1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
btrfs_compress_type2str(enum btrfs_compression_type type)32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43 }
44
btrfs_compress_is_valid_type(const char * str,size_t len)45 bool btrfs_compress_is_valid_type(const char *str, size_t len)
46 {
47 int i;
48
49 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
50 size_t comp_len = strlen(btrfs_compress_types[i]);
51
52 if (len < comp_len)
53 continue;
54
55 if (!strncmp(btrfs_compress_types[i], str, comp_len))
56 return true;
57 }
58 return false;
59 }
60
61 static int btrfs_decompress_bio(struct compressed_bio *cb);
62
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)63 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
64 unsigned long disk_size)
65 {
66 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
67
68 return sizeof(struct compressed_bio) +
69 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
70 }
71
check_compressed_csum(struct btrfs_inode * inode,struct compressed_bio * cb,u64 disk_start)72 static int check_compressed_csum(struct btrfs_inode *inode,
73 struct compressed_bio *cb,
74 u64 disk_start)
75 {
76 int ret;
77 struct page *page;
78 unsigned long i;
79 char *kaddr;
80 u32 csum;
81 u32 *cb_sum = &cb->sums;
82
83 if (inode->flags & BTRFS_INODE_NODATASUM)
84 return 0;
85
86 for (i = 0; i < cb->nr_pages; i++) {
87 page = cb->compressed_pages[i];
88 csum = ~(u32)0;
89
90 kaddr = kmap_atomic(page);
91 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
92 btrfs_csum_final(csum, (u8 *)&csum);
93 kunmap_atomic(kaddr);
94
95 if (csum != *cb_sum) {
96 btrfs_print_data_csum_error(inode, disk_start, csum,
97 *cb_sum, cb->mirror_num);
98 ret = -EIO;
99 goto fail;
100 }
101 cb_sum++;
102
103 }
104 ret = 0;
105 fail:
106 return ret;
107 }
108
109 /* when we finish reading compressed pages from the disk, we
110 * decompress them and then run the bio end_io routines on the
111 * decompressed pages (in the inode address space).
112 *
113 * This allows the checksumming and other IO error handling routines
114 * to work normally
115 *
116 * The compressed pages are freed here, and it must be run
117 * in process context
118 */
end_compressed_bio_read(struct bio * bio)119 static void end_compressed_bio_read(struct bio *bio)
120 {
121 struct compressed_bio *cb = bio->bi_private;
122 struct inode *inode;
123 struct page *page;
124 unsigned long index;
125 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
126 int ret = 0;
127
128 if (bio->bi_status)
129 cb->errors = 1;
130
131 /* if there are more bios still pending for this compressed
132 * extent, just exit
133 */
134 if (!refcount_dec_and_test(&cb->pending_bios))
135 goto out;
136
137 /*
138 * Record the correct mirror_num in cb->orig_bio so that
139 * read-repair can work properly.
140 */
141 ASSERT(btrfs_io_bio(cb->orig_bio));
142 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
143 cb->mirror_num = mirror;
144
145 /*
146 * Some IO in this cb have failed, just skip checksum as there
147 * is no way it could be correct.
148 */
149 if (cb->errors == 1)
150 goto csum_failed;
151
152 inode = cb->inode;
153 ret = check_compressed_csum(BTRFS_I(inode), cb,
154 (u64)bio->bi_iter.bi_sector << 9);
155 if (ret)
156 goto csum_failed;
157
158 /* ok, we're the last bio for this extent, lets start
159 * the decompression.
160 */
161 ret = btrfs_decompress_bio(cb);
162
163 csum_failed:
164 if (ret)
165 cb->errors = 1;
166
167 /* release the compressed pages */
168 index = 0;
169 for (index = 0; index < cb->nr_pages; index++) {
170 page = cb->compressed_pages[index];
171 page->mapping = NULL;
172 put_page(page);
173 }
174
175 /* do io completion on the original bio */
176 if (cb->errors) {
177 bio_io_error(cb->orig_bio);
178 } else {
179 int i;
180 struct bio_vec *bvec;
181
182 /*
183 * we have verified the checksum already, set page
184 * checked so the end_io handlers know about it
185 */
186 ASSERT(!bio_flagged(bio, BIO_CLONED));
187 bio_for_each_segment_all(bvec, cb->orig_bio, i)
188 SetPageChecked(bvec->bv_page);
189
190 bio_endio(cb->orig_bio);
191 }
192
193 /* finally free the cb struct */
194 kfree(cb->compressed_pages);
195 kfree(cb);
196 out:
197 bio_put(bio);
198 }
199
200 /*
201 * Clear the writeback bits on all of the file
202 * pages for a compressed write
203 */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)204 static noinline void end_compressed_writeback(struct inode *inode,
205 const struct compressed_bio *cb)
206 {
207 unsigned long index = cb->start >> PAGE_SHIFT;
208 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
209 struct page *pages[16];
210 unsigned long nr_pages = end_index - index + 1;
211 int i;
212 int ret;
213
214 if (cb->errors)
215 mapping_set_error(inode->i_mapping, -EIO);
216
217 while (nr_pages > 0) {
218 ret = find_get_pages_contig(inode->i_mapping, index,
219 min_t(unsigned long,
220 nr_pages, ARRAY_SIZE(pages)), pages);
221 if (ret == 0) {
222 nr_pages -= 1;
223 index += 1;
224 continue;
225 }
226 for (i = 0; i < ret; i++) {
227 if (cb->errors)
228 SetPageError(pages[i]);
229 end_page_writeback(pages[i]);
230 put_page(pages[i]);
231 }
232 nr_pages -= ret;
233 index += ret;
234 }
235 /* the inode may be gone now */
236 }
237
238 /*
239 * do the cleanup once all the compressed pages hit the disk.
240 * This will clear writeback on the file pages and free the compressed
241 * pages.
242 *
243 * This also calls the writeback end hooks for the file pages so that
244 * metadata and checksums can be updated in the file.
