1 /*
2 * VFIO PCI config space virtualization
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 */
15
16 /*
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
31
32 #include "vfio_pci_private.h"
33
34 /* Fake capability ID for standard config space */
35 #define PCI_CAP_ID_BASIC 0
36
37 #define is_bar(offset) \
38 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
39 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
40
41 /*
42 * Lengths of PCI Config Capabilities
43 * 0: Removed from the user visible capability list
44 * FF: Variable length
45 */
46 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
47 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
48 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
49 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
50 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
51 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
52 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
53 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
54 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
55 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
56 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
57 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
58 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
59 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
60 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
61 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
62 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
63 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
64 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
65 [PCI_CAP_ID_SATA] = 0xFF,
66 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
67 };
68
69 /*
70 * Lengths of PCIe/PCI-X Extended Config Capabilities
71 * 0: Removed or masked from the user visible capability list
72 * FF: Variable length
73 */
74 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
75 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
76 [PCI_EXT_CAP_ID_VC] = 0xFF,
77 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
78 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
79 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
80 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
81 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
83 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
84 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
85 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
86 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
87 [PCI_EXT_CAP_ID_ACS] = 0xFF,
88 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
89 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
90 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
91 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
93 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
94 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
95 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
96 [PCI_EXT_CAP_ID_DPA] = 0xFF,
97 [PCI_EXT_CAP_ID_TPH] = 0xFF,
98 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
99 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
100 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
101 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
102 };
103
104 /*
105 * Read/Write Permission Bits - one bit for each bit in capability
106 * Any field can be read if it exists, but what is read depends on
107 * whether the field is 'virtualized', or just pass thru to the
108 * hardware. Any virtualized field is also virtualized for writes.
109 * Writes are only permitted if they have a 1 bit here.
110 */
111 struct perm_bits {
112 u8 *virt; /* read/write virtual data, not hw */
113 u8 *write; /* writeable bits */
114 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
115 struct perm_bits *perm, int offset, __le32 *val);
116 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
117 struct perm_bits *perm, int offset, __le32 val);
118 };
119
120 #define NO_VIRT 0
121 #define ALL_VIRT 0xFFFFFFFFU
122 #define NO_WRITE 0
123 #define ALL_WRITE 0xFFFFFFFFU
124
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)125 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
126 __le32 *val, int count)
127 {
128 int ret = -EINVAL;
129 u32 tmp_val = 0;
130
131 switch (count) {
132 case 1:
133 {
134 u8 tmp;
135 ret = pci_user_read_config_byte(pdev, offset, &tmp);
136 tmp_val = tmp;
137 break;
138 }
139 case 2:
140 {
141 u16 tmp;
142 ret = pci_user_read_config_word(pdev, offset, &tmp);
143 tmp_val = tmp;
144 break;
145 }
146 case 4:
147 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
148 break;
149 }
150
151 *val = cpu_to_le32(tmp_val);
152
153 return ret;
154 }
155
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)156 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
157 __le32 val, int count)
158 {
159 int ret = -EINVAL;
160 u32 tmp_val = le32_to_cpu(val);
161
162 switch (count) {
163 case 1:
164 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
165 break;
166 case 2:
167 ret = pci_user_write_config_word(pdev, offset, tmp_val);
168 break;
169 case 4:
170 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
171 break;
172 }
173
174 return ret;
175 }
176
vfio_default_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)177 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
178 int count, struct perm_bits *perm,
179 int offset, __le32 *val)
180 {
181 __le32 virt = 0;
182
183 memcpy(val, vdev->vconfig + pos, count);
184
185 memcpy(&virt, perm->virt + offset, count);
186
187 /* Any non-virtualized bits? */
188 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
189 struct pci_dev *pdev = vdev->pdev;
190 __le32 phys_val = 0;
191 int ret;
192
193 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
194 if (ret)
195 return ret;
196
197 *val = (phys_val & ~virt) | (*val & virt);
198 }
199
200 return count;
201 }
202
vfio_default_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)203 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
204 int count, struct perm_bits *perm,
205 int offset, __le32 val)
206 {
207 __le32 virt = 0, write = 0;
208
209 memcpy(&write, perm->write + offset, count);
210
211 if (!write)
212 return count; /* drop, no writable bits */
213
214 memcpy(&virt, perm->virt + offset, count);
215
216 /* Virtualized and writable bits go to vconfig */
217 if (write & virt) {
218 __le32 virt_val = 0;
219
220 memcpy(&virt_val, vdev->vconfig + pos, count);
221
222 virt_val &= ~(write & virt);
223 virt_val |= (val & (write & virt));
224
225 memcpy(vdev->vconfig + pos, &virt_val, count);
226 }
227
228 /* Non-virtualzed and writable bits go to hardware */
229 if (write & ~virt) {
230 struct pci_dev *pdev = vdev->pdev;
231 __le32 phys_val = 0;
232 int ret;
233
234 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
235 if (ret)
236 return ret;
237
238 phys_val &= ~(write & ~virt);
239 phys_val |= (val & (write & ~virt));
240
241 ret = vfio_user_config_write(pdev, pos, phys_val, count);
242 if (ret)
243 return ret;
244 }
245
246 return count;
247 }
248
249 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)250 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
251 int count, struct perm_bits *perm,
252 int offset, __le32 *val)
253 {
254 int ret;
255
256 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
257 if (ret)
258 return ret;
259
260 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
261 if (offset < 4)
262 memcpy(val, vdev->vconfig + pos, count);
263 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
264 if (offset == PCI_CAP_LIST_ID && count > 1)
265 memcpy(val, vdev->vconfig + pos,
266 min(PCI_CAP_FLAGS, count));
267 else if (offset == PCI_CAP_LIST_NEXT)
268 memcpy(val, vdev->vconfig + pos, 1);
269 }
270
271 return count;
272 }
273
274 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)275 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
276 int count, struct perm_bits *perm,
277 int offset, __le32 val)
278 {
279 int ret;
280
281 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
282 if (ret)
283 return ret;
284
285 return count;
286 }
287
vfio_raw_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)288 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
289 int count, struct perm_bits *perm,
290 int offset, __le32 *val)
291 {
292 int ret;
293
294 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
295 if (ret)
296 return ret;
297
298 return count;
299 }
300
301 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)302 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
303 int count, struct perm_bits *perm,
304 int offset, __le32 val)
305 {
306 memcpy(vdev->vconfig + pos, &val, count);
307 return count;
308 }
309
vfio_virt_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)310 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
311 int count, struct perm_bits *perm,
312 int offset, __le32 *val)
313 {
314 memcpy(val, vdev->vconfig + pos, count);
315 return count;
316 }
317
318 /* Default capability regions to read-only, no-virtualization */
319 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
320 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
321 };
322 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
323 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
324 };
325 /*
326 * Default unassigned regions to raw read-write access. Some devices
327 * require this to function as they hide registers between the gaps in
328 * config space (be2net). Like MMIO and I/O port registers, we have
329 * to trust the hardware isolation.
