• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 
16 #define BTRFS_DELAYED_WRITEBACK		512
17 #define BTRFS_DELAYED_BACKGROUND	128
18 #define BTRFS_DELAYED_BATCH		16
19 
20 static struct kmem_cache *delayed_node_cache;
21 
btrfs_delayed_inode_init(void)22 int __init btrfs_delayed_inode_init(void)
23 {
24 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
25 					sizeof(struct btrfs_delayed_node),
26 					0,
27 					SLAB_MEM_SPREAD,
28 					NULL);
29 	if (!delayed_node_cache)
30 		return -ENOMEM;
31 	return 0;
32 }
33 
btrfs_delayed_inode_exit(void)34 void __cold btrfs_delayed_inode_exit(void)
35 {
36 	kmem_cache_destroy(delayed_node_cache);
37 }
38 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)39 static inline void btrfs_init_delayed_node(
40 				struct btrfs_delayed_node *delayed_node,
41 				struct btrfs_root *root, u64 inode_id)
42 {
43 	delayed_node->root = root;
44 	delayed_node->inode_id = inode_id;
45 	refcount_set(&delayed_node->refs, 0);
46 	delayed_node->ins_root = RB_ROOT;
47 	delayed_node->del_root = RB_ROOT;
48 	mutex_init(&delayed_node->mutex);
49 	INIT_LIST_HEAD(&delayed_node->n_list);
50 	INIT_LIST_HEAD(&delayed_node->p_list);
51 }
52 
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)53 static inline int btrfs_is_continuous_delayed_item(
54 					struct btrfs_delayed_item *item1,
55 					struct btrfs_delayed_item *item2)
56 {
57 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
58 	    item1->key.objectid == item2->key.objectid &&
59 	    item1->key.type == item2->key.type &&
60 	    item1->key.offset + 1 == item2->key.offset)
61 		return 1;
62 	return 0;
63 }
64 
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)65 static struct btrfs_delayed_node *btrfs_get_delayed_node(
66 		struct btrfs_inode *btrfs_inode)
67 {
68 	struct btrfs_root *root = btrfs_inode->root;
69 	u64 ino = btrfs_ino(btrfs_inode);
70 	struct btrfs_delayed_node *node;
71 
72 	node = READ_ONCE(btrfs_inode->delayed_node);
73 	if (node) {
74 		refcount_inc(&node->refs);
75 		return node;
76 	}
77 
78 	spin_lock(&root->inode_lock);
79 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
80 
81 	if (node) {
82 		if (btrfs_inode->delayed_node) {
83 			refcount_inc(&node->refs);	/* can be accessed */
84 			BUG_ON(btrfs_inode->delayed_node != node);
85 			spin_unlock(&root->inode_lock);
86 			return node;
87 		}
88 
89 		/*
90 		 * It's possible that we're racing into the middle of removing
91 		 * this node from the radix tree.  In this case, the refcount
92 		 * was zero and it should never go back to one.  Just return
93 		 * NULL like it was never in the radix at all; our release
94 		 * function is in the process of removing it.
95 		 *
96 		 * Some implementations of refcount_inc refuse to bump the
97 		 * refcount once it has hit zero.  If we don't do this dance
98 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
99 		 * of actually bumping the refcount.
100 		 *
101 		 * If this node is properly in the radix, we want to bump the
102 		 * refcount twice, once for the inode and once for this get
103 		 * operation.
104 		 */
105 		if (refcount_inc_not_zero(&node->refs)) {
106 			refcount_inc(&node->refs);
107 			btrfs_inode->delayed_node = node;
108 		} else {
109 			node = NULL;
110 		}
111 
112 		spin_unlock(&root->inode_lock);
113 		return node;
114 	}
115 	spin_unlock(&root->inode_lock);
116 
117 	return NULL;
118 }
119 
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 		struct btrfs_inode *btrfs_inode)
123 {
124 	struct btrfs_delayed_node *node;
125 	struct btrfs_root *root = btrfs_inode->root;
126 	u64 ino = btrfs_ino(btrfs_inode);
127 	int ret;
128 
129 again:
130 	node = btrfs_get_delayed_node(btrfs_inode);
131 	if (node)
132 		return node;
133 
134 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
135 	if (!node)
136 		return ERR_PTR(-ENOMEM);
137 	btrfs_init_delayed_node(node, root, ino);
138 
139 	/* cached in the btrfs inode and can be accessed */
140 	refcount_set(&node->refs, 2);
141 
142 	ret = radix_tree_preload(GFP_NOFS);
143 	if (ret) {
144 		kmem_cache_free(delayed_node_cache, node);
145 		return ERR_PTR(ret);
146 	}
147 
148 	spin_lock(&root->inode_lock);
149 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 	if (ret == -EEXIST) {
151 		spin_unlock(&root->inode_lock);
152 		kmem_cache_free(delayed_node_cache, node);
153 		radix_tree_preload_end();
154 		goto again;
155 	}
156 	btrfs_inode->delayed_node = node;
157 	spin_unlock(&root->inode_lock);
158 	radix_tree_preload_end();
159 
160 	return node;
161 }
162 
163 /*
164  * Call it when holding delayed_node->mutex
165  *
166  * If mod = 1, add this node into the prepared list.
167  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 				     struct btrfs_delayed_node *node,
170 				     int mod)
171 {
172 	spin_lock(&root->lock);
173 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 		if (!list_empty(&node->p_list))
175 			list_move_tail(&node->p_list, &root->prepare_list);
176 		else if (mod)
177 			list_add_tail(&node->p_list, &root->prepare_list);
178 	} else {
179 		list_add_tail(&node->n_list, &root->node_list);
180 		list_add_tail(&node->p_list, &root->prepare_list);
181 		refcount_inc(&node->refs);	/* inserted into list */
182 		root->nodes++;
183 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 	}
185 	spin_unlock(&root->lock);
186 }
187 
188 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 				       struct btrfs_delayed_node *node)
191 {
192 	spin_lock(&root->lock);
193 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 		root->nodes--;
195 		refcount_dec(&node->refs);	/* not in the list */
196 		list_del_init(&node->n_list);
197 		if (!list_empty(&node->p_list))
198 			list_del_init(&node->p_list);
199 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 	}
201 	spin_unlock(&root->lock);
202 }
203 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)204 static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 			struct btrfs_delayed_root *delayed_root)
206 {
207 	struct list_head *p;
208 	struct btrfs_delayed_node *node = NULL;
209 
210 	spin_lock(&delayed_root->lock);
211 	if (list_empty(&delayed_root->node_list))
212 		goto out;
213 
214 	p = delayed_root->node_list.next;
215 	node = list_entry(p, struct btrfs_delayed_node, n_list);
216 	refcount_inc(&node->refs);
217 out:
218 	spin_unlock(&delayed_root->lock);
219 
220 	return node;
221 }
222 
btrfs_next_delayed_node(struct btrfs_delayed_node * node)223 static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 						struct btrfs_delayed_node *node)
225 {
226 	struct btrfs_delayed_root *delayed_root;
227 	struct list_head *p;
228 	struct btrfs_delayed_node *next = NULL;
229 
230 	delayed_root = node->root->fs_info->delayed_root;
231 	spin_lock(&delayed_root->lock);
232 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 		/* not in the list */
234 		if (list_empty(&delayed_root->node_list))
235 			goto out;
236 		p = delayed_root->node_list.next;
237 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 		goto out;
239 	else
240 		p = node->n_list.next;
241 
242 	next = list_entry(p, struct btrfs_delayed_node, n_list);
243 	refcount_inc(&next->refs);
244 out:
245 	spin_unlock(&delayed_root->lock);
246 
247 	return next;
248 }
249 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)250 static void __btrfs_release_delayed_node(
251 				struct btrfs_delayed_node *delayed_node,
252 				int mod)
253 {
254 	struct btrfs_delayed_root *delayed_root;
255 
256 	if (!delayed_node)
257 		return;
258 
259 	delayed_root = delayed_node->root->fs_info->delayed_root;
260 
261 	mutex_lock(&delayed_node->mutex);
262 	if (delayed_node->count)
263 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 	else
265 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 	mutex_unlock(&delayed_node->mutex);
267 
268 	if (refcount_dec_and_test(&delayed_node->refs)) {
269 		struct btrfs_root *root = delayed_node->root;
270 
271 		spin_lock(&root->inode_lock);
272 		/*
273 		 * Once our refcount goes to zero, nobody is allowed to bump it
274 		 * back up.  We can delete it now.
