1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 15 #include <net/sock.h> 16 #include <net/af_rxrpc.h> 17 #include "internal.h" 18 #include "afs_cm.h" 19 20 struct workqueue_struct *afs_async_calls; 21 22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); 24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 25 static void afs_process_async_call(struct work_struct *); 26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 28 static int afs_deliver_cm_op_id(struct afs_call *); 29 30 /* asynchronous incoming call initial processing */ 31 static const struct afs_call_type afs_RXCMxxxx = { 32 .name = "CB.xxxx", 33 .deliver = afs_deliver_cm_op_id, 34 }; 35 36 /* 37 * open an RxRPC socket and bind it to be a server for callback notifications 38 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 39 */ afs_open_socket(struct afs_net * net)40 int afs_open_socket(struct afs_net *net) 41 { 42 struct sockaddr_rxrpc srx; 43 struct socket *socket; 44 unsigned int min_level; 45 int ret; 46 47 _enter(""); 48 49 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 50 if (ret < 0) 51 goto error_1; 52 53 socket->sk->sk_allocation = GFP_NOFS; 54 55 /* bind the callback manager's address to make this a server socket */ 56 memset(&srx, 0, sizeof(srx)); 57 srx.srx_family = AF_RXRPC; 58 srx.srx_service = CM_SERVICE; 59 srx.transport_type = SOCK_DGRAM; 60 srx.transport_len = sizeof(srx.transport.sin6); 61 srx.transport.sin6.sin6_family = AF_INET6; 62 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 63 64 min_level = RXRPC_SECURITY_ENCRYPT; 65 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, 66 (void *)&min_level, sizeof(min_level)); 67 if (ret < 0) 68 goto error_2; 69 70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 71 if (ret == -EADDRINUSE) { 72 srx.transport.sin6.sin6_port = 0; 73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 74 } 75 if (ret < 0) 76 goto error_2; 77 78 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 79 afs_rx_discard_new_call); 80 81 ret = kernel_listen(socket, INT_MAX); 82 if (ret < 0) 83 goto error_2; 84 85 net->socket = socket; 86 afs_charge_preallocation(&net->charge_preallocation_work); 87 _leave(" = 0"); 88 return 0; 89 90 error_2: 91 sock_release(socket); 92 error_1: 93 _leave(" = %d", ret); 94 return ret; 95 } 96 97 /* 98 * close the RxRPC socket AFS was using 99 */ afs_close_socket(struct afs_net * net)100 void afs_close_socket(struct afs_net *net) 101 { 102 _enter(""); 103 104 kernel_listen(net->socket, 0); 105 flush_workqueue(afs_async_calls); 106 107 if (net->spare_incoming_call) { 108 afs_put_call(net->spare_incoming_call); 109 net->spare_incoming_call = NULL; 110 } 111 112 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 113 wait_var_event(&net->nr_outstanding_calls, 114 !atomic_read(&net->nr_outstanding_calls)); 115 _debug("no outstanding calls"); 116 117 kernel_sock_shutdown(net->socket, SHUT_RDWR); 118 flush_workqueue(afs_async_calls); 119 sock_release(net->socket); 120 121 _debug("dework"); 122 _leave(""); 123 } 124 125 /* 126 * Allocate a call. 127 */ afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)128 static struct afs_call *afs_alloc_call(struct afs_net *net, 129 const struct afs_call_type *type, 130 gfp_t gfp) 131 { 132 struct afs_call *call; 133 int o; 134 135 call = kzalloc(sizeof(*call), gfp); 136 if (!call) 137 return NULL; 138 139 call->type = type; 140 call->net = net; 141 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 142 atomic_set(&call->usage, 1); 143 INIT_WORK(&call->async_work, afs_process_async_call); 144 init_waitqueue_head(&call->waitq); 145 spin_lock_init(&call->state_lock); 146 147 o = atomic_inc_return(&net->nr_outstanding_calls); 