330 */
331 static struct perm_bits unassigned_perms = {
332 .readfn = vfio_raw_config_read,
333 .writefn = vfio_raw_config_write
334 };
335
336 static struct perm_bits virt_perms = {
337 .readfn = vfio_virt_config_read,
338 .writefn = vfio_virt_config_write
339 };
340
free_perm_bits(struct perm_bits * perm)341 static void free_perm_bits(struct perm_bits *perm)
342 {
343 kfree(perm->virt);
344 kfree(perm->write);
345 perm->virt = NULL;
346 perm->write = NULL;
347 }
348
alloc_perm_bits(struct perm_bits * perm,int size)349 static int alloc_perm_bits(struct perm_bits *perm, int size)
350 {
351 /*
352 * Round up all permission bits to the next dword, this lets us
353 * ignore whether a read/write exceeds the defined capability
354 * structure. We can do this because:
355 * - Standard config space is already dword aligned
356 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
357 * - Express capabilities defined as dword aligned
358 */
359 size = round_up(size, 4);
360
361 /*
362 * Zero state is
363 * - All Readable, None Writeable, None Virtualized
364 */
365 perm->virt = kzalloc(size, GFP_KERNEL);
366 perm->write = kzalloc(size, GFP_KERNEL);
367 if (!perm->virt || !perm->write) {
368 free_perm_bits(perm);
369 return -ENOMEM;
370 }
371
372 perm->readfn = vfio_default_config_read;
373 perm->writefn = vfio_default_config_write;
374
375 return 0;
376 }
377
378 /*
379 * Helper functions for filling in permission tables
380 */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)381 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
382 {
383 p->virt[off] = virt;
384 p->write[off] = write;
385 }
386
387 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)388 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
389 {
390 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
391 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
392 }
393
394 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)395 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
396 {
397 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
398 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
399 }
400
401 /* Caller should hold memory_lock semaphore */
__vfio_pci_memory_enabled(struct vfio_pci_device * vdev)402 bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev)
403 {
404 struct pci_dev *pdev = vdev->pdev;
405 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
406
407 /*
408 * SR-IOV VF memory enable is handled by the MSE bit in the
409 * PF SR-IOV capability, there's therefore no need to trigger
410 * faults based on the virtual value.
411 */
412 return pdev->is_virtfn || (cmd & PCI_COMMAND_MEMORY);
413 }
414
415 /*
416 * Restore the *real* BARs after we detect a FLR or backdoor reset.
417 * (backdoor = some device specific technique that we didn't catch)
418 */
vfio_bar_restore(struct vfio_pci_device * vdev)419 static void vfio_bar_restore(struct vfio_pci_device *vdev)
420 {
421 struct pci_dev *pdev = vdev->pdev;
422 u32 *rbar = vdev->rbar;
423 u16 cmd;
424 int i;
425
426 if (pdev->is_virtfn)
427 return;
428
429 pr_info("%s: %s reset recovery - restoring bars\n",
430 __func__, dev_name(&pdev->dev));
431
432 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
433 pci_user_write_config_dword(pdev, i, *rbar);
434
435 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
436
437 if (vdev->nointx) {
438 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
439 cmd |= PCI_COMMAND_INTX_DISABLE;
440 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
441 }
442 }
443
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)444 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
445 {
446 unsigned long flags = pci_resource_flags(pdev, bar);
447 u32 val;
448
449 if (flags & IORESOURCE_IO)
450 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
451
452 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
453
454 if (flags & IORESOURCE_PREFETCH)
455 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
456
457 if (flags & IORESOURCE_MEM_64)
458 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
459
460 return cpu_to_le32(val);
461 }
462
463 /*
464 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
465 * to reflect the hardware capabilities. This implements BAR sizing.
466 */
vfio_bar_fixup(struct vfio_pci_device * vdev)467 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
468 {
469 struct pci_dev *pdev = vdev->pdev;
470 int i;
471 __le32 *bar;
472 u64 mask;
473
474 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
475
476 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
477 if (!pci_resource_start(pdev, i)) {
478 *bar = 0; /* Unmapped by host = unimplemented to user */
479 continue;
480 }
481
482 mask = ~(pci_resource_len(pdev, i) - 1);
483
484 *bar &= cpu_to_le32((u32)mask);
485 *bar |= vfio_generate_bar_flags(pdev, i);
486
487 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
488 bar++;
489 *bar &= cpu_to_le32((u32)(mask >> 32));
490 i++;
491 }
492 }
493
494 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
495
496 /*
497 * NB. REGION_INFO will have reported zero size if we weren't able
498 * to read the ROM, but we still return the actual BAR size here if
499 * it exists (or the shadow ROM space).
