301 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4302 		return;
4303 	}
4304 
4305 	urb = qtd->urb->priv;
4306 	if (!urb) {
4307 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4308 		return;
4309 	}
4310 
4311 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4312 
4313 	if (dbg_urb(urb))
4314 		dev_vdbg(hsotg->dev,
4315 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4316 			 __func__, urb, usb_pipedevice(urb->pipe),
4317 			 usb_pipeendpoint(urb->pipe),
4318 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4319 			 urb->actual_length);
4320 
4321 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4322 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4323 		for (i = 0; i < urb->number_of_packets; ++i) {
4324 			urb->iso_frame_desc[i].actual_length =
4325 				dwc2_hcd_urb_get_iso_desc_actual_length(
4326 						qtd->urb, i);
4327 			urb->iso_frame_desc[i].status =
4328 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4329 		}
4330 	}
4331 
4332 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4333 		for (i = 0; i < urb->number_of_packets; i++)
4334 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4335 				 i, urb->iso_frame_desc[i].status);
4336 	}
4337 
4338 	urb->status = status;
4339 	if (!status) {
4340 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4341 		    urb->actual_length < urb->transfer_buffer_length)
4342 			urb->status = -EREMOTEIO;
4343 	}
4344 
4345 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4346 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4347 		struct usb_host_endpoint *ep = urb->ep;
4348 
4349 		if (ep)
4350 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4351 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4352 					urb);
4353 	}
4354 
4355 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4356 	urb->hcpriv = NULL;
4357 	kfree(qtd->urb);
4358 	qtd->urb = NULL;
4359 
4360 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4361 }
4362 
4363 /*
4364  * Work queue function for starting the HCD when A-Cable is connected
4365  */
dwc2_hcd_start_func(struct work_struct * work)4366 static void dwc2_hcd_start_func(struct work_struct *work)
4367 {
4368 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4369 						start_work.work);
4370 
4371 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4372 	dwc2_host_start(hsotg);
4373 }
4374 
4375 /*
4376  * Reset work queue function
4377  */
dwc2_hcd_reset_func(struct work_struct * work)4378 static void dwc2_hcd_reset_func(struct work_struct *work)
4379 {
4380 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4381 						reset_work.work);
4382 	unsigned long flags;
4383 	u32 hprt0;
4384 
4385 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4386 
4387 	spin_lock_irqsave(&hsotg->lock, flags);
4388 
4389 	hprt0 = dwc2_read_hprt0(hsotg);
4390 	hprt0 &= ~HPRT0_RST;
4391 	dwc2_writel(hsotg, hprt0, HPRT0);
4392 	hsotg->flags.b.port_reset_change = 1;
4393 
4394 	spin_unlock_irqrestore(&hsotg->lock, flags);
4395 }
4396 
4397 /*
4398  * =========================================================================
4399  *  Linux HC Driver Functions
4400  * =========================================================================
4401  */
4402 
4403 /*
4404  * Initializes the DWC_otg controller and its root hub and prepares it for host
4405  * mode operation. Activates the root port. Returns 0 on success and a negative
4406  * error code on failure.
4407  */
_dwc2_hcd_start(struct usb_hcd * hcd)4408 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4409 {
4410 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4411 	struct usb_bus *bus = hcd_to_bus(hcd);
4412 	unsigned long flags;
4413 	u32 hprt0;
4414 	int ret;
4415 
4416 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4417 
4418 	spin_lock_irqsave(&hsotg->lock, flags);
4419 	hsotg->lx_state = DWC2_L0;
4420 	hcd->state = HC_STATE_RUNNING;
4421 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4422 
4423 	if (dwc2_is_device_mode(hsotg)) {
4424 		spin_unlock_irqrestore(&hsotg->lock, flags);
4425 		return 0;	/* why 0 ?? */
4426 	}
4427 
4428 	dwc2_hcd_reinit(hsotg);
4429 
4430 	hprt0 = dwc2_read_hprt0(hsotg);
4431 	/* Has vbus power been turned on in dwc2_core_host_init ? */
4432 	if (hprt0 & HPRT0_PWR) {
4433 		/* Enable external vbus supply before resuming root hub */
4434 		spin_unlock_irqrestore(&hsotg->lock, flags);
4435 		ret = dwc2_vbus_supply_init(hsotg);
4436 		if (ret)
4437 			return ret;
4438 		spin_lock_irqsave(&hsotg->lock, flags);
4439 	}
4440 
4441 	/* Initialize and connect root hub if one is not already attached */
4442 	if (bus->root_hub) {
4443 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4444 		/* Inform the HUB driver to resume */
4445 		usb_hcd_resume_root_hub(hcd);
4446 	}
4447 
4448 	spin_unlock_irqrestore(&hsotg->lock, flags);
4449 
4450 	return 0;
4451 }
4452 
4453 /*
4454  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4455  * stopped.