275 		 */
276 		ASSERT(refcount_read(&delayed_node->refs) == 0);
277 		radix_tree_delete(&root->delayed_nodes_tree,
278 				  delayed_node->inode_id);
279 		spin_unlock(&root->inode_lock);
280 		kmem_cache_free(delayed_node_cache, delayed_node);
281 	}
282 }
283 
btrfs_release_delayed_node(struct btrfs_delayed_node * node)284 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
285 {
286 	__btrfs_release_delayed_node(node, 0);
287 }
288 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)289 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 					struct btrfs_delayed_root *delayed_root)
291 {
292 	struct list_head *p;
293 	struct btrfs_delayed_node *node = NULL;
294 
295 	spin_lock(&delayed_root->lock);
296 	if (list_empty(&delayed_root->prepare_list))
297 		goto out;
298 
299 	p = delayed_root->prepare_list.next;
300 	list_del_init(p);
301 	node = list_entry(p, struct btrfs_delayed_node, p_list);
302 	refcount_inc(&node->refs);
303 out:
304 	spin_unlock(&delayed_root->lock);
305 
306 	return node;
307 }
308 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)309 static inline void btrfs_release_prepared_delayed_node(
310 					struct btrfs_delayed_node *node)
311 {
312 	__btrfs_release_delayed_node(node, 1);
313 }
314 
btrfs_alloc_delayed_item(u32 data_len)315 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316 {
317 	struct btrfs_delayed_item *item;
318 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 	if (item) {
320 		item->data_len = data_len;
321 		item->ins_or_del = 0;
322 		item->bytes_reserved = 0;
323 		item->delayed_node = NULL;
324 		refcount_set(&item->refs, 1);
325 	}
326 	return item;
327 }
328 
329 /*
330  * __btrfs_lookup_delayed_item - look up the delayed item by key
331  * @delayed_node: pointer to the delayed node
332  * @key:	  the key to look up
333  * @prev:	  used to store the prev item if the right item isn't found
334  * @next:	  used to store the next item if the right item isn't found
335  *
336  * Note: if we don't find the right item, we will return the prev item and
337  * the next item.
338  */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)339 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 				struct rb_root *root,
341 				struct btrfs_key *key,
342 				struct btrfs_delayed_item **prev,
343 				struct btrfs_delayed_item **next)
344 {
345 	struct rb_node *node, *prev_node = NULL;
346 	struct btrfs_delayed_item *delayed_item = NULL;
347 	int ret = 0;
348 
349 	node = root->rb_node;
350 
351 	while (node) {
352 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 					rb_node);
354 		prev_node = node;
355 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 		if (ret < 0)
357 			node = node->rb_right;
358 		else if (ret > 0)
359 			node = node->rb_left;
360 		else
361 			return delayed_item;
362 	}
363 
364 	if (prev) {
365 		if (!prev_node)
366 			*prev = NULL;
367 		else if (ret < 0)
368 			*prev = delayed_item;
369 		else if ((node = rb_prev(prev_node)) != NULL) {
370 			*prev = rb_entry(node, struct btrfs_delayed_item,
371 					 rb_node);
372 		} else
373 			*prev = NULL;
374 	}
375 
376 	if (next) {
377 		if (!prev_node)
378 			*next = NULL;
379 		else if (ret > 0)
380 			*next = delayed_item;
381 		else if ((node = rb_next(prev_node)) != NULL) {
382 			*next = rb_entry(node, struct btrfs_delayed_item,
383 					 rb_node);
384 		} else
385 			*next = NULL;
386 	}
387 	return NULL;
388 }
389 
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)390 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 					struct btrfs_delayed_node *delayed_node,
392 					struct btrfs_key *key)
393 {
394 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
395 					   NULL, NULL);
396 }
397 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 				    struct btrfs_delayed_item *ins,
400 				    int action)
401 {
402 	struct rb_node **p, *node;
403 	struct rb_node *parent_node = NULL;
404 	struct rb_root *root;
405 	struct btrfs_delayed_item *item;
406 	int cmp;
407 
408 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 		root = &delayed_node->ins_root;
410 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 		root = &delayed_node->del_root;
412 	else
413 		BUG();
414 	p = &root->rb_node;
415 	node = &ins->rb_node;
416 
417 	while (*p) {
418 		parent_node = *p;
419 		item = rb_entry(parent_node, struct btrfs_delayed_item,
420 				 rb_node);
421 
422 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 		if (cmp < 0)
424 			p = &(*p)->rb_right;
425 		else if (cmp > 0)
426 			p = &(*p)->rb_left;
427 		else
428 			return -EEXIST;
429 	}
430 
431 	rb_link_node(node, parent_node, p);
432 	rb_insert_color(node, root);
433 	ins->delayed_node = delayed_node;
434 	ins->ins_or_del = action;
435 
436 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
437 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
438 	    ins->key.offset >= delayed_node->index_cnt)
439 			delayed_node->index_cnt = ins->key.offset + 1;
440 
441 	delayed_node->count++;
442 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
443 	return 0;
444 }
445 
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)446 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
447 					      struct btrfs_delayed_item *item)
448 {
449 	return __btrfs_add_delayed_item(node, item,
450 					BTRFS_DELAYED_INSERTION_ITEM);
451 }
452 
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)453 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
454 					     struct btrfs_delayed_item *item)
455 {
456 	return __btrfs_add_delayed_item(node, item,
457 					BTRFS_DELAYED_DELETION_ITEM);
458 }
459 
finish_one_item(struct btrfs_delayed_root * delayed_root)460 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
461 {
462 	int seq = atomic_inc_return(&delayed_root->items_seq);
463 
464 	/* atomic_dec_return implies a barrier */
465 	if ((atomic_dec_return(&delayed_root->items) <
466 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
467 		cond_wake_up_nomb(&delayed_root->wait);
468 }
469 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
471 {
472 	struct rb_root *root;
473 	struct btrfs_delayed_root *delayed_root;
474 
475 	/* Not associated with any delayed_node */
476 	if (!delayed_item->delayed_node)
477 		return;
478 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
479 
480 	BUG_ON(!delayed_root);
481 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
482 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
483 
484 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
485 		root = &delayed_item->delayed_node->ins_root;
486 	else
487 		root = &delayed_item->delayed_node->del_root;
488 
489 	rb_erase(&delayed_item->rb_node, root);
490 	delayed_item->delayed_node->count--;
491 
492 	finish_one_item(delayed_root);
493 }
494 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)495 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
496 {
497 	if (item) {
498 		__btrfs_remove_delayed_item(item);
499 		if (refcount_dec_and_test(&item->refs))
500 			kfree(item);
501 	}
502 }
503 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)504 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
505 					struct btrfs_delayed_node *delayed_node)
506 {
507 	struct rb_node *p;
508 	struct btrfs_delayed_item *item = NULL;
509 
510 	p = rb_first(&delayed_node->ins_root);
511 	if (p)
512 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
513 
514 	return item;
515 }
516 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)517 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
518 					struct btrfs_delayed_node *delayed_node)
519 {
520 	struct rb_node *p;
521 	struct btrfs_delayed_item *item = NULL;
522 
523 	p = rb_first(&delayed_node->del_root);
524 	if (p)
525 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
526 
527 	return item;
528 }
529 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)530 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
531 						struct btrfs_delayed_item *item)
532 {
533 	struct rb_node *p;
534 	struct btrfs_delayed_item *next = NULL;
535 
536 	p = rb_next(&item->rb_node);
537 	if (p)
538 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
539 
540 	return next;
541 }
542 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)543 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
544 					       struct btrfs_root *root,
545 					       struct btrfs_delayed_item *item)
546 {
547 	struct btrfs_block_rsv *src_rsv;
548 	struct btrfs_block_rsv *dst_rsv;
549 	struct btrfs_fs_info *fs_info = root->fs_info;
550 	u64 num_bytes;
551 	int ret;
552 
553 	if (!trans->bytes_reserved)
554 		return 0;
555 
556 	src_rsv = trans->block_rsv;
557 	dst_rsv = &fs_info->delayed_block_rsv;
558 
559 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
560 
561 	/*
562 	 * Here we migrate space rsv from transaction rsv, since have already
563 	 * reserved space when starting a transaction.  So no need to reserve
564 	 * qgroup space here.