500 */
501 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
502 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
503 mask |= PCI_ROM_ADDRESS_ENABLE;
504 *bar &= cpu_to_le32((u32)mask);
505 } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
506 IORESOURCE_ROM_SHADOW) {
507 mask = ~(0x20000 - 1);
508 mask |= PCI_ROM_ADDRESS_ENABLE;
509 *bar &= cpu_to_le32((u32)mask);
510 } else
511 *bar = 0;
512
513 vdev->bardirty = false;
514 }
515
vfio_basic_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)516 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
517 int count, struct perm_bits *perm,
518 int offset, __le32 *val)
519 {
520 if (is_bar(offset)) /* pos == offset for basic config */
521 vfio_bar_fixup(vdev);
522
523 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
524
525 /* Mask in virtual memory enable for SR-IOV devices */
526 if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
527 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
528 u32 tmp_val = le32_to_cpu(*val);
529
530 tmp_val |= cmd & PCI_COMMAND_MEMORY;
531 *val = cpu_to_le32(tmp_val);
532 }
533
534 return count;
535 }
536
537 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_device * vdev)538 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
539 {
540 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
541 u32 bar;
542
543 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
544 if (vdev->rbar[i]) {
545 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
546 if (ret || vdev->rbar[i] != bar)
547 return true;
548 }
549 }
550
551 return false;
552 }
553
vfio_basic_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)554 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
555 int count, struct perm_bits *perm,
556 int offset, __le32 val)
557 {
558 struct pci_dev *pdev = vdev->pdev;
559 __le16 *virt_cmd;
560 u16 new_cmd = 0;
561 int ret;
562
563 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
564
565 if (offset == PCI_COMMAND) {
566 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
567 u16 phys_cmd;
568
569 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
570 if (ret)
571 return ret;
572
573 new_cmd = le32_to_cpu(val);
574
575 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
576 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
577 new_io = !!(new_cmd & PCI_COMMAND_IO);
578
579 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
580 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
581 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
582
583 if (!new_mem)
584 vfio_pci_zap_and_down_write_memory_lock(vdev);
585 else
586 down_write(&vdev->memory_lock);
587
588 /*
589 * If the user is writing mem/io enable (new_mem/io) and we
590 * think it's already enabled (virt_mem/io), but the hardware
591 * shows it disabled (phys_mem/io, then the device has
592 * undergone some kind of backdoor reset and needs to be
593 * restored before we allow it to enable the bars.
594 * SR-IOV devices will trigger this, but we catch them later
595 */
596 if ((new_mem && virt_mem && !phys_mem) ||
597 (new_io && virt_io && !phys_io) ||
598 vfio_need_bar_restore(vdev))
599 vfio_bar_restore(vdev);
600 }
601
602 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
603 if (count < 0) {
604 if (offset == PCI_COMMAND)
605 up_write(&vdev->memory_lock);
606 return count;
607 }
608
609 /*
610 * Save current memory/io enable bits in vconfig to allow for
611 * the test above next time.
612 */
613 if (offset == PCI_COMMAND) {
614 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
615
616 *virt_cmd &= cpu_to_le16(~mask);
617 *virt_cmd |= cpu_to_le16(new_cmd & mask);
618
619 up_write(&vdev->memory_lock);
620 }
621
622 /* Emulate INTx disable */
623 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
624 bool virt_intx_disable;
625
626 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
627 PCI_COMMAND_INTX_DISABLE);
628
629 if (virt_intx_disable && !vdev->virq_disabled) {
630 vdev->virq_disabled = true;
631 vfio_pci_intx_mask(vdev);
632 } else if (!virt_intx_disable && vdev->virq_disabled) {
633 vdev->virq_disabled = false;
634 vfio_pci_intx_unmask(vdev);
635 }
636 }
637
638 if (is_bar(offset))
639 vdev->bardirty = true;
640
641 return count;
642 }
643
644 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)645 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
646 {
647 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
648 return -ENOMEM;
649
650 perm->readfn = vfio_basic_config_read;
651 perm->writefn = vfio_basic_config_write;
652
653 /* Virtualized for SR-IOV functions, which just have FFFF */
654 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
655 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
656
657 /*
658 * Virtualize INTx disable, we use it internally for interrupt
659 * control and can emulate it for non-PCI 2.3 devices.
660 */
661 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
662
663 /* Virtualize capability list, we might want to skip/disable */
664 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
665
666 /* No harm to write */
667 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
668 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
669 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
670
671 /* Virtualize all bars, can't touch the real ones */
672 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
673 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
674 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
675 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
676 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
677 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
678 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
679
680 /* Allow us to adjust capability chain */
681 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
682
683 /* Sometimes used by sw, just virtualize */
684 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
685
686 /* Virtualize interrupt pin to allow hiding INTx */
687 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
688
689 return 0;
690 }
691
vfio_pm_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)692 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
693 int count, struct perm_bits *perm,
694 int offset, __le32 val)
695 {
696 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
697 if (count < 0)
698 return count;
699
700 if (offset == PCI_PM_CTRL) {
701 pci_power_t state;
702
703 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
704 case 0:
705 state = PCI_D0;
706 break;
707 case 1:
708 state = PCI_D1;
709 break;
710 case 2:
711 state = PCI_D2;
712 break;
713 case 3:
714 state = PCI_D3hot;
715 break;
716 }
717
718 pci_set_power_state(vdev->pdev, state);
719 }
720
721 return count;
722 }
723
724 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)725 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
726 {
727 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
728 return -ENOMEM;
729
730 perm->writefn = vfio_pm_config_write;
731
732 /*
733 * We always virtualize the next field so we can remove
734 * capabilities from the chain if we want to.
735 */
736 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
737
738 /*
739 * Power management is defined *per function*, so we can let
740 * the user change power state, but we trap and initiate the
741 * change ourselves, so the state bits are read-only.
742 */
743 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
744 return 0;
745 }
746
vfio_vpd_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)747 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
748 int count, struct perm_bits *perm,
749 int offset, __le32 val)
750 {
751 struct pci_dev *pdev = vdev->pdev;
752 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
753 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
754 u16 addr;
755 u32 data;
756
757 /*
758 * Write through to emulation. If the write includes the upper byte
759 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
760 * have work to do.
761 */
762 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
763 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
764 offset + count <= PCI_VPD_ADDR + 1)
765 return count;
766
767 addr = le16_to_cpu(*paddr);
768
769 if (addr & PCI_VPD_ADDR_F) {
770 data = le32_to_cpu(*pdata);
771 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
772 return count;
773 } else {
774 data = 0;
775 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
776 return count;
777 *pdata = cpu_to_le32(data);
778 }
779
780 /*
781 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
782 * signal completion. If an error occurs above, we assume that not
783 * toggling this bit will induce a driver timeout.
