• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VFIO PCI config space virtualization
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  */
15 
16 /*
17  * This code handles reading and writing of PCI configuration registers.
18  * This is hairy because we want to allow a lot of flexibility to the
19  * user driver, but cannot trust it with all of the config fields.
20  * Tables determine which fields can be read and written, as well as
21  * which fields are 'virtualized' - special actions and translations to
22  * make it appear to the user that he has control, when in fact things
23  * must be negotiated with the underlying OS.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
31 
32 #include "vfio_pci_private.h"
33 
34 /* Fake capability ID for standard config space */
35 #define PCI_CAP_ID_BASIC	0
36 
37 #define is_bar(offset)	\
38 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
39 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
40 
41 /*
42  * Lengths of PCI Config Capabilities
43  *   0: Removed from the user visible capability list
44  *   FF: Variable length
45  */
46 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
47 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
48 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
49 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
50 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
51 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
52 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
53 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
54 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
55 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
56 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
57 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
58 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
59 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
60 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
61 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
62 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
63 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
64 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
65 	[PCI_CAP_ID_SATA]	= 0xFF,
66 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
67 };
68 
69 /*
70  * Lengths of PCIe/PCI-X Extended Config Capabilities
71  *   0: Removed or masked from the user visible capability list
72  *   FF: Variable length
73  */
74 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
75 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
76 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
77 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
78 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
79 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
80 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
81 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
83 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
84 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
85 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
86 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
87 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
88 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
89 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
90 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
91 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
92 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
93 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
94 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
95 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
96 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
97 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
98 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
99 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
100 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
101 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
102 };
103 
104 /*
105  * Read/Write Permission Bits - one bit for each bit in capability
106  * Any field can be read if it exists, but what is read depends on
107  * whether the field is 'virtualized', or just pass thru to the
108  * hardware.  Any virtualized field is also virtualized for writes.
109  * Writes are only permitted if they have a 1 bit here.
110  */
111 struct perm_bits {
112 	u8	*virt;		/* read/write virtual data, not hw */
113 	u8	*write;		/* writeable bits */
114 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
115 			  struct perm_bits *perm, int offset, __le32 *val);
116 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
117 			   struct perm_bits *perm, int offset, __le32 val);
118 };
119 
120 #define	NO_VIRT		0
121 #define	ALL_VIRT	0xFFFFFFFFU
122 #define	NO_WRITE	0
123 #define	ALL_WRITE	0xFFFFFFFFU
124 
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)125 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
126 				 __le32 *val, int count)
127 {
128 	int ret = -EINVAL;
129 	u32 tmp_val = 0;
130 
131 	switch (count) {
132 	case 1:
133 	{
134 		u8 tmp;
135 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
136 		tmp_val = tmp;
137 		break;
138 	}
139 	case 2:
140 	{
141 		u16 tmp;
142 		ret = pci_user_read_config_word(pdev, offset, &tmp);
143 		tmp_val = tmp;
144 		break;
145 	}
146 	case 4:
147 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
148 		break;
149 	}
150 
151 	*val = cpu_to_le32(tmp_val);
152 
153 	return ret;
154 }
155 
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)156 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
157 				  __le32 val, int count)
158 {
159 	int ret = -EINVAL;
160 	u32 tmp_val = le32_to_cpu(val);
161 
162 	switch (count) {
163 	case 1:
164 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
165 		break;
166 	case 2:
167 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
168 		break;
169 	case 4:
170 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
171 		break;
172 	}
173 
174 	return ret;
175 }
176 
vfio_default_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)177 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
178 				    int count, struct perm_bits *perm,
179 				    int offset, __le32 *val)
180 {
181 	__le32 virt = 0;
182 
183 	memcpy(val, vdev->vconfig + pos, count);
184 
185 	memcpy(&virt, perm->virt + offset, count);
186 
187 	/* Any non-virtualized bits? */
188 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
189 		struct pci_dev *pdev = vdev->pdev;
190 		__le32 phys_val = 0;
191 		int ret;
192 
193 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
194 		if (ret)
195 			return ret;
196 
197 		*val = (phys_val & ~virt) | (*val & virt);
198 	}
199 
200 	return count;
201 }
202 
vfio_default_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)203 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
204 				     int count, struct perm_bits *perm,
205 				     int offset, __le32 val)
206 {
207 	__le32 virt = 0, write = 0;
208 
209 	memcpy(&write, perm->write + offset, count);
210 
211 	if (!write)
212 		return count; /* drop, no writable bits */
213 
214 	memcpy(&virt, perm->virt + offset, count);
215 
216 	/* Virtualized and writable bits go to vconfig */
217 	if (write & virt) {
218 		__le32 virt_val = 0;
219 
220 		memcpy(&virt_val, vdev->vconfig + pos, count);
221 
222 		virt_val &= ~(write & virt);
223 		virt_val |= (val & (write & virt));
224 
225 		memcpy(vdev->vconfig + pos, &virt_val, count);
226 	}
227 
228 	/* Non-virtualzed and writable bits go to hardware */
229 	if (write & ~virt) {
230 		struct pci_dev *pdev = vdev->pdev;
231 		__le32 phys_val = 0;
232 		int ret;
233 
234 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
235 		if (ret)
236 			return ret;
237 
238 		phys_val &= ~(write & ~virt);
239 		phys_val |= (val & (write & ~virt));
240 
241 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
242 		if (ret)
243 			return ret;
244 	}
245 
246 	return count;
247 }
248 
249 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)250 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
251 				   int count, struct perm_bits *perm,
252 				   int offset, __le32 *val)
253 {
254 	int ret;
255 
256 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
257 	if (ret)
258 		return ret;
259 
260 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
261 		if (offset < 4)
262 			memcpy(val, vdev->vconfig + pos, count);
263 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
264 		if (offset == PCI_CAP_LIST_ID && count > 1)
265 			memcpy(val, vdev->vconfig + pos,
266 			       min(PCI_CAP_FLAGS, count));
267 		else if (offset == PCI_CAP_LIST_NEXT)
268 			memcpy(val, vdev->vconfig + pos, 1);
269 	}
270 
271 	return count;
272 }
273 
274 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)275 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
276 				 int count, struct perm_bits *perm,
277 				 int offset, __le32 val)
278 {
279 	int ret;
280 
281 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
282 	if (ret)
283 		return ret;
284 
285 	return count;
286 }
287 
vfio_raw_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)288 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
289 				int count, struct perm_bits *perm,
290 				int offset, __le32 *val)
291 {
292 	int ret;
293 
294 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
295 	if (ret)
296 		return ret;
297 
298 	return count;
299 }
300 
301 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)302 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
303 				  int count, struct perm_bits *perm,
304 				  int offset, __le32 val)
305 {
306 	memcpy(vdev->vconfig + pos, &val, count);
307 	return count;
308 }
309 
vfio_virt_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)310 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
311 				 int count, struct perm_bits *perm,
312 				 int offset, __le32 *val)
313 {
314 	memcpy(val, vdev->vconfig + pos, count);
315 	return count;
316 }
317 
318 /* Default capability regions to read-only, no-virtualization */
319 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
320 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
321 };
322 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
323 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
324 };
325 /*
326  * Default unassigned regions to raw read-write access.  Some devices
327  * require this to function as they hide registers between the gaps in
328  * config space (be2net).  Like MMIO and I/O port registers, we have
329  * to trust the hardware isolation.