565 	 */
566 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
567 	if (!ret) {
568 		trace_btrfs_space_reservation(fs_info, "delayed_item",
569 					      item->key.objectid,
570 					      num_bytes, 1);
571 		item->bytes_reserved = num_bytes;
572 	}
573 
574 	return ret;
575 }
576 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)577 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
578 						struct btrfs_delayed_item *item)
579 {
580 	struct btrfs_block_rsv *rsv;
581 	struct btrfs_fs_info *fs_info = root->fs_info;
582 
583 	if (!item->bytes_reserved)
584 		return;
585 
586 	rsv = &fs_info->delayed_block_rsv;
587 	/*
588 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
589 	 * to release/reserve qgroup space.
590 	 */
591 	trace_btrfs_space_reservation(fs_info, "delayed_item",
592 				      item->key.objectid, item->bytes_reserved,
593 				      0);
594 	btrfs_block_rsv_release(fs_info, rsv,
595 				item->bytes_reserved);
596 }
597 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_delayed_node * node)598 static int btrfs_delayed_inode_reserve_metadata(
599 					struct btrfs_trans_handle *trans,
600 					struct btrfs_root *root,
601 					struct btrfs_inode *inode,
602 					struct btrfs_delayed_node *node)
603 {
604 	struct btrfs_fs_info *fs_info = root->fs_info;
605 	struct btrfs_block_rsv *src_rsv;
606 	struct btrfs_block_rsv *dst_rsv;
607 	u64 num_bytes;
608 	int ret;
609 
610 	src_rsv = trans->block_rsv;
611 	dst_rsv = &fs_info->delayed_block_rsv;
612 
613 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
614 
615 	/*
616 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617 	 * which doesn't reserve space for speed.  This is a problem since we
618 	 * still need to reserve space for this update, so try to reserve the
619 	 * space.
620 	 *
621 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622 	 * we always reserve enough to update the inode item.
623 	 */
624 	if (!src_rsv || (!trans->bytes_reserved &&
625 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
626 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
627 		if (ret < 0)
628 			return ret;
629 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630 					  BTRFS_RESERVE_NO_FLUSH);
631 		/*
632 		 * Since we're under a transaction reserve_metadata_bytes could
633 		 * try to commit the transaction which will make it return
634 		 * EAGAIN to make us stop the transaction we have, so return
635 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 		 */
637 		if (ret == -EAGAIN) {
638 			ret = -ENOSPC;
639 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 		}
641 		if (!ret) {
642 			node->bytes_reserved = num_bytes;
643 			trace_btrfs_space_reservation(fs_info,
644 						      "delayed_inode",
645 						      btrfs_ino(inode),
646 						      num_bytes, 1);
647 		} else {
648 			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649 		}
650 		return ret;
651 	}
652 
653 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654 	if (!ret) {
655 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 					      btrfs_ino(inode), num_bytes, 1);
657 		node->bytes_reserved = num_bytes;
658 	}
659 
660 	return ret;
661 }
662 
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)663 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 						struct btrfs_delayed_node *node,
665 						bool qgroup_free)
666 {
667 	struct btrfs_block_rsv *rsv;
668 
669 	if (!node->bytes_reserved)
670 		return;
671 
672 	rsv = &fs_info->delayed_block_rsv;
673 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
674 				      node->inode_id, node->bytes_reserved, 0);
675 	btrfs_block_rsv_release(fs_info, rsv,
676 				node->bytes_reserved);
677 	if (qgroup_free)
678 		btrfs_qgroup_free_meta_prealloc(node->root,
679 				node->bytes_reserved);
680 	else
681 		btrfs_qgroup_convert_reserved_meta(node->root,
682 				node->bytes_reserved);
683 	node->bytes_reserved = 0;
684 }
685 
686 /*
687  * This helper will insert some continuous items into the same leaf according
688  * to the free space of the leaf.
689  */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)690 static int btrfs_batch_insert_items(struct btrfs_root *root,
691 				    struct btrfs_path *path,
692 				    struct btrfs_delayed_item *item)
693 {
694 	struct btrfs_fs_info *fs_info = root->fs_info;
695 	struct btrfs_delayed_item *curr, *next;
696 	int free_space;
697 	int total_data_size = 0, total_size = 0;
698 	struct extent_buffer *leaf;
699 	char *data_ptr;
700 	struct btrfs_key *keys;
701 	u32 *data_size;
702 	struct list_head head;
703 	int slot;
704 	int nitems;
705 	int i;
706 	int ret = 0;
707 
708 	BUG_ON(!path->nodes[0]);
709 
710 	leaf = path->nodes[0];
711 	free_space = btrfs_leaf_free_space(fs_info, leaf);
712 	INIT_LIST_HEAD(&head);
713 
714 	next = item;
715 	nitems = 0;
716 
717 	/*
718 	 * count the number of the continuous items that we can insert in batch
719 	 */
720 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
721 	       free_space) {
722 		total_data_size += next->data_len;
723 		total_size += next->data_len + sizeof(struct btrfs_item);
724 		list_add_tail(&next->tree_list, &head);
725 		nitems++;
726 
727 		curr = next;
728 		next = __btrfs_next_delayed_item(curr);
729 		if (!next)
730 			break;
731 
732 		if (!btrfs_is_continuous_delayed_item(curr, next))
733 			break;
734 	}
735 
736 	if (!nitems) {
737 		ret = 0;
738 		goto out;
739 	}
740 
741 	/*
742 	 * we need allocate some memory space, but it might cause the task
743 	 * to sleep, so we set all locked nodes in the path to blocking locks
744 	 * first.