784 */
785 addr ^= PCI_VPD_ADDR_F;
786 *paddr = cpu_to_le16(addr);
787
788 return count;
789 }
790
791 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)792 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
793 {
794 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
795 return -ENOMEM;
796
797 perm->writefn = vfio_vpd_config_write;
798
799 /*
800 * We always virtualize the next field so we can remove
801 * capabilities from the chain if we want to.
802 */
803 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
804
805 /*
806 * Both the address and data registers are virtualized to
807 * enable access through the pci_vpd_read/write functions
808 */
809 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
810 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
811
812 return 0;
813 }
814
815 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)816 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
817 {
818 /* Alloc 24, but only 8 are used in v0 */
819 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
820 return -ENOMEM;
821
822 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
823
824 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
825 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
826 return 0;
827 }
828
vfio_exp_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)829 static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
830 int count, struct perm_bits *perm,
831 int offset, __le32 val)
832 {
833 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
834 offset + PCI_EXP_DEVCTL);
835 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
836
837 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
838 if (count < 0)
839 return count;
840
841 /*
842 * The FLR bit is virtualized, if set and the device supports PCIe
843 * FLR, issue a reset_function. Regardless, clear the bit, the spec
844 * requires it to be always read as zero. NB, reset_function might
845 * not use a PCIe FLR, we don't have that level of granularity.
846 */
847 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
848 u32 cap;
849 int ret;
850
851 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
852
853 ret = pci_user_read_config_dword(vdev->pdev,
854 pos - offset + PCI_EXP_DEVCAP,
855 &cap);
856
857 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
858 vfio_pci_zap_and_down_write_memory_lock(vdev);
859 pci_try_reset_function(vdev->pdev);
860 up_write(&vdev->memory_lock);
861 }
862 }
863
864 /*
865 * MPS is virtualized to the user, writes do not change the physical
866 * register since determining a proper MPS value requires a system wide
867 * device view. The MRRS is largely independent of MPS, but since the
868 * user does not have that system-wide view, they might set a safe, but
869 * inefficiently low value. Here we allow writes through to hardware,
870 * but we set the floor to the physical device MPS setting, so that
871 * we can at least use full TLPs, as defined by the MPS value.
872 *
873 * NB, if any devices actually depend on an artificially low MRRS
874 * setting, this will need to be revisited, perhaps with a quirk
875 * though pcie_set_readrq().
876 */
877 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
878 readrq = 128 <<
879 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
880 readrq = max(readrq, pcie_get_mps(vdev->pdev));
881
882 pcie_set_readrq(vdev->pdev, readrq);
883 }
884
885 return count;
886 }
887
888 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)889 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
890 {
891 /* Alloc largest of possible sizes */
892 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
893 return -ENOMEM;
894
895 perm->writefn = vfio_exp_config_write;
896
897 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
898
899 /*
900 * Allow writes to device control fields, except devctl_phantom,
901 * which could confuse IOMMU, MPS, which can break communication
902 * with other physical devices, and the ARI bit in devctl2, which
903 * is set at probe time. FLR and MRRS get virtualized via our
904 * writefn.
905 */
906 p_setw(perm, PCI_EXP_DEVCTL,
907 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
908 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
909 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
910 return 0;
911 }
912
vfio_af_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)913 static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
914 int count, struct perm_bits *perm,
915 int offset, __le32 val)
916 {
917 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
918
919 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
920 if (count < 0)
921 return count;
922
923 /*
924 * The FLR bit is virtualized, if set and the device supports AF
925 * FLR, issue a reset_function. Regardless, clear the bit, the spec
926 * requires it to be always read as zero. NB, reset_function might
927 * not use an AF FLR, we don't have that level of granularity.
928 */
929 if (*ctrl & PCI_AF_CTRL_FLR) {
930 u8 cap;
931 int ret;
932
933 *ctrl &= ~PCI_AF_CTRL_FLR;
934
935 ret = pci_user_read_config_byte(vdev->pdev,
936 pos - offset + PCI_AF_CAP,
937 &cap);
938
939 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
940 vfio_pci_zap_and_down_write_memory_lock(vdev);
941 pci_try_reset_function(vdev->pdev);
942 up_write(&vdev->memory_lock);
943 }
944 }
945
946 return count;
947 }
948
949 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)950 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
951 {
952 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
953 return -ENOMEM;
954
955 perm->writefn = vfio_af_config_write;
956
957 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
958 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
959 return 0;
960 }
961
962 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)963 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
964 {
965 u32 mask;
966
967 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
968 return -ENOMEM;
969
970 /*
971 * Virtualize the first dword of all express capabilities
972 * because it includes the next pointer. This lets us later
973 * remove capabilities from the chain if we need to.
