• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* Maintain an RxRPC server socket to do AFS communications through
2   *
3   * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4   * Written by David Howells (dhowells@redhat.com)
5   *
6   * This program is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU General Public License
8   * as published by the Free Software Foundation; either version
9   * 2 of the License, or (at your option) any later version.
10   */
11  
12  #include <linux/slab.h>
13  #include <linux/sched/signal.h>
14  
15  #include <net/sock.h>
16  #include <net/af_rxrpc.h>
17  #include "internal.h"
18  #include "afs_cm.h"
19  
20  struct workqueue_struct *afs_async_calls;
21  
22  static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23  static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24  static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25  static void afs_process_async_call(struct work_struct *);
26  static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27  static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28  static int afs_deliver_cm_op_id(struct afs_call *);
29  
30  /* asynchronous incoming call initial processing */
31  static const struct afs_call_type afs_RXCMxxxx = {
32  	.name		= "CB.xxxx",
33  	.deliver	= afs_deliver_cm_op_id,
34  };
35  
36  /*
37   * open an RxRPC socket and bind it to be a server for callback notifications
38   * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39   */
afs_open_socket(struct afs_net * net)40  int afs_open_socket(struct afs_net *net)
41  {
42  	struct sockaddr_rxrpc srx;
43  	struct socket *socket;
44  	unsigned int min_level;
45  	int ret;
46  
47  	_enter("");
48  
49  	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
50  	if (ret < 0)
51  		goto error_1;
52  
53  	socket->sk->sk_allocation = GFP_NOFS;
54  
55  	/* bind the callback manager's address to make this a server socket */
56  	memset(&srx, 0, sizeof(srx));
57  	srx.srx_family			= AF_RXRPC;
58  	srx.srx_service			= CM_SERVICE;
59  	srx.transport_type		= SOCK_DGRAM;
60  	srx.transport_len		= sizeof(srx.transport.sin6);
61  	srx.transport.sin6.sin6_family	= AF_INET6;
62  	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
63  
64  	min_level = RXRPC_SECURITY_ENCRYPT;
65  	ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
66  				(void *)&min_level, sizeof(min_level));
67  	if (ret < 0)
68  		goto error_2;
69  
70  	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71  	if (ret == -EADDRINUSE) {
72  		srx.transport.sin6.sin6_port = 0;
73  		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74  	}
75  	if (ret < 0)
76  		goto error_2;
77  
78  	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
79  					   afs_rx_discard_new_call);
80  
81  	ret = kernel_listen(socket, INT_MAX);
82  	if (ret < 0)
83  		goto error_2;
84  
85  	net->socket = socket;
86  	afs_charge_preallocation(&net->charge_preallocation_work);
87  	_leave(" = 0");
88  	return 0;
89  
90  error_2:
91  	sock_release(socket);
92  error_1:
93  	_leave(" = %d", ret);
94  	return ret;
95  }
96  
97  /*
98   * close the RxRPC socket AFS was using
99   */
afs_close_socket(struct afs_net * net)100  void afs_close_socket(struct afs_net *net)
101  {
102  	_enter("");
103  
104  	kernel_listen(net->socket, 0);
105  	flush_workqueue(afs_async_calls);
106  
107  	if (net->spare_incoming_call) {
108  		afs_put_call(net->spare_incoming_call);
109  		net->spare_incoming_call = NULL;
110  	}
111  
112  	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
113  	wait_var_event(&net->nr_outstanding_calls,
114  		       !atomic_read(&net->nr_outstanding_calls));
115  	_debug("no outstanding calls");
116  
117  	kernel_sock_shutdown(net->socket, SHUT_RDWR);
118  	flush_workqueue(afs_async_calls);
119  	sock_release(net->socket);
120  
121  	_debug("dework");
122  	_leave("");
123  }
124  
125  /*
126   * Allocate a call.
127   */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)128  static struct afs_call *afs_alloc_call(struct afs_net *net,
129  				       const struct afs_call_type *type,
130  				       gfp_t gfp)
131  {
132  	struct afs_call *call;
133  	int o;
134  
135  	call = kzalloc(sizeof(*call), gfp);
136  	if (!call)
137  		return NULL;
138  
139  	call->type = type;
140  	call->net = net;
141  	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
142  	atomic_set(&call->usage, 1);
143  	INIT_WORK(&call->async_work, afs_process_async_call);
144  	init_waitqueue_head(&call->waitq);
145  	spin_lock_init(&call->state_lock);
146  
147  	o = atomic_inc_return(&net->nr_outstanding_calls);
148  	trace_afs_call(call, afs_call_trace_alloc, 1, o,
149  		       __builtin_return_address(0));
150  	return call;
151  }
152  
153  /*
154   * Dispose of a reference on a call.
