1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48 enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84
85 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
91 }
92
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 return (cache->flags & bits) == bits;
96 }
97
btrfs_get_block_group(struct btrfs_block_group_cache * cache)98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 atomic_inc(&cache->count);
101 }
102
btrfs_put_block_group(struct btrfs_block_group_cache * cache)103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
119 kfree(cache);
120 }
121 }
122
123 /*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
129 {
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161 }
162
163 /*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170 {
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
199 if (ret) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
217 return 0;
218 }
219
free_excluded_extents(struct btrfs_block_group_cache * cache)220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 struct btrfs_fs_info *fs_info = cache->fs_info;
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232 }
233
exclude_super_stripes(struct btrfs_block_group_cache * cache)234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 struct btrfs_fs_info *fs_info = cache->fs_info;
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
246 stripe_len);
247 if (ret)
248 return ret;
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
255 if (ret)
256 return ret;
257
258 while (nr--) {
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
284 }
285
286 kfree(logical);
287 }
288 return 0;
289 }
290
291 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
305 return ctl;
306 }
307
put_caching_control(struct btrfs_caching_control * ctl)308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 if (refcount_dec_and_test(&ctl->count))
311 kfree(ctl);
312 }
313
314 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332 }
333 #endif
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 u64 start, u64 end)
342 {
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret;
391 bool wakeup = true;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398
399 #ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
405 if (btrfs_should_fragment_free_space(block_group))
406 wakeup = false;
407 #endif
408 /*
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
413 */
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
417
418 key.objectid = last;
419 key.offset = 0;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto out;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 if (wakeup)
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
454 }
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
458 goto out;
459 if (ret)
460 break;
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
464 }
465
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 goto next;
475 }
476
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
479 continue;
480 }
481
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
484 break;
485
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
489 key.objectid);
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
492 fs_info->nodesize;
493 else
494 last = key.objectid + key.offset;
495
496 if (total_found > CACHING_CTL_WAKE_UP) {
497 total_found = 0;
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
500 }
501 }
502 path->slots[0]++;
503 }
504 ret = 0;
505
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
510
511 out:
512 btrfs_free_path(path);
513 return ret;
514 }
515
caching_thread(struct btrfs_work * work)516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
534
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
539
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
552 }
553 #endif
554
555 caching_ctl->progress = (u64)-1;
556
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
560
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
565 }
566
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 int load_cache_only)
569 {
570 DEFINE_WAIT(wait);
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
573 int ret = 0;
574
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 if (!caching_ctl)
577 return -ENOMEM;
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
619 return 0;
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
625
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
636 } else {
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
643 }
644 }
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
648 btrfs_should_fragment_free_space(cache)) {
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
659 }
660 #endif
661 mutex_unlock(&caching_ctl->mutex);
662
663 wake_up(&caching_ctl->wait);
664 if (ret == 1) {
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
667 return 0;
668 }
669 } else {
670 /*
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
684 }
685
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
688 return 0;
689 }
690
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
695
696 btrfs_get_block_group(cache);
697
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699
700 return ret;
701 }
702
703 /*
704 * return the block group that starts at or after bytenr
705 */
706 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 return block_group_cache_tree_search(info, bytenr, 0);
710 }
711
712 /*
713 * return the block group that contains the given bytenr
714 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
718 {
719 return block_group_cache_tree_search(info, bytenr, 1);
720 }
721
__find_space_info(struct btrfs_fs_info * info,u64 flags)722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
724 {
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
727
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
733 rcu_read_unlock();
734 return found;
735 }
736 }
737 rcu_read_unlock();
738 return NULL;
739 }
740
add_pinned_bytes(struct btrfs_fs_info * fs_info,s64 num_bytes,bool metadata,u64 root_objectid)741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
743 {
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
747 if (metadata) {
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
757 ASSERT(space_info);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761
762 /*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775 }
776
777 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
879 }
880
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
898
899 btrfs_release_path(path);
900
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
908 goto search_again;
909 }
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921 out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927 out_free:
928 btrfs_free_path(path);
929 return ret;
930 }
931
932 /*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
964 * When a tree block is COWed through a tree, there are four cases:
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
996 *
997 * The extent ref structure for the implicit back refs has fields for:
998 *
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1003 *
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
1006 *
1007 * The extent ref structure for the full back refs has field for:
1008 *
1009 * - number of pointers in the tree leaf
1010 *
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
1013 *
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1016 *
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1018 *
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1021 *
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1023 *
1024 * Btree extents can be referenced by:
1025 *
1026 * - Different subvolumes
1027 *
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1032 *
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1036 */
1037
1038 /*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046 {
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 return type;
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree block,
1061 * which must be aligned to sector size.
1062 */
1063 if (offset &&
1064 IS_ALIGNED(offset, eb->fs_info->sectorsize))
1065 return type;
1066 }
1067 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1068 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1069 return type;
1070 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1071 ASSERT(eb->fs_info);
1072 /*
1073 * Every shared one has parent tree block,
1074 * which must be aligned to sector size.
1075 */
1076 if (offset &&
1077 IS_ALIGNED(offset, eb->fs_info->sectorsize))
1078 return type;
1079 }
1080 } else {
1081 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1082 return type;
1083 }
1084 }
1085
1086 btrfs_print_leaf((struct extent_buffer *)eb);
1087 btrfs_err(eb->fs_info,
1088 "eb %llu iref 0x%lx invalid extent inline ref type %d",
1089 eb->start, (unsigned long)iref, type);
1090 WARN_ON(1);
1091
1092 return BTRFS_REF_TYPE_INVALID;
1093 }
1094
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1095 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 u32 high_crc = ~(u32)0;
1098 u32 low_crc = ~(u32)0;
1099 __le64 lenum;
1100
1101 lenum = cpu_to_le64(root_objectid);
1102 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1103 lenum = cpu_to_le64(owner);
1104 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1105 lenum = cpu_to_le64(offset);
1106 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1107
1108 return ((u64)high_crc << 31) ^ (u64)low_crc;
1109 }
1110
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1111 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1112 struct btrfs_extent_data_ref *ref)
1113 {
1114 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1115 btrfs_extent_data_ref_objectid(leaf, ref),
1116 btrfs_extent_data_ref_offset(leaf, ref));
1117 }
1118
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1119 static int match_extent_data_ref(struct extent_buffer *leaf,
1120 struct btrfs_extent_data_ref *ref,
1121 u64 root_objectid, u64 owner, u64 offset)
1122 {
1123 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1124 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1125 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1126 return 0;
1127 return 1;
1128 }
1129
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1130 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1131 struct btrfs_path *path,
1132 u64 bytenr, u64 parent,
1133 u64 root_objectid,
1134 u64 owner, u64 offset)
1135 {
1136 struct btrfs_root *root = trans->fs_info->extent_root;
1137 struct btrfs_key key;
1138 struct btrfs_extent_data_ref *ref;
1139 struct extent_buffer *leaf;
1140 u32 nritems;
1141 int ret;
1142 int recow;
1143 int err = -ENOENT;
1144
1145 key.objectid = bytenr;
1146 if (parent) {
1147 key.type = BTRFS_SHARED_DATA_REF_KEY;
1148 key.offset = parent;
1149 } else {
1150 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1151 key.offset = hash_extent_data_ref(root_objectid,
1152 owner, offset);
1153 }
1154 again:
1155 recow = 0;
1156 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1157 if (ret < 0) {
1158 err = ret;
1159 goto fail;
1160 }
1161
1162 if (parent) {
1163 if (!ret)
1164 return 0;
1165 goto fail;
1166 }
1167
1168 leaf = path->nodes[0];
1169 nritems = btrfs_header_nritems(leaf);
1170 while (1) {
1171 if (path->slots[0] >= nritems) {
1172 ret = btrfs_next_leaf(root, path);
1173 if (ret < 0)
1174 err = ret;
1175 if (ret)
1176 goto fail;
1177
1178 leaf = path->nodes[0];
1179 nritems = btrfs_header_nritems(leaf);
1180 recow = 1;
1181 }
1182
1183 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1184 if (key.objectid != bytenr ||
1185 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1186 goto fail;
1187
1188 ref = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190
1191 if (match_extent_data_ref(leaf, ref, root_objectid,
1192 owner, offset)) {
1193 if (recow) {
1194 btrfs_release_path(path);
1195 goto again;
1196 }
1197 err = 0;
1198 break;
1199 }
1200 path->slots[0]++;
1201 }
1202 fail:
1203 return err;
1204 }
1205
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1206 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1207 struct btrfs_path *path,
1208 u64 bytenr, u64 parent,
1209 u64 root_objectid, u64 owner,
1210 u64 offset, int refs_to_add)
1211 {
1212 struct btrfs_root *root = trans->fs_info->extent_root;
1213 struct btrfs_key key;
1214 struct extent_buffer *leaf;
1215 u32 size;
1216 u32 num_refs;
1217 int ret;
1218
1219 key.objectid = bytenr;
1220 if (parent) {
1221 key.type = BTRFS_SHARED_DATA_REF_KEY;
1222 key.offset = parent;
1223 size = sizeof(struct btrfs_shared_data_ref);
1224 } else {
1225 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1226 key.offset = hash_extent_data_ref(root_objectid,
1227 owner, offset);
1228 size = sizeof(struct btrfs_extent_data_ref);
1229 }
1230
1231 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1232 if (ret && ret != -EEXIST)
1233 goto fail;
1234
1235 leaf = path->nodes[0];
1236 if (parent) {
1237 struct btrfs_shared_data_ref *ref;
1238 ref = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_shared_data_ref);
1240 if (ret == 0) {
1241 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1242 } else {
1243 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1244 num_refs += refs_to_add;
1245 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1246 }
1247 } else {
1248 struct btrfs_extent_data_ref *ref;
1249 while (ret == -EEXIST) {
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (match_extent_data_ref(leaf, ref, root_objectid,
1253 owner, offset))
1254 break;
1255 btrfs_release_path(path);
1256 key.offset++;
1257 ret = btrfs_insert_empty_item(trans, root, path, &key,
1258 size);
1259 if (ret && ret != -EEXIST)
1260 goto fail;
1261
1262 leaf = path->nodes[0];
1263 }
1264 ref = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_data_ref);
1266 if (ret == 0) {
1267 btrfs_set_extent_data_ref_root(leaf, ref,
1268 root_objectid);
1269 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1270 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1271 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1272 } else {
1273 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1274 num_refs += refs_to_add;
1275 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1276 }
1277 }
1278 btrfs_mark_buffer_dirty(leaf);
1279 ret = 0;
1280 fail:
1281 btrfs_release_path(path);
1282 return ret;
1283 }
1284
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)1285 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1286 struct btrfs_path *path,
1287 int refs_to_drop, int *last_ref)
1288 {
1289 struct btrfs_key key;
1290 struct btrfs_extent_data_ref *ref1 = NULL;
1291 struct btrfs_shared_data_ref *ref2 = NULL;
1292 struct extent_buffer *leaf;
1293 u32 num_refs = 0;
1294 int ret = 0;
1295
1296 leaf = path->nodes[0];
1297 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1298
1299 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1300 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_extent_data_ref);
1302 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1303 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1304 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_shared_data_ref);
1306 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1307 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1308 btrfs_print_v0_err(trans->fs_info);
1309 btrfs_abort_transaction(trans, -EINVAL);
1310 return -EINVAL;
1311 } else {
1312 BUG();
1313 }
1314
1315 BUG_ON(num_refs < refs_to_drop);
1316 num_refs -= refs_to_drop;
1317
1318 if (num_refs == 0) {
1319 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1320 *last_ref = 1;
1321 } else {
1322 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1323 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1324 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1325 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1326 btrfs_mark_buffer_dirty(leaf);
1327 }
1328 return ret;
1329 }
1330
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1331 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1332 struct btrfs_extent_inline_ref *iref)
1333 {
1334 struct btrfs_key key;
1335 struct extent_buffer *leaf;
1336 struct btrfs_extent_data_ref *ref1;
1337 struct btrfs_shared_data_ref *ref2;
1338 u32 num_refs = 0;
1339 int type;
1340
1341 leaf = path->nodes[0];
1342 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1343
1344 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1345 if (iref) {
1346 /*
1347 * If type is invalid, we should have bailed out earlier than
1348 * this call.
1349 */
1350 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1351 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1352 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1353 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else {
1356 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1357 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1358 }
1359 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1360 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_data_ref);
1362 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1363 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1364 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1365 struct btrfs_shared_data_ref);
1366 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1367 } else {
1368 WARN_ON(1);
1369 }
1370 return num_refs;
1371 }
1372
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1373 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1374 struct btrfs_path *path,
1375 u64 bytenr, u64 parent,
1376 u64 root_objectid)
1377 {
1378 struct btrfs_root *root = trans->fs_info->extent_root;
1379 struct btrfs_key key;
1380 int ret;
1381
1382 key.objectid = bytenr;
1383 if (parent) {
1384 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1385 key.offset = parent;
1386 } else {
1387 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1388 key.offset = root_objectid;
1389 }
1390
1391 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1392 if (ret > 0)
1393 ret = -ENOENT;
1394 return ret;
1395 }
1396
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1397 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1398 struct btrfs_path *path,
1399 u64 bytenr, u64 parent,
1400 u64 root_objectid)
1401 {
1402 struct btrfs_key key;
1403 int ret;
1404
1405 key.objectid = bytenr;
1406 if (parent) {
1407 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1408 key.offset = parent;
1409 } else {
1410 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1411 key.offset = root_objectid;
1412 }
1413
1414 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1415 path, &key, 0);
1416 btrfs_release_path(path);
1417 return ret;
1418 }
1419
extent_ref_type(u64 parent,u64 owner)1420 static inline int extent_ref_type(u64 parent, u64 owner)
1421 {
1422 int type;
1423 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1424 if (parent > 0)
1425 type = BTRFS_SHARED_BLOCK_REF_KEY;
1426 else
1427 type = BTRFS_TREE_BLOCK_REF_KEY;
1428 } else {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_DATA_REF_KEY;
1431 else
1432 type = BTRFS_EXTENT_DATA_REF_KEY;
1433 }
1434 return type;
1435 }
1436
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1437 static int find_next_key(struct btrfs_path *path, int level,
1438 struct btrfs_key *key)
1439
1440 {
1441 for (; level < BTRFS_MAX_LEVEL; level++) {
1442 if (!path->nodes[level])
1443 break;
1444 if (path->slots[level] + 1 >=
1445 btrfs_header_nritems(path->nodes[level]))
1446 continue;
1447 if (level == 0)
1448 btrfs_item_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 else
1451 btrfs_node_key_to_cpu(path->nodes[level], key,
1452 path->slots[level] + 1);
1453 return 0;
1454 }
1455 return 1;
1456 }
1457
1458 /*
1459 * look for inline back ref. if back ref is found, *ref_ret is set
1460 * to the address of inline back ref, and 0 is returned.
1461 *
1462 * if back ref isn't found, *ref_ret is set to the address where it
1463 * should be inserted, and -ENOENT is returned.
1464 *
1465 * if insert is true and there are too many inline back refs, the path
1466 * points to the extent item, and -EAGAIN is returned.
1467 *
1468 * NOTE: inline back refs are ordered in the same way that back ref
1469 * items in the tree are ordered.
1470 */
1471 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1472 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1473 struct btrfs_path *path,
1474 struct btrfs_extent_inline_ref **ref_ret,
1475 u64 bytenr, u64 num_bytes,
1476 u64 parent, u64 root_objectid,
1477 u64 owner, u64 offset, int insert)
1478 {
1479 struct btrfs_fs_info *fs_info = trans->fs_info;
1480 struct btrfs_root *root = fs_info->extent_root;
1481 struct btrfs_key key;
1482 struct extent_buffer *leaf;
1483 struct btrfs_extent_item *ei;
1484 struct btrfs_extent_inline_ref *iref;
1485 u64 flags;
1486 u64 item_size;
1487 unsigned long ptr;
1488 unsigned long end;
1489 int extra_size;
1490 int type;
1491 int want;
1492 int ret;
1493 int err = 0;
1494 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1495 int needed;
1496
1497 key.objectid = bytenr;
1498 key.type = BTRFS_EXTENT_ITEM_KEY;
1499 key.offset = num_bytes;
1500
1501 want = extent_ref_type(parent, owner);
1502 if (insert) {
1503 extra_size = btrfs_extent_inline_ref_size(want);
1504 path->keep_locks = 1;
1505 } else
1506 extra_size = -1;
1507
1508 /*
1509 * Owner is our level, so we can just add one to get the level for the
1510 * block we are interested in.
1511 */
1512 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1513 key.type = BTRFS_METADATA_ITEM_KEY;
1514 key.offset = owner;
1515 }
1516
1517 again:
1518 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1519 if (ret < 0) {
1520 err = ret;
1521 goto out;
1522 }
1523
1524 /*
1525 * We may be a newly converted file system which still has the old fat
1526 * extent entries for metadata, so try and see if we have one of those.
1527 */
1528 if (ret > 0 && skinny_metadata) {
1529 skinny_metadata = false;
1530 if (path->slots[0]) {
1531 path->slots[0]--;
1532 btrfs_item_key_to_cpu(path->nodes[0], &key,
1533 path->slots[0]);
1534 if (key.objectid == bytenr &&
1535 key.type == BTRFS_EXTENT_ITEM_KEY &&
1536 key.offset == num_bytes)
1537 ret = 0;
1538 }
1539 if (ret) {
1540 key.objectid = bytenr;
1541 key.type = BTRFS_EXTENT_ITEM_KEY;
1542 key.offset = num_bytes;
1543 btrfs_release_path(path);
1544 goto again;
1545 }
1546 }
1547
1548 if (ret && !insert) {
1549 err = -ENOENT;
1550 goto out;
1551 } else if (WARN_ON(ret)) {
1552 err = -EIO;
1553 goto out;
1554 }
1555
1556 leaf = path->nodes[0];
1557 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1558 if (unlikely(item_size < sizeof(*ei))) {
1559 err = -EINVAL;
1560 btrfs_print_v0_err(fs_info);
1561 btrfs_abort_transaction(trans, err);
1562 goto out;
1563 }
1564
1565 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1566 flags = btrfs_extent_flags(leaf, ei);
1567
1568 ptr = (unsigned long)(ei + 1);
1569 end = (unsigned long)ei + item_size;
1570
1571 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1572 ptr += sizeof(struct btrfs_tree_block_info);
1573 BUG_ON(ptr > end);
1574 }
1575
1576 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1577 needed = BTRFS_REF_TYPE_DATA;
1578 else
1579 needed = BTRFS_REF_TYPE_BLOCK;
1580
1581 err = -ENOENT;
1582 while (1) {
1583 if (ptr >= end) {
1584 WARN_ON(ptr > end);
1585 break;
1586 }
1587 iref = (struct btrfs_extent_inline_ref *)ptr;
1588 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1589 if (type == BTRFS_REF_TYPE_INVALID) {
1590 err = -EUCLEAN;
1591 goto out;
1592 }
1593
1594 if (want < type)
1595 break;
1596 if (want > type) {
1597 ptr += btrfs_extent_inline_ref_size(type);
1598 continue;
1599 }
1600
1601 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1602 struct btrfs_extent_data_ref *dref;
1603 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1604 if (match_extent_data_ref(leaf, dref, root_objectid,
1605 owner, offset)) {
1606 err = 0;
1607 break;
1608 }
1609 if (hash_extent_data_ref_item(leaf, dref) <
1610 hash_extent_data_ref(root_objectid, owner, offset))
1611 break;
1612 } else {
1613 u64 ref_offset;
1614 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1615 if (parent > 0) {
1616 if (parent == ref_offset) {
1617 err = 0;
1618 break;
1619 }
1620 if (ref_offset < parent)
1621 break;
1622 } else {
1623 if (root_objectid == ref_offset) {
1624 err = 0;
1625 break;
1626 }
1627 if (ref_offset < root_objectid)
1628 break;
1629 }
1630 }
1631 ptr += btrfs_extent_inline_ref_size(type);
1632 }
1633 if (err == -ENOENT && insert) {
1634 if (item_size + extra_size >=
1635 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1636 err = -EAGAIN;
1637 goto out;
1638 }
1639 /*
1640 * To add new inline back ref, we have to make sure
1641 * there is no corresponding back ref item.
1642 * For simplicity, we just do not add new inline back
1643 * ref if there is any kind of item for this block
1644 */
1645 if (find_next_key(path, 0, &key) == 0 &&
1646 key.objectid == bytenr &&
1647 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1648 err = -EAGAIN;
1649 goto out;
1650 }
1651 }
1652 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1653 out:
1654 if (insert) {
1655 path->keep_locks = 0;
1656 btrfs_unlock_up_safe(path, 1);
1657 }
1658 return err;
1659 }
1660
1661 /*
1662 * helper to add new inline back ref
1663 */
1664 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1665 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1666 struct btrfs_path *path,
1667 struct btrfs_extent_inline_ref *iref,
1668 u64 parent, u64 root_objectid,
1669 u64 owner, u64 offset, int refs_to_add,
1670 struct btrfs_delayed_extent_op *extent_op)
1671 {
1672 struct extent_buffer *leaf;
1673 struct btrfs_extent_item *ei;
1674 unsigned long ptr;
1675 unsigned long end;
1676 unsigned long item_offset;
1677 u64 refs;
1678 int size;
1679 int type;
1680
1681 leaf = path->nodes[0];
1682 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1683 item_offset = (unsigned long)iref - (unsigned long)ei;
1684
1685 type = extent_ref_type(parent, owner);
1686 size = btrfs_extent_inline_ref_size(type);
1687
1688 btrfs_extend_item(fs_info, path, size);
1689
1690 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1691 refs = btrfs_extent_refs(leaf, ei);
1692 refs += refs_to_add;
1693 btrfs_set_extent_refs(leaf, ei, refs);
1694 if (extent_op)
1695 __run_delayed_extent_op(extent_op, leaf, ei);
1696
1697 ptr = (unsigned long)ei + item_offset;
1698 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1699 if (ptr < end - size)
1700 memmove_extent_buffer(leaf, ptr + size, ptr,
1701 end - size - ptr);
1702
1703 iref = (struct btrfs_extent_inline_ref *)ptr;
1704 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1705 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1706 struct btrfs_extent_data_ref *dref;
1707 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1709 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1710 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1711 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1712 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1713 struct btrfs_shared_data_ref *sref;
1714 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1715 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1719 } else {
1720 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1721 }
1722 btrfs_mark_buffer_dirty(leaf);
1723 }
1724
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1725 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref **ref_ret,
1728 u64 bytenr, u64 num_bytes, u64 parent,
1729 u64 root_objectid, u64 owner, u64 offset)
1730 {
1731 int ret;
1732
1733 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1734 num_bytes, parent, root_objectid,
1735 owner, offset, 0);
1736 if (ret != -ENOENT)
1737 return ret;
1738
1739 btrfs_release_path(path);
1740 *ref_ret = NULL;
1741
1742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1743 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1744 root_objectid);
1745 } else {
1746 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1747 root_objectid, owner, offset);
1748 }
1749 return ret;
1750 }
1751
1752 /*
1753 * helper to update/remove inline back ref
1754 */
1755 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1756 void update_inline_extent_backref(struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf = path->nodes[0];
1763 struct btrfs_fs_info *fs_info = leaf->fs_info;
1764 struct btrfs_extent_item *ei;
1765 struct btrfs_extent_data_ref *dref = NULL;
1766 struct btrfs_shared_data_ref *sref = NULL;
1767 unsigned long ptr;
1768 unsigned long end;
1769 u32 item_size;
1770 int size;
1771 int type;
1772 u64 refs;
1773
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 /*
1783 * If type is invalid, we should have bailed out after
1784 * lookup_inline_extent_backref().
1785 */
1786 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1787 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1788
1789 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1791 refs = btrfs_extent_data_ref_count(leaf, dref);
1792 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1793 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1794 refs = btrfs_shared_data_ref_count(leaf, sref);
1795 } else {
1796 refs = 1;
1797 BUG_ON(refs_to_mod != -1);
1798 }
1799
1800 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1801 refs += refs_to_mod;
1802
1803 if (refs > 0) {
1804 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1805 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1806 else
1807 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1808 } else {
1809 *last_ref = 1;
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(fs_info, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_path *path,
1826 u64 bytenr, u64 num_bytes, u64 parent,
1827 u64 root_objectid, u64 owner,
1828 u64 offset, int refs_to_add,
1829 struct btrfs_delayed_extent_op *extent_op)
1830 {
1831 struct btrfs_extent_inline_ref *iref;
1832 int ret;
1833
1834 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1835 num_bytes, parent, root_objectid,
1836 owner, offset, 1);
1837 if (ret == 0) {
1838 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1839 update_inline_extent_backref(path, iref, refs_to_add,
1840 extent_op, NULL);
1841 } else if (ret == -ENOENT) {
1842 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1843 root_objectid, owner, offset,
1844 refs_to_add, extent_op);
1845 ret = 0;
1846 }
1847 return ret;
1848 }
1849
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1850 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1851 struct btrfs_path *path,
1852 u64 bytenr, u64 parent, u64 root_objectid,
1853 u64 owner, u64 offset, int refs_to_add)
1854 {
1855 int ret;
1856 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1857 BUG_ON(refs_to_add != 1);
1858 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1859 root_objectid);
1860 } else {
1861 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1862 root_objectid, owner, offset,
1863 refs_to_add);
1864 }
1865 return ret;
1866 }
1867
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1868 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref *iref,
1871 int refs_to_drop, int is_data, int *last_ref)
1872 {
1873 int ret = 0;
1874
1875 BUG_ON(!is_data && refs_to_drop != 1);
1876 if (iref) {
1877 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1878 last_ref);
1879 } else if (is_data) {
1880 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1881 last_ref);
1882 } else {
1883 *last_ref = 1;
1884 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1885 }
1886 return ret;
1887 }
1888
1889 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1890 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1891 u64 *discarded_bytes)
1892 {
1893 int j, ret = 0;
1894 u64 bytes_left, end;
1895 u64 aligned_start = ALIGN(start, 1 << 9);
1896
1897 if (WARN_ON(start != aligned_start)) {
1898 len -= aligned_start - start;
1899 len = round_down(len, 1 << 9);
1900 start = aligned_start;
1901 }
1902
1903 *discarded_bytes = 0;
1904
1905 if (!len)
1906 return 0;
1907
1908 end = start + len;
1909 bytes_left = len;
1910
1911 /* Skip any superblocks on this device. */
1912 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1913 u64 sb_start = btrfs_sb_offset(j);
1914 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1915 u64 size = sb_start - start;
1916
1917 if (!in_range(sb_start, start, bytes_left) &&
1918 !in_range(sb_end, start, bytes_left) &&
1919 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1920 continue;
1921
1922 /*
1923 * Superblock spans beginning of range. Adjust start and
1924 * try again.
1925 */
1926 if (sb_start <= start) {
1927 start += sb_end - start;
1928 if (start > end) {
1929 bytes_left = 0;
1930 break;
1931 }
1932 bytes_left = end - start;
1933 continue;
1934 }
1935
1936 if (size) {
1937 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1938 GFP_NOFS, 0);
1939 if (!ret)
1940 *discarded_bytes += size;
1941 else if (ret != -EOPNOTSUPP)
1942 return ret;
1943 }
1944
1945 start = sb_end;
1946 if (start > end) {
1947 bytes_left = 0;
1948 break;
1949 }
1950 bytes_left = end - start;
1951 }
1952
1953 if (bytes_left) {
1954 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1955 GFP_NOFS, 0);
1956 if (!ret)
1957 *discarded_bytes += bytes_left;
1958 }
1959 return ret;
1960 }
1961
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1962 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1963 u64 num_bytes, u64 *actual_bytes)
1964 {
1965 int ret;
1966 u64 discarded_bytes = 0;
1967 struct btrfs_bio *bbio = NULL;
1968
1969
1970 /*
1971 * Avoid races with device replace and make sure our bbio has devices
1972 * associated to its stripes that don't go away while we are discarding.
1973 */
1974 btrfs_bio_counter_inc_blocked(fs_info);
1975 /* Tell the block device(s) that the sectors can be discarded */
1976 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1977 &bbio, 0);
1978 /* Error condition is -ENOMEM */
1979 if (!ret) {
1980 struct btrfs_bio_stripe *stripe = bbio->stripes;
1981 int i;
1982
1983
1984 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1985 u64 bytes;
1986 struct request_queue *req_q;
1987
1988 if (!stripe->dev->bdev) {
1989 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1990 continue;
1991 }
1992 req_q = bdev_get_queue(stripe->dev->bdev);
1993 if (!blk_queue_discard(req_q))
1994 continue;
1995
1996 ret = btrfs_issue_discard(stripe->dev->bdev,
1997 stripe->physical,
1998 stripe->length,
1999 &bytes);
2000 if (!ret)
2001 discarded_bytes += bytes;
2002 else if (ret != -EOPNOTSUPP)
2003 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2004
2005 /*
2006 * Just in case we get back EOPNOTSUPP for some reason,
2007 * just ignore the return value so we don't screw up
2008 * people calling discard_extent.
2009 */
2010 ret = 0;
2011 }
2012 btrfs_put_bbio(bbio);
2013 }
2014 btrfs_bio_counter_dec(fs_info);
2015
2016 if (actual_bytes)
2017 *actual_bytes = discarded_bytes;
2018
2019
2020 if (ret == -EOPNOTSUPP)
2021 ret = 0;
2022 return ret;
2023 }
2024
2025 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2026 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2027 struct btrfs_root *root,
2028 u64 bytenr, u64 num_bytes, u64 parent,
2029 u64 root_objectid, u64 owner, u64 offset)
2030 {
2031 struct btrfs_fs_info *fs_info = root->fs_info;
2032 int old_ref_mod, new_ref_mod;
2033 int ret;
2034
2035 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2036 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2037
2038 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2039 owner, offset, BTRFS_ADD_DELAYED_REF);
2040
2041 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2042 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2043 num_bytes, parent,
2044 root_objectid, (int)owner,
2045 BTRFS_ADD_DELAYED_REF, NULL,
2046 &old_ref_mod, &new_ref_mod);
2047 } else {
2048 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2049 num_bytes, parent,
2050 root_objectid, owner, offset,
2051 0, BTRFS_ADD_DELAYED_REF,
2052 &old_ref_mod, &new_ref_mod);
2053 }
2054
2055 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2056 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2057
2058 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2059 }
2060
2061 return ret;
2062 }
2063
2064 /*
2065 * __btrfs_inc_extent_ref - insert backreference for a given extent
2066 *
2067 * @trans: Handle of transaction
2068 *
2069 * @node: The delayed ref node used to get the bytenr/length for
2070 * extent whose references are incremented.
2071 *
2072 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2073 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2074 * bytenr of the parent block. Since new extents are always
2075 * created with indirect references, this will only be the case
2076 * when relocating a shared extent. In that case, root_objectid
2077 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2078 * be 0
2079 *
2080 * @root_objectid: The id of the root where this modification has originated,
2081 * this can be either one of the well-known metadata trees or
2082 * the subvolume id which references this extent.
2083 *
2084 * @owner: For data extents it is the inode number of the owning file.
2085 * For metadata extents this parameter holds the level in the
2086 * tree of the extent.
2087 *
2088 * @offset: For metadata extents the offset is ignored and is currently
2089 * always passed as 0. For data extents it is the fileoffset
2090 * this extent belongs to.
2091 *
2092 * @refs_to_add Number of references to add
2093 *
2094 * @extent_op Pointer to a structure, holding information necessary when
2095 * updating a tree block's flags
2096 *
2097 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2098 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2099 struct btrfs_delayed_ref_node *node,
2100 u64 parent, u64 root_objectid,
2101 u64 owner, u64 offset, int refs_to_add,
2102 struct btrfs_delayed_extent_op *extent_op)
2103 {
2104 struct btrfs_path *path;
2105 struct extent_buffer *leaf;
2106 struct btrfs_extent_item *item;
2107 struct btrfs_key key;
2108 u64 bytenr = node->bytenr;
2109 u64 num_bytes = node->num_bytes;
2110 u64 refs;
2111 int ret;
2112
2113 path = btrfs_alloc_path();
2114 if (!path)
2115 return -ENOMEM;
2116
2117 path->reada = READA_FORWARD;
2118 path->leave_spinning = 1;
2119 /* this will setup the path even if it fails to insert the back ref */
2120 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2121 parent, root_objectid, owner,
2122 offset, refs_to_add, extent_op);
2123 if ((ret < 0 && ret != -EAGAIN) || !ret)
2124 goto out;
2125
2126 /*
2127 * Ok we had -EAGAIN which means we didn't have space to insert and
2128 * inline extent ref, so just update the reference count and add a
2129 * normal backref.
2130 */
2131 leaf = path->nodes[0];
2132 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2133 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2134 refs = btrfs_extent_refs(leaf, item);
2135 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2136 if (extent_op)
2137 __run_delayed_extent_op(extent_op, leaf, item);
2138
2139 btrfs_mark_buffer_dirty(leaf);
2140 btrfs_release_path(path);
2141
2142 path->reada = READA_FORWARD;
2143 path->leave_spinning = 1;
2144 /* now insert the actual backref */
2145 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2146 owner, offset, refs_to_add);
2147 if (ret)
2148 btrfs_abort_transaction(trans, ret);
2149 out:
2150 btrfs_free_path(path);
2151 return ret;
2152 }
2153
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2154 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2155 struct btrfs_delayed_ref_node *node,
2156 struct btrfs_delayed_extent_op *extent_op,
2157 int insert_reserved)
2158 {
2159 int ret = 0;
2160 struct btrfs_delayed_data_ref *ref;
2161 struct btrfs_key ins;
2162 u64 parent = 0;
2163 u64 ref_root = 0;
2164 u64 flags = 0;
2165
2166 ins.objectid = node->bytenr;
2167 ins.offset = node->num_bytes;
2168 ins.type = BTRFS_EXTENT_ITEM_KEY;
2169
2170 ref = btrfs_delayed_node_to_data_ref(node);
2171 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2172
2173 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2174 parent = ref->parent;
2175 ref_root = ref->root;
2176
2177 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2178 if (extent_op)
2179 flags |= extent_op->flags_to_set;
2180 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2181 flags, ref->objectid,
2182 ref->offset, &ins,
2183 node->ref_mod);
2184 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2185 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2186 ref->objectid, ref->offset,
2187 node->ref_mod, extent_op);
2188 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2189 ret = __btrfs_free_extent(trans, node, parent,
2190 ref_root, ref->objectid,
2191 ref->offset, node->ref_mod,
2192 extent_op);
2193 } else {
2194 BUG();
2195 }
2196 return ret;
2197 }
2198
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2199 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2200 struct extent_buffer *leaf,
2201 struct btrfs_extent_item *ei)
2202 {
2203 u64 flags = btrfs_extent_flags(leaf, ei);
2204 if (extent_op->update_flags) {
2205 flags |= extent_op->flags_to_set;
2206 btrfs_set_extent_flags(leaf, ei, flags);
2207 }
2208
2209 if (extent_op->update_key) {
2210 struct btrfs_tree_block_info *bi;
2211 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2212 bi = (struct btrfs_tree_block_info *)(ei + 1);
2213 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2214 }
2215 }
2216
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)2217 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2218 struct btrfs_delayed_ref_head *head,
2219 struct btrfs_delayed_extent_op *extent_op)
2220 {
2221 struct btrfs_fs_info *fs_info = trans->fs_info;
2222 struct btrfs_key key;
2223 struct btrfs_path *path;
2224 struct btrfs_extent_item *ei;
2225 struct extent_buffer *leaf;
2226 u32 item_size;
2227 int ret;
2228 int err = 0;
2229 int metadata = !extent_op->is_data;
2230
2231 if (trans->aborted)
2232 return 0;
2233
2234 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2235 metadata = 0;
2236
2237 path = btrfs_alloc_path();
2238 if (!path)
2239 return -ENOMEM;
2240
2241 key.objectid = head->bytenr;
2242
2243 if (metadata) {
2244 key.type = BTRFS_METADATA_ITEM_KEY;
2245 key.offset = extent_op->level;
2246 } else {
2247 key.type = BTRFS_EXTENT_ITEM_KEY;
2248 key.offset = head->num_bytes;
2249 }
2250
2251 again:
2252 path->reada = READA_FORWARD;
2253 path->leave_spinning = 1;
2254 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2255 if (ret < 0) {
2256 err = ret;
2257 goto out;
2258 }
2259 if (ret > 0) {
2260 if (metadata) {
2261 if (path->slots[0] > 0) {
2262 path->slots[0]--;
2263 btrfs_item_key_to_cpu(path->nodes[0], &key,
2264 path->slots[0]);
2265 if (key.objectid == head->bytenr &&
2266 key.type == BTRFS_EXTENT_ITEM_KEY &&
2267 key.offset == head->num_bytes)
2268 ret = 0;
2269 }
2270 if (ret > 0) {
2271 btrfs_release_path(path);
2272 metadata = 0;
2273
2274 key.objectid = head->bytenr;
2275 key.offset = head->num_bytes;
2276 key.type = BTRFS_EXTENT_ITEM_KEY;
2277 goto again;
2278 }
2279 } else {
2280 err = -EIO;
2281 goto out;
2282 }
2283 }
2284
2285 leaf = path->nodes[0];
2286 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2287
2288 if (unlikely(item_size < sizeof(*ei))) {
2289 err = -EINVAL;
2290 btrfs_print_v0_err(fs_info);
2291 btrfs_abort_transaction(trans, err);
2292 goto out;
2293 }
2294
2295 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2296 __run_delayed_extent_op(extent_op, leaf, ei);
2297
2298 btrfs_mark_buffer_dirty(leaf);
2299 out:
2300 btrfs_free_path(path);
2301 return err;
2302 }
2303
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2304 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2305 struct btrfs_delayed_ref_node *node,
2306 struct btrfs_delayed_extent_op *extent_op,
2307 int insert_reserved)
2308 {
2309 int ret = 0;
2310 struct btrfs_delayed_tree_ref *ref;
2311 u64 parent = 0;
2312 u64 ref_root = 0;
2313
2314 ref = btrfs_delayed_node_to_tree_ref(node);
2315 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2316
2317 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2318 parent = ref->parent;
2319 ref_root = ref->root;
2320
2321 if (node->ref_mod != 1) {
2322 btrfs_err(trans->fs_info,
2323 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2324 node->bytenr, node->ref_mod, node->action, ref_root,
2325 parent);
2326 return -EIO;
2327 }
2328 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2329 BUG_ON(!extent_op || !extent_op->update_flags);
2330 ret = alloc_reserved_tree_block(trans, node, extent_op);
2331 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2332 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2333 ref->level, 0, 1, extent_op);
2334 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2335 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2336 ref->level, 0, 1, extent_op);
2337 } else {
2338 BUG();
2339 }
2340 return ret;
2341 }
2342
2343 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2344 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2345 struct btrfs_delayed_ref_node *node,
2346 struct btrfs_delayed_extent_op *extent_op,
2347 int insert_reserved)
2348 {
2349 int ret = 0;
2350
2351 if (trans->aborted) {
2352 if (insert_reserved)
2353 btrfs_pin_extent(trans->fs_info, node->bytenr,
2354 node->num_bytes, 1);
2355 return 0;
2356 }
2357
2358 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2359 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2360 ret = run_delayed_tree_ref(trans, node, extent_op,
2361 insert_reserved);
2362 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2363 node->type == BTRFS_SHARED_DATA_REF_KEY)
2364 ret = run_delayed_data_ref(trans, node, extent_op,
2365 insert_reserved);
2366 else
2367 BUG();
2368 if (ret && insert_reserved)
2369 btrfs_pin_extent(trans->fs_info, node->bytenr,
2370 node->num_bytes, 1);
2371 return ret;
2372 }
2373
2374 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2375 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2376 {
2377 struct btrfs_delayed_ref_node *ref;
2378
2379 if (RB_EMPTY_ROOT(&head->ref_tree))
2380 return NULL;
2381
2382 /*
2383 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2384 * This is to prevent a ref count from going down to zero, which deletes
2385 * the extent item from the extent tree, when there still are references
2386 * to add, which would fail because they would not find the extent item.