974 */
975 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
976
977 /* Writable bits mask */
978 mask = PCI_ERR_UNC_UND | /* Undefined */
979 PCI_ERR_UNC_DLP | /* Data Link Protocol */
980 PCI_ERR_UNC_SURPDN | /* Surprise Down */
981 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
982 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
983 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
984 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
985 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
986 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
987 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
988 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
989 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
990 PCI_ERR_UNC_ACSV | /* ACS Violation */
991 PCI_ERR_UNC_INTN | /* internal error */
992 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
993 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
994 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
995 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
996 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
997 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
998
999 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
1000 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
1001 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
1002 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
1003 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
1004 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
1005 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
1006 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
1007 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1008 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1009
1010 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
1011 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
1012 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1013 return 0;
1014 }
1015
1016 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)1017 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1018 {
1019 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1020 return -ENOMEM;
1021
1022 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1023
1024 /* Writing the data selector is OK, the info is still read-only */
1025 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1026 return 0;
1027 }
1028
1029 /*
1030 * Initialize the shared permission tables
1031 */
vfio_pci_uninit_perm_bits(void)1032 void vfio_pci_uninit_perm_bits(void)
1033 {
1034 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1035
1036 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1037 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1038 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1039 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1040 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1041
1042 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1043 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1044 }
1045
vfio_pci_init_perm_bits(void)1046 int __init vfio_pci_init_perm_bits(void)
1047 {
1048 int ret;
1049
1050 /* Basic config space */
1051 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1052
1053 /* Capabilities */
1054 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1055 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1056 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1057 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1058 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1059 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1060
1061 /* Extended capabilities */
1062 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1063 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1064 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1065
1066 if (ret)
1067 vfio_pci_uninit_perm_bits();
1068
1069 return ret;
1070 }
1071
vfio_find_cap_start(struct vfio_pci_device * vdev,int pos)1072 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1073 {
1074 u8 cap;
1075 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1076 PCI_STD_HEADER_SIZEOF;
1077 cap = vdev->pci_config_map[pos];
1078
1079 if (cap == PCI_CAP_ID_BASIC)
1080 return 0;
1081
1082 /* XXX Can we have to abutting capabilities of the same type? */
1083 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1084 pos--;
1085
1086 return pos;
1087 }
1088
vfio_msi_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1089 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1090 int count, struct perm_bits *perm,
1091 int offset, __le32 *val)
1092 {
1093 /* Update max available queue size from msi_qmax */
1094 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1095 __le16 *flags;
1096 int start;
1097
1098 start = vfio_find_cap_start(vdev, pos);
1099
1100 flags = (__le16 *)&vdev->vconfig[start];
1101
1102 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1103 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1104 }
1105
1106 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1107 }
1108
vfio_msi_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1109 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1110 int count, struct perm_bits *perm,
1111 int offset, __le32 val)
1112 {
1113 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1114 if (count < 0)
1115 return count;
1116
1117 /* Fixup and write configured queue size and enable to hardware */
1118 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1119 __le16 *pflags;
1120 u16 flags;
1121 int start, ret;
1122
1123 start = vfio_find_cap_start(vdev, pos);
1124
1125 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1126
1127 flags = le16_to_cpu(*pflags);
1128
1129 /* MSI is enabled via ioctl */
1130 if (!is_msi(vdev))
1131 flags &= ~PCI_MSI_FLAGS_ENABLE;
1132
1133 /* Check queue size */
1134 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1135 flags &= ~PCI_MSI_FLAGS_QSIZE;
1136 flags |= vdev->msi_qmax << 4;
1137 }
1138
1139 /* Write back to virt and to hardware */
1140 *pflags = cpu_to_le16(flags);
1141 ret = pci_user_write_config_word(vdev->pdev,
1142 start + PCI_MSI_FLAGS,
1143 flags);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 return count;
1149 }
1150
1151 /*
1152 * MSI determination is per-device, so this routine gets used beyond
1153 * initialization time. Don't add __init
1154 */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1155 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1156 {
1157 if (alloc_perm_bits(perm, len))
1158 return -ENOMEM;
1159
1160 perm->readfn = vfio_msi_config_read;
1161 perm->writefn = vfio_msi_config_write;
1162
1163 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1164
1165 /*
1166 * The upper byte of the control register is reserved,
1167 * just setup the lower byte.
1168 */
1169 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1170 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1171 if (flags & PCI_MSI_FLAGS_64BIT) {
1172 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1173 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1174 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1175 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1176 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1177 }
1178 } else {
1179 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1180 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1181 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1182 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1183 }
1184 }
1185 return 0;
1186 }
1187
1188 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_device * vdev,u8 pos)1189 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1190 {
1191 struct pci_dev *pdev = vdev->pdev;
1192 int len, ret;
1193 u16 flags;
1194
1195 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1196 if (ret)
1197 return pcibios_err_to_errno(ret);
1198
1199 len = 10; /* Minimum size */
1200 if (flags & PCI_MSI_FLAGS_64BIT)
1201 len += 4;
1202 if (flags & PCI_MSI_FLAGS_MASKBIT)
1203 len += 10;
1204
1205 if (vdev->msi_perm)
1206 return len;
1207
1208 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1209 if (!vdev->msi_perm)
1210 return -ENOMEM;
1211
1212 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1213 if (ret) {
1214 kfree(vdev->msi_perm);
1215 return ret;
1216 }
1217
1218 return len;
1219 }
1220
1221 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_device * vdev,u16 pos)1222 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1223 {
1224 struct pci_dev *pdev = vdev->pdev;
1225 u32 tmp;
1226 int ret, evcc, phases, vc_arb;
1227 int len = PCI_CAP_VC_BASE_SIZEOF;
1228
1229 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1230 if (ret)
1231 return pcibios_err_to_errno(ret);
1232
1233 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1234 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1235 if (ret)
1236 return pcibios_err_to_errno(ret);
1237
1238 if (tmp & PCI_VC_CAP2_128_PHASE)
1239 phases = 128;
1240 else if (tmp & PCI_VC_CAP2_64_PHASE)
1241 phases = 64;
1242 else if (tmp & PCI_VC_CAP2_32_PHASE)
1243 phases = 32;
1244 else
1245 phases = 0;
1246
1247 vc_arb = phases * 4;
1248
1249 /*
1250 * Port arbitration tables are root & switch only;
1251 * function arbitration tables are function 0 only.
1252 * In either case, we'll never let user write them so
1253 * we don't care how big they are
1254 */
1255 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1256 if (vc_arb) {
1257 len = round_up(len, 16);
1258 len += vc_arb / 8;
1259 }
1260 return len;
1261 }
1262
vfio_cap_len(struct vfio_pci_device * vdev,u8 cap,u8 pos)1263 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1264 {
1265 struct pci_dev *pdev = vdev->pdev;
1266 u32 dword;
1267 u16 word;
1268 u8 byte;
1269 int ret;
1270
1271 switch (cap) {
1272 case PCI_CAP_ID_MSI:
1273 return vfio_msi_cap_len(vdev, pos);
1274 case PCI_CAP_ID_PCIX:
1275 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1276 if (ret)
1277 return pcibios_err_to_errno(ret);
1278
1279 if (PCI_X_CMD_VERSION(word)) {
1280 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1281 /* Test for extended capabilities */
1282 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1283 &dword);
1284 vdev->extended_caps = (dword != 0);
1285 }
1286 return PCI_CAP_PCIX_SIZEOF_V2;
1287 } else
1288 return PCI_CAP_PCIX_SIZEOF_V0;
1289 case PCI_CAP_ID_VNDR:
1290 /* length follows next field */
1291 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1292 if (ret)
1293 return pcibios_err_to_errno(ret);
1294
1295 return byte;
1296 case PCI_CAP_ID_EXP:
1297 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1298 /* Test for extended capabilities */
1299 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1300 vdev->extended_caps = (dword != 0);
1301 }
1302
1303 /* length based on version and type */
1304 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1305 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1306 return 0xc; /* "All Devices" only, no link */
1307 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1308 } else {
1309 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1310 return 0x2c; /* No link */
1311 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1312 }
1313 case PCI_CAP_ID_HT:
1314 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1315 if (ret)
1316 return pcibios_err_to_errno(ret);
1317
1318 return (byte & HT_3BIT_CAP_MASK) ?