330  */
331 static struct perm_bits unassigned_perms = {
332 	.readfn = vfio_raw_config_read,
333 	.writefn = vfio_raw_config_write
334 };
335 
336 static struct perm_bits virt_perms = {
337 	.readfn = vfio_virt_config_read,
338 	.writefn = vfio_virt_config_write
339 };
340 
free_perm_bits(struct perm_bits * perm)341 static void free_perm_bits(struct perm_bits *perm)
342 {
343 	kfree(perm->virt);
344 	kfree(perm->write);
345 	perm->virt = NULL;
346 	perm->write = NULL;
347 }
348 
alloc_perm_bits(struct perm_bits * perm,int size)349 static int alloc_perm_bits(struct perm_bits *perm, int size)
350 {
351 	/*
352 	 * Round up all permission bits to the next dword, this lets us
353 	 * ignore whether a read/write exceeds the defined capability
354 	 * structure.  We can do this because:
355 	 *  - Standard config space is already dword aligned
356 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
357 	 *  - Express capabilities defined as dword aligned
358 	 */
359 	size = round_up(size, 4);
360 
361 	/*
362 	 * Zero state is
363 	 * - All Readable, None Writeable, None Virtualized
364 	 */
365 	perm->virt = kzalloc(size, GFP_KERNEL);
366 	perm->write = kzalloc(size, GFP_KERNEL);
367 	if (!perm->virt || !perm->write) {
368 		free_perm_bits(perm);
369 		return -ENOMEM;
370 	}
371 
372 	perm->readfn = vfio_default_config_read;
373 	perm->writefn = vfio_default_config_write;
374 
375 	return 0;
376 }
377 
378 /*
379  * Helper functions for filling in permission tables
380  */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)381 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
382 {
383 	p->virt[off] = virt;
384 	p->write[off] = write;
385 }
386 
387 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)388 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
389 {
390 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
391 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
392 }
393 
394 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)395 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
396 {
397 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
398 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
399 }
400 
401 /* Caller should hold memory_lock semaphore */
__vfio_pci_memory_enabled(struct vfio_pci_device * vdev)402 bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev)
403 {
404 	struct pci_dev *pdev = vdev->pdev;
405 	u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
406 
407 	/*
408 	 * SR-IOV VF memory enable is handled by the MSE bit in the
409 	 * PF SR-IOV capability, there's therefore no need to trigger
410 	 * faults based on the virtual value.
411 	 */
412 	return pdev->is_virtfn || (cmd & PCI_COMMAND_MEMORY);
413 }
414 
415 /*
416  * Restore the *real* BARs after we detect a FLR or backdoor reset.
417  * (backdoor = some device specific technique that we didn't catch)
418  */
vfio_bar_restore(struct vfio_pci_device * vdev)419 static void vfio_bar_restore(struct vfio_pci_device *vdev)
420 {
421 	struct pci_dev *pdev = vdev->pdev;
422 	u32 *rbar = vdev->rbar;
423 	u16 cmd;
424 	int i;
425 
426 	if (pdev->is_virtfn)
427 		return;
428 
429 	pr_info("%s: %s reset recovery - restoring bars\n",
430 		__func__, dev_name(&pdev->dev));
431 
432 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
433 		pci_user_write_config_dword(pdev, i, *rbar);
434 
435 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
436 
437 	if (vdev->nointx) {
438 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
439 		cmd |= PCI_COMMAND_INTX_DISABLE;
440 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
441 	}
442 }
443 
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)444 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
445 {
446 	unsigned long flags = pci_resource_flags(pdev, bar);
447 	u32 val;
448 
449 	if (flags & IORESOURCE_IO)
450 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
451 
452 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
453 
454 	if (flags & IORESOURCE_PREFETCH)
455 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
456 
457 	if (flags & IORESOURCE_MEM_64)
458 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
459 
460 	return cpu_to_le32(val);
461 }
462 
463 /*
464  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
465  * to reflect the hardware capabilities.  This implements BAR sizing.
466  */
vfio_bar_fixup(struct vfio_pci_device * vdev)467 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
468 {
469 	struct pci_dev *pdev = vdev->pdev;
470 	int i;
471 	__le32 *bar;
472 	u64 mask;
473 
474 	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
475 
476 	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
477 		if (!pci_resource_start(pdev, i)) {
478 			*bar = 0; /* Unmapped by host = unimplemented to user */
479 			continue;
480 		}
481 
482 		mask = ~(pci_resource_len(pdev, i) - 1);
483 
484 		*bar &= cpu_to_le32((u32)mask);
485 		*bar |= vfio_generate_bar_flags(pdev, i);
486 
487 		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
488 			bar++;
489 			*bar &= cpu_to_le32((u32)(mask >> 32));
490 			i++;
491 		}
492 	}
493 
494 	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
495 
496 	/*
497 	 * NB. REGION_INFO will have reported zero size if we weren't able
498 	 * to read the ROM, but we still return the actual BAR size here if
499 	 * it exists (or the shadow ROM space).