155   */
afs_put_call(struct afs_call * call)156  void afs_put_call(struct afs_call *call)
157  {
158  	struct afs_net *net = call->net;
159  	int n = atomic_dec_return(&call->usage);
160  	int o = atomic_read(&net->nr_outstanding_calls);
161  
162  	trace_afs_call(call, afs_call_trace_put, n, o,
163  		       __builtin_return_address(0));
164  
165  	ASSERTCMP(n, >=, 0);
166  	if (n == 0) {
167  		ASSERT(!work_pending(&call->async_work));
168  		ASSERT(call->type->name != NULL);
169  
170  		if (call->rxcall) {
171  			rxrpc_kernel_end_call(net->socket, call->rxcall);
172  			call->rxcall = NULL;
173  		}
174  		if (call->type->destructor)
175  			call->type->destructor(call);
176  
177  		afs_put_server(call->net, call->cm_server);
178  		afs_put_cb_interest(call->net, call->cbi);
179  		kfree(call->request);
180  
181  		trace_afs_call(call, afs_call_trace_free, 0, o,
182  			       __builtin_return_address(0));
183  		kfree(call);
184  
185  		o = atomic_dec_return(&net->nr_outstanding_calls);
186  		if (o == 0)
187  			wake_up_var(&net->nr_outstanding_calls);
188  	}
189  }
190  
191  /*
192   * Queue the call for actual work.  Returns 0 unconditionally for convenience.
193   */
afs_queue_call_work(struct afs_call * call)194  int afs_queue_call_work(struct afs_call *call)
195  {
196  	int u = atomic_inc_return(&call->usage);
197  
198  	trace_afs_call(call, afs_call_trace_work, u,
199  		       atomic_read(&call->net->nr_outstanding_calls),
200  		       __builtin_return_address(0));
201  
202  	INIT_WORK(&call->work, call->type->work);
203  
204  	if (!queue_work(afs_wq, &call->work))
205  		afs_put_call(call);
206  	return 0;
207  }
208  
209  /*
210   * allocate a call with flat request and reply buffers
211   */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)212  struct afs_call *afs_alloc_flat_call(struct afs_net *net,
213  				     const struct afs_call_type *type,
214  				     size_t request_size, size_t reply_max)
215  {
216  	struct afs_call *call;
217  
218  	call = afs_alloc_call(net, type, GFP_NOFS);
219  	if (!call)
220  		goto nomem_call;
221  
222  	if (request_size) {
223  		call->request_size = request_size;
224  		call->request = kmalloc(request_size, GFP_NOFS);
225  		if (!call->request)
226  			goto nomem_free;
227  	}
228  
229  	if (reply_max) {
230  		call->reply_max = reply_max;
231  		call->buffer = kmalloc(reply_max, GFP_NOFS);
232  		if (!call->buffer)
233  			goto nomem_free;
234  	}
235  
236  	call->operation_ID = type->op;
237  	init_waitqueue_head(&call->waitq);
238  	return call;
239  
240  nomem_free:
241  	afs_put_call(call);
242  nomem_call:
243  	return NULL;
244  }
245  
246  /*
247   * clean up a call with flat buffer
248   */
afs_flat_call_destructor(struct afs_call * call)249  void afs_flat_call_destructor(struct afs_call *call)
250  {
251  	_enter("");
252  
253  	kfree(call->request);
254  	call->request = NULL;
255  	kfree(call->buffer);
256  	call->buffer = NULL;
257  }
258  
259  #define AFS_BVEC_MAX 8
260  
261  /*
262   * Load the given bvec with the next few pages.