2387 */
2388 if (!list_empty(&head->ref_add_list))
2389 return list_first_entry(&head->ref_add_list,
2390 struct btrfs_delayed_ref_node, add_list);
2391
2392 ref = rb_entry(rb_first(&head->ref_tree),
2393 struct btrfs_delayed_ref_node, ref_node);
2394 ASSERT(list_empty(&ref->add_list));
2395 return ref;
2396 }
2397
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)2398 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2399 struct btrfs_delayed_ref_head *head)
2400 {
2401 spin_lock(&delayed_refs->lock);
2402 head->processing = 0;
2403 delayed_refs->num_heads_ready++;
2404 spin_unlock(&delayed_refs->lock);
2405 btrfs_delayed_ref_unlock(head);
2406 }
2407
cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2408 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2409 struct btrfs_delayed_ref_head *head)
2410 {
2411 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2412 int ret;
2413
2414 if (!extent_op)
2415 return 0;
2416 head->extent_op = NULL;
2417 if (head->must_insert_reserved) {
2418 btrfs_free_delayed_extent_op(extent_op);
2419 return 0;
2420 }
2421 spin_unlock(&head->lock);
2422 ret = run_delayed_extent_op(trans, head, extent_op);
2423 btrfs_free_delayed_extent_op(extent_op);
2424 return ret ? ret : 1;
2425 }
2426
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2427 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2428 struct btrfs_delayed_ref_head *head)
2429 {
2430
2431 struct btrfs_fs_info *fs_info = trans->fs_info;
2432 struct btrfs_delayed_ref_root *delayed_refs;
2433 int ret;
2434
2435 delayed_refs = &trans->transaction->delayed_refs;
2436
2437 ret = cleanup_extent_op(trans, head);
2438 if (ret < 0) {
2439 unselect_delayed_ref_head(delayed_refs, head);
2440 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2441 return ret;
2442 } else if (ret) {
2443 return ret;
2444 }
2445
2446 /*
2447 * Need to drop our head ref lock and re-acquire the delayed ref lock
2448 * and then re-check to make sure nobody got added.
2449 */
2450 spin_unlock(&head->lock);
2451 spin_lock(&delayed_refs->lock);
2452 spin_lock(&head->lock);
2453 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2454 spin_unlock(&head->lock);
2455 spin_unlock(&delayed_refs->lock);
2456 return 1;
2457 }
2458 delayed_refs->num_heads--;
2459 rb_erase(&head->href_node, &delayed_refs->href_root);
2460 RB_CLEAR_NODE(&head->href_node);
2461 spin_unlock(&head->lock);
2462 spin_unlock(&delayed_refs->lock);
2463 atomic_dec(&delayed_refs->num_entries);
2464
2465 trace_run_delayed_ref_head(fs_info, head, 0);
2466
2467 if (head->total_ref_mod < 0) {
2468 struct btrfs_space_info *space_info;
2469 u64 flags;
2470
2471 if (head->is_data)
2472 flags = BTRFS_BLOCK_GROUP_DATA;
2473 else if (head->is_system)
2474 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2475 else
2476 flags = BTRFS_BLOCK_GROUP_METADATA;
2477 space_info = __find_space_info(fs_info, flags);
2478 ASSERT(space_info);
2479 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2480 -head->num_bytes,
2481 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2482
2483 if (head->is_data) {
2484 spin_lock(&delayed_refs->lock);
2485 delayed_refs->pending_csums -= head->num_bytes;
2486 spin_unlock(&delayed_refs->lock);
2487 }
2488 }
2489
2490 if (head->must_insert_reserved) {
2491 btrfs_pin_extent(fs_info, head->bytenr,
2492 head->num_bytes, 1);
2493 if (head->is_data) {
2494 ret = btrfs_del_csums(trans, fs_info->csum_root,
2495 head->bytenr, head->num_bytes);
2496 }
2497 }
2498
2499 /* Also free its reserved qgroup space */
2500 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2501 head->qgroup_reserved);
2502 btrfs_delayed_ref_unlock(head);
2503 btrfs_put_delayed_ref_head(head);
2504 return 0;
2505 }
2506
2507 /*
2508 * Returns 0 on success or if called with an already aborted transaction.
2509 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2510 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2511 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2512 unsigned long nr)
2513 {
2514 struct btrfs_fs_info *fs_info = trans->fs_info;
2515 struct btrfs_delayed_ref_root *delayed_refs;
2516 struct btrfs_delayed_ref_node *ref;
2517 struct btrfs_delayed_ref_head *locked_ref = NULL;
2518 struct btrfs_delayed_extent_op *extent_op;
2519 ktime_t start = ktime_get();
2520 int ret;
2521 unsigned long count = 0;
2522 unsigned long actual_count = 0;
2523 int must_insert_reserved = 0;
2524
2525 delayed_refs = &trans->transaction->delayed_refs;
2526 while (1) {
2527 if (!locked_ref) {
2528 if (count >= nr)
2529 break;
2530
2531 spin_lock(&delayed_refs->lock);
2532 locked_ref = btrfs_select_ref_head(trans);
2533 if (!locked_ref) {
2534 spin_unlock(&delayed_refs->lock);
2535 break;
2536 }
2537
2538 /* grab the lock that says we are going to process
2539 * all the refs for this head */
2540 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2541 spin_unlock(&delayed_refs->lock);
2542 /*
2543 * we may have dropped the spin lock to get the head
2544 * mutex lock, and that might have given someone else
2545 * time to free the head. If that's true, it has been
2546 * removed from our list and we can move on.
2547 */
2548 if (ret == -EAGAIN) {
2549 locked_ref = NULL;
2550 count++;
2551 continue;
2552 }
2553 }
2554
2555 /*
2556 * We need to try and merge add/drops of the same ref since we
2557 * can run into issues with relocate dropping the implicit ref
2558 * and then it being added back again before the drop can
2559 * finish. If we merged anything we need to re-loop so we can
2560 * get a good ref.
2561 * Or we can get node references of the same type that weren't
2562 * merged when created due to bumps in the tree mod seq, and
2563 * we need to merge them to prevent adding an inline extent
2564 * backref before dropping it (triggering a BUG_ON at
2565 * insert_inline_extent_backref()).
2566 */
2567 spin_lock(&locked_ref->lock);
2568 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2569
2570 ref = select_delayed_ref(locked_ref);
2571
2572 if (ref && ref->seq &&
2573 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2574 spin_unlock(&locked_ref->lock);
2575 unselect_delayed_ref_head(delayed_refs, locked_ref);
2576 locked_ref = NULL;
2577 cond_resched();
2578 count++;
2579 continue;
2580 }
2581
2582 /*
2583 * We're done processing refs in this ref_head, clean everything
2584 * up and move on to the next ref_head.
2585 */
2586 if (!ref) {
2587 ret = cleanup_ref_head(trans, locked_ref);
2588 if (ret > 0 ) {
2589 /* We dropped our lock, we need to loop. */
2590 ret = 0;
2591 continue;
2592 } else if (ret) {
2593 return ret;
2594 }
2595 locked_ref = NULL;
2596 count++;
2597 continue;
2598 }
2599
2600 actual_count++;
2601 ref->in_tree = 0;
2602 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2603 RB_CLEAR_NODE(&ref->ref_node);
2604 if (!list_empty(&ref->add_list))
2605 list_del(&ref->add_list);
2606 /*
2607 * When we play the delayed ref, also correct the ref_mod on
2608 * head
2609 */
2610 switch (ref->action) {
2611 case BTRFS_ADD_DELAYED_REF:
2612 case BTRFS_ADD_DELAYED_EXTENT:
2613 locked_ref->ref_mod -= ref->ref_mod;
2614 break;
2615 case BTRFS_DROP_DELAYED_REF:
2616 locked_ref->ref_mod += ref->ref_mod;
2617 break;
2618 default:
2619 WARN_ON(1);
2620 }
2621 atomic_dec(&delayed_refs->num_entries);
2622
2623 /*
2624 * Record the must-insert_reserved flag before we drop the spin
2625 * lock.
2626 */
2627 must_insert_reserved = locked_ref->must_insert_reserved;
2628 locked_ref->must_insert_reserved = 0;
2629
2630 extent_op = locked_ref->extent_op;
2631 locked_ref->extent_op = NULL;
2632 spin_unlock(&locked_ref->lock);
2633
2634 ret = run_one_delayed_ref(trans, ref, extent_op,
2635 must_insert_reserved);
2636
2637 btrfs_free_delayed_extent_op(extent_op);
2638 if (ret) {
2639 unselect_delayed_ref_head(delayed_refs, locked_ref);
2640 btrfs_put_delayed_ref(ref);
2641 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2642 ret);
2643 return ret;
2644 }
2645
2646 btrfs_put_delayed_ref(ref);
2647 count++;
2648 cond_resched();
2649 }
2650
2651 /*
2652 * We don't want to include ref heads since we can have empty ref heads
2653 * and those will drastically skew our runtime down since we just do
2654 * accounting, no actual extent tree updates.
2655 */
2656 if (actual_count > 0) {
2657 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2658 u64 avg;
2659
2660 /*
2661 * We weigh the current average higher than our current runtime
2662 * to avoid large swings in the average.
2663 */
2664 spin_lock(&delayed_refs->lock);
2665 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2666 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2667 spin_unlock(&delayed_refs->lock);
2668 }
2669 return 0;
2670 }
2671
2672 #ifdef SCRAMBLE_DELAYED_REFS
2673 /*
2674 * Normally delayed refs get processed in ascending bytenr order. This
2675 * correlates in most cases to the order added. To expose dependencies on this
2676 * order, we start to process the tree in the middle instead of the beginning
2677 */
find_middle(struct rb_root * root)2678 static u64 find_middle(struct rb_root *root)
2679 {
2680 struct rb_node *n = root->rb_node;
2681 struct btrfs_delayed_ref_node *entry;
2682 int alt = 1;
2683 u64 middle;
2684 u64 first = 0, last = 0;
2685
2686 n = rb_first(root);
2687 if (n) {
2688 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2689 first = entry->bytenr;
2690 }
2691 n = rb_last(root);
2692 if (n) {
2693 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2694 last = entry->bytenr;
2695 }
2696 n = root->rb_node;
2697
2698 while (n) {
2699 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2700 WARN_ON(!entry->in_tree);
2701
2702 middle = entry->bytenr;
2703
2704 if (alt)
2705 n = n->rb_left;
2706 else
2707 n = n->rb_right;
2708
2709 alt = 1 - alt;
2710 }
2711 return middle;
2712 }
2713 #endif
2714
heads_to_leaves(struct btrfs_fs_info * fs_info,u64 heads)2715 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2716 {
2717 u64 num_bytes;
2718
2719 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2720 sizeof(struct btrfs_extent_inline_ref));
2721 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2722 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2723
2724 /*
2725 * We don't ever fill up leaves all the way so multiply by 2 just to be
2726 * closer to what we're really going to want to use.
2727 */
2728 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2729 }
2730
2731 /*
2732 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2733 * would require to store the csums for that many bytes.
2734 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2735 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2736 {
2737 u64 csum_size;
2738 u64 num_csums_per_leaf;
2739 u64 num_csums;
2740
2741 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2742 num_csums_per_leaf = div64_u64(csum_size,
2743 (u64)btrfs_super_csum_size(fs_info->super_copy));
2744 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2745 num_csums += num_csums_per_leaf - 1;
2746 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2747 return num_csums;
2748 }
2749
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2750 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2751 struct btrfs_fs_info *fs_info)
2752 {
2753 struct btrfs_block_rsv *global_rsv;
2754 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2755 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2756 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2757 u64 num_bytes, num_dirty_bgs_bytes;
2758 int ret = 0;
2759
2760 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2761 num_heads = heads_to_leaves(fs_info, num_heads);
2762 if (num_heads > 1)
2763 num_bytes += (num_heads - 1) * fs_info->nodesize;
2764 num_bytes <<= 1;
2765 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2766 fs_info->nodesize;
2767 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2768 num_dirty_bgs);
2769 global_rsv = &fs_info->global_block_rsv;
2770
2771 /*
2772 * If we can't allocate any more chunks lets make sure we have _lots_ of
2773 * wiggle room since running delayed refs can create more delayed refs.
2774 */
2775 if (global_rsv->space_info->full) {
2776 num_dirty_bgs_bytes <<= 1;
2777 num_bytes <<= 1;
2778 }
2779
2780 spin_lock(&global_rsv->lock);
2781 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2782 ret = 1;
2783 spin_unlock(&global_rsv->lock);
2784 return ret;
2785 }
2786
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2787 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2788 struct btrfs_fs_info *fs_info)
2789 {
2790 u64 num_entries =
2791 atomic_read(&trans->transaction->delayed_refs.num_entries);
2792 u64 avg_runtime;
2793 u64 val;
2794
2795 smp_mb();
2796 avg_runtime = fs_info->avg_delayed_ref_runtime;
2797 val = num_entries * avg_runtime;
2798 if (val >= NSEC_PER_SEC)
2799 return 1;
2800 if (val >= NSEC_PER_SEC / 2)
2801 return 2;
2802
2803 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2804 }
2805
2806 struct async_delayed_refs {
2807 struct btrfs_root *root;
2808 u64 transid;
2809 int count;
2810 int error;
2811 int sync;
2812 struct completion wait;
2813 struct btrfs_work work;
2814 };
2815
2816 static inline struct async_delayed_refs *
to_async_delayed_refs(struct btrfs_work * work)2817 to_async_delayed_refs(struct btrfs_work *work)
2818 {
2819 return container_of(work, struct async_delayed_refs, work);
2820 }
2821
delayed_ref_async_start(struct btrfs_work * work)2822 static void delayed_ref_async_start(struct btrfs_work *work)
2823 {
2824 struct async_delayed_refs *async = to_async_delayed_refs(work);
2825 struct btrfs_trans_handle *trans;
2826 struct btrfs_fs_info *fs_info = async->root->fs_info;
2827 int ret;
2828
2829 /* if the commit is already started, we don't need to wait here */
2830 if (btrfs_transaction_blocked(fs_info))
2831 goto done;
2832
2833 trans = btrfs_join_transaction(async->root);
2834 if (IS_ERR(trans)) {
2835 async->error = PTR_ERR(trans);
2836 goto done;
2837 }
2838
2839 /*
2840 * trans->sync means that when we call end_transaction, we won't
2841 * wait on delayed refs
2842 */
2843 trans->sync = true;
2844
2845 /* Don't bother flushing if we got into a different transaction */
2846 if (trans->transid > async->transid)
2847 goto end;
2848
2849 ret = btrfs_run_delayed_refs(trans, async->count);
2850 if (ret)
2851 async->error = ret;
2852 end:
2853 ret = btrfs_end_transaction(trans);
2854 if (ret && !async->error)
2855 async->error = ret;
2856 done:
2857 if (async->sync)
2858 complete(&async->wait);
2859 else
2860 kfree(async);
2861 }
2862
btrfs_async_run_delayed_refs(struct btrfs_fs_info * fs_info,unsigned long count,u64 transid,int wait)2863 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2864 unsigned long count, u64 transid, int wait)
2865 {
2866 struct async_delayed_refs *async;
2867 int ret;
2868
2869 async = kmalloc(sizeof(*async), GFP_NOFS);
2870 if (!async)
2871 return -ENOMEM;
2872
2873 async->root = fs_info->tree_root;
2874 async->count = count;
2875 async->error = 0;
2876 async->transid = transid;
2877 if (wait)
2878 async->sync = 1;
2879 else
2880 async->sync = 0;
2881 init_completion(&async->wait);
2882
2883 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2884 delayed_ref_async_start, NULL, NULL);
2885
2886 btrfs_queue_work(fs_info->extent_workers, &async->work);
2887
2888 if (wait) {
2889 wait_for_completion(&async->wait);
2890 ret = async->error;
2891 kfree(async);
2892 return ret;
2893 }
2894 return 0;
2895 }
2896
2897 /*
2898 * this starts processing the delayed reference count updates and
2899 * extent insertions we have queued up so far. count can be
2900 * 0, which means to process everything in the tree at the start
2901 * of the run (but not newly added entries), or it can be some target
2902 * number you'd like to process.
2903 *
2904 * Returns 0 on success or if called with an aborted transaction
2905 * Returns <0 on error and aborts the transaction
2906 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2907 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2908 unsigned long count)
2909 {
2910 struct btrfs_fs_info *fs_info = trans->fs_info;
2911 struct rb_node *node;
2912 struct btrfs_delayed_ref_root *delayed_refs;
2913 struct btrfs_delayed_ref_head *head;
2914 int ret;
2915 int run_all = count == (unsigned long)-1;
2916
2917 /* We'll clean this up in btrfs_cleanup_transaction */
2918 if (trans->aborted)
2919 return 0;
2920
2921 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2922 return 0;
2923
2924 delayed_refs = &trans->transaction->delayed_refs;
2925 if (count == 0)
2926 count = atomic_read(&delayed_refs->num_entries) * 2;
2927
2928 again:
2929 #ifdef SCRAMBLE_DELAYED_REFS
2930 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2931 #endif
2932 ret = __btrfs_run_delayed_refs(trans, count);
2933 if (ret < 0) {
2934 btrfs_abort_transaction(trans, ret);
2935 return ret;
2936 }
2937
2938 if (run_all) {
2939 if (!list_empty(&trans->new_bgs))
2940 btrfs_create_pending_block_groups(trans);
2941
2942 spin_lock(&delayed_refs->lock);
2943 node = rb_first(&delayed_refs->href_root);
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
2946 goto out;
2947 }
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 href_node);
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
2952
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
2956
2957 btrfs_put_delayed_ref_head(head);
2958 cond_resched();
2959 goto again;
2960 }
2961 out:
2962 return 0;
2963 }
2964
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2965 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2966 struct btrfs_fs_info *fs_info,
2967 u64 bytenr, u64 num_bytes, u64 flags,
2968 int level, int is_data)
2969 {
2970 struct btrfs_delayed_extent_op *extent_op;
2971 int ret;
2972
2973 extent_op = btrfs_alloc_delayed_extent_op();
2974 if (!extent_op)
2975 return -ENOMEM;
2976
2977 extent_op->flags_to_set = flags;
2978 extent_op->update_flags = true;
2979 extent_op->update_key = false;
2980 extent_op->is_data = is_data ? true : false;
2981 extent_op->level = level;
2982
2983 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2984 num_bytes, extent_op);
2985 if (ret)
2986 btrfs_free_delayed_extent_op(extent_op);
2987 return ret;
2988 }
2989
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2990 static noinline int check_delayed_ref(struct btrfs_root *root,
2991 struct btrfs_path *path,
2992 u64 objectid, u64 offset, u64 bytenr)
2993 {
2994 struct btrfs_delayed_ref_head *head;
2995 struct btrfs_delayed_ref_node *ref;
2996 struct btrfs_delayed_data_ref *data_ref;
2997 struct btrfs_delayed_ref_root *delayed_refs;
2998 struct btrfs_transaction *cur_trans;
2999 struct rb_node *node;
3000 int ret = 0;
3001
3002 spin_lock(&root->fs_info->trans_lock);
3003 cur_trans = root->fs_info->running_transaction;
3004 if (cur_trans)
3005 refcount_inc(&cur_trans->use_count);
3006 spin_unlock(&root->fs_info->trans_lock);
3007 if (!cur_trans)
3008 return 0;
3009
3010 delayed_refs = &cur_trans->delayed_refs;
3011 spin_lock(&delayed_refs->lock);
3012 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3013 if (!head) {
3014 spin_unlock(&delayed_refs->lock);
3015 btrfs_put_transaction(cur_trans);
3016 return 0;
3017 }
3018
3019 if (!mutex_trylock(&head->mutex)) {
3020 refcount_inc(&head->refs);
3021 spin_unlock(&delayed_refs->lock);
3022
3023 btrfs_release_path(path);
3024
3025 /*
3026 * Mutex was contended, block until it's released and let
3027 * caller try again
3028 */
3029 mutex_lock(&head->mutex);
3030 mutex_unlock(&head->mutex);
3031 btrfs_put_delayed_ref_head(head);
3032 btrfs_put_transaction(cur_trans);
3033 return -EAGAIN;
3034 }
3035 spin_unlock(&delayed_refs->lock);
3036
3037 spin_lock(&head->lock);
3038 /*
3039 * XXX: We should replace this with a proper search function in the
3040 * future.
3041 */
3042 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3043 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3044 /* If it's a shared ref we know a cross reference exists */
3045 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3046 ret = 1;
3047 break;
3048 }
3049
3050 data_ref = btrfs_delayed_node_to_data_ref(ref);
3051
3052 /*
3053 * If our ref doesn't match the one we're currently looking at
3054 * then we have a cross reference.
3055 */
3056 if (data_ref->root != root->root_key.objectid ||
3057 data_ref->objectid != objectid ||
3058 data_ref->offset != offset) {
3059 ret = 1;
3060 break;
3061 }
3062 }
3063 spin_unlock(&head->lock);
3064 mutex_unlock(&head->mutex);
3065 btrfs_put_transaction(cur_trans);
3066 return ret;
3067 }
3068
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3069 static noinline int check_committed_ref(struct btrfs_root *root,
3070 struct btrfs_path *path,
3071 u64 objectid, u64 offset, u64 bytenr)
3072 {
3073 struct btrfs_fs_info *fs_info = root->fs_info;
3074 struct btrfs_root *extent_root = fs_info->extent_root;
3075 struct extent_buffer *leaf;
3076 struct btrfs_extent_data_ref *ref;
3077 struct btrfs_extent_inline_ref *iref;
3078 struct btrfs_extent_item *ei;
3079 struct btrfs_key key;
3080 u32 item_size;
3081 int type;
3082 int ret;
3083
3084 key.objectid = bytenr;
3085 key.offset = (u64)-1;
3086 key.type = BTRFS_EXTENT_ITEM_KEY;
3087
3088 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3089 if (ret < 0)
3090 goto out;
3091 BUG_ON(ret == 0); /* Corruption */
3092
3093 ret = -ENOENT;
3094 if (path->slots[0] == 0)
3095 goto out;
3096
3097 path->slots[0]--;
3098 leaf = path->nodes[0];
3099 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3100
3101 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3102 goto out;
3103
3104 ret = 1;
3105 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3106 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3107
3108 if (item_size != sizeof(*ei) +
3109 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3110 goto out;
3111
3112 if (btrfs_extent_generation(leaf, ei) <=
3113 btrfs_root_last_snapshot(&root->root_item))
3114 goto out;
3115
3116 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3117
3118 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3119 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3120 goto out;
3121
3122 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3123 if (btrfs_extent_refs(leaf, ei) !=
3124 btrfs_extent_data_ref_count(leaf, ref) ||
3125 btrfs_extent_data_ref_root(leaf, ref) !=
3126 root->root_key.objectid ||
3127 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3128 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3129 goto out;
3130
3131 ret = 0;
3132 out:
3133 return ret;
3134 }
3135
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3136 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3137 u64 bytenr)
3138 {
3139 struct btrfs_path *path;
3140 int ret;
3141 int ret2;
3142
3143 path = btrfs_alloc_path();
3144 if (!path)
3145 return -ENOMEM;
3146
3147 do {
3148 ret = check_committed_ref(root, path, objectid,
3149 offset, bytenr);
3150 if (ret && ret != -ENOENT)
3151 goto out;
3152
3153 ret2 = check_delayed_ref(root, path, objectid,
3154 offset, bytenr);
3155 } while (ret2 == -EAGAIN);
3156
3157 if (ret2 && ret2 != -ENOENT) {
3158 ret = ret2;
3159 goto out;
3160 }
3161
3162 if (ret != -ENOENT || ret2 != -ENOENT)
3163 ret = 0;
3164 out:
3165 btrfs_free_path(path);
3166 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3167 WARN_ON(ret > 0);
3168 return ret;
3169 }
3170
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3171 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root,
3173 struct extent_buffer *buf,
3174 int full_backref, int inc)
3175 {
3176 struct btrfs_fs_info *fs_info = root->fs_info;
3177 u64 bytenr;
3178 u64 num_bytes;
3179 u64 parent;
3180 u64 ref_root;
3181 u32 nritems;
3182 struct btrfs_key key;
3183 struct btrfs_file_extent_item *fi;
3184 int i;
3185 int level;
3186 int ret = 0;
3187 int (*process_func)(struct btrfs_trans_handle *,
3188 struct btrfs_root *,
3189 u64, u64, u64, u64, u64, u64);
3190
3191
3192 if (btrfs_is_testing(fs_info))
3193 return 0;
3194
3195 ref_root = btrfs_header_owner(buf);
3196 nritems = btrfs_header_nritems(buf);
3197 level = btrfs_header_level(buf);
3198
3199 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3200 return 0;
3201
3202 if (inc)
3203 process_func = btrfs_inc_extent_ref;
3204 else
3205 process_func = btrfs_free_extent;
3206
3207 if (full_backref)
3208 parent = buf->start;
3209 else
3210 parent = 0;
3211
3212 for (i = 0; i < nritems; i++) {
3213 if (level == 0) {
3214 btrfs_item_key_to_cpu(buf, &key, i);
3215 if (key.type != BTRFS_EXTENT_DATA_KEY)
3216 continue;
3217 fi = btrfs_item_ptr(buf, i,
3218 struct btrfs_file_extent_item);
3219 if (btrfs_file_extent_type(buf, fi) ==
3220 BTRFS_FILE_EXTENT_INLINE)
3221 continue;
3222 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3223 if (bytenr == 0)
3224 continue;
3225
3226 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3227 key.offset -= btrfs_file_extent_offset(buf, fi);
3228 ret = process_func(trans, root, bytenr, num_bytes,
3229 parent, ref_root, key.objectid,
3230 key.offset);
3231 if (ret)
3232 goto fail;
3233 } else {
3234 bytenr = btrfs_node_blockptr(buf, i);
3235 num_bytes = fs_info->nodesize;
3236 ret = process_func(trans, root, bytenr, num_bytes,
3237 parent, ref_root, level - 1, 0);
3238 if (ret)
3239 goto fail;
3240 }
3241 }
3242 return 0;
3243 fail:
3244 return ret;
3245 }
3246
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3247 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3248 struct extent_buffer *buf, int full_backref)
3249 {
3250 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3251 }
3252
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3253 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3254 struct extent_buffer *buf, int full_backref)
3255 {
3256 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3257 }
3258
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3259 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3260 struct btrfs_fs_info *fs_info,
3261 struct btrfs_path *path,
3262 struct btrfs_block_group_cache *cache)
3263 {
3264 int ret;
3265 struct btrfs_root *extent_root = fs_info->extent_root;
3266 unsigned long bi;
3267 struct extent_buffer *leaf;
3268
3269 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3270 if (ret) {
3271 if (ret > 0)
3272 ret = -ENOENT;
3273 goto fail;
3274 }
3275
3276 leaf = path->nodes[0];
3277 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3278 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3279 btrfs_mark_buffer_dirty(leaf);
3280 fail:
3281 btrfs_release_path(path);
3282 return ret;
3283
3284 }
3285
3286 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)3287 next_block_group(struct btrfs_fs_info *fs_info,
3288 struct btrfs_block_group_cache *cache)
3289 {
3290 struct rb_node *node;
3291
3292 spin_lock(&fs_info->block_group_cache_lock);
3293
3294 /* If our block group was removed, we need a full search. */
3295 if (RB_EMPTY_NODE(&cache->cache_node)) {
3296 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3297
3298 spin_unlock(&fs_info->block_group_cache_lock);
3299 btrfs_put_block_group(cache);
3300 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3301 }
3302 node = rb_next(&cache->cache_node);
3303 btrfs_put_block_group(cache);
3304 if (node) {
3305 cache = rb_entry(node, struct btrfs_block_group_cache,
3306 cache_node);
3307 btrfs_get_block_group(cache);
3308 } else
3309 cache = NULL;
3310 spin_unlock(&fs_info->block_group_cache_lock);
3311 return cache;
3312 }
3313
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3314 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3315 struct btrfs_trans_handle *trans,
3316 struct btrfs_path *path)
3317 {
3318 struct btrfs_fs_info *fs_info = block_group->fs_info;
3319 struct btrfs_root *root = fs_info->tree_root;
3320 struct inode *inode = NULL;
3321 struct extent_changeset *data_reserved = NULL;
3322 u64 alloc_hint = 0;
3323 int dcs = BTRFS_DC_ERROR;
3324 u64 num_pages = 0;
3325 int retries = 0;
3326 int ret = 0;
3327
3328 /*
3329 * If this block group is smaller than 100 megs don't bother caching the
3330 * block group.
3331 */
3332 if (block_group->key.offset < (100 * SZ_1M)) {
3333 spin_lock(&block_group->lock);
3334 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3335 spin_unlock(&block_group->lock);
3336 return 0;
3337 }
3338
3339 if (trans->aborted)
3340 return 0;
3341 again:
3342 inode = lookup_free_space_inode(fs_info, block_group, path);
3343 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3344 ret = PTR_ERR(inode);
3345 btrfs_release_path(path);
3346 goto out;
3347 }
3348
3349 if (IS_ERR(inode)) {
3350 BUG_ON(retries);
3351 retries++;
3352
3353 if (block_group->ro)
3354 goto out_free;
3355
3356 ret = create_free_space_inode(fs_info, trans, block_group,
3357 path);
3358 if (ret)
3359 goto out_free;
3360 goto again;
3361 }
3362
3363 /*
3364 * We want to set the generation to 0, that way if anything goes wrong
3365 * from here on out we know not to trust this cache when we load up next
3366 * time.
3367 */
3368 BTRFS_I(inode)->generation = 0;
3369 ret = btrfs_update_inode(trans, root, inode);
3370 if (ret) {
3371 /*
3372 * So theoretically we could recover from this, simply set the
3373 * super cache generation to 0 so we know to invalidate the
3374 * cache, but then we'd have to keep track of the block groups
3375 * that fail this way so we know we _have_ to reset this cache
3376 * before the next commit or risk reading stale cache. So to
3377 * limit our exposure to horrible edge cases lets just abort the
3378 * transaction, this only happens in really bad situations
3379 * anyway.
3380 */
3381 btrfs_abort_transaction(trans, ret);
3382 goto out_put;
3383 }
3384 WARN_ON(ret);
3385
3386 /* We've already setup this transaction, go ahead and exit */
3387 if (block_group->cache_generation == trans->transid &&
3388 i_size_read(inode)) {
3389 dcs = BTRFS_DC_SETUP;
3390 goto out_put;
3391 }
3392
3393 if (i_size_read(inode) > 0) {
3394 ret = btrfs_check_trunc_cache_free_space(fs_info,
3395 &fs_info->global_block_rsv);
3396 if (ret)
3397 goto out_put;
3398
3399 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3400 if (ret)
3401 goto out_put;
3402 }
3403
3404 spin_lock(&block_group->lock);
3405 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3406 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3407 /*
3408 * don't bother trying to write stuff out _if_
3409 * a) we're not cached,
3410 * b) we're with nospace_cache mount option,
3411 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3412 */
3413 dcs = BTRFS_DC_WRITTEN;
3414 spin_unlock(&block_group->lock);
3415 goto out_put;
3416 }
3417 spin_unlock(&block_group->lock);
3418
3419 /*
3420 * We hit an ENOSPC when setting up the cache in this transaction, just
3421 * skip doing the setup, we've already cleared the cache so we're safe.
3422 */
3423 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3424 ret = -ENOSPC;
3425 goto out_put;
3426 }
3427
3428 /*
3429 * Try to preallocate enough space based on how big the block group is.
3430 * Keep in mind this has to include any pinned space which could end up
3431 * taking up quite a bit since it's not folded into the other space
3432 * cache.
3433 */
3434 num_pages = div_u64(block_group->key.offset, SZ_256M);
3435 if (!num_pages)
3436 num_pages = 1;
3437
3438 num_pages *= 16;
3439 num_pages *= PAGE_SIZE;
3440
3441 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3442 if (ret)
3443 goto out_put;
3444
3445 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3446 num_pages, num_pages,
3447 &alloc_hint);
3448 /*
3449 * Our cache requires contiguous chunks so that we don't modify a bunch
3450 * of metadata or split extents when writing the cache out, which means
3451 * we can enospc if we are heavily fragmented in addition to just normal
3452 * out of space conditions. So if we hit this just skip setting up any
3453 * other block groups for this transaction, maybe we'll unpin enough
3454 * space the next time around.
3455 */
3456 if (!ret)
3457 dcs = BTRFS_DC_SETUP;
3458 else if (ret == -ENOSPC)
3459 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3460
3461 out_put:
3462 iput(inode);
3463 out_free:
3464 btrfs_release_path(path);
3465 out:
3466 spin_lock(&block_group->lock);
3467 if (!ret && dcs == BTRFS_DC_SETUP)
3468 block_group->cache_generation = trans->transid;
3469 block_group->disk_cache_state = dcs;
3470 spin_unlock(&block_group->lock);
3471
3472 extent_changeset_free(data_reserved);
3473 return ret;
3474 }
3475
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3476 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3477 struct btrfs_fs_info *fs_info)
3478 {
3479 struct btrfs_block_group_cache *cache, *tmp;
3480 struct btrfs_transaction *cur_trans = trans->transaction;
3481 struct btrfs_path *path;
3482
3483 if (list_empty(&cur_trans->dirty_bgs) ||
3484 !btrfs_test_opt(fs_info, SPACE_CACHE))
3485 return 0;
3486
3487 path = btrfs_alloc_path();
3488 if (!path)
3489 return -ENOMEM;
3490
3491 /* Could add new block groups, use _safe just in case */
3492 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3493 dirty_list) {
3494 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3495 cache_save_setup(cache, trans, path);
3496 }
3497
3498 btrfs_free_path(path);
3499 return 0;
3500 }
3501
3502 /*
3503 * transaction commit does final block group cache writeback during a
3504 * critical section where nothing is allowed to change the FS. This is
3505 * required in order for the cache to actually match the block group,
3506 * but can introduce a lot of latency into the commit.
3507 *
3508 * So, btrfs_start_dirty_block_groups is here to kick off block group
3509 * cache IO. There's a chance we'll have to redo some of it if the
3510 * block group changes again during the commit, but it greatly reduces
3511 * the commit latency by getting rid of the easy block groups while
3512 * we're still allowing others to join the commit.
3513 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3514 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3515 {
3516 struct btrfs_fs_info *fs_info = trans->fs_info;
3517 struct btrfs_block_group_cache *cache;
3518 struct btrfs_transaction *cur_trans = trans->transaction;
3519 int ret = 0;
3520 int should_put;
3521 struct btrfs_path *path = NULL;
3522 LIST_HEAD(dirty);
3523 struct list_head *io = &cur_trans->io_bgs;
3524 int num_started = 0;
3525 int loops = 0;
3526
3527 spin_lock(&cur_trans->dirty_bgs_lock);
3528 if (list_empty(&cur_trans->dirty_bgs)) {
3529 spin_unlock(&cur_trans->dirty_bgs_lock);
3530 return 0;
3531 }
3532 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3533 spin_unlock(&cur_trans->dirty_bgs_lock);
3534
3535 again:
3536 /*
3537 * make sure all the block groups on our dirty list actually
3538 * exist
3539 */
3540 btrfs_create_pending_block_groups(trans);
3541
3542 if (!path) {
3543 path = btrfs_alloc_path();
3544 if (!path)
3545 return -ENOMEM;
3546 }
3547
3548 /*
3549 * cache_write_mutex is here only to save us from balance or automatic
3550 * removal of empty block groups deleting this block group while we are
3551 * writing out the cache
3552 */
3553 mutex_lock(&trans->transaction->cache_write_mutex);
3554 while (!list_empty(&dirty)) {
3555 cache = list_first_entry(&dirty,
3556 struct btrfs_block_group_cache,
3557 dirty_list);
3558 /*
3559 * this can happen if something re-dirties a block
3560 * group that is already under IO. Just wait for it to
3561 * finish and then do it all again
3562 */
3563 if (!list_empty(&cache->io_list)) {
3564 list_del_init(&cache->io_list);
3565 btrfs_wait_cache_io(trans, cache, path);
3566 btrfs_put_block_group(cache);
3567 }
3568
3569
3570 /*
3571 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3572 * if it should update the cache_state. Don't delete
3573 * until after we wait.
3574 *
3575 * Since we're not running in the commit critical section
3576 * we need the dirty_bgs_lock to protect from update_block_group
3577 */
3578 spin_lock(&cur_trans->dirty_bgs_lock);
3579 list_del_init(&cache->dirty_list);
3580 spin_unlock(&cur_trans->dirty_bgs_lock);
3581
3582 should_put = 1;
3583
3584 cache_save_setup(cache, trans, path);
3585
3586 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3587 cache->io_ctl.inode = NULL;
3588 ret = btrfs_write_out_cache(fs_info, trans,
3589 cache, path);
3590 if (ret == 0 && cache->io_ctl.inode) {
3591 num_started++;
3592 should_put = 0;
3593
3594 /*
3595 * The cache_write_mutex is protecting the
3596 * io_list, also refer to the definition of
3597 * btrfs_transaction::io_bgs for more details
3598 */
3599 list_add_tail(&cache->io_list, io);
3600 } else {
3601 /*
3602 * if we failed to write the cache, the
3603 * generation will be bad and life goes on
3604 */
3605 ret = 0;
3606 }
3607 }
3608 if (!ret) {
3609 ret = write_one_cache_group(trans, fs_info,
3610 path, cache);
3611 /*
3612 * Our block group might still be attached to the list
3613 * of new block groups in the transaction handle of some
3614 * other task (struct btrfs_trans_handle->new_bgs). This
3615 * means its block group item isn't yet in the extent
3616 * tree. If this happens ignore the error, as we will
3617 * try again later in the critical section of the
3618 * transaction commit.