245 */
end_compressed_bio_write(struct bio * bio)246 static void end_compressed_bio_write(struct bio *bio)
247 {
248 struct extent_io_tree *tree;
249 struct compressed_bio *cb = bio->bi_private;
250 struct inode *inode;
251 struct page *page;
252 unsigned long index;
253
254 if (bio->bi_status)
255 cb->errors = 1;
256
257 /* if there are more bios still pending for this compressed
258 * extent, just exit
259 */
260 if (!refcount_dec_and_test(&cb->pending_bios))
261 goto out;
262
263 /* ok, we're the last bio for this extent, step one is to
264 * call back into the FS and do all the end_io operations
265 */
266 inode = cb->inode;
267 tree = &BTRFS_I(inode)->io_tree;
268 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
269 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
270 cb->start,
271 cb->start + cb->len - 1,
272 NULL,
273 bio->bi_status ?
274 BLK_STS_OK : BLK_STS_NOTSUPP);
275 cb->compressed_pages[0]->mapping = NULL;
276
277 end_compressed_writeback(inode, cb);
278 /* note, our inode could be gone now */
279
280 /*
281 * release the compressed pages, these came from alloc_page and
282 * are not attached to the inode at all
283 */
284 index = 0;
285 for (index = 0; index < cb->nr_pages; index++) {
286 page = cb->compressed_pages[index];
287 page->mapping = NULL;
288 put_page(page);
289 }
290
291 /* finally free the cb struct */
292 kfree(cb->compressed_pages);
293 kfree(cb);
294 out:
295 bio_put(bio);
296 }
297
298 /*
299 * worker function to build and submit bios for previously compressed pages.
300 * The corresponding pages in the inode should be marked for writeback
301 * and the compressed pages should have a reference on them for dropping
302 * when the IO is complete.
303 *
304 * This also checksums the file bytes and gets things ready for
305 * the end io hooks.
306 */
btrfs_submit_compressed_write(struct inode * inode,u64 start,unsigned long len,u64 disk_start,unsigned long compressed_len,struct page ** compressed_pages,unsigned long nr_pages,unsigned int write_flags)307 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
308 unsigned long len, u64 disk_start,
309 unsigned long compressed_len,
310 struct page **compressed_pages,
311 unsigned long nr_pages,
312 unsigned int write_flags)
313 {
314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
315 struct bio *bio = NULL;
316 struct compressed_bio *cb;
317 unsigned long bytes_left;
318 int pg_index = 0;
319 struct page *page;
320 u64 first_byte = disk_start;
321 struct block_device *bdev;
322 blk_status_t ret;
323 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
324
325 WARN_ON(start & ((u64)PAGE_SIZE - 1));
326 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
327 if (!cb)
328 return BLK_STS_RESOURCE;
329 refcount_set(&cb->pending_bios, 0);
330 cb->errors = 0;
331 cb->inode = inode;
332 cb->start = start;
333 cb->len = len;
334 cb->mirror_num = 0;
335 cb->compressed_pages = compressed_pages;
336 cb->compressed_len = compressed_len;
337 cb->orig_bio = NULL;
338 cb->nr_pages = nr_pages;
339
340 bdev = fs_info->fs_devices->latest_bdev;
341
342 bio = btrfs_bio_alloc(bdev, first_byte);
343 bio->bi_opf = REQ_OP_WRITE | write_flags;
344 bio->bi_private = cb;
345 bio->bi_end_io = end_compressed_bio_write;
346 refcount_set(&cb->pending_bios, 1);
347
348 /* create and submit bios for the compressed pages */
349 bytes_left = compressed_len;
350 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
351 int submit = 0;
352
353 page = compressed_pages[pg_index];
354 page->mapping = inode->i_mapping;
355 if (bio->bi_iter.bi_size)
356 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
357
358 page->mapping = NULL;
359 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
360 PAGE_SIZE) {
361 /*
362 * inc the count before we submit the bio so
363 * we know the end IO handler won't happen before
364 * we inc the count. Otherwise, the cb might get
365 * freed before we're done setting it up
366 */
367 refcount_inc(&cb->pending_bios);
368 ret = btrfs_bio_wq_end_io(fs_info, bio,
369 BTRFS_WQ_ENDIO_DATA);
370 BUG_ON(ret); /* -ENOMEM */
371
372 if (!skip_sum) {
373 ret = btrfs_csum_one_bio(inode, bio, start, 1);
374 BUG_ON(ret); /* -ENOMEM */
375 }
376
377 ret = btrfs_map_bio(fs_info, bio, 0, 1);
378 if (ret) {
379 bio->bi_status = ret;
380 bio_endio(bio);
381 }
382
383 bio = btrfs_bio_alloc(bdev, first_byte);
384 bio->bi_opf = REQ_OP_WRITE | write_flags;
385 bio->bi_private = cb;
386 bio->bi_end_io = end_compressed_bio_write;
387 bio_add_page(bio, page, PAGE_SIZE, 0);
388 }
389 if (bytes_left < PAGE_SIZE) {
390 btrfs_info(fs_info,
391 "bytes left %lu compress len %lu nr %lu",
392 bytes_left, cb->compressed_len, cb->nr_pages);
393 }
394 bytes_left -= PAGE_SIZE;
395 first_byte += PAGE_SIZE;
396 cond_resched();
397 }
398
399 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
400 BUG_ON(ret); /* -ENOMEM */
401
402 if (!skip_sum) {
403 ret = btrfs_csum_one_bio(inode, bio, start, 1);
404 BUG_ON(ret); /* -ENOMEM */
405 }
406
407 ret = btrfs_map_bio(fs_info, bio, 0, 1);
408 if (ret) {
409 bio->bi_status = ret;
410 bio_endio(bio);
411 }
412
413 return 0;
414 }
415
bio_end_offset(struct bio * bio)416 static u64 bio_end_offset(struct bio *bio)
417 {
418 struct bio_vec *last = bio_last_bvec_all(bio);
419
420 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
421 }
422
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)423 static noinline int add_ra_bio_pages(struct inode *inode,
424 u64 compressed_end,
425 struct compressed_bio *cb)
426 {
427 unsigned long end_index;
428 unsigned long pg_index;
429 u64 last_offset;
430 u64 isize = i_size_read(inode);
431 int ret;
432 struct page *page;
433 unsigned long nr_pages = 0;
434 struct extent_map *em;
435 struct address_space *mapping = inode->i_mapping;
436 struct extent_map_tree *em_tree;
437 struct extent_io_tree *tree;
438 u64 end;
439 int misses = 0;
440
441 last_offset = bio_end_offset(cb->orig_bio);
442 em_tree = &BTRFS_I(inode)->extent_tree;
443 tree = &BTRFS_I(inode)->io_tree;
444
445 if (isize == 0)
446 return 0;
447
448 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
449
450 while (last_offset < compressed_end) {
451 pg_index = last_offset >> PAGE_SHIFT;
452
453 if (pg_index > end_index)
454 break;
455
456 rcu_read_lock();
457 page = radix_tree_lookup(&mapping->i_pages, pg_index);
458 rcu_read_unlock();
459 if (page && !radix_tree_exceptional_entry(page)) {
460 misses++;
461 if (misses > 4)
462 break;
463 goto next;
464 }
465
466 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
467 ~__GFP_FS));
468 if (!page)
469 break;
470
471 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
472 put_page(page);
473 goto next;
474 }
475
476 end = last_offset + PAGE_SIZE - 1;
477 /*
478 * at this point, we have a locked page in the page cache
479 * for these bytes in the file. But, we have to make
480 * sure they map to this compressed extent on disk.
