1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
extent_state_in_tree(const struct extent_state * state)31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
btrfs_leak_debug_add(struct list_head * new,struct list_head * head)43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
btrfs_leak_debug_del(struct list_head * entry)53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
btrfs_leak_debug_check(void)63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head) do {} while (0)
98 #define btrfs_leak_debug_del(entry) do {} while (0)
99 #define btrfs_leak_debug_check() do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101 #endif
102
103 #define BUFFER_LRU_MAX 64
104
105 struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
109 };
110
111 struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121 };
122
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126 {
127 int ret;
128
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
139 }
140
141 static void flush_write_bio(struct extent_page_data *epd);
142
extent_io_init(void)143 int __init extent_io_init(void)
144 {
145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state), 0,
147 SLAB_MEM_SPREAD, NULL);
148 if (!extent_state_cache)
149 return -ENOMEM;
150
151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer), 0,
153 SLAB_MEM_SPREAD, NULL);
154 if (!extent_buffer_cache)
155 goto free_state_cache;
156
157 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio),
159 BIOSET_NEED_BVECS))
160 goto free_buffer_cache;
161
162 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
165 return 0;
166
167 free_bioset:
168 bioset_exit(&btrfs_bioset);
169
170 free_buffer_cache:
171 kmem_cache_destroy(extent_buffer_cache);
172 extent_buffer_cache = NULL;
173
174 free_state_cache:
175 kmem_cache_destroy(extent_state_cache);
176 extent_state_cache = NULL;
177 return -ENOMEM;
178 }
179
extent_io_exit(void)180 void __cold extent_io_exit(void)
181 {
182 btrfs_leak_debug_check();
183
184 /*
185 * Make sure all delayed rcu free are flushed before we
186 * destroy caches.
187 */
188 rcu_barrier();
189 kmem_cache_destroy(extent_state_cache);
190 kmem_cache_destroy(extent_buffer_cache);
191 bioset_exit(&btrfs_bioset);
192 }
193
extent_io_tree_init(struct extent_io_tree * tree,void * private_data)194 void extent_io_tree_init(struct extent_io_tree *tree,
195 void *private_data)
196 {
197 tree->state = RB_ROOT;
198 tree->ops = NULL;
199 tree->dirty_bytes = 0;
200 spin_lock_init(&tree->lock);
201 tree->private_data = private_data;
202 }
203
alloc_extent_state(gfp_t mask)204 static struct extent_state *alloc_extent_state(gfp_t mask)
205 {
206 struct extent_state *state;
207
208 /*
209 * The given mask might be not appropriate for the slab allocator,
210 * drop the unsupported bits
211 */
212 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
213 state = kmem_cache_alloc(extent_state_cache, mask);
214 if (!state)
215 return state;
216 state->state = 0;
217 state->failrec = NULL;
218 RB_CLEAR_NODE(&state->rb_node);
219 btrfs_leak_debug_add(&state->leak_list, &states);
220 refcount_set(&state->refs, 1);
221 init_waitqueue_head(&state->wq);
222 trace_alloc_extent_state(state, mask, _RET_IP_);
223 return state;
224 }
225
free_extent_state(struct extent_state * state)226 void free_extent_state(struct extent_state *state)
227 {
228 if (!state)
229 return;
230 if (refcount_dec_and_test(&state->refs)) {
231 WARN_ON(extent_state_in_tree(state));
232 btrfs_leak_debug_del(&state->leak_list);
233 trace_free_extent_state(state, _RET_IP_);
234 kmem_cache_free(extent_state_cache, state);
235 }
236 }
237
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)238 static struct rb_node *tree_insert(struct rb_root *root,
239 struct rb_node *search_start,
240 u64 offset,
241 struct rb_node *node,
242 struct rb_node ***p_in,
243 struct rb_node **parent_in)
244 {
245 struct rb_node **p;
246 struct rb_node *parent = NULL;
247 struct tree_entry *entry;
248
249 if (p_in && parent_in) {
250 p = *p_in;
251 parent = *parent_in;
252 goto do_insert;
253 }
254
255 p = search_start ? &search_start : &root->rb_node;
256 while (*p) {
257 parent = *p;
258 entry = rb_entry(parent, struct tree_entry, rb_node);