3619 */
3620 if (ret == -ENOENT) {
3621 ret = 0;
3622 spin_lock(&cur_trans->dirty_bgs_lock);
3623 if (list_empty(&cache->dirty_list)) {
3624 list_add_tail(&cache->dirty_list,
3625 &cur_trans->dirty_bgs);
3626 btrfs_get_block_group(cache);
3627 }
3628 spin_unlock(&cur_trans->dirty_bgs_lock);
3629 } else if (ret) {
3630 btrfs_abort_transaction(trans, ret);
3631 }
3632 }
3633
3634 /* if its not on the io list, we need to put the block group */
3635 if (should_put)
3636 btrfs_put_block_group(cache);
3637
3638 if (ret)
3639 break;
3640
3641 /*
3642 * Avoid blocking other tasks for too long. It might even save
3643 * us from writing caches for block groups that are going to be
3644 * removed.
3645 */
3646 mutex_unlock(&trans->transaction->cache_write_mutex);
3647 mutex_lock(&trans->transaction->cache_write_mutex);
3648 }
3649 mutex_unlock(&trans->transaction->cache_write_mutex);
3650
3651 /*
3652 * go through delayed refs for all the stuff we've just kicked off
3653 * and then loop back (just once)
3654 */
3655 ret = btrfs_run_delayed_refs(trans, 0);
3656 if (!ret && loops == 0) {
3657 loops++;
3658 spin_lock(&cur_trans->dirty_bgs_lock);
3659 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3660 /*
3661 * dirty_bgs_lock protects us from concurrent block group
3662 * deletes too (not just cache_write_mutex).
3663 */
3664 if (!list_empty(&dirty)) {
3665 spin_unlock(&cur_trans->dirty_bgs_lock);
3666 goto again;
3667 }
3668 spin_unlock(&cur_trans->dirty_bgs_lock);
3669 } else if (ret < 0) {
3670 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3671 }
3672
3673 btrfs_free_path(path);
3674 return ret;
3675 }
3676
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3677 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3678 struct btrfs_fs_info *fs_info)
3679 {
3680 struct btrfs_block_group_cache *cache;
3681 struct btrfs_transaction *cur_trans = trans->transaction;
3682 int ret = 0;
3683 int should_put;
3684 struct btrfs_path *path;
3685 struct list_head *io = &cur_trans->io_bgs;
3686 int num_started = 0;
3687
3688 path = btrfs_alloc_path();
3689 if (!path)
3690 return -ENOMEM;
3691
3692 /*
3693 * Even though we are in the critical section of the transaction commit,
3694 * we can still have concurrent tasks adding elements to this
3695 * transaction's list of dirty block groups. These tasks correspond to
3696 * endio free space workers started when writeback finishes for a
3697 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3698 * allocate new block groups as a result of COWing nodes of the root
3699 * tree when updating the free space inode. The writeback for the space
3700 * caches is triggered by an earlier call to
3701 * btrfs_start_dirty_block_groups() and iterations of the following
3702 * loop.
3703 * Also we want to do the cache_save_setup first and then run the
3704 * delayed refs to make sure we have the best chance at doing this all
3705 * in one shot.
3706 */
3707 spin_lock(&cur_trans->dirty_bgs_lock);
3708 while (!list_empty(&cur_trans->dirty_bgs)) {
3709 cache = list_first_entry(&cur_trans->dirty_bgs,
3710 struct btrfs_block_group_cache,
3711 dirty_list);
3712
3713 /*
3714 * this can happen if cache_save_setup re-dirties a block
3715 * group that is already under IO. Just wait for it to
3716 * finish and then do it all again
3717 */
3718 if (!list_empty(&cache->io_list)) {
3719 spin_unlock(&cur_trans->dirty_bgs_lock);
3720 list_del_init(&cache->io_list);
3721 btrfs_wait_cache_io(trans, cache, path);
3722 btrfs_put_block_group(cache);
3723 spin_lock(&cur_trans->dirty_bgs_lock);
3724 }
3725
3726 /*
3727 * don't remove from the dirty list until after we've waited
3728 * on any pending IO
3729 */
3730 list_del_init(&cache->dirty_list);
3731 spin_unlock(&cur_trans->dirty_bgs_lock);
3732 should_put = 1;
3733
3734 cache_save_setup(cache, trans, path);
3735
3736 if (!ret)
3737 ret = btrfs_run_delayed_refs(trans,
3738 (unsigned long) -1);
3739
3740 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3741 cache->io_ctl.inode = NULL;
3742 ret = btrfs_write_out_cache(fs_info, trans,
3743 cache, path);
3744 if (ret == 0 && cache->io_ctl.inode) {
3745 num_started++;
3746 should_put = 0;
3747 list_add_tail(&cache->io_list, io);
3748 } else {
3749 /*
3750 * if we failed to write the cache, the
3751 * generation will be bad and life goes on
3752 */
3753 ret = 0;
3754 }
3755 }
3756 if (!ret) {
3757 ret = write_one_cache_group(trans, fs_info,
3758 path, cache);
3759 /*
3760 * One of the free space endio workers might have
3761 * created a new block group while updating a free space
3762 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3763 * and hasn't released its transaction handle yet, in
3764 * which case the new block group is still attached to
3765 * its transaction handle and its creation has not
3766 * finished yet (no block group item in the extent tree
3767 * yet, etc). If this is the case, wait for all free
3768 * space endio workers to finish and retry. This is a
3769 * a very rare case so no need for a more efficient and
3770 * complex approach.
3771 */
3772 if (ret == -ENOENT) {
3773 wait_event(cur_trans->writer_wait,
3774 atomic_read(&cur_trans->num_writers) == 1);
3775 ret = write_one_cache_group(trans, fs_info,
3776 path, cache);
3777 }
3778 if (ret)
3779 btrfs_abort_transaction(trans, ret);
3780 }
3781
3782 /* if its not on the io list, we need to put the block group */
3783 if (should_put)
3784 btrfs_put_block_group(cache);
3785 spin_lock(&cur_trans->dirty_bgs_lock);
3786 }
3787 spin_unlock(&cur_trans->dirty_bgs_lock);
3788
3789 /*
3790 * Refer to the definition of io_bgs member for details why it's safe
3791 * to use it without any locking
3792 */
3793 while (!list_empty(io)) {
3794 cache = list_first_entry(io, struct btrfs_block_group_cache,
3795 io_list);
3796 list_del_init(&cache->io_list);
3797 btrfs_wait_cache_io(trans, cache, path);
3798 btrfs_put_block_group(cache);
3799 }
3800
3801 btrfs_free_path(path);
3802 return ret;
3803 }
3804
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)3805 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3806 {
3807 struct btrfs_block_group_cache *block_group;
3808 int readonly = 0;
3809
3810 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3811 if (!block_group || block_group->ro)
3812 readonly = 1;
3813 if (block_group)
3814 btrfs_put_block_group(block_group);
3815 return readonly;
3816 }
3817
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3818 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3819 {
3820 struct btrfs_block_group_cache *bg;
3821 bool ret = true;
3822
3823 bg = btrfs_lookup_block_group(fs_info, bytenr);
3824 if (!bg)
3825 return false;
3826
3827 spin_lock(&bg->lock);
3828 if (bg->ro)
3829 ret = false;
3830 else
3831 atomic_inc(&bg->nocow_writers);
3832 spin_unlock(&bg->lock);
3833
3834 /* no put on block group, done by btrfs_dec_nocow_writers */
3835 if (!ret)
3836 btrfs_put_block_group(bg);
3837
3838 return ret;
3839
3840 }
3841
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3842 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3843 {
3844 struct btrfs_block_group_cache *bg;
3845
3846 bg = btrfs_lookup_block_group(fs_info, bytenr);
3847 ASSERT(bg);
3848 if (atomic_dec_and_test(&bg->nocow_writers))
3849 wake_up_var(&bg->nocow_writers);
3850 /*
3851 * Once for our lookup and once for the lookup done by a previous call
3852 * to btrfs_inc_nocow_writers()
3853 */
3854 btrfs_put_block_group(bg);
3855 btrfs_put_block_group(bg);
3856 }
3857
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)3858 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3859 {
3860 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3861 }
3862
alloc_name(u64 flags)3863 static const char *alloc_name(u64 flags)
3864 {
3865 switch (flags) {
3866 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3867 return "mixed";
3868 case BTRFS_BLOCK_GROUP_METADATA:
3869 return "metadata";
3870 case BTRFS_BLOCK_GROUP_DATA:
3871 return "data";
3872 case BTRFS_BLOCK_GROUP_SYSTEM:
3873 return "system";
3874 default:
3875 WARN_ON(1);
3876 return "invalid-combination";
3877 };
3878 }
3879
create_space_info(struct btrfs_fs_info * info,u64 flags)3880 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3881 {
3882
3883 struct btrfs_space_info *space_info;
3884 int i;
3885 int ret;
3886
3887 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3888 if (!space_info)
3889 return -ENOMEM;
3890
3891 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3892 GFP_KERNEL);
3893 if (ret) {
3894 kfree(space_info);
3895 return ret;
3896 }
3897
3898 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3899 INIT_LIST_HEAD(&space_info->block_groups[i]);
3900 init_rwsem(&space_info->groups_sem);
3901 spin_lock_init(&space_info->lock);
3902 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3903 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3904 init_waitqueue_head(&space_info->wait);
3905 INIT_LIST_HEAD(&space_info->ro_bgs);
3906 INIT_LIST_HEAD(&space_info->tickets);
3907 INIT_LIST_HEAD(&space_info->priority_tickets);
3908
3909 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3910 info->space_info_kobj, "%s",
3911 alloc_name(space_info->flags));
3912 if (ret) {
3913 kobject_put(&space_info->kobj);
3914 return ret;
3915 }
3916
3917 list_add_rcu(&space_info->list, &info->space_info);
3918 if (flags & BTRFS_BLOCK_GROUP_DATA)
3919 info->data_sinfo = space_info;
3920
3921 return ret;
3922 }
3923
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)3924 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3925 u64 total_bytes, u64 bytes_used,
3926 u64 bytes_readonly,
3927 struct btrfs_space_info **space_info)
3928 {
3929 struct btrfs_space_info *found;
3930 int factor;
3931
3932 factor = btrfs_bg_type_to_factor(flags);
3933
3934 found = __find_space_info(info, flags);
3935 ASSERT(found);
3936 spin_lock(&found->lock);
3937 found->total_bytes += total_bytes;
3938 found->disk_total += total_bytes * factor;
3939 found->bytes_used += bytes_used;
3940 found->disk_used += bytes_used * factor;
3941 found->bytes_readonly += bytes_readonly;
3942 if (total_bytes > 0)
3943 found->full = 0;
3944 space_info_add_new_bytes(info, found, total_bytes -
3945 bytes_used - bytes_readonly);
3946 spin_unlock(&found->lock);
3947 *space_info = found;
3948 }
3949
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3950 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3951 {
3952 u64 extra_flags = chunk_to_extended(flags) &
3953 BTRFS_EXTENDED_PROFILE_MASK;
3954
3955 write_seqlock(&fs_info->profiles_lock);
3956 if (flags & BTRFS_BLOCK_GROUP_DATA)
3957 fs_info->avail_data_alloc_bits |= extra_flags;
3958 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3959 fs_info->avail_metadata_alloc_bits |= extra_flags;
3960 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3961 fs_info->avail_system_alloc_bits |= extra_flags;
3962 write_sequnlock(&fs_info->profiles_lock);
3963 }
3964
3965 /*
3966 * returns target flags in extended format or 0 if restripe for this
3967 * chunk_type is not in progress
3968 *
3969 * should be called with balance_lock held
3970 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3971 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3972 {
3973 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3974 u64 target = 0;
3975
3976 if (!bctl)
3977 return 0;
3978
3979 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3980 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3981 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3982 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3983 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3984 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3985 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3986 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3987 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3988 }
3989
3990 return target;
3991 }
3992
3993 /*
3994 * @flags: available profiles in extended format (see ctree.h)
3995 *
3996 * Returns reduced profile in chunk format. If profile changing is in
3997 * progress (either running or paused) picks the target profile (if it's
3998 * already available), otherwise falls back to plain reducing.
3999 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)4000 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4001 {
4002 u64 num_devices = fs_info->fs_devices->rw_devices;
4003 u64 target;
4004 u64 raid_type;
4005 u64 allowed = 0;
4006
4007 /*
4008 * see if restripe for this chunk_type is in progress, if so
4009 * try to reduce to the target profile
4010 */
4011 spin_lock(&fs_info->balance_lock);
4012 target = get_restripe_target(fs_info, flags);
4013 if (target) {
4014 /* pick target profile only if it's already available */
4015 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4016 spin_unlock(&fs_info->balance_lock);
4017 return extended_to_chunk(target);
4018 }
4019 }
4020 spin_unlock(&fs_info->balance_lock);
4021
4022 /* First, mask out the RAID levels which aren't possible */
4023 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4024 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4025 allowed |= btrfs_raid_array[raid_type].bg_flag;
4026 }
4027 allowed &= flags;
4028
4029 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4030 allowed = BTRFS_BLOCK_GROUP_RAID6;
4031 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4032 allowed = BTRFS_BLOCK_GROUP_RAID5;
4033 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4034 allowed = BTRFS_BLOCK_GROUP_RAID10;
4035 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4036 allowed = BTRFS_BLOCK_GROUP_RAID1;
4037 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4038 allowed = BTRFS_BLOCK_GROUP_RAID0;
4039
4040 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4041
4042 return extended_to_chunk(flags | allowed);
4043 }
4044
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)4045 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4046 {
4047 unsigned seq;
4048 u64 flags;
4049
4050 do {
4051 flags = orig_flags;
4052 seq = read_seqbegin(&fs_info->profiles_lock);
4053
4054 if (flags & BTRFS_BLOCK_GROUP_DATA)
4055 flags |= fs_info->avail_data_alloc_bits;
4056 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4057 flags |= fs_info->avail_system_alloc_bits;
4058 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4059 flags |= fs_info->avail_metadata_alloc_bits;
4060 } while (read_seqretry(&fs_info->profiles_lock, seq));
4061
4062 return btrfs_reduce_alloc_profile(fs_info, flags);
4063 }
4064
get_alloc_profile_by_root(struct btrfs_root * root,int data)4065 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4066 {
4067 struct btrfs_fs_info *fs_info = root->fs_info;
4068 u64 flags;
4069 u64 ret;
4070
4071 if (data)
4072 flags = BTRFS_BLOCK_GROUP_DATA;
4073 else if (root == fs_info->chunk_root)
4074 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4075 else
4076 flags = BTRFS_BLOCK_GROUP_METADATA;
4077
4078 ret = get_alloc_profile(fs_info, flags);
4079 return ret;
4080 }
4081
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)4082 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4083 {
4084 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4085 }
4086
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)4087 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4088 {
4089 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4090 }
4091
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)4092 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4093 {
4094 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4095 }
4096
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)4097 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4098 bool may_use_included)
4099 {
4100 ASSERT(s_info);
4101 return s_info->bytes_used + s_info->bytes_reserved +
4102 s_info->bytes_pinned + s_info->bytes_readonly +
4103 (may_use_included ? s_info->bytes_may_use : 0);
4104 }
4105
btrfs_alloc_data_chunk_ondemand(struct btrfs_inode * inode,u64 bytes)4106 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4107 {
4108 struct btrfs_root *root = inode->root;
4109 struct btrfs_fs_info *fs_info = root->fs_info;
4110 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4111 u64 used;
4112 int ret = 0;
4113 int need_commit = 2;
4114 int have_pinned_space;
4115
4116 /* make sure bytes are sectorsize aligned */
4117 bytes = ALIGN(bytes, fs_info->sectorsize);
4118
4119 if (btrfs_is_free_space_inode(inode)) {
4120 need_commit = 0;
4121 ASSERT(current->journal_info);
4122 }
4123
4124 again:
4125 /* make sure we have enough space to handle the data first */
4126 spin_lock(&data_sinfo->lock);
4127 used = btrfs_space_info_used(data_sinfo, true);
4128
4129 if (used + bytes > data_sinfo->total_bytes) {
4130 struct btrfs_trans_handle *trans;
4131
4132 /*
4133 * if we don't have enough free bytes in this space then we need
4134 * to alloc a new chunk.
4135 */
4136 if (!data_sinfo->full) {
4137 u64 alloc_target;
4138
4139 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4140 spin_unlock(&data_sinfo->lock);
4141
4142 alloc_target = btrfs_data_alloc_profile(fs_info);
4143 /*
4144 * It is ugly that we don't call nolock join
4145 * transaction for the free space inode case here.
4146 * But it is safe because we only do the data space
4147 * reservation for the free space cache in the
4148 * transaction context, the common join transaction
4149 * just increase the counter of the current transaction
4150 * handler, doesn't try to acquire the trans_lock of
4151 * the fs.
4152 */
4153 trans = btrfs_join_transaction(root);
4154 if (IS_ERR(trans))
4155 return PTR_ERR(trans);
4156
4157 ret = do_chunk_alloc(trans, alloc_target,
4158 CHUNK_ALLOC_NO_FORCE);
4159 btrfs_end_transaction(trans);
4160 if (ret < 0) {
4161 if (ret != -ENOSPC)
4162 return ret;
4163 else {
4164 have_pinned_space = 1;
4165 goto commit_trans;
4166 }
4167 }
4168
4169 goto again;
4170 }
4171
4172 /*
4173 * If we don't have enough pinned space to deal with this
4174 * allocation, and no removed chunk in current transaction,
4175 * don't bother committing the transaction.
4176 */
4177 have_pinned_space = __percpu_counter_compare(
4178 &data_sinfo->total_bytes_pinned,
4179 used + bytes - data_sinfo->total_bytes,
4180 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4181 spin_unlock(&data_sinfo->lock);
4182
4183 /* commit the current transaction and try again */
4184 commit_trans:
4185 if (need_commit) {
4186 need_commit--;
4187
4188 if (need_commit > 0) {
4189 btrfs_start_delalloc_roots(fs_info, -1);
4190 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4191 (u64)-1);
4192 }
4193
4194 trans = btrfs_join_transaction(root);
4195 if (IS_ERR(trans))
4196 return PTR_ERR(trans);
4197 if (have_pinned_space >= 0 ||
4198 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4199 &trans->transaction->flags) ||
4200 need_commit > 0) {
4201 ret = btrfs_commit_transaction(trans);
4202 if (ret)
4203 return ret;
4204 /*
4205 * The cleaner kthread might still be doing iput
4206 * operations. Wait for it to finish so that
4207 * more space is released.
4208 */
4209 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4210 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4211 goto again;
4212 } else {
4213 btrfs_end_transaction(trans);
4214 }
4215 }
4216
4217 trace_btrfs_space_reservation(fs_info,
4218 "space_info:enospc",
4219 data_sinfo->flags, bytes, 1);
4220 return -ENOSPC;
4221 }
4222 data_sinfo->bytes_may_use += bytes;
4223 trace_btrfs_space_reservation(fs_info, "space_info",
4224 data_sinfo->flags, bytes, 1);
4225 spin_unlock(&data_sinfo->lock);
4226
4227 return 0;
4228 }
4229
btrfs_check_data_free_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)4230 int btrfs_check_data_free_space(struct inode *inode,
4231 struct extent_changeset **reserved, u64 start, u64 len)
4232 {
4233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4234 int ret;
4235
4236 /* align the range */
4237 len = round_up(start + len, fs_info->sectorsize) -
4238 round_down(start, fs_info->sectorsize);
4239 start = round_down(start, fs_info->sectorsize);
4240
4241 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4242 if (ret < 0)
4243 return ret;
4244
4245 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4246 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4247 if (ret < 0)
4248 btrfs_free_reserved_data_space_noquota(inode, start, len);
4249 else
4250 ret = 0;
4251 return ret;
4252 }
4253
4254 /*
4255 * Called if we need to clear a data reservation for this inode
4256 * Normally in a error case.
4257 *
4258 * This one will *NOT* use accurate qgroup reserved space API, just for case
4259 * which we can't sleep and is sure it won't affect qgroup reserved space.
4260 * Like clear_bit_hook().
4261 */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4262 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4263 u64 len)
4264 {
4265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4266 struct btrfs_space_info *data_sinfo;
4267
4268 /* Make sure the range is aligned to sectorsize */
4269 len = round_up(start + len, fs_info->sectorsize) -
4270 round_down(start, fs_info->sectorsize);
4271 start = round_down(start, fs_info->sectorsize);
4272
4273 data_sinfo = fs_info->data_sinfo;
4274 spin_lock(&data_sinfo->lock);
4275 if (WARN_ON(data_sinfo->bytes_may_use < len))
4276 data_sinfo->bytes_may_use = 0;
4277 else
4278 data_sinfo->bytes_may_use -= len;
4279 trace_btrfs_space_reservation(fs_info, "space_info",
4280 data_sinfo->flags, len, 0);
4281 spin_unlock(&data_sinfo->lock);
4282 }
4283
4284 /*
4285 * Called if we need to clear a data reservation for this inode
4286 * Normally in a error case.
4287 *
4288 * This one will handle the per-inode data rsv map for accurate reserved
4289 * space framework.
4290 */
btrfs_free_reserved_data_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len)4291 void btrfs_free_reserved_data_space(struct inode *inode,
4292 struct extent_changeset *reserved, u64 start, u64 len)
4293 {
4294 struct btrfs_root *root = BTRFS_I(inode)->root;
4295
4296 /* Make sure the range is aligned to sectorsize */
4297 len = round_up(start + len, root->fs_info->sectorsize) -
4298 round_down(start, root->fs_info->sectorsize);
4299 start = round_down(start, root->fs_info->sectorsize);
4300
4301 btrfs_free_reserved_data_space_noquota(inode, start, len);
4302 btrfs_qgroup_free_data(inode, reserved, start, len);
4303 }
4304
force_metadata_allocation(struct btrfs_fs_info * info)4305 static void force_metadata_allocation(struct btrfs_fs_info *info)
4306 {
4307 struct list_head *head = &info->space_info;
4308 struct btrfs_space_info *found;
4309
4310 rcu_read_lock();
4311 list_for_each_entry_rcu(found, head, list) {
4312 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4313 found->force_alloc = CHUNK_ALLOC_FORCE;
4314 }
4315 rcu_read_unlock();
4316 }
4317
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4318 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4319 {
4320 return (global->size << 1);
4321 }
4322
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)4323 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4324 struct btrfs_space_info *sinfo, int force)
4325 {
4326 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4327 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4328 u64 thresh;
4329
4330 if (force == CHUNK_ALLOC_FORCE)
4331 return 1;
4332
4333 /*
4334 * We need to take into account the global rsv because for all intents
4335 * and purposes it's used space. Don't worry about locking the
4336 * global_rsv, it doesn't change except when the transaction commits.
4337 */
4338 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4339 bytes_used += calc_global_rsv_need_space(global_rsv);
4340
4341 /*
4342 * in limited mode, we want to have some free space up to
4343 * about 1% of the FS size.
4344 */
4345 if (force == CHUNK_ALLOC_LIMITED) {
4346 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4347 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4348
4349 if (sinfo->total_bytes - bytes_used < thresh)
4350 return 1;
4351 }
4352
4353 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4354 return 0;
4355 return 1;
4356 }
4357
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4358 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4359 {
4360 u64 num_dev;
4361
4362 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4363 BTRFS_BLOCK_GROUP_RAID0 |
4364 BTRFS_BLOCK_GROUP_RAID5 |
4365 BTRFS_BLOCK_GROUP_RAID6))
4366 num_dev = fs_info->fs_devices->rw_devices;
4367 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4368 num_dev = 2;
4369 else
4370 num_dev = 1; /* DUP or single */
4371
4372 return num_dev;
4373 }
4374
4375 /*
4376 * If @is_allocation is true, reserve space in the system space info necessary
4377 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4378 * removing a chunk.
4379 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4380 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4381 {
4382 struct btrfs_fs_info *fs_info = trans->fs_info;
4383 struct btrfs_space_info *info;
4384 u64 left;
4385 u64 thresh;
4386 int ret = 0;
4387 u64 num_devs;
4388
4389 /*
4390 * Needed because we can end up allocating a system chunk and for an
4391 * atomic and race free space reservation in the chunk block reserve.
4392 */
4393 lockdep_assert_held(&fs_info->chunk_mutex);
4394
4395 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4396 spin_lock(&info->lock);
4397 left = info->total_bytes - btrfs_space_info_used(info, true);
4398 spin_unlock(&info->lock);
4399
4400 num_devs = get_profile_num_devs(fs_info, type);
4401
4402 /* num_devs device items to update and 1 chunk item to add or remove */
4403 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4404 btrfs_calc_trans_metadata_size(fs_info, 1);
4405
4406 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4407 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4408 left, thresh, type);
4409 dump_space_info(fs_info, info, 0, 0);
4410 }
4411
4412 if (left < thresh) {
4413 u64 flags = btrfs_system_alloc_profile(fs_info);
4414
4415 /*
4416 * Ignore failure to create system chunk. We might end up not
4417 * needing it, as we might not need to COW all nodes/leafs from
4418 * the paths we visit in the chunk tree (they were already COWed
4419 * or created in the current transaction for example).
4420 */
4421 ret = btrfs_alloc_chunk(trans, flags);
4422 }
4423
4424 if (!ret) {
4425 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4426 &fs_info->chunk_block_rsv,
4427 thresh, BTRFS_RESERVE_NO_FLUSH);
4428 if (!ret)
4429 trans->chunk_bytes_reserved += thresh;
4430 }
4431 }
4432
4433 /*
4434 * If force is CHUNK_ALLOC_FORCE:
4435 * - return 1 if it successfully allocates a chunk,
4436 * - return errors including -ENOSPC otherwise.
4437 * If force is NOT CHUNK_ALLOC_FORCE:
4438 * - return 0 if it doesn't need to allocate a new chunk,
4439 * - return 1 if it successfully allocates a chunk,
4440 * - return errors including -ENOSPC otherwise.
4441 */
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,int force)4442 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4443 int force)
4444 {
4445 struct btrfs_fs_info *fs_info = trans->fs_info;
4446 struct btrfs_space_info *space_info;
4447 bool wait_for_alloc = false;
4448 bool should_alloc = false;
4449 int ret = 0;
4450
4451 /* Don't re-enter if we're already allocating a chunk */
4452 if (trans->allocating_chunk)
4453 return -ENOSPC;
4454
4455 space_info = __find_space_info(fs_info, flags);
4456 ASSERT(space_info);
4457
4458 do {
4459 spin_lock(&space_info->lock);
4460 if (force < space_info->force_alloc)
4461 force = space_info->force_alloc;
4462 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4463 if (space_info->full) {
4464 /* No more free physical space */
4465 if (should_alloc)
4466 ret = -ENOSPC;
4467 else
4468 ret = 0;
4469 spin_unlock(&space_info->lock);
4470 return ret;
4471 } else if (!should_alloc) {
4472 spin_unlock(&space_info->lock);
4473 return 0;
4474 } else if (space_info->chunk_alloc) {
4475 /*
4476 * Someone is already allocating, so we need to block
4477 * until this someone is finished and then loop to
4478 * recheck if we should continue with our allocation
4479 * attempt.
4480 */
4481 wait_for_alloc = true;
4482 spin_unlock(&space_info->lock);
4483 mutex_lock(&fs_info->chunk_mutex);
4484 mutex_unlock(&fs_info->chunk_mutex);
4485 } else {
4486 /* Proceed with allocation */
4487 space_info->chunk_alloc = 1;
4488 wait_for_alloc = false;
4489 spin_unlock(&space_info->lock);
4490 }
4491
4492 cond_resched();
4493 } while (wait_for_alloc);
4494
4495 mutex_lock(&fs_info->chunk_mutex);
4496 trans->allocating_chunk = true;
4497
4498 /*
4499 * If we have mixed data/metadata chunks we want to make sure we keep
4500 * allocating mixed chunks instead of individual chunks.
4501 */
4502 if (btrfs_mixed_space_info(space_info))
4503 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4504
4505 /*
4506 * if we're doing a data chunk, go ahead and make sure that
4507 * we keep a reasonable number of metadata chunks allocated in the
4508 * FS as well.
4509 */
4510 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4511 fs_info->data_chunk_allocations++;
4512 if (!(fs_info->data_chunk_allocations %
4513 fs_info->metadata_ratio))
4514 force_metadata_allocation(fs_info);
4515 }
4516
4517 /*
4518 * Check if we have enough space in SYSTEM chunk because we may need
4519 * to update devices.
4520 */
4521 check_system_chunk(trans, flags);
4522
4523 ret = btrfs_alloc_chunk(trans, flags);
4524 trans->allocating_chunk = false;
4525
4526 spin_lock(&space_info->lock);
4527 if (ret < 0) {
4528 if (ret == -ENOSPC)
4529 space_info->full = 1;
4530 else
4531 goto out;
4532 } else {
4533 ret = 1;
4534 space_info->max_extent_size = 0;
4535 }
4536
4537 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4538 out:
4539 space_info->chunk_alloc = 0;
4540 spin_unlock(&space_info->lock);
4541 mutex_unlock(&fs_info->chunk_mutex);
4542 /*
4543 * When we allocate a new chunk we reserve space in the chunk block
4544 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4545 * add new nodes/leafs to it if we end up needing to do it when
4546 * inserting the chunk item and updating device items as part of the
4547 * second phase of chunk allocation, performed by
4548 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4549 * large number of new block groups to create in our transaction
4550 * handle's new_bgs list to avoid exhausting the chunk block reserve
4551 * in extreme cases - like having a single transaction create many new
4552 * block groups when starting to write out the free space caches of all
4553 * the block groups that were made dirty during the lifetime of the
4554 * transaction.
4555 */
4556 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4557 btrfs_create_pending_block_groups(trans);
4558
4559 return ret;
4560 }
4561
can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)4562 static int can_overcommit(struct btrfs_fs_info *fs_info,
4563 struct btrfs_space_info *space_info, u64 bytes,
4564 enum btrfs_reserve_flush_enum flush,
4565 bool system_chunk)
4566 {
4567 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4568 u64 profile;
4569 u64 space_size;
4570 u64 avail;
4571 u64 used;
4572 int factor;
4573
4574 /* Don't overcommit when in mixed mode. */
4575 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4576 return 0;
4577
4578 if (system_chunk)
4579 profile = btrfs_system_alloc_profile(fs_info);
4580 else
4581 profile = btrfs_metadata_alloc_profile(fs_info);
4582
4583 used = btrfs_space_info_used(space_info, false);
4584
4585 /*
4586 * We only want to allow over committing if we have lots of actual space
4587 * free, but if we don't have enough space to handle the global reserve
4588 * space then we could end up having a real enospc problem when trying
4589 * to allocate a chunk or some other such important allocation.
4590 */
4591 spin_lock(&global_rsv->lock);
4592 space_size = calc_global_rsv_need_space(global_rsv);
4593 spin_unlock(&global_rsv->lock);
4594 if (used + space_size >= space_info->total_bytes)
4595 return 0;
4596
4597 used += space_info->bytes_may_use;
4598
4599 avail = atomic64_read(&fs_info->free_chunk_space);
4600
4601 /*
4602 * If we have dup, raid1 or raid10 then only half of the free
4603 * space is actually useable. For raid56, the space info used
4604 * doesn't include the parity drive, so we don't have to
4605 * change the math
4606 */
4607 factor = btrfs_bg_type_to_factor(profile);
4608 avail = div_u64(avail, factor);
4609
4610 /*
4611 * If we aren't flushing all things, let us overcommit up to
4612 * 1/2th of the space. If we can flush, don't let us overcommit
4613 * too much, let it overcommit up to 1/8 of the space.
4614 */
4615 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4616 avail >>= 3;
4617 else
4618 avail >>= 1;
4619
4620 if (used + bytes < space_info->total_bytes + avail)
4621 return 1;
4622 return 0;
4623 }
4624
btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info * fs_info,unsigned long nr_pages,int nr_items)4625 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4626 unsigned long nr_pages, int nr_items)
4627 {
4628 struct super_block *sb = fs_info->sb;
4629
4630 if (down_read_trylock(&sb->s_umount)) {
4631 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4632 up_read(&sb->s_umount);
4633 } else {
4634 /*
4635 * We needn't worry the filesystem going from r/w to r/o though
4636 * we don't acquire ->s_umount mutex, because the filesystem
4637 * should guarantee the delalloc inodes list be empty after
4638 * the filesystem is readonly(all dirty pages are written to
4639 * the disk).
4640 */
4641 btrfs_start_delalloc_roots(fs_info, nr_items);
4642 if (!current->journal_info)
4643 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4644 }
4645 }
4646
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)4647 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4648 u64 to_reclaim)
4649 {
4650 u64 bytes;
4651 u64 nr;
4652
4653 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4654 nr = div64_u64(to_reclaim, bytes);
4655 if (!nr)
4656 nr = 1;
4657 return nr;
4658 }
4659
4660 #define EXTENT_SIZE_PER_ITEM SZ_256K
4661
4662 /*
4663 * shrink metadata reservation for delalloc
4664 */
shrink_delalloc(struct btrfs_fs_info * fs_info,u64 to_reclaim,u64 orig,bool wait_ordered)4665 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4666 u64 orig, bool wait_ordered)
4667 {
4668 struct btrfs_space_info *space_info;
4669 struct btrfs_trans_handle *trans;
4670 u64 delalloc_bytes;
4671 u64 max_reclaim;
4672 u64 items;
4673 long time_left;
4674 unsigned long nr_pages;
4675 int loops;
4676
4677 /* Calc the number of the pages we need flush for space reservation */
4678 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4679 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4680
4681 trans = (struct btrfs_trans_handle *)current->journal_info;
4682 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4683
4684 delalloc_bytes = percpu_counter_sum_positive(
4685 &fs_info->delalloc_bytes);
4686 if (delalloc_bytes == 0) {
4687 if (trans)
4688 return;
4689 if (wait_ordered)
4690 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4691 return;
4692 }
4693
4694 loops = 0;
4695 while (delalloc_bytes && loops < 3) {
4696 max_reclaim = min(delalloc_bytes, to_reclaim);
4697 nr_pages = max_reclaim >> PAGE_SHIFT;
4698 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4699 /*
4700 * We need to wait for the async pages to actually start before
4701 * we do anything.
4702 */
4703 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4704 if (!max_reclaim)
4705 goto skip_async;
4706
4707 if (max_reclaim <= nr_pages)
4708 max_reclaim = 0;
4709 else
4710 max_reclaim -= nr_pages;
4711
4712 wait_event(fs_info->async_submit_wait,
4713 atomic_read(&fs_info->async_delalloc_pages) <=
4714 (int)max_reclaim);
4715 skip_async:
4716 spin_lock(&space_info->lock);
4717 if (list_empty(&space_info->tickets) &&
4718 list_empty(&space_info->priority_tickets)) {
4719 spin_unlock(&space_info->lock);
4720 break;
4721 }
4722 spin_unlock(&space_info->lock);
4723
4724 loops++;
4725 if (wait_ordered && !trans) {
4726 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4727 } else {
4728 time_left = schedule_timeout_killable(1);
4729 if (time_left)
4730 break;
4731 }
4732 delalloc_bytes = percpu_counter_sum_positive(
4733 &fs_info->delalloc_bytes);
4734 }
4735 }
4736
4737 struct reserve_ticket {
4738 u64 bytes;
4739 int error;
4740 struct list_head list;
4741 wait_queue_head_t wait;
4742 };
4743
4744 /**
4745 * maybe_commit_transaction - possibly commit the transaction if its ok to
4746 * @root - the root we're allocating for
4747 * @bytes - the number of bytes we want to reserve
4748 * @force - force the commit
4749 *
4750 * This will check to make sure that committing the transaction will actually
4751 * get us somewhere and then commit the transaction if it does. Otherwise it
4752 * will return -ENOSPC.
4753 */
may_commit_transaction(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)4754 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4755 struct btrfs_space_info *space_info)
4756 {
4757 struct reserve_ticket *ticket = NULL;
4758 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4759 struct btrfs_trans_handle *trans;
4760 u64 bytes;
4761
4762 trans = (struct btrfs_trans_handle *)current->journal_info;
4763 if (trans)
4764 return -EAGAIN;
4765
4766 spin_lock(&space_info->lock);
4767 if (!list_empty(&space_info->priority_tickets))
4768 ticket = list_first_entry(&space_info->priority_tickets,
4769 struct reserve_ticket, list);
4770 else if (!list_empty(&space_info->tickets))
4771 ticket = list_first_entry(&space_info->tickets,
4772 struct reserve_ticket, list);
4773 bytes = (ticket) ? ticket->bytes : 0;
4774 spin_unlock(&space_info->lock);
4775
4776 if (!bytes)
4777 return 0;
4778
4779 /* See if there is enough pinned space to make this reservation */
4780 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4781 bytes,
4782 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4783 goto commit;
4784
4785 /*
4786 * See if there is some space in the delayed insertion reservation for
4787 * this reservation.
4788 */
4789 if (space_info != delayed_rsv->space_info)
4790 return -ENOSPC;
4791
4792 spin_lock(&delayed_rsv->lock);
4793 if (delayed_rsv->size > bytes)
4794 bytes = 0;
4795 else
4796 bytes -= delayed_rsv->size;
4797 spin_unlock(&delayed_rsv->lock);
4798
4799 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4800 bytes,
4801 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4802 return -ENOSPC;
4803 }
4804
4805 commit:
4806 trans = btrfs_join_transaction(fs_info->extent_root);
4807 if (IS_ERR(trans))
4808 return -ENOSPC;
4809
4810 return btrfs_commit_transaction(trans);
4811 }
4812
4813 /*
4814 * Try to flush some data based on policy set by @state. This is only advisory
4815 * and may fail for various reasons. The caller is supposed to examine the
4816 * state of @space_info to detect the outcome.