1319 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1320 case PCI_CAP_ID_SATA:
1321 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1322 if (ret)
1323 return pcibios_err_to_errno(ret);
1324
1325 byte &= PCI_SATA_REGS_MASK;
1326 if (byte == PCI_SATA_REGS_INLINE)
1327 return PCI_SATA_SIZEOF_LONG;
1328 else
1329 return PCI_SATA_SIZEOF_SHORT;
1330 default:
1331 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1332 dev_name(&pdev->dev), __func__, cap, pos);
1333 }
1334
1335 return 0;
1336 }
1337
vfio_ext_cap_len(struct vfio_pci_device * vdev,u16 ecap,u16 epos)1338 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1339 {
1340 struct pci_dev *pdev = vdev->pdev;
1341 u8 byte;
1342 u32 dword;
1343 int ret;
1344
1345 switch (ecap) {
1346 case PCI_EXT_CAP_ID_VNDR:
1347 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1348 if (ret)
1349 return pcibios_err_to_errno(ret);
1350
1351 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1352 case PCI_EXT_CAP_ID_VC:
1353 case PCI_EXT_CAP_ID_VC9:
1354 case PCI_EXT_CAP_ID_MFVC:
1355 return vfio_vc_cap_len(vdev, epos);
1356 case PCI_EXT_CAP_ID_ACS:
1357 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1358 if (ret)
1359 return pcibios_err_to_errno(ret);
1360
1361 if (byte & PCI_ACS_EC) {
1362 int bits;
1363
1364 ret = pci_read_config_byte(pdev,
1365 epos + PCI_ACS_EGRESS_BITS,
1366 &byte);
1367 if (ret)
1368 return pcibios_err_to_errno(ret);
1369
1370 bits = byte ? round_up(byte, 32) : 256;
1371 return 8 + (bits / 8);
1372 }
1373 return 8;
1374
1375 case PCI_EXT_CAP_ID_REBAR:
1376 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1377 if (ret)
1378 return pcibios_err_to_errno(ret);
1379
1380 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1381 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1382
1383 return 4 + (byte * 8);
1384 case PCI_EXT_CAP_ID_DPA:
1385 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1386 if (ret)
1387 return pcibios_err_to_errno(ret);
1388
1389 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1390 return PCI_DPA_BASE_SIZEOF + byte + 1;
1391 case PCI_EXT_CAP_ID_TPH:
1392 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1393 if (ret)
1394 return pcibios_err_to_errno(ret);
1395
1396 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1397 int sts;
1398
1399 sts = dword & PCI_TPH_CAP_ST_MASK;
1400 sts >>= PCI_TPH_CAP_ST_SHIFT;
1401 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1402 }
1403 return PCI_TPH_BASE_SIZEOF;
1404 default:
1405 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1406 dev_name(&pdev->dev), __func__, ecap, epos);
1407 }
1408
1409 return 0;
1410 }
1411
vfio_fill_vconfig_bytes(struct vfio_pci_device * vdev,int offset,int size)1412 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1413 int offset, int size)
1414 {
1415 struct pci_dev *pdev = vdev->pdev;
1416 int ret = 0;
1417
1418 /*
1419 * We try to read physical config space in the largest chunks
1420 * we can, assuming that all of the fields support dword access.
1421 * pci_save_state() makes this same assumption and seems to do ok.
1422 */
1423 while (size) {
1424 int filled;
1425
1426 if (size >= 4 && !(offset % 4)) {
1427 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1428 u32 dword;
1429
1430 ret = pci_read_config_dword(pdev, offset, &dword);
1431 if (ret)
1432 return ret;
1433 *dwordp = cpu_to_le32(dword);
1434 filled = 4;
1435 } else if (size >= 2 && !(offset % 2)) {
1436 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1437 u16 word;
1438
1439 ret = pci_read_config_word(pdev, offset, &word);
1440 if (ret)
1441 return ret;
1442 *wordp = cpu_to_le16(word);
1443 filled = 2;
1444 } else {
1445 u8 *byte = &vdev->vconfig[offset];
1446 ret = pci_read_config_byte(pdev, offset, byte);
1447 if (ret)
1448 return ret;
1449 filled = 1;
1450 }
1451
1452 offset += filled;
1453 size -= filled;
1454 }
1455
1456 return ret;
1457 }
1458
vfio_cap_init(struct vfio_pci_device * vdev)1459 static int vfio_cap_init(struct vfio_pci_device *vdev)
1460 {
1461 struct pci_dev *pdev = vdev->pdev;
1462 u8 *map = vdev->pci_config_map;
1463 u16 status;
1464 u8 pos, *prev, cap;
1465 int loops, ret, caps = 0;
1466
1467 /* Any capabilities? */
1468 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1469 if (ret)
1470 return ret;
1471
1472 if (!(status & PCI_STATUS_CAP_LIST))
1473 return 0; /* Done */
1474
1475 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1476 if (ret)
1477 return ret;
1478
1479 /* Mark the previous position in case we want to skip a capability */
1480 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1481
1482 /* We can bound our loop, capabilities are dword aligned */
1483 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1484 while (pos && loops--) {
1485 u8 next;
1486 int i, len = 0;
1487
1488 ret = pci_read_config_byte(pdev, pos, &cap);
1489 if (ret)
1490 return ret;
1491
1492 ret = pci_read_config_byte(pdev,
1493 pos + PCI_CAP_LIST_NEXT, &next);
1494 if (ret)
1495 return ret;
1496
1497 /*
1498 * ID 0 is a NULL capability, conflicting with our fake
1499 * PCI_CAP_ID_BASIC. As it has no content, consider it
1500 * hidden for now.