259
260 if (offset < entry->start)
261 p = &(*p)->rb_left;
262 else if (offset > entry->end)
263 p = &(*p)->rb_right;
264 else
265 return parent;
266 }
267
268 do_insert:
269 rb_link_node(node, parent, p);
270 rb_insert_color(node, root);
271 return NULL;
272 }
273
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** prev_ret,struct rb_node ** next_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)274 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
275 struct rb_node **prev_ret,
276 struct rb_node **next_ret,
277 struct rb_node ***p_ret,
278 struct rb_node **parent_ret)
279 {
280 struct rb_root *root = &tree->state;
281 struct rb_node **n = &root->rb_node;
282 struct rb_node *prev = NULL;
283 struct rb_node *orig_prev = NULL;
284 struct tree_entry *entry;
285 struct tree_entry *prev_entry = NULL;
286
287 while (*n) {
288 prev = *n;
289 entry = rb_entry(prev, struct tree_entry, rb_node);
290 prev_entry = entry;
291
292 if (offset < entry->start)
293 n = &(*n)->rb_left;
294 else if (offset > entry->end)
295 n = &(*n)->rb_right;
296 else
297 return *n;
298 }
299
300 if (p_ret)
301 *p_ret = n;
302 if (parent_ret)
303 *parent_ret = prev;
304
305 if (prev_ret) {
306 orig_prev = prev;
307 while (prev && offset > prev_entry->end) {
308 prev = rb_next(prev);
309 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310 }
311 *prev_ret = prev;
312 prev = orig_prev;
313 }
314
315 if (next_ret) {
316 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
317 while (prev && offset < prev_entry->start) {
318 prev = rb_prev(prev);
319 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320 }
321 *next_ret = prev;
322 }
323 return NULL;
324 }
325
326 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)327 tree_search_for_insert(struct extent_io_tree *tree,
328 u64 offset,
329 struct rb_node ***p_ret,
330 struct rb_node **parent_ret)
331 {
332 struct rb_node *prev = NULL;
333 struct rb_node *ret;
334
335 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
336 if (!ret)
337 return prev;
338 return ret;
339 }
340
tree_search(struct extent_io_tree * tree,u64 offset)341 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
342 u64 offset)
343 {
344 return tree_search_for_insert(tree, offset, NULL, NULL);
345 }
346
merge_cb(struct extent_io_tree * tree,struct extent_state * new,struct extent_state * other)347 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
348 struct extent_state *other)
349 {
350 if (tree->ops && tree->ops->merge_extent_hook)
351 tree->ops->merge_extent_hook(tree->private_data, new, other);
352 }
353
354 /*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)363 static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
365 {
366 struct extent_state *other;
367 struct rb_node *other_node;
368
369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 return;
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
377 merge_cb(tree, state, other);
378 state->start = other->start;
379 rb_erase(&other->rb_node, &tree->state);
380 RB_CLEAR_NODE(&other->rb_node);
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->end = other->end;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
394 }
395 }
396 }
397
set_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)398 static void set_state_cb(struct extent_io_tree *tree,
399 struct extent_state *state, unsigned *bits)
400 {
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->private_data, state, bits);
403 }
404
clear_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)405 static void clear_state_cb(struct extent_io_tree *tree,
406 struct extent_state *state, unsigned *bits)
407 {
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->private_data, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413 struct extent_state *state, unsigned *bits,
414 struct extent_changeset *changeset);
415
416 /*
417 * insert an extent_state struct into the tree. 'bits' are set on the
418 * struct before it is inserted.
419 *
420 * This may return -EEXIST if the extent is already there, in which case the
421 * state struct is freed.
422 *
423 * The tree lock is not taken internally. This is a utility function and
424 * probably isn't what you want to call (see set/clear_extent_bit).