745 	 */
746 	btrfs_set_path_blocking(path);
747 
748 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749 	if (!keys) {
750 		ret = -ENOMEM;
751 		goto out;
752 	}
753 
754 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755 	if (!data_size) {
756 		ret = -ENOMEM;
757 		goto error;
758 	}
759 
760 	/* get keys of all the delayed items */
761 	i = 0;
762 	list_for_each_entry(next, &head, tree_list) {
763 		keys[i] = next->key;
764 		data_size[i] = next->data_len;
765 		i++;
766 	}
767 
768 	/* reset all the locked nodes in the patch to spinning locks. */
769 	btrfs_clear_path_blocking(path, NULL, 0);
770 
771 	/* insert the keys of the items */
772 	setup_items_for_insert(root, path, keys, data_size,
773 			       total_data_size, total_size, nitems);
774 
775 	/* insert the dir index items */
776 	slot = path->slots[0];
777 	list_for_each_entry_safe(curr, next, &head, tree_list) {
778 		data_ptr = btrfs_item_ptr(leaf, slot, char);
779 		write_extent_buffer(leaf, &curr->data,
780 				    (unsigned long)data_ptr,
781 				    curr->data_len);
782 		slot++;
783 
784 		btrfs_delayed_item_release_metadata(root, curr);
785 
786 		list_del(&curr->tree_list);
787 		btrfs_release_delayed_item(curr);
788 	}
789 
790 error:
791 	kfree(data_size);
792 	kfree(keys);
793 out:
794 	return ret;
795 }
796 
797 /*
798  * This helper can just do simple insertion that needn't extend item for new
799  * data, such as directory name index insertion, inode insertion.
800  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)801 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 				     struct btrfs_root *root,
803 				     struct btrfs_path *path,
804 				     struct btrfs_delayed_item *delayed_item)
805 {
806 	struct extent_buffer *leaf;
807 	unsigned int nofs_flag;
808 	char *ptr;
809 	int ret;
810 
811 	nofs_flag = memalloc_nofs_save();
812 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
813 				      delayed_item->data_len);
814 	memalloc_nofs_restore(nofs_flag);
815 	if (ret < 0 && ret != -EEXIST)
816 		return ret;
817 
818 	leaf = path->nodes[0];
819 
820 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
821 
822 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
823 			    delayed_item->data_len);
824 	btrfs_mark_buffer_dirty(leaf);
825 
826 	btrfs_delayed_item_release_metadata(root, delayed_item);
827 	return 0;
828 }
829 
830 /*
831  * we insert an item first, then if there are some continuous items, we try
832  * to insert those items into the same leaf.
833  */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)834 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
835 				      struct btrfs_path *path,
836 				      struct btrfs_root *root,
837 				      struct btrfs_delayed_node *node)
838 {
839 	struct btrfs_delayed_item *curr, *prev;
840 	int ret = 0;
841 
842 do_again:
843 	mutex_lock(&node->mutex);
844 	curr = __btrfs_first_delayed_insertion_item(node);
845 	if (!curr)
846 		goto insert_end;
847 
848 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
849 	if (ret < 0) {
850 		btrfs_release_path(path);
851 		goto insert_end;
852 	}
853 
854 	prev = curr;
855 	curr = __btrfs_next_delayed_item(prev);
856 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
857 		/* insert the continuous items into the same leaf */
858 		path->slots[0]++;
859 		btrfs_batch_insert_items(root, path, curr);
860 	}
861 	btrfs_release_delayed_item(prev);
862 	btrfs_mark_buffer_dirty(path->nodes[0]);
863 
864 	btrfs_release_path(path);
865 	mutex_unlock(&node->mutex);
866 	goto do_again;
867 
868 insert_end:
869 	mutex_unlock(&node->mutex);
870 	return ret;
871 }
872 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)873 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
874 				    struct btrfs_root *root,
875 				    struct btrfs_path *path,
876 				    struct btrfs_delayed_item *item)
877 {
878 	struct btrfs_delayed_item *curr, *next;
879 	struct extent_buffer *leaf;
880 	struct btrfs_key key;
881 	struct list_head head;
882 	int nitems, i, last_item;
883 	int ret = 0;
884 
885 	BUG_ON(!path->nodes[0]);
886 
887 	leaf = path->nodes[0];
888 
889 	i = path->slots[0];
890 	last_item = btrfs_header_nritems(leaf) - 1;
891 	if (i > last_item)
892 		return -ENOENT;	/* FIXME: Is errno suitable? */
893 
894 	next = item;
895 	INIT_LIST_HEAD(&head);
896 	btrfs_item_key_to_cpu(leaf, &key, i);
897 	nitems = 0;
898 	/*
899 	 * count the number of the dir index items that we can delete in batch
900 	 */
901 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
902 		list_add_tail(&next->tree_list, &head);
903 		nitems++;
904 
905 		curr = next;
906 		next = __btrfs_next_delayed_item(curr);
907 		if (!next)
908 			break;
909 
910 		if (!btrfs_is_continuous_delayed_item(curr, next))
911 			break;
912 
913 		i++;
914 		if (i > last_item)
915 			break;
916 		btrfs_item_key_to_cpu(leaf, &key, i);
917 	}
918 
919 	if (!nitems)
920 		return 0;
921 
922 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
923 	if (ret)
924 		goto out;
925 
926 	list_for_each_entry_safe(curr, next, &head, tree_list) {
927 		btrfs_delayed_item_release_metadata(root, curr);
928 		list_del(&curr->tree_list);
929 		btrfs_release_delayed_item(curr);
930 	}
931 
932 out:
933 	return ret;
934 }
935 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)936 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
937 				      struct btrfs_path *path,
938 				      struct btrfs_root *root,
939 				      struct btrfs_delayed_node *node)
940 {
941 	struct btrfs_delayed_item *curr, *prev;
942 	unsigned int nofs_flag;
943 	int ret = 0;
944 
945 do_again:
946 	mutex_lock(&node->mutex);
947 	curr = __btrfs_first_delayed_deletion_item(node);
948 	if (!curr)
949 		goto delete_fail;
950 
951 	nofs_flag = memalloc_nofs_save();
952 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
953 	memalloc_nofs_restore(nofs_flag);
954 	if (ret < 0)
955 		goto delete_fail;
956 	else if (ret > 0) {
957 		/*
958 		 * can't find the item which the node points to, so this node
959 		 * is invalid, just drop it.