500 	 */
501 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
502 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
503 		mask |= PCI_ROM_ADDRESS_ENABLE;
504 		*bar &= cpu_to_le32((u32)mask);
505 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
506 					IORESOURCE_ROM_SHADOW) {
507 		mask = ~(0x20000 - 1);
508 		mask |= PCI_ROM_ADDRESS_ENABLE;
509 		*bar &= cpu_to_le32((u32)mask);
510 	} else
511 		*bar = 0;
512 
513 	vdev->bardirty = false;
514 }
515 
vfio_basic_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)516 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
517 				  int count, struct perm_bits *perm,
518 				  int offset, __le32 *val)
519 {
520 	if (is_bar(offset)) /* pos == offset for basic config */
521 		vfio_bar_fixup(vdev);
522 
523 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
524 
525 	/* Mask in virtual memory enable for SR-IOV devices */
526 	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
527 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
528 		u32 tmp_val = le32_to_cpu(*val);
529 
530 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
531 		*val = cpu_to_le32(tmp_val);
532 	}
533 
534 	return count;
535 }
536 
537 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_device * vdev)538 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
539 {
540 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
541 	u32 bar;
542 
543 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
544 		if (vdev->rbar[i]) {
545 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
546 			if (ret || vdev->rbar[i] != bar)
547 				return true;
548 		}
549 	}
550 
551 	return false;
552 }
553 
vfio_basic_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)554 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
555 				   int count, struct perm_bits *perm,
556 				   int offset, __le32 val)
557 {
558 	struct pci_dev *pdev = vdev->pdev;
559 	__le16 *virt_cmd;
560 	u16 new_cmd = 0;
561 	int ret;
562 
563 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
564 
565 	if (offset == PCI_COMMAND) {
566 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
567 		u16 phys_cmd;
568 
569 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
570 		if (ret)
571 			return ret;
572 
573 		new_cmd = le32_to_cpu(val);
574 
575 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
576 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
577 		new_io = !!(new_cmd & PCI_COMMAND_IO);
578 
579 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
580 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
581 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
582 
583 		if (!new_mem)
584 			vfio_pci_zap_and_down_write_memory_lock(vdev);
585 		else
586 			down_write(&vdev->memory_lock);
587 
588 		/*
589 		 * If the user is writing mem/io enable (new_mem/io) and we
590 		 * think it's already enabled (virt_mem/io), but the hardware
591 		 * shows it disabled (phys_mem/io, then the device has
592 		 * undergone some kind of backdoor reset and needs to be
593 		 * restored before we allow it to enable the bars.
594 		 * SR-IOV devices will trigger this, but we catch them later
595 		 */
596 		if ((new_mem && virt_mem && !phys_mem) ||
597 		    (new_io && virt_io && !phys_io) ||
598 		    vfio_need_bar_restore(vdev))
599 			vfio_bar_restore(vdev);
600 	}
601 
602 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
603 	if (count < 0) {
604 		if (offset == PCI_COMMAND)
605 			up_write(&vdev->memory_lock);
606 		return count;
607 	}
608 
609 	/*
610 	 * Save current memory/io enable bits in vconfig to allow for
611 	 * the test above next time.
612 	 */
613 	if (offset == PCI_COMMAND) {
614 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
615 
616 		*virt_cmd &= cpu_to_le16(~mask);
617 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
618 
619 		up_write(&vdev->memory_lock);
620 	}
621 
622 	/* Emulate INTx disable */
623 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
624 		bool virt_intx_disable;
625 
626 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
627 				       PCI_COMMAND_INTX_DISABLE);
628 
629 		if (virt_intx_disable && !vdev->virq_disabled) {
630 			vdev->virq_disabled = true;
631 			vfio_pci_intx_mask(vdev);
632 		} else if (!virt_intx_disable && vdev->virq_disabled) {
633 			vdev->virq_disabled = false;
634 			vfio_pci_intx_unmask(vdev);
635 		}
636 	}
637 
638 	if (is_bar(offset))
639 		vdev->bardirty = true;
640 
641 	return count;
642 }
643 
644 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)645 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
646 {
647 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
648 		return -ENOMEM;
649 
650 	perm->readfn = vfio_basic_config_read;
651 	perm->writefn = vfio_basic_config_write;
652 
653 	/* Virtualized for SR-IOV functions, which just have FFFF */
654 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
655 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
656 
657 	/*
658 	 * Virtualize INTx disable, we use it internally for interrupt
659 	 * control and can emulate it for non-PCI 2.3 devices.
660 	 */
661 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
662 
663 	/* Virtualize capability list, we might want to skip/disable */
664 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
665 
666 	/* No harm to write */
667 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
668 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
669 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
670 
671 	/* Virtualize all bars, can't touch the real ones */
672 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
673 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
674 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
675 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
676 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
677 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
678 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
679 
680 	/* Allow us to adjust capability chain */
681 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
682 
683 	/* Sometimes used by sw, just virtualize */
684 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
685 
686 	/* Virtualize interrupt pin to allow hiding INTx */
687 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
688 
689 	return 0;
690 }
691 
vfio_pm_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)692 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
693 				int count, struct perm_bits *perm,
694 				int offset, __le32 val)
695 {
696 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
697 	if (count < 0)
698 		return count;
699 
700 	if (offset == PCI_PM_CTRL) {
701 		pci_power_t state;
702 
703 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
704 		case 0:
705 			state = PCI_D0;
706 			break;
707 		case 1:
708 			state = PCI_D1;
709 			break;
710 		case 2:
711 			state = PCI_D2;
712 			break;
713 		case 3:
714 			state = PCI_D3hot;
715 			break;
716 		}
717 
718 		pci_set_power_state(vdev->pdev, state);
719 	}
720 
721 	return count;
722 }
723 
724 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)725 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
726 {
727 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
728 		return -ENOMEM;
729 
730 	perm->writefn = vfio_pm_config_write;
731 
732 	/*
733 	 * We always virtualize the next field so we can remove
734 	 * capabilities from the chain if we want to.
735 	 */
736 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
737 
738 	/*
739 	 * Power management is defined *per function*, so we can let
740 	 * the user change power state, but we trap and initiate the
741 	 * change ourselves, so the state bits are read-only.
742 	 */
743 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
744 	return 0;
745 }
746 
vfio_vpd_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)747 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
748 				 int count, struct perm_bits *perm,
749 				 int offset, __le32 val)
750 {
751 	struct pci_dev *pdev = vdev->pdev;
752 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
753 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
754 	u16 addr;
755 	u32 data;
756 
757 	/*
758 	 * Write through to emulation.  If the write includes the upper byte
759 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
760 	 * have work to do.