148 trace_afs_call(call, afs_call_trace_alloc, 1, o, 149 __builtin_return_address(0)); 150 return call; 151 } 152 153 /* 154 * Dispose of a reference on a call. 155 */ afs_put_call(struct afs_call * call)156 void afs_put_call(struct afs_call *call) 157 { 158 struct afs_net *net = call->net; 159 int n = atomic_dec_return(&call->usage); 160 int o = atomic_read(&net->nr_outstanding_calls); 161 162 trace_afs_call(call, afs_call_trace_put, n, o, 163 __builtin_return_address(0)); 164 165 ASSERTCMP(n, >=, 0); 166 if (n == 0) { 167 ASSERT(!work_pending(&call->async_work)); 168 ASSERT(call->type->name != NULL); 169 170 if (call->rxcall) { 171 rxrpc_kernel_end_call(net->socket, call->rxcall); 172 call->rxcall = NULL; 173 } 174 if (call->type->destructor) 175 call->type->destructor(call); 176 177 afs_put_server(call->net, call->cm_server); 178 afs_put_cb_interest(call->net, call->cbi); 179 kfree(call->request); 180 181 trace_afs_call(call, afs_call_trace_free, 0, o, 182 __builtin_return_address(0)); 183 kfree(call); 184 185 o = atomic_dec_return(&net->nr_outstanding_calls); 186 if (o == 0) 187 wake_up_var(&net->nr_outstanding_calls); 188 } 189 } 190 191 /* 192 * Queue the call for actual work. Returns 0 unconditionally for convenience. 193 */ afs_queue_call_work(struct afs_call * call)194 int afs_queue_call_work(struct afs_call *call) 195 { 196 int u = atomic_inc_return(&call->usage); 197 198 trace_afs_call(call, afs_call_trace_work, u, 199 atomic_read(&call->net->nr_outstanding_calls), 200 __builtin_return_address(0)); 201 202 INIT_WORK(&call->work, call->type->work); 203 204 if (!queue_work(afs_wq, &call->work)) 205 afs_put_call(call); 206 return 0; 207 } 208 209 /* 210 * allocate a call with flat request and reply buffers 211 */ afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)212 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 213 const struct afs_call_type *type, 214 size_t request_size, size_t reply_max) 215 { 216 struct afs_call *call; 217 218 call = afs_alloc_call(net, type, GFP_NOFS); 219 if (!call) 220 goto nomem_call; 221 222 if (request_size) { 223 call->request_size = request_size; 224 call->request = kmalloc(request_size, GFP_NOFS); 225 if (!call->request) 226 goto nomem_free; 227 } 228 229 if (reply_max) { 230 call->reply_max = reply_max; 231 call->buffer = kmalloc(reply_max, GFP_NOFS); 232 if (!call->buffer) 233 goto nomem_free; 234 } 235 236 call->operation_ID = type->op; 237 init_waitqueue_head(&call->waitq); 238 return call; 239 240 nomem_free: 241 afs_put_call(call); 242 nomem_call: 243 return NULL; 244 } 245 246 /* 247 * clean up a call with flat buffer 248 */ afs_flat_call_destructor(struct afs_call * call)249 void afs_flat_call_destructor(struct afs_call *call) 250 { 251 _enter(""); 252 253 kfree(call->request); 254 call->request = NULL; 255 kfree(call->buffer); 256 call->buffer = NULL; 257 } 258 259 #define AFS_BVEC_MAX 8 260 261 /* 262 * Load the given bvec with the next few pages. 263 */ afs_load_bvec(struct afs_call * call,struct msghdr * msg,struct bio_vec * bv,pgoff_t first,pgoff_t last,unsigned offset)264 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 265 struct bio_vec *bv, pgoff_t first, pgoff_t last, 266 unsigned offset) 267 { 268 struct page *pages[AFS_BVEC_MAX]; 269 unsigned int nr, n, i, to, bytes = 0; 270 271 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 272 n = find_get_pages_contig(call->mapping, first, nr, pages); 273 ASSERTCMP(n, ==, nr); 274 275 msg->msg_flags |= MSG_MORE; 276 for (i = 0; i < nr; i++) { 277 to = PAGE_SIZE; 278 if (first + i >= last) { 279 to = call->last_to; 280 msg->msg_flags &= ~MSG_MORE; 281 } 282 bv[i].bv_page = pages[i]; 283 bv[i].bv_len = to - offset; 284 bv[i].bv_offset = offset; 285 bytes += to - offset; 286 offset = 0; 287 } 288 289 iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes); 290 } 291 292 /* 293 * Advance the AFS call state when the RxRPC call ends the transmit phase. 