1501 */
1502 if (cap && cap <= PCI_CAP_ID_MAX) {
1503 len = pci_cap_length[cap];
1504 if (len == 0xFF) { /* Variable length */
1505 len = vfio_cap_len(vdev, cap, pos);
1506 if (len < 0)
1507 return len;
1508 }
1509 }
1510
1511 if (!len) {
1512 pr_info("%s: %s hiding cap 0x%x\n",
1513 __func__, dev_name(&pdev->dev), cap);
1514 *prev = next;
1515 pos = next;
1516 continue;
1517 }
1518
1519 /* Sanity check, do we overlap other capabilities? */
1520 for (i = 0; i < len; i++) {
1521 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1522 continue;
1523
1524 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1525 __func__, dev_name(&pdev->dev),
1526 pos + i, map[pos + i], cap);
1527 }
1528
1529 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1530
1531 memset(map + pos, cap, len);
1532 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1533 if (ret)
1534 return ret;
1535
1536 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1537 pos = next;
1538 caps++;
1539 }
1540
1541 /* If we didn't fill any capabilities, clear the status flag */
1542 if (!caps) {
1543 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1544 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1545 }
1546
1547 return 0;
1548 }
1549
vfio_ecap_init(struct vfio_pci_device * vdev)1550 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1551 {
1552 struct pci_dev *pdev = vdev->pdev;
1553 u8 *map = vdev->pci_config_map;
1554 u16 epos;
1555 __le32 *prev = NULL;
1556 int loops, ret, ecaps = 0;
1557
1558 if (!vdev->extended_caps)
1559 return 0;
1560
1561 epos = PCI_CFG_SPACE_SIZE;
1562
1563 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1564
1565 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1566 u32 header;
1567 u16 ecap;
1568 int i, len = 0;
1569 bool hidden = false;
1570
1571 ret = pci_read_config_dword(pdev, epos, &header);
1572 if (ret)
1573 return ret;
1574
1575 ecap = PCI_EXT_CAP_ID(header);
1576
1577 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1578 len = pci_ext_cap_length[ecap];
1579 if (len == 0xFF) {
1580 len = vfio_ext_cap_len(vdev, ecap, epos);
1581 if (len < 0)
1582 return ret;
1583 }
1584 }
1585
1586 if (!len) {
1587 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1588 __func__, dev_name(&pdev->dev), ecap, epos);
1589
1590 /* If not the first in the chain, we can skip over it */
1591 if (prev) {
1592 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1593 *prev &= cpu_to_le32(~(0xffcU << 20));
1594 *prev |= cpu_to_le32(val << 20);
1595 continue;
1596 }
1597
1598 /*
1599 * Otherwise, fill in a placeholder, the direct
1600 * readfn will virtualize this automatically
1601 */
1602 len = PCI_CAP_SIZEOF;
1603 hidden = true;
1604 }
1605
1606 for (i = 0; i < len; i++) {
1607 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1608 continue;
1609
1610 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1611 __func__, dev_name(&pdev->dev),
1612 epos + i, map[epos + i], ecap);
1613 }
1614
1615 /*
1616 * Even though ecap is 2 bytes, we're currently a long way
1617 * from exceeding 1 byte capabilities. If we ever make it
1618 * up to 0xFE we'll need to up this to a two-byte, byte map.
1619 */
1620 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1621
1622 memset(map + epos, ecap, len);
1623 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1624 if (ret)
1625 return ret;
1626
1627 /*
1628 * If we're just using this capability to anchor the list,
1629 * hide the real ID. Only count real ecaps. XXX PCI spec
1630 * indicates to use cap id = 0, version = 0, next = 0 if
1631 * ecaps are absent, hope users check all the way to next.
1632 */
1633 if (hidden)
1634 *(__le32 *)&vdev->vconfig[epos] &=
1635 cpu_to_le32((0xffcU << 20));
1636 else
1637 ecaps++;
1638
1639 prev = (__le32 *)&vdev->vconfig[epos];
1640 epos = PCI_EXT_CAP_NEXT(header);
1641 }
1642
1643 if (!ecaps)
1644 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1645
1646 return 0;
1647 }
1648
1649 /*
1650 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1651 * to collect a list of dependencies for the VF INTx pin quirk below.
1652 */
1653 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1654 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1655 {}
1656 };
1657
1658 /*
1659 * For each device we allocate a pci_config_map that indicates the
1660 * capability occupying each dword and thus the struct perm_bits we
1661 * use for read and write. We also allocate a virtualized config
1662 * space which tracks reads and writes to bits that we emulate for
1663 * the user. Initial values filled from device.
1664 *
1665 * Using shared struct perm_bits between all vfio-pci devices saves
1666 * us from allocating cfg_size buffers for virt and write for every
1667 * device. We could remove vconfig and allocate individual buffers
1668 * for each area requiring emulated bits, but the array of pointers
1669 * would be comparable in size (at least for standard config space).
1670 */
vfio_config_init(struct vfio_pci_device * vdev)1671 int vfio_config_init(struct vfio_pci_device *vdev)
1672 {
1673 struct pci_dev *pdev = vdev->pdev;
1674 u8 *map, *vconfig;
1675 int ret;
1676
1677 /*
1678 * Config space, caps and ecaps are all dword aligned, so we could
1679 * use one byte per dword to record the type. However, there are
1680 * no requiremenst on the length of a capability, so the gap between
1681 * capabilities needs byte granularity.