761 	 */
762 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
763 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
764 	    offset + count <= PCI_VPD_ADDR + 1)
765 		return count;
766 
767 	addr = le16_to_cpu(*paddr);
768 
769 	if (addr & PCI_VPD_ADDR_F) {
770 		data = le32_to_cpu(*pdata);
771 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
772 			return count;
773 	} else {
774 		data = 0;
775 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
776 			return count;
777 		*pdata = cpu_to_le32(data);
778 	}
779 
780 	/*
781 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
782 	 * signal completion.  If an error occurs above, we assume that not
783 	 * toggling this bit will induce a driver timeout.
784 	 */
785 	addr ^= PCI_VPD_ADDR_F;
786 	*paddr = cpu_to_le16(addr);
787 
788 	return count;
789 }
790 
791 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)792 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
793 {
794 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
795 		return -ENOMEM;
796 
797 	perm->writefn = vfio_vpd_config_write;
798 
799 	/*
800 	 * We always virtualize the next field so we can remove
801 	 * capabilities from the chain if we want to.
802 	 */
803 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
804 
805 	/*
806 	 * Both the address and data registers are virtualized to
807 	 * enable access through the pci_vpd_read/write functions
808 	 */
809 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
810 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
811 
812 	return 0;
813 }
814 
815 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)816 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
817 {
818 	/* Alloc 24, but only 8 are used in v0 */
819 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
820 		return -ENOMEM;
821 
822 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
823 
824 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
825 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
826 	return 0;
827 }
828 
vfio_exp_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)829 static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
830 				 int count, struct perm_bits *perm,
831 				 int offset, __le32 val)
832 {
833 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
834 				  offset + PCI_EXP_DEVCTL);
835 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
836 
837 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
838 	if (count < 0)
839 		return count;
840 
841 	/*
842 	 * The FLR bit is virtualized, if set and the device supports PCIe
843 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
844 	 * requires it to be always read as zero.  NB, reset_function might
845 	 * not use a PCIe FLR, we don't have that level of granularity.
846 	 */
847 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
848 		u32 cap;
849 		int ret;
850 
851 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
852 
853 		ret = pci_user_read_config_dword(vdev->pdev,
854 						 pos - offset + PCI_EXP_DEVCAP,
855 						 &cap);
856 
857 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
858 			vfio_pci_zap_and_down_write_memory_lock(vdev);
859 			pci_try_reset_function(vdev->pdev);
860 			up_write(&vdev->memory_lock);
861 		}
862 	}
863 
864 	/*
865 	 * MPS is virtualized to the user, writes do not change the physical
866 	 * register since determining a proper MPS value requires a system wide
867 	 * device view.  The MRRS is largely independent of MPS, but since the
868 	 * user does not have that system-wide view, they might set a safe, but
869 	 * inefficiently low value.  Here we allow writes through to hardware,
870 	 * but we set the floor to the physical device MPS setting, so that
871 	 * we can at least use full TLPs, as defined by the MPS value.
872 	 *
873 	 * NB, if any devices actually depend on an artificially low MRRS
874 	 * setting, this will need to be revisited, perhaps with a quirk
875 	 * though pcie_set_readrq().
876 	 */
877 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
878 		readrq = 128 <<
879 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
880 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
881 
882 		pcie_set_readrq(vdev->pdev, readrq);
883 	}
884 
885 	return count;
886 }
887 
888 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)889 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
890 {
891 	/* Alloc largest of possible sizes */
892 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
893 		return -ENOMEM;
894 
895 	perm->writefn = vfio_exp_config_write;
896 
897 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
898 
899 	/*
900 	 * Allow writes to device control fields, except devctl_phantom,
901 	 * which could confuse IOMMU, MPS, which can break communication
902 	 * with other physical devices, and the ARI bit in devctl2, which
903 	 * is set at probe time.  FLR and MRRS get virtualized via our
904 	 * writefn.
905 	 */
906 	p_setw(perm, PCI_EXP_DEVCTL,
907 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
908 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
909 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
910 	return 0;
911 }
912 
vfio_af_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)913 static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
914 				int count, struct perm_bits *perm,
915 				int offset, __le32 val)
916 {
917 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
918 
919 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
920 	if (count < 0)
921 		return count;
922 
923 	/*
924 	 * The FLR bit is virtualized, if set and the device supports AF
925 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
926 	 * requires it to be always read as zero.  NB, reset_function might
927 	 * not use an AF FLR, we don't have that level of granularity.
928 	 */
929 	if (*ctrl & PCI_AF_CTRL_FLR) {
930 		u8 cap;
931 		int ret;
932 
933 		*ctrl &= ~PCI_AF_CTRL_FLR;
934 
935 		ret = pci_user_read_config_byte(vdev->pdev,
936 						pos - offset + PCI_AF_CAP,
937 						&cap);
938 
939 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
940 			vfio_pci_zap_and_down_write_memory_lock(vdev);
941 			pci_try_reset_function(vdev->pdev);
942 			up_write(&vdev->memory_lock);
943 		}
944 	}
945 
946 	return count;
947 }
948 
949 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)950 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
951 {
952 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
953 		return -ENOMEM;
954 
955 	perm->writefn = vfio_af_config_write;
956 
957 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
958 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
959 	return 0;
960 }
961 
962 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)963 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
964 {
965 	u32 mask;
966 
967 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
968 		return -ENOMEM;
969 
970 	/*
971 	 * Virtualize the first dword of all express capabilities
972 	 * because it includes the next pointer.  This lets us later
973 	 * remove capabilities from the chain if we need to.