4456  */
_dwc2_hcd_stop(struct usb_hcd * hcd)4457 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4458 {
4459 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4460 	unsigned long flags;
4461 	u32 hprt0;
4462 
4463 	/* Turn off all host-specific interrupts */
4464 	dwc2_disable_host_interrupts(hsotg);
4465 
4466 	/* Wait for interrupt processing to finish */
4467 	synchronize_irq(hcd->irq);
4468 
4469 	spin_lock_irqsave(&hsotg->lock, flags);
4470 	hprt0 = dwc2_read_hprt0(hsotg);
4471 	/* Ensure hcd is disconnected */
4472 	dwc2_hcd_disconnect(hsotg, true);
4473 	dwc2_hcd_stop(hsotg);
4474 	hsotg->lx_state = DWC2_L3;
4475 	hcd->state = HC_STATE_HALT;
4476 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4477 	spin_unlock_irqrestore(&hsotg->lock, flags);
4478 
4479 	/* keep balanced supply init/exit by checking HPRT0_PWR */
4480 	if (hprt0 & HPRT0_PWR)
4481 		dwc2_vbus_supply_exit(hsotg);
4482 
4483 	usleep_range(1000, 3000);
4484 }
4485 
_dwc2_hcd_suspend(struct usb_hcd * hcd)4486 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4487 {
4488 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4489 	unsigned long flags;
4490 	int ret = 0;
4491 	u32 hprt0;
4492 
4493 	spin_lock_irqsave(&hsotg->lock, flags);
4494 
4495 	if (dwc2_is_device_mode(hsotg))
4496 		goto unlock;
4497 
4498 	if (hsotg->lx_state != DWC2_L0)
4499 		goto unlock;
4500 
4501 	if (!HCD_HW_ACCESSIBLE(hcd))
4502 		goto unlock;
4503 
4504 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4505 		goto unlock;
4506 
4507 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4508 		goto skip_power_saving;
4509 
4510 	/*
4511 	 * Drive USB suspend and disable port Power
4512 	 * if usb bus is not suspended.
4513 	 */
4514 	if (!hsotg->bus_suspended) {
4515 		hprt0 = dwc2_read_hprt0(hsotg);
4516 		hprt0 |= HPRT0_SUSP;
4517 		hprt0 &= ~HPRT0_PWR;
4518 		dwc2_writel(hsotg, hprt0, HPRT0);
4519 		spin_unlock_irqrestore(&hsotg->lock, flags);
4520 		dwc2_vbus_supply_exit(hsotg);
4521 		spin_lock_irqsave(&hsotg->lock, flags);
4522 	}
4523 
4524 	/* Enter partial_power_down */
4525 	ret = dwc2_enter_partial_power_down(hsotg);
4526 	if (ret) {
4527 		if (ret != -ENOTSUPP)
4528 			dev_err(hsotg->dev,
4529 				"enter partial_power_down failed\n");
4530 		goto skip_power_saving;
4531 	}
4532 
4533 	/* Ask phy to be suspended */
4534 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4535 		spin_unlock_irqrestore(&hsotg->lock, flags);
4536 		usb_phy_set_suspend(hsotg->uphy, true);
4537 		spin_lock_irqsave(&hsotg->lock, flags);
4538 	}
4539 
4540 	/* After entering partial_power_down, hardware is no more accessible */
4541 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4542 
4543 skip_power_saving:
4544 	hsotg->lx_state = DWC2_L2;
4545 unlock:
4546 	spin_unlock_irqrestore(&hsotg->lock, flags);
4547 
4548 	return ret;
4549 }
4550 
_dwc2_hcd_resume(struct usb_hcd * hcd)4551 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4552 {
4553 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554 	unsigned long flags;
4555 	int ret = 0;
4556 
4557 	spin_lock_irqsave(&hsotg->lock, flags);
4558 
4559 	if (dwc2_is_device_mode(hsotg))
4560 		goto unlock;
4561 
4562 	if (hsotg->lx_state != DWC2_L2)
4563 		goto unlock;
4564 
4565 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4566 		hsotg->lx_state = DWC2_L0;
4567 		goto unlock;
4568 	}
4569 
4570 	/*
4571 	 * Set HW accessible bit before powering on the controller
4572 	 * since an interrupt may rise.
4573 	 */
4574 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4575 
4576 	/*
4577 	 * Enable power if not already done.
4578 	 * This must not be spinlocked since duration
4579 	 * of this call is unknown.
4580 	 */
4581 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4582 		spin_unlock_irqrestore(&hsotg->lock, flags);
4583 		usb_phy_set_suspend(hsotg->uphy, false);
4584 		spin_lock_irqsave(&hsotg->lock, flags);
4585 	}
4586 
4587 	/* Exit partial_power_down */
4588 	ret = dwc2_exit_partial_power_down(hsotg, true);
4589 	if (ret && (ret != -ENOTSUPP))
4590 		dev_err(hsotg->dev, "exit partial_power_down failed\n");
4591 
4592 	hsotg->lx_state = DWC2_L0;
4593 
4594 	spin_unlock_irqrestore(&hsotg->lock, flags);
4595 
4596 	if (hsotg->bus_suspended) {
4597 		spin_lock_irqsave(&hsotg->lock, flags);
4598 		hsotg->flags.b.port_suspend_change = 1;
4599 		spin_unlock_irqrestore(&hsotg->lock, flags);
4600 		dwc2_port_resume(hsotg);
4601 	} else {
4602 		dwc2_vbus_supply_init(hsotg);
4603 
4604 		/* Wait for controller to correctly update D+/D- level */
4605 		usleep_range(3000, 5000);
4606 
4607 		/*
4608 		 * Clear Port Enable and Port Status changes.
4609 		 * Enable Port Power.