960 		 */
961 		prev = curr;
962 		curr = __btrfs_next_delayed_item(prev);
963 		btrfs_release_delayed_item(prev);
964 		ret = 0;
965 		btrfs_release_path(path);
966 		if (curr) {
967 			mutex_unlock(&node->mutex);
968 			goto do_again;
969 		} else
970 			goto delete_fail;
971 	}
972 
973 	btrfs_batch_delete_items(trans, root, path, curr);
974 	btrfs_release_path(path);
975 	mutex_unlock(&node->mutex);
976 	goto do_again;
977 
978 delete_fail:
979 	btrfs_release_path(path);
980 	mutex_unlock(&node->mutex);
981 	return ret;
982 }
983 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)984 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
985 {
986 	struct btrfs_delayed_root *delayed_root;
987 
988 	if (delayed_node &&
989 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
990 		BUG_ON(!delayed_node->root);
991 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
992 		delayed_node->count--;
993 
994 		delayed_root = delayed_node->root->fs_info->delayed_root;
995 		finish_one_item(delayed_root);
996 	}
997 }
998 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)999 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1000 {
1001 	struct btrfs_delayed_root *delayed_root;
1002 
1003 	ASSERT(delayed_node->root);
1004 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1005 	delayed_node->count--;
1006 
1007 	delayed_root = delayed_node->root->fs_info->delayed_root;
1008 	finish_one_item(delayed_root);
1009 }
1010 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 					struct btrfs_root *root,
1013 					struct btrfs_path *path,
1014 					struct btrfs_delayed_node *node)
1015 {
1016 	struct btrfs_fs_info *fs_info = root->fs_info;
1017 	struct btrfs_key key;
1018 	struct btrfs_inode_item *inode_item;
1019 	struct extent_buffer *leaf;
1020 	unsigned int nofs_flag;
1021 	int mod;
1022 	int ret;
1023 
1024 	key.objectid = node->inode_id;
1025 	key.type = BTRFS_INODE_ITEM_KEY;
1026 	key.offset = 0;
1027 
1028 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 		mod = -1;
1030 	else
1031 		mod = 1;
1032 
1033 	nofs_flag = memalloc_nofs_save();
1034 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 	memalloc_nofs_restore(nofs_flag);
1036 	if (ret > 0) {
1037 		btrfs_release_path(path);
1038 		return -ENOENT;
1039 	} else if (ret < 0) {
1040 		return ret;
1041 	}
1042 
1043 	leaf = path->nodes[0];
1044 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 				    struct btrfs_inode_item);
1046 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 			    sizeof(struct btrfs_inode_item));
1048 	btrfs_mark_buffer_dirty(leaf);
1049 
1050 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051 		goto no_iref;
1052 
1053 	path->slots[0]++;
1054 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 		goto search;
1056 again:
1057 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 	if (key.objectid != node->inode_id)
1059 		goto out;
1060 
1061 	if (key.type != BTRFS_INODE_REF_KEY &&
1062 	    key.type != BTRFS_INODE_EXTREF_KEY)
1063 		goto out;
1064 
1065 	/*
1066 	 * Delayed iref deletion is for the inode who has only one link,
1067 	 * so there is only one iref. The case that several irefs are
1068 	 * in the same item doesn't exist.
1069 	 */
1070 	btrfs_del_item(trans, root, path);
1071 out:
1072 	btrfs_release_delayed_iref(node);
1073 no_iref:
1074 	btrfs_release_path(path);
1075 err_out:
1076 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1077 	btrfs_release_delayed_inode(node);
1078 
1079 	return ret;
1080 
1081 search:
1082 	btrfs_release_path(path);
1083 
1084 	key.type = BTRFS_INODE_EXTREF_KEY;
1085 	key.offset = -1;
1086 
1087 	nofs_flag = memalloc_nofs_save();
1088 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 	memalloc_nofs_restore(nofs_flag);
1090 	if (ret < 0)
1091 		goto err_out;
1092 	ASSERT(ret);
1093 
1094 	ret = 0;
1095 	leaf = path->nodes[0];
1096 	path->slots[0]--;
1097 	goto again;
1098 }
1099 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1100 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101 					     struct btrfs_root *root,
1102 					     struct btrfs_path *path,
1103 					     struct btrfs_delayed_node *node)
1104 {
1105 	int ret;
1106 
1107 	mutex_lock(&node->mutex);
1108 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109 		mutex_unlock(&node->mutex);
1110 		return 0;
1111 	}
1112 
1113 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114 	mutex_unlock(&node->mutex);
1115 	return ret;
1116 }
1117 
1118 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1119 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120 				   struct btrfs_path *path,
1121 				   struct btrfs_delayed_node *node)
1122 {
1123 	int ret;
1124 
1125 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126 	if (ret)
1127 		return ret;
1128 
1129 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130 	if (ret)
1131 		return ret;
1132 
1133 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134 	return ret;
1135 }
1136 
1137 /*
1138  * Called when committing the transaction.
1139  * Returns 0 on success.
1140  * Returns < 0 on error and returns with an aborted transaction with any
1141  * outstanding delayed items cleaned up.
1142  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1143 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1144 {
1145 	struct btrfs_fs_info *fs_info = trans->fs_info;
1146 	struct btrfs_delayed_root *delayed_root;
1147 	struct btrfs_delayed_node *curr_node, *prev_node;
1148 	struct btrfs_path *path;
1149 	struct btrfs_block_rsv *block_rsv;
1150 	int ret = 0;
1151 	bool count = (nr > 0);
1152 
1153 	if (trans->aborted)
1154 		return -EIO;
1155 
1156 	path = btrfs_alloc_path();
1157 	if (!path)
1158 		return -ENOMEM;
1159 	path->leave_spinning = 1;
1160 
1161 	block_rsv = trans->block_rsv;
1162 	trans->block_rsv = &fs_info->delayed_block_rsv;
1163 
1164 	delayed_root = fs_info->delayed_root;
1165 
1166 	curr_node = btrfs_first_delayed_node(delayed_root);
1167 	while (curr_node && (!count || (count && nr--))) {
1168 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1169 							 curr_node);
1170 		if (ret) {
1171 			btrfs_release_delayed_node(curr_node);
1172 			curr_node = NULL;
1173 			btrfs_abort_transaction(trans, ret);
1174 			break;
1175 		}
1176 
1177 		prev_node = curr_node;
1178 		curr_node = btrfs_next_delayed_node(curr_node);
1179 		btrfs_release_delayed_node(prev_node);
1180 	}
1181 
1182 	if (curr_node)
1183 		btrfs_release_delayed_node(curr_node);
1184 	btrfs_free_path(path);
1185 	trans->block_rsv = block_rsv;
1186 
1187 	return ret;
1188 }
1189 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1190 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1191 {
1192 	return __btrfs_run_delayed_items(trans, -1);
1193 }
1194 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1195 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1196 {
1197 	return __btrfs_run_delayed_items(trans, nr);
1198 }
1199 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1200 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1201 				     struct btrfs_inode *inode)
1202 {
1203 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1204 	struct btrfs_path *path;
1205 	struct btrfs_block_rsv *block_rsv;
1206 	int ret;
1207 
1208 	if (!delayed_node)
1209 		return 0;
1210 
1211 	mutex_lock(&delayed_node->mutex);
1212 	if (!delayed_node->count) {
1213 		mutex_unlock(&delayed_node->mutex);
1214 		btrfs_release_delayed_node(delayed_node);
1215 		return 0;
1216 	}
1217 	mutex_unlock(&delayed_node->mutex);
1218 
1219 	path = btrfs_alloc_path();
1220 	if (!path) {
1221 		btrfs_release_delayed_node(delayed_node);
1222 		return -ENOMEM;
1223 	}
1224 	path->leave_spinning = 1;
1225 
1226 	block_rsv = trans->block_rsv;
1227 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228 
1229 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1230 
1231 	btrfs_release_delayed_node(delayed_node);
1232 	btrfs_free_path(path);
1233 	trans->block_rsv = block_rsv;
1234 
1235 	return ret;
1236 }
1237 
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1238 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1239 {
1240 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1241 	struct btrfs_trans_handle *trans;
1242 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1243 	struct btrfs_path *path;
1244 	struct btrfs_block_rsv *block_rsv;
1245 	int ret;
1246 
1247 	if (!delayed_node)
1248 		return 0;
1249 
1250 	mutex_lock(&delayed_node->mutex);
1251 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1252 		mutex_unlock(&delayed_node->mutex);