481 */
482 set_page_extent_mapped(page);
483 lock_extent(tree, last_offset, end);
484 read_lock(&em_tree->lock);
485 em = lookup_extent_mapping(em_tree, last_offset,
486 PAGE_SIZE);
487 read_unlock(&em_tree->lock);
488
489 if (!em || last_offset < em->start ||
490 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
491 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
492 free_extent_map(em);
493 unlock_extent(tree, last_offset, end);
494 unlock_page(page);
495 put_page(page);
496 break;
497 }
498 free_extent_map(em);
499
500 if (page->index == end_index) {
501 char *userpage;
502 size_t zero_offset = isize & (PAGE_SIZE - 1);
503
504 if (zero_offset) {
505 int zeros;
506 zeros = PAGE_SIZE - zero_offset;
507 userpage = kmap_atomic(page);
508 memset(userpage + zero_offset, 0, zeros);
509 flush_dcache_page(page);
510 kunmap_atomic(userpage);
511 }
512 }
513
514 ret = bio_add_page(cb->orig_bio, page,
515 PAGE_SIZE, 0);
516
517 if (ret == PAGE_SIZE) {
518 nr_pages++;
519 put_page(page);
520 } else {
521 unlock_extent(tree, last_offset, end);
522 unlock_page(page);
523 put_page(page);
524 break;
525 }
526 next:
527 last_offset += PAGE_SIZE;
528 }
529 return 0;
530 }
531
532 /*
533 * for a compressed read, the bio we get passed has all the inode pages
534 * in it. We don't actually do IO on those pages but allocate new ones
535 * to hold the compressed pages on disk.
536 *
537 * bio->bi_iter.bi_sector points to the compressed extent on disk
538 * bio->bi_io_vec points to all of the inode pages
539 *
540 * After the compressed pages are read, we copy the bytes into the
541 * bio we were passed and then call the bio end_io calls
542 */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)543 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
544 int mirror_num, unsigned long bio_flags)
545 {
546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
547 struct extent_io_tree *tree;
548 struct extent_map_tree *em_tree;
549 struct compressed_bio *cb;
550 unsigned long compressed_len;
551 unsigned long nr_pages;
552 unsigned long pg_index;
553 struct page *page;
554 struct block_device *bdev;
555 struct bio *comp_bio;
556 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
557 u64 em_len;
558 u64 em_start;
559 struct extent_map *em;
560 blk_status_t ret = BLK_STS_RESOURCE;
561 int faili = 0;
562 u32 *sums;
563
564 tree = &BTRFS_I(inode)->io_tree;
565 em_tree = &BTRFS_I(inode)->extent_tree;
566
567 /* we need the actual starting offset of this extent in the file */
568 read_lock(&em_tree->lock);
569 em = lookup_extent_mapping(em_tree,
570 page_offset(bio_first_page_all(bio)),
571 PAGE_SIZE);
572 read_unlock(&em_tree->lock);
573 if (!em)
574 return BLK_STS_IOERR;
575
576 compressed_len = em->block_len;
577 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
578 if (!cb)
579 goto out;
580
581 refcount_set(&cb->pending_bios, 0);
582 cb->errors = 0;
583 cb->inode = inode;
584 cb->mirror_num = mirror_num;
585 sums = &cb->sums;
586
587 cb->start = em->orig_start;
588 em_len = em->len;
589 em_start = em->start;
590
591 free_extent_map(em);
592 em = NULL;
593
594 cb->len = bio->bi_iter.bi_size;
595 cb->compressed_len = compressed_len;
596 cb->compress_type = extent_compress_type(bio_flags);
597 cb->orig_bio = bio;
598
599 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
600 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
601 GFP_NOFS);
602 if (!cb->compressed_pages)
603 goto fail1;
604
605 bdev = fs_info->fs_devices->latest_bdev;
606
607 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
608 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
609 __GFP_HIGHMEM);
610 if (!cb->compressed_pages[pg_index]) {
611 faili = pg_index - 1;
612 ret = BLK_STS_RESOURCE;
613 goto fail2;
614 }
615 }
616 faili = nr_pages - 1;
617 cb->nr_pages = nr_pages;
618
619 add_ra_bio_pages(inode, em_start + em_len, cb);
620
621 /* include any pages we added in add_ra-bio_pages */
622 cb->len = bio->bi_iter.bi_size;
623
624 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
625 comp_bio->bi_opf = REQ_OP_READ;
626 comp_bio->bi_private = cb;
627 comp_bio->bi_end_io = end_compressed_bio_read;
628 refcount_set(&cb->pending_bios, 1);
629
630 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
631 int submit = 0;
632
633 page = cb->compressed_pages[pg_index];
634 page->mapping = inode->i_mapping;
635 page->index = em_start >> PAGE_SHIFT;
636
637 if (comp_bio->bi_iter.bi_size)
638 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
639 comp_bio, 0);
640
641 page->mapping = NULL;
642 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
643 PAGE_SIZE) {
644 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
645 BTRFS_WQ_ENDIO_DATA);
646 BUG_ON(ret); /* -ENOMEM */
647
648 /*
649 * inc the count before we submit the bio so
650 * we know the end IO handler won't happen before
651 * we inc the count. Otherwise, the cb might get
652 * freed before we're done setting it up
653 */
654 refcount_inc(&cb->pending_bios);
655
656 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
657 ret = btrfs_lookup_bio_sums(inode, comp_bio,
658 sums);
659 BUG_ON(ret); /* -ENOMEM */
660 }
661 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
662 fs_info->sectorsize);
663
664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
665 if (ret) {
666 comp_bio->bi_status = ret;
667 bio_endio(comp_bio);
668 }
669
670 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
671 comp_bio->bi_opf = REQ_OP_READ;
672 comp_bio->bi_private = cb;
673 comp_bio->bi_end_io = end_compressed_bio_read;