4610 		 */
4611 		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4612 				HPRT0_ENACHG, HPRT0);
4613 		/* Wait for controller to detect Port Connect */
4614 		usleep_range(5000, 7000);
4615 	}
4616 
4617 	return ret;
4618 unlock:
4619 	spin_unlock_irqrestore(&hsotg->lock, flags);
4620 
4621 	return ret;
4622 }
4623 
4624 /* Returns the current frame number */
_dwc2_hcd_get_frame_number(struct usb_hcd * hcd)4625 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4626 {
4627 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4628 
4629 	return dwc2_hcd_get_frame_number(hsotg);
4630 }
4631 
dwc2_dump_urb_info(struct usb_hcd * hcd,struct urb * urb,char * fn_name)4632 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4633 			       char *fn_name)
4634 {
4635 #ifdef VERBOSE_DEBUG
4636 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4637 	char *pipetype = NULL;
4638 	char *speed = NULL;
4639 
4640 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4641 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4642 		 usb_pipedevice(urb->pipe));
4643 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4644 		 usb_pipeendpoint(urb->pipe),
4645 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4646 
4647 	switch (usb_pipetype(urb->pipe)) {
4648 	case PIPE_CONTROL:
4649 		pipetype = "CONTROL";
4650 		break;
4651 	case PIPE_BULK:
4652 		pipetype = "BULK";
4653 		break;
4654 	case PIPE_INTERRUPT:
4655 		pipetype = "INTERRUPT";
4656 		break;
4657 	case PIPE_ISOCHRONOUS:
4658 		pipetype = "ISOCHRONOUS";
4659 		break;
4660 	}
4661 
4662 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4663 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4664 		 "IN" : "OUT");
4665 
4666 	switch (urb->dev->speed) {
4667 	case USB_SPEED_HIGH:
4668 		speed = "HIGH";
4669 		break;
4670 	case USB_SPEED_FULL:
4671 		speed = "FULL";
4672 		break;
4673 	case USB_SPEED_LOW:
4674 		speed = "LOW";
4675 		break;
4676 	default:
4677 		speed = "UNKNOWN";
4678 		break;
4679 	}
4680 
4681 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4682 	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4683 		 usb_endpoint_maxp(&urb->ep->desc),
4684 		 usb_endpoint_maxp_mult(&urb->ep->desc));
4685 
4686 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4687 		 urb->transfer_buffer_length);
4688 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4689 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4690 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4691 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4692 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4693 
4694 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4695 		int i;
4696 
4697 		for (i = 0; i < urb->number_of_packets; i++) {
4698 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4699 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4700 				 urb->iso_frame_desc[i].offset,
4701 				 urb->iso_frame_desc[i].length);
4702 		}
4703 	}
4704 #endif
4705 }
4706 
4707 /*
4708  * Starts processing a USB transfer request specified by a USB Request Block
4709  * (URB). mem_flags indicates the type of memory allocation to use while
4710  * processing this URB.
4711  */
_dwc2_hcd_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)4712 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4713 				 gfp_t mem_flags)
4714 {
4715 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4716 	struct usb_host_endpoint *ep = urb->ep;
4717 	struct dwc2_hcd_urb *dwc2_urb;
4718 	int i;
4719 	int retval;
4720 	int alloc_bandwidth = 0;
4721 	u8 ep_type = 0;
4722 	u32 tflags = 0;
4723 	void *buf;
4724 	unsigned long flags;
4725 	struct dwc2_qh *qh;
4726 	bool qh_allocated = false;
4727 	struct dwc2_qtd *qtd;
4728 
4729 	if (dbg_urb(urb)) {
4730 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4731 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4732 	}
4733 
4734 	if (!ep)
4735 		return -EINVAL;
4736 
4737 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4738 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4739 		spin_lock_irqsave(&hsotg->lock, flags);
4740 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4741 			alloc_bandwidth = 1;
4742 		spin_unlock_irqrestore(&hsotg->lock, flags);
4743 	}
4744 
4745 	switch (usb_pipetype(urb->pipe)) {
4746 	case PIPE_CONTROL:
4747 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4748 		break;
4749 	case PIPE_ISOCHRONOUS:
4750 		ep_type = USB_ENDPOINT_XFER_ISOC;
4751 		break;
4752 	case PIPE_BULK:
4753 		ep_type = USB_ENDPOINT_XFER_BULK;
4754 		break;
4755 	case PIPE_INTERRUPT:
4756 		ep_type = USB_ENDPOINT_XFER_INT;
4757 		break;
4758 	}
4759 
4760 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4761 				      mem_flags);
4762 	if (!dwc2_urb)
4763 		return -ENOMEM;
4764 
4765 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4766 				  usb_pipeendpoint(urb->pipe), ep_type,
4767 				  usb_pipein(urb->pipe),
4768 				  usb_endpoint_maxp(&ep->desc),
4769 				  usb_endpoint_maxp_mult(&ep->desc));
4770 
4771 	buf = urb->transfer_buffer;
4772 
4773 	if (hcd->self.uses_dma) {
4774 		if (!buf && (urb->transfer_dma & 3)) {
4775 			dev_err(hsotg->dev,
4776 				"%s: unaligned transfer with no transfer_buffer",
4777 				__func__);
4778 			retval = -EINVAL;
4779 			goto fail0;
4780 		}
4781 	}
4782 
4783 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4784 		tflags |= URB_GIVEBACK_ASAP;
4785 	if (urb->transfer_flags & URB_ZERO_PACKET)
4786 		tflags |= URB_SEND_ZERO_PACKET;
4787 
4788 	dwc2_urb->priv = urb;
4789 	dwc2_urb->buf = buf;
4790 	dwc2_urb->dma = urb->transfer_dma;
4791 	dwc2_urb->length = urb->transfer_buffer_length;
4792 	dwc2_urb->setup_packet = urb->setup_packet;
4793 	dwc2_urb->setup_dma = urb->setup_dma;
4794 	dwc2_urb->flags = tflags;
4795 	dwc2_urb->interval = urb->interval;
4796 	dwc2_urb->status = -EINPROGRESS;
4797 
4798 	for (i = 0; i < urb->number_of_packets; ++i)
4799 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4800 						 urb->iso_frame_desc[i].offset,
4801 						 urb->iso_frame_desc[i].length);
4802 
4803 	urb->hcpriv = dwc2_urb;
4804 	qh = (struct dwc2_qh *)ep->hcpriv;
4805 	/* Create QH for the endpoint if it doesn't exist */
4806 	if (!qh) {
4807 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4808 		if (!qh) {
4809 			retval = -ENOMEM;
4810 			goto fail0;
4811 		}
4812 		ep->hcpriv = qh;
4813 		qh_allocated = true;
4814 	}
4815 
4816 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4817 	if (!qtd) {
4818 		retval = -ENOMEM;
4819 		goto fail1;
4820 	}
4821 
4822 	spin_lock_irqsave(&hsotg->lock, flags);
4823 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4824 	if (retval)