294 */ afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)295 static void afs_notify_end_request_tx(struct sock *sock, 296 struct rxrpc_call *rxcall, 297 unsigned long call_user_ID) 298 { 299 struct afs_call *call = (struct afs_call *)call_user_ID; 300 301 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 302 } 303 304 /* 305 * attach the data from a bunch of pages on an inode to a call 306 */ afs_send_pages(struct afs_call * call,struct msghdr * msg)307 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 308 { 309 struct bio_vec bv[AFS_BVEC_MAX]; 310 unsigned int bytes, nr, loop, offset; 311 pgoff_t first = call->first, last = call->last; 312 int ret; 313 314 offset = call->first_offset; 315 call->first_offset = 0; 316 317 do { 318 afs_load_bvec(call, msg, bv, first, last, offset); 319 trace_afs_send_pages(call, msg, first, last, offset); 320 321 offset = 0; 322 bytes = msg->msg_iter.count; 323 nr = msg->msg_iter.nr_segs; 324 325 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, 326 bytes, afs_notify_end_request_tx); 327 for (loop = 0; loop < nr; loop++) 328 put_page(bv[loop].bv_page); 329 if (ret < 0) 330 break; 331 332 first += nr; 333 } while (first <= last); 334 335 trace_afs_sent_pages(call, call->first, last, first, ret); 336 return ret; 337 } 338 339 /* 340 * initiate a call 341 */ afs_make_call(struct afs_addr_cursor * ac,struct afs_call * call,gfp_t gfp,bool async)342 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, 343 gfp_t gfp, bool async) 344 { 345 struct sockaddr_rxrpc *srx = ac->addr; 346 struct rxrpc_call *rxcall; 347 struct msghdr msg; 348 struct kvec iov[1]; 349 s64 tx_total_len; 350 int ret; 351 352 _enter(",{%pISp},", &srx->transport); 353 354 ASSERT(call->type != NULL); 355 ASSERT(call->type->name != NULL); 356 357 _debug("____MAKE %p{%s,%x} [%d]____", 358 call, call->type->name, key_serial(call->key), 359 atomic_read(&call->net->nr_outstanding_calls)); 360 361 call->async = async; 362 363 /* Work out the length we're going to transmit. This is awkward for 364 * calls such as FS.StoreData where there's an extra injection of data 365 * after the initial fixed part. 366 */ 367 tx_total_len = call->request_size; 368 if (call->send_pages) { 369 if (call->last == call->first) { 370 tx_total_len += call->last_to - call->first_offset; 371 } else { 372 /* It looks mathematically like you should be able to 373 * combine the following lines with the ones above, but 374 * unsigned arithmetic is fun when it wraps... 375 */ 376 tx_total_len += PAGE_SIZE - call->first_offset; 377 tx_total_len += call->last_to; 378 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; 379 } 380 } 381 382 /* create a call */ 383 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 384 (unsigned long)call, 385 tx_total_len, gfp, 386 (async ? 387 afs_wake_up_async_call : 388 afs_wake_up_call_waiter), 389 call->upgrade, 390 call->debug_id); 391 if (IS_ERR(rxcall)) { 392 ret = PTR_ERR(rxcall); 393 goto error_kill_call; 394 } 395 396 call->rxcall = rxcall; 397 398 /* send the request */ 399 iov[0].iov_base = call->request; 400 iov[0].iov_len = call->request_size; 401 402 msg.msg_name = NULL; 403 msg.msg_namelen = 0; 404 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 405 call->request_size); 406 msg.msg_control = NULL; 407 msg.msg_controllen = 0; 408 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 409 410 