1253 		btrfs_release_delayed_node(delayed_node);
1254 		return 0;
1255 	}
1256 	mutex_unlock(&delayed_node->mutex);
1257 
1258 	trans = btrfs_join_transaction(delayed_node->root);
1259 	if (IS_ERR(trans)) {
1260 		ret = PTR_ERR(trans);
1261 		goto out;
1262 	}
1263 
1264 	path = btrfs_alloc_path();
1265 	if (!path) {
1266 		ret = -ENOMEM;
1267 		goto trans_out;
1268 	}
1269 	path->leave_spinning = 1;
1270 
1271 	block_rsv = trans->block_rsv;
1272 	trans->block_rsv = &fs_info->delayed_block_rsv;
1273 
1274 	mutex_lock(&delayed_node->mutex);
1275 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277 						   path, delayed_node);
1278 	else
1279 		ret = 0;
1280 	mutex_unlock(&delayed_node->mutex);
1281 
1282 	btrfs_free_path(path);
1283 	trans->block_rsv = block_rsv;
1284 trans_out:
1285 	btrfs_end_transaction(trans);
1286 	btrfs_btree_balance_dirty(fs_info);
1287 out:
1288 	btrfs_release_delayed_node(delayed_node);
1289 
1290 	return ret;
1291 }
1292 
btrfs_remove_delayed_node(struct btrfs_inode * inode)1293 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294 {
1295 	struct btrfs_delayed_node *delayed_node;
1296 
1297 	delayed_node = READ_ONCE(inode->delayed_node);
1298 	if (!delayed_node)
1299 		return;
1300 
1301 	inode->delayed_node = NULL;
1302 	btrfs_release_delayed_node(delayed_node);
1303 }
1304 
1305 struct btrfs_async_delayed_work {
1306 	struct btrfs_delayed_root *delayed_root;
1307 	int nr;
1308 	struct btrfs_work work;
1309 };
1310 
btrfs_async_run_delayed_root(struct btrfs_work * work)1311 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312 {
1313 	struct btrfs_async_delayed_work *async_work;
1314 	struct btrfs_delayed_root *delayed_root;
1315 	struct btrfs_trans_handle *trans;
1316 	struct btrfs_path *path;
1317 	struct btrfs_delayed_node *delayed_node = NULL;
1318 	struct btrfs_root *root;
1319 	struct btrfs_block_rsv *block_rsv;
1320 	int total_done = 0;
1321 
1322 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323 	delayed_root = async_work->delayed_root;
1324 
1325 	path = btrfs_alloc_path();
1326 	if (!path)
1327 		goto out;
1328 
1329 	do {
1330 		if (atomic_read(&delayed_root->items) <
1331 		    BTRFS_DELAYED_BACKGROUND / 2)
1332 			break;
1333 
1334 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335 		if (!delayed_node)
1336 			break;
1337 
1338 		path->leave_spinning = 1;
1339 		root = delayed_node->root;
1340 
1341 		trans = btrfs_join_transaction(root);
1342 		if (IS_ERR(trans)) {
1343 			btrfs_release_path(path);
1344 			btrfs_release_prepared_delayed_node(delayed_node);
1345 			total_done++;
1346 			continue;
1347 		}
1348 
1349 		block_rsv = trans->block_rsv;
1350 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351 
1352 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1353 
1354 		trans->block_rsv = block_rsv;
1355 		btrfs_end_transaction(trans);
1356 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357 
1358 		btrfs_release_path(path);
1359 		btrfs_release_prepared_delayed_node(delayed_node);
1360 		total_done++;
1361 
1362 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 		 || total_done < async_work->nr);
1364 
1365 	btrfs_free_path(path);
1366 out:
1367 	wake_up(&delayed_root->wait);
1368 	kfree(async_work);
1369 }
1370 
1371 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 				     struct btrfs_fs_info *fs_info, int nr)
1374 {
1375 	struct btrfs_async_delayed_work *async_work;
1376 
1377 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 	if (!async_work)
1379 		return -ENOMEM;
1380 
1381 	async_work->delayed_root = delayed_root;
1382 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 			btrfs_async_run_delayed_root, NULL, NULL);
1384 	async_work->nr = nr;
1385 
1386 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 	return 0;
1388 }
1389 
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1390 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391 {
1392 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393 }
1394 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1395 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396 {
1397 	int val = atomic_read(&delayed_root->items_seq);
1398 
1399 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 		return 1;
1401 
1402 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 		return 1;
1404 
1405 	return 0;
1406 }
1407 
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1408 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409 {
1410 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411 
1412 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414 		return;
1415 
1416 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417 		int seq;
1418 		int ret;
1419 
1420 		seq = atomic_read(&delayed_root->items_seq);
1421 
1422 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423 		if (ret)
1424 			return;
1425 
1426 		wait_event_interruptible(delayed_root->wait,
1427 					 could_end_wait(delayed_root, seq));
1428 		return;
1429 	}
1430 
1431 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432 }
1433 
1434 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1435 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1436 				   const char *name, int name_len,
1437 				   struct btrfs_inode *dir,
1438 				   struct btrfs_disk_key *disk_key, u8 type,
1439 				   u64 index)
1440 {
1441 	struct btrfs_delayed_node *delayed_node;
1442 	struct btrfs_delayed_item *delayed_item;
1443 	struct btrfs_dir_item *dir_item;
1444 	int ret;
1445 
1446 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 	if (IS_ERR(delayed_node))
1448 		return PTR_ERR(delayed_node);
1449 
1450 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 	if (!delayed_item) {
1452 		ret = -ENOMEM;
1453 		goto release_node;
1454 	}
1455 
1456 	delayed_item->key.objectid = btrfs_ino(dir);
1457 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 	delayed_item->key.offset = index;
1459 
1460 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 	dir_item->location = *disk_key;
1462 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 	btrfs_set_stack_dir_data_len(dir_item, 0);
1464 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 	btrfs_set_stack_dir_type(dir_item, type);
1466 	memcpy((char *)(dir_item + 1), name, name_len);
1467 
1468 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1469 	/*
1470 	 * we have reserved enough space when we start a new transaction,
1471 	 * so reserving metadata failure is impossible
1472 	 */
1473 	BUG_ON(ret);
1474 
1475 	mutex_lock(&delayed_node->mutex);
1476 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477 	if (unlikely(ret)) {
1478 		btrfs_err(trans->fs_info,
1479 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480 			  name_len, name, delayed_node->root->objectid,
1481 			  delayed_node->inode_id, ret);
1482 		BUG();
1483 	}
1484 	mutex_unlock(&delayed_node->mutex);
1485 
1486 release_node:
1487 	btrfs_release_delayed_node(delayed_node);
1488 	return ret;
1489 }
1490 
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1491 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492 					       struct btrfs_delayed_node *node,
1493 					       struct btrfs_key *key)
1494 {
1495 	struct btrfs_delayed_item *item;
1496 
1497 	mutex_lock(&node->mutex);
1498 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1499 	if (!item) {
1500 		mutex_unlock(&node->mutex);
1501 		return 1;
1502 	}
1503 
1504 	btrfs_delayed_item_release_metadata(node->root, item);
1505 	btrfs_release_delayed_item(item);
1506 	mutex_unlock(&node->mutex);
1507 	return 0;
1508 }
1509 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1510 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511 				   struct btrfs_inode *dir, u64 index)
1512 {
1513 	struct btrfs_delayed_node *node;
1514 	struct btrfs_delayed_item *item;
1515 	struct btrfs_key item_key;
1516 	int ret;
1517 
1518 	node = btrfs_get_or_create_delayed_node(dir);
1519 	if (IS_ERR(node))
1520 		return PTR_ERR(node);
1521 
1522 	item_key.objectid = btrfs_ino(dir);
1523 	item_key.type = BTRFS_DIR_INDEX_KEY;
1524 	item_key.offset = index;
1525 
1526 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1527 						  &item_key);
1528 	if (!ret)
1529 		goto end;
1530 
1531 	item = btrfs_alloc_delayed_item(0);
1532 	if (!item) {
1533 		ret = -ENOMEM;
1534 		goto end;
1535 	}
1536 
1537 	item->key = item_key;
1538 
1539 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1540 	/*
1541 	 * we have reserved enough space when we start a new transaction,
1542 	 * so reserving metadata failure is impossible.