974 	 */
975 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
976 
977 	/* Writable bits mask */
978 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
979 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
980 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
981 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
982 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
983 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
984 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
985 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
986 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
987 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
988 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
989 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
990 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
991 		PCI_ERR_UNC_INTN |		/* internal error */
992 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
993 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
994 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
995 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
996 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
997 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
998 
999 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
1000 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
1001 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
1002 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
1003 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
1004 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
1005 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
1006 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
1007 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1008 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1009 
1010 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
1011 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
1012 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1013 	return 0;
1014 }
1015 
1016 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)1017 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1018 {
1019 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1020 		return -ENOMEM;
1021 
1022 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1023 
1024 	/* Writing the data selector is OK, the info is still read-only */
1025 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Initialize the shared permission tables
1031  */
vfio_pci_uninit_perm_bits(void)1032 void vfio_pci_uninit_perm_bits(void)
1033 {
1034 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1035 
1036 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1037 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1038 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1039 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1040 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1041 
1042 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1043 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1044 }
1045 
vfio_pci_init_perm_bits(void)1046 int __init vfio_pci_init_perm_bits(void)
1047 {
1048 	int ret;
1049 
1050 	/* Basic config space */
1051 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1052 
1053 	/* Capabilities */
1054 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1055 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1056 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1057 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1058 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1059 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1060 
1061 	/* Extended capabilities */
1062 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1063 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1064 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1065 
1066 	if (ret)
1067 		vfio_pci_uninit_perm_bits();
1068 
1069 	return ret;
1070 }
1071 
vfio_find_cap_start(struct vfio_pci_device * vdev,int pos)1072 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1073 {
1074 	u8 cap;
1075 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1076 						 PCI_STD_HEADER_SIZEOF;
1077 	cap = vdev->pci_config_map[pos];
1078 
1079 	if (cap == PCI_CAP_ID_BASIC)
1080 		return 0;
1081 
1082 	/* XXX Can we have to abutting capabilities of the same type? */
1083 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1084 		pos--;
1085 
1086 	return pos;
1087 }
1088 
vfio_msi_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1089 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1090 				int count, struct perm_bits *perm,
1091 				int offset, __le32 *val)
1092 {
1093 	/* Update max available queue size from msi_qmax */
1094 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1095 		__le16 *flags;
1096 		int start;
1097 
1098 		start = vfio_find_cap_start(vdev, pos);
1099 
1100 		flags = (__le16 *)&vdev->vconfig[start];
1101 
1102 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1103 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1104 	}
1105 
1106 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1107 }
1108 
vfio_msi_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1109 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1110 				 int count, struct perm_bits *perm,
1111 				 int offset, __le32 val)
1112 {
1113 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1114 	if (count < 0)
1115 		return count;
1116 
1117 	/* Fixup and write configured queue size and enable to hardware */
1118 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1119 		__le16 *pflags;
1120 		u16 flags;
1121 		int start, ret;
1122 
1123 		start = vfio_find_cap_start(vdev, pos);
1124 
1125 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1126 
1127 		flags = le16_to_cpu(*pflags);
1128 
1129 		/* MSI is enabled via ioctl */
1130 		if  (!is_msi(vdev))
1131 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1132 
1133 		/* Check queue size */
1134 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1135 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1136 			flags |= vdev->msi_qmax << 4;
1137 		}
1138 
1139 		/* Write back to virt and to hardware */
1140 		*pflags = cpu_to_le16(flags);
1141 		ret = pci_user_write_config_word(vdev->pdev,
1142 						 start + PCI_MSI_FLAGS,
1143 						 flags);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	return count;
1149 }
1150 
1151 /*
1152  * MSI determination is per-device, so this routine gets used beyond
1153  * initialization time. Don't add __init
1154  */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1155 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1156 {
1157 	if (alloc_perm_bits(perm, len))
1158 		return -ENOMEM;
1159 
1160 	perm->readfn = vfio_msi_config_read;
1161 	perm->writefn = vfio_msi_config_write;
1162 
1163 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1164 
1165 	/*
1166 	 * The upper byte of the control register is reserved,
1167 	 * just setup the lower byte.
1168 	 */
1169 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1170 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1171 	if (flags & PCI_MSI_FLAGS_64BIT) {
1172 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1173 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1174 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1175 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1176 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1177 		}
1178 	} else {
1179 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1180 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1181 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1182 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1183 		}
1184 	}
1185 	return 0;
1186 }
1187 
1188 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_device * vdev,u8 pos)1189 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1190 {
1191 	struct pci_dev *pdev = vdev->pdev;
1192 	int len, ret;
1193 	u16 flags;
1194 
1195 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1196 	if (ret)
1197 		return pcibios_err_to_errno(ret);
1198 
1199 	len = 10; /* Minimum size */
1200 	if (flags & PCI_MSI_FLAGS_64BIT)
1201 		len += 4;
1202 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1203 		len += 10;
1204 
1205 	if (vdev->msi_perm)
1206 		return len;
1207 
1208 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1209 	if (!vdev->msi_perm)
1210 		return -ENOMEM;
1211 
1212 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1213 	if (ret) {
1214 		kfree(vdev->msi_perm);
1215 		return ret;
1216 	}
1217 
1218 	return len;
1219 }
1220 
1221 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_device * vdev,u16 pos)1222 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1223 {
1224 	struct pci_dev *pdev = vdev->pdev;
1225 	u32 tmp;
1226 	int ret, evcc, phases, vc_arb;
1227 	int len = PCI_CAP_VC_BASE_SIZEOF;
1228 
1229 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1230 	if (ret)
1231 		return pcibios_err_to_errno(ret);
1232 
1233 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1234 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1235 	if (ret)
1236 		return pcibios_err_to_errno(ret);
1237 
1238 	if (tmp & PCI_VC_CAP2_128_PHASE)
1239 		phases = 128;
1240 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1241 		phases = 64;
1242 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1243 		phases = 32;
1244 	else
1245 		phases = 0;
1246 
1247 	vc_arb = phases * 4;
1248 
1249 	/*
1250 	 * Port arbitration tables are root & switch only;
1251 	 * function arbitration tables are function 0 only.
1252 	 * In either case, we'll never let user write them so
1253 	 * we don't care how big they are
1254 	 */
1255 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1256 	if (vc_arb) {
1257 		len = round_up(len, 16);
1258 		len += vc_arb / 8;
1259 	}
1260 	return len;
1261 }
1262 
vfio_cap_len(struct vfio_pci_device * vdev,u8 cap,u8 pos)1263 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1264 {
1265 	struct pci_dev *pdev = vdev->pdev;
1266 	u32 dword;
1267 	u16 word;
1268 	u8 byte;
1269 	int ret;
1270 
1271 	switch (cap) {
1272 	case PCI_CAP_ID_MSI:
1273 		return vfio_msi_cap_len(vdev, pos);
1274 	case PCI_CAP_ID_PCIX:
1275 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1276 		if (ret)
1277 			return pcibios_err_to_errno(ret);
1278 
1279 		if (PCI_X_CMD_VERSION(word)) {
1280 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1281 				/* Test for extended capabilities */
1282 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1283 						      &dword);
1284 				vdev->extended_caps = (dword != 0);
1285 			}
1286 			return PCI_CAP_PCIX_SIZEOF_V2;
1287 		} else
1288 			return PCI_CAP_PCIX_SIZEOF_V0;
1289 	case PCI_CAP_ID_VNDR:
1290 		/* length follows next field */
1291 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1292 		if (ret)
1293 			return pcibios_err_to_errno(ret);
1294 
1295 		return byte;
1296 	case PCI_CAP_ID_EXP:
1297 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1298 			/* Test for extended capabilities */
1299 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1300 			vdev->extended_caps = (dword != 0);
1301 		}
1302 
1303 		/* length based on version and type */
1304 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1305 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1306 				return 0xc; /* "All Devices" only, no link */
1307 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1308 		} else {
1309 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1310 				return 0x2c; /* No link */
1311 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1312 		}
1313 	case PCI_CAP_ID_HT:
1314 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1315 		if (ret)
1316 			return pcibios_err_to_errno(ret);
1317 
1318 		return (byte & HT_3BIT_CAP_MASK) ?