674
675 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
676 }
677 cur_disk_byte += PAGE_SIZE;
678 }
679
680 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
681 BUG_ON(ret); /* -ENOMEM */
682
683 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
684 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
685 BUG_ON(ret); /* -ENOMEM */
686 }
687
688 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
689 if (ret) {
690 comp_bio->bi_status = ret;
691 bio_endio(comp_bio);
692 }
693
694 return 0;
695
696 fail2:
697 while (faili >= 0) {
698 __free_page(cb->compressed_pages[faili]);
699 faili--;
700 }
701
702 kfree(cb->compressed_pages);
703 fail1:
704 kfree(cb);
705 out:
706 free_extent_map(em);
707 return ret;
708 }
709
710 /*
711 * Heuristic uses systematic sampling to collect data from the input data
712 * range, the logic can be tuned by the following constants:
713 *
714 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
715 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
716 */
717 #define SAMPLING_READ_SIZE (16)
718 #define SAMPLING_INTERVAL (256)
719
720 /*
721 * For statistical analysis of the input data we consider bytes that form a
722 * Galois Field of 256 objects. Each object has an attribute count, ie. how
723 * many times the object appeared in the sample.
724 */
725 #define BUCKET_SIZE (256)
726
727 /*
728 * The size of the sample is based on a statistical sampling rule of thumb.
729 * The common way is to perform sampling tests as long as the number of
730 * elements in each cell is at least 5.
731 *
732 * Instead of 5, we choose 32 to obtain more accurate results.
733 * If the data contain the maximum number of symbols, which is 256, we obtain a
734 * sample size bound by 8192.
735 *
736 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
737 * from up to 512 locations.
738 */
739 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
740 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
741
742 struct bucket_item {
743 u32 count;
744 };
745
746 struct heuristic_ws {
747 /* Partial copy of input data */
748 u8 *sample;
749 u32 sample_size;
750 /* Buckets store counters for each byte value */
751 struct bucket_item *bucket;
752 /* Sorting buffer */
753 struct bucket_item *bucket_b;
754 struct list_head list;
755 };
756
free_heuristic_ws(struct list_head * ws)757 static void free_heuristic_ws(struct list_head *ws)
758 {
759 struct heuristic_ws *workspace;
760
761 workspace = list_entry(ws, struct heuristic_ws, list);
762
763 kvfree(workspace->sample);
764 kfree(workspace->bucket);
765 kfree(workspace->bucket_b);
766 kfree(workspace);
767 }
768
alloc_heuristic_ws(void)769 static struct list_head *alloc_heuristic_ws(void)
770 {
771 struct heuristic_ws *ws;
772
773 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
774 if (!ws)
775 return ERR_PTR(-ENOMEM);
776
777 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
778 if (!ws->sample)
779 goto fail;
780
781 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
782 if (!ws->bucket)
783 goto fail;
784
785 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
786 if (!ws->bucket_b)
787 goto fail;
788
789 INIT_LIST_HEAD(&ws->list);
790 return &ws->list;
791 fail:
792 free_heuristic_ws(&ws->list);
793 return ERR_PTR(-ENOMEM);
794 }
795
796 struct workspaces_list {
797 struct list_head idle_ws;
798 spinlock_t ws_lock;
799 /* Number of free workspaces */
800 int free_ws;
801 /* Total number of allocated workspaces */
802 atomic_t total_ws;
803 /* Waiters for a free workspace */
804 wait_queue_head_t ws_wait;
805 };
806
807 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
808
809 static struct workspaces_list btrfs_heuristic_ws;
810
811 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
812 &btrfs_zlib_compress,
813 &btrfs_lzo_compress,
814 &btrfs_zstd_compress,
815 };
816
btrfs_init_compress(void)817 void __init btrfs_init_compress(void)
818 {
819 struct list_head *workspace;
820 int i;
821
822 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
823 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
824 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
825 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
826
827 workspace = alloc_heuristic_ws();
828 if (IS_ERR(workspace)) {
829 pr_warn(
830 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
831 } else {
832 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
833 btrfs_heuristic_ws.free_ws = 1;
834 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
835 }
836
837 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
838 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
839 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
840 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
841 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
842
843 /*
844 * Preallocate one workspace for each compression type so
845 * we can guarantee forward progress in the worst case
846 */
847 workspace = btrfs_compress_op[i]->alloc_workspace();
848 if (IS_ERR(workspace)) {
849 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
850 } else {
851 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
852 btrfs_comp_ws[i].free_ws = 1;
853 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
854 }
855 }
856 }
857
858 /*
859 * This finds an available workspace or allocates a new one.
860 * If it's not possible to allocate a new one, waits until there's one.
861 * Preallocation makes a forward progress guarantees and we do not return
862 * errors.