263   */
afs_load_bvec(struct afs_call * call,struct msghdr * msg,struct bio_vec * bv,pgoff_t first,pgoff_t last,unsigned offset)264  static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
265  			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
266  			  unsigned offset)
267  {
268  	struct page *pages[AFS_BVEC_MAX];
269  	unsigned int nr, n, i, to, bytes = 0;
270  
271  	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
272  	n = find_get_pages_contig(call->mapping, first, nr, pages);
273  	ASSERTCMP(n, ==, nr);
274  
275  	msg->msg_flags |= MSG_MORE;
276  	for (i = 0; i < nr; i++) {
277  		to = PAGE_SIZE;
278  		if (first + i >= last) {
279  			to = call->last_to;
280  			msg->msg_flags &= ~MSG_MORE;
281  		}
282  		bv[i].bv_page = pages[i];
283  		bv[i].bv_len = to - offset;
284  		bv[i].bv_offset = offset;
285  		bytes += to - offset;
286  		offset = 0;
287  	}
288  
289  	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
290  }
291  
292  /*
293   * Advance the AFS call state when the RxRPC call ends the transmit phase.
294   */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)295  static void afs_notify_end_request_tx(struct sock *sock,
296  				      struct rxrpc_call *rxcall,
297  				      unsigned long call_user_ID)
298  {
299  	struct afs_call *call = (struct afs_call *)call_user_ID;
300  
301  	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
302  }
303  
304  /*
305   * attach the data from a bunch of pages on an inode to a call
306   */
afs_send_pages(struct afs_call * call,struct msghdr * msg)307  static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
308  {
309  	struct bio_vec bv[AFS_BVEC_MAX];
310  	unsigned int bytes, nr, loop, offset;
311  	pgoff_t first = call->first, last = call->last;
312  	int ret;
313  
314  	offset = call->first_offset;
315  	call->first_offset = 0;
316  
317  	do {
318  		afs_load_bvec(call, msg, bv, first, last, offset);
319  		trace_afs_send_pages(call, msg, first, last, offset);
320  
321  		offset = 0;
322  		bytes = msg->msg_iter.count;
323  		nr = msg->msg_iter.nr_segs;
324  
325  		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
326  					     bytes, afs_notify_end_request_tx);
327  		for (loop = 0; loop < nr; loop++)
328  			put_page(bv[loop].bv_page);
329  		if (ret < 0)
330  			break;
331  
332  		first += nr;
333  	} while (first <= last);
334  
335  	trace_afs_sent_pages(call, call->first, last, first, ret);
336  	return ret;
337  }
338  
339  /*
340   * initiate a call
341   */
afs_make_call(struct afs_addr_cursor * ac,struct afs_call * call,gfp_t gfp,bool async)342  long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
343  		   gfp_t gfp, bool async)
344  {
345  	struct sockaddr_rxrpc *srx = ac->addr;
346  	struct rxrpc_call *rxcall;
347  	struct msghdr msg;
348  	struct kvec iov[1];
349  	s64 tx_total_len;
350  	int ret;
351  
352  	_enter(",{%pISp},", &srx->transport);
353  
354  	ASSERT(call->type != NULL);
355  	ASSERT(call->type->name != NULL);
356  
357  	_debug("____MAKE %p{%s,%x} [%d]____",
358  	       call, call->type->name, key_serial(call->key),
359  	       atomic_read(&call->net->nr_outstanding_calls));
360  
361  	call->async = async;
362  
363  	/* Work out the length we're going to transmit.  This is awkward for
364  	 * calls such as FS.StoreData where there's an extra injection of data
365  	 * after the initial fixed part.
366  	 */
367  	tx_total_len = call->request_size;
368  	if (call->send_pages) {
369  		if (call->last == call->first) {
370  			tx_total_len += call->last_to - call->first_offset;
371  		} else {
372  			/* It looks mathematically like you should be able to
373  			 * combine the following lines with the ones above, but
374  			 * unsigned arithmetic is fun when it wraps...
375  			 */
376  			tx_total_len += PAGE_SIZE - call->first_offset;
377  			tx_total_len += call->last_to;
378  			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
379  		}
380  	}
381  
382  	/* create a call */
383  	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
384  					 (unsigned long)call,
385  					 tx_total_len, gfp,
386  					 (async ?