4825 		goto fail2;
4826 
4827 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4828 	if (retval)
4829 		goto fail3;
4830 
4831 	if (alloc_bandwidth) {
4832 		dwc2_allocate_bus_bandwidth(hcd,
4833 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4834 				urb);
4835 	}
4836 
4837 	spin_unlock_irqrestore(&hsotg->lock, flags);
4838 
4839 	return 0;
4840 
4841 fail3:
4842 	dwc2_urb->priv = NULL;
4843 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4844 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4845 		qh->channel->qh = NULL;
4846 fail2:
4847 	spin_unlock_irqrestore(&hsotg->lock, flags);
4848 	urb->hcpriv = NULL;
4849 	kfree(qtd);
4850 	qtd = NULL;
4851 fail1:
4852 	if (qh_allocated) {
4853 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4854 
4855 		ep->hcpriv = NULL;
4856 		dwc2_hcd_qh_unlink(hsotg, qh);
4857 		/* Free each QTD in the QH's QTD list */
4858 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4859 					 qtd_list_entry)
4860 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4861 		dwc2_hcd_qh_free(hsotg, qh);
4862 	}
4863 fail0:
4864 	kfree(dwc2_urb);
4865 
4866 	return retval;
4867 }
4868 
4869 /*
4870  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4871  */
_dwc2_hcd_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)4872 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4873 				 int status)
4874 {
4875 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4876 	int rc;
4877 	unsigned long flags;
4878 
4879 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4880 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4881 
4882 	spin_lock_irqsave(&hsotg->lock, flags);
4883 
4884 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4885 	if (rc)
4886 		goto out;
4887 
4888 	if (!urb->hcpriv) {
4889 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4890 		goto out;
4891 	}
4892 
4893 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4894 
4895 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4896 
4897 	kfree(urb->hcpriv);
4898 	urb->hcpriv = NULL;
4899 
4900 	/* Higher layer software sets URB status */
4901 	spin_unlock(&hsotg->lock);
4902 	usb_hcd_giveback_urb(hcd, urb, status);
4903 	spin_lock(&hsotg->lock);
4904 
4905 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4906 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4907 out:
4908 	spin_unlock_irqrestore(&hsotg->lock, flags);
4909 
4910 	return rc;
4911 }
4912 
4913 /*
4914  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4915  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4916  * must already be dequeued.
4917  */
_dwc2_hcd_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4918 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4919 				       struct usb_host_endpoint *ep)
4920 {
4921 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4922 
4923 	dev_dbg(hsotg->dev,
4924 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4925 		ep->desc.bEndpointAddress, ep->hcpriv);
4926 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4927 }
4928 
4929 /*
4930  * Resets endpoint specific parameter values, in current version used to reset
4931  * the data toggle (as a WA). This function can be called from usb_clear_halt
4932  * routine.
4933  */
_dwc2_hcd_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4934 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4935 				     struct usb_host_endpoint *ep)
4936 {
4937 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4938 	unsigned long flags;
4939 
4940 	dev_dbg(hsotg->dev,
4941 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4942 		ep->desc.bEndpointAddress);
4943 
4944 	spin_lock_irqsave(&hsotg->lock, flags);
4945 	dwc2_hcd_endpoint_reset(hsotg, ep);
4946 	spin_unlock_irqrestore(&hsotg->lock, flags);
4947 }
4948 
4949 /*
4950  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4951  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4952  * interrupt.
4953  *
4954  * This function is called by the USB core when an interrupt occurs
4955  */
_dwc2_hcd_irq(struct usb_hcd * hcd)4956 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4957 {
4958 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4959 
4960 	return dwc2_handle_hcd_intr(hsotg);
4961 }
4962 
4963 /*
4964  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4965  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4966  * is the status change indicator for the single root port. Returns 1 if either
4967  * change indicator is 1, otherwise returns 0.
4968  */
_dwc2_hcd_hub_status_data(struct usb_hcd * hcd,char * buf)4969 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4970 {
4971 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4972 
4973 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4974 	return buf[0] != 0;
4975 }
4976 
4977 /* Handles hub class-specific requests */
_dwc2_hcd_hub_control(struct usb_hcd * hcd,u16 typereq,u16 wvalue,u16 windex,char * buf,u16 wlength)4978 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4979 				 u16 windex, char *buf, u16 wlength)
4980 {
4981 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4982 					  wvalue, windex, buf, wlength);
4983 	return retval;
4984 }
4985 
4986 /* Handles hub TT buffer clear completions */
_dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)4987 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4988 					       struct usb_host_endpoint *ep)
4989 {
4990 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4991 	struct dwc2_qh *qh;
4992 	unsigned long flags;
4993 
4994 	qh = ep->hcpriv;
4995 	if (!qh)
4996 		return;
4997 
4998 	spin_lock_irqsave(&hsotg->lock, flags);
4999 	qh->tt_buffer_dirty = 0;
5000 
5001 	if (hsotg->flags.b.port_connect_status)
5002 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
5003 
5004 	spin_unlock_irqrestore(&hsotg->lock, flags);
5005 }
5006 
5007 /*
5008  * HPRT0_SPD_HIGH_SPEED: high speed
5009  * HPRT0_SPD_FULL_SPEED: full speed
5010  */
dwc2_change_bus_speed(struct usb_hcd * hcd,int speed)5011 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
5012 {
5013 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5014 
5015 	if (hsotg->params.speed == speed)
5016 		return;
5017 
5018 	hsotg->params.speed = speed;
5019 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
5020 }
5021 
dwc2_free_dev(struct usb_hcd * hcd,struct usb_device * udev)5022 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
5023 {
5024 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5025 
5026 	if (!hsotg->params.change_speed_quirk)
5027 		return;
5028 
5029 	/*
5030 	 * On removal, set speed to default high-speed.