425 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)426 static int insert_state(struct extent_io_tree *tree,
427 struct extent_state *state, u64 start, u64 end,
428 struct rb_node ***p,
429 struct rb_node **parent,
430 unsigned *bits, struct extent_changeset *changeset)
431 {
432 struct rb_node *node;
433
434 if (end < start)
435 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
436 end, start);
437 state->start = start;
438 state->end = end;
439
440 set_state_bits(tree, state, bits, changeset);
441
442 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
443 if (node) {
444 struct extent_state *found;
445 found = rb_entry(node, struct extent_state, rb_node);
446 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
447 found->start, found->end, start, end);
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452 }
453
split_cb(struct extent_io_tree * tree,struct extent_state * orig,u64 split)454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 u64 split)
456 {
457 if (tree->ops && tree->ops->split_extent_hook)
458 tree->ops->split_extent_hook(tree->private_data, orig, split);
459 }
460
461 /*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477 {
478 struct rb_node *node;
479
480 split_cb(tree, orig, split);
481
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
489 if (node) {
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494 }
495
next_state(struct extent_state * state)496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503 }
504
505 /*
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
514 unsigned *bits, int wake,
515 struct extent_changeset *changeset)
516 {
517 struct extent_state *next;
518 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
519 int ret;
520
521 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
522 u64 range = state->end - state->start + 1;
523 WARN_ON(range > tree->dirty_bytes);
524 tree->dirty_bytes -= range;
525 }
526 clear_state_cb(tree, state, bits);
527 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
528 BUG_ON(ret < 0);
529 state->state &= ~bits_to_clear;
530 if (wake)
531 wake_up(&state->wq);
532 if (state->state == 0) {
533 next = next_state(state);
534 if (extent_state_in_tree(state)) {
535 rb_erase(&state->rb_node, &tree->state);
536 RB_CLEAR_NODE(&state->rb_node);
537 free_extent_state(state);
538 } else {
539 WARN_ON(1);
540 }
541 } else {
542 merge_state(tree, state);
543 next = next_state(state);
544 }
545 return next;
546 }
547
548 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)549 alloc_extent_state_atomic(struct extent_state *prealloc)
550 {
551 if (!prealloc)
552 prealloc = alloc_extent_state(GFP_ATOMIC);
553
554 return prealloc;
555 }
556
extent_io_tree_panic(struct extent_io_tree * tree,int err)557 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
558 {
559 struct inode *inode = tree->private_data;
560
561 btrfs_panic(btrfs_sb(inode->i_sb), err,
562 "locking error: extent tree was modified by another thread while locked");
563 }
564
565 /*
566 * clear some bits on a range in the tree. This may require splitting
567 * or inserting elements in the tree, so the gfp mask is used to
568 * indicate which allocations or sleeping are allowed.
569 *
570 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
571 * the given range from the tree regardless of state (ie for truncate).
572 *
573 * the range [start, end] is inclusive.
574 *
575 * This takes the tree lock, and returns 0 on success and < 0 on error.
576 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)577 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
578 unsigned bits, int wake, int delete,
579 struct extent_state **cached_state,
580 gfp_t mask, struct extent_changeset *changeset)
581 {
582 struct extent_state *state;
583 struct extent_state *cached;
584 struct extent_state *prealloc = NULL;
585 struct rb_node *node;
586 u64 last_end;
587 int err;
588 int clear = 0;
589
590 btrfs_debug_check_extent_io_range(tree, start, end);
591
592 if (bits & EXTENT_DELALLOC)
593 bits |= EXTENT_NORESERVE;
594
595 if (delete)
596 bits |= ~EXTENT_CTLBITS;
597 bits |= EXTENT_FIRST_DELALLOC;
598
599 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
600 clear = 1;
601 again:
602 if (!prealloc && gfpflags_allow_blocking(mask)) {
603 /*
604 * Don't care for allocation failure here because we might end
605 * up not needing the pre-allocated extent state at all, which
606 * is the case if we only have in the tree extent states that
607 * cover our input range and don't cover too any other range.
608 * If we end up needing a new extent state we allocate it later.
609 */
610 prealloc = alloc_extent_state(mask);
611 }
612
613 spin_lock(&tree->lock);
614 if (cached_state) {
615 cached = *cached_state;
616
617 if (clear) {
618 *cached_state = NULL;
619 cached_state = NULL;
620 }
621
622 if (cached && extent_state_in_tree(cached) &&
623 cached->start <= start && cached->end > start) {
624 if (clear)
625 refcount_dec(&cached->refs);
626 state = cached;
627 goto hit_next;
628 }
629 if (clear)
630 free_extent_state(cached);
631 }
632 /*
633 * this search will find the extents that end after
634 * our range starts
635 */
636 node = tree_search(tree, start);
637 if (!node)
638 goto out;
639 state = rb_entry(node, struct extent_state, rb_node);
640 hit_next:
641 if (state->start > end)
642 goto out;
643 WARN_ON(state->end < start);
644 last_end = state->end;
645
646 /* the state doesn't have the wanted bits, go ahead */
647 if (!(state->state & bits)) {
648 state = next_state(state);
649 goto next;
650 }
651
652 /*
653 * | ---- desired range ---- |
654 * | state | or
655 * | ------------- state -------------- |
656 *
657 * We need to split the extent we found, and may flip
658 * bits on second half.