863 */
__find_workspace(int type,bool heuristic)864 static struct list_head *__find_workspace(int type, bool heuristic)
865 {
866 struct list_head *workspace;
867 int cpus = num_online_cpus();
868 int idx = type - 1;
869 unsigned nofs_flag;
870 struct list_head *idle_ws;
871 spinlock_t *ws_lock;
872 atomic_t *total_ws;
873 wait_queue_head_t *ws_wait;
874 int *free_ws;
875
876 if (heuristic) {
877 idle_ws = &btrfs_heuristic_ws.idle_ws;
878 ws_lock = &btrfs_heuristic_ws.ws_lock;
879 total_ws = &btrfs_heuristic_ws.total_ws;
880 ws_wait = &btrfs_heuristic_ws.ws_wait;
881 free_ws = &btrfs_heuristic_ws.free_ws;
882 } else {
883 idle_ws = &btrfs_comp_ws[idx].idle_ws;
884 ws_lock = &btrfs_comp_ws[idx].ws_lock;
885 total_ws = &btrfs_comp_ws[idx].total_ws;
886 ws_wait = &btrfs_comp_ws[idx].ws_wait;
887 free_ws = &btrfs_comp_ws[idx].free_ws;
888 }
889
890 again:
891 spin_lock(ws_lock);
892 if (!list_empty(idle_ws)) {
893 workspace = idle_ws->next;
894 list_del(workspace);
895 (*free_ws)--;
896 spin_unlock(ws_lock);
897 return workspace;
898
899 }
900 if (atomic_read(total_ws) > cpus) {
901 DEFINE_WAIT(wait);
902
903 spin_unlock(ws_lock);
904 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
905 if (atomic_read(total_ws) > cpus && !*free_ws)
906 schedule();
907 finish_wait(ws_wait, &wait);
908 goto again;
909 }
910 atomic_inc(total_ws);
911 spin_unlock(ws_lock);
912
913 /*
914 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
915 * to turn it off here because we might get called from the restricted
916 * context of btrfs_compress_bio/btrfs_compress_pages
917 */
918 nofs_flag = memalloc_nofs_save();
919 if (heuristic)
920 workspace = alloc_heuristic_ws();
921 else
922 workspace = btrfs_compress_op[idx]->alloc_workspace();
923 memalloc_nofs_restore(nofs_flag);
924
925 if (IS_ERR(workspace)) {
926 atomic_dec(total_ws);
927 wake_up(ws_wait);
928
929 /*
930 * Do not return the error but go back to waiting. There's a
931 * workspace preallocated for each type and the compression
932 * time is bounded so we get to a workspace eventually. This
933 * makes our caller's life easier.
934 *
935 * To prevent silent and low-probability deadlocks (when the
936 * initial preallocation fails), check if there are any
937 * workspaces at all.
938 */
939 if (atomic_read(total_ws) == 0) {
940 static DEFINE_RATELIMIT_STATE(_rs,
941 /* once per minute */ 60 * HZ,
942 /* no burst */ 1);
943
944 if (__ratelimit(&_rs)) {
945 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
946 }
947 }
948 goto again;
949 }
950 return workspace;
951 }
952
find_workspace(int type)953 static struct list_head *find_workspace(int type)
954 {
955 return __find_workspace(type, false);
956 }
957
958 /*
959 * put a workspace struct back on the list or free it if we have enough
960 * idle ones sitting around
961 */
__free_workspace(int type,struct list_head * workspace,bool heuristic)962 static void __free_workspace(int type, struct list_head *workspace,
963 bool heuristic)
964 {
965 int idx = type - 1;
966 struct list_head *idle_ws;
967 spinlock_t *ws_lock;
968 atomic_t *total_ws;
969 wait_queue_head_t *ws_wait;
970 int *free_ws;
971
972 if (heuristic) {
973 idle_ws = &btrfs_heuristic_ws.idle_ws;
974 ws_lock = &btrfs_heuristic_ws.ws_lock;
975 total_ws = &btrfs_heuristic_ws.total_ws;
976 ws_wait = &btrfs_heuristic_ws.ws_wait;
977 free_ws = &btrfs_heuristic_ws.free_ws;
978 } else {
979 idle_ws = &btrfs_comp_ws[idx].idle_ws;
980 ws_lock = &btrfs_comp_ws[idx].ws_lock;
981 total_ws = &btrfs_comp_ws[idx].total_ws;
982 ws_wait = &btrfs_comp_ws[idx].ws_wait;
983 free_ws = &btrfs_comp_ws[idx].free_ws;
984 }
985
986 spin_lock(ws_lock);
987 if (*free_ws <= num_online_cpus()) {
988 list_add(workspace, idle_ws);
989 (*free_ws)++;
990 spin_unlock(ws_lock);
991 goto wake;
992 }
993 spin_unlock(ws_lock);
994
995 if (heuristic)
996 free_heuristic_ws(workspace);
997 else
998 btrfs_compress_op[idx]->free_workspace(workspace);
999 atomic_dec(total_ws);
1000 wake:
1001 cond_wake_up(ws_wait);
1002 }
1003
free_workspace(int type,struct list_head * ws)1004 static void free_workspace(int type, struct list_head *ws)
1005 {
1006 return __free_workspace(type, ws, false);
1007 }
1008
1009 /*
1010 * cleanup function for module exit
1011 */
free_workspaces(void)1012 static void free_workspaces(void)
1013 {
1014 struct list_head *workspace;
1015 int i;
1016
1017 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1018 workspace = btrfs_heuristic_ws.idle_ws.next;
1019 list_del(workspace);
1020 free_heuristic_ws(workspace);
1021 atomic_dec(&btrfs_heuristic_ws.total_ws);
1022 }
1023
1024 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1025 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1026 workspace = btrfs_comp_ws[i].idle_ws.next;
1027 list_del(workspace);
1028 btrfs_compress_op[i]->free_workspace(workspace);
1029 atomic_dec(&btrfs_comp_ws[i].total_ws);
1030 }
1031 }
1032 }
1033
1034 /*
1035 * Given an address space and start and length, compress the bytes into @pages
1036 * that are allocated on demand.