5031 	 */
5032 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
5033 	    udev->parent->speed < USB_SPEED_HIGH) {
5034 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
5035 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5036 	}
5037 }
5038 
dwc2_reset_device(struct usb_hcd * hcd,struct usb_device * udev)5039 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
5040 {
5041 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5042 
5043 	if (!hsotg->params.change_speed_quirk)
5044 		return 0;
5045 
5046 	if (udev->speed == USB_SPEED_HIGH) {
5047 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5048 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5049 	} else if ((udev->speed == USB_SPEED_FULL ||
5050 				udev->speed == USB_SPEED_LOW)) {
5051 		/*
5052 		 * Change speed setting to full-speed if there's
5053 		 * a full-speed or low-speed device plugged in.
5054 		 */
5055 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5056 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5057 	}
5058 
5059 	return 0;
5060 }
5061 
5062 static struct hc_driver dwc2_hc_driver = {
5063 	.description = "dwc2_hsotg",
5064 	.product_desc = "DWC OTG Controller",
5065 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5066 
5067 	.irq = _dwc2_hcd_irq,
5068 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5069 
5070 	.start = _dwc2_hcd_start,
5071 	.stop = _dwc2_hcd_stop,
5072 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5073 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5074 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5075 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5076 	.get_frame_number = _dwc2_hcd_get_frame_number,
5077 
5078 	.hub_status_data = _dwc2_hcd_hub_status_data,
5079 	.hub_control = _dwc2_hcd_hub_control,
5080 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5081 
5082 	.bus_suspend = _dwc2_hcd_suspend,
5083 	.bus_resume = _dwc2_hcd_resume,
5084 
5085 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5086 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5087 };
5088 
5089 /*
5090  * Frees secondary storage associated with the dwc2_hsotg structure contained
5091  * in the struct usb_hcd field
5092  */
dwc2_hcd_free(struct dwc2_hsotg * hsotg)5093 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5094 {
5095 	u32 ahbcfg;
5096 	u32 dctl;
5097 	int i;
5098 
5099 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5100 
5101 	/* Free memory for QH/QTD lists */
5102 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5103 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5104 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5105 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5106 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5107 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5108 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5109 
5110 	/* Free memory for the host channels */
5111 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5112 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5113 
5114 		if (chan) {
5115 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5116 				i, chan);
5117 			hsotg->hc_ptr_array[i] = NULL;
5118 			kfree(chan);
5119 		}
5120 	}
5121 
5122 	if (hsotg->params.host_dma) {
5123 		if (hsotg->status_buf) {
5124 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5125 					  hsotg->status_buf,
5126 					  hsotg->status_buf_dma);
5127 			hsotg->status_buf = NULL;
5128 		}
5129 	} else {
5130 		kfree(hsotg->status_buf);
5131 		hsotg->status_buf = NULL;
5132 	}
5133 
5134 	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5135 
5136 	/* Disable all interrupts */
5137 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5138 	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5139 	dwc2_writel(hsotg, 0, GINTMSK);
5140 
5141 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5142 		dctl = dwc2_readl(hsotg, DCTL);
5143 		dctl |= DCTL_SFTDISCON;
5144 		dwc2_writel(hsotg, dctl, DCTL);
5145 	}
5146 
5147 	if (hsotg->wq_otg) {
5148 		if (!cancel_work_sync(&hsotg->wf_otg))
5149 			flush_workqueue(hsotg->wq_otg);
5150 		destroy_workqueue(hsotg->wq_otg);
5151 	}
5152 
5153 	del_timer(&hsotg->wkp_timer);
5154 }
5155 
dwc2_hcd_release(struct dwc2_hsotg * hsotg)5156 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5157 {
5158 	/* Turn off all host-specific interrupts */
5159 	dwc2_disable_host_interrupts(hsotg);
5160 
5161 	dwc2_hcd_free(hsotg);
5162 }
5163 
5164 /*
5165  * Initializes the HCD. This function allocates memory for and initializes the
5166  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5167  * USB bus with the core and calls the hc_driver->start() function. It returns
5168  * a negative error on failure.