4817 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,int state)4818 static void flush_space(struct btrfs_fs_info *fs_info,
4819 struct btrfs_space_info *space_info, u64 num_bytes,
4820 int state)
4821 {
4822 struct btrfs_root *root = fs_info->extent_root;
4823 struct btrfs_trans_handle *trans;
4824 int nr;
4825 int ret = 0;
4826
4827 switch (state) {
4828 case FLUSH_DELAYED_ITEMS_NR:
4829 case FLUSH_DELAYED_ITEMS:
4830 if (state == FLUSH_DELAYED_ITEMS_NR)
4831 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4832 else
4833 nr = -1;
4834
4835 trans = btrfs_join_transaction(root);
4836 if (IS_ERR(trans)) {
4837 ret = PTR_ERR(trans);
4838 break;
4839 }
4840 ret = btrfs_run_delayed_items_nr(trans, nr);
4841 btrfs_end_transaction(trans);
4842 break;
4843 case FLUSH_DELALLOC:
4844 case FLUSH_DELALLOC_WAIT:
4845 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4846 state == FLUSH_DELALLOC_WAIT);
4847 break;
4848 case ALLOC_CHUNK:
4849 trans = btrfs_join_transaction(root);
4850 if (IS_ERR(trans)) {
4851 ret = PTR_ERR(trans);
4852 break;
4853 }
4854 ret = do_chunk_alloc(trans,
4855 btrfs_metadata_alloc_profile(fs_info),
4856 CHUNK_ALLOC_NO_FORCE);
4857 btrfs_end_transaction(trans);
4858 if (ret > 0 || ret == -ENOSPC)
4859 ret = 0;
4860 break;
4861 case COMMIT_TRANS:
4862 ret = may_commit_transaction(fs_info, space_info);
4863 break;
4864 default:
4865 ret = -ENOSPC;
4866 break;
4867 }
4868
4869 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4870 ret);
4871 return;
4872 }
4873
4874 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool system_chunk)4875 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4876 struct btrfs_space_info *space_info,
4877 bool system_chunk)
4878 {
4879 struct reserve_ticket *ticket;
4880 u64 used;
4881 u64 expected;
4882 u64 to_reclaim = 0;
4883
4884 list_for_each_entry(ticket, &space_info->tickets, list)
4885 to_reclaim += ticket->bytes;
4886 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4887 to_reclaim += ticket->bytes;
4888 if (to_reclaim)
4889 return to_reclaim;
4890
4891 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4892 if (can_overcommit(fs_info, space_info, to_reclaim,
4893 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4894 return 0;
4895
4896 used = btrfs_space_info_used(space_info, true);
4897
4898 if (can_overcommit(fs_info, space_info, SZ_1M,
4899 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4900 expected = div_factor_fine(space_info->total_bytes, 95);
4901 else
4902 expected = div_factor_fine(space_info->total_bytes, 90);
4903
4904 if (used > expected)
4905 to_reclaim = used - expected;
4906 else
4907 to_reclaim = 0;
4908 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4909 space_info->bytes_reserved);
4910 return to_reclaim;
4911 }
4912
need_do_async_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 used,bool system_chunk)4913 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4914 struct btrfs_space_info *space_info,
4915 u64 used, bool system_chunk)
4916 {
4917 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4918
4919 /* If we're just plain full then async reclaim just slows us down. */
4920 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4921 return 0;
4922
4923 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4924 system_chunk))
4925 return 0;
4926
4927 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4928 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4929 }
4930
wake_all_tickets(struct list_head * head)4931 static void wake_all_tickets(struct list_head *head)
4932 {
4933 struct reserve_ticket *ticket;
4934
4935 while (!list_empty(head)) {
4936 ticket = list_first_entry(head, struct reserve_ticket, list);
4937 list_del_init(&ticket->list);
4938 ticket->error = -ENOSPC;
4939 wake_up(&ticket->wait);
4940 }
4941 }
4942
4943 /*
4944 * This is for normal flushers, we can wait all goddamned day if we want to. We
4945 * will loop and continuously try to flush as long as we are making progress.
4946 * We count progress as clearing off tickets each time we have to loop.
4947 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)4948 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4949 {
4950 struct btrfs_fs_info *fs_info;
4951 struct btrfs_space_info *space_info;
4952 u64 to_reclaim;
4953 int flush_state;
4954 int commit_cycles = 0;
4955 u64 last_tickets_id;
4956
4957 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4958 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4959
4960 spin_lock(&space_info->lock);
4961 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4962 false);
4963 if (!to_reclaim) {
4964 space_info->flush = 0;
4965 spin_unlock(&space_info->lock);
4966 return;
4967 }
4968 last_tickets_id = space_info->tickets_id;
4969 spin_unlock(&space_info->lock);
4970
4971 flush_state = FLUSH_DELAYED_ITEMS_NR;
4972 do {
4973 flush_space(fs_info, space_info, to_reclaim, flush_state);
4974 spin_lock(&space_info->lock);
4975 if (list_empty(&space_info->tickets)) {
4976 space_info->flush = 0;
4977 spin_unlock(&space_info->lock);
4978 return;
4979 }
4980 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4981 space_info,
4982 false);
4983 if (last_tickets_id == space_info->tickets_id) {
4984 flush_state++;
4985 } else {
4986 last_tickets_id = space_info->tickets_id;
4987 flush_state = FLUSH_DELAYED_ITEMS_NR;
4988 if (commit_cycles)
4989 commit_cycles--;
4990 }
4991
4992 if (flush_state > COMMIT_TRANS) {
4993 commit_cycles++;
4994 if (commit_cycles > 2) {
4995 wake_all_tickets(&space_info->tickets);
4996 space_info->flush = 0;
4997 } else {
4998 flush_state = FLUSH_DELAYED_ITEMS_NR;
4999 }
5000 }
5001 spin_unlock(&space_info->lock);
5002 } while (flush_state <= COMMIT_TRANS);
5003 }
5004
btrfs_init_async_reclaim_work(struct work_struct * work)5005 void btrfs_init_async_reclaim_work(struct work_struct *work)
5006 {
5007 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5008 }
5009
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5010 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5011 struct btrfs_space_info *space_info,
5012 struct reserve_ticket *ticket)
5013 {
5014 u64 to_reclaim;
5015 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5016
5017 spin_lock(&space_info->lock);
5018 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5019 false);
5020 if (!to_reclaim) {
5021 spin_unlock(&space_info->lock);
5022 return;
5023 }
5024 spin_unlock(&space_info->lock);
5025
5026 do {
5027 flush_space(fs_info, space_info, to_reclaim, flush_state);
5028 flush_state++;
5029 spin_lock(&space_info->lock);
5030 if (ticket->bytes == 0) {
5031 spin_unlock(&space_info->lock);
5032 return;
5033 }
5034 spin_unlock(&space_info->lock);
5035
5036 /*
5037 * Priority flushers can't wait on delalloc without
5038 * deadlocking.
5039 */
5040 if (flush_state == FLUSH_DELALLOC ||
5041 flush_state == FLUSH_DELALLOC_WAIT)
5042 flush_state = ALLOC_CHUNK;
5043 } while (flush_state < COMMIT_TRANS);
5044 }
5045
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5046 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5047 struct btrfs_space_info *space_info,
5048 struct reserve_ticket *ticket, u64 orig_bytes)
5049
5050 {
5051 DEFINE_WAIT(wait);
5052 int ret = 0;
5053
5054 spin_lock(&space_info->lock);
5055 while (ticket->bytes > 0 && ticket->error == 0) {
5056 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5057 if (ret) {
5058 ret = -EINTR;
5059 break;
5060 }
5061 spin_unlock(&space_info->lock);
5062
5063 schedule();
5064
5065 finish_wait(&ticket->wait, &wait);
5066 spin_lock(&space_info->lock);
5067 }
5068 if (!ret)
5069 ret = ticket->error;
5070 if (!list_empty(&ticket->list))
5071 list_del_init(&ticket->list);
5072 if (ticket->bytes && ticket->bytes < orig_bytes) {
5073 u64 num_bytes = orig_bytes - ticket->bytes;
5074 space_info->bytes_may_use -= num_bytes;
5075 trace_btrfs_space_reservation(fs_info, "space_info",
5076 space_info->flags, num_bytes, 0);
5077 }
5078 spin_unlock(&space_info->lock);
5079
5080 return ret;
5081 }
5082
5083 /**
5084 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5085 * @root - the root we're allocating for
5086 * @space_info - the space info we want to allocate from
5087 * @orig_bytes - the number of bytes we want
5088 * @flush - whether or not we can flush to make our reservation
5089 *
5090 * This will reserve orig_bytes number of bytes from the space info associated
5091 * with the block_rsv. If there is not enough space it will make an attempt to
5092 * flush out space to make room. It will do this by flushing delalloc if
5093 * possible or committing the transaction. If flush is 0 then no attempts to
5094 * regain reservations will be made and this will fail if there is not enough
5095 * space already.
5096 */
__reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)5097 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5098 struct btrfs_space_info *space_info,
5099 u64 orig_bytes,
5100 enum btrfs_reserve_flush_enum flush,
5101 bool system_chunk)
5102 {
5103 struct reserve_ticket ticket;
5104 u64 used;
5105 int ret = 0;
5106
5107 ASSERT(orig_bytes);
5108 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5109
5110 spin_lock(&space_info->lock);
5111 ret = -ENOSPC;
5112 used = btrfs_space_info_used(space_info, true);
5113
5114 /*
5115 * If we have enough space then hooray, make our reservation and carry
5116 * on. If not see if we can overcommit, and if we can, hooray carry on.
5117 * If not things get more complicated.
5118 */
5119 if (used + orig_bytes <= space_info->total_bytes) {
5120 space_info->bytes_may_use += orig_bytes;
5121 trace_btrfs_space_reservation(fs_info, "space_info",
5122 space_info->flags, orig_bytes, 1);
5123 ret = 0;
5124 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5125 system_chunk)) {
5126 space_info->bytes_may_use += orig_bytes;
5127 trace_btrfs_space_reservation(fs_info, "space_info",
5128 space_info->flags, orig_bytes, 1);
5129 ret = 0;
5130 }
5131
5132 /*
5133 * If we couldn't make a reservation then setup our reservation ticket
5134 * and kick the async worker if it's not already running.
5135 *
5136 * If we are a priority flusher then we just need to add our ticket to
5137 * the list and we will do our own flushing further down.
5138 */
5139 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5140 ticket.bytes = orig_bytes;
5141 ticket.error = 0;
5142 init_waitqueue_head(&ticket.wait);
5143 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5144 list_add_tail(&ticket.list, &space_info->tickets);
5145 if (!space_info->flush) {
5146 space_info->flush = 1;
5147 trace_btrfs_trigger_flush(fs_info,
5148 space_info->flags,
5149 orig_bytes, flush,
5150 "enospc");
5151 queue_work(system_unbound_wq,
5152 &fs_info->async_reclaim_work);
5153 }
5154 } else {
5155 list_add_tail(&ticket.list,
5156 &space_info->priority_tickets);
5157 }
5158 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5159 used += orig_bytes;
5160 /*
5161 * We will do the space reservation dance during log replay,
5162 * which means we won't have fs_info->fs_root set, so don't do
5163 * the async reclaim as we will panic.
5164 */
5165 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5166 need_do_async_reclaim(fs_info, space_info,
5167 used, system_chunk) &&
5168 !work_busy(&fs_info->async_reclaim_work)) {
5169 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5170 orig_bytes, flush, "preempt");
5171 queue_work(system_unbound_wq,
5172 &fs_info->async_reclaim_work);
5173 }
5174 }
5175 spin_unlock(&space_info->lock);
5176 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5177 return ret;
5178
5179 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5180 return wait_reserve_ticket(fs_info, space_info, &ticket,
5181 orig_bytes);
5182
5183 ret = 0;
5184 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5185 spin_lock(&space_info->lock);
5186 if (ticket.bytes) {
5187 if (ticket.bytes < orig_bytes) {
5188 u64 num_bytes = orig_bytes - ticket.bytes;
5189 space_info->bytes_may_use -= num_bytes;
5190 trace_btrfs_space_reservation(fs_info, "space_info",
5191 space_info->flags,
5192 num_bytes, 0);
5193
5194 }
5195 list_del_init(&ticket.list);
5196 ret = -ENOSPC;
5197 }
5198 spin_unlock(&space_info->lock);
5199 ASSERT(list_empty(&ticket.list));
5200 return ret;
5201 }
5202
5203 /**
5204 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5205 * @root - the root we're allocating for
5206 * @block_rsv - the block_rsv we're allocating for
5207 * @orig_bytes - the number of bytes we want
5208 * @flush - whether or not we can flush to make our reservation
5209 *
5210 * This will reserve orgi_bytes number of bytes from the space info associated
5211 * with the block_rsv. If there is not enough space it will make an attempt to
5212 * flush out space to make room. It will do this by flushing delalloc if
5213 * possible or committing the transaction. If flush is 0 then no attempts to
5214 * regain reservations will be made and this will fail if there is not enough
5215 * space already.
5216 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5217 static int reserve_metadata_bytes(struct btrfs_root *root,
5218 struct btrfs_block_rsv *block_rsv,
5219 u64 orig_bytes,
5220 enum btrfs_reserve_flush_enum flush)
5221 {
5222 struct btrfs_fs_info *fs_info = root->fs_info;
5223 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5224 int ret;
5225 bool system_chunk = (root == fs_info->chunk_root);
5226
5227 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5228 orig_bytes, flush, system_chunk);
5229 if (ret == -ENOSPC &&
5230 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5231 if (block_rsv != global_rsv &&
5232 !block_rsv_use_bytes(global_rsv, orig_bytes))
5233 ret = 0;
5234 }
5235 if (ret == -ENOSPC) {
5236 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5237 block_rsv->space_info->flags,
5238 orig_bytes, 1);
5239
5240 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5241 dump_space_info(fs_info, block_rsv->space_info,
5242 orig_bytes, 0);
5243 }
5244 return ret;
5245 }
5246
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5247 static struct btrfs_block_rsv *get_block_rsv(
5248 const struct btrfs_trans_handle *trans,
5249 const struct btrfs_root *root)
5250 {
5251 struct btrfs_fs_info *fs_info = root->fs_info;
5252 struct btrfs_block_rsv *block_rsv = NULL;
5253
5254 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5255 (root == fs_info->csum_root && trans->adding_csums) ||
5256 (root == fs_info->uuid_root))
5257 block_rsv = trans->block_rsv;
5258
5259 if (!block_rsv)
5260 block_rsv = root->block_rsv;
5261
5262 if (!block_rsv)
5263 block_rsv = &fs_info->empty_block_rsv;
5264
5265 return block_rsv;
5266 }
5267
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5268 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5269 u64 num_bytes)
5270 {
5271 int ret = -ENOSPC;
5272 spin_lock(&block_rsv->lock);
5273 if (block_rsv->reserved >= num_bytes) {
5274 block_rsv->reserved -= num_bytes;
5275 if (block_rsv->reserved < block_rsv->size)
5276 block_rsv->full = 0;
5277 ret = 0;
5278 }
5279 spin_unlock(&block_rsv->lock);
5280 return ret;
5281 }
5282
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5283 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5284 u64 num_bytes, int update_size)
5285 {
5286 spin_lock(&block_rsv->lock);
5287 block_rsv->reserved += num_bytes;
5288 if (update_size)
5289 block_rsv->size += num_bytes;
5290 else if (block_rsv->reserved >= block_rsv->size)
5291 block_rsv->full = 1;
5292 spin_unlock(&block_rsv->lock);
5293 }
5294
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5295 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5296 struct btrfs_block_rsv *dest, u64 num_bytes,
5297 int min_factor)
5298 {
5299 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5300 u64 min_bytes;
5301
5302 if (global_rsv->space_info != dest->space_info)
5303 return -ENOSPC;
5304
5305 spin_lock(&global_rsv->lock);
5306 min_bytes = div_factor(global_rsv->size, min_factor);
5307 if (global_rsv->reserved < min_bytes + num_bytes) {
5308 spin_unlock(&global_rsv->lock);
5309 return -ENOSPC;
5310 }
5311 global_rsv->reserved -= num_bytes;
5312 if (global_rsv->reserved < global_rsv->size)
5313 global_rsv->full = 0;
5314 spin_unlock(&global_rsv->lock);
5315
5316 block_rsv_add_bytes(dest, num_bytes, 1);
5317 return 0;
5318 }
5319
5320 /*
5321 * This is for space we already have accounted in space_info->bytes_may_use, so
5322 * basically when we're returning space from block_rsv's.
5323 */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5324 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5325 struct btrfs_space_info *space_info,
5326 u64 num_bytes)
5327 {
5328 struct reserve_ticket *ticket;
5329 struct list_head *head;
5330 u64 used;
5331 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5332 bool check_overcommit = false;
5333
5334 spin_lock(&space_info->lock);
5335 head = &space_info->priority_tickets;
5336
5337 /*
5338 * If we are over our limit then we need to check and see if we can
5339 * overcommit, and if we can't then we just need to free up our space
5340 * and not satisfy any requests.
5341 */
5342 used = btrfs_space_info_used(space_info, true);
5343 if (used - num_bytes >= space_info->total_bytes)
5344 check_overcommit = true;
5345 again:
5346 while (!list_empty(head) && num_bytes) {
5347 ticket = list_first_entry(head, struct reserve_ticket,
5348 list);
5349 /*
5350 * We use 0 bytes because this space is already reserved, so
5351 * adding the ticket space would be a double count.
5352 */
5353 if (check_overcommit &&
5354 !can_overcommit(fs_info, space_info, 0, flush, false))
5355 break;
5356 if (num_bytes >= ticket->bytes) {
5357 list_del_init(&ticket->list);
5358 num_bytes -= ticket->bytes;
5359 ticket->bytes = 0;
5360 space_info->tickets_id++;
5361 wake_up(&ticket->wait);
5362 } else {
5363 ticket->bytes -= num_bytes;
5364 num_bytes = 0;
5365 }
5366 }
5367
5368 if (num_bytes && head == &space_info->priority_tickets) {
5369 head = &space_info->tickets;
5370 flush = BTRFS_RESERVE_FLUSH_ALL;
5371 goto again;
5372 }
5373 space_info->bytes_may_use -= num_bytes;
5374 trace_btrfs_space_reservation(fs_info, "space_info",
5375 space_info->flags, num_bytes, 0);
5376 spin_unlock(&space_info->lock);
5377 }
5378
5379 /*
5380 * This is for newly allocated space that isn't accounted in
5381 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5382 * we use this helper.
5383 */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5384 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5385 struct btrfs_space_info *space_info,
5386 u64 num_bytes)
5387 {
5388 struct reserve_ticket *ticket;
5389 struct list_head *head = &space_info->priority_tickets;
5390
5391 again:
5392 while (!list_empty(head) && num_bytes) {
5393 ticket = list_first_entry(head, struct reserve_ticket,
5394 list);
5395 if (num_bytes >= ticket->bytes) {
5396 trace_btrfs_space_reservation(fs_info, "space_info",
5397 space_info->flags,
5398 ticket->bytes, 1);
5399 list_del_init(&ticket->list);
5400 num_bytes -= ticket->bytes;
5401 space_info->bytes_may_use += ticket->bytes;
5402 ticket->bytes = 0;
5403 space_info->tickets_id++;
5404 wake_up(&ticket->wait);
5405 } else {
5406 trace_btrfs_space_reservation(fs_info, "space_info",
5407 space_info->flags,
5408 num_bytes, 1);
5409 space_info->bytes_may_use += num_bytes;
5410 ticket->bytes -= num_bytes;
5411 num_bytes = 0;
5412 }
5413 }
5414
5415 if (num_bytes && head == &space_info->priority_tickets) {
5416 head = &space_info->tickets;
5417 goto again;
5418 }
5419 }
5420
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)5421 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5422 struct btrfs_block_rsv *block_rsv,
5423 struct btrfs_block_rsv *dest, u64 num_bytes,
5424 u64 *qgroup_to_release_ret)
5425 {
5426 struct btrfs_space_info *space_info = block_rsv->space_info;
5427 u64 qgroup_to_release = 0;
5428 u64 ret;
5429
5430 spin_lock(&block_rsv->lock);
5431 if (num_bytes == (u64)-1) {
5432 num_bytes = block_rsv->size;
5433 qgroup_to_release = block_rsv->qgroup_rsv_size;
5434 }
5435 block_rsv->size -= num_bytes;
5436 if (block_rsv->reserved >= block_rsv->size) {
5437 num_bytes = block_rsv->reserved - block_rsv->size;
5438 block_rsv->reserved = block_rsv->size;
5439 block_rsv->full = 1;
5440 } else {
5441 num_bytes = 0;
5442 }
5443 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5444 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5445 block_rsv->qgroup_rsv_size;
5446 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5447 } else {
5448 qgroup_to_release = 0;
5449 }
5450 spin_unlock(&block_rsv->lock);
5451
5452 ret = num_bytes;
5453 if (num_bytes > 0) {
5454 if (dest) {
5455 spin_lock(&dest->lock);
5456 if (!dest->full) {
5457 u64 bytes_to_add;
5458
5459 bytes_to_add = dest->size - dest->reserved;
5460 bytes_to_add = min(num_bytes, bytes_to_add);
5461 dest->reserved += bytes_to_add;
5462 if (dest->reserved >= dest->size)
5463 dest->full = 1;
5464 num_bytes -= bytes_to_add;
5465 }
5466 spin_unlock(&dest->lock);
5467 }
5468 if (num_bytes)
5469 space_info_add_old_bytes(fs_info, space_info,
5470 num_bytes);
5471 }
5472 if (qgroup_to_release_ret)
5473 *qgroup_to_release_ret = qgroup_to_release;
5474 return ret;
5475 }
5476
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5477 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5478 struct btrfs_block_rsv *dst, u64 num_bytes,
5479 int update_size)
5480 {
5481 int ret;
5482
5483 ret = block_rsv_use_bytes(src, num_bytes);
5484 if (ret)
5485 return ret;
5486
5487 block_rsv_add_bytes(dst, num_bytes, update_size);
5488 return 0;
5489 }
5490
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5491 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5492 {
5493 memset(rsv, 0, sizeof(*rsv));
5494 spin_lock_init(&rsv->lock);
5495 rsv->type = type;
5496 }
5497
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,unsigned short type)5498 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5499 struct btrfs_block_rsv *rsv,
5500 unsigned short type)
5501 {
5502 btrfs_init_block_rsv(rsv, type);
5503 rsv->space_info = __find_space_info(fs_info,
5504 BTRFS_BLOCK_GROUP_METADATA);
5505 }
5506
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,unsigned short type)5507 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5508 unsigned short type)
5509 {
5510 struct btrfs_block_rsv *block_rsv;
5511
5512 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5513 if (!block_rsv)
5514 return NULL;
5515
5516 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5517 return block_rsv;
5518 }
5519
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5520 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5521 struct btrfs_block_rsv *rsv)
5522 {
5523 if (!rsv)
5524 return;
5525 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5526 kfree(rsv);
5527 }
5528
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5529 int btrfs_block_rsv_add(struct btrfs_root *root,
5530 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5531 enum btrfs_reserve_flush_enum flush)
5532 {
5533 int ret;
5534
5535 if (num_bytes == 0)
5536 return 0;
5537
5538 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5539 if (!ret) {
5540 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5541 return 0;
5542 }
5543
5544 return ret;
5545 }
5546
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)5547 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5548 {
5549 u64 num_bytes = 0;
5550 int ret = -ENOSPC;
5551
5552 if (!block_rsv)
5553 return 0;
5554
5555 spin_lock(&block_rsv->lock);
5556 num_bytes = div_factor(block_rsv->size, min_factor);
5557 if (block_rsv->reserved >= num_bytes)
5558 ret = 0;
5559 spin_unlock(&block_rsv->lock);
5560
5561 return ret;
5562 }
5563
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5564 int btrfs_block_rsv_refill(struct btrfs_root *root,
5565 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5566 enum btrfs_reserve_flush_enum flush)
5567 {
5568 u64 num_bytes = 0;
5569 int ret = -ENOSPC;
5570
5571 if (!block_rsv)
5572 return 0;
5573
5574 spin_lock(&block_rsv->lock);
5575 num_bytes = min_reserved;
5576 if (block_rsv->reserved >= num_bytes)
5577 ret = 0;
5578 else
5579 num_bytes -= block_rsv->reserved;
5580 spin_unlock(&block_rsv->lock);
5581
5582 if (!ret)
5583 return 0;
5584
5585 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5586 if (!ret) {
5587 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5588 return 0;
5589 }
5590
5591 return ret;
5592 }
5593
5594 /**
5595 * btrfs_inode_rsv_refill - refill the inode block rsv.
5596 * @inode - the inode we are refilling.
5597 * @flush - the flusing restriction.
5598 *
5599 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5600 * block_rsv->size as the minimum size. We'll either refill the missing amount
5601 * or return if we already have enough space. This will also handle the resreve
5602 * tracepoint for the reserved amount.
5603 */
btrfs_inode_rsv_refill(struct btrfs_inode * inode,enum btrfs_reserve_flush_enum flush)5604 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5605 enum btrfs_reserve_flush_enum flush)
5606 {
5607 struct btrfs_root *root = inode->root;
5608 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5609 u64 num_bytes = 0;
5610 u64 qgroup_num_bytes = 0;
5611 int ret = -ENOSPC;
5612
5613 spin_lock(&block_rsv->lock);
5614 if (block_rsv->reserved < block_rsv->size)
5615 num_bytes = block_rsv->size - block_rsv->reserved;
5616 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5617 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5618 block_rsv->qgroup_rsv_reserved;
5619 spin_unlock(&block_rsv->lock);
5620
5621 if (num_bytes == 0)
5622 return 0;
5623
5624 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5625 if (ret)
5626 return ret;
5627 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5628 if (!ret) {
5629 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5630 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5631 btrfs_ino(inode), num_bytes, 1);
5632
5633 /* Don't forget to increase qgroup_rsv_reserved */
5634 spin_lock(&block_rsv->lock);
5635 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5636 spin_unlock(&block_rsv->lock);
5637 } else
5638 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5639 return ret;
5640 }
5641
5642 /**
5643 * btrfs_inode_rsv_release - release any excessive reservation.
5644 * @inode - the inode we need to release from.
5645 * @qgroup_free - free or convert qgroup meta.
5646 * Unlike normal operation, qgroup meta reservation needs to know if we are
5647 * freeing qgroup reservation or just converting it into per-trans. Normally
5648 * @qgroup_free is true for error handling, and false for normal release.
5649 *
5650 * This is the same as btrfs_block_rsv_release, except that it handles the
5651 * tracepoint for the reservation.
5652 */
btrfs_inode_rsv_release(struct btrfs_inode * inode,bool qgroup_free)5653 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5654 {
5655 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5656 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5657 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5658 u64 released = 0;
5659 u64 qgroup_to_release = 0;
5660
5661 /*
5662 * Since we statically set the block_rsv->size we just want to say we
5663 * are releasing 0 bytes, and then we'll just get the reservation over
5664 * the size free'd.
5665 */
5666 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5667 &qgroup_to_release);
5668 if (released > 0)
5669 trace_btrfs_space_reservation(fs_info, "delalloc",
5670 btrfs_ino(inode), released, 0);
5671 if (qgroup_free)
5672 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5673 else
5674 btrfs_qgroup_convert_reserved_meta(inode->root,
5675 qgroup_to_release);
5676 }
5677
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5678 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5679 struct btrfs_block_rsv *block_rsv,
5680 u64 num_bytes)
5681 {
5682 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5683
5684 if (global_rsv == block_rsv ||
5685 block_rsv->space_info != global_rsv->space_info)
5686 global_rsv = NULL;
5687 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5688 }
5689
update_global_block_rsv(struct btrfs_fs_info * fs_info)5690 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5691 {
5692 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5693 struct btrfs_space_info *sinfo = block_rsv->space_info;
5694 u64 num_bytes;
5695
5696 /*
5697 * The global block rsv is based on the size of the extent tree, the
5698 * checksum tree and the root tree. If the fs is empty we want to set
5699 * it to a minimal amount for safety.
5700 */
5701 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5702 btrfs_root_used(&fs_info->csum_root->root_item) +
5703 btrfs_root_used(&fs_info->tree_root->root_item);
5704 num_bytes = max_t(u64, num_bytes, SZ_16M);
5705
5706 spin_lock(&sinfo->lock);
5707 spin_lock(&block_rsv->lock);
5708
5709 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5710
5711 if (block_rsv->reserved < block_rsv->size) {
5712 num_bytes = btrfs_space_info_used(sinfo, true);
5713 if (sinfo->total_bytes > num_bytes) {
5714 num_bytes = sinfo->total_bytes - num_bytes;
5715 num_bytes = min(num_bytes,
5716 block_rsv->size - block_rsv->reserved);
5717 block_rsv->reserved += num_bytes;
5718 sinfo->bytes_may_use += num_bytes;
5719 trace_btrfs_space_reservation(fs_info, "space_info",
5720 sinfo->flags, num_bytes,
5721 1);
5722 }
5723 } else if (block_rsv->reserved > block_rsv->size) {
5724 num_bytes = block_rsv->reserved - block_rsv->size;
5725 sinfo->bytes_may_use -= num_bytes;
5726 trace_btrfs_space_reservation(fs_info, "space_info",
5727 sinfo->flags, num_bytes, 0);
5728 block_rsv->reserved = block_rsv->size;
5729 }
5730
5731 if (block_rsv->reserved == block_rsv->size)
5732 block_rsv->full = 1;
5733 else
5734 block_rsv->full = 0;
5735
5736 spin_unlock(&block_rsv->lock);
5737 spin_unlock(&sinfo->lock);
5738 }
5739
init_global_block_rsv(struct btrfs_fs_info * fs_info)5740 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5741 {
5742 struct btrfs_space_info *space_info;
5743
5744 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5745 fs_info->chunk_block_rsv.space_info = space_info;
5746
5747 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5748 fs_info->global_block_rsv.space_info = space_info;
5749 fs_info->trans_block_rsv.space_info = space_info;
5750 fs_info->empty_block_rsv.space_info = space_info;
5751 fs_info->delayed_block_rsv.space_info = space_info;
5752
5753 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5754 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5755 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5756 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5757 if (fs_info->quota_root)
5758 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5759 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5760
5761 update_global_block_rsv(fs_info);
5762 }
5763
release_global_block_rsv(struct btrfs_fs_info * fs_info)5764 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5765 {
5766 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5767 (u64)-1, NULL);
5768 WARN_ON(fs_info->trans_block_rsv.size > 0);
5769 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5770 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5771 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5772 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5773 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5774 }
5775
5776
5777 /*
5778 * To be called after all the new block groups attached to the transaction
5779 * handle have been created (btrfs_create_pending_block_groups()).
5780 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5781 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5782 {
5783 struct btrfs_fs_info *fs_info = trans->fs_info;
5784
5785 if (!trans->chunk_bytes_reserved)
5786 return;
5787
5788 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5789
5790 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5791 trans->chunk_bytes_reserved, NULL);
5792 trans->chunk_bytes_reserved = 0;
5793 }
5794
5795 /*
5796 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5797 * root: the root of the parent directory
5798 * rsv: block reservation
5799 * items: the number of items that we need do reservation
5800 * use_global_rsv: allow fallback to the global block reservation
5801 *
5802 * This function is used to reserve the space for snapshot/subvolume
5803 * creation and deletion. Those operations are different with the
5804 * common file/directory operations, they change two fs/file trees
5805 * and root tree, the number of items that the qgroup reserves is
5806 * different with the free space reservation. So we can not use
5807 * the space reservation mechanism in start_transaction().
5808 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)5809 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5810 struct btrfs_block_rsv *rsv, int items,
5811 bool use_global_rsv)
5812 {
5813 u64 qgroup_num_bytes = 0;
5814 u64 num_bytes;
5815 int ret;
5816 struct btrfs_fs_info *fs_info = root->fs_info;
5817 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5818
5819 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5820 /* One for parent inode, two for dir entries */
5821 qgroup_num_bytes = 3 * fs_info->nodesize;
5822 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5823 qgroup_num_bytes, true);
5824 if (ret)
5825 return ret;
5826 }
5827
5828 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5829 rsv->space_info = __find_space_info(fs_info,
5830 BTRFS_BLOCK_GROUP_METADATA);
5831 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5832 BTRFS_RESERVE_FLUSH_ALL);
5833
5834 if (ret == -ENOSPC && use_global_rsv)
5835 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5836
5837 if (ret && qgroup_num_bytes)
5838 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5839
5840 return ret;
5841 }
5842
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5843 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5844 struct btrfs_block_rsv *rsv)
5845 {
5846 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5847 }
5848
btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)5849 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5850 struct btrfs_inode *inode)
5851 {
5852 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5853 u64 reserve_size = 0;
5854 u64 qgroup_rsv_size = 0;
5855 u64 csum_leaves;
5856 unsigned outstanding_extents;
5857
5858 lockdep_assert_held(&inode->lock);
5859 outstanding_extents = inode->outstanding_extents;
5860 if (outstanding_extents)
5861 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5862 outstanding_extents + 1);
5863 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5864 inode->csum_bytes);
5865 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5866 csum_leaves);
5867 /*
5868 * For qgroup rsv, the calculation is very simple:
5869 * account one nodesize for each outstanding extent
5870 *
5871 * This is overestimating in most cases.
5872 */
5873 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
5874
5875 spin_lock(&block_rsv->lock);
5876 block_rsv->size = reserve_size;
5877 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5878 spin_unlock(&block_rsv->lock);
5879 }
5880
btrfs_delalloc_reserve_metadata(struct btrfs_inode * inode,u64 num_bytes)5881 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5882 {
5883 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5884 unsigned nr_extents;
5885 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5886 int ret = 0;
5887 bool delalloc_lock = true;
5888
5889 /* If we are a free space inode we need to not flush since we will be in
5890 * the middle of a transaction commit. We also don't need the delalloc
5891 * mutex since we won't race with anybody. We need this mostly to make
5892 * lockdep shut its filthy mouth.
5893 *
5894 * If we have a transaction open (can happen if we call truncate_block
5895 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5896 */
5897 if (btrfs_is_free_space_inode(inode)) {
5898 flush = BTRFS_RESERVE_NO_FLUSH;
5899 delalloc_lock = false;
5900 } else {
5901 if (current->journal_info)
5902 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5903
5904 if (btrfs_transaction_in_commit(fs_info))
5905 schedule_timeout(1);
5906 }
5907
5908 if (delalloc_lock)
5909 mutex_lock(&inode->delalloc_mutex);
5910
5911 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5912
5913 /* Add our new extents and calculate the new rsv size. */
5914 spin_lock(&inode->lock);
5915 nr_extents = count_max_extents(num_bytes);
5916 btrfs_mod_outstanding_extents(inode, nr_extents);
5917 inode->csum_bytes += num_bytes;
5918 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5919 spin_unlock(&inode->lock);
5920
5921 ret = btrfs_inode_rsv_refill(inode, flush);
5922 if (unlikely(ret))
5923 goto out_fail;
5924
5925 if (delalloc_lock)
5926 mutex_unlock(&inode->delalloc_mutex);
5927 return 0;
5928
5929 out_fail:
5930 spin_lock(&inode->lock);
5931 nr_extents = count_max_extents(num_bytes);
5932 btrfs_mod_outstanding_extents(inode, -nr_extents);
5933 inode->csum_bytes -= num_bytes;
5934 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5935 spin_unlock(&inode->lock);
5936
5937 btrfs_inode_rsv_release(inode, true);
5938 if (delalloc_lock)
5939 mutex_unlock(&inode->delalloc_mutex);
5940 return ret;
5941 }
5942
5943 /**
5944 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5945 * @inode: the inode to release the reservation for.
5946 * @num_bytes: the number of bytes we are releasing.
5947 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5948 *
5949 * This will release the metadata reservation for an inode. This can be called
5950 * once we complete IO for a given set of bytes to release their metadata
5951 * reservations, or on error for the same reason.
5952 */
btrfs_delalloc_release_metadata(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)5953 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5954 bool qgroup_free)
5955 {
5956 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5957
5958 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5959 spin_lock(&inode->lock);
5960 inode->csum_bytes -= num_bytes;
5961 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5962 spin_unlock(&inode->lock);
5963
5964 if (btrfs_is_testing(fs_info))
5965 return;
5966
5967 btrfs_inode_rsv_release(inode, qgroup_free);
5968 }
5969
5970 /**
5971 * btrfs_delalloc_release_extents - release our outstanding_extents
5972 * @inode: the inode to balance the reservation for.
5973 * @num_bytes: the number of bytes we originally reserved with
5974 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5975 *
5976 * When we reserve space we increase outstanding_extents for the extents we may
5977 * add. Once we've set the range as delalloc or created our ordered extents we
5978 * have outstanding_extents to track the real usage, so we use this to free our
5979 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5980 * with btrfs_delalloc_reserve_metadata.
5981 */
btrfs_delalloc_release_extents(struct btrfs_inode * inode,u64 num_bytes)5982 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
5983 {
5984 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5985 unsigned num_extents;
5986
5987 spin_lock(&inode->lock);
5988 num_extents = count_max_extents(num_bytes);
5989 btrfs_mod_outstanding_extents(inode, -num_extents);
5990 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5991 spin_unlock(&inode->lock);
5992
5993 if (btrfs_is_testing(fs_info))
5994 return;
5995
5996 btrfs_inode_rsv_release(inode, true);
5997 }
5998
5999 /**
6000 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6001 * delalloc
6002 * @inode: inode we're writing to
6003 * @start: start range we are writing to
6004 * @len: how long the range we are writing to
6005 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6006 * current reservation.
6007 *
6008 * This will do the following things
6009 *
6010 * o reserve space in data space info for num bytes
6011 * and reserve precious corresponding qgroup space
6012 * (Done in check_data_free_space)
6013 *
6014 * o reserve space for metadata space, based on the number of outstanding
6015 * extents and how much csums will be needed
6016 * also reserve metadata space in a per root over-reserve method.
6017 * o add to the inodes->delalloc_bytes
6018 * o add it to the fs_info's delalloc inodes list.
6019 * (Above 3 all done in delalloc_reserve_metadata)
6020 *
6021 * Return 0 for success
6022 * Return <0 for error(-ENOSPC or -EQUOT)
6023 */
btrfs_delalloc_reserve_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)6024 int btrfs_delalloc_reserve_space(struct inode *inode,
6025 struct extent_changeset **reserved, u64 start, u64 len)
6026 {
6027 int ret;
6028
6029 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6030 if (ret < 0)
6031 return ret;
6032 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6033 if (ret < 0)
6034 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6035 return ret;
6036 }
6037
6038 /**
6039 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6040 * @inode: inode we're releasing space for
6041 * @start: start position of the space already reserved
6042 * @len: the len of the space already reserved
6043 * @release_bytes: the len of the space we consumed or didn't use
6044 *
6045 * This function will release the metadata space that was not used and will
6046 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6047 * list if there are no delalloc bytes left.
6048 * Also it will handle the qgroup reserved space.
6049 */
btrfs_delalloc_release_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len,bool qgroup_free)6050 void btrfs_delalloc_release_space(struct inode *inode,
6051 struct extent_changeset *reserved,
6052 u64 start, u64 len, bool qgroup_free)
6053 {
6054 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6055 btrfs_free_reserved_data_space(inode, reserved, start, len);
6056 }
6057
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * info,u64 bytenr,u64 num_bytes,int alloc)6058 static int update_block_group(struct btrfs_trans_handle *trans,
6059 struct btrfs_fs_info *info, u64 bytenr,
6060 u64 num_bytes, int alloc)
6061 {
6062 struct btrfs_block_group_cache *cache = NULL;
6063 u64 total = num_bytes;
6064 u64 old_val;
6065 u64 byte_in_group;
6066 int factor;
6067
6068 /* block accounting for super block */
6069 spin_lock(&info->delalloc_root_lock);
6070 old_val = btrfs_super_bytes_used(info->super_copy);
6071 if (alloc)
6072 old_val += num_bytes;
6073 else
6074 old_val -= num_bytes;
6075 btrfs_set_super_bytes_used(info->super_copy, old_val);
6076 spin_unlock(&info->delalloc_root_lock);
6077
6078 while (total) {
6079 cache = btrfs_lookup_block_group(info, bytenr);
6080 if (!cache)
6081 return -ENOENT;
6082 factor = btrfs_bg_type_to_factor(cache->flags);
6083
6084 /*
6085 * If this block group has free space cache written out, we
6086 * need to make sure to load it if we are removing space. This
6087 * is because we need the unpinning stage to actually add the
6088 * space back to the block group, otherwise we will leak space.