1037 *
1038 * @type_level is encoded algorithm and level, where level 0 means whatever
1039 * default the algorithm chooses and is opaque here;
1040 * - compression algo are 0-3
1041 * - the level are bits 4-7
1042 *
1043 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1044 * and returns number of actually allocated pages
1045 *
1046 * @total_in is used to return the number of bytes actually read. It
1047 * may be smaller than the input length if we had to exit early because we
1048 * ran out of room in the pages array or because we cross the
1049 * max_out threshold.
1050 *
1051 * @total_out is an in/out parameter, must be set to the input length and will
1052 * be also used to return the total number of compressed bytes
1053 *
1054 * @max_out tells us the max number of bytes that we're allowed to
1055 * stuff into pages
1056 */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1057 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1058 u64 start, struct page **pages,
1059 unsigned long *out_pages,
1060 unsigned long *total_in,
1061 unsigned long *total_out)
1062 {
1063 struct list_head *workspace;
1064 int ret;
1065 int type = type_level & 0xF;
1066
1067 workspace = find_workspace(type);
1068
1069 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1070 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1071 start, pages,
1072 out_pages,
1073 total_in, total_out);
1074 free_workspace(type, workspace);
1075 return ret;
1076 }
1077
1078 /*
1079 * pages_in is an array of pages with compressed data.
1080 *
1081 * disk_start is the starting logical offset of this array in the file
1082 *
1083 * orig_bio contains the pages from the file that we want to decompress into
1084 *
1085 * srclen is the number of bytes in pages_in
1086 *
1087 * The basic idea is that we have a bio that was created by readpages.
1088 * The pages in the bio are for the uncompressed data, and they may not
1089 * be contiguous. They all correspond to the range of bytes covered by
1090 * the compressed extent.
1091 */
btrfs_decompress_bio(struct compressed_bio * cb)1092 static int btrfs_decompress_bio(struct compressed_bio *cb)
1093 {
1094 struct list_head *workspace;
1095 int ret;
1096 int type = cb->compress_type;
1097
1098 workspace = find_workspace(type);
1099 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1100 free_workspace(type, workspace);
1101
1102 return ret;
1103 }
1104
1105 /*
1106 * a less complex decompression routine. Our compressed data fits in a
1107 * single page, and we want to read a single page out of it.
1108 * start_byte tells us the offset into the compressed data we're interested in
1109 */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1110 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1111 unsigned long start_byte, size_t srclen, size_t destlen)
1112 {
1113 struct list_head *workspace;
1114 int ret;
1115
1116 workspace = find_workspace(type);
1117
1118 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1119 dest_page, start_byte,
1120 srclen, destlen);
1121
1122 free_workspace(type, workspace);
1123 return ret;
1124 }
1125
btrfs_exit_compress(void)1126 void __cold btrfs_exit_compress(void)
1127 {
1128 free_workspaces();
1129 }
1130
1131 /*
1132 * Copy uncompressed data from working buffer to pages.
1133 *
1134 * buf_start is the byte offset we're of the start of our workspace buffer.
1135 *
1136 * total_out is the last byte of the buffer
1137 */
btrfs_decompress_buf2page(const char * buf,unsigned long buf_start,unsigned long total_out,u64 disk_start,struct bio * bio)1138 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1139 unsigned long total_out, u64 disk_start,
1140 struct bio *bio)
1141 {
1142 unsigned long buf_offset;
1143 unsigned long current_buf_start;
1144 unsigned long start_byte;
1145 unsigned long prev_start_byte;
1146 unsigned long working_bytes = total_out - buf_start;
1147 unsigned long bytes;
1148 char *kaddr;
1149 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1150
1151 /*
1152 * start byte is the first byte of the page we're currently
1153 * copying into relative to the start of the compressed data.
1154 */
1155 start_byte = page_offset(bvec.bv_page) - disk_start;
1156
1157 /* we haven't yet hit data corresponding to this page */
1158 if (total_out <= start_byte)
1159 return 1;
1160
1161 /*
1162 * the start of the data we care about is offset into
1163 * the middle of our working buffer
1164 */
1165 if (total_out > start_byte && buf_start < start_byte) {
1166 buf_offset = start_byte - buf_start;
1167 working_bytes -= buf_offset;
1168 } else {
1169 buf_offset = 0;
1170 }
1171 current_buf_start = buf_start;
1172
1173 /* copy bytes from the working buffer into the pages */
1174 while (working_bytes > 0) {
1175 bytes = min_t(unsigned long, bvec.bv_len,
1176 PAGE_SIZE - buf_offset);
1177 bytes = min(bytes, working_bytes);
1178
1179 kaddr = kmap_atomic(bvec.bv_page);
1180 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1181 kunmap_atomic(kaddr);
1182 flush_dcache_page(bvec.bv_page);
1183
1184 buf_offset += bytes;
1185 working_bytes -= bytes;
1186 current_buf_start += bytes;
1187
1188 /* check if we need to pick another page */
1189 bio_advance(bio, bytes);
1190 if (!bio->bi_iter.bi_size)
1191 return 0;
1192 bvec = bio_iter_iovec(bio, bio->bi_iter);
1193 prev_start_byte = start_byte;
1194 start_byte = page_offset(bvec.bv_page) - disk_start;
1195
1196 /*
1197 * We need to make sure we're only adjusting
1198 * our offset into compression working buffer when
1199 * we're switching pages. Otherwise we can incorrectly
1200 * keep copying when we were actually done.
1201 */
1202 if (start_byte != prev_start_byte) {
1203 /*
1204 * make sure our new page is covered by this
1205 * working buffer
1206 */
1207 if (total_out <= start_byte)
1208 return 1;
1209
1210 /*
1211 * the next page in the biovec might not be adjacent
1212 * to the last page, but it might still be found
1213 * inside this working buffer. bump our offset pointer
1214 */
1215 if (total_out > start_byte &&
1216 current_buf_start < start_byte) {
1217 buf_offset = start_byte - buf_start;
1218 working_bytes = total_out - start_byte;
1219 current_buf_start = buf_start + buf_offset;
1220 }
1221 }
1222 }
1223
1224 return 1;
1225 }
1226
1227 /*
1228 * Shannon Entropy calculation
1229 *
1230 * Pure byte distribution analysis fails to determine compressiability of data.