387  					  afs_wake_up_async_call :
388  					  afs_wake_up_call_waiter),
389  					 call->upgrade,
390  					 call->debug_id);
391  	if (IS_ERR(rxcall)) {
392  		ret = PTR_ERR(rxcall);
393  		goto error_kill_call;
394  	}
395  
396  	call->rxcall = rxcall;
397  
398  	/* send the request */
399  	iov[0].iov_base	= call->request;
400  	iov[0].iov_len	= call->request_size;
401  
402  	msg.msg_name		= NULL;
403  	msg.msg_namelen		= 0;
404  	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
405  		      call->request_size);
406  	msg.msg_control		= NULL;
407  	msg.msg_controllen	= 0;
408  	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
409  
410  	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
411  				     &msg, call->request_size,
412  				     afs_notify_end_request_tx);
413  	if (ret < 0)
414  		goto error_do_abort;
415  
416  	if (call->send_pages) {
417  		ret = afs_send_pages(call, &msg);
418  		if (ret < 0)
419  			goto error_do_abort;
420  	}
421  
422  	/* at this point, an async call may no longer exist as it may have
423  	 * already completed */
424  	if (call->async)
425  		return -EINPROGRESS;
426  
427  	return afs_wait_for_call_to_complete(call, ac);
428  
429  error_do_abort:
430  	call->state = AFS_CALL_COMPLETE;
431  	if (ret != -ECONNABORTED) {
432  		rxrpc_kernel_abort_call(call->net->socket, rxcall,
433  					RX_USER_ABORT, ret, "KSD");
434  	} else {
435  		iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, NULL, 0, 0);
436  		rxrpc_kernel_recv_data(call->net->socket, rxcall,
437  				       &msg.msg_iter, false,
438  				       &call->abort_code, &call->service_id);
439  		ac->abort_code = call->abort_code;
440  		ac->responded = true;
441  	}
442  	call->error = ret;
443  	trace_afs_call_done(call);
444  error_kill_call:
445  	afs_put_call(call);
446  	ac->error = ret;
447  	_leave(" = %d", ret);
448  	return ret;
449  }
450  
451  /*
452   * deliver messages to a call
453   */
afs_deliver_to_call(struct afs_call * call)454  static void afs_deliver_to_call(struct afs_call *call)
455  {
456  	enum afs_call_state state;
457  	u32 abort_code, remote_abort = 0;
458  	int ret;
459  
460  	_enter("%s", call->type->name);
461  
462  	while (state = READ_ONCE(call->state),
463  	       state == AFS_CALL_CL_AWAIT_REPLY ||
464  	       state == AFS_CALL_SV_AWAIT_OP_ID ||
465  	       state == AFS_CALL_SV_AWAIT_REQUEST ||
466  	       state == AFS_CALL_SV_AWAIT_ACK
467  	       ) {
468  		if (state == AFS_CALL_SV_AWAIT_ACK) {
469  			struct iov_iter iter;
470  
471  			iov_iter_kvec(&iter, READ | ITER_KVEC, NULL, 0, 0);
472  			ret = rxrpc_kernel_recv_data(call->net->socket,
473  						     call->rxcall, &iter, false,
474  						     &remote_abort,
475  						     &call->service_id);
476  			trace_afs_recv_data(call, 0, 0, false, ret);
477  
478  			if (ret == -EINPROGRESS || ret == -EAGAIN)
479  				return;
480  			if (ret < 0 || ret == 1) {
481  				if (ret == 1)
482  					ret = 0;
483  				goto call_complete;
484  			}
485  			return;
486  		}
487  
488  		ret = call->type->deliver(call);
489  		state = READ_ONCE(call->state);
490  		switch (ret) {
491  		case 0:
492  			if (state == AFS_CALL_CL_PROC_REPLY) {
493  				if (call->cbi)
494  					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
495  						&call->cbi->server->flags);
496  				goto call_complete;
497  			}
498  			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
499  			goto done;
500  		case -EINPROGRESS:
501  		case -EAGAIN:
502  			goto out;
503  		case -ECONNABORTED:
504  			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
505  			goto done;
506  		case -ENOTSUPP:
507  			abort_code = RXGEN_OPCODE;
508  			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
509  						abort_code, ret, "KIV");
510  			goto local_abort;
511  		case -EIO:
512  			pr_err("kAFS: Call %u in bad state %u\n",
513  			       call->debug_id, state);
514  			/* Fall through */
515  		case -ENODATA:
516  		case -EBADMSG:
517  		case -EMSGSIZE:
518  		default:
519  			abort_code = RXGEN_CC_UNMARSHAL;
520  			if (state != AFS_CALL_CL_AWAIT_REPLY)
521  				abort_code = RXGEN_SS_UNMARSHAL;