6089 */
6090 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6091 cache_block_group(cache, 1);
6092
6093 byte_in_group = bytenr - cache->key.objectid;
6094 WARN_ON(byte_in_group > cache->key.offset);
6095
6096 spin_lock(&cache->space_info->lock);
6097 spin_lock(&cache->lock);
6098
6099 if (btrfs_test_opt(info, SPACE_CACHE) &&
6100 cache->disk_cache_state < BTRFS_DC_CLEAR)
6101 cache->disk_cache_state = BTRFS_DC_CLEAR;
6102
6103 old_val = btrfs_block_group_used(&cache->item);
6104 num_bytes = min(total, cache->key.offset - byte_in_group);
6105 if (alloc) {
6106 old_val += num_bytes;
6107 btrfs_set_block_group_used(&cache->item, old_val);
6108 cache->reserved -= num_bytes;
6109 cache->space_info->bytes_reserved -= num_bytes;
6110 cache->space_info->bytes_used += num_bytes;
6111 cache->space_info->disk_used += num_bytes * factor;
6112 spin_unlock(&cache->lock);
6113 spin_unlock(&cache->space_info->lock);
6114 } else {
6115 old_val -= num_bytes;
6116 btrfs_set_block_group_used(&cache->item, old_val);
6117 cache->pinned += num_bytes;
6118 cache->space_info->bytes_pinned += num_bytes;
6119 cache->space_info->bytes_used -= num_bytes;
6120 cache->space_info->disk_used -= num_bytes * factor;
6121 spin_unlock(&cache->lock);
6122 spin_unlock(&cache->space_info->lock);
6123
6124 trace_btrfs_space_reservation(info, "pinned",
6125 cache->space_info->flags,
6126 num_bytes, 1);
6127 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6128 num_bytes,
6129 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6130 set_extent_dirty(info->pinned_extents,
6131 bytenr, bytenr + num_bytes - 1,
6132 GFP_NOFS | __GFP_NOFAIL);
6133 }
6134
6135 spin_lock(&trans->transaction->dirty_bgs_lock);
6136 if (list_empty(&cache->dirty_list)) {
6137 list_add_tail(&cache->dirty_list,
6138 &trans->transaction->dirty_bgs);
6139 trans->transaction->num_dirty_bgs++;
6140 btrfs_get_block_group(cache);
6141 }
6142 spin_unlock(&trans->transaction->dirty_bgs_lock);
6143
6144 /*
6145 * No longer have used bytes in this block group, queue it for
6146 * deletion. We do this after adding the block group to the
6147 * dirty list to avoid races between cleaner kthread and space
6148 * cache writeout.
6149 */
6150 if (!alloc && old_val == 0)
6151 btrfs_mark_bg_unused(cache);
6152
6153 btrfs_put_block_group(cache);
6154 total -= num_bytes;
6155 bytenr += num_bytes;
6156 }
6157 return 0;
6158 }
6159
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)6160 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6161 {
6162 struct btrfs_block_group_cache *cache;
6163 u64 bytenr;
6164
6165 spin_lock(&fs_info->block_group_cache_lock);
6166 bytenr = fs_info->first_logical_byte;
6167 spin_unlock(&fs_info->block_group_cache_lock);
6168
6169 if (bytenr < (u64)-1)
6170 return bytenr;
6171
6172 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6173 if (!cache)
6174 return 0;
6175
6176 bytenr = cache->key.objectid;
6177 btrfs_put_block_group(cache);
6178
6179 return bytenr;
6180 }
6181
pin_down_extent(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6182 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6183 struct btrfs_block_group_cache *cache,
6184 u64 bytenr, u64 num_bytes, int reserved)
6185 {
6186 spin_lock(&cache->space_info->lock);
6187 spin_lock(&cache->lock);
6188 cache->pinned += num_bytes;
6189 cache->space_info->bytes_pinned += num_bytes;
6190 if (reserved) {
6191 cache->reserved -= num_bytes;
6192 cache->space_info->bytes_reserved -= num_bytes;
6193 }
6194 spin_unlock(&cache->lock);
6195 spin_unlock(&cache->space_info->lock);
6196
6197 trace_btrfs_space_reservation(fs_info, "pinned",
6198 cache->space_info->flags, num_bytes, 1);
6199 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6200 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6201 set_extent_dirty(fs_info->pinned_extents, bytenr,
6202 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6203 return 0;
6204 }
6205
6206 /*
6207 * this function must be called within transaction
6208 */
btrfs_pin_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,int reserved)6209 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6210 u64 bytenr, u64 num_bytes, int reserved)
6211 {
6212 struct btrfs_block_group_cache *cache;
6213
6214 cache = btrfs_lookup_block_group(fs_info, bytenr);
6215 BUG_ON(!cache); /* Logic error */
6216
6217 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6218
6219 btrfs_put_block_group(cache);
6220 return 0;
6221 }
6222
6223 /*
6224 * this function must be called within transaction
6225 */
btrfs_pin_extent_for_log_replay(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)6226 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6227 u64 bytenr, u64 num_bytes)
6228 {
6229 struct btrfs_block_group_cache *cache;
6230 int ret;
6231
6232 cache = btrfs_lookup_block_group(fs_info, bytenr);
6233 if (!cache)
6234 return -EINVAL;
6235
6236 /*
6237 * pull in the free space cache (if any) so that our pin
6238 * removes the free space from the cache. We have load_only set
6239 * to one because the slow code to read in the free extents does check
6240 * the pinned extents.
6241 */
6242 cache_block_group(cache, 1);
6243
6244 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6245
6246 /* remove us from the free space cache (if we're there at all) */
6247 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6248 btrfs_put_block_group(cache);
6249 return ret;
6250 }
6251
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)6252 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6253 u64 start, u64 num_bytes)
6254 {
6255 int ret;
6256 struct btrfs_block_group_cache *block_group;
6257 struct btrfs_caching_control *caching_ctl;
6258
6259 block_group = btrfs_lookup_block_group(fs_info, start);
6260 if (!block_group)
6261 return -EINVAL;
6262
6263 cache_block_group(block_group, 0);
6264 caching_ctl = get_caching_control(block_group);
6265
6266 if (!caching_ctl) {
6267 /* Logic error */
6268 BUG_ON(!block_group_cache_done(block_group));
6269 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6270 } else {
6271 mutex_lock(&caching_ctl->mutex);
6272
6273 if (start >= caching_ctl->progress) {
6274 ret = add_excluded_extent(fs_info, start, num_bytes);
6275 } else if (start + num_bytes <= caching_ctl->progress) {
6276 ret = btrfs_remove_free_space(block_group,
6277 start, num_bytes);
6278 } else {
6279 num_bytes = caching_ctl->progress - start;
6280 ret = btrfs_remove_free_space(block_group,
6281 start, num_bytes);
6282 if (ret)
6283 goto out_lock;
6284
6285 num_bytes = (start + num_bytes) -
6286 caching_ctl->progress;
6287 start = caching_ctl->progress;
6288 ret = add_excluded_extent(fs_info, start, num_bytes);
6289 }
6290 out_lock:
6291 mutex_unlock(&caching_ctl->mutex);
6292 put_caching_control(caching_ctl);
6293 }
6294 btrfs_put_block_group(block_group);
6295 return ret;
6296 }
6297
btrfs_exclude_logged_extents(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)6298 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6299 struct extent_buffer *eb)
6300 {
6301 struct btrfs_file_extent_item *item;
6302 struct btrfs_key key;
6303 int found_type;
6304 int i;
6305 int ret = 0;
6306
6307 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6308 return 0;
6309
6310 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6311 btrfs_item_key_to_cpu(eb, &key, i);
6312 if (key.type != BTRFS_EXTENT_DATA_KEY)
6313 continue;
6314 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6315 found_type = btrfs_file_extent_type(eb, item);
6316 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6317 continue;
6318 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6319 continue;
6320 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6321 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6322 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6323 if (ret)
6324 break;
6325 }
6326
6327 return ret;
6328 }
6329
6330 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6331 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6332 {
6333 atomic_inc(&bg->reservations);
6334 }
6335
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6336 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6337 const u64 start)
6338 {
6339 struct btrfs_block_group_cache *bg;
6340
6341 bg = btrfs_lookup_block_group(fs_info, start);
6342 ASSERT(bg);
6343 if (atomic_dec_and_test(&bg->reservations))
6344 wake_up_var(&bg->reservations);
6345 btrfs_put_block_group(bg);
6346 }
6347
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6348 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6349 {
6350 struct btrfs_space_info *space_info = bg->space_info;
6351
6352 ASSERT(bg->ro);
6353
6354 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6355 return;
6356
6357 /*
6358 * Our block group is read only but before we set it to read only,
6359 * some task might have had allocated an extent from it already, but it
6360 * has not yet created a respective ordered extent (and added it to a
6361 * root's list of ordered extents).
6362 * Therefore wait for any task currently allocating extents, since the
6363 * block group's reservations counter is incremented while a read lock
6364 * on the groups' semaphore is held and decremented after releasing
6365 * the read access on that semaphore and creating the ordered extent.
6366 */
6367 down_write(&space_info->groups_sem);
6368 up_write(&space_info->groups_sem);
6369
6370 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6371 }
6372
6373 /**
6374 * btrfs_add_reserved_bytes - update the block_group and space info counters
6375 * @cache: The cache we are manipulating
6376 * @ram_bytes: The number of bytes of file content, and will be same to
6377 * @num_bytes except for the compress path.
6378 * @num_bytes: The number of bytes in question
6379 * @delalloc: The blocks are allocated for the delalloc write
6380 *
6381 * This is called by the allocator when it reserves space. If this is a
6382 * reservation and the block group has become read only we cannot make the
6383 * reservation and return -EAGAIN, otherwise this function always succeeds.
6384 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6385 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6386 u64 ram_bytes, u64 num_bytes, int delalloc)
6387 {
6388 struct btrfs_space_info *space_info = cache->space_info;
6389 int ret = 0;
6390
6391 spin_lock(&space_info->lock);
6392 spin_lock(&cache->lock);
6393 if (cache->ro) {
6394 ret = -EAGAIN;
6395 } else {
6396 cache->reserved += num_bytes;
6397 space_info->bytes_reserved += num_bytes;
6398
6399 trace_btrfs_space_reservation(cache->fs_info,
6400 "space_info", space_info->flags,
6401 ram_bytes, 0);
6402 space_info->bytes_may_use -= ram_bytes;
6403 if (delalloc)
6404 cache->delalloc_bytes += num_bytes;
6405 }
6406 spin_unlock(&cache->lock);
6407 spin_unlock(&space_info->lock);
6408 return ret;
6409 }
6410
6411 /**
6412 * btrfs_free_reserved_bytes - update the block_group and space info counters
6413 * @cache: The cache we are manipulating
6414 * @num_bytes: The number of bytes in question
6415 * @delalloc: The blocks are allocated for the delalloc write
6416 *
6417 * This is called by somebody who is freeing space that was never actually used
6418 * on disk. For example if you reserve some space for a new leaf in transaction
6419 * A and before transaction A commits you free that leaf, you call this with
6420 * reserve set to 0 in order to clear the reservation.
6421 */
6422
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6423 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6424 u64 num_bytes, int delalloc)
6425 {
6426 struct btrfs_space_info *space_info = cache->space_info;
6427 int ret = 0;
6428
6429 spin_lock(&space_info->lock);
6430 spin_lock(&cache->lock);
6431 if (cache->ro)
6432 space_info->bytes_readonly += num_bytes;
6433 cache->reserved -= num_bytes;
6434 space_info->bytes_reserved -= num_bytes;
6435 space_info->max_extent_size = 0;
6436
6437 if (delalloc)
6438 cache->delalloc_bytes -= num_bytes;
6439 spin_unlock(&cache->lock);
6440 spin_unlock(&space_info->lock);
6441 return ret;
6442 }
btrfs_prepare_extent_commit(struct btrfs_fs_info * fs_info)6443 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6444 {
6445 struct btrfs_caching_control *next;
6446 struct btrfs_caching_control *caching_ctl;
6447 struct btrfs_block_group_cache *cache;
6448
6449 down_write(&fs_info->commit_root_sem);
6450
6451 list_for_each_entry_safe(caching_ctl, next,
6452 &fs_info->caching_block_groups, list) {
6453 cache = caching_ctl->block_group;
6454 if (block_group_cache_done(cache)) {
6455 cache->last_byte_to_unpin = (u64)-1;
6456 list_del_init(&caching_ctl->list);
6457 put_caching_control(caching_ctl);
6458 } else {
6459 cache->last_byte_to_unpin = caching_ctl->progress;
6460 }
6461 }
6462
6463 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6464 fs_info->pinned_extents = &fs_info->freed_extents[1];
6465 else
6466 fs_info->pinned_extents = &fs_info->freed_extents[0];
6467
6468 up_write(&fs_info->commit_root_sem);
6469
6470 update_global_block_rsv(fs_info);
6471 }
6472
6473 /*
6474 * Returns the free cluster for the given space info and sets empty_cluster to
6475 * what it should be based on the mount options.
6476 */
6477 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)6478 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6479 struct btrfs_space_info *space_info, u64 *empty_cluster)
6480 {
6481 struct btrfs_free_cluster *ret = NULL;
6482
6483 *empty_cluster = 0;
6484 if (btrfs_mixed_space_info(space_info))
6485 return ret;
6486
6487 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6488 ret = &fs_info->meta_alloc_cluster;
6489 if (btrfs_test_opt(fs_info, SSD))
6490 *empty_cluster = SZ_2M;
6491 else
6492 *empty_cluster = SZ_64K;
6493 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6494 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6495 *empty_cluster = SZ_2M;
6496 ret = &fs_info->data_alloc_cluster;
6497 }
6498
6499 return ret;
6500 }
6501
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)6502 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6503 u64 start, u64 end,
6504 const bool return_free_space)
6505 {
6506 struct btrfs_block_group_cache *cache = NULL;
6507 struct btrfs_space_info *space_info;
6508 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6509 struct btrfs_free_cluster *cluster = NULL;
6510 u64 len;
6511 u64 total_unpinned = 0;
6512 u64 empty_cluster = 0;
6513 bool readonly;
6514
6515 while (start <= end) {
6516 readonly = false;
6517 if (!cache ||
6518 start >= cache->key.objectid + cache->key.offset) {
6519 if (cache)
6520 btrfs_put_block_group(cache);
6521 total_unpinned = 0;
6522 cache = btrfs_lookup_block_group(fs_info, start);
6523 BUG_ON(!cache); /* Logic error */
6524
6525 cluster = fetch_cluster_info(fs_info,
6526 cache->space_info,
6527 &empty_cluster);
6528 empty_cluster <<= 1;
6529 }
6530
6531 len = cache->key.objectid + cache->key.offset - start;
6532 len = min(len, end + 1 - start);
6533
6534 if (start < cache->last_byte_to_unpin) {
6535 len = min(len, cache->last_byte_to_unpin - start);
6536 if (return_free_space)
6537 btrfs_add_free_space(cache, start, len);
6538 }
6539
6540 start += len;
6541 total_unpinned += len;
6542 space_info = cache->space_info;
6543
6544 /*
6545 * If this space cluster has been marked as fragmented and we've
6546 * unpinned enough in this block group to potentially allow a
6547 * cluster to be created inside of it go ahead and clear the
6548 * fragmented check.
6549 */
6550 if (cluster && cluster->fragmented &&
6551 total_unpinned > empty_cluster) {
6552 spin_lock(&cluster->lock);
6553 cluster->fragmented = 0;
6554 spin_unlock(&cluster->lock);
6555 }
6556
6557 spin_lock(&space_info->lock);
6558 spin_lock(&cache->lock);
6559 cache->pinned -= len;
6560 space_info->bytes_pinned -= len;
6561
6562 trace_btrfs_space_reservation(fs_info, "pinned",
6563 space_info->flags, len, 0);
6564 space_info->max_extent_size = 0;
6565 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6566 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6567 if (cache->ro) {
6568 space_info->bytes_readonly += len;
6569 readonly = true;
6570 }
6571 spin_unlock(&cache->lock);
6572 if (!readonly && return_free_space &&
6573 global_rsv->space_info == space_info) {
6574 u64 to_add = len;
6575
6576 spin_lock(&global_rsv->lock);
6577 if (!global_rsv->full) {
6578 to_add = min(len, global_rsv->size -
6579 global_rsv->reserved);
6580 global_rsv->reserved += to_add;
6581 space_info->bytes_may_use += to_add;
6582 if (global_rsv->reserved >= global_rsv->size)
6583 global_rsv->full = 1;
6584 trace_btrfs_space_reservation(fs_info,
6585 "space_info",
6586 space_info->flags,
6587 to_add, 1);
6588 len -= to_add;
6589 }
6590 spin_unlock(&global_rsv->lock);
6591 /* Add to any tickets we may have */
6592 if (len)
6593 space_info_add_new_bytes(fs_info, space_info,
6594 len);
6595 }
6596 spin_unlock(&space_info->lock);
6597 }
6598
6599 if (cache)
6600 btrfs_put_block_group(cache);
6601 return 0;
6602 }
6603
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)6604 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6605 {
6606 struct btrfs_fs_info *fs_info = trans->fs_info;
6607 struct btrfs_block_group_cache *block_group, *tmp;
6608 struct list_head *deleted_bgs;
6609 struct extent_io_tree *unpin;
6610 u64 start;
6611 u64 end;
6612 int ret;
6613
6614 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6615 unpin = &fs_info->freed_extents[1];
6616 else
6617 unpin = &fs_info->freed_extents[0];
6618
6619 while (!trans->aborted) {
6620 struct extent_state *cached_state = NULL;
6621
6622 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6623 ret = find_first_extent_bit(unpin, 0, &start, &end,
6624 EXTENT_DIRTY, &cached_state);
6625 if (ret) {
6626 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6627 break;
6628 }
6629
6630 if (btrfs_test_opt(fs_info, DISCARD))
6631 ret = btrfs_discard_extent(fs_info, start,
6632 end + 1 - start, NULL);
6633
6634 clear_extent_dirty(unpin, start, end, &cached_state);
6635 unpin_extent_range(fs_info, start, end, true);
6636 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6637 free_extent_state(cached_state);
6638 cond_resched();
6639 }
6640
6641 /*
6642 * Transaction is finished. We don't need the lock anymore. We
6643 * do need to clean up the block groups in case of a transaction
6644 * abort.
6645 */
6646 deleted_bgs = &trans->transaction->deleted_bgs;
6647 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6648 u64 trimmed = 0;
6649
6650 ret = -EROFS;
6651 if (!trans->aborted)
6652 ret = btrfs_discard_extent(fs_info,
6653 block_group->key.objectid,
6654 block_group->key.offset,
6655 &trimmed);
6656
6657 list_del_init(&block_group->bg_list);
6658 btrfs_put_block_group_trimming(block_group);
6659 btrfs_put_block_group(block_group);
6660
6661 if (ret) {
6662 const char *errstr = btrfs_decode_error(ret);
6663 btrfs_warn(fs_info,
6664 "discard failed while removing blockgroup: errno=%d %s",
6665 ret, errstr);
6666 }
6667 }
6668
6669 return 0;
6670 }
6671
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6672 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6673 struct btrfs_delayed_ref_node *node, u64 parent,
6674 u64 root_objectid, u64 owner_objectid,
6675 u64 owner_offset, int refs_to_drop,
6676 struct btrfs_delayed_extent_op *extent_op)
6677 {
6678 struct btrfs_fs_info *info = trans->fs_info;
6679 struct btrfs_key key;
6680 struct btrfs_path *path;
6681 struct btrfs_root *extent_root = info->extent_root;
6682 struct extent_buffer *leaf;
6683 struct btrfs_extent_item *ei;
6684 struct btrfs_extent_inline_ref *iref;
6685 int ret;
6686 int is_data;
6687 int extent_slot = 0;
6688 int found_extent = 0;
6689 int num_to_del = 1;
6690 u32 item_size;
6691 u64 refs;
6692 u64 bytenr = node->bytenr;
6693 u64 num_bytes = node->num_bytes;
6694 int last_ref = 0;
6695 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6696
6697 path = btrfs_alloc_path();
6698 if (!path)
6699 return -ENOMEM;
6700
6701 path->reada = READA_FORWARD;
6702 path->leave_spinning = 1;
6703
6704 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6705 BUG_ON(!is_data && refs_to_drop != 1);
6706
6707 if (is_data)
6708 skinny_metadata = false;
6709
6710 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6711 parent, root_objectid, owner_objectid,
6712 owner_offset);
6713 if (ret == 0) {
6714 extent_slot = path->slots[0];
6715 while (extent_slot >= 0) {
6716 btrfs_item_key_to_cpu(path->nodes[0], &key,
6717 extent_slot);
6718 if (key.objectid != bytenr)
6719 break;
6720 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6721 key.offset == num_bytes) {
6722 found_extent = 1;
6723 break;
6724 }
6725 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6726 key.offset == owner_objectid) {
6727 found_extent = 1;
6728 break;
6729 }
6730 if (path->slots[0] - extent_slot > 5)
6731 break;
6732 extent_slot--;
6733 }
6734
6735 if (!found_extent) {
6736 BUG_ON(iref);
6737 ret = remove_extent_backref(trans, path, NULL,
6738 refs_to_drop,
6739 is_data, &last_ref);
6740 if (ret) {
6741 btrfs_abort_transaction(trans, ret);
6742 goto out;
6743 }
6744 btrfs_release_path(path);
6745 path->leave_spinning = 1;
6746
6747 key.objectid = bytenr;
6748 key.type = BTRFS_EXTENT_ITEM_KEY;
6749 key.offset = num_bytes;
6750
6751 if (!is_data && skinny_metadata) {
6752 key.type = BTRFS_METADATA_ITEM_KEY;
6753 key.offset = owner_objectid;
6754 }
6755
6756 ret = btrfs_search_slot(trans, extent_root,
6757 &key, path, -1, 1);
6758 if (ret > 0 && skinny_metadata && path->slots[0]) {
6759 /*
6760 * Couldn't find our skinny metadata item,
6761 * see if we have ye olde extent item.
6762 */
6763 path->slots[0]--;
6764 btrfs_item_key_to_cpu(path->nodes[0], &key,
6765 path->slots[0]);
6766 if (key.objectid == bytenr &&
6767 key.type == BTRFS_EXTENT_ITEM_KEY &&
6768 key.offset == num_bytes)
6769 ret = 0;
6770 }
6771
6772 if (ret > 0 && skinny_metadata) {
6773 skinny_metadata = false;
6774 key.objectid = bytenr;
6775 key.type = BTRFS_EXTENT_ITEM_KEY;
6776 key.offset = num_bytes;
6777 btrfs_release_path(path);
6778 ret = btrfs_search_slot(trans, extent_root,
6779 &key, path, -1, 1);
6780 }
6781
6782 if (ret) {
6783 btrfs_err(info,
6784 "umm, got %d back from search, was looking for %llu",
6785 ret, bytenr);
6786 if (ret > 0)
6787 btrfs_print_leaf(path->nodes[0]);
6788 }
6789 if (ret < 0) {
6790 btrfs_abort_transaction(trans, ret);
6791 goto out;
6792 }
6793 extent_slot = path->slots[0];
6794 }
6795 } else if (ret == -ENOENT) {
6796 btrfs_print_leaf(path->nodes[0]);
6797 btrfs_err(info,
6798 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6799 bytenr, parent, root_objectid, owner_objectid,
6800 owner_offset);
6801 btrfs_abort_transaction(trans, ret);
6802 goto out;
6803 } else {
6804 btrfs_abort_transaction(trans, ret);
6805 goto out;
6806 }
6807
6808 leaf = path->nodes[0];
6809 item_size = btrfs_item_size_nr(leaf, extent_slot);
6810 if (unlikely(item_size < sizeof(*ei))) {
6811 ret = -EINVAL;
6812 btrfs_print_v0_err(info);
6813 btrfs_abort_transaction(trans, ret);
6814 goto out;
6815 }
6816 ei = btrfs_item_ptr(leaf, extent_slot,
6817 struct btrfs_extent_item);
6818 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6819 key.type == BTRFS_EXTENT_ITEM_KEY) {
6820 struct btrfs_tree_block_info *bi;
6821 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6822 bi = (struct btrfs_tree_block_info *)(ei + 1);
6823 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6824 }
6825
6826 refs = btrfs_extent_refs(leaf, ei);
6827 if (refs < refs_to_drop) {
6828 btrfs_err(info,
6829 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6830 refs_to_drop, refs, bytenr);
6831 ret = -EINVAL;
6832 btrfs_abort_transaction(trans, ret);
6833 goto out;
6834 }
6835 refs -= refs_to_drop;
6836
6837 if (refs > 0) {
6838 if (extent_op)
6839 __run_delayed_extent_op(extent_op, leaf, ei);
6840 /*
6841 * In the case of inline back ref, reference count will
6842 * be updated by remove_extent_backref
6843 */
6844 if (iref) {
6845 BUG_ON(!found_extent);
6846 } else {
6847 btrfs_set_extent_refs(leaf, ei, refs);
6848 btrfs_mark_buffer_dirty(leaf);
6849 }
6850 if (found_extent) {
6851 ret = remove_extent_backref(trans, path, iref,
6852 refs_to_drop, is_data,
6853 &last_ref);
6854 if (ret) {
6855 btrfs_abort_transaction(trans, ret);
6856 goto out;
6857 }
6858 }
6859 } else {
6860 if (found_extent) {
6861 BUG_ON(is_data && refs_to_drop !=
6862 extent_data_ref_count(path, iref));
6863 if (iref) {
6864 BUG_ON(path->slots[0] != extent_slot);
6865 } else {
6866 BUG_ON(path->slots[0] != extent_slot + 1);
6867 path->slots[0] = extent_slot;
6868 num_to_del = 2;
6869 }
6870 }
6871
6872 last_ref = 1;
6873 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6874 num_to_del);
6875 if (ret) {
6876 btrfs_abort_transaction(trans, ret);
6877 goto out;
6878 }
6879 btrfs_release_path(path);
6880
6881 if (is_data) {
6882 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
6883 num_bytes);
6884 if (ret) {
6885 btrfs_abort_transaction(trans, ret);
6886 goto out;
6887 }
6888 }
6889
6890 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6891 if (ret) {
6892 btrfs_abort_transaction(trans, ret);
6893 goto out;
6894 }
6895
6896 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6897 if (ret) {
6898 btrfs_abort_transaction(trans, ret);
6899 goto out;
6900 }
6901 }
6902 btrfs_release_path(path);
6903
6904 out:
6905 btrfs_free_path(path);
6906 return ret;
6907 }
6908
6909 /*
6910 * when we free an block, it is possible (and likely) that we free the last
6911 * delayed ref for that extent as well. This searches the delayed ref tree for
6912 * a given extent, and if there are no other delayed refs to be processed, it
6913 * removes it from the tree.
6914 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)6915 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6916 u64 bytenr)
6917 {
6918 struct btrfs_delayed_ref_head *head;
6919 struct btrfs_delayed_ref_root *delayed_refs;
6920 int ret = 0;
6921
6922 delayed_refs = &trans->transaction->delayed_refs;
6923 spin_lock(&delayed_refs->lock);
6924 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6925 if (!head)
6926 goto out_delayed_unlock;
6927
6928 spin_lock(&head->lock);
6929 if (!RB_EMPTY_ROOT(&head->ref_tree))
6930 goto out;
6931
6932 if (head->extent_op) {
6933 if (!head->must_insert_reserved)
6934 goto out;
6935 btrfs_free_delayed_extent_op(head->extent_op);
6936 head->extent_op = NULL;
6937 }
6938
6939 /*
6940 * waiting for the lock here would deadlock. If someone else has it
6941 * locked they are already in the process of dropping it anyway
6942 */
6943 if (!mutex_trylock(&head->mutex))
6944 goto out;
6945
6946 /*
6947 * at this point we have a head with no other entries. Go
6948 * ahead and process it.
6949 */
6950 rb_erase(&head->href_node, &delayed_refs->href_root);
6951 RB_CLEAR_NODE(&head->href_node);
6952 atomic_dec(&delayed_refs->num_entries);
6953
6954 /*
6955 * we don't take a ref on the node because we're removing it from the
6956 * tree, so we just steal the ref the tree was holding.
6957 */
6958 delayed_refs->num_heads--;
6959 if (head->processing == 0)
6960 delayed_refs->num_heads_ready--;
6961 head->processing = 0;
6962 spin_unlock(&head->lock);
6963 spin_unlock(&delayed_refs->lock);
6964
6965 BUG_ON(head->extent_op);
6966 if (head->must_insert_reserved)
6967 ret = 1;
6968
6969 mutex_unlock(&head->mutex);
6970 btrfs_put_delayed_ref_head(head);
6971 return ret;
6972 out:
6973 spin_unlock(&head->lock);
6974
6975 out_delayed_unlock:
6976 spin_unlock(&delayed_refs->lock);
6977 return 0;
6978 }
6979
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)6980 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6981 struct btrfs_root *root,
6982 struct extent_buffer *buf,
6983 u64 parent, int last_ref)
6984 {
6985 struct btrfs_fs_info *fs_info = root->fs_info;
6986 int pin = 1;
6987 int ret;
6988
6989 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6990 int old_ref_mod, new_ref_mod;
6991
6992 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6993 root->root_key.objectid,
6994 btrfs_header_level(buf), 0,
6995 BTRFS_DROP_DELAYED_REF);
6996 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
6997 buf->len, parent,
6998 root->root_key.objectid,
6999 btrfs_header_level(buf),
7000 BTRFS_DROP_DELAYED_REF, NULL,
7001 &old_ref_mod, &new_ref_mod);
7002 BUG_ON(ret); /* -ENOMEM */
7003 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7004 }
7005
7006 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7007 struct btrfs_block_group_cache *cache;
7008
7009 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7010 ret = check_ref_cleanup(trans, buf->start);
7011 if (!ret)
7012 goto out;
7013 }
7014
7015 pin = 0;
7016 cache = btrfs_lookup_block_group(fs_info, buf->start);
7017
7018 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7019 pin_down_extent(fs_info, cache, buf->start,
7020 buf->len, 1);
7021 btrfs_put_block_group(cache);
7022 goto out;
7023 }
7024
7025 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7026
7027 btrfs_add_free_space(cache, buf->start, buf->len);
7028 btrfs_free_reserved_bytes(cache, buf->len, 0);
7029 btrfs_put_block_group(cache);
7030 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7031 }
7032 out:
7033 if (pin)
7034 add_pinned_bytes(fs_info, buf->len, true,
7035 root->root_key.objectid);
7036
7037 if (last_ref) {
7038 /*
7039 * Deleting the buffer, clear the corrupt flag since it doesn't
7040 * matter anymore.
7041 */
7042 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7043 }
7044 }
7045
7046 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7047 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7048 struct btrfs_root *root,
7049 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7050 u64 owner, u64 offset)
7051 {
7052 struct btrfs_fs_info *fs_info = root->fs_info;
7053 int old_ref_mod, new_ref_mod;
7054 int ret;
7055
7056 if (btrfs_is_testing(fs_info))
7057 return 0;
7058
7059 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7060 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7061 root_objectid, owner, offset,
7062 BTRFS_DROP_DELAYED_REF);
7063
7064 /*
7065 * tree log blocks never actually go into the extent allocation
7066 * tree, just update pinning info and exit early.
7067 */
7068 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7069 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7070 /* unlocks the pinned mutex */
7071 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7072 old_ref_mod = new_ref_mod = 0;
7073 ret = 0;
7074 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7075 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7076 num_bytes, parent,
7077 root_objectid, (int)owner,
7078 BTRFS_DROP_DELAYED_REF, NULL,
7079 &old_ref_mod, &new_ref_mod);
7080 } else {
7081 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7082 num_bytes, parent,
7083 root_objectid, owner, offset,
7084 0, BTRFS_DROP_DELAYED_REF,
7085 &old_ref_mod, &new_ref_mod);
7086 }
7087
7088 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7089 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7090
7091 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7092 }
7093
7094 return ret;
7095 }
7096
7097 /*
7098 * when we wait for progress in the block group caching, its because
7099 * our allocation attempt failed at least once. So, we must sleep
7100 * and let some progress happen before we try again.
7101 *
7102 * This function will sleep at least once waiting for new free space to
7103 * show up, and then it will check the block group free space numbers
7104 * for our min num_bytes. Another option is to have it go ahead
7105 * and look in the rbtree for a free extent of a given size, but this
7106 * is a good start.
7107 *
7108 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7109 * any of the information in this block group.
7110 */
7111 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7112 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7113 u64 num_bytes)
7114 {
7115 struct btrfs_caching_control *caching_ctl;
7116
7117 caching_ctl = get_caching_control(cache);
7118 if (!caching_ctl)
7119 return;
7120
7121 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7122 (cache->free_space_ctl->free_space >= num_bytes));
7123
7124 put_caching_control(caching_ctl);
7125 }
7126
7127 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7128 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7129 {
7130 struct btrfs_caching_control *caching_ctl;
7131 int ret = 0;
7132
7133 caching_ctl = get_caching_control(cache);
7134 if (!caching_ctl)
7135 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7136
7137 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7138 if (cache->cached == BTRFS_CACHE_ERROR)
7139 ret = -EIO;
7140 put_caching_control(caching_ctl);
7141 return ret;
7142 }
7143
7144 enum btrfs_loop_type {
7145 LOOP_CACHING_NOWAIT = 0,
7146 LOOP_CACHING_WAIT = 1,
7147 LOOP_ALLOC_CHUNK = 2,
7148 LOOP_NO_EMPTY_SIZE = 3,
7149 };
7150
7151 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7152 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7153 int delalloc)
7154 {
7155 if (delalloc)
7156 down_read(&cache->data_rwsem);
7157 }
7158
7159 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7160 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7161 int delalloc)
7162 {
7163 btrfs_get_block_group(cache);
7164 if (delalloc)
7165 down_read(&cache->data_rwsem);
7166 }
7167
7168 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7169 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7170 struct btrfs_free_cluster *cluster,
7171 int delalloc)
7172 {
7173 struct btrfs_block_group_cache *used_bg = NULL;
7174
7175 spin_lock(&cluster->refill_lock);
7176 while (1) {
7177 used_bg = cluster->block_group;
7178 if (!used_bg)
7179 return NULL;
7180
7181 if (used_bg == block_group)
7182 return used_bg;
7183
7184 btrfs_get_block_group(used_bg);
7185
7186 if (!delalloc)
7187 return used_bg;
7188
7189 if (down_read_trylock(&used_bg->data_rwsem))
7190 return used_bg;
7191
7192 spin_unlock(&cluster->refill_lock);
7193
7194 /* We should only have one-level nested. */
7195 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7196
7197 spin_lock(&cluster->refill_lock);
7198 if (used_bg == cluster->block_group)
7199 return used_bg;
7200
7201 up_read(&used_bg->data_rwsem);
7202 btrfs_put_block_group(used_bg);
7203 }
7204 }
7205
7206 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7207 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7208 int delalloc)
7209 {
7210 if (delalloc)
7211 up_read(&cache->data_rwsem);
7212 btrfs_put_block_group(cache);
7213 }
7214
7215 /*
7216 * walks the btree of allocated extents and find a hole of a given size.
7217 * The key ins is changed to record the hole:
7218 * ins->objectid == start position
7219 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7220 * ins->offset == the size of the hole.
7221 * Any available blocks before search_start are skipped.
7222 *
7223 * If there is no suitable free space, we will record the max size of
7224 * the free space extent currently.
7225 */
find_free_extent(struct btrfs_fs_info * fs_info,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7226 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7227 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7228 u64 hint_byte, struct btrfs_key *ins,
7229 u64 flags, int delalloc)
7230 {
7231 int ret = 0;
7232 struct btrfs_root *root = fs_info->extent_root;
7233 struct btrfs_free_cluster *last_ptr = NULL;
7234 struct btrfs_block_group_cache *block_group = NULL;
7235 u64 search_start = 0;
7236 u64 max_extent_size = 0;
7237 u64 max_free_space = 0;
7238 u64 empty_cluster = 0;
7239 struct btrfs_space_info *space_info;
7240 int loop = 0;
7241 int index = btrfs_bg_flags_to_raid_index(flags);
7242 bool failed_cluster_refill = false;
7243 bool failed_alloc = false;
7244 bool use_cluster = true;
7245 bool have_caching_bg = false;
7246 bool orig_have_caching_bg = false;
7247 bool full_search = false;
7248
7249 WARN_ON(num_bytes < fs_info->sectorsize);
7250 ins->type = BTRFS_EXTENT_ITEM_KEY;
7251 ins->objectid = 0;
7252 ins->offset = 0;
7253
7254 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7255
7256 space_info = __find_space_info(fs_info, flags);
7257 if (!space_info) {
7258 btrfs_err(fs_info, "No space info for %llu", flags);
7259 return -ENOSPC;
7260 }
7261
7262 /*
7263 * If our free space is heavily fragmented we may not be able to make
7264 * big contiguous allocations, so instead of doing the expensive search
7265 * for free space, simply return ENOSPC with our max_extent_size so we
7266 * can go ahead and search for a more manageable chunk.
7267 *
7268 * If our max_extent_size is large enough for our allocation simply
7269 * disable clustering since we will likely not be able to find enough
7270 * space to create a cluster and induce latency trying.
7271 */
7272 if (unlikely(space_info->max_extent_size)) {
7273 spin_lock(&space_info->lock);
7274 if (space_info->max_extent_size &&
7275 num_bytes > space_info->max_extent_size) {
7276 ins->offset = space_info->max_extent_size;
7277 spin_unlock(&space_info->lock);
7278 return -ENOSPC;
7279 } else if (space_info->max_extent_size) {
7280 use_cluster = false;
7281 }
7282 spin_unlock(&space_info->lock);
7283 }
7284
7285 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7286 if (last_ptr) {
7287 spin_lock(&last_ptr->lock);
7288 if (last_ptr->block_group)
7289 hint_byte = last_ptr->window_start;
7290 if (last_ptr->fragmented) {
7291 /*
7292 * We still set window_start so we can keep track of the
7293 * last place we found an allocation to try and save
7294 * some time.
7295 */
7296 hint_byte = last_ptr->window_start;
7297 use_cluster = false;
7298 }
7299 spin_unlock(&last_ptr->lock);
7300 }
7301
7302 search_start = max(search_start, first_logical_byte(fs_info, 0));
7303 search_start = max(search_start, hint_byte);
7304 if (search_start == hint_byte) {
7305 block_group = btrfs_lookup_block_group(fs_info, search_start);
7306 /*
7307 * we don't want to use the block group if it doesn't match our
7308 * allocation bits, or if its not cached.