5169  */
dwc2_hcd_init(struct dwc2_hsotg * hsotg)5170 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5171 {
5172 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5173 	struct resource *res;
5174 	struct usb_hcd *hcd;
5175 	struct dwc2_host_chan *channel;
5176 	u32 hcfg;
5177 	int i, num_channels;
5178 	int retval;
5179 
5180 	if (usb_disabled())
5181 		return -ENODEV;
5182 
5183 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5184 
5185 	retval = -ENOMEM;
5186 
5187 	hcfg = dwc2_readl(hsotg, HCFG);
5188 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5189 
5190 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5191 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5192 					 sizeof(*hsotg->frame_num_array),
5193 					 GFP_KERNEL);
5194 	if (!hsotg->frame_num_array)
5195 		goto error1;
5196 	hsotg->last_frame_num_array =
5197 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5198 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5199 	if (!hsotg->last_frame_num_array)
5200 		goto error1;
5201 #endif
5202 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5203 
5204 	/* Check if the bus driver or platform code has setup a dma_mask */
5205 	if (hsotg->params.host_dma &&
5206 	    !hsotg->dev->dma_mask) {
5207 		dev_warn(hsotg->dev,
5208 			 "dma_mask not set, disabling DMA\n");
5209 		hsotg->params.host_dma = false;
5210 		hsotg->params.dma_desc_enable = false;
5211 	}
5212 
5213 	/* Set device flags indicating whether the HCD supports DMA */
5214 	if (hsotg->params.host_dma) {
5215 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5216 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5217 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5218 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5219 	}
5220 
5221 	if (hsotg->params.change_speed_quirk) {
5222 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5223 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5224 	}
5225 
5226 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5227 	if (!hcd)
5228 		goto error1;
5229 
5230 	if (!hsotg->params.host_dma)
5231 		hcd->self.uses_dma = 0;
5232 
5233 	hcd->has_tt = 1;
5234 
5235 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5236 	hcd->rsrc_start = res->start;
5237 	hcd->rsrc_len = resource_size(res);
5238 
5239 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5240 	hsotg->priv = hcd;
5241 
5242 	/*
5243 	 * Disable the global interrupt until all the interrupt handlers are
5244 	 * installed
5245 	 */
5246 	dwc2_disable_global_interrupts(hsotg);
5247 
5248 	/* Initialize the DWC_otg core, and select the Phy type */
5249 	retval = dwc2_core_init(hsotg, true);
5250 	if (retval)
5251 		goto error2;
5252 
5253 	/* Create new workqueue and init work */
5254 	retval = -ENOMEM;
5255 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5256 	if (!hsotg->wq_otg) {
5257 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5258 		goto error2;
5259 	}
5260 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5261 
5262 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5263 
5264 	/* Initialize the non-periodic schedule */
5265 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5266 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5267 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5268 
5269 	/* Initialize the periodic schedule */
5270 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5271 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5272 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5273 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5274 
5275 	INIT_LIST_HEAD(&hsotg->split_order);
5276 
5277 	/*
5278 	 * Create a host channel descriptor for each host channel implemented
5279 	 * in the controller. Initialize the channel descriptor array.
5280 	 */
5281 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5282 	num_channels = hsotg->params.host_channels;
5283 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5284 
5285 	for (i = 0; i < num_channels; i++) {
5286 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5287 		if (!channel)
5288 			goto error3;
5289 		channel->hc_num = i;
5290 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5291 		hsotg->hc_ptr_array[i] = channel;
5292 	}
5293 
5294 	/* Initialize hsotg start work */
5295 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5296 
5297 	/* Initialize port reset work */
5298 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5299 
5300 	/*
5301 	 * Allocate space for storing data on status transactions. Normally no
5302 	 * data is sent, but this space acts as a bit bucket. This must be
5303 	 * done after usb_add_hcd since that function allocates the DMA buffer
5304 	 * pool.
5305 	 */
5306 	if (hsotg->params.host_dma)
5307 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5308 					DWC2_HCD_STATUS_BUF_SIZE,
5309 					&hsotg->status_buf_dma, GFP_KERNEL);
5310 	else
5311 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5312 					  GFP_KERNEL);
5313 
5314 	if (!hsotg->status_buf)
5315 		goto error3;
5316 
5317 	/*
5318 	 * Create kmem caches to handle descriptor buffers in descriptor
5319 	 * DMA mode.
5320 	 * Alignment must be set to 512 bytes.
5321 	 */
5322 	if (hsotg->params.dma_desc_enable ||
5323 	    hsotg->params.dma_desc_fs_enable) {
5324 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5325 				sizeof(struct dwc2_dma_desc) *
5326 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5327 				NULL);
5328 		if (!hsotg->desc_gen_cache) {
5329 			dev_err(hsotg->dev,
5330 				"unable to create dwc2 generic desc cache\n");
5331 
5332 			/*
5333 			 * Disable descriptor dma mode since it will not be
5334 			 * usable.
5335 			 */
5336 			hsotg->params.dma_desc_enable = false;
5337 			hsotg->params.dma_desc_fs_enable = false;
5338 		}
5339 
5340 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5341 				sizeof(struct dwc2_dma_desc) *
5342 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5343 		if (!hsotg->desc_hsisoc_cache) {
5344 			dev_err(hsotg->dev,
5345 				"unable to create dwc2 hs isoc desc cache\n");
5346 
5347 			kmem_cache_destroy(hsotg->desc_gen_cache);
5348 
5349 			/*
5350 			 * Disable descriptor dma mode since it will not be
5351 			 * usable.
5352 			 */
5353 			hsotg->params.dma_desc_enable = false;
5354 			hsotg->params.dma_desc_fs_enable = false;
5355 		}
5356 	}
5357 
5358 	if (hsotg->params.host_dma) {
5359 		/*
5360 		 * Create kmem caches to handle non-aligned buffer
5361 		 * in Buffer DMA mode.
5362 		 */
5363 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5364 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5365 						SLAB_CACHE_DMA, NULL);
5366 		if (!hsotg->unaligned_cache)
5367 			dev_err(hsotg->dev,
5368 				"unable to create dwc2 unaligned cache\n");
5369 	}
5370 
5371 	hsotg->otg_port = 1;
5372 	hsotg->frame_list = NULL;
5373 	hsotg->frame_list_dma = 0;
5374 	hsotg->periodic_qh_count = 0;
5375 
5376 	/* Initiate lx_state to L3 disconnected state */
5377 	hsotg->lx_state = DWC2_L3;
5378 
5379 	hcd->self.otg_port = hsotg->otg_port;
5380 
5381 	/* Don't support SG list at this point */
5382 	hcd->self.sg_tablesize = 0;
5383 
5384 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5385 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5386 
5387 	/*
5388 	 * Finish generic HCD initialization and start the HCD. This function
5389 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5390 	 * IRQ line, and calls hcd_start method.