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 411 &msg, call->request_size, 412 afs_notify_end_request_tx); 413 if (ret < 0) 414 goto error_do_abort; 415 416 if (call->send_pages) { 417 ret = afs_send_pages(call, &msg); 418 if (ret < 0) 419 goto error_do_abort; 420 } 421 422 /* at this point, an async call may no longer exist as it may have 423 * already completed */ 424 if (call->async) 425 return -EINPROGRESS; 426 427 return afs_wait_for_call_to_complete(call, ac); 428 429 error_do_abort: 430 call->state = AFS_CALL_COMPLETE; 431 if (ret != -ECONNABORTED) { 432 rxrpc_kernel_abort_call(call->net->socket, rxcall, 433 RX_USER_ABORT, ret, "KSD"); 434 } else { 435 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, NULL, 0, 0); 436 rxrpc_kernel_recv_data(call->net->socket, rxcall, 437 &msg.msg_iter, false, 438 &call->abort_code, &call->service_id); 439 ac->abort_code = call->abort_code; 440 ac->responded = true; 441 } 442 call->error = ret; 443 trace_afs_call_done(call); 444 error_kill_call: 445 afs_put_call(call); 446 ac->error = ret; 447 _leave(" = %d", ret); 448 return ret; 449 } 450 451 /* 452 * deliver messages to a call 453 */ afs_deliver_to_call(struct afs_call * call)454 static void afs_deliver_to_call(struct afs_call *call) 455 { 456 enum afs_call_state state; 457 u32 abort_code, remote_abort = 0; 458 int ret; 459 460 _enter("%s", call->type->name); 461 462 while (state = READ_ONCE(call->state), 463 state == AFS_CALL_CL_AWAIT_REPLY || 464 state == AFS_CALL_SV_AWAIT_OP_ID || 465 state == AFS_CALL_SV_AWAIT_REQUEST || 466 state == AFS_CALL_SV_AWAIT_ACK 467 ) { 468 if (state == AFS_CALL_SV_AWAIT_ACK) { 469 struct iov_iter iter; 470 471 iov_iter_kvec(&iter, READ | ITER_KVEC, NULL, 0, 0); 472 ret = rxrpc_kernel_recv_data(call->net->socket, 473 call->rxcall, &iter, false, 474 &remote_abort, 475 &call->service_id); 476 trace_afs_recv_data(call, 0, 0, false, ret); 477 478 if (ret == -EINPROGRESS || ret == -EAGAIN) 479 return; 480 if (ret < 0 || ret == 1) { 481 if (ret == 1) 482 ret = 0; 483 goto call_complete; 484 } 485 return; 486 } 487 488 ret = call->type->deliver(call); 489 state = READ_ONCE(call->state); 490 switch (ret) { 491 case 0: 492 if (state == AFS_CALL_CL_PROC_REPLY) { 493 if (call->cbi) 494 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 495 &call->cbi->server->flags); 496 goto call_complete; 497 } 498 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 499 goto done; 500 case -EINPROGRESS: 501 case -EAGAIN: 502 goto out; 503 case -ECONNABORTED: 504 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 505 goto done; 506 case -ENOTSUPP: 507 abort_code = RXGEN_OPCODE; 508 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 509 abort_code, ret, "KIV"); 510 goto local_abort; 511 case -EIO: 512 pr_err("kAFS: Call %u in bad state %u\n", 513 call->debug_id, state); 514 /* Fall through */ 515 case -ENODATA: 516 case -EBADMSG: 517 case -EMSGSIZE: 518 default: 519 abort_code = RXGEN_CC_UNMARSHAL; 520 if (state != AFS_CALL_CL_AWAIT_REPLY) 521 abort_code = RXGEN_SS_UNMARSHAL; 522 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 523 abort_code, -EBADMSG, "KUM"); 524 goto local_abort; 525 } 526 } 527 528 done: 529 if (state == AFS_CALL_COMPLETE && call->incoming) 530 afs_put_call(call); 531 out: 532 _leave(""); 533 return; 534 535 local_abort: 536 abort_code = 0; 537 call_complete: 538 afs_set_call_complete(call, ret, remote_abort); 539 state = AFS_CALL_COMPLETE; 540 goto done; 541 } 542 543 /* 544 * wait synchronously for a call to complete 545 */ afs_wait_for_call_to_complete(struct afs_call * call,struct afs_addr_cursor * ac)546 static long afs_wait_for_call_to_complete(struct afs_call *call, 547 struct