1543 	 */
1544 	if (ret < 0) {
1545 		btrfs_err(trans->fs_info,
1546 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1547 		btrfs_release_delayed_item(item);
1548 		goto end;
1549 	}
1550 
1551 	mutex_lock(&node->mutex);
1552 	ret = __btrfs_add_delayed_deletion_item(node, item);
1553 	if (unlikely(ret)) {
1554 		btrfs_err(trans->fs_info,
1555 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556 			  index, node->root->objectid, node->inode_id, ret);
1557 		btrfs_delayed_item_release_metadata(dir->root, item);
1558 		btrfs_release_delayed_item(item);
1559 	}
1560 	mutex_unlock(&node->mutex);
1561 end:
1562 	btrfs_release_delayed_node(node);
1563 	return ret;
1564 }
1565 
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1566 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1567 {
1568 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1569 
1570 	if (!delayed_node)
1571 		return -ENOENT;
1572 
1573 	/*
1574 	 * Since we have held i_mutex of this directory, it is impossible that
1575 	 * a new directory index is added into the delayed node and index_cnt
1576 	 * is updated now. So we needn't lock the delayed node.
1577 	 */
1578 	if (!delayed_node->index_cnt) {
1579 		btrfs_release_delayed_node(delayed_node);
1580 		return -EINVAL;
1581 	}
1582 
1583 	inode->index_cnt = delayed_node->index_cnt;
1584 	btrfs_release_delayed_node(delayed_node);
1585 	return 0;
1586 }
1587 
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1588 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1589 				     struct list_head *ins_list,
1590 				     struct list_head *del_list)
1591 {
1592 	struct btrfs_delayed_node *delayed_node;
1593 	struct btrfs_delayed_item *item;
1594 
1595 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1596 	if (!delayed_node)
1597 		return false;
1598 
1599 	/*
1600 	 * We can only do one readdir with delayed items at a time because of
1601 	 * item->readdir_list.
1602 	 */
1603 	inode_unlock_shared(inode);
1604 	inode_lock(inode);
1605 
1606 	mutex_lock(&delayed_node->mutex);
1607 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1608 	while (item) {
1609 		refcount_inc(&item->refs);
1610 		list_add_tail(&item->readdir_list, ins_list);
1611 		item = __btrfs_next_delayed_item(item);
1612 	}
1613 
1614 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1615 	while (item) {
1616 		refcount_inc(&item->refs);
1617 		list_add_tail(&item->readdir_list, del_list);
1618 		item = __btrfs_next_delayed_item(item);
1619 	}
1620 	mutex_unlock(&delayed_node->mutex);
1621 	/*
1622 	 * This delayed node is still cached in the btrfs inode, so refs
1623 	 * must be > 1 now, and we needn't check it is going to be freed
1624 	 * or not.
1625 	 *
1626 	 * Besides that, this function is used to read dir, we do not
1627 	 * insert/delete delayed items in this period. So we also needn't
1628 	 * requeue or dequeue this delayed node.
1629 	 */
1630 	refcount_dec(&delayed_node->refs);
1631 
1632 	return true;
1633 }
1634 
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1635 void btrfs_readdir_put_delayed_items(struct inode *inode,
1636 				     struct list_head *ins_list,
1637 				     struct list_head *del_list)
1638 {
1639 	struct btrfs_delayed_item *curr, *next;
1640 
1641 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1642 		list_del(&curr->readdir_list);
1643 		if (refcount_dec_and_test(&curr->refs))
1644 			kfree(curr);
1645 	}
1646 
1647 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1648 		list_del(&curr->readdir_list);
1649 		if (refcount_dec_and_test(&curr->refs))
1650 			kfree(curr);
1651 	}
1652 
1653 	/*
1654 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1655 	 * read lock.
1656 	 */
1657 	downgrade_write(&inode->i_rwsem);
1658 }
1659 
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1660 int btrfs_should_delete_dir_index(struct list_head *del_list,
1661 				  u64 index)
1662 {
1663 	struct btrfs_delayed_item *curr;
1664 	int ret = 0;
1665 
1666 	list_for_each_entry(curr, del_list, readdir_list) {
1667 		if (curr->key.offset > index)
1668 			break;
1669 		if (curr->key.offset == index) {
1670 			ret = 1;
1671 			break;
1672 		}
1673 	}
1674 	return ret;
1675 }
1676 
1677 /*
1678  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1679  *
1680  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1681 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1682 				    struct list_head *ins_list)
1683 {
1684 	struct btrfs_dir_item *di;
1685 	struct btrfs_delayed_item *curr, *next;
1686 	struct btrfs_key location;
1687 	char *name;
1688 	int name_len;
1689 	int over = 0;
1690 	unsigned char d_type;
1691 
1692 	if (list_empty(ins_list))
1693 		return 0;
1694 
1695 	/*
1696 	 * Changing the data of the delayed item is impossible. So
1697 	 * we needn't lock them. And we have held i_mutex of the
1698 	 * directory, nobody can delete any directory indexes now.