1319 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1320 	case PCI_CAP_ID_SATA:
1321 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1322 		if (ret)
1323 			return pcibios_err_to_errno(ret);
1324 
1325 		byte &= PCI_SATA_REGS_MASK;
1326 		if (byte == PCI_SATA_REGS_INLINE)
1327 			return PCI_SATA_SIZEOF_LONG;
1328 		else
1329 			return PCI_SATA_SIZEOF_SHORT;
1330 	default:
1331 		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1332 			dev_name(&pdev->dev), __func__, cap, pos);
1333 	}
1334 
1335 	return 0;
1336 }
1337 
vfio_ext_cap_len(struct vfio_pci_device * vdev,u16 ecap,u16 epos)1338 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1339 {
1340 	struct pci_dev *pdev = vdev->pdev;
1341 	u8 byte;
1342 	u32 dword;
1343 	int ret;
1344 
1345 	switch (ecap) {
1346 	case PCI_EXT_CAP_ID_VNDR:
1347 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1348 		if (ret)
1349 			return pcibios_err_to_errno(ret);
1350 
1351 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1352 	case PCI_EXT_CAP_ID_VC:
1353 	case PCI_EXT_CAP_ID_VC9:
1354 	case PCI_EXT_CAP_ID_MFVC:
1355 		return vfio_vc_cap_len(vdev, epos);
1356 	case PCI_EXT_CAP_ID_ACS:
1357 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1358 		if (ret)
1359 			return pcibios_err_to_errno(ret);
1360 
1361 		if (byte & PCI_ACS_EC) {
1362 			int bits;
1363 
1364 			ret = pci_read_config_byte(pdev,
1365 						   epos + PCI_ACS_EGRESS_BITS,
1366 						   &byte);
1367 			if (ret)
1368 				return pcibios_err_to_errno(ret);
1369 
1370 			bits = byte ? round_up(byte, 32) : 256;
1371 			return 8 + (bits / 8);
1372 		}
1373 		return 8;
1374 
1375 	case PCI_EXT_CAP_ID_REBAR:
1376 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1377 		if (ret)
1378 			return pcibios_err_to_errno(ret);
1379 
1380 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1381 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1382 
1383 		return 4 + (byte * 8);
1384 	case PCI_EXT_CAP_ID_DPA:
1385 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1386 		if (ret)
1387 			return pcibios_err_to_errno(ret);
1388 
1389 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1390 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1391 	case PCI_EXT_CAP_ID_TPH:
1392 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1393 		if (ret)
1394 			return pcibios_err_to_errno(ret);
1395 
1396 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1397 			int sts;
1398 
1399 			sts = dword & PCI_TPH_CAP_ST_MASK;
1400 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1401 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1402 		}
1403 		return PCI_TPH_BASE_SIZEOF;
1404 	default:
1405 		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1406 			dev_name(&pdev->dev), __func__, ecap, epos);
1407 	}
1408 
1409 	return 0;
1410 }
1411 
vfio_fill_vconfig_bytes(struct vfio_pci_device * vdev,int offset,int size)1412 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1413 				   int offset, int size)
1414 {
1415 	struct pci_dev *pdev = vdev->pdev;
1416 	int ret = 0;
1417 
1418 	/*
1419 	 * We try to read physical config space in the largest chunks
1420 	 * we can, assuming that all of the fields support dword access.
1421 	 * pci_save_state() makes this same assumption and seems to do ok.
1422 	 */
1423 	while (size) {
1424 		int filled;
1425 
1426 		if (size >= 4 && !(offset % 4)) {
1427 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1428 			u32 dword;
1429 
1430 			ret = pci_read_config_dword(pdev, offset, &dword);
1431 			if (ret)
1432 				return ret;
1433 			*dwordp = cpu_to_le32(dword);
1434 			filled = 4;
1435 		} else if (size >= 2 && !(offset % 2)) {
1436 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1437 			u16 word;
1438 
1439 			ret = pci_read_config_word(pdev, offset, &word);
1440 			if (ret)
1441 				return ret;
1442 			*wordp = cpu_to_le16(word);
1443 			filled = 2;
1444 		} else {
1445 			u8 *byte = &vdev->vconfig[offset];
1446 			ret = pci_read_config_byte(pdev, offset, byte);
1447 			if (ret)
1448 				return ret;
1449 			filled = 1;
1450 		}
1451 
1452 		offset += filled;
1453 		size -= filled;
1454 	}
1455 
1456 	return ret;
1457 }
1458 
vfio_cap_init(struct vfio_pci_device * vdev)1459 static int vfio_cap_init(struct vfio_pci_device *vdev)
1460 {
1461 	struct pci_dev *pdev = vdev->pdev;
1462 	u8 *map = vdev->pci_config_map;
1463 	u16 status;
1464 	u8 pos, *prev, cap;
1465 	int loops, ret, caps = 0;
1466 
1467 	/* Any capabilities? */
1468 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1469 	if (ret)
1470 		return ret;
1471 
1472 	if (!(status & PCI_STATUS_CAP_LIST))
1473 		return 0; /* Done */
1474 
1475 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1476 	if (ret)
1477 		return ret;
1478 
1479 	/* Mark the previous position in case we want to skip a capability */
1480 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1481 
1482 	/* We can bound our loop, capabilities are dword aligned */
1483 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1484 	while (pos && loops--) {
1485 		u8 next;
1486 		int i, len = 0;
1487 
1488 		ret = pci_read_config_byte(pdev, pos, &cap);
1489 		if (ret)
1490 			return ret;
1491 
1492 		ret = pci_read_config_byte(pdev,
1493 					   pos + PCI_CAP_LIST_NEXT, &next);
1494 		if (ret)
1495 			return ret;
1496 
1497 		/*
1498 		 * ID 0 is a NULL capability, conflicting with our fake
1499 		 * PCI_CAP_ID_BASIC.  As it has no content, consider it
1500 		 * hidden for now.