7309 *
7310 * However if we are re-searching with an ideal block group
7311 * picked out then we don't care that the block group is cached.
7312 */
7313 if (block_group && block_group_bits(block_group, flags) &&
7314 block_group->cached != BTRFS_CACHE_NO) {
7315 down_read(&space_info->groups_sem);
7316 if (list_empty(&block_group->list) ||
7317 block_group->ro) {
7318 /*
7319 * someone is removing this block group,
7320 * we can't jump into the have_block_group
7321 * target because our list pointers are not
7322 * valid
7323 */
7324 btrfs_put_block_group(block_group);
7325 up_read(&space_info->groups_sem);
7326 } else {
7327 index = btrfs_bg_flags_to_raid_index(
7328 block_group->flags);
7329 btrfs_lock_block_group(block_group, delalloc);
7330 goto have_block_group;
7331 }
7332 } else if (block_group) {
7333 btrfs_put_block_group(block_group);
7334 }
7335 }
7336 search:
7337 have_caching_bg = false;
7338 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7339 full_search = true;
7340 down_read(&space_info->groups_sem);
7341 list_for_each_entry(block_group, &space_info->block_groups[index],
7342 list) {
7343 u64 offset;
7344 int cached;
7345
7346 /* If the block group is read-only, we can skip it entirely. */
7347 if (unlikely(block_group->ro))
7348 continue;
7349
7350 btrfs_grab_block_group(block_group, delalloc);
7351 search_start = block_group->key.objectid;
7352
7353 /*
7354 * this can happen if we end up cycling through all the
7355 * raid types, but we want to make sure we only allocate
7356 * for the proper type.
7357 */
7358 if (!block_group_bits(block_group, flags)) {
7359 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7360 BTRFS_BLOCK_GROUP_RAID1 |
7361 BTRFS_BLOCK_GROUP_RAID5 |
7362 BTRFS_BLOCK_GROUP_RAID6 |
7363 BTRFS_BLOCK_GROUP_RAID10;
7364
7365 /*
7366 * if they asked for extra copies and this block group
7367 * doesn't provide them, bail. This does allow us to
7368 * fill raid0 from raid1.
7369 */
7370 if ((flags & extra) && !(block_group->flags & extra))
7371 goto loop;
7372
7373 /*
7374 * This block group has different flags than we want.
7375 * It's possible that we have MIXED_GROUP flag but no
7376 * block group is mixed. Just skip such block group.
7377 */
7378 btrfs_release_block_group(block_group, delalloc);
7379 continue;
7380 }
7381
7382 have_block_group:
7383 cached = block_group_cache_done(block_group);
7384 if (unlikely(!cached)) {
7385 have_caching_bg = true;
7386 ret = cache_block_group(block_group, 0);
7387 BUG_ON(ret < 0);
7388 ret = 0;
7389 }
7390
7391 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7392 goto loop;
7393
7394 /*
7395 * Ok we want to try and use the cluster allocator, so
7396 * lets look there
7397 */
7398 if (last_ptr && use_cluster) {
7399 struct btrfs_block_group_cache *used_block_group;
7400 unsigned long aligned_cluster;
7401 /*
7402 * the refill lock keeps out other
7403 * people trying to start a new cluster
7404 */
7405 used_block_group = btrfs_lock_cluster(block_group,
7406 last_ptr,
7407 delalloc);
7408 if (!used_block_group)
7409 goto refill_cluster;
7410
7411 if (used_block_group != block_group &&
7412 (used_block_group->ro ||
7413 !block_group_bits(used_block_group, flags)))
7414 goto release_cluster;
7415
7416 offset = btrfs_alloc_from_cluster(used_block_group,
7417 last_ptr,
7418 num_bytes,
7419 used_block_group->key.objectid,
7420 &max_extent_size);
7421 if (offset) {
7422 /* we have a block, we're done */
7423 spin_unlock(&last_ptr->refill_lock);
7424 trace_btrfs_reserve_extent_cluster(
7425 used_block_group,
7426 search_start, num_bytes);
7427 if (used_block_group != block_group) {
7428 btrfs_release_block_group(block_group,
7429 delalloc);
7430 block_group = used_block_group;
7431 }
7432 goto checks;
7433 }
7434
7435 WARN_ON(last_ptr->block_group != used_block_group);
7436 release_cluster:
7437 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7438 * set up a new clusters, so lets just skip it
7439 * and let the allocator find whatever block
7440 * it can find. If we reach this point, we
7441 * will have tried the cluster allocator
7442 * plenty of times and not have found
7443 * anything, so we are likely way too
7444 * fragmented for the clustering stuff to find
7445 * anything.
7446 *
7447 * However, if the cluster is taken from the
7448 * current block group, release the cluster
7449 * first, so that we stand a better chance of
7450 * succeeding in the unclustered
7451 * allocation. */
7452 if (loop >= LOOP_NO_EMPTY_SIZE &&
7453 used_block_group != block_group) {
7454 spin_unlock(&last_ptr->refill_lock);
7455 btrfs_release_block_group(used_block_group,
7456 delalloc);
7457 goto unclustered_alloc;
7458 }
7459
7460 /*
7461 * this cluster didn't work out, free it and
7462 * start over
7463 */
7464 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7465
7466 if (used_block_group != block_group)
7467 btrfs_release_block_group(used_block_group,
7468 delalloc);
7469 refill_cluster:
7470 if (loop >= LOOP_NO_EMPTY_SIZE) {
7471 spin_unlock(&last_ptr->refill_lock);
7472 goto unclustered_alloc;
7473 }
7474
7475 aligned_cluster = max_t(unsigned long,
7476 empty_cluster + empty_size,
7477 block_group->full_stripe_len);
7478
7479 /* allocate a cluster in this block group */
7480 ret = btrfs_find_space_cluster(fs_info, block_group,
7481 last_ptr, search_start,
7482 num_bytes,
7483 aligned_cluster);
7484 if (ret == 0) {
7485 /*
7486 * now pull our allocation out of this
7487 * cluster
7488 */
7489 offset = btrfs_alloc_from_cluster(block_group,
7490 last_ptr,
7491 num_bytes,
7492 search_start,
7493 &max_extent_size);
7494 if (offset) {
7495 /* we found one, proceed */
7496 spin_unlock(&last_ptr->refill_lock);
7497 trace_btrfs_reserve_extent_cluster(
7498 block_group, search_start,
7499 num_bytes);
7500 goto checks;
7501 }
7502 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7503 && !failed_cluster_refill) {
7504 spin_unlock(&last_ptr->refill_lock);
7505
7506 failed_cluster_refill = true;
7507 wait_block_group_cache_progress(block_group,
7508 num_bytes + empty_cluster + empty_size);
7509 goto have_block_group;
7510 }
7511
7512 /*
7513 * at this point we either didn't find a cluster
7514 * or we weren't able to allocate a block from our
7515 * cluster. Free the cluster we've been trying
7516 * to use, and go to the next block group
7517 */
7518 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7519 spin_unlock(&last_ptr->refill_lock);
7520 goto loop;
7521 }
7522
7523 unclustered_alloc:
7524 /*
7525 * We are doing an unclustered alloc, set the fragmented flag so
7526 * we don't bother trying to setup a cluster again until we get
7527 * more space.
7528 */
7529 if (unlikely(last_ptr)) {
7530 spin_lock(&last_ptr->lock);
7531 last_ptr->fragmented = 1;
7532 spin_unlock(&last_ptr->lock);
7533 }
7534 if (cached) {
7535 struct btrfs_free_space_ctl *ctl =
7536 block_group->free_space_ctl;
7537
7538 spin_lock(&ctl->tree_lock);
7539 if (ctl->free_space <
7540 num_bytes + empty_cluster + empty_size) {
7541 max_free_space = max(max_free_space,
7542 ctl->free_space);
7543 spin_unlock(&ctl->tree_lock);
7544 goto loop;
7545 }
7546 spin_unlock(&ctl->tree_lock);
7547 }
7548
7549 offset = btrfs_find_space_for_alloc(block_group, search_start,
7550 num_bytes, empty_size,
7551 &max_extent_size);
7552 /*
7553 * If we didn't find a chunk, and we haven't failed on this
7554 * block group before, and this block group is in the middle of
7555 * caching and we are ok with waiting, then go ahead and wait
7556 * for progress to be made, and set failed_alloc to true.
7557 *
7558 * If failed_alloc is true then we've already waited on this
7559 * block group once and should move on to the next block group.
7560 */
7561 if (!offset && !failed_alloc && !cached &&
7562 loop > LOOP_CACHING_NOWAIT) {
7563 wait_block_group_cache_progress(block_group,
7564 num_bytes + empty_size);
7565 failed_alloc = true;
7566 goto have_block_group;
7567 } else if (!offset) {
7568 goto loop;
7569 }
7570 checks:
7571 search_start = round_up(offset, fs_info->stripesize);
7572
7573 /* move on to the next group */
7574 if (search_start + num_bytes >
7575 block_group->key.objectid + block_group->key.offset) {
7576 btrfs_add_free_space(block_group, offset, num_bytes);
7577 goto loop;
7578 }
7579
7580 if (offset < search_start)
7581 btrfs_add_free_space(block_group, offset,
7582 search_start - offset);
7583
7584 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7585 num_bytes, delalloc);
7586 if (ret == -EAGAIN) {
7587 btrfs_add_free_space(block_group, offset, num_bytes);
7588 goto loop;
7589 }
7590 btrfs_inc_block_group_reservations(block_group);
7591
7592 /* we are all good, lets return */
7593 ins->objectid = search_start;
7594 ins->offset = num_bytes;
7595
7596 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7597 btrfs_release_block_group(block_group, delalloc);
7598 break;
7599 loop:
7600 failed_cluster_refill = false;
7601 failed_alloc = false;
7602 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7603 index);
7604 btrfs_release_block_group(block_group, delalloc);
7605 cond_resched();
7606 }
7607 up_read(&space_info->groups_sem);
7608
7609 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7610 && !orig_have_caching_bg)
7611 orig_have_caching_bg = true;
7612
7613 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7614 goto search;
7615
7616 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7617 goto search;
7618
7619 /*
7620 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7621 * caching kthreads as we move along
7622 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7623 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7624 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7625 * again
7626 */
7627 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7628 index = 0;
7629 if (loop == LOOP_CACHING_NOWAIT) {
7630 /*
7631 * We want to skip the LOOP_CACHING_WAIT step if we
7632 * don't have any uncached bgs and we've already done a
7633 * full search through.
7634 */
7635 if (orig_have_caching_bg || !full_search)
7636 loop = LOOP_CACHING_WAIT;
7637 else
7638 loop = LOOP_ALLOC_CHUNK;
7639 } else {
7640 loop++;
7641 }
7642
7643 if (loop == LOOP_ALLOC_CHUNK) {
7644 struct btrfs_trans_handle *trans;
7645 int exist = 0;
7646
7647 trans = current->journal_info;
7648 if (trans)
7649 exist = 1;
7650 else
7651 trans = btrfs_join_transaction(root);
7652
7653 if (IS_ERR(trans)) {
7654 ret = PTR_ERR(trans);
7655 goto out;
7656 }
7657
7658 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7659
7660 /*
7661 * If we can't allocate a new chunk we've already looped
7662 * through at least once, move on to the NO_EMPTY_SIZE
7663 * case.
7664 */
7665 if (ret == -ENOSPC)
7666 loop = LOOP_NO_EMPTY_SIZE;
7667
7668 /*
7669 * Do not bail out on ENOSPC since we
7670 * can do more things.
7671 */
7672 if (ret < 0 && ret != -ENOSPC)
7673 btrfs_abort_transaction(trans, ret);
7674 else
7675 ret = 0;
7676 if (!exist)
7677 btrfs_end_transaction(trans);
7678 if (ret)
7679 goto out;
7680 }
7681
7682 if (loop == LOOP_NO_EMPTY_SIZE) {
7683 /*
7684 * Don't loop again if we already have no empty_size and
7685 * no empty_cluster.
7686 */
7687 if (empty_size == 0 &&
7688 empty_cluster == 0) {
7689 ret = -ENOSPC;
7690 goto out;
7691 }
7692 empty_size = 0;
7693 empty_cluster = 0;
7694 }
7695
7696 goto search;
7697 } else if (!ins->objectid) {
7698 ret = -ENOSPC;
7699 } else if (ins->objectid) {
7700 if (!use_cluster && last_ptr) {
7701 spin_lock(&last_ptr->lock);
7702 last_ptr->window_start = ins->objectid;
7703 spin_unlock(&last_ptr->lock);
7704 }
7705 ret = 0;
7706 }
7707 out:
7708 if (ret == -ENOSPC) {
7709 if (!max_extent_size)
7710 max_extent_size = max_free_space;
7711 spin_lock(&space_info->lock);
7712 space_info->max_extent_size = max_extent_size;
7713 spin_unlock(&space_info->lock);
7714 ins->offset = max_extent_size;
7715 }
7716 return ret;
7717 }
7718
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7719 static void dump_space_info(struct btrfs_fs_info *fs_info,
7720 struct btrfs_space_info *info, u64 bytes,
7721 int dump_block_groups)
7722 {
7723 struct btrfs_block_group_cache *cache;
7724 int index = 0;
7725
7726 spin_lock(&info->lock);
7727 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7728 info->flags,
7729 info->total_bytes - btrfs_space_info_used(info, true),
7730 info->full ? "" : "not ");
7731 btrfs_info(fs_info,
7732 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7733 info->total_bytes, info->bytes_used, info->bytes_pinned,
7734 info->bytes_reserved, info->bytes_may_use,
7735 info->bytes_readonly);
7736 spin_unlock(&info->lock);
7737
7738 if (!dump_block_groups)
7739 return;
7740
7741 down_read(&info->groups_sem);
7742 again:
7743 list_for_each_entry(cache, &info->block_groups[index], list) {
7744 spin_lock(&cache->lock);
7745 btrfs_info(fs_info,
7746 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7747 cache->key.objectid, cache->key.offset,
7748 btrfs_block_group_used(&cache->item), cache->pinned,
7749 cache->reserved, cache->ro ? "[readonly]" : "");
7750 btrfs_dump_free_space(cache, bytes);
7751 spin_unlock(&cache->lock);
7752 }
7753 if (++index < BTRFS_NR_RAID_TYPES)
7754 goto again;
7755 up_read(&info->groups_sem);
7756 }
7757
7758 /*
7759 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7760 * hole that is at least as big as @num_bytes.
7761 *
7762 * @root - The root that will contain this extent
7763 *
7764 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7765 * is used for accounting purposes. This value differs
7766 * from @num_bytes only in the case of compressed extents.
7767 *
7768 * @num_bytes - Number of bytes to allocate on-disk.
7769 *
7770 * @min_alloc_size - Indicates the minimum amount of space that the
7771 * allocator should try to satisfy. In some cases
7772 * @num_bytes may be larger than what is required and if
7773 * the filesystem is fragmented then allocation fails.
7774 * However, the presence of @min_alloc_size gives a
7775 * chance to try and satisfy the smaller allocation.
7776 *
7777 * @empty_size - A hint that you plan on doing more COW. This is the
7778 * size in bytes the allocator should try to find free
7779 * next to the block it returns. This is just a hint and
7780 * may be ignored by the allocator.
7781 *
7782 * @hint_byte - Hint to the allocator to start searching above the byte
7783 * address passed. It might be ignored.
7784 *
7785 * @ins - This key is modified to record the found hole. It will
7786 * have the following values:
7787 * ins->objectid == start position
7788 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7789 * ins->offset == the size of the hole.
7790 *
7791 * @is_data - Boolean flag indicating whether an extent is
7792 * allocated for data (true) or metadata (false)
7793 *
7794 * @delalloc - Boolean flag indicating whether this allocation is for
7795 * delalloc or not. If 'true' data_rwsem of block groups
7796 * is going to be acquired.
7797 *
7798 *
7799 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7800 * case -ENOSPC is returned then @ins->offset will contain the size of the
7801 * largest available hole the allocator managed to find.
7802 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7803 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7804 u64 num_bytes, u64 min_alloc_size,
7805 u64 empty_size, u64 hint_byte,
7806 struct btrfs_key *ins, int is_data, int delalloc)
7807 {
7808 struct btrfs_fs_info *fs_info = root->fs_info;
7809 bool final_tried = num_bytes == min_alloc_size;
7810 u64 flags;
7811 int ret;
7812
7813 flags = get_alloc_profile_by_root(root, is_data);
7814 again:
7815 WARN_ON(num_bytes < fs_info->sectorsize);
7816 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7817 hint_byte, ins, flags, delalloc);
7818 if (!ret && !is_data) {
7819 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7820 } else if (ret == -ENOSPC) {
7821 if (!final_tried && ins->offset) {
7822 num_bytes = min(num_bytes >> 1, ins->offset);
7823 num_bytes = round_down(num_bytes,
7824 fs_info->sectorsize);
7825 num_bytes = max(num_bytes, min_alloc_size);
7826 ram_bytes = num_bytes;
7827 if (num_bytes == min_alloc_size)
7828 final_tried = true;
7829 goto again;
7830 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7831 struct btrfs_space_info *sinfo;
7832
7833 sinfo = __find_space_info(fs_info, flags);
7834 btrfs_err(fs_info,
7835 "allocation failed flags %llu, wanted %llu",
7836 flags, num_bytes);
7837 if (sinfo)
7838 dump_space_info(fs_info, sinfo, num_bytes, 1);
7839 }
7840 }
7841
7842 return ret;
7843 }
7844
__btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int pin,int delalloc)7845 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7846 u64 start, u64 len,
7847 int pin, int delalloc)
7848 {
7849 struct btrfs_block_group_cache *cache;
7850 int ret = 0;
7851
7852 cache = btrfs_lookup_block_group(fs_info, start);
7853 if (!cache) {
7854 btrfs_err(fs_info, "Unable to find block group for %llu",
7855 start);
7856 return -ENOSPC;
7857 }
7858
7859 if (pin)
7860 pin_down_extent(fs_info, cache, start, len, 1);
7861 else {
7862 if (btrfs_test_opt(fs_info, DISCARD))
7863 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7864 btrfs_add_free_space(cache, start, len);
7865 btrfs_free_reserved_bytes(cache, len, delalloc);
7866 trace_btrfs_reserved_extent_free(fs_info, start, len);
7867 }
7868
7869 btrfs_put_block_group(cache);
7870 return ret;
7871 }
7872
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)7873 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7874 u64 start, u64 len, int delalloc)
7875 {
7876 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7877 }
7878
btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)7879 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7880 u64 start, u64 len)
7881 {
7882 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7883 }
7884
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)7885 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7886 u64 parent, u64 root_objectid,
7887 u64 flags, u64 owner, u64 offset,
7888 struct btrfs_key *ins, int ref_mod)
7889 {
7890 struct btrfs_fs_info *fs_info = trans->fs_info;
7891 int ret;
7892 struct btrfs_extent_item *extent_item;
7893 struct btrfs_extent_inline_ref *iref;
7894 struct btrfs_path *path;
7895 struct extent_buffer *leaf;
7896 int type;
7897 u32 size;
7898
7899 if (parent > 0)
7900 type = BTRFS_SHARED_DATA_REF_KEY;
7901 else
7902 type = BTRFS_EXTENT_DATA_REF_KEY;
7903
7904 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7905
7906 path = btrfs_alloc_path();
7907 if (!path)
7908 return -ENOMEM;
7909
7910 path->leave_spinning = 1;
7911 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7912 ins, size);
7913 if (ret) {
7914 btrfs_free_path(path);
7915 return ret;
7916 }
7917
7918 leaf = path->nodes[0];
7919 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7920 struct btrfs_extent_item);
7921 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7922 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7923 btrfs_set_extent_flags(leaf, extent_item,
7924 flags | BTRFS_EXTENT_FLAG_DATA);
7925
7926 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7927 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7928 if (parent > 0) {
7929 struct btrfs_shared_data_ref *ref;
7930 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7931 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7932 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7933 } else {
7934 struct btrfs_extent_data_ref *ref;
7935 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7936 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7937 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7938 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7939 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7940 }
7941
7942 btrfs_mark_buffer_dirty(path->nodes[0]);
7943 btrfs_free_path(path);
7944
7945 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7946 if (ret)
7947 return ret;
7948
7949 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7950 if (ret) { /* -ENOENT, logic error */
7951 btrfs_err(fs_info, "update block group failed for %llu %llu",
7952 ins->objectid, ins->offset);
7953 BUG();
7954 }
7955 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7956 return ret;
7957 }
7958
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)7959 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7960 struct btrfs_delayed_ref_node *node,
7961 struct btrfs_delayed_extent_op *extent_op)
7962 {
7963 struct btrfs_fs_info *fs_info = trans->fs_info;
7964 int ret;
7965 struct btrfs_extent_item *extent_item;
7966 struct btrfs_key extent_key;
7967 struct btrfs_tree_block_info *block_info;
7968 struct btrfs_extent_inline_ref *iref;
7969 struct btrfs_path *path;
7970 struct extent_buffer *leaf;
7971 struct btrfs_delayed_tree_ref *ref;
7972 u32 size = sizeof(*extent_item) + sizeof(*iref);
7973 u64 num_bytes;
7974 u64 flags = extent_op->flags_to_set;
7975 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7976
7977 ref = btrfs_delayed_node_to_tree_ref(node);
7978
7979 extent_key.objectid = node->bytenr;
7980 if (skinny_metadata) {
7981 extent_key.offset = ref->level;
7982 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7983 num_bytes = fs_info->nodesize;
7984 } else {
7985 extent_key.offset = node->num_bytes;
7986 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7987 size += sizeof(*block_info);
7988 num_bytes = node->num_bytes;
7989 }
7990
7991 path = btrfs_alloc_path();
7992 if (!path)
7993 return -ENOMEM;
7994
7995 path->leave_spinning = 1;
7996 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7997 &extent_key, size);
7998 if (ret) {
7999 btrfs_free_path(path);
8000 return ret;
8001 }
8002
8003 leaf = path->nodes[0];
8004 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8005 struct btrfs_extent_item);
8006 btrfs_set_extent_refs(leaf, extent_item, 1);
8007 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8008 btrfs_set_extent_flags(leaf, extent_item,
8009 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8010
8011 if (skinny_metadata) {
8012 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8013 } else {
8014 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8015 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8016 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8017 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8018 }
8019
8020 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8021 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8022 btrfs_set_extent_inline_ref_type(leaf, iref,
8023 BTRFS_SHARED_BLOCK_REF_KEY);
8024 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8025 } else {
8026 btrfs_set_extent_inline_ref_type(leaf, iref,
8027 BTRFS_TREE_BLOCK_REF_KEY);
8028 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8029 }
8030
8031 btrfs_mark_buffer_dirty(leaf);
8032 btrfs_free_path(path);
8033
8034 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8035 num_bytes);
8036 if (ret)
8037 return ret;
8038
8039 ret = update_block_group(trans, fs_info, extent_key.objectid,
8040 fs_info->nodesize, 1);
8041 if (ret) { /* -ENOENT, logic error */
8042 btrfs_err(fs_info, "update block group failed for %llu %llu",
8043 extent_key.objectid, extent_key.offset);
8044 BUG();
8045 }
8046
8047 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8048 fs_info->nodesize);
8049 return ret;
8050 }
8051
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8052 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8053 struct btrfs_root *root, u64 owner,
8054 u64 offset, u64 ram_bytes,
8055 struct btrfs_key *ins)
8056 {
8057 int ret;
8058
8059 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8060
8061 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8062 root->root_key.objectid, owner, offset,
8063 BTRFS_ADD_DELAYED_EXTENT);
8064
8065 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8066 ins->offset, 0,
8067 root->root_key.objectid, owner,
8068 offset, ram_bytes,
8069 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8070 return ret;
8071 }
8072
8073 /*
8074 * this is used by the tree logging recovery code. It records that
8075 * an extent has been allocated and makes sure to clear the free
8076 * space cache bits as well
8077 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8078 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8079 u64 root_objectid, u64 owner, u64 offset,
8080 struct btrfs_key *ins)
8081 {
8082 struct btrfs_fs_info *fs_info = trans->fs_info;
8083 int ret;
8084 struct btrfs_block_group_cache *block_group;
8085 struct btrfs_space_info *space_info;
8086
8087 /*
8088 * Mixed block groups will exclude before processing the log so we only
8089 * need to do the exclude dance if this fs isn't mixed.
8090 */
8091 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8092 ret = __exclude_logged_extent(fs_info, ins->objectid,
8093 ins->offset);
8094 if (ret)
8095 return ret;
8096 }
8097
8098 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8099 if (!block_group)
8100 return -EINVAL;
8101
8102 space_info = block_group->space_info;
8103 spin_lock(&space_info->lock);
8104 spin_lock(&block_group->lock);
8105 space_info->bytes_reserved += ins->offset;
8106 block_group->reserved += ins->offset;
8107 spin_unlock(&block_group->lock);
8108 spin_unlock(&space_info->lock);
8109
8110 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8111 offset, ins, 1);
8112 btrfs_put_block_group(block_group);
8113 return ret;
8114 }
8115
8116 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner)8117 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8118 u64 bytenr, int level, u64 owner)
8119 {
8120 struct btrfs_fs_info *fs_info = root->fs_info;
8121 struct extent_buffer *buf;
8122
8123 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8124 if (IS_ERR(buf))
8125 return buf;
8126
8127 /*
8128 * Extra safety check in case the extent tree is corrupted and extent
8129 * allocator chooses to use a tree block which is already used and
8130 * locked.
8131 */
8132 if (buf->lock_owner == current->pid) {
8133 btrfs_err_rl(fs_info,
8134 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8135 buf->start, btrfs_header_owner(buf), current->pid);
8136 free_extent_buffer(buf);
8137 return ERR_PTR(-EUCLEAN);
8138 }
8139
8140 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8141 btrfs_tree_lock(buf);
8142 clean_tree_block(fs_info, buf);
8143 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8144
8145 btrfs_set_lock_blocking(buf);
8146 set_extent_buffer_uptodate(buf);
8147
8148 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8149 btrfs_set_header_level(buf, level);
8150 btrfs_set_header_bytenr(buf, buf->start);
8151 btrfs_set_header_generation(buf, trans->transid);
8152 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8153 btrfs_set_header_owner(buf, owner);
8154 write_extent_buffer_fsid(buf, fs_info->fsid);
8155 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8156 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8157 buf->log_index = root->log_transid % 2;
8158 /*
8159 * we allow two log transactions at a time, use different
8160 * EXENT bit to differentiate dirty pages.
8161 */
8162 if (buf->log_index == 0)
8163 set_extent_dirty(&root->dirty_log_pages, buf->start,
8164 buf->start + buf->len - 1, GFP_NOFS);
8165 else
8166 set_extent_new(&root->dirty_log_pages, buf->start,
8167 buf->start + buf->len - 1);
8168 } else {
8169 buf->log_index = -1;
8170 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8171 buf->start + buf->len - 1, GFP_NOFS);
8172 }
8173 trans->dirty = true;
8174 /* this returns a buffer locked for blocking */
8175 return buf;
8176 }
8177
8178 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8179 use_block_rsv(struct btrfs_trans_handle *trans,
8180 struct btrfs_root *root, u32 blocksize)
8181 {
8182 struct btrfs_fs_info *fs_info = root->fs_info;
8183 struct btrfs_block_rsv *block_rsv;
8184 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8185 int ret;
8186 bool global_updated = false;
8187
8188 block_rsv = get_block_rsv(trans, root);
8189
8190 if (unlikely(block_rsv->size == 0))
8191 goto try_reserve;
8192 again:
8193 ret = block_rsv_use_bytes(block_rsv, blocksize);
8194 if (!ret)
8195 return block_rsv;
8196
8197 if (block_rsv->failfast)
8198 return ERR_PTR(ret);
8199
8200 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8201 global_updated = true;
8202 update_global_block_rsv(fs_info);
8203 goto again;
8204 }
8205
8206 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8207 static DEFINE_RATELIMIT_STATE(_rs,
8208 DEFAULT_RATELIMIT_INTERVAL * 10,
8209 /*DEFAULT_RATELIMIT_BURST*/ 1);
8210 if (__ratelimit(&_rs))
8211 WARN(1, KERN_DEBUG
8212 "BTRFS: block rsv returned %d\n", ret);
8213 }
8214 try_reserve:
8215 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8216 BTRFS_RESERVE_NO_FLUSH);
8217 if (!ret)
8218 return block_rsv;
8219 /*
8220 * If we couldn't reserve metadata bytes try and use some from
8221 * the global reserve if its space type is the same as the global
8222 * reservation.
8223 */
8224 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8225 block_rsv->space_info == global_rsv->space_info) {
8226 ret = block_rsv_use_bytes(global_rsv, blocksize);
8227 if (!ret)
8228 return global_rsv;
8229 }
8230 return ERR_PTR(ret);
8231 }
8232
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8233 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8234 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8235 {
8236 block_rsv_add_bytes(block_rsv, blocksize, 0);
8237 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8238 }
8239
8240 /*
8241 * finds a free extent and does all the dirty work required for allocation
8242 * returns the tree buffer or an ERR_PTR on error.
8243 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8244 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8245 struct btrfs_root *root,
8246 u64 parent, u64 root_objectid,
8247 const struct btrfs_disk_key *key,
8248 int level, u64 hint,
8249 u64 empty_size)
8250 {
8251 struct btrfs_fs_info *fs_info = root->fs_info;
8252 struct btrfs_key ins;
8253 struct btrfs_block_rsv *block_rsv;
8254 struct extent_buffer *buf;
8255 struct btrfs_delayed_extent_op *extent_op;
8256 u64 flags = 0;
8257 int ret;
8258 u32 blocksize = fs_info->nodesize;
8259 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8260
8261 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8262 if (btrfs_is_testing(fs_info)) {
8263 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8264 level, root_objectid);
8265 if (!IS_ERR(buf))
8266 root->alloc_bytenr += blocksize;
8267 return buf;
8268 }
8269 #endif
8270
8271 block_rsv = use_block_rsv(trans, root, blocksize);
8272 if (IS_ERR(block_rsv))
8273 return ERR_CAST(block_rsv);
8274
8275 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8276 empty_size, hint, &ins, 0, 0);
8277 if (ret)
8278 goto out_unuse;
8279
8280 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8281 root_objectid);
8282 if (IS_ERR(buf)) {
8283 ret = PTR_ERR(buf);
8284 goto out_free_reserved;
8285 }
8286
8287 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8288 if (parent == 0)
8289 parent = ins.objectid;
8290 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8291 } else
8292 BUG_ON(parent > 0);
8293
8294 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8295 extent_op = btrfs_alloc_delayed_extent_op();
8296 if (!extent_op) {
8297 ret = -ENOMEM;
8298 goto out_free_buf;
8299 }
8300 if (key)
8301 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8302 else
8303 memset(&extent_op->key, 0, sizeof(extent_op->key));
8304 extent_op->flags_to_set = flags;
8305 extent_op->update_key = skinny_metadata ? false : true;
8306 extent_op->update_flags = true;
8307 extent_op->is_data = false;
8308 extent_op->level = level;
8309
8310 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8311 root_objectid, level, 0,
8312 BTRFS_ADD_DELAYED_EXTENT);
8313 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8314 ins.offset, parent,
8315 root_objectid, level,
8316 BTRFS_ADD_DELAYED_EXTENT,
8317 extent_op, NULL, NULL);
8318 if (ret)
8319 goto out_free_delayed;
8320 }
8321 return buf;
8322
8323 out_free_delayed:
8324 btrfs_free_delayed_extent_op(extent_op);
8325 out_free_buf:
8326 free_extent_buffer(buf);
8327 out_free_reserved:
8328 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8329 out_unuse:
8330 unuse_block_rsv(fs_info, block_rsv, blocksize);
8331 return ERR_PTR(ret);
8332 }
8333
8334 struct walk_control {
8335 u64 refs[BTRFS_MAX_LEVEL];
8336 u64 flags[BTRFS_MAX_LEVEL];
8337 struct btrfs_key update_progress;
8338 int stage;
8339 int level;
8340 int shared_level;
8341 int update_ref;
8342 int keep_locks;
8343 int reada_slot;
8344 int reada_count;
8345 };
8346
8347 #define DROP_REFERENCE 1
8348 #define UPDATE_BACKREF 2
8349
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8350 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8351 struct btrfs_root *root,
8352 struct walk_control *wc,
8353 struct btrfs_path *path)
8354 {
8355 struct btrfs_fs_info *fs_info = root->fs_info;
8356 u64 bytenr;
8357 u64 generation;
8358 u64 refs;
8359 u64 flags;
8360 u32 nritems;
8361 struct btrfs_key key;
8362 struct extent_buffer *eb;
8363 int ret;
8364 int slot;
8365 int nread = 0;
8366
8367 if (path->slots[wc->level] < wc->reada_slot) {
8368 wc->reada_count = wc->reada_count * 2 / 3;
8369 wc->reada_count = max(wc->reada_count, 2);
8370 } else {
8371 wc->reada_count = wc->reada_count * 3 / 2;
8372 wc->reada_count = min_t(int, wc->reada_count,
8373 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8374 }
8375
8376 eb = path->nodes[wc->level];
8377 nritems = btrfs_header_nritems(eb);
8378
8379 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8380 if (nread >= wc->reada_count)
8381 break;
8382
8383 cond_resched();
8384 bytenr = btrfs_node_blockptr(eb, slot);
8385 generation = btrfs_node_ptr_generation(eb, slot);
8386
8387 if (slot == path->slots[wc->level])
8388 goto reada;
8389
8390 if (wc->stage == UPDATE_BACKREF &&
8391 generation <= root->root_key.offset)
8392 continue;
8393
8394 /* We don't lock the tree block, it's OK to be racy here */
8395 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8396 wc->level - 1, 1, &refs,
8397 &flags);
8398 /* We don't care about errors in readahead. */
8399 if (ret < 0)
8400 continue;
8401 BUG_ON(refs == 0);
8402
8403 if (wc->stage == DROP_REFERENCE) {
8404 if (refs == 1)
8405 goto reada;
8406
8407 if (wc->level == 1 &&
8408 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8409 continue;
8410 if (!wc->update_ref ||
8411 generation <= root->root_key.offset)
8412 continue;
8413 btrfs_node_key_to_cpu(eb, &key, slot);
8414 ret = btrfs_comp_cpu_keys(&key,
8415 &wc->update_progress);
8416 if (ret < 0)
8417 continue;
8418 } else {
8419 if (wc->level == 1 &&
8420 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8421 continue;
8422 }
8423 reada:
8424 readahead_tree_block(fs_info, bytenr);
8425 nread++;
8426 }
8427 wc->reada_slot = slot;
8428 }
8429
8430 /*
8431 * helper to process tree block while walking down the tree.
8432 *
8433 * when wc->stage == UPDATE_BACKREF, this function updates
8434 * back refs for pointers in the block.
8435 *
8436 * NOTE: return value 1 means we should stop walking down.
8437 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8438 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8439 struct btrfs_root *root,
8440 struct btrfs_path *path,
8441 struct walk_control *wc, int lookup_info)
8442 {
8443 struct btrfs_fs_info *fs_info = root->fs_info;
8444 int level = wc->level;
8445 struct extent_buffer *eb = path->nodes[level];
8446 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8447 int ret;
8448
8449 if (wc->stage == UPDATE_BACKREF &&
8450 btrfs_header_owner(eb) != root->root_key.objectid)
8451 return 1;
8452
8453 /*
8454 * when reference count of tree block is 1, it won't increase
8455 * again. once full backref flag is set, we never clear it.
8456 */
8457 if (lookup_info &&
8458 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8459 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8460 BUG_ON(!path->locks[level]);
8461 ret = btrfs_lookup_extent_info(trans, fs_info,
8462 eb->start, level, 1,
8463 &wc->refs[level],
8464 &wc->flags[level]);
8465 BUG_ON(ret == -ENOMEM);
8466 if (ret)
8467 return ret;
8468 BUG_ON(wc->refs[level] == 0);
8469 }
8470
8471 if (wc->stage == DROP_REFERENCE) {
8472 if (wc->refs[level] > 1)
8473 return 1;
8474
8475 if (path->locks[level] && !wc->keep_locks) {
8476 btrfs_tree_unlock_rw(eb, path->locks[level]);
8477 path->locks[level] = 0;
8478 }
8479 return 0;
8480 }
8481
8482 /* wc->stage == UPDATE_BACKREF */
8483 if (!(wc->flags[level] & flag)) {
8484 BUG_ON(!path->locks[level]);
8485 ret = btrfs_inc_ref(trans, root, eb, 1);
8486 BUG_ON(ret); /* -ENOMEM */
8487 ret = btrfs_dec_ref(trans, root, eb, 0);
8488 BUG_ON(ret); /* -ENOMEM */
8489 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8490 eb->len, flag,
8491 btrfs_header_level(eb), 0);
8492 BUG_ON(ret); /* -ENOMEM */
8493 wc->flags[level] |= flag;
8494 }
8495
8496 /*
8497 * the block is shared by multiple trees, so it's not good to
8498 * keep the tree lock
8499 */
8500 if (path->locks[level] && level > 0) {
8501 btrfs_tree_unlock_rw(eb, path->locks[level]);
8502 path->locks[level] = 0;
8503 }
8504 return 0;
8505 }
8506
8507 /*
8508 * helper to process tree block pointer.
8509 *
8510 * when wc->stage == DROP_REFERENCE, this function checks
8511 * reference count of the block pointed to. if the block
8512 * is shared and we need update back refs for the subtree
8513 * rooted at the block, this function changes wc->stage to
8514 * UPDATE_BACKREF. if the block is shared and there is no
8515 * need to update back, this function drops the reference
8516 * to the block.
8517 *
8518 * NOTE: return value 1 means we should stop walking down.