afs_addr_cursor *ac) 548 { 549 signed long rtt2, timeout; 550 long ret; 551 u64 rtt; 552 u32 life, last_life; 553 554 DECLARE_WAITQUEUE(myself, current); 555 556 _enter(""); 557 558 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); 559 rtt2 = nsecs_to_jiffies64(rtt) * 2; 560 if (rtt2 < 2) 561 rtt2 = 2; 562 563 timeout = rtt2; 564 last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 565 566 add_wait_queue(&call->waitq, &myself); 567 for (;;) { 568 set_current_state(TASK_UNINTERRUPTIBLE); 569 570 /* deliver any messages that are in the queue */ 571 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 572 call->need_attention) { 573 call->need_attention = false; 574 __set_current_state(TASK_RUNNING); 575 afs_deliver_to_call(call); 576 timeout = rtt2; 577 continue; 578 } 579 580 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 581 break; 582 583 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); 584 if (timeout == 0 && 585 life == last_life && signal_pending(current)) 586 break; 587 588 if (life != last_life) { 589 timeout = rtt2; 590 last_life = life; 591 } 592 593 timeout = schedule_timeout(timeout); 594 } 595 596 remove_wait_queue(&call->waitq, &myself); 597 __set_current_state(TASK_RUNNING); 598 599 /* Kill off the call if it's still live. */ 600 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 601 _debug("call interrupted"); 602 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 603 RX_USER_ABORT, -EINTR, "KWI")) 604 afs_set_call_complete(call, -EINTR, 0); 605 } 606 607 spin_lock_bh(&call->state_lock); 608 ac->abort_code = call->abort_code; 609 ac->error = call->error; 610 spin_unlock_bh(&call->state_lock); 611 612 ret = ac->error; 613 switch (ret) { 614 case 0: 615 if (call->ret_reply0) { 616 ret = (long)call->reply[0]; 617 call->reply[0] = NULL; 618 } 619 /* Fall through */ 620 case -ECONNABORTED: 621 ac->responded = true; 622 break; 623 } 624 625 _debug("call complete"); 626 afs_put_call(call); 627 _leave(" = %p", (void *)ret); 628 return ret; 629 } 630 631 /* 632 * wake up a waiting call 633 */ afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)634 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 635 unsigned long call_user_ID) 636 { 637 struct afs_call *call = (struct afs_call *)call_user_ID; 638 639 call->need_attention = true; 640 wake_up(&call->waitq); 641 } 642 643 /* 644 * wake up an asynchronous call 645 */ afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)646 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 647 unsigned long call_user_ID) 648 { 649 struct afs_call *call = (struct afs_call *)call_user_ID; 650 int u; 651 652 trace_afs_notify_call(rxcall, call); 653 call->need_attention = true; 654 655 u = atomic_fetch_add_unless(&call->usage, 1, 0); 656 if (u != 0) { 657 trace_afs_call(call, afs_call_trace_wake, u + 1, 658 atomic_read(&call->net->nr_outstanding_calls), 659 __builtin_return_address(0)); 660 661 if (!queue_work(afs_async_calls, &call->async_work)) 662 afs_put_call(call); 663 } 664 } 665 666 /* 667 * Delete an asynchronous call. The work item carries a ref to the call struct 668 * that we need to release. 669 */ afs_delete_async_call(struct work_struct * work)670 static void afs_delete_async_call(struct work_struct *work) 671 { 672 struct afs_call *call = container_of(work, struct afs_call, async_work); 673 674 _enter(""); 675 676 afs_put_call(call); 677 678 _leave(""); 679 } 680 681 /* 682 * Perform I/O processing on an asynchronous call. The work item carries a ref 683 * to the call struct that we either need to release or to pass on. 684 */ afs_process_async_call(struct work_struct * work)685 static void afs_process_async_call(struct work_struct *work) 686 { 687 struct afs_call *call = container_of(work, struct afs_call, async_work); 688 689 _enter(""); 690 691 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 692 call->need_attention = false; 693 afs_deliver_to_call(call); 694 } 695 696 if (call->state == AFS_CALL_COMPLETE) { 697 /* We have two refs to release - one from the alloc and one 698 * queued with the work item - and we can't just deallocate the 699 * call because the work item may be queued again. 