1682 */
1683 map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1684 if (!map)
1685 return -ENOMEM;
1686
1687 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1688 if (!vconfig) {
1689 kfree(map);
1690 return -ENOMEM;
1691 }
1692
1693 vdev->pci_config_map = map;
1694 vdev->vconfig = vconfig;
1695
1696 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1697 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1698 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1699
1700 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1701 if (ret)
1702 goto out;
1703
1704 vdev->bardirty = true;
1705
1706 /*
1707 * XXX can we just pci_load_saved_state/pci_restore_state?
1708 * may need to rebuild vconfig after that
1709 */
1710
1711 /* For restore after reset */
1712 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1713 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1714 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1715 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1716 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1717 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1718 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1719
1720 if (pdev->is_virtfn) {
1721 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1722 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1723
1724 /*
1725 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1726 * does not apply to VFs and VFs must implement this register
1727 * as read-only with value zero. Userspace is not readily able
1728 * to identify whether a device is a VF and thus that the pin
1729 * definition on the device is bogus should it violate this
1730 * requirement. We already virtualize the pin register for
1731 * other purposes, so we simply need to replace the bogus value
1732 * and consider VFs when we determine INTx IRQ count.
1733 */
1734 if (vconfig[PCI_INTERRUPT_PIN] &&
1735 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1736 pci_warn(pdev,
1737 "Hardware bug: VF reports bogus INTx pin %d\n",
1738 vconfig[PCI_INTERRUPT_PIN]);
1739
1740 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1741
1742 /*
1743 * VFs do no implement the memory enable bit of the COMMAND
1744 * register therefore we'll not have it set in our initial
1745 * copy of config space after pci_enable_device(). For
1746 * consistency with PFs, set the virtual enable bit here.
1747 */
1748 *(__le16 *)&vconfig[PCI_COMMAND] |=
1749 cpu_to_le16(PCI_COMMAND_MEMORY);
1750 }
1751
1752 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1753 vconfig[PCI_INTERRUPT_PIN] = 0;
1754
1755 ret = vfio_cap_init(vdev);
1756 if (ret)
1757 goto out;
1758
1759 ret = vfio_ecap_init(vdev);
1760 if (ret)
1761 goto out;
1762
1763 return 0;
1764
1765 out:
1766 kfree(map);
1767 vdev->pci_config_map = NULL;
1768 kfree(vconfig);
1769 vdev->vconfig = NULL;
1770 return pcibios_err_to_errno(ret);
1771 }
1772
vfio_config_free(struct vfio_pci_device * vdev)1773 void vfio_config_free(struct vfio_pci_device *vdev)
1774 {
1775 kfree(vdev->vconfig);
1776 vdev->vconfig = NULL;
1777 kfree(vdev->pci_config_map);
1778 vdev->pci_config_map = NULL;
1779 if (vdev->msi_perm) {
1780 free_perm_bits(vdev->msi_perm);
1781 kfree(vdev->msi_perm);
1782 vdev->msi_perm = NULL;
1783 }
1784 }
1785
1786 /*
1787 * Find the remaining number of bytes in a dword that match the given
1788 * position. Stop at either the end of the capability or the dword boundary.
1789 */
vfio_pci_cap_remaining_dword(struct vfio_pci_device * vdev,loff_t pos)1790 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1791 loff_t pos)
1792 {
1793 u8 cap = vdev->pci_config_map[pos];
1794 size_t i;
1795
1796 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1797 /* nop */;
1798
1799 return i;
1800 }
1801
vfio_config_do_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1802 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1803 size_t count, loff_t *ppos, bool iswrite)
1804 {
1805 struct pci_dev *pdev = vdev->pdev;
1806 struct perm_bits *perm;
1807 __le32 val = 0;
1808 int cap_start = 0, offset;
1809 u8 cap_id;
1810 ssize_t ret;
1811
1812 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1813 *ppos + count > pdev->cfg_size)
1814 return -EFAULT;
1815
1816 /*
1817 * Chop accesses into aligned chunks containing no more than a
1818 * single capability. Caller increments to the next chunk.
1819 */
1820 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1821 if (count >= 4 && !(*ppos % 4))
1822 count = 4;
1823 else if (count >= 2 && !(*ppos % 2))
1824 count = 2;
1825 else
1826 count = 1;
1827
1828 ret = count;
1829
1830 cap_id = vdev->pci_config_map[*ppos];
1831
1832 if (cap_id == PCI_CAP_ID_INVALID) {
1833 perm = &unassigned_perms;
1834 cap_start = *ppos;
1835 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1836 perm = &virt_perms;
1837 cap_start = *ppos;
1838 } else {
1839 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1840 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1841
1842 perm = &ecap_perms[cap_id];
1843 cap_start = vfio_find_cap_start(vdev, *ppos);
1844 } else {
1845 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1846
1847 perm = &cap_perms[cap_id];
1848
1849 if (cap_id == PCI_CAP_ID_MSI)
1850 perm = vdev->msi_perm;
1851
1852 if (cap_id > PCI_CAP_ID_BASIC)
1853 cap_start = vfio_find_cap_start(vdev, *ppos);
1854 }
1855 }
1856
1857 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1858 WARN_ON(cap_start > *ppos);
1859
1860 offset = *ppos - cap_start;
1861
1862 if (iswrite) {
1863 if (!perm->writefn)
1864 return ret;
1865
1866 if (copy_from_user(&val, buf, count))
1867 return -EFAULT;
1868
1869 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1870 } else {
1871 if (perm->readfn) {
1872 ret = perm->readfn(vdev, *ppos, count,
1873 perm, offset, &val);
1874 if (ret < 0)
1875 return ret;
1876 }
1877
1878 if (copy_to_user(buf, &val, count))
1879 return -EFAULT;
1880 }
1881
1882 return ret;
1883 }
1884
vfio_pci_config_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1885 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1886 size_t count, loff_t *ppos, bool iswrite)
1887 {
1888 size_t done = 0;
1889 int ret = 0;
1890 loff_t pos = *ppos;
1891
1892 pos &= VFIO_PCI_OFFSET_MASK;
1893
1894 while (count) {
1895 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1896 if (ret < 0)
1897 return ret;
1898
1899 count -= ret;
1900 done += ret;
1901 buf += ret;
1902 pos += ret;
1903 }
1904
1905 *ppos += done;
1906
1907 return done;
1908 }
1909