1501 		 */
1502 		if (cap && cap <= PCI_CAP_ID_MAX) {
1503 			len = pci_cap_length[cap];
1504 			if (len == 0xFF) { /* Variable length */
1505 				len = vfio_cap_len(vdev, cap, pos);
1506 				if (len < 0)
1507 					return len;
1508 			}
1509 		}
1510 
1511 		if (!len) {
1512 			pr_info("%s: %s hiding cap 0x%x\n",
1513 				__func__, dev_name(&pdev->dev), cap);
1514 			*prev = next;
1515 			pos = next;
1516 			continue;
1517 		}
1518 
1519 		/* Sanity check, do we overlap other capabilities? */
1520 		for (i = 0; i < len; i++) {
1521 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1522 				continue;
1523 
1524 			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1525 				__func__, dev_name(&pdev->dev),
1526 				pos + i, map[pos + i], cap);
1527 		}
1528 
1529 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1530 
1531 		memset(map + pos, cap, len);
1532 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1533 		if (ret)
1534 			return ret;
1535 
1536 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1537 		pos = next;
1538 		caps++;
1539 	}
1540 
1541 	/* If we didn't fill any capabilities, clear the status flag */
1542 	if (!caps) {
1543 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1544 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1545 	}
1546 
1547 	return 0;
1548 }
1549 
vfio_ecap_init(struct vfio_pci_device * vdev)1550 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1551 {
1552 	struct pci_dev *pdev = vdev->pdev;
1553 	u8 *map = vdev->pci_config_map;
1554 	u16 epos;
1555 	__le32 *prev = NULL;
1556 	int loops, ret, ecaps = 0;
1557 
1558 	if (!vdev->extended_caps)
1559 		return 0;
1560 
1561 	epos = PCI_CFG_SPACE_SIZE;
1562 
1563 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1564 
1565 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1566 		u32 header;
1567 		u16 ecap;
1568 		int i, len = 0;
1569 		bool hidden = false;
1570 
1571 		ret = pci_read_config_dword(pdev, epos, &header);
1572 		if (ret)
1573 			return ret;
1574 
1575 		ecap = PCI_EXT_CAP_ID(header);
1576 
1577 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1578 			len = pci_ext_cap_length[ecap];
1579 			if (len == 0xFF) {
1580 				len = vfio_ext_cap_len(vdev, ecap, epos);
1581 				if (len < 0)
1582 					return ret;
1583 			}
1584 		}
1585 
1586 		if (!len) {
1587 			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1588 				__func__, dev_name(&pdev->dev), ecap, epos);
1589 
1590 			/* If not the first in the chain, we can skip over it */
1591 			if (prev) {
1592 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1593 				*prev &= cpu_to_le32(~(0xffcU << 20));
1594 				*prev |= cpu_to_le32(val << 20);
1595 				continue;
1596 			}
1597 
1598 			/*
1599 			 * Otherwise, fill in a placeholder, the direct
1600 			 * readfn will virtualize this automatically
1601 			 */
1602 			len = PCI_CAP_SIZEOF;
1603 			hidden = true;
1604 		}
1605 
1606 		for (i = 0; i < len; i++) {
1607 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1608 				continue;
1609 
1610 			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1611 				__func__, dev_name(&pdev->dev),
1612 				epos + i, map[epos + i], ecap);
1613 		}
1614 
1615 		/*
1616 		 * Even though ecap is 2 bytes, we're currently a long way
1617 		 * from exceeding 1 byte capabilities.  If we ever make it
1618 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1619 		 */
1620 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1621 
1622 		memset(map + epos, ecap, len);
1623 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1624 		if (ret)
1625 			return ret;
1626 
1627 		/*
1628 		 * If we're just using this capability to anchor the list,
1629 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1630 		 * indicates to use cap id = 0, version = 0, next = 0 if
1631 		 * ecaps are absent, hope users check all the way to next.
1632 		 */
1633 		if (hidden)
1634 			*(__le32 *)&vdev->vconfig[epos] &=
1635 				cpu_to_le32((0xffcU << 20));
1636 		else
1637 			ecaps++;
1638 
1639 		prev = (__le32 *)&vdev->vconfig[epos];
1640 		epos = PCI_EXT_CAP_NEXT(header);
1641 	}
1642 
1643 	if (!ecaps)
1644 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1645 
1646 	return 0;
1647 }
1648 
1649 /*
1650  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1651  * to collect a list of dependencies for the VF INTx pin quirk below.
1652  */
1653 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1654 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1655 	{}
1656 };
1657 
1658 /*
1659  * For each device we allocate a pci_config_map that indicates the
1660  * capability occupying each dword and thus the struct perm_bits we
1661  * use for read and write.  We also allocate a virtualized config
1662  * space which tracks reads and writes to bits that we emulate for
1663  * the user.  Initial values filled from device.
1664  *
1665  * Using shared struct perm_bits between all vfio-pci devices saves
1666  * us from allocating cfg_size buffers for virt and write for every
1667  * device.  We could remove vconfig and allocate individual buffers
1668  * for each area requiring emulated bits, but the array of pointers
1669  * would be comparable in size (at least for standard config space).
1670  */
vfio_config_init(struct vfio_pci_device * vdev)1671 int vfio_config_init(struct vfio_pci_device *vdev)
1672 {
1673 	struct pci_dev *pdev = vdev->pdev;
1674 	u8 *map, *vconfig;
1675 	int ret;
1676 
1677 	/*
1678 	 * Config space, caps and ecaps are all dword aligned, so we could
1679 	 * use one byte per dword to record the type.  However, there are
1680 	 * no requiremenst on the length of a capability, so the gap between
1681 	 * capabilities needs byte granularity.