522  			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
523  						abort_code, -EBADMSG, "KUM");
524  			goto local_abort;
525  		}
526  	}
527  
528  done:
529  	if (state == AFS_CALL_COMPLETE && call->incoming)
530  		afs_put_call(call);
531  out:
532  	_leave("");
533  	return;
534  
535  local_abort:
536  	abort_code = 0;
537  call_complete:
538  	afs_set_call_complete(call, ret, remote_abort);
539  	state = AFS_CALL_COMPLETE;
540  	goto done;
541  }
542  
543  /*
544   * wait synchronously for a call to complete
545   */
afs_wait_for_call_to_complete(struct afs_call * call,struct afs_addr_cursor * ac)546  static long afs_wait_for_call_to_complete(struct afs_call *call,
547  					  struct afs_addr_cursor *ac)
548  {
549  	signed long rtt2, timeout;
550  	long ret;
551  	u64 rtt;
552  	u32 life, last_life;
553  
554  	DECLARE_WAITQUEUE(myself, current);
555  
556  	_enter("");
557  
558  	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
559  	rtt2 = nsecs_to_jiffies64(rtt) * 2;
560  	if (rtt2 < 2)
561  		rtt2 = 2;
562  
563  	timeout = rtt2;
564  	last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
565  
566  	add_wait_queue(&call->waitq, &myself);
567  	for (;;) {
568  		set_current_state(TASK_UNINTERRUPTIBLE);
569  
570  		/* deliver any messages that are in the queue */
571  		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
572  		    call->need_attention) {
573  			call->need_attention = false;
574  			__set_current_state(TASK_RUNNING);
575  			afs_deliver_to_call(call);
576  			timeout = rtt2;
577  			continue;
578  		}
579  
580  		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
581  			break;
582  
583  		life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
584  		if (timeout == 0 &&
585  		    life == last_life && signal_pending(current))
586  				break;
587  
588  		if (life != last_life) {
589  			timeout = rtt2;
590  			last_life = life;
591  		}
592  
593  		timeout = schedule_timeout(timeout);
594  	}
595  
596  	remove_wait_queue(&call->waitq, &myself);
597  	__set_current_state(TASK_RUNNING);
598  
599  	/* Kill off the call if it's still live. */
600  	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
601  		_debug("call interrupted");
602  		if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
603  					    RX_USER_ABORT, -EINTR, "KWI"))
604  			afs_set_call_complete(call, -EINTR, 0);
605  	}
606  
607  	spin_lock_bh(&call->state_lock);
608  	ac->abort_code = call->abort_code;
609  	ac->error = call->error;
610  	spin_unlock_bh(&call->state_lock);
611  
612  	ret = ac->error;
613  	switch (ret) {
614  	case 0:
615  		if (call->ret_reply0) {
616  			ret = (long)call->reply[0];
617  			call->reply[0] = NULL;
618  		}
619  		/* Fall through */
620  	case -ECONNABORTED:
621  		ac->responded = true;
622  		break;
623  	}
624  
625  	_debug("call complete");
626  	afs_put_call(call);
627  	_leave(" = %p", (void *)ret);
628  	return ret;
629  }
630  
631  /*
632   * wake up a waiting call
633   */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)634  static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
635  				    unsigned long call_user_ID)
636  {
637  	struct afs_call *call = (struct afs_call *)call_user_ID;
638  
639  	call->need_attention = true;
640  	wake_up(&call->waitq);
641  }
642  
643  /*
644   * wake up an asynchronous call
645   */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)646  static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
647  				   unsigned long call_user_ID)
648  {
649  	struct afs_call *call = (struct afs_call *)call_user_ID;
650  	int u;
651  
652  	trace_afs_notify_call(rxcall, call);
653  	call->need_attention = true;
654  
655  	u = atomic_fetch_add_unless(&call->usage, 1, 0);
656  	if (u != 0) {
657  		trace_afs_call(call, afs_call_trace_wake, u + 1,
658  			       atomic_read(&call->net->nr_outstanding_calls),
659  			       __builtin_return_address(0));
660  
661  		if (!queue_work(afs_async_calls, &call->async_work))
662  			afs_put_call(call);
663  	}
664  }
665  
666  /*
667   * Delete an asynchronous call.  The work item carries a ref to the call struct
668   * that we need to release.