5391 	 */
5392 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5393 	if (retval < 0)
5394 		goto error4;
5395 
5396 	device_wakeup_enable(hcd->self.controller);
5397 
5398 	dwc2_hcd_dump_state(hsotg);
5399 
5400 	dwc2_enable_global_interrupts(hsotg);
5401 
5402 	return 0;
5403 
5404 error4:
5405 	kmem_cache_destroy(hsotg->unaligned_cache);
5406 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5407 	kmem_cache_destroy(hsotg->desc_gen_cache);
5408 error3:
5409 	dwc2_hcd_release(hsotg);
5410 error2:
5411 	usb_put_hcd(hcd);
5412 error1:
5413 
5414 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5415 	kfree(hsotg->last_frame_num_array);
5416 	kfree(hsotg->frame_num_array);
5417 #endif
5418 
5419 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5420 	return retval;
5421 }
5422 
5423 /*
5424  * Removes the HCD.
5425  * Frees memory and resources associated with the HCD and deregisters the bus.
5426  */
dwc2_hcd_remove(struct dwc2_hsotg * hsotg)5427 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5428 {
5429 	struct usb_hcd *hcd;
5430 
5431 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5432 
5433 	hcd = dwc2_hsotg_to_hcd(hsotg);
5434 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5435 
5436 	if (!hcd) {
5437 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5438 			__func__);
5439 		return;
5440 	}
5441 
5442 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5443 		otg_set_host(hsotg->uphy->otg, NULL);
5444 
5445 	usb_remove_hcd(hcd);
5446 	hsotg->priv = NULL;
5447 
5448 	kmem_cache_destroy(hsotg->unaligned_cache);
5449 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5450 	kmem_cache_destroy(hsotg->desc_gen_cache);
5451 
5452 	dwc2_hcd_release(hsotg);
5453 	usb_put_hcd(hcd);
5454 
5455 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5456 	kfree(hsotg->last_frame_num_array);
5457 	kfree(hsotg->frame_num_array);
5458 #endif
5459 }
5460 
5461 /**
5462  * dwc2_backup_host_registers() - Backup controller host registers.
5463  * When suspending usb bus, registers needs to be backuped
5464  * if controller power is disabled once suspended.
5465  *
5466  * @hsotg: Programming view of the DWC_otg controller
5467  */
dwc2_backup_host_registers(struct dwc2_hsotg * hsotg)5468 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5469 {
5470 	struct dwc2_hregs_backup *hr;
5471 	int i;
5472 
5473 	dev_dbg(hsotg->dev, "%s\n", __func__);
5474 
5475 	/* Backup Host regs */
5476 	hr = &hsotg->hr_backup;
5477 	hr->hcfg = dwc2_readl(hsotg, HCFG);
5478 	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5479 	for (i = 0; i < hsotg->params.host_channels; ++i)
5480 		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5481 
5482 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5483 	hr->hfir = dwc2_readl(hsotg, HFIR);
5484 	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5485 	hr->valid = true;
5486 
5487 	return 0;
5488 }
5489 
5490 /**
5491  * dwc2_restore_host_registers() - Restore controller host registers.
5492  * When resuming usb bus, device registers needs to be restored
5493  * if controller power were disabled.
5494  *
5495  * @hsotg: Programming view of the DWC_otg controller
5496  */
dwc2_restore_host_registers(struct dwc2_hsotg * hsotg)5497 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5498 {
5499 	struct dwc2_hregs_backup *hr;
5500 	int i;
5501 
5502 	dev_dbg(hsotg->dev, "%s\n", __func__);
5503 
5504 	/* Restore host regs */
5505 	hr = &hsotg->hr_backup;
5506 	if (!hr->valid) {
5507 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5508 			__func__);
5509 		return -EINVAL;
5510 	}
5511 	hr->valid = false;
5512 
5513 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5514 	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5515 
5516 	for (i = 0; i < hsotg->params.host_channels; ++i)
5517 		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5518 
5519 	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5520 	dwc2_writel(hsotg, hr->hfir, HFIR);
5521 	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5522 	hsotg->frame_number = 0;
5523 
5524 	return 0;
5525 }
5526 
5527 /**
5528  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5529  *
5530  * @hsotg: Programming view of the DWC_otg controller
5531  */
dwc2_host_enter_hibernation(struct dwc2_hsotg * hsotg)5532 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5533 {
5534 	unsigned long flags;
5535 	int ret = 0;
5536 	u32 hprt0;
5537 	u32 pcgcctl;
5538 	u32 gusbcfg;
5539 	u32 gpwrdn;
5540 
5541 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5542 	ret = dwc2_backup_global_registers(hsotg);
5543 	if (ret) {
5544 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5545 			__func__);
5546 		return ret;
5547 	}
5548 	ret = dwc2_backup_host_registers(hsotg);
5549 	if (ret) {
5550 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5551 			__func__);
5552 		return ret;
5553 	}
5554 
5555 	/* Enter USB Suspend Mode */
5556 	hprt0 = dwc2_readl(hsotg, HPRT0);
5557 	hprt0 |= HPRT0_SUSP;
5558 	hprt0 &= ~HPRT0_ENA;
5559 	dwc2_writel(hsotg, hprt0, HPRT0);
5560 
5561 	/* Wait for the HPRT0.PrtSusp register field to be set */
5562 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5563 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5564 
5565 	/*
5566 	 * We need to disable interrupts to prevent servicing of any IRQ
5567 	 * during going to hibernation
5568 	 */
5569 	spin_lock_irqsave(&hsotg->lock, flags);
5570 	hsotg->lx_state = DWC2_L2;
5571 
5572 	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5573 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5574 		/* ULPI interface */
5575 		/* Suspend the Phy Clock */
5576 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5577 		pcgcctl |= PCGCTL_STOPPCLK;
5578 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5579 		udelay(10);
5580 
5581 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5582 		gpwrdn |= GPWRDN_PMUACTV;
5583 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5584 		udelay(10);
5585 	} else {
5586 		/* UTMI+ Interface */
5587 		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5588 		gpwrdn |= GPWRDN_PMUACTV;
5589 		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5590 		udelay(10);
5591 
5592 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5593 		pcgcctl |= PCGCTL_STOPPCLK;
5594 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5595 		udelay(10);
5596 	}
5597 
5598 	/* Enable interrupts from wake up logic */
5599 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5600 	gpwrdn |= GPWRDN_PMUINTSEL;
5601 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5602 	udelay(10);
5603 
5604 	/* Unmask host mode interrupts in GPWRDN */
5605 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5606 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5607 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5608 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5609 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5610 	udelay(10);
5611 
5612 	/* Enable Power Down Clamp */
5613 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5614 	gpwrdn |= GPWRDN_PWRDNCLMP;
5615 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5616 	udelay(10);
5617 
5618 	/* Switch off VDD */
5619 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5620 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5621 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5622 
5623 	hsotg->hibernated = 1;
5624 	hsotg->bus_suspended = 1;
5625 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5626 	spin_unlock_irqrestore(&hsotg->lock, flags);
5627 	return ret;
5628 }
5629 
5630 /*
5631  * dwc2_host_exit_hibernation()
5632  *
5633  * @hsotg: Programming view of the DWC_otg controller
5634  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5635  * @param reset: indicates whether resume is initiated by Reset.