1699 	 */
1700 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1701 		list_del(&curr->readdir_list);
1702 
1703 		if (curr->key.offset < ctx->pos) {
1704 			if (refcount_dec_and_test(&curr->refs))
1705 				kfree(curr);
1706 			continue;
1707 		}
1708 
1709 		ctx->pos = curr->key.offset;
1710 
1711 		di = (struct btrfs_dir_item *)curr->data;
1712 		name = (char *)(di + 1);
1713 		name_len = btrfs_stack_dir_name_len(di);
1714 
1715 		d_type = btrfs_filetype_table[di->type];
1716 		btrfs_disk_key_to_cpu(&location, &di->location);
1717 
1718 		over = !dir_emit(ctx, name, name_len,
1719 			       location.objectid, d_type);
1720 
1721 		if (refcount_dec_and_test(&curr->refs))
1722 			kfree(curr);
1723 
1724 		if (over)
1725 			return 1;
1726 		ctx->pos++;
1727 	}
1728 	return 0;
1729 }
1730 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1731 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1732 				  struct btrfs_inode_item *inode_item,
1733 				  struct inode *inode)
1734 {
1735 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1736 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1737 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1738 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1739 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1740 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1741 	btrfs_set_stack_inode_generation(inode_item,
1742 					 BTRFS_I(inode)->generation);
1743 	btrfs_set_stack_inode_sequence(inode_item,
1744 				       inode_peek_iversion(inode));
1745 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1746 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1747 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1748 	btrfs_set_stack_inode_block_group(inode_item, 0);
1749 
1750 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1751 				     inode->i_atime.tv_sec);
1752 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1753 				      inode->i_atime.tv_nsec);
1754 
1755 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1756 				     inode->i_mtime.tv_sec);
1757 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1758 				      inode->i_mtime.tv_nsec);
1759 
1760 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1761 				     inode->i_ctime.tv_sec);
1762 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1763 				      inode->i_ctime.tv_nsec);
1764 
1765 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1766 				     BTRFS_I(inode)->i_otime.tv_sec);
1767 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1768 				     BTRFS_I(inode)->i_otime.tv_nsec);
1769 }
1770 
btrfs_fill_inode(struct inode * inode,u32 * rdev)1771 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1772 {
1773 	struct btrfs_delayed_node *delayed_node;
1774 	struct btrfs_inode_item *inode_item;
1775 
1776 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1777 	if (!delayed_node)
1778 		return -ENOENT;
1779 
1780 	mutex_lock(&delayed_node->mutex);
1781 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1782 		mutex_unlock(&delayed_node->mutex);
1783 		btrfs_release_delayed_node(delayed_node);
1784 		return -ENOENT;
1785 	}
1786 
1787 	inode_item = &delayed_node->inode_item;
1788 
1789 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1790 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1791 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1792 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1793 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1794 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1795 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1796         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1797 
1798 	inode_set_iversion_queried(inode,
1799 				   btrfs_stack_inode_sequence(inode_item));
1800 	inode->i_rdev = 0;
1801 	*rdev = btrfs_stack_inode_rdev(inode_item);
1802 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1803 
1804 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1805 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1806 
1807 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1808 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1809 
1810 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1811 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1812 
1813 	BTRFS_I(inode)->i_otime.tv_sec =
1814 		btrfs_stack_timespec_sec(&inode_item->otime);
1815 	BTRFS_I(inode)->i_otime.tv_nsec =
1816 		btrfs_stack_timespec_nsec(&inode_item->otime);
1817 
1818 	inode->i_generation = BTRFS_I(inode)->generation;
1819 	BTRFS_I(inode)->index_cnt = (u64)-1;
1820 
1821 	mutex_unlock(&delayed_node->mutex);
1822 	btrfs_release_delayed_node(delayed_node);
1823 	return 0;
1824 }
1825 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1826 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1827 			       struct btrfs_root *root, struct inode *inode)
1828 {
1829 	struct btrfs_delayed_node *delayed_node;
1830 	int ret = 0;
1831 
1832 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1833 	if (IS_ERR(delayed_node))
1834 		return PTR_ERR(delayed_node);
1835 
1836 	mutex_lock(&delayed_node->mutex);
1837 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1838 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1839 		goto release_node;
1840 	}
1841 
1842 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1843 						   delayed_node);
1844 	if (ret)
1845 		goto release_node;
1846 
1847 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1848 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1849 	delayed_node->count++;
1850 	atomic_inc(&root->fs_info->delayed_root->items);
1851 release_node:
1852 	mutex_unlock(&delayed_node->mutex);
1853 	btrfs_release_delayed_node(delayed_node);
1854 	return ret;
1855 }
1856 
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1857 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1858 {
1859 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1860 	struct btrfs_delayed_node *delayed_node;
1861 
1862 	/*
1863 	 * we don't do delayed inode updates during log recovery because it
1864 	 * leads to enospc problems.  This means we also can't do
1865 	 * delayed inode refs
1866 	 */
1867 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1868 		return -EAGAIN;
1869 
1870 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1871 	if (IS_ERR(delayed_node))
1872 		return PTR_ERR(delayed_node);
1873 
1874 	/*
1875 	 * We don't reserve space for inode ref deletion is because:
1876 	 * - We ONLY do async inode ref deletion for the inode who has only
1877 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1878 	 *   And in most case, the inode ref and the inode item are in the
1879 	 *   same leaf, and we will deal with them at the same time.
1880 	 *   Since we are sure we will reserve the space for the inode item,
1881 	 *   it is unnecessary to reserve space for inode ref deletion.
1882 	 * - If the inode ref and the inode item are not in the same leaf,
1883 	 *   We also needn't worry about enospc problem, because we reserve
1884 	 *   much more space for the inode update than it needs.
1885 	 * - At the worst, we can steal some space from the global reservation.
1886 	 *   It is very rare.
1887 	 */
1888 	mutex_lock(&delayed_node->mutex);
1889 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1890 		goto release_node;
1891 
1892 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1893 	delayed_node->count++;
1894 	atomic_inc(&fs_info->delayed_root->items);
1895 release_node:
1896 	mutex_unlock(&delayed_node->mutex);
1897 	btrfs_release_delayed_node(delayed_node);
1898 	return 0;
1899 }
1900 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1901 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1902 {
1903 	struct btrfs_root *root = delayed_node->root;
1904 	struct btrfs_fs_info *fs_info = root->fs_info;
1905 	struct btrfs_delayed_item *curr_item, *prev_item;
1906 
1907 	mutex_lock(&delayed_node->mutex);
1908 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1909 	while (curr_item) {
1910 		btrfs_delayed_item_release_metadata(root, curr_item);
1911 		prev_item = curr_item;
1912 		curr_item = __btrfs_next_delayed_item(prev_item);
1913 		btrfs_release_delayed_item(prev_item);
1914 	}
1915 
1916 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1917 	while (curr_item) {
1918 		btrfs_delayed_item_release_metadata(root, curr_item);
1919 		prev_item = curr_item;
1920 		curr_item = __btrfs_next_delayed_item(prev_item);
1921 		btrfs_release_delayed_item(prev_item);
1922 	}
1923 
1924 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1925 		btrfs_release_delayed_iref(delayed_node);
1926 
1927 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1928 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1929 		btrfs_release_delayed_inode(delayed_node);
1930 	}
1931 	mutex_unlock(&delayed_node->mutex);
1932 }
1933 
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1934 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1935 {
1936 	struct btrfs_delayed_node *delayed_node;
1937 
1938 	delayed_node = btrfs_get_delayed_node(inode);
1939 	if (!delayed_node)
1940 		return;
1941 
1942 	__btrfs_kill_delayed_node(delayed_node);
1943 	btrfs_release_delayed_node(delayed_node);
1944 }
1945 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1946 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1947 {
1948 	u64 inode_id = 0;
1949 	struct btrfs_delayed_node *delayed_nodes[8];
1950 	int i, n;
1951 
1952 	while (1) {
1953 		spin_lock(&root->inode_lock);
1954 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1955 					   (void **)delayed_nodes, inode_id,
1956 					   ARRAY_SIZE(delayed_nodes));
1957 		if (!n) {
1958 			spin_unlock(&root->inode_lock);
1959 			break;
1960 		}
1961 
1962 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1963 		for (i = 0; i < n; i++) {
1964 			/*
1965 			 * Don't increase refs in case the node is dead and
1966 			 * about to be removed from the tree in the loop below
1967 			 */
1968 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1969 				delayed_nodes[i] = NULL;
1970 		}
1971 		spin_unlock(&root->inode_lock);
1972 
1973 		for (i = 0; i < n; i++) {
1974 			if (!delayed_nodes[i])
1975 				continue;
1976 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1977 			btrfs_release_delayed_node(delayed_nodes[i]);
1978 		}
1979 	}
1980 }
1981 
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)1982 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1983 {
1984 	struct btrfs_delayed_node *curr_node, *prev_node;
1985 
1986 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1987 	while (curr_node) {
1988 		__btrfs_kill_delayed_node(curr_node);
1989 
1990 		prev_node = curr_node;
1991 		curr_node = btrfs_next_delayed_node(curr_node);
1992 		btrfs_release_delayed_node(prev_node);
1993 	}
1994 }
1995 
1996