700 */ 701 call->async_work.func = afs_delete_async_call; 702 if (!queue_work(afs_async_calls, &call->async_work)) 703 afs_put_call(call); 704 } 705 706 afs_put_call(call); 707 _leave(""); 708 } 709 afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)710 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 711 { 712 struct afs_call *call = (struct afs_call *)user_call_ID; 713 714 call->rxcall = rxcall; 715 } 716 717 /* 718 * Charge the incoming call preallocation. 719 */ afs_charge_preallocation(struct work_struct * work)720 void afs_charge_preallocation(struct work_struct *work) 721 { 722 struct afs_net *net = 723 container_of(work, struct afs_net, charge_preallocation_work); 724 struct afs_call *call = net->spare_incoming_call; 725 726 for (;;) { 727 if (!call) { 728 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 729 if (!call) 730 break; 731 732 call->async = true; 733 call->state = AFS_CALL_SV_AWAIT_OP_ID; 734 init_waitqueue_head(&call->waitq); 735 } 736 737 if (rxrpc_kernel_charge_accept(net->socket, 738 afs_wake_up_async_call, 739 afs_rx_attach, 740 (unsigned long)call, 741 GFP_KERNEL, 742 call->debug_id) < 0) 743 break; 744 call = NULL; 745 } 746 net->spare_incoming_call = call; 747 } 748 749 /* 750 * Discard a preallocated call when a socket is shut down. 751 */ afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)752 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 753 unsigned long user_call_ID) 754 { 755 struct afs_call *call = (struct afs_call *)user_call_ID; 756 757 call->rxcall = NULL; 758 afs_put_call(call); 759 } 760 761 /* 762 * Notification of an incoming call. 763 */ afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)764 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 765 unsigned long user_call_ID) 766 { 767 struct afs_net *net = afs_sock2net(sk); 768 769 queue_work(afs_wq, &net->charge_preallocation_work); 770 } 771 772 /* 773 * Grab the operation ID from an incoming cache manager call. The socket 774 * buffer is discarded on error or if we don't yet have sufficient data. 775 */ afs_deliver_cm_op_id(struct afs_call * call)776 static int afs_deliver_cm_op_id(struct afs_call *call) 777 { 778 int ret; 779 780 _enter("{%zu}", call->offset); 781 782 ASSERTCMP(call->offset, <, 4); 783 784 /* the operation ID forms the first four bytes of the request data */ 785 ret = afs_extract_data(call, &call->tmp, 4, true); 786 if (ret < 0) 787 return ret; 788 789 call->operation_ID = ntohl(call->tmp); 790 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 791 call->offset = 0; 792 793 /* ask the cache manager to route the call (it'll change the call type 794 * if successful) */ 795 if (!afs_cm_incoming_call(call)) 796 return -ENOTSUPP; 797 798 trace_afs_cb_call(call); 799 800 /* pass responsibility for the remainer of this message off to the 801 * cache manager op */ 802 return call->type->deliver(call); 803 } 804 805 /* 806 * Advance the AFS call state when an RxRPC service call ends the transmit 807 * phase. 