1682 	 */
1683 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1684 	if (!map)
1685 		return -ENOMEM;
1686 
1687 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1688 	if (!vconfig) {
1689 		kfree(map);
1690 		return -ENOMEM;
1691 	}
1692 
1693 	vdev->pci_config_map = map;
1694 	vdev->vconfig = vconfig;
1695 
1696 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1697 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1698 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1699 
1700 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1701 	if (ret)
1702 		goto out;
1703 
1704 	vdev->bardirty = true;
1705 
1706 	/*
1707 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1708 	 * may need to rebuild vconfig after that
1709 	 */
1710 
1711 	/* For restore after reset */
1712 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1713 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1714 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1715 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1716 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1717 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1718 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1719 
1720 	if (pdev->is_virtfn) {
1721 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1722 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1723 
1724 		/*
1725 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1726 		 * does not apply to VFs and VFs must implement this register
1727 		 * as read-only with value zero.  Userspace is not readily able
1728 		 * to identify whether a device is a VF and thus that the pin
1729 		 * definition on the device is bogus should it violate this
1730 		 * requirement.  We already virtualize the pin register for
1731 		 * other purposes, so we simply need to replace the bogus value
1732 		 * and consider VFs when we determine INTx IRQ count.
1733 		 */
1734 		if (vconfig[PCI_INTERRUPT_PIN] &&
1735 		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1736 			pci_warn(pdev,
1737 				 "Hardware bug: VF reports bogus INTx pin %d\n",
1738 				 vconfig[PCI_INTERRUPT_PIN]);
1739 
1740 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1741 
1742 		/*
1743 		 * VFs do no implement the memory enable bit of the COMMAND
1744 		 * register therefore we'll not have it set in our initial
1745 		 * copy of config space after pci_enable_device().  For
1746 		 * consistency with PFs, set the virtual enable bit here.
1747 		 */
1748 		*(__le16 *)&vconfig[PCI_COMMAND] |=
1749 					cpu_to_le16(PCI_COMMAND_MEMORY);
1750 	}
1751 
1752 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1753 		vconfig[PCI_INTERRUPT_PIN] = 0;
1754 
1755 	ret = vfio_cap_init(vdev);
1756 	if (ret)
1757 		goto out;
1758 
1759 	ret = vfio_ecap_init(vdev);
1760 	if (ret)
1761 		goto out;
1762 
1763 	return 0;
1764 
1765 out:
1766 	kfree(map);
1767 	vdev->pci_config_map = NULL;
1768 	kfree(vconfig);
1769 	vdev->vconfig = NULL;
1770 	return pcibios_err_to_errno(ret);
1771 }
1772 
vfio_config_free(struct vfio_pci_device * vdev)1773 void vfio_config_free(struct vfio_pci_device *vdev)
1774 {
1775 	kfree(vdev->vconfig);
1776 	vdev->vconfig = NULL;
1777 	kfree(vdev->pci_config_map);
1778 	vdev->pci_config_map = NULL;
1779 	if (vdev->msi_perm) {
1780 		free_perm_bits(vdev->msi_perm);
1781 		kfree(vdev->msi_perm);
1782 		vdev->msi_perm = NULL;
1783 	}
1784 }
1785 
1786 /*
1787  * Find the remaining number of bytes in a dword that match the given
1788  * position.  Stop at either the end of the capability or the dword boundary.
1789  */
vfio_pci_cap_remaining_dword(struct vfio_pci_device * vdev,loff_t pos)1790 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1791 					   loff_t pos)
1792 {
1793 	u8 cap = vdev->pci_config_map[pos];
1794 	size_t i;
1795 
1796 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1797 		/* nop */;
1798 
1799 	return i;
1800 }
1801 
vfio_config_do_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1802 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1803 				 size_t count, loff_t *ppos, bool iswrite)
1804 {
1805 	struct pci_dev *pdev = vdev->pdev;
1806 	struct perm_bits *perm;
1807 	__le32 val = 0;
1808 	int cap_start = 0, offset;
1809 	u8 cap_id;
1810 	ssize_t ret;
1811 
1812 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1813 	    *ppos + count > pdev->cfg_size)
1814 		return -EFAULT;
1815 
1816 	/*
1817 	 * Chop accesses into aligned chunks containing no more than a
1818 	 * single capability.  Caller increments to the next chunk.
1819 	 */
1820 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1821 	if (count >= 4 && !(*ppos % 4))
1822 		count = 4;
1823 	else if (count >= 2 && !(*ppos % 2))
1824 		count = 2;
1825 	else
1826 		count = 1;
1827 
1828 	ret = count;
1829 
1830 	cap_id = vdev->pci_config_map[*ppos];
1831 
1832 	if (cap_id == PCI_CAP_ID_INVALID) {
1833 		perm = &unassigned_perms;
1834 		cap_start = *ppos;
1835 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1836 		perm = &virt_perms;
1837 		cap_start = *ppos;
1838 	} else {
1839 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1840 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1841 
1842 			perm = &ecap_perms[cap_id];
1843 			cap_start = vfio_find_cap_start(vdev, *ppos);
1844 		} else {
1845 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1846 
1847 			perm = &cap_perms[cap_id];
1848 
1849 			if (cap_id == PCI_CAP_ID_MSI)
1850 				perm = vdev->msi_perm;
1851 
1852 			if (cap_id > PCI_CAP_ID_BASIC)
1853 				cap_start = vfio_find_cap_start(vdev, *ppos);
1854 		}
1855 	}
1856 
1857 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1858 	WARN_ON(cap_start > *ppos);
1859 
1860 	offset = *ppos - cap_start;
1861 
1862 	if (iswrite) {
1863 		if (!perm->writefn)
1864 			return ret;
1865 
1866 		if (copy_from_user(&val, buf, count))
1867 			return -EFAULT;
1868 
1869 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1870 	} else {
1871 		if (perm->readfn) {
1872 			ret = perm->readfn(vdev, *ppos, count,
1873 					   perm, offset, &val);
1874 			if (ret < 0)
1875 				return ret;
1876 		}
1877 
1878 		if (copy_to_user(buf, &val, count))
1879 			return -EFAULT;
1880 	}
1881 
1882 	return ret;
1883 }
1884 
vfio_pci_config_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1885 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1886 			   size_t count, loff_t *ppos, bool iswrite)
1887 {
1888 	size_t done = 0;
1889 	int ret = 0;
1890 	loff_t pos = *ppos;
1891 
1892 	pos &= VFIO_PCI_OFFSET_MASK;
1893 
1894 	while (count) {
1895 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1896 		if (ret < 0)
1897 			return ret;
1898 
1899 		count -= ret;
1900 		done += ret;
1901 		buf += ret;
1902 		pos += ret;
1903 	}
1904 
1905 	*ppos += done;
1906 
1907 	return done;
1908 }
1909