8519 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8520 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8521 struct btrfs_root *root,
8522 struct btrfs_path *path,
8523 struct walk_control *wc, int *lookup_info)
8524 {
8525 struct btrfs_fs_info *fs_info = root->fs_info;
8526 u64 bytenr;
8527 u64 generation;
8528 u64 parent;
8529 u32 blocksize;
8530 struct btrfs_key key;
8531 struct btrfs_key first_key;
8532 struct extent_buffer *next;
8533 int level = wc->level;
8534 int reada = 0;
8535 int ret = 0;
8536 bool need_account = false;
8537
8538 generation = btrfs_node_ptr_generation(path->nodes[level],
8539 path->slots[level]);
8540 /*
8541 * if the lower level block was created before the snapshot
8542 * was created, we know there is no need to update back refs
8543 * for the subtree
8544 */
8545 if (wc->stage == UPDATE_BACKREF &&
8546 generation <= root->root_key.offset) {
8547 *lookup_info = 1;
8548 return 1;
8549 }
8550
8551 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8552 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8553 path->slots[level]);
8554 blocksize = fs_info->nodesize;
8555
8556 next = find_extent_buffer(fs_info, bytenr);
8557 if (!next) {
8558 next = btrfs_find_create_tree_block(fs_info, bytenr);
8559 if (IS_ERR(next))
8560 return PTR_ERR(next);
8561
8562 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8563 level - 1);
8564 reada = 1;
8565 }
8566 btrfs_tree_lock(next);
8567 btrfs_set_lock_blocking(next);
8568
8569 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8570 &wc->refs[level - 1],
8571 &wc->flags[level - 1]);
8572 if (ret < 0)
8573 goto out_unlock;
8574
8575 if (unlikely(wc->refs[level - 1] == 0)) {
8576 btrfs_err(fs_info, "Missing references.");
8577 ret = -EIO;
8578 goto out_unlock;
8579 }
8580 *lookup_info = 0;
8581
8582 if (wc->stage == DROP_REFERENCE) {
8583 if (wc->refs[level - 1] > 1) {
8584 need_account = true;
8585 if (level == 1 &&
8586 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587 goto skip;
8588
8589 if (!wc->update_ref ||
8590 generation <= root->root_key.offset)
8591 goto skip;
8592
8593 btrfs_node_key_to_cpu(path->nodes[level], &key,
8594 path->slots[level]);
8595 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8596 if (ret < 0)
8597 goto skip;
8598
8599 wc->stage = UPDATE_BACKREF;
8600 wc->shared_level = level - 1;
8601 }
8602 } else {
8603 if (level == 1 &&
8604 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8605 goto skip;
8606 }
8607
8608 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8609 btrfs_tree_unlock(next);
8610 free_extent_buffer(next);
8611 next = NULL;
8612 *lookup_info = 1;
8613 }
8614
8615 if (!next) {
8616 if (reada && level == 1)
8617 reada_walk_down(trans, root, wc, path);
8618 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8619 &first_key);
8620 if (IS_ERR(next)) {
8621 return PTR_ERR(next);
8622 } else if (!extent_buffer_uptodate(next)) {
8623 free_extent_buffer(next);
8624 return -EIO;
8625 }
8626 btrfs_tree_lock(next);
8627 btrfs_set_lock_blocking(next);
8628 }
8629
8630 level--;
8631 ASSERT(level == btrfs_header_level(next));
8632 if (level != btrfs_header_level(next)) {
8633 btrfs_err(root->fs_info, "mismatched level");
8634 ret = -EIO;
8635 goto out_unlock;
8636 }
8637 path->nodes[level] = next;
8638 path->slots[level] = 0;
8639 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8640 wc->level = level;
8641 if (wc->level == 1)
8642 wc->reada_slot = 0;
8643 return 0;
8644 skip:
8645 wc->refs[level - 1] = 0;
8646 wc->flags[level - 1] = 0;
8647 if (wc->stage == DROP_REFERENCE) {
8648 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8649 parent = path->nodes[level]->start;
8650 } else {
8651 ASSERT(root->root_key.objectid ==
8652 btrfs_header_owner(path->nodes[level]));
8653 if (root->root_key.objectid !=
8654 btrfs_header_owner(path->nodes[level])) {
8655 btrfs_err(root->fs_info,
8656 "mismatched block owner");
8657 ret = -EIO;
8658 goto out_unlock;
8659 }
8660 parent = 0;
8661 }
8662
8663 if (need_account) {
8664 ret = btrfs_qgroup_trace_subtree(trans, next,
8665 generation, level - 1);
8666 if (ret) {
8667 btrfs_err_rl(fs_info,
8668 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8669 ret);
8670 }
8671 }
8672 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8673 parent, root->root_key.objectid,
8674 level - 1, 0);
8675 if (ret)
8676 goto out_unlock;
8677 }
8678
8679 *lookup_info = 1;
8680 ret = 1;
8681
8682 out_unlock:
8683 btrfs_tree_unlock(next);
8684 free_extent_buffer(next);
8685
8686 return ret;
8687 }
8688
8689 /*
8690 * helper to process tree block while walking up the tree.
8691 *
8692 * when wc->stage == DROP_REFERENCE, this function drops
8693 * reference count on the block.
8694 *
8695 * when wc->stage == UPDATE_BACKREF, this function changes
8696 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8697 * to UPDATE_BACKREF previously while processing the block.
8698 *
8699 * NOTE: return value 1 means we should stop walking up.
8700 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8701 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8702 struct btrfs_root *root,
8703 struct btrfs_path *path,
8704 struct walk_control *wc)
8705 {
8706 struct btrfs_fs_info *fs_info = root->fs_info;
8707 int ret;
8708 int level = wc->level;
8709 struct extent_buffer *eb = path->nodes[level];
8710 u64 parent = 0;
8711
8712 if (wc->stage == UPDATE_BACKREF) {
8713 BUG_ON(wc->shared_level < level);
8714 if (level < wc->shared_level)
8715 goto out;
8716
8717 ret = find_next_key(path, level + 1, &wc->update_progress);
8718 if (ret > 0)
8719 wc->update_ref = 0;
8720
8721 wc->stage = DROP_REFERENCE;
8722 wc->shared_level = -1;
8723 path->slots[level] = 0;
8724
8725 /*
8726 * check reference count again if the block isn't locked.
8727 * we should start walking down the tree again if reference
8728 * count is one.
8729 */
8730 if (!path->locks[level]) {
8731 BUG_ON(level == 0);
8732 btrfs_tree_lock(eb);
8733 btrfs_set_lock_blocking(eb);
8734 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8735
8736 ret = btrfs_lookup_extent_info(trans, fs_info,
8737 eb->start, level, 1,
8738 &wc->refs[level],
8739 &wc->flags[level]);
8740 if (ret < 0) {
8741 btrfs_tree_unlock_rw(eb, path->locks[level]);
8742 path->locks[level] = 0;
8743 return ret;
8744 }
8745 BUG_ON(wc->refs[level] == 0);
8746 if (wc->refs[level] == 1) {
8747 btrfs_tree_unlock_rw(eb, path->locks[level]);
8748 path->locks[level] = 0;
8749 return 1;
8750 }
8751 }
8752 }
8753
8754 /* wc->stage == DROP_REFERENCE */
8755 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8756
8757 if (wc->refs[level] == 1) {
8758 if (level == 0) {
8759 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8760 ret = btrfs_dec_ref(trans, root, eb, 1);
8761 else
8762 ret = btrfs_dec_ref(trans, root, eb, 0);
8763 BUG_ON(ret); /* -ENOMEM */
8764 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8765 if (ret) {
8766 btrfs_err_rl(fs_info,
8767 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8768 ret);
8769 }
8770 }
8771 /* make block locked assertion in clean_tree_block happy */
8772 if (!path->locks[level] &&
8773 btrfs_header_generation(eb) == trans->transid) {
8774 btrfs_tree_lock(eb);
8775 btrfs_set_lock_blocking(eb);
8776 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8777 }
8778 clean_tree_block(fs_info, eb);
8779 }
8780
8781 if (eb == root->node) {
8782 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8783 parent = eb->start;
8784 else if (root->root_key.objectid != btrfs_header_owner(eb))
8785 goto owner_mismatch;
8786 } else {
8787 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8788 parent = path->nodes[level + 1]->start;
8789 else if (root->root_key.objectid !=
8790 btrfs_header_owner(path->nodes[level + 1]))
8791 goto owner_mismatch;
8792 }
8793
8794 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8795 out:
8796 wc->refs[level] = 0;
8797 wc->flags[level] = 0;
8798 return 0;
8799
8800 owner_mismatch:
8801 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8802 btrfs_header_owner(eb), root->root_key.objectid);
8803 return -EUCLEAN;
8804 }
8805
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8806 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8807 struct btrfs_root *root,
8808 struct btrfs_path *path,
8809 struct walk_control *wc)
8810 {
8811 int level = wc->level;
8812 int lookup_info = 1;
8813 int ret;
8814
8815 while (level >= 0) {
8816 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8817 if (ret > 0)
8818 break;
8819
8820 if (level == 0)
8821 break;
8822
8823 if (path->slots[level] >=
8824 btrfs_header_nritems(path->nodes[level]))
8825 break;
8826
8827 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8828 if (ret > 0) {
8829 path->slots[level]++;
8830 continue;
8831 } else if (ret < 0)
8832 return ret;
8833 level = wc->level;
8834 }
8835 return 0;
8836 }
8837
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)8838 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8839 struct btrfs_root *root,
8840 struct btrfs_path *path,
8841 struct walk_control *wc, int max_level)
8842 {
8843 int level = wc->level;
8844 int ret;
8845
8846 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8847 while (level < max_level && path->nodes[level]) {
8848 wc->level = level;
8849 if (path->slots[level] + 1 <
8850 btrfs_header_nritems(path->nodes[level])) {
8851 path->slots[level]++;
8852 return 0;
8853 } else {
8854 ret = walk_up_proc(trans, root, path, wc);
8855 if (ret > 0)
8856 return 0;
8857 if (ret < 0)
8858 return ret;
8859
8860 if (path->locks[level]) {
8861 btrfs_tree_unlock_rw(path->nodes[level],
8862 path->locks[level]);
8863 path->locks[level] = 0;
8864 }
8865 free_extent_buffer(path->nodes[level]);
8866 path->nodes[level] = NULL;
8867 level++;
8868 }
8869 }
8870 return 1;
8871 }
8872
8873 /*
8874 * drop a subvolume tree.
8875 *
8876 * this function traverses the tree freeing any blocks that only
8877 * referenced by the tree.
8878 *
8879 * when a shared tree block is found. this function decreases its
8880 * reference count by one. if update_ref is true, this function
8881 * also make sure backrefs for the shared block and all lower level
8882 * blocks are properly updated.
8883 *
8884 * If called with for_reloc == 0, may exit early with -EAGAIN
8885 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)8886 int btrfs_drop_snapshot(struct btrfs_root *root,
8887 struct btrfs_block_rsv *block_rsv, int update_ref,
8888 int for_reloc)
8889 {
8890 struct btrfs_fs_info *fs_info = root->fs_info;
8891 struct btrfs_path *path;
8892 struct btrfs_trans_handle *trans;
8893 struct btrfs_root *tree_root = fs_info->tree_root;
8894 struct btrfs_root_item *root_item = &root->root_item;
8895 struct walk_control *wc;
8896 struct btrfs_key key;
8897 int err = 0;
8898 int ret;
8899 int level;
8900 bool root_dropped = false;
8901
8902 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8903
8904 path = btrfs_alloc_path();
8905 if (!path) {
8906 err = -ENOMEM;
8907 goto out;
8908 }
8909
8910 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8911 if (!wc) {
8912 btrfs_free_path(path);
8913 err = -ENOMEM;
8914 goto out;
8915 }
8916
8917 trans = btrfs_start_transaction(tree_root, 0);
8918 if (IS_ERR(trans)) {
8919 err = PTR_ERR(trans);
8920 goto out_free;
8921 }
8922
8923 err = btrfs_run_delayed_items(trans);
8924 if (err)
8925 goto out_end_trans;
8926
8927 if (block_rsv)
8928 trans->block_rsv = block_rsv;
8929
8930 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8931 level = btrfs_header_level(root->node);
8932 path->nodes[level] = btrfs_lock_root_node(root);
8933 btrfs_set_lock_blocking(path->nodes[level]);
8934 path->slots[level] = 0;
8935 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8936 memset(&wc->update_progress, 0,
8937 sizeof(wc->update_progress));
8938 } else {
8939 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8940 memcpy(&wc->update_progress, &key,
8941 sizeof(wc->update_progress));
8942
8943 level = root_item->drop_level;
8944 BUG_ON(level == 0);
8945 path->lowest_level = level;
8946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8947 path->lowest_level = 0;
8948 if (ret < 0) {
8949 err = ret;
8950 goto out_end_trans;
8951 }
8952 WARN_ON(ret > 0);
8953
8954 /*
8955 * unlock our path, this is safe because only this
8956 * function is allowed to delete this snapshot
8957 */
8958 btrfs_unlock_up_safe(path, 0);
8959
8960 level = btrfs_header_level(root->node);
8961 while (1) {
8962 btrfs_tree_lock(path->nodes[level]);
8963 btrfs_set_lock_blocking(path->nodes[level]);
8964 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8965
8966 ret = btrfs_lookup_extent_info(trans, fs_info,
8967 path->nodes[level]->start,
8968 level, 1, &wc->refs[level],
8969 &wc->flags[level]);
8970 if (ret < 0) {
8971 err = ret;
8972 goto out_end_trans;
8973 }
8974 BUG_ON(wc->refs[level] == 0);
8975
8976 if (level == root_item->drop_level)
8977 break;
8978
8979 btrfs_tree_unlock(path->nodes[level]);
8980 path->locks[level] = 0;
8981 WARN_ON(wc->refs[level] != 1);
8982 level--;
8983 }
8984 }
8985
8986 wc->level = level;
8987 wc->shared_level = -1;
8988 wc->stage = DROP_REFERENCE;
8989 wc->update_ref = update_ref;
8990 wc->keep_locks = 0;
8991 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8992
8993 while (1) {
8994
8995 ret = walk_down_tree(trans, root, path, wc);
8996 if (ret < 0) {
8997 err = ret;
8998 break;
8999 }
9000
9001 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9002 if (ret < 0) {
9003 err = ret;
9004 break;
9005 }
9006
9007 if (ret > 0) {
9008 BUG_ON(wc->stage != DROP_REFERENCE);
9009 break;
9010 }
9011
9012 if (wc->stage == DROP_REFERENCE) {
9013 level = wc->level;
9014 btrfs_node_key(path->nodes[level],
9015 &root_item->drop_progress,
9016 path->slots[level]);
9017 root_item->drop_level = level;
9018 }
9019
9020 BUG_ON(wc->level == 0);
9021 if (btrfs_should_end_transaction(trans) ||
9022 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9023 ret = btrfs_update_root(trans, tree_root,
9024 &root->root_key,
9025 root_item);
9026 if (ret) {
9027 btrfs_abort_transaction(trans, ret);
9028 err = ret;
9029 goto out_end_trans;
9030 }
9031
9032 btrfs_end_transaction_throttle(trans);
9033 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9034 btrfs_debug(fs_info,
9035 "drop snapshot early exit");
9036 err = -EAGAIN;
9037 goto out_free;
9038 }
9039
9040 trans = btrfs_start_transaction(tree_root, 0);
9041 if (IS_ERR(trans)) {
9042 err = PTR_ERR(trans);
9043 goto out_free;
9044 }
9045 if (block_rsv)
9046 trans->block_rsv = block_rsv;
9047 }
9048 }
9049 btrfs_release_path(path);
9050 if (err)
9051 goto out_end_trans;
9052
9053 ret = btrfs_del_root(trans, &root->root_key);
9054 if (ret) {
9055 btrfs_abort_transaction(trans, ret);
9056 err = ret;
9057 goto out_end_trans;
9058 }
9059
9060 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9061 ret = btrfs_find_root(tree_root, &root->root_key, path,
9062 NULL, NULL);
9063 if (ret < 0) {
9064 btrfs_abort_transaction(trans, ret);
9065 err = ret;
9066 goto out_end_trans;
9067 } else if (ret > 0) {
9068 /* if we fail to delete the orphan item this time
9069 * around, it'll get picked up the next time.
9070 *
9071 * The most common failure here is just -ENOENT.
9072 */
9073 btrfs_del_orphan_item(trans, tree_root,
9074 root->root_key.objectid);
9075 }
9076 }
9077
9078 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9079 btrfs_add_dropped_root(trans, root);
9080 } else {
9081 free_extent_buffer(root->node);
9082 free_extent_buffer(root->commit_root);
9083 btrfs_put_fs_root(root);
9084 }
9085 root_dropped = true;
9086 out_end_trans:
9087 btrfs_end_transaction_throttle(trans);
9088 out_free:
9089 kfree(wc);
9090 btrfs_free_path(path);
9091 out:
9092 /*
9093 * So if we need to stop dropping the snapshot for whatever reason we
9094 * need to make sure to add it back to the dead root list so that we
9095 * keep trying to do the work later. This also cleans up roots if we
9096 * don't have it in the radix (like when we recover after a power fail
9097 * or unmount) so we don't leak memory.
9098 */
9099 if (!for_reloc && !root_dropped)
9100 btrfs_add_dead_root(root);
9101 return err;
9102 }
9103
9104 /*
9105 * drop subtree rooted at tree block 'node'.
9106 *
9107 * NOTE: this function will unlock and release tree block 'node'
9108 * only used by relocation code
9109 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9110 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9111 struct btrfs_root *root,
9112 struct extent_buffer *node,
9113 struct extent_buffer *parent)
9114 {
9115 struct btrfs_fs_info *fs_info = root->fs_info;
9116 struct btrfs_path *path;
9117 struct walk_control *wc;
9118 int level;
9119 int parent_level;
9120 int ret = 0;
9121 int wret;
9122
9123 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9124
9125 path = btrfs_alloc_path();
9126 if (!path)
9127 return -ENOMEM;
9128
9129 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9130 if (!wc) {
9131 btrfs_free_path(path);
9132 return -ENOMEM;
9133 }
9134
9135 btrfs_assert_tree_locked(parent);
9136 parent_level = btrfs_header_level(parent);
9137 extent_buffer_get(parent);
9138 path->nodes[parent_level] = parent;
9139 path->slots[parent_level] = btrfs_header_nritems(parent);
9140
9141 btrfs_assert_tree_locked(node);
9142 level = btrfs_header_level(node);
9143 path->nodes[level] = node;
9144 path->slots[level] = 0;
9145 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9146
9147 wc->refs[parent_level] = 1;
9148 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9149 wc->level = level;
9150 wc->shared_level = -1;
9151 wc->stage = DROP_REFERENCE;
9152 wc->update_ref = 0;
9153 wc->keep_locks = 1;
9154 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9155
9156 while (1) {
9157 wret = walk_down_tree(trans, root, path, wc);
9158 if (wret < 0) {
9159 ret = wret;
9160 break;
9161 }
9162
9163 wret = walk_up_tree(trans, root, path, wc, parent_level);
9164 if (wret < 0)
9165 ret = wret;
9166 if (wret != 0)
9167 break;
9168 }
9169
9170 kfree(wc);
9171 btrfs_free_path(path);
9172 return ret;
9173 }
9174
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)9175 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9176 {
9177 u64 num_devices;
9178 u64 stripped;
9179
9180 /*
9181 * if restripe for this chunk_type is on pick target profile and
9182 * return, otherwise do the usual balance
9183 */
9184 stripped = get_restripe_target(fs_info, flags);
9185 if (stripped)
9186 return extended_to_chunk(stripped);
9187
9188 num_devices = fs_info->fs_devices->rw_devices;
9189
9190 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9191 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9192 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9193
9194 if (num_devices == 1) {
9195 stripped |= BTRFS_BLOCK_GROUP_DUP;
9196 stripped = flags & ~stripped;
9197
9198 /* turn raid0 into single device chunks */
9199 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9200 return stripped;
9201
9202 /* turn mirroring into duplication */
9203 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9204 BTRFS_BLOCK_GROUP_RAID10))
9205 return stripped | BTRFS_BLOCK_GROUP_DUP;
9206 } else {
9207 /* they already had raid on here, just return */
9208 if (flags & stripped)
9209 return flags;
9210
9211 stripped |= BTRFS_BLOCK_GROUP_DUP;
9212 stripped = flags & ~stripped;
9213
9214 /* switch duplicated blocks with raid1 */
9215 if (flags & BTRFS_BLOCK_GROUP_DUP)
9216 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9217
9218 /* this is drive concat, leave it alone */
9219 }
9220
9221 return flags;
9222 }
9223
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9224 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9225 {
9226 struct btrfs_space_info *sinfo = cache->space_info;
9227 u64 num_bytes;
9228 u64 min_allocable_bytes;
9229 int ret = -ENOSPC;
9230
9231 /*
9232 * We need some metadata space and system metadata space for
9233 * allocating chunks in some corner cases until we force to set
9234 * it to be readonly.
9235 */
9236 if ((sinfo->flags &
9237 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9238 !force)
9239 min_allocable_bytes = SZ_1M;
9240 else
9241 min_allocable_bytes = 0;
9242
9243 spin_lock(&sinfo->lock);
9244 spin_lock(&cache->lock);
9245
9246 if (cache->ro) {
9247 cache->ro++;
9248 ret = 0;
9249 goto out;
9250 }
9251
9252 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9253 cache->bytes_super - btrfs_block_group_used(&cache->item);
9254
9255 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9256 min_allocable_bytes <= sinfo->total_bytes) {
9257 sinfo->bytes_readonly += num_bytes;
9258 cache->ro++;
9259 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9260 ret = 0;
9261 }
9262 out:
9263 spin_unlock(&cache->lock);
9264 spin_unlock(&sinfo->lock);
9265 return ret;
9266 }
9267
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache)9268 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9269
9270 {
9271 struct btrfs_fs_info *fs_info = cache->fs_info;
9272 struct btrfs_trans_handle *trans;
9273 u64 alloc_flags;
9274 int ret;
9275
9276 again:
9277 trans = btrfs_join_transaction(fs_info->extent_root);
9278 if (IS_ERR(trans))
9279 return PTR_ERR(trans);
9280
9281 /*
9282 * we're not allowed to set block groups readonly after the dirty
9283 * block groups cache has started writing. If it already started,
9284 * back off and let this transaction commit
9285 */
9286 mutex_lock(&fs_info->ro_block_group_mutex);
9287 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9288 u64 transid = trans->transid;
9289
9290 mutex_unlock(&fs_info->ro_block_group_mutex);
9291 btrfs_end_transaction(trans);
9292
9293 ret = btrfs_wait_for_commit(fs_info, transid);
9294 if (ret)
9295 return ret;
9296 goto again;
9297 }
9298
9299 /*
9300 * if we are changing raid levels, try to allocate a corresponding
9301 * block group with the new raid level.
9302 */
9303 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9304 if (alloc_flags != cache->flags) {
9305 ret = do_chunk_alloc(trans, alloc_flags,
9306 CHUNK_ALLOC_FORCE);
9307 /*
9308 * ENOSPC is allowed here, we may have enough space
9309 * already allocated at the new raid level to
9310 * carry on
9311 */
9312 if (ret == -ENOSPC)
9313 ret = 0;
9314 if (ret < 0)
9315 goto out;
9316 }
9317
9318 ret = inc_block_group_ro(cache, 0);
9319 if (!ret)
9320 goto out;
9321 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9322 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9323 if (ret < 0)
9324 goto out;
9325 ret = inc_block_group_ro(cache, 0);
9326 out:
9327 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9328 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9329 mutex_lock(&fs_info->chunk_mutex);
9330 check_system_chunk(trans, alloc_flags);
9331 mutex_unlock(&fs_info->chunk_mutex);
9332 }
9333 mutex_unlock(&fs_info->ro_block_group_mutex);
9334
9335 btrfs_end_transaction(trans);
9336 return ret;
9337 }
9338
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)9339 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9340 {
9341 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9342
9343 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9344 }
9345
9346 /*
9347 * helper to account the unused space of all the readonly block group in the
9348 * space_info. takes mirrors into account.
9349 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9350 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9351 {
9352 struct btrfs_block_group_cache *block_group;
9353 u64 free_bytes = 0;
9354 int factor;
9355
9356 /* It's df, we don't care if it's racy */
9357 if (list_empty(&sinfo->ro_bgs))
9358 return 0;
9359
9360 spin_lock(&sinfo->lock);
9361 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9362 spin_lock(&block_group->lock);
9363
9364 if (!block_group->ro) {
9365 spin_unlock(&block_group->lock);
9366 continue;
9367 }
9368
9369 factor = btrfs_bg_type_to_factor(block_group->flags);
9370 free_bytes += (block_group->key.offset -
9371 btrfs_block_group_used(&block_group->item)) *
9372 factor;
9373
9374 spin_unlock(&block_group->lock);
9375 }
9376 spin_unlock(&sinfo->lock);
9377
9378 return free_bytes;
9379 }
9380
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)9381 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9382 {
9383 struct btrfs_space_info *sinfo = cache->space_info;
9384 u64 num_bytes;
9385
9386 BUG_ON(!cache->ro);
9387
9388 spin_lock(&sinfo->lock);
9389 spin_lock(&cache->lock);
9390 if (!--cache->ro) {
9391 num_bytes = cache->key.offset - cache->reserved -
9392 cache->pinned - cache->bytes_super -
9393 btrfs_block_group_used(&cache->item);
9394 sinfo->bytes_readonly -= num_bytes;
9395 list_del_init(&cache->ro_list);
9396 }
9397 spin_unlock(&cache->lock);
9398 spin_unlock(&sinfo->lock);
9399 }
9400
9401 /*
9402 * checks to see if its even possible to relocate this block group.
9403 *
9404 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9405 * ok to go ahead and try.
9406 */
btrfs_can_relocate(struct btrfs_fs_info * fs_info,u64 bytenr)9407 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9408 {
9409 struct btrfs_root *root = fs_info->extent_root;
9410 struct btrfs_block_group_cache *block_group;
9411 struct btrfs_space_info *space_info;
9412 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9413 struct btrfs_device *device;
9414 struct btrfs_trans_handle *trans;
9415 u64 min_free;
9416 u64 dev_min = 1;
9417 u64 dev_nr = 0;
9418 u64 target;
9419 int debug;
9420 int index;
9421 int full = 0;
9422 int ret = 0;
9423
9424 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9425
9426 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9427
9428 /* odd, couldn't find the block group, leave it alone */
9429 if (!block_group) {
9430 if (debug)
9431 btrfs_warn(fs_info,
9432 "can't find block group for bytenr %llu",
9433 bytenr);
9434 return -1;
9435 }
9436
9437 min_free = btrfs_block_group_used(&block_group->item);
9438
9439 /* no bytes used, we're good */
9440 if (!min_free)
9441 goto out;
9442
9443 space_info = block_group->space_info;
9444 spin_lock(&space_info->lock);
9445
9446 full = space_info->full;
9447
9448 /*
9449 * if this is the last block group we have in this space, we can't
9450 * relocate it unless we're able to allocate a new chunk below.
9451 *
9452 * Otherwise, we need to make sure we have room in the space to handle
9453 * all of the extents from this block group. If we can, we're good
9454 */
9455 if ((space_info->total_bytes != block_group->key.offset) &&
9456 (btrfs_space_info_used(space_info, false) + min_free <
9457 space_info->total_bytes)) {
9458 spin_unlock(&space_info->lock);
9459 goto out;
9460 }
9461 spin_unlock(&space_info->lock);
9462
9463 /*
9464 * ok we don't have enough space, but maybe we have free space on our
9465 * devices to allocate new chunks for relocation, so loop through our
9466 * alloc devices and guess if we have enough space. if this block
9467 * group is going to be restriped, run checks against the target
9468 * profile instead of the current one.
9469 */
9470 ret = -1;
9471
9472 /*
9473 * index:
9474 * 0: raid10
9475 * 1: raid1
9476 * 2: dup
9477 * 3: raid0
9478 * 4: single
9479 */
9480 target = get_restripe_target(fs_info, block_group->flags);
9481 if (target) {
9482 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9483 } else {
9484 /*
9485 * this is just a balance, so if we were marked as full
9486 * we know there is no space for a new chunk
9487 */
9488 if (full) {
9489 if (debug)
9490 btrfs_warn(fs_info,
9491 "no space to alloc new chunk for block group %llu",
9492 block_group->key.objectid);
9493 goto out;
9494 }
9495
9496 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9497 }
9498
9499 if (index == BTRFS_RAID_RAID10) {
9500 dev_min = 4;
9501 /* Divide by 2 */
9502 min_free >>= 1;
9503 } else if (index == BTRFS_RAID_RAID1) {
9504 dev_min = 2;
9505 } else if (index == BTRFS_RAID_DUP) {
9506 /* Multiply by 2 */
9507 min_free <<= 1;
9508 } else if (index == BTRFS_RAID_RAID0) {
9509 dev_min = fs_devices->rw_devices;
9510 min_free = div64_u64(min_free, dev_min);
9511 }
9512
9513 /* We need to do this so that we can look at pending chunks */
9514 trans = btrfs_join_transaction(root);
9515 if (IS_ERR(trans)) {
9516 ret = PTR_ERR(trans);
9517 goto out;
9518 }
9519
9520 mutex_lock(&fs_info->chunk_mutex);
9521 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9522 u64 dev_offset;
9523
9524 /*
9525 * check to make sure we can actually find a chunk with enough
9526 * space to fit our block group in.
9527 */
9528 if (device->total_bytes > device->bytes_used + min_free &&
9529 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9530 ret = find_free_dev_extent(trans, device, min_free,
9531 &dev_offset, NULL);
9532 if (!ret)
9533 dev_nr++;
9534
9535 if (dev_nr >= dev_min)
9536 break;
9537
9538 ret = -1;
9539 }
9540 }
9541 if (debug && ret == -1)
9542 btrfs_warn(fs_info,
9543 "no space to allocate a new chunk for block group %llu",
9544 block_group->key.objectid);
9545 mutex_unlock(&fs_info->chunk_mutex);
9546 btrfs_end_transaction(trans);
9547 out:
9548 btrfs_put_block_group(block_group);
9549 return ret;
9550 }
9551
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)9552 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9553 struct btrfs_path *path,
9554 struct btrfs_key *key)
9555 {
9556 struct btrfs_root *root = fs_info->extent_root;
9557 int ret = 0;
9558 struct btrfs_key found_key;
9559 struct extent_buffer *leaf;
9560 struct btrfs_block_group_item bg;
9561 u64 flags;
9562 int slot;
9563
9564 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9565 if (ret < 0)
9566 goto out;
9567
9568 while (1) {
9569 slot = path->slots[0];
9570 leaf = path->nodes[0];
9571 if (slot >= btrfs_header_nritems(leaf)) {
9572 ret = btrfs_next_leaf(root, path);
9573 if (ret == 0)
9574 continue;
9575 if (ret < 0)
9576 goto out;
9577 break;
9578 }
9579 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9580
9581 if (found_key.objectid >= key->objectid &&
9582 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9583 struct extent_map_tree *em_tree;
9584 struct extent_map *em;
9585
9586 em_tree = &root->fs_info->mapping_tree.map_tree;
9587 read_lock(&em_tree->lock);
9588 em = lookup_extent_mapping(em_tree, found_key.objectid,
9589 found_key.offset);
9590 read_unlock(&em_tree->lock);
9591 if (!em) {
9592 btrfs_err(fs_info,
9593 "logical %llu len %llu found bg but no related chunk",
9594 found_key.objectid, found_key.offset);
9595 ret = -ENOENT;
9596 } else if (em->start != found_key.objectid ||
9597 em->len != found_key.offset) {
9598 btrfs_err(fs_info,
9599 "block group %llu len %llu mismatch with chunk %llu len %llu",
9600 found_key.objectid, found_key.offset,
9601 em->start, em->len);
9602 ret = -EUCLEAN;
9603 } else {
9604 read_extent_buffer(leaf, &bg,
9605 btrfs_item_ptr_offset(leaf, slot),
9606 sizeof(bg));
9607 flags = btrfs_block_group_flags(&bg) &
9608 BTRFS_BLOCK_GROUP_TYPE_MASK;
9609
9610 if (flags != (em->map_lookup->type &
9611 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9612 btrfs_err(fs_info,
9613 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9614 found_key.objectid,
9615 found_key.offset, flags,
9616 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9617 em->map_lookup->type));
9618 ret = -EUCLEAN;
9619 } else {
9620 ret = 0;
9621 }
9622 }
9623 free_extent_map(em);
9624 goto out;
9625 }
9626 path->slots[0]++;
9627 }
9628 out:
9629 return ret;
9630 }
9631
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9632 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9633 {
9634 struct btrfs_block_group_cache *block_group;
9635 u64 last = 0;
9636
9637 while (1) {
9638 struct inode *inode;
9639
9640 block_group = btrfs_lookup_first_block_group(info, last);
9641 while (block_group) {
9642 wait_block_group_cache_done(block_group);
9643 spin_lock(&block_group->lock);
9644 if (block_group->iref)
9645 break;
9646 spin_unlock(&block_group->lock);
9647 block_group = next_block_group(info, block_group);
9648 }
9649 if (!block_group) {
9650 if (last == 0)
9651 break;
9652 last = 0;
9653 continue;
9654 }
9655
9656 inode = block_group->inode;
9657 block_group->iref = 0;
9658 block_group->inode = NULL;
9659 spin_unlock(&block_group->lock);
9660 ASSERT(block_group->io_ctl.inode == NULL);
9661 iput(inode);
9662 last = block_group->key.objectid + block_group->key.offset;
9663 btrfs_put_block_group(block_group);
9664 }
9665 }
9666
9667 /*
9668 * Must be called only after stopping all workers, since we could have block
9669 * group caching kthreads running, and therefore they could race with us if we
9670 * freed the block groups before stopping them.
9671 */
btrfs_free_block_groups(struct btrfs_fs_info * info)9672 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9673 {
9674 struct btrfs_block_group_cache *block_group;
9675 struct btrfs_space_info *space_info;
9676 struct btrfs_caching_control *caching_ctl;
9677 struct rb_node *n;
9678
9679 down_write(&info->commit_root_sem);
9680 while (!list_empty(&info->caching_block_groups)) {
9681 caching_ctl = list_entry(info->caching_block_groups.next,
9682 struct btrfs_caching_control, list);
9683 list_del(&caching_ctl->list);
9684 put_caching_control(caching_ctl);
9685 }
9686 up_write(&info->commit_root_sem);
9687
9688 spin_lock(&info->unused_bgs_lock);
9689 while (!list_empty(&info->unused_bgs)) {
9690 block_group = list_first_entry(&info->unused_bgs,
9691 struct btrfs_block_group_cache,
9692 bg_list);
9693 list_del_init(&block_group->bg_list);
9694 btrfs_put_block_group(block_group);
9695 }
9696 spin_unlock(&info->unused_bgs_lock);
9697
9698 spin_lock(&info->block_group_cache_lock);
9699 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9700 block_group = rb_entry(n, struct btrfs_block_group_cache,
9701 cache_node);
9702 rb_erase(&block_group->cache_node,
9703 &info->block_group_cache_tree);
9704 RB_CLEAR_NODE(&block_group->cache_node);
9705 spin_unlock(&info->block_group_cache_lock);
9706
9707 down_write(&block_group->space_info->groups_sem);
9708 list_del(&block_group->list);
9709 up_write(&block_group->space_info->groups_sem);
9710
9711 /*
9712 * We haven't cached this block group, which means we could
9713 * possibly have excluded extents on this block group.
9714 */
9715 if (block_group->cached == BTRFS_CACHE_NO ||
9716 block_group->cached == BTRFS_CACHE_ERROR)
9717 free_excluded_extents(block_group);
9718
9719 btrfs_remove_free_space_cache(block_group);
9720 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9721 ASSERT(list_empty(&block_group->dirty_list));
9722 ASSERT(list_empty(&block_group->io_list));
9723 ASSERT(list_empty(&block_group->bg_list));
9724 ASSERT(atomic_read(&block_group->count) == 1);
9725 btrfs_put_block_group(block_group);
9726
9727 spin_lock(&info->block_group_cache_lock);
9728 }
9729 spin_unlock(&info->block_group_cache_lock);
9730
9731 /* now that all the block groups are freed, go through and
9732 * free all the space_info structs. This is only called during
9733 * the final stages of unmount, and so we know nobody is
9734 * using them. We call synchronize_rcu() once before we start,
9735 * just to be on the safe side.
9736 */
9737 synchronize_rcu();
9738
9739 release_global_block_rsv(info);
9740
9741 while (!list_empty(&info->space_info)) {
9742 int i;
9743
9744 space_info = list_entry(info->space_info.next,
9745 struct btrfs_space_info,
9746 list);
9747
9748 /*
9749 * Do not hide this behind enospc_debug, this is actually
9750 * important and indicates a real bug if this happens.
9751 */
9752 if (WARN_ON(space_info->bytes_pinned > 0 ||
9753 space_info->bytes_reserved > 0 ||
9754 space_info->bytes_may_use > 0))
9755 dump_space_info(info, space_info, 0, 0);
9756 list_del(&space_info->list);
9757 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9758 struct kobject *kobj;
9759 kobj = space_info->block_group_kobjs[i];
9760 space_info->block_group_kobjs[i] = NULL;
9761 if (kobj) {
9762 kobject_del(kobj);
9763 kobject_put(kobj);
9764 }
9765 }
9766 kobject_del(&space_info->kobj);
9767 kobject_put(&space_info->kobj);
9768 }
9769 return 0;
9770 }
9771
9772 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
btrfs_add_raid_kobjects(struct btrfs_fs_info * fs_info)9773 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9774 {
9775 struct btrfs_space_info *space_info;
9776 struct raid_kobject *rkobj;
9777 LIST_HEAD(list);
9778 int index;
9779 int ret = 0;
9780
9781 spin_lock(&fs_info->pending_raid_kobjs_lock);
9782 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9783 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9784
9785 list_for_each_entry(rkobj, &list, list) {
9786 space_info = __find_space_info(fs_info, rkobj->flags);
9787 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9788
9789 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9790 "%s", get_raid_name(index));
9791 if (ret) {
9792 kobject_put(&rkobj->kobj);
9793 break;
9794 }
9795 }
9796 if (ret)
9797 btrfs_warn(fs_info,
9798 "failed to add kobject for block cache, ignoring");
9799 }
9800
link_block_group(struct btrfs_block_group_cache * cache)9801 static void link_block_group(struct btrfs_block_group_cache *cache)
9802 {
9803 struct btrfs_space_info *space_info = cache->space_info;
9804 struct btrfs_fs_info *fs_info = cache->fs_info;
9805 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9806 bool first = false;
9807
9808 down_write(&space_info->groups_sem);
9809 if (list_empty(&space_info->block_groups[index]))
9810 first = true;
9811 list_add_tail(&cache->list, &space_info->block_groups[index]);
9812 up_write(&space_info->groups_sem);
9813
9814 if (first) {
9815 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9816 if (!rkobj) {
9817 btrfs_warn(cache->fs_info,
9818 "couldn't alloc memory for raid level kobject");
9819 return;
9820 }
9821 rkobj->flags = cache->flags;
9822 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9823
9824 spin_lock(&fs_info->pending_raid_kobjs_lock);
9825 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9826 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9827 space_info->block_group_kobjs[index] = &rkobj->kobj;
9828 }
9829 }
9830
9831 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)9832 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9833 u64 start, u64 size)
9834 {
9835 struct btrfs_block_group_cache *cache;
9836
9837 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9838 if (!cache)
9839 return NULL;
9840
9841 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9842 GFP_NOFS);
9843 if (!cache->free_space_ctl) {
9844 kfree(cache);
9845 return NULL;
9846 }
9847
9848 cache->key.objectid = start;
9849 cache->key.offset = size;
9850 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9851
9852 cache->fs_info = fs_info;
9853 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9854 set_free_space_tree_thresholds(cache);
9855
9856 atomic_set(&cache->count, 1);
9857 spin_lock_init(&cache->lock);
9858 init_rwsem(&cache->data_rwsem);
9859 INIT_LIST_HEAD(&cache->list);
9860 INIT_LIST_HEAD(&cache->cluster_list);
9861 INIT_LIST_HEAD(&cache->bg_list);
9862 INIT_LIST_HEAD(&cache->ro_list);
9863 INIT_LIST_HEAD(&cache->dirty_list);
9864 INIT_LIST_HEAD(&cache->io_list);
9865 btrfs_init_free_space_ctl(cache);
9866 atomic_set(&cache->trimming, 0);
9867 mutex_init(&cache->free_space_lock);
9868 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9869
9870 return cache;
9871 }
9872
9873
9874 /*
9875 * Iterate all chunks and verify that each of them has the corresponding block
9876 * group
9877 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)9878 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9879 {
9880 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9881 struct extent_map *em;
9882 struct btrfs_block_group_cache *bg;
9883 u64 start = 0;
9884 int ret = 0;
9885
9886 while (1) {
9887 read_lock(&map_tree->map_tree.lock);
9888 /*
9889 * lookup_extent_mapping will return the first extent map
9890 * intersecting the range, so setting @len to 1 is enough to
9891 * get the first chunk.