808 */ afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)809 static void afs_notify_end_reply_tx(struct sock *sock, 810 struct rxrpc_call *rxcall, 811 unsigned long call_user_ID) 812 { 813 struct afs_call *call = (struct afs_call *)call_user_ID; 814 815 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 816 } 817 818 /* 819 * send an empty reply 820 */ afs_send_empty_reply(struct afs_call * call)821 void afs_send_empty_reply(struct afs_call *call) 822 { 823 struct afs_net *net = call->net; 824 struct msghdr msg; 825 826 _enter(""); 827 828 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 829 830 msg.msg_name = NULL; 831 msg.msg_namelen = 0; 832 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 833 msg.msg_control = NULL; 834 msg.msg_controllen = 0; 835 msg.msg_flags = 0; 836 837 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 838 afs_notify_end_reply_tx)) { 839 case 0: 840 _leave(" [replied]"); 841 return; 842 843 case -ENOMEM: 844 _debug("oom"); 845 rxrpc_kernel_abort_call(net->socket, call->rxcall, 846 RX_USER_ABORT, -ENOMEM, "KOO"); 847 default: 848 _leave(" [error]"); 849 return; 850 } 851 } 852 853 /* 854 * send a simple reply 855 */ afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)856 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 857 { 858 struct afs_net *net = call->net; 859 struct msghdr msg; 860 struct kvec iov[1]; 861 int n; 862 863 _enter(""); 864 865 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 866 867 iov[0].iov_base = (void *) buf; 868 iov[0].iov_len = len; 869 msg.msg_name = NULL; 870 msg.msg_namelen = 0; 871 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 872 msg.msg_control = NULL; 873 msg.msg_controllen = 0; 874 msg.msg_flags = 0; 875 876 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 877 afs_notify_end_reply_tx); 878 if (n >= 0) { 879 /* Success */ 880 _leave(" [replied]"); 881 return; 882 } 883 884 if (n == -ENOMEM) { 885 _debug("oom"); 886 rxrpc_kernel_abort_call(net->socket, call->rxcall, 887 RX_USER_ABORT, -ENOMEM, "KOO"); 888 } 889 _leave(" [error]"); 890 } 891 892 /* 893 * Extract a piece of data from the received data socket buffers. 894 */ afs_extract_data(struct afs_call * call,void * buf,size_t count,bool want_more)895 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 896 bool want_more) 897 { 898 struct afs_net *net = call->net; 899 struct iov_iter iter; 900 struct kvec iov; 901 enum afs_call_state state; 902 u32 remote_abort = 0; 903 int ret; 904 905 _enter("{%s,%zu},,%zu,%d", 906 call->type->name, call->offset, count, want_more); 907 908 ASSERTCMP(call->offset, <=, count); 909 910 iov.iov_base = buf + call->offset; 911 iov.iov_len = count - call->offset; 912 iov_iter_kvec(&iter, ITER_KVEC | READ, &iov, 1, count - call->offset); 913 914 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, &iter, 915 want_more, &remote_abort, 916 &call->service_id); 917 call->offset += (count - call->offset) - iov_iter_count(&iter); 918 trace_afs_recv_data(call, count, call->offset, want_more, ret); 919 if (ret == 0 || ret == -EAGAIN) 920 return ret; 921 922 state = READ_ONCE(call->state); 923 if (ret == 1) { 924 switch (state) { 925 case AFS_CALL_CL_AWAIT_REPLY: 926 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 927 break; 928 case AFS_CALL_SV_AWAIT_REQUEST: 929 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 930 break; 931 case AFS_CALL_COMPLETE: 932 kdebug("prem complete %d", call->error); 933 return -EIO; 934 default: 935 break; 936 } 937 return 0; 938 } 939 940 afs_set_call_complete(call, ret, remote_abort); 941 return ret; 942 } 943 944 /* 945 * Log protocol error production. 946 */ afs_protocol_error(struct afs_call * call,int error)947 noinline int afs_protocol_error(struct afs_call *call, int error) 948 { 949 trace_afs_protocol_error(call, error, __builtin_return_address(0)); 950 return error; 951 } 952