669   */
afs_delete_async_call(struct work_struct * work)670  static void afs_delete_async_call(struct work_struct *work)
671  {
672  	struct afs_call *call = container_of(work, struct afs_call, async_work);
673  
674  	_enter("");
675  
676  	afs_put_call(call);
677  
678  	_leave("");
679  }
680  
681  /*
682   * Perform I/O processing on an asynchronous call.  The work item carries a ref
683   * to the call struct that we either need to release or to pass on.
684   */
afs_process_async_call(struct work_struct * work)685  static void afs_process_async_call(struct work_struct *work)
686  {
687  	struct afs_call *call = container_of(work, struct afs_call, async_work);
688  
689  	_enter("");
690  
691  	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
692  		call->need_attention = false;
693  		afs_deliver_to_call(call);
694  	}
695  
696  	if (call->state == AFS_CALL_COMPLETE) {
697  		/* We have two refs to release - one from the alloc and one
698  		 * queued with the work item - and we can't just deallocate the
699  		 * call because the work item may be queued again.
700  		 */
701  		call->async_work.func = afs_delete_async_call;
702  		if (!queue_work(afs_async_calls, &call->async_work))
703  			afs_put_call(call);
704  	}
705  
706  	afs_put_call(call);
707  	_leave("");
708  }
709  
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)710  static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
711  {
712  	struct afs_call *call = (struct afs_call *)user_call_ID;
713  
714  	call->rxcall = rxcall;
715  }
716  
717  /*
718   * Charge the incoming call preallocation.
719   */
afs_charge_preallocation(struct work_struct * work)720  void afs_charge_preallocation(struct work_struct *work)
721  {
722  	struct afs_net *net =
723  		container_of(work, struct afs_net, charge_preallocation_work);
724  	struct afs_call *call = net->spare_incoming_call;
725  
726  	for (;;) {
727  		if (!call) {
728  			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
729  			if (!call)
730  				break;
731  
732  			call->async = true;
733  			call->state = AFS_CALL_SV_AWAIT_OP_ID;
734  			init_waitqueue_head(&call->waitq);
735  		}
736  
737  		if (rxrpc_kernel_charge_accept(net->socket,
738  					       afs_wake_up_async_call,
739  					       afs_rx_attach,
740  					       (unsigned long)call,
741  					       GFP_KERNEL,
742  					       call->debug_id) < 0)
743  			break;
744  		call = NULL;
745  	}
746  	net->spare_incoming_call = call;
747  }
748  
749  /*
750   * Discard a preallocated call when a socket is shut down.
751   */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)752  static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
753  				    unsigned long user_call_ID)
754  {
755  	struct afs_call *call = (struct afs_call *)user_call_ID;
756  
757  	call->rxcall = NULL;
758  	afs_put_call(call);
759  }
760  
761  /*
762   * Notification of an incoming call.
763   */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)764  static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
765  			    unsigned long user_call_ID)
766  {
767  	struct afs_net *net = afs_sock2net(sk);
768  
769  	queue_work(afs_wq, &net->charge_preallocation_work);
770  }
771  
772  /*
773   * Grab the operation ID from an incoming cache manager call.  The socket
774   * buffer is discarded on error or if we don't yet have sufficient data.
775   */
afs_deliver_cm_op_id(struct afs_call * call)776  static int afs_deliver_cm_op_id(struct afs_call *call)
777  {
778  	int ret;
779  
780  	_enter("{%zu}", call->offset);
781  
782  	ASSERTCMP(call->offset, <, 4);
783  
784  	/* the operation ID forms the first four bytes of the request data */
785  	ret = afs_extract_data(call, &call->tmp, 4, true);
786  	if (ret < 0)
787  		return ret;
788  
789  	call->operation_ID = ntohl(call->tmp);
790  	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
791  	call->offset = 0;
792  
793  	/* ask the cache manager to route the call (it'll change the call type
794  	 * if successful) */
795  	if (!afs_cm_incoming_call(call))
796  		return -ENOTSUPP;
797  
798  	trace_afs_cb_call(call);
799  
800  	/* pass responsibility for the remainer of this message off to the
801  	 * cache manager op */
802  	return call->type->deliver(call);
803  }
804  
805  /*
806   * Advance the AFS call state when an RxRPC service call ends the transmit
807   * phase.