5636  *
5637  * Return: non-zero if failed to enter to hibernation.
5638  *
5639  * This function is for exiting from Host mode hibernation by
5640  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5641  */
dwc2_host_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5642 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5643 			       int reset)
5644 {
5645 	u32 gpwrdn;
5646 	u32 hprt0;
5647 	int ret = 0;
5648 	struct dwc2_gregs_backup *gr;
5649 	struct dwc2_hregs_backup *hr;
5650 
5651 	gr = &hsotg->gr_backup;
5652 	hr = &hsotg->hr_backup;
5653 
5654 	dev_dbg(hsotg->dev,
5655 		"%s: called with rem_wakeup = %d reset = %d\n",
5656 		__func__, rem_wakeup, reset);
5657 
5658 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5659 	hsotg->hibernated = 0;
5660 
5661 	/*
5662 	 * This step is not described in functional spec but if not wait for
5663 	 * this delay, mismatch interrupts occurred because just after restore
5664 	 * core is in Device mode(gintsts.curmode == 0)
5665 	 */
5666 	mdelay(100);
5667 
5668 	/* Clear all pending interupts */
5669 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5670 
5671 	/* De-assert Restore */
5672 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5673 	gpwrdn &= ~GPWRDN_RESTORE;
5674 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5675 	udelay(10);
5676 
5677 	/* Restore GUSBCFG, HCFG */
5678 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5679 	dwc2_writel(hsotg, hr->hcfg, HCFG);
5680 
5681 	/* De-assert Wakeup Logic */
5682 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5683 	gpwrdn &= ~GPWRDN_PMUACTV;
5684 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5685 	udelay(10);
5686 
5687 	hprt0 = hr->hprt0;
5688 	hprt0 |= HPRT0_PWR;
5689 	hprt0 &= ~HPRT0_ENA;
5690 	hprt0 &= ~HPRT0_SUSP;
5691 	dwc2_writel(hsotg, hprt0, HPRT0);
5692 
5693 	hprt0 = hr->hprt0;
5694 	hprt0 |= HPRT0_PWR;
5695 	hprt0 &= ~HPRT0_ENA;
5696 	hprt0 &= ~HPRT0_SUSP;
5697 
5698 	if (reset) {
5699 		hprt0 |= HPRT0_RST;
5700 		dwc2_writel(hsotg, hprt0, HPRT0);
5701 
5702 		/* Wait for Resume time and then program HPRT again */
5703 		mdelay(60);
5704 		hprt0 &= ~HPRT0_RST;
5705 		dwc2_writel(hsotg, hprt0, HPRT0);
5706 	} else {
5707 		hprt0 |= HPRT0_RES;
5708 		dwc2_writel(hsotg, hprt0, HPRT0);
5709 
5710 		/* Wait for Resume time and then program HPRT again */
5711 		mdelay(100);
5712 		hprt0 &= ~HPRT0_RES;
5713 		dwc2_writel(hsotg, hprt0, HPRT0);
5714 	}
5715 	/* Clear all interrupt status */
5716 	hprt0 = dwc2_readl(hsotg, HPRT0);
5717 	hprt0 |= HPRT0_CONNDET;
5718 	hprt0 |= HPRT0_ENACHG;
5719 	hprt0 &= ~HPRT0_ENA;
5720 	dwc2_writel(hsotg, hprt0, HPRT0);
5721 
5722 	hprt0 = dwc2_readl(hsotg, HPRT0);
5723 
5724 	/* Clear all pending interupts */
5725 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5726 
5727 	/* Restore global registers */
5728 	ret = dwc2_restore_global_registers(hsotg);
5729 	if (ret) {
5730 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5731 			__func__);
5732 		return ret;
5733 	}
5734 
5735 	/* Restore host registers */
5736 	ret = dwc2_restore_host_registers(hsotg);
5737 	if (ret) {
5738 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5739 			__func__);
5740 		return ret;
5741 	}
5742 
5743 	dwc2_hcd_rem_wakeup(hsotg);
5744 
5745 	hsotg->hibernated = 0;
5746 	hsotg->bus_suspended = 0;
5747 	hsotg->lx_state = DWC2_L0;
5748 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5749 	return ret;
5750 }
5751