1231 * Try calculating entropy to estimate the average minimum number of bits
1232 * needed to encode the sampled data.
1233 *
1234 * For convenience, return the percentage of needed bits, instead of amount of
1235 * bits directly.
1236 *
1237 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1238 * and can be compressible with high probability
1239 *
1240 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1241 *
1242 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1243 */
1244 #define ENTROPY_LVL_ACEPTABLE (65)
1245 #define ENTROPY_LVL_HIGH (80)
1246
1247 /*
1248 * For increasead precision in shannon_entropy calculation,
1249 * let's do pow(n, M) to save more digits after comma:
1250 *
1251 * - maximum int bit length is 64
1252 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1253 * - 13 * 4 = 52 < 64 -> M = 4
1254 *
1255 * So use pow(n, 4).
1256 */
ilog2_w(u64 n)1257 static inline u32 ilog2_w(u64 n)
1258 {
1259 return ilog2(n * n * n * n);
1260 }
1261
shannon_entropy(struct heuristic_ws * ws)1262 static u32 shannon_entropy(struct heuristic_ws *ws)
1263 {
1264 const u32 entropy_max = 8 * ilog2_w(2);
1265 u32 entropy_sum = 0;
1266 u32 p, p_base, sz_base;
1267 u32 i;
1268
1269 sz_base = ilog2_w(ws->sample_size);
1270 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1271 p = ws->bucket[i].count;
1272 p_base = ilog2_w(p);
1273 entropy_sum += p * (sz_base - p_base);
1274 }
1275
1276 entropy_sum /= ws->sample_size;
1277 return entropy_sum * 100 / entropy_max;
1278 }
1279
1280 #define RADIX_BASE 4U
1281 #define COUNTERS_SIZE (1U << RADIX_BASE)
1282
get4bits(u64 num,int shift)1283 static u8 get4bits(u64 num, int shift) {
1284 u8 low4bits;
1285
1286 num >>= shift;
1287 /* Reverse order */
1288 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1289 return low4bits;
1290 }
1291
1292 /*
1293 * Use 4 bits as radix base
1294 * Use 16 u32 counters for calculating new possition in buf array
1295 *
1296 * @array - array that will be sorted
1297 * @array_buf - buffer array to store sorting results
1298 * must be equal in size to @array
1299 * @num - array size
1300 */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1301 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1302 int num)
1303 {
1304 u64 max_num;
1305 u64 buf_num;
1306 u32 counters[COUNTERS_SIZE];
1307 u32 new_addr;
1308 u32 addr;
1309 int bitlen;
1310 int shift;
1311 int i;
1312
1313 /*
1314 * Try avoid useless loop iterations for small numbers stored in big
1315 * counters. Example: 48 33 4 ... in 64bit array
1316 */
1317 max_num = array[0].count;
1318 for (i = 1; i < num; i++) {
1319 buf_num = array[i].count;
1320 if (buf_num > max_num)
1321 max_num = buf_num;
1322 }
1323
1324 buf_num = ilog2(max_num);
1325 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1326
1327 shift = 0;
1328 while (shift < bitlen) {
1329 memset(counters, 0, sizeof(counters));
1330
1331 for (i = 0; i < num; i++) {
1332 buf_num = array[i].count;
1333 addr = get4bits(buf_num, shift);
1334 counters[addr]++;
1335 }
1336
1337 for (i = 1; i < COUNTERS_SIZE; i++)
1338 counters[i] += counters[i - 1];
1339
1340 for (i = num - 1; i >= 0; i--) {
1341 buf_num = array[i].count;
1342 addr = get4bits(buf_num, shift);
1343 counters[addr]--;
1344 new_addr = counters[addr];
1345 array_buf[new_addr] = array[i];
1346 }
1347
1348 shift += RADIX_BASE;
1349
1350 /*
1351 * Normal radix expects to move data from a temporary array, to
1352 * the main one. But that requires some CPU time. Avoid that
1353 * by doing another sort iteration to original array instead of
1354 * memcpy()
1355 */
1356 memset(counters, 0, sizeof(counters));
1357
1358 for (i = 0; i < num; i ++) {
1359 buf_num = array_buf[i].count;
1360 addr = get4bits(buf_num, shift);
1361 counters[addr]++;
1362 }
1363
1364 for (i = 1; i < COUNTERS_SIZE; i++)
1365 counters[i] += counters[i - 1];
1366
1367 for (i = num - 1; i >= 0; i--) {
1368 buf_num = array_buf[i].count;
1369 addr = get4bits(buf_num, shift);
1370 counters[addr]--;
1371 new_addr = counters[addr];
1372 array[new_addr] = array_buf[i];
1373 }
1374
1375 shift += RADIX_BASE;
1376 }
1377 }
1378
1379 /*
1380 * Size of the core byte set - how many bytes cover 90% of the sample
1381 *
1382 * There are several types of structured binary data that use nearly all byte
1383 * values. The distribution can be uniform and counts in all buckets will be
1384 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1385 *
1386 * Other possibility is normal (Gaussian) distribution, where the data could
1387 * be potentially compressible, but we have to take a few more steps to decide
1388 * how much.
1389 *
1390 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1391 * compression algo can easy fix that
1392 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1393 * probability is not compressible
1394 */
1395 #define BYTE_CORE_SET_LOW (64)
1396 #define BYTE_CORE_SET_HIGH (200)
1397
byte_core_set_size(struct heuristic_ws * ws)1398 static int byte_core_set_size(struct heuristic_ws *ws)
1399 {
1400 u32 i;
1401 u32 coreset_sum = 0;
1402 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1403 struct bucket_item *bucket = ws->bucket;
1404
1405 /* Sort in reverse order */
1406 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1407
1408 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1409 coreset_sum += bucket[i].count;
1410
1411 if (coreset_sum > core_set_threshold)
1412 return i;
1413
1414 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1415 coreset_sum += bucket[i].count;
1416 if (coreset_sum > core_set_threshold)
1417 break;
1418 }
1419
1420 return i;
1421 }
1422
1423 /*
1424 * Count byte values in buckets.