808   */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)809  static void afs_notify_end_reply_tx(struct sock *sock,
810  				    struct rxrpc_call *rxcall,
811  				    unsigned long call_user_ID)
812  {
813  	struct afs_call *call = (struct afs_call *)call_user_ID;
814  
815  	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
816  }
817  
818  /*
819   * send an empty reply
820   */
afs_send_empty_reply(struct afs_call * call)821  void afs_send_empty_reply(struct afs_call *call)
822  {
823  	struct afs_net *net = call->net;
824  	struct msghdr msg;
825  
826  	_enter("");
827  
828  	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
829  
830  	msg.msg_name		= NULL;
831  	msg.msg_namelen		= 0;
832  	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
833  	msg.msg_control		= NULL;
834  	msg.msg_controllen	= 0;
835  	msg.msg_flags		= 0;
836  
837  	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
838  				       afs_notify_end_reply_tx)) {
839  	case 0:
840  		_leave(" [replied]");
841  		return;
842  
843  	case -ENOMEM:
844  		_debug("oom");
845  		rxrpc_kernel_abort_call(net->socket, call->rxcall,
846  					RX_USER_ABORT, -ENOMEM, "KOO");
847  	default:
848  		_leave(" [error]");
849  		return;
850  	}
851  }
852  
853  /*
854   * send a simple reply
855   */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)856  void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
857  {
858  	struct afs_net *net = call->net;
859  	struct msghdr msg;
860  	struct kvec iov[1];
861  	int n;
862  
863  	_enter("");
864  
865  	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
866  
867  	iov[0].iov_base		= (void *) buf;
868  	iov[0].iov_len		= len;
869  	msg.msg_name		= NULL;
870  	msg.msg_namelen		= 0;
871  	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
872  	msg.msg_control		= NULL;
873  	msg.msg_controllen	= 0;
874  	msg.msg_flags		= 0;
875  
876  	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
877  				   afs_notify_end_reply_tx);
878  	if (n >= 0) {
879  		/* Success */
880  		_leave(" [replied]");
881  		return;
882  	}
883  
884  	if (n == -ENOMEM) {
885  		_debug("oom");
886  		rxrpc_kernel_abort_call(net->socket, call->rxcall,
887  					RX_USER_ABORT, -ENOMEM, "KOO");
888  	}
889  	_leave(" [error]");
890  }
891  
892  /*
893   * Extract a piece of data from the received data socket buffers.
894   */
afs_extract_data(struct afs_call * call,void * buf,size_t count,bool want_more)895  int afs_extract_data(struct afs_call *call, void *buf, size_t count,
896  		     bool want_more)
897  {
898  	struct afs_net *net = call->net;
899  	struct iov_iter iter;
900  	struct kvec iov;
901  	enum afs_call_state state;
902  	u32 remote_abort = 0;
903  	int ret;
904  
905  	_enter("{%s,%zu},,%zu,%d",
906  	       call->type->name, call->offset, count, want_more);
907  
908  	ASSERTCMP(call->offset, <=, count);
909  
910  	iov.iov_base = buf + call->offset;
911  	iov.iov_len = count - call->offset;
912  	iov_iter_kvec(&iter, ITER_KVEC | READ, &iov, 1, count - call->offset);
913  
914  	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, &iter,
915  				     want_more, &remote_abort,
916  				     &call->service_id);
917  	call->offset += (count - call->offset) - iov_iter_count(&iter);
918  	trace_afs_recv_data(call, count, call->offset, want_more, ret);
919  	if (ret == 0 || ret == -EAGAIN)
920  		return ret;
921  
922  	state = READ_ONCE(call->state);
923  	if (ret == 1) {
924  		switch (state) {
925  		case AFS_CALL_CL_AWAIT_REPLY:
926  			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
927  			break;
928  		case AFS_CALL_SV_AWAIT_REQUEST:
929  			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
930  			break;
931  		case AFS_CALL_COMPLETE:
932  			kdebug("prem complete %d", call->error);
933  			return -EIO;
934  		default:
935  			break;
936  		}
937  		return 0;
938  	}
939  
940  	afs_set_call_complete(call, ret, remote_abort);
941  	return ret;
942  }
943  
944  /*
945   * Log protocol error production.
946   */
afs_protocol_error(struct afs_call * call,int error)947  noinline int afs_protocol_error(struct afs_call *call, int error)
948  {
949  	trace_afs_protocol_error(call, error, __builtin_return_address(0));
950  	return error;
951  }
952