9892 */
9893 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9894 read_unlock(&map_tree->map_tree.lock);
9895 if (!em)
9896 break;
9897
9898 bg = btrfs_lookup_block_group(fs_info, em->start);
9899 if (!bg) {
9900 btrfs_err(fs_info,
9901 "chunk start=%llu len=%llu doesn't have corresponding block group",
9902 em->start, em->len);
9903 ret = -EUCLEAN;
9904 free_extent_map(em);
9905 break;
9906 }
9907 if (bg->key.objectid != em->start ||
9908 bg->key.offset != em->len ||
9909 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9910 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9911 btrfs_err(fs_info,
9912 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9913 em->start, em->len,
9914 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9915 bg->key.objectid, bg->key.offset,
9916 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9917 ret = -EUCLEAN;
9918 free_extent_map(em);
9919 btrfs_put_block_group(bg);
9920 break;
9921 }
9922 start = em->start + em->len;
9923 free_extent_map(em);
9924 btrfs_put_block_group(bg);
9925 }
9926 return ret;
9927 }
9928
btrfs_read_block_groups(struct btrfs_fs_info * info)9929 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9930 {
9931 struct btrfs_path *path;
9932 int ret;
9933 struct btrfs_block_group_cache *cache;
9934 struct btrfs_space_info *space_info;
9935 struct btrfs_key key;
9936 struct btrfs_key found_key;
9937 struct extent_buffer *leaf;
9938 int need_clear = 0;
9939 u64 cache_gen;
9940 u64 feature;
9941 int mixed;
9942
9943 feature = btrfs_super_incompat_flags(info->super_copy);
9944 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9945
9946 key.objectid = 0;
9947 key.offset = 0;
9948 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9949 path = btrfs_alloc_path();
9950 if (!path)
9951 return -ENOMEM;
9952 path->reada = READA_FORWARD;
9953
9954 cache_gen = btrfs_super_cache_generation(info->super_copy);
9955 if (btrfs_test_opt(info, SPACE_CACHE) &&
9956 btrfs_super_generation(info->super_copy) != cache_gen)
9957 need_clear = 1;
9958 if (btrfs_test_opt(info, CLEAR_CACHE))
9959 need_clear = 1;
9960
9961 while (1) {
9962 ret = find_first_block_group(info, path, &key);
9963 if (ret > 0)
9964 break;
9965 if (ret != 0)
9966 goto error;
9967
9968 leaf = path->nodes[0];
9969 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9970
9971 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9972 found_key.offset);
9973 if (!cache) {
9974 ret = -ENOMEM;
9975 goto error;
9976 }
9977
9978 if (need_clear) {
9979 /*
9980 * When we mount with old space cache, we need to
9981 * set BTRFS_DC_CLEAR and set dirty flag.
9982 *
9983 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9984 * truncate the old free space cache inode and
9985 * setup a new one.
9986 * b) Setting 'dirty flag' makes sure that we flush
9987 * the new space cache info onto disk.
9988 */
9989 if (btrfs_test_opt(info, SPACE_CACHE))
9990 cache->disk_cache_state = BTRFS_DC_CLEAR;
9991 }
9992
9993 read_extent_buffer(leaf, &cache->item,
9994 btrfs_item_ptr_offset(leaf, path->slots[0]),
9995 sizeof(cache->item));
9996 cache->flags = btrfs_block_group_flags(&cache->item);
9997 if (!mixed &&
9998 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9999 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10000 btrfs_err(info,
10001 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10002 cache->key.objectid);
10003 btrfs_put_block_group(cache);
10004 ret = -EINVAL;
10005 goto error;
10006 }
10007
10008 key.objectid = found_key.objectid + found_key.offset;
10009 btrfs_release_path(path);
10010
10011 /*
10012 * We need to exclude the super stripes now so that the space
10013 * info has super bytes accounted for, otherwise we'll think
10014 * we have more space than we actually do.
10015 */
10016 ret = exclude_super_stripes(cache);
10017 if (ret) {
10018 /*
10019 * We may have excluded something, so call this just in
10020 * case.
10021 */
10022 free_excluded_extents(cache);
10023 btrfs_put_block_group(cache);
10024 goto error;
10025 }
10026
10027 /*
10028 * check for two cases, either we are full, and therefore
10029 * don't need to bother with the caching work since we won't
10030 * find any space, or we are empty, and we can just add all
10031 * the space in and be done with it. This saves us _alot_ of
10032 * time, particularly in the full case.
10033 */
10034 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10035 cache->last_byte_to_unpin = (u64)-1;
10036 cache->cached = BTRFS_CACHE_FINISHED;
10037 free_excluded_extents(cache);
10038 } else if (btrfs_block_group_used(&cache->item) == 0) {
10039 cache->last_byte_to_unpin = (u64)-1;
10040 cache->cached = BTRFS_CACHE_FINISHED;
10041 add_new_free_space(cache, found_key.objectid,
10042 found_key.objectid +
10043 found_key.offset);
10044 free_excluded_extents(cache);
10045 }
10046
10047 ret = btrfs_add_block_group_cache(info, cache);
10048 if (ret) {
10049 btrfs_remove_free_space_cache(cache);
10050 btrfs_put_block_group(cache);
10051 goto error;
10052 }
10053
10054 trace_btrfs_add_block_group(info, cache, 0);
10055 update_space_info(info, cache->flags, found_key.offset,
10056 btrfs_block_group_used(&cache->item),
10057 cache->bytes_super, &space_info);
10058
10059 cache->space_info = space_info;
10060
10061 link_block_group(cache);
10062
10063 set_avail_alloc_bits(info, cache->flags);
10064 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10065 inc_block_group_ro(cache, 1);
10066 } else if (btrfs_block_group_used(&cache->item) == 0) {
10067 ASSERT(list_empty(&cache->bg_list));
10068 btrfs_mark_bg_unused(cache);
10069 }
10070 }
10071
10072 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10073 if (!(get_alloc_profile(info, space_info->flags) &
10074 (BTRFS_BLOCK_GROUP_RAID10 |
10075 BTRFS_BLOCK_GROUP_RAID1 |
10076 BTRFS_BLOCK_GROUP_RAID5 |
10077 BTRFS_BLOCK_GROUP_RAID6 |
10078 BTRFS_BLOCK_GROUP_DUP)))
10079 continue;
10080 /*
10081 * avoid allocating from un-mirrored block group if there are
10082 * mirrored block groups.
10083 */
10084 list_for_each_entry(cache,
10085 &space_info->block_groups[BTRFS_RAID_RAID0],
10086 list)
10087 inc_block_group_ro(cache, 1);
10088 list_for_each_entry(cache,
10089 &space_info->block_groups[BTRFS_RAID_SINGLE],
10090 list)
10091 inc_block_group_ro(cache, 1);
10092 }
10093
10094 btrfs_add_raid_kobjects(info);
10095 init_global_block_rsv(info);
10096 ret = check_chunk_block_group_mappings(info);
10097 error:
10098 btrfs_free_path(path);
10099 return ret;
10100 }
10101
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)10102 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10103 {
10104 struct btrfs_fs_info *fs_info = trans->fs_info;
10105 struct btrfs_block_group_cache *block_group;
10106 struct btrfs_root *extent_root = fs_info->extent_root;
10107 struct btrfs_block_group_item item;
10108 struct btrfs_key key;
10109 int ret = 0;
10110
10111 if (!trans->can_flush_pending_bgs)
10112 return;
10113
10114 while (!list_empty(&trans->new_bgs)) {
10115 block_group = list_first_entry(&trans->new_bgs,
10116 struct btrfs_block_group_cache,
10117 bg_list);
10118 if (ret)
10119 goto next;
10120
10121 spin_lock(&block_group->lock);
10122 memcpy(&item, &block_group->item, sizeof(item));
10123 memcpy(&key, &block_group->key, sizeof(key));
10124 spin_unlock(&block_group->lock);
10125
10126 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10127 sizeof(item));
10128 if (ret)
10129 btrfs_abort_transaction(trans, ret);
10130 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10131 if (ret)
10132 btrfs_abort_transaction(trans, ret);
10133 add_block_group_free_space(trans, block_group);
10134 /* already aborted the transaction if it failed. */
10135 next:
10136 list_del_init(&block_group->bg_list);
10137 }
10138 btrfs_trans_release_chunk_metadata(trans);
10139 }
10140
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)10141 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10142 u64 type, u64 chunk_offset, u64 size)
10143 {
10144 struct btrfs_fs_info *fs_info = trans->fs_info;
10145 struct btrfs_block_group_cache *cache;
10146 int ret;
10147
10148 btrfs_set_log_full_commit(fs_info, trans);
10149
10150 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10151 if (!cache)
10152 return -ENOMEM;
10153
10154 btrfs_set_block_group_used(&cache->item, bytes_used);
10155 btrfs_set_block_group_chunk_objectid(&cache->item,
10156 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10157 btrfs_set_block_group_flags(&cache->item, type);
10158
10159 cache->flags = type;
10160 cache->last_byte_to_unpin = (u64)-1;
10161 cache->cached = BTRFS_CACHE_FINISHED;
10162 cache->needs_free_space = 1;
10163 ret = exclude_super_stripes(cache);
10164 if (ret) {
10165 /*
10166 * We may have excluded something, so call this just in
10167 * case.
10168 */
10169 free_excluded_extents(cache);
10170 btrfs_put_block_group(cache);
10171 return ret;
10172 }
10173
10174 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10175
10176 free_excluded_extents(cache);
10177
10178 #ifdef CONFIG_BTRFS_DEBUG
10179 if (btrfs_should_fragment_free_space(cache)) {
10180 u64 new_bytes_used = size - bytes_used;
10181
10182 bytes_used += new_bytes_used >> 1;
10183 fragment_free_space(cache);
10184 }
10185 #endif
10186 /*
10187 * Ensure the corresponding space_info object is created and
10188 * assigned to our block group. We want our bg to be added to the rbtree
10189 * with its ->space_info set.
10190 */
10191 cache->space_info = __find_space_info(fs_info, cache->flags);
10192 ASSERT(cache->space_info);
10193
10194 ret = btrfs_add_block_group_cache(fs_info, cache);
10195 if (ret) {
10196 btrfs_remove_free_space_cache(cache);
10197 btrfs_put_block_group(cache);
10198 return ret;
10199 }
10200
10201 /*
10202 * Now that our block group has its ->space_info set and is inserted in
10203 * the rbtree, update the space info's counters.
10204 */
10205 trace_btrfs_add_block_group(fs_info, cache, 1);
10206 update_space_info(fs_info, cache->flags, size, bytes_used,
10207 cache->bytes_super, &cache->space_info);
10208 update_global_block_rsv(fs_info);
10209
10210 link_block_group(cache);
10211
10212 list_add_tail(&cache->bg_list, &trans->new_bgs);
10213
10214 set_avail_alloc_bits(fs_info, type);
10215 return 0;
10216 }
10217
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10218 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10219 {
10220 u64 extra_flags = chunk_to_extended(flags) &
10221 BTRFS_EXTENDED_PROFILE_MASK;
10222
10223 write_seqlock(&fs_info->profiles_lock);
10224 if (flags & BTRFS_BLOCK_GROUP_DATA)
10225 fs_info->avail_data_alloc_bits &= ~extra_flags;
10226 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10227 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10228 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10229 fs_info->avail_system_alloc_bits &= ~extra_flags;
10230 write_sequnlock(&fs_info->profiles_lock);
10231 }
10232
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)10233 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10234 u64 group_start, struct extent_map *em)
10235 {
10236 struct btrfs_fs_info *fs_info = trans->fs_info;
10237 struct btrfs_root *root = fs_info->extent_root;
10238 struct btrfs_path *path;
10239 struct btrfs_block_group_cache *block_group;
10240 struct btrfs_free_cluster *cluster;
10241 struct btrfs_root *tree_root = fs_info->tree_root;
10242 struct btrfs_key key;
10243 struct inode *inode;
10244 struct kobject *kobj = NULL;
10245 int ret;
10246 int index;
10247 int factor;
10248 struct btrfs_caching_control *caching_ctl = NULL;
10249 bool remove_em;
10250
10251 block_group = btrfs_lookup_block_group(fs_info, group_start);
10252 BUG_ON(!block_group);
10253 BUG_ON(!block_group->ro);
10254
10255 trace_btrfs_remove_block_group(block_group);
10256 /*
10257 * Free the reserved super bytes from this block group before
10258 * remove it.
10259 */
10260 free_excluded_extents(block_group);
10261 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10262 block_group->key.offset);
10263
10264 memcpy(&key, &block_group->key, sizeof(key));
10265 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10266 factor = btrfs_bg_type_to_factor(block_group->flags);
10267
10268 /* make sure this block group isn't part of an allocation cluster */
10269 cluster = &fs_info->data_alloc_cluster;
10270 spin_lock(&cluster->refill_lock);
10271 btrfs_return_cluster_to_free_space(block_group, cluster);
10272 spin_unlock(&cluster->refill_lock);
10273
10274 /*
10275 * make sure this block group isn't part of a metadata
10276 * allocation cluster
10277 */
10278 cluster = &fs_info->meta_alloc_cluster;
10279 spin_lock(&cluster->refill_lock);
10280 btrfs_return_cluster_to_free_space(block_group, cluster);
10281 spin_unlock(&cluster->refill_lock);
10282
10283 path = btrfs_alloc_path();
10284 if (!path) {
10285 ret = -ENOMEM;
10286 goto out;
10287 }
10288
10289 /*
10290 * get the inode first so any iput calls done for the io_list
10291 * aren't the final iput (no unlinks allowed now)
10292 */
10293 inode = lookup_free_space_inode(fs_info, block_group, path);
10294
10295 mutex_lock(&trans->transaction->cache_write_mutex);
10296 /*
10297 * make sure our free spache cache IO is done before remove the
10298 * free space inode
10299 */
10300 spin_lock(&trans->transaction->dirty_bgs_lock);
10301 if (!list_empty(&block_group->io_list)) {
10302 list_del_init(&block_group->io_list);
10303
10304 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10305
10306 spin_unlock(&trans->transaction->dirty_bgs_lock);
10307 btrfs_wait_cache_io(trans, block_group, path);
10308 btrfs_put_block_group(block_group);
10309 spin_lock(&trans->transaction->dirty_bgs_lock);
10310 }
10311
10312 if (!list_empty(&block_group->dirty_list)) {
10313 list_del_init(&block_group->dirty_list);
10314 btrfs_put_block_group(block_group);
10315 }
10316 spin_unlock(&trans->transaction->dirty_bgs_lock);
10317 mutex_unlock(&trans->transaction->cache_write_mutex);
10318
10319 if (!IS_ERR(inode)) {
10320 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10321 if (ret) {
10322 btrfs_add_delayed_iput(inode);
10323 goto out;
10324 }
10325 clear_nlink(inode);
10326 /* One for the block groups ref */
10327 spin_lock(&block_group->lock);
10328 if (block_group->iref) {
10329 block_group->iref = 0;
10330 block_group->inode = NULL;
10331 spin_unlock(&block_group->lock);
10332 iput(inode);
10333 } else {
10334 spin_unlock(&block_group->lock);
10335 }
10336 /* One for our lookup ref */
10337 btrfs_add_delayed_iput(inode);
10338 }
10339
10340 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10341 key.offset = block_group->key.objectid;
10342 key.type = 0;
10343
10344 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10345 if (ret < 0)
10346 goto out;
10347 if (ret > 0)
10348 btrfs_release_path(path);
10349 if (ret == 0) {
10350 ret = btrfs_del_item(trans, tree_root, path);
10351 if (ret)
10352 goto out;
10353 btrfs_release_path(path);
10354 }
10355
10356 spin_lock(&fs_info->block_group_cache_lock);
10357 rb_erase(&block_group->cache_node,
10358 &fs_info->block_group_cache_tree);
10359 RB_CLEAR_NODE(&block_group->cache_node);
10360
10361 /* Once for the block groups rbtree */
10362 btrfs_put_block_group(block_group);
10363
10364 if (fs_info->first_logical_byte == block_group->key.objectid)
10365 fs_info->first_logical_byte = (u64)-1;
10366 spin_unlock(&fs_info->block_group_cache_lock);
10367
10368 down_write(&block_group->space_info->groups_sem);
10369 /*
10370 * we must use list_del_init so people can check to see if they
10371 * are still on the list after taking the semaphore
10372 */
10373 list_del_init(&block_group->list);
10374 if (list_empty(&block_group->space_info->block_groups[index])) {
10375 kobj = block_group->space_info->block_group_kobjs[index];
10376 block_group->space_info->block_group_kobjs[index] = NULL;
10377 clear_avail_alloc_bits(fs_info, block_group->flags);
10378 }
10379 up_write(&block_group->space_info->groups_sem);
10380 if (kobj) {
10381 kobject_del(kobj);
10382 kobject_put(kobj);
10383 }
10384
10385 if (block_group->has_caching_ctl)
10386 caching_ctl = get_caching_control(block_group);
10387 if (block_group->cached == BTRFS_CACHE_STARTED)
10388 wait_block_group_cache_done(block_group);
10389 if (block_group->has_caching_ctl) {
10390 down_write(&fs_info->commit_root_sem);
10391 if (!caching_ctl) {
10392 struct btrfs_caching_control *ctl;
10393
10394 list_for_each_entry(ctl,
10395 &fs_info->caching_block_groups, list)
10396 if (ctl->block_group == block_group) {
10397 caching_ctl = ctl;
10398 refcount_inc(&caching_ctl->count);
10399 break;
10400 }
10401 }
10402 if (caching_ctl)
10403 list_del_init(&caching_ctl->list);
10404 up_write(&fs_info->commit_root_sem);
10405 if (caching_ctl) {
10406 /* Once for the caching bgs list and once for us. */
10407 put_caching_control(caching_ctl);
10408 put_caching_control(caching_ctl);
10409 }
10410 }
10411
10412 spin_lock(&trans->transaction->dirty_bgs_lock);
10413 if (!list_empty(&block_group->dirty_list)) {
10414 WARN_ON(1);
10415 }
10416 if (!list_empty(&block_group->io_list)) {
10417 WARN_ON(1);
10418 }
10419 spin_unlock(&trans->transaction->dirty_bgs_lock);
10420 btrfs_remove_free_space_cache(block_group);
10421
10422 spin_lock(&block_group->space_info->lock);
10423 list_del_init(&block_group->ro_list);
10424
10425 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10426 WARN_ON(block_group->space_info->total_bytes
10427 < block_group->key.offset);
10428 WARN_ON(block_group->space_info->bytes_readonly
10429 < block_group->key.offset);
10430 WARN_ON(block_group->space_info->disk_total
10431 < block_group->key.offset * factor);
10432 }
10433 block_group->space_info->total_bytes -= block_group->key.offset;
10434 block_group->space_info->bytes_readonly -= block_group->key.offset;
10435 block_group->space_info->disk_total -= block_group->key.offset * factor;
10436
10437 spin_unlock(&block_group->space_info->lock);
10438
10439 memcpy(&key, &block_group->key, sizeof(key));
10440
10441 mutex_lock(&fs_info->chunk_mutex);
10442 if (!list_empty(&em->list)) {
10443 /* We're in the transaction->pending_chunks list. */
10444 free_extent_map(em);
10445 }
10446 spin_lock(&block_group->lock);
10447 block_group->removed = 1;
10448 /*
10449 * At this point trimming can't start on this block group, because we
10450 * removed the block group from the tree fs_info->block_group_cache_tree
10451 * so no one can't find it anymore and even if someone already got this
10452 * block group before we removed it from the rbtree, they have already
10453 * incremented block_group->trimming - if they didn't, they won't find
10454 * any free space entries because we already removed them all when we
10455 * called btrfs_remove_free_space_cache().
10456 *
10457 * And we must not remove the extent map from the fs_info->mapping_tree
10458 * to prevent the same logical address range and physical device space
10459 * ranges from being reused for a new block group. This is because our
10460 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10461 * completely transactionless, so while it is trimming a range the
10462 * currently running transaction might finish and a new one start,
10463 * allowing for new block groups to be created that can reuse the same
10464 * physical device locations unless we take this special care.
10465 *
10466 * There may also be an implicit trim operation if the file system
10467 * is mounted with -odiscard. The same protections must remain
10468 * in place until the extents have been discarded completely when
10469 * the transaction commit has completed.
10470 */
10471 remove_em = (atomic_read(&block_group->trimming) == 0);
10472 /*
10473 * Make sure a trimmer task always sees the em in the pinned_chunks list
10474 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10475 * before checking block_group->removed).
10476 */
10477 if (!remove_em) {
10478 /*
10479 * Our em might be in trans->transaction->pending_chunks which
10480 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10481 * and so is the fs_info->pinned_chunks list.
10482 *
10483 * So at this point we must be holding the chunk_mutex to avoid
10484 * any races with chunk allocation (more specifically at
10485 * volumes.c:contains_pending_extent()), to ensure it always
10486 * sees the em, either in the pending_chunks list or in the
10487 * pinned_chunks list.
10488 */
10489 list_move_tail(&em->list, &fs_info->pinned_chunks);
10490 }
10491 spin_unlock(&block_group->lock);
10492
10493 mutex_unlock(&fs_info->chunk_mutex);
10494
10495 ret = remove_block_group_free_space(trans, block_group);
10496 if (ret)
10497 goto out;
10498
10499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10500 if (ret > 0)
10501 ret = -EIO;
10502 if (ret < 0)
10503 goto out;
10504
10505 ret = btrfs_del_item(trans, root, path);
10506 if (ret)
10507 goto out;
10508
10509 if (remove_em) {
10510 struct extent_map_tree *em_tree;
10511
10512 em_tree = &fs_info->mapping_tree.map_tree;
10513 write_lock(&em_tree->lock);
10514 /*
10515 * The em might be in the pending_chunks list, so make sure the
10516 * chunk mutex is locked, since remove_extent_mapping() will
10517 * delete us from that list.
10518 */
10519 remove_extent_mapping(em_tree, em);
10520 write_unlock(&em_tree->lock);
10521 /* once for the tree */
10522 free_extent_map(em);
10523 }
10524
10525 out:
10526 /* Once for the lookup reference */
10527 btrfs_put_block_group(block_group);
10528 btrfs_free_path(path);
10529 return ret;
10530 }
10531
10532 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10533 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10534 const u64 chunk_offset)
10535 {
10536 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10537 struct extent_map *em;
10538 struct map_lookup *map;
10539 unsigned int num_items;
10540
10541 read_lock(&em_tree->lock);
10542 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10543 read_unlock(&em_tree->lock);
10544 ASSERT(em && em->start == chunk_offset);
10545
10546 /*
10547 * We need to reserve 3 + N units from the metadata space info in order
10548 * to remove a block group (done at btrfs_remove_chunk() and at
10549 * btrfs_remove_block_group()), which are used for:
10550 *
10551 * 1 unit for adding the free space inode's orphan (located in the tree
10552 * of tree roots).
10553 * 1 unit for deleting the block group item (located in the extent
10554 * tree).
10555 * 1 unit for deleting the free space item (located in tree of tree
10556 * roots).
10557 * N units for deleting N device extent items corresponding to each
10558 * stripe (located in the device tree).
10559 *
10560 * In order to remove a block group we also need to reserve units in the
10561 * system space info in order to update the chunk tree (update one or
10562 * more device items and remove one chunk item), but this is done at
10563 * btrfs_remove_chunk() through a call to check_system_chunk().
10564 */
10565 map = em->map_lookup;
10566 num_items = 3 + map->num_stripes;
10567 free_extent_map(em);
10568
10569 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10570 num_items, 1);
10571 }
10572
10573 /*
10574 * Process the unused_bgs list and remove any that don't have any allocated
10575 * space inside of them.
10576 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10577 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10578 {
10579 struct btrfs_block_group_cache *block_group;
10580 struct btrfs_space_info *space_info;
10581 struct btrfs_trans_handle *trans;
10582 int ret = 0;
10583
10584 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10585 return;
10586
10587 spin_lock(&fs_info->unused_bgs_lock);
10588 while (!list_empty(&fs_info->unused_bgs)) {
10589 u64 start, end;
10590 int trimming;
10591
10592 block_group = list_first_entry(&fs_info->unused_bgs,
10593 struct btrfs_block_group_cache,
10594 bg_list);
10595 list_del_init(&block_group->bg_list);
10596
10597 space_info = block_group->space_info;
10598
10599 if (ret || btrfs_mixed_space_info(space_info)) {
10600 btrfs_put_block_group(block_group);
10601 continue;
10602 }
10603 spin_unlock(&fs_info->unused_bgs_lock);
10604
10605 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10606
10607 /* Don't want to race with allocators so take the groups_sem */
10608 down_write(&space_info->groups_sem);
10609 spin_lock(&block_group->lock);
10610 if (block_group->reserved || block_group->pinned ||
10611 btrfs_block_group_used(&block_group->item) ||
10612 block_group->ro ||
10613 list_is_singular(&block_group->list)) {
10614 /*
10615 * We want to bail if we made new allocations or have
10616 * outstanding allocations in this block group. We do
10617 * the ro check in case balance is currently acting on
10618 * this block group.
10619 */
10620 trace_btrfs_skip_unused_block_group(block_group);
10621 spin_unlock(&block_group->lock);
10622 up_write(&space_info->groups_sem);
10623 goto next;
10624 }
10625 spin_unlock(&block_group->lock);
10626
10627 /* We don't want to force the issue, only flip if it's ok. */
10628 ret = inc_block_group_ro(block_group, 0);
10629 up_write(&space_info->groups_sem);
10630 if (ret < 0) {
10631 ret = 0;
10632 goto next;
10633 }
10634
10635 /*
10636 * Want to do this before we do anything else so we can recover
10637 * properly if we fail to join the transaction.
10638 */
10639 trans = btrfs_start_trans_remove_block_group(fs_info,
10640 block_group->key.objectid);
10641 if (IS_ERR(trans)) {
10642 btrfs_dec_block_group_ro(block_group);
10643 ret = PTR_ERR(trans);
10644 goto next;
10645 }
10646
10647 /*
10648 * We could have pending pinned extents for this block group,
10649 * just delete them, we don't care about them anymore.
10650 */
10651 start = block_group->key.objectid;
10652 end = start + block_group->key.offset - 1;
10653 /*
10654 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10655 * btrfs_finish_extent_commit(). If we are at transaction N,
10656 * another task might be running finish_extent_commit() for the
10657 * previous transaction N - 1, and have seen a range belonging
10658 * to the block group in freed_extents[] before we were able to
10659 * clear the whole block group range from freed_extents[]. This
10660 * means that task can lookup for the block group after we
10661 * unpinned it from freed_extents[] and removed it, leading to
10662 * a BUG_ON() at btrfs_unpin_extent_range().
10663 */
10664 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10665 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10666 EXTENT_DIRTY);
10667 if (ret) {
10668 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10669 btrfs_dec_block_group_ro(block_group);
10670 goto end_trans;
10671 }
10672 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10673 EXTENT_DIRTY);
10674 if (ret) {
10675 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10676 btrfs_dec_block_group_ro(block_group);
10677 goto end_trans;
10678 }
10679 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10680
10681 /* Reset pinned so btrfs_put_block_group doesn't complain */
10682 spin_lock(&space_info->lock);
10683 spin_lock(&block_group->lock);
10684
10685 space_info->bytes_pinned -= block_group->pinned;
10686 space_info->bytes_readonly += block_group->pinned;
10687 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10688 -block_group->pinned,
10689 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10690 block_group->pinned = 0;
10691
10692 spin_unlock(&block_group->lock);
10693 spin_unlock(&space_info->lock);
10694
10695 /* DISCARD can flip during remount */
10696 trimming = btrfs_test_opt(fs_info, DISCARD);
10697
10698 /* Implicit trim during transaction commit. */
10699 if (trimming)
10700 btrfs_get_block_group_trimming(block_group);
10701
10702 /*
10703 * Btrfs_remove_chunk will abort the transaction if things go
10704 * horribly wrong.
10705 */
10706 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10707
10708 if (ret) {
10709 if (trimming)
10710 btrfs_put_block_group_trimming(block_group);
10711 goto end_trans;
10712 }
10713
10714 /*
10715 * If we're not mounted with -odiscard, we can just forget
10716 * about this block group. Otherwise we'll need to wait
10717 * until transaction commit to do the actual discard.
10718 */
10719 if (trimming) {
10720 spin_lock(&fs_info->unused_bgs_lock);
10721 /*
10722 * A concurrent scrub might have added us to the list
10723 * fs_info->unused_bgs, so use a list_move operation
10724 * to add the block group to the deleted_bgs list.
10725 */
10726 list_move(&block_group->bg_list,
10727 &trans->transaction->deleted_bgs);
10728 spin_unlock(&fs_info->unused_bgs_lock);
10729 btrfs_get_block_group(block_group);
10730 }
10731 end_trans:
10732 btrfs_end_transaction(trans);
10733 next:
10734 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10735 btrfs_put_block_group(block_group);
10736 spin_lock(&fs_info->unused_bgs_lock);
10737 }
10738 spin_unlock(&fs_info->unused_bgs_lock);
10739 }
10740
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10741 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10742 {
10743 struct btrfs_super_block *disk_super;
10744 u64 features;
10745 u64 flags;
10746 int mixed = 0;
10747 int ret;
10748
10749 disk_super = fs_info->super_copy;
10750 if (!btrfs_super_root(disk_super))
10751 return -EINVAL;
10752
10753 features = btrfs_super_incompat_flags(disk_super);
10754 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10755 mixed = 1;
10756
10757 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10758 ret = create_space_info(fs_info, flags);
10759 if (ret)
10760 goto out;
10761
10762 if (mixed) {
10763 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10764 ret = create_space_info(fs_info, flags);
10765 } else {
10766 flags = BTRFS_BLOCK_GROUP_METADATA;
10767 ret = create_space_info(fs_info, flags);
10768 if (ret)
10769 goto out;
10770
10771 flags = BTRFS_BLOCK_GROUP_DATA;
10772 ret = create_space_info(fs_info, flags);
10773 }
10774 out:
10775 return ret;
10776 }
10777
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)10778 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10779 u64 start, u64 end)
10780 {
10781 return unpin_extent_range(fs_info, start, end, false);
10782 }
10783
10784 /*
10785 * It used to be that old block groups would be left around forever.
10786 * Iterating over them would be enough to trim unused space. Since we
10787 * now automatically remove them, we also need to iterate over unallocated
10788 * space.
10789 *
10790 * We don't want a transaction for this since the discard may take a
10791 * substantial amount of time. We don't require that a transaction be
10792 * running, but we do need to take a running transaction into account
10793 * to ensure that we're not discarding chunks that were released or
10794 * allocated in the current transaction.
10795 *
10796 * Holding the chunks lock will prevent other threads from allocating
10797 * or releasing chunks, but it won't prevent a running transaction
10798 * from committing and releasing the memory that the pending chunks
10799 * list head uses. For that, we need to take a reference to the
10800 * transaction and hold the commit root sem. We only need to hold
10801 * it while performing the free space search since we have already
10802 * held back allocations.
10803 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)10804 static int btrfs_trim_free_extents(struct btrfs_device *device,
10805 u64 minlen, u64 *trimmed)
10806 {
10807 u64 start = 0, len = 0;
10808 int ret;
10809
10810 *trimmed = 0;
10811
10812 /* Discard not supported = nothing to do. */
10813 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10814 return 0;
10815
10816 /* Not writeable = nothing to do. */
10817 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10818 return 0;
10819
10820 /* No free space = nothing to do. */
10821 if (device->total_bytes <= device->bytes_used)
10822 return 0;
10823
10824 ret = 0;
10825
10826 while (1) {
10827 struct btrfs_fs_info *fs_info = device->fs_info;
10828 struct btrfs_transaction *trans;
10829 u64 bytes;
10830
10831 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10832 if (ret)
10833 break;
10834
10835 ret = down_read_killable(&fs_info->commit_root_sem);
10836 if (ret) {
10837 mutex_unlock(&fs_info->chunk_mutex);
10838 break;
10839 }
10840
10841 spin_lock(&fs_info->trans_lock);
10842 trans = fs_info->running_transaction;
10843 if (trans)
10844 refcount_inc(&trans->use_count);
10845 spin_unlock(&fs_info->trans_lock);
10846
10847 if (!trans)
10848 up_read(&fs_info->commit_root_sem);
10849
10850 ret = find_free_dev_extent_start(trans, device, minlen, start,
10851 &start, &len);
10852 if (trans) {
10853 up_read(&fs_info->commit_root_sem);
10854 btrfs_put_transaction(trans);
10855 }
10856
10857 if (ret) {
10858 mutex_unlock(&fs_info->chunk_mutex);
10859 if (ret == -ENOSPC)
10860 ret = 0;
10861 break;
10862 }
10863
10864 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10865 mutex_unlock(&fs_info->chunk_mutex);
10866
10867 if (ret)
10868 break;
10869
10870 start += len;
10871 *trimmed += bytes;
10872
10873 if (fatal_signal_pending(current)) {
10874 ret = -ERESTARTSYS;
10875 break;
10876 }
10877
10878 cond_resched();
10879 }
10880
10881 return ret;
10882 }
10883
10884 /*
10885 * Trim the whole filesystem by:
10886 * 1) trimming the free space in each block group
10887 * 2) trimming the unallocated space on each device
10888 *
10889 * This will also continue trimming even if a block group or device encounters
10890 * an error. The return value will be the last error, or 0 if nothing bad
10891 * happens.
10892 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)10893 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10894 {
10895 struct btrfs_block_group_cache *cache = NULL;
10896 struct btrfs_device *device;
10897 struct list_head *devices;
10898 u64 group_trimmed;
10899 u64 start;
10900 u64 end;
10901 u64 trimmed = 0;
10902 u64 bg_failed = 0;
10903 u64 dev_failed = 0;
10904 int bg_ret = 0;
10905 int dev_ret = 0;
10906 int ret = 0;
10907
10908 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10909 for (; cache; cache = next_block_group(fs_info, cache)) {
10910 if (cache->key.objectid >= (range->start + range->len)) {
10911 btrfs_put_block_group(cache);
10912 break;
10913 }
10914
10915 start = max(range->start, cache->key.objectid);
10916 end = min(range->start + range->len,
10917 cache->key.objectid + cache->key.offset);
10918
10919 if (end - start >= range->minlen) {
10920 if (!block_group_cache_done(cache)) {
10921 ret = cache_block_group(cache, 0);
10922 if (ret) {
10923 bg_failed++;
10924 bg_ret = ret;
10925 continue;
10926 }
10927 ret = wait_block_group_cache_done(cache);
10928 if (ret) {
10929 bg_failed++;
10930 bg_ret = ret;
10931 continue;
10932 }
10933 }
10934 ret = btrfs_trim_block_group(cache,
10935 &group_trimmed,
10936 start,
10937 end,
10938 range->minlen);
10939
10940 trimmed += group_trimmed;
10941 if (ret) {
10942 bg_failed++;
10943 bg_ret = ret;
10944 continue;
10945 }
10946 }
10947 }
10948
10949 if (bg_failed)
10950 btrfs_warn(fs_info,
10951 "failed to trim %llu block group(s), last error %d",
10952 bg_failed, bg_ret);
10953 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10954 devices = &fs_info->fs_devices->devices;
10955 list_for_each_entry(device, devices, dev_list) {
10956 ret = btrfs_trim_free_extents(device, range->minlen,
10957 &group_trimmed);
10958 if (ret) {
10959 dev_failed++;
10960 dev_ret = ret;
10961 break;
10962 }
10963
10964 trimmed += group_trimmed;
10965 }
10966 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10967
10968 if (dev_failed)
10969 btrfs_warn(fs_info,
10970 "failed to trim %llu device(s), last error %d",
10971 dev_failed, dev_ret);
10972 range->len = trimmed;
10973 if (bg_ret)
10974 return bg_ret;
10975 return dev_ret;
10976 }
10977
10978 /*
10979 * btrfs_{start,end}_write_no_snapshotting() are similar to
10980 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10981 * data into the page cache through nocow before the subvolume is snapshoted,
10982 * but flush the data into disk after the snapshot creation, or to prevent
10983 * operations while snapshotting is ongoing and that cause the snapshot to be
10984 * inconsistent (writes followed by expanding truncates for example).
10985 */
btrfs_end_write_no_snapshotting(struct btrfs_root * root)10986 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10987 {
10988 percpu_counter_dec(&root->subv_writers->counter);
10989 cond_wake_up(&root->subv_writers->wait);
10990 }
10991
btrfs_start_write_no_snapshotting(struct btrfs_root * root)10992 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10993 {
10994 if (atomic_read(&root->will_be_snapshotted))
10995 return 0;
10996
10997 percpu_counter_inc(&root->subv_writers->counter);
10998 /*
10999 * Make sure counter is updated before we check for snapshot creation.
11000 */
11001 smp_mb();
11002 if (atomic_read(&root->will_be_snapshotted)) {
11003 btrfs_end_write_no_snapshotting(root);
11004 return 0;
11005 }
11006 return 1;
11007 }
11008
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)11009 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11010 {
11011 while (true) {
11012 int ret;
11013
11014 ret = btrfs_start_write_no_snapshotting(root);
11015 if (ret)
11016 break;
11017 wait_var_event(&root->will_be_snapshotted,
11018 !atomic_read(&root->will_be_snapshotted));
11019 }
11020 }
11021
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)11022 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11023 {
11024 struct btrfs_fs_info *fs_info = bg->fs_info;
11025
11026 spin_lock(&fs_info->unused_bgs_lock);
11027 if (list_empty(&bg->bg_list)) {
11028 btrfs_get_block_group(bg);
11029 trace_btrfs_add_unused_block_group(bg);
11030 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11031 }
11032 spin_unlock(&fs_info->unused_bgs_lock);
11033 }
11034