1425 * This heuristic can detect textual data (configs, xml, json, html, etc).
1426 * Because in most text-like data byte set is restricted to limited number of
1427 * possible characters, and that restriction in most cases makes data easy to
1428 * compress.
1429 *
1430 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1431 * less - compressible
1432 * more - need additional analysis
1433 */
1434 #define BYTE_SET_THRESHOLD (64)
1435
byte_set_size(const struct heuristic_ws * ws)1436 static u32 byte_set_size(const struct heuristic_ws *ws)
1437 {
1438 u32 i;
1439 u32 byte_set_size = 0;
1440
1441 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1442 if (ws->bucket[i].count > 0)
1443 byte_set_size++;
1444 }
1445
1446 /*
1447 * Continue collecting count of byte values in buckets. If the byte
1448 * set size is bigger then the threshold, it's pointless to continue,
1449 * the detection technique would fail for this type of data.
1450 */
1451 for (; i < BUCKET_SIZE; i++) {
1452 if (ws->bucket[i].count > 0) {
1453 byte_set_size++;
1454 if (byte_set_size > BYTE_SET_THRESHOLD)
1455 return byte_set_size;
1456 }
1457 }
1458
1459 return byte_set_size;
1460 }
1461
sample_repeated_patterns(struct heuristic_ws * ws)1462 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1463 {
1464 const u32 half_of_sample = ws->sample_size / 2;
1465 const u8 *data = ws->sample;
1466
1467 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1468 }
1469
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1470 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1471 struct heuristic_ws *ws)
1472 {
1473 struct page *page;
1474 u64 index, index_end;
1475 u32 i, curr_sample_pos;
1476 u8 *in_data;
1477
1478 /*
1479 * Compression handles the input data by chunks of 128KiB
1480 * (defined by BTRFS_MAX_UNCOMPRESSED)
1481 *
1482 * We do the same for the heuristic and loop over the whole range.
1483 *
1484 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1485 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1486 */
1487 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1488 end = start + BTRFS_MAX_UNCOMPRESSED;
1489
1490 index = start >> PAGE_SHIFT;
1491 index_end = end >> PAGE_SHIFT;
1492
1493 /* Don't miss unaligned end */
1494 if (!IS_ALIGNED(end, PAGE_SIZE))
1495 index_end++;
1496
1497 curr_sample_pos = 0;
1498 while (index < index_end) {
1499 page = find_get_page(inode->i_mapping, index);
1500 in_data = kmap(page);
1501 /* Handle case where the start is not aligned to PAGE_SIZE */
1502 i = start % PAGE_SIZE;
1503 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1504 /* Don't sample any garbage from the last page */
1505 if (start > end - SAMPLING_READ_SIZE)
1506 break;
1507 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1508 SAMPLING_READ_SIZE);
1509 i += SAMPLING_INTERVAL;
1510 start += SAMPLING_INTERVAL;
1511 curr_sample_pos += SAMPLING_READ_SIZE;
1512 }
1513 kunmap(page);
1514 put_page(page);
1515
1516 index++;
1517 }
1518
1519 ws->sample_size = curr_sample_pos;
1520 }
1521
1522 /*
1523 * Compression heuristic.
1524 *
1525 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1526 * quickly (compared to direct compression) detect data characteristics
1527 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1528 * data.
1529 *
1530 * The following types of analysis can be performed:
1531 * - detect mostly zero data
1532 * - detect data with low "byte set" size (text, etc)
1533 * - detect data with low/high "core byte" set
1534 *
1535 * Return non-zero if the compression should be done, 0 otherwise.
1536 */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1537 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1538 {
1539 struct list_head *ws_list = __find_workspace(0, true);
1540 struct heuristic_ws *ws;
1541 u32 i;
1542 u8 byte;
1543 int ret = 0;
1544
1545 ws = list_entry(ws_list, struct heuristic_ws, list);
1546
1547 heuristic_collect_sample(inode, start, end, ws);
1548
1549 if (sample_repeated_patterns(ws)) {
1550 ret = 1;
1551 goto out;
1552 }
1553
1554 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1555
1556 for (i = 0; i < ws->sample_size; i++) {
1557 byte = ws->sample[i];
1558 ws->bucket[byte].count++;
1559 }
1560
1561 i = byte_set_size(ws);
1562 if (i < BYTE_SET_THRESHOLD) {
1563 ret = 2;
1564 goto out;
1565 }
1566
1567 i = byte_core_set_size(ws);
1568 if (i <= BYTE_CORE_SET_LOW) {
1569 ret = 3;
1570 goto out;
1571 }
1572
1573 if (i >= BYTE_CORE_SET_HIGH) {
1574 ret = 0;
1575 goto out;
1576 }
1577
1578 i = shannon_entropy(ws);
1579 if (i <= ENTROPY_LVL_ACEPTABLE) {
1580 ret = 4;
1581 goto out;
1582 }
1583
1584 /*
1585 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1586 * needed to give green light to compression.
1587 *
1588 * For now just assume that compression at that level is not worth the
1589 * resources because:
1590 *
1591 * 1. it is possible to defrag the data later
1592 *
1593 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1594 * values, every bucket has counter at level ~54. The heuristic would
1595 * be confused. This can happen when data have some internal repeated
1596 * patterns like "abbacbbc...". This can be detected by analyzing
1597 * pairs of bytes, which is too costly.
1598 */
1599 if (i < ENTROPY_LVL_HIGH) {
1600 ret = 5;
1601 goto out;
1602 } else {
1603 ret = 0;
1604 goto out;
1605 }
1606
1607 out:
1608 __free_workspace(0, ws_list, true);
1609 return ret;
1610 }
1611
btrfs_compress_str2level(const char * str)1612 unsigned int btrfs_compress_str2level(const char *str)
1613 {
1614 if (strncmp(str, "zlib", 4) != 0)
1615 return 0;
1616
1617 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1618 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1619 return str[5] - '0';
1620
1621 return BTRFS_ZLIB_DEFAULT_LEVEL;
1622 }
1623