659 *
660 * If the extent we found extends past our range, we
661 * just split and search again. It'll get split again
662 * the next time though.
663 *
664 * If the extent we found is inside our range, we clear
665 * the desired bit on it.
666 */
667
668 if (state->start < start) {
669 prealloc = alloc_extent_state_atomic(prealloc);
670 BUG_ON(!prealloc);
671 err = split_state(tree, state, prealloc, start);
672 if (err)
673 extent_io_tree_panic(tree, err);
674
675 prealloc = NULL;
676 if (err)
677 goto out;
678 if (state->end <= end) {
679 state = clear_state_bit(tree, state, &bits, wake,
680 changeset);
681 goto next;
682 }
683 goto search_again;
684 }
685 /*
686 * | ---- desired range ---- |
687 * | state |
688 * We need to split the extent, and clear the bit
689 * on the first half
690 */
691 if (state->start <= end && state->end > end) {
692 prealloc = alloc_extent_state_atomic(prealloc);
693 BUG_ON(!prealloc);
694 err = split_state(tree, state, prealloc, end + 1);
695 if (err)
696 extent_io_tree_panic(tree, err);
697
698 if (wake)
699 wake_up(&state->wq);
700
701 clear_state_bit(tree, prealloc, &bits, wake, changeset);
702
703 prealloc = NULL;
704 goto out;
705 }
706
707 state = clear_state_bit(tree, state, &bits, wake, changeset);
708 next:
709 if (last_end == (u64)-1)
710 goto out;
711 start = last_end + 1;
712 if (start <= end && state && !need_resched())
713 goto hit_next;
714
715 search_again:
716 if (start > end)
717 goto out;
718 spin_unlock(&tree->lock);
719 if (gfpflags_allow_blocking(mask))
720 cond_resched();
721 goto again;
722
723 out:
724 spin_unlock(&tree->lock);
725 if (prealloc)
726 free_extent_state(prealloc);
727
728 return 0;
729
730 }
731
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)732 static void wait_on_state(struct extent_io_tree *tree,
733 struct extent_state *state)
734 __releases(tree->lock)
735 __acquires(tree->lock)
736 {
737 DEFINE_WAIT(wait);
738 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
739 spin_unlock(&tree->lock);
740 schedule();
741 spin_lock(&tree->lock);
742 finish_wait(&state->wq, &wait);
743 }
744
745 /*
746 * waits for one or more bits to clear on a range in the state tree.
747 * The range [start, end] is inclusive.
748 * The tree lock is taken by this function
749 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)750 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
751 unsigned long bits)
752 {
753 struct extent_state *state;
754 struct rb_node *node;
755
756 btrfs_debug_check_extent_io_range(tree, start, end);
757
758 spin_lock(&tree->lock);
759 again:
760 while (1) {
761 /*
762 * this search will find all the extents that end after
763 * our range starts
764 */
765 node = tree_search(tree, start);
766 process_node:
767 if (!node)
768 break;
769
770 state = rb_entry(node, struct extent_state, rb_node);
771
772 if (state->start > end)
773 goto out;
774
775 if (state->state & bits) {
776 start = state->start;
777 refcount_inc(&state->refs);
778 wait_on_state(tree, state);
779 free_extent_state(state);
780 goto again;
781 }
782 start = state->end + 1;
783
784 if (start > end)
785 break;
786
787 if (!cond_resched_lock(&tree->lock)) {
788 node = rb_next(node);
789 goto process_node;
790 }
791 }
792 out:
793 spin_unlock(&tree->lock);
794 }
795
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)796 static void set_state_bits(struct extent_io_tree *tree,
797 struct extent_state *state,
798 unsigned *bits, struct extent_changeset *changeset)
799 {
800 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
801 int ret;
802
803 set_state_cb(tree, state, bits);
804 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
805 u64 range = state->end - state->start + 1;
806 tree->dirty_bytes += range;
807 }
808 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
809 BUG_ON(ret < 0);
810 state->state |= bits_to_set;
811 }
812
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)813 static void cache_state_if_flags(struct extent_state *state,
814 struct extent_state **cached_ptr,
815 unsigned flags)
816 {
817 if (cached_ptr && !(*cached_ptr)) {
818 if (!flags || (state->state & flags)) {
819 *cached_ptr = state;
820 refcount_inc(&state->refs);
821 }
822 }
823 }
824
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)825 static void cache_state(struct extent_state *state,
826 struct extent_state **cached_ptr)
827 {
828 return cache_state_if_flags(state, cached_ptr,
829 EXTENT_IOBITS | EXTENT_BOUNDARY);
830 }
831
832 /*
833 * set some bits on a range in the tree. This may require allocations or
834 * sleeping, so the gfp mask is used to indicate what is allowed.
835 *
836 * If any of the exclusive bits are set, this will fail with -EEXIST if some
837 * part of the range already has the desired bits set. The start of the
838 * existing range is returned in failed_start in this case.
839 *
840 * [start, end] is inclusive This takes the tree lock.
841 */
842
843 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)844 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
845 unsigned bits, unsigned exclusive_bits,
846 u64 *failed_start, struct extent_state **cached_state,
847 gfp_t mask, struct extent_changeset *changeset)
848 {
849 struct extent_state *state;
850 struct extent_state *prealloc = NULL;
851 struct rb_node *node;
852 struct rb_node **p;
853 struct rb_node *parent;
854 int err = 0;
855 u64 last_start;
856 u64 last_end;
857
858 btrfs_debug_check_extent_io_range(tree, start, end);
859
860 bits |= EXTENT_FIRST_DELALLOC;
861 again:
862 if (!prealloc && gfpflags_allow_blocking(mask)) {
863 /*
864 * Don't care for allocation failure here because we might end
865 * up not needing the pre-allocated extent state at all, which
866 * is the case if we only have in the tree extent states that
867 * cover our input range and don't cover too any other range.
868 * If we end up needing a new extent state we allocate it later.
869 */
870 prealloc = alloc_extent_state(mask);
871 }
872
873 spin_lock(&tree->lock);
874 if (cached_state && *cached_state) {
875 state = *cached_state;
876 if (state->start <= start && state->end > start &&
877 extent_state_in_tree(state)) {
878 node = &state->rb_node;
879 goto hit_next;
880 }
881 }
882 /*
883 * this search will find all the extents that end after
884 * our range starts.
885 */
886 node = tree_search_for_insert(tree, start, &p, &parent);
887 if (!node) {
888 prealloc = alloc_extent_state_atomic(prealloc);
889 BUG_ON(!prealloc);
890 err = insert_state(tree, prealloc, start, end,
891 &p, &parent, &bits, changeset);
892 if (err)
893 extent_io_tree_panic(tree, err);
894
895 cache_state(prealloc, cached_state);
896 prealloc = NULL;
897 goto out;
898 }
899 state = rb_entry(node, struct extent_state, rb_node);
900 hit_next:
901 last_start = state->start;
902 last_end = state->end;
903
904 /*
905 * | ---- desired range ---- |
906 * | state |
907 *
908 * Just lock what we found and keep going
909 */
910 if (state->start == start && state->end <= end) {
911 if (state->state & exclusive_bits) {
912 *failed_start = state->start;
913 err = -EEXIST;
914 goto out;
915 }
916
917 set_state_bits(tree, state, &bits, changeset);
918 cache_state(state, cached_state);
919 merge_state(tree, state);
920 if (last_end == (u64)-1)
921 goto out;
922 start = last_end + 1;
923 state = next_state(state);
924 if (start < end && state && state->start == start &&
925 !need_resched())
926 goto hit_next;
927 goto search_again;
928 }
929
930 /*
931 * | ---- desired range ---- |
932 * | state |
933 * or
934 * | ------------- state -------------- |
935 *
936 * We need to split the extent we found, and may flip bits on
937 * second half.
938 *
939 * If the extent we found extends past our
940 * range, we just split and search again. It'll get split
941 * again the next time though.
942 *
943 * If the extent we found is inside our range, we set the
944 * desired bit on it.
945 */
946 if (state->start < start) {
947 if (state->state & exclusive_bits) {
948 *failed_start = start;
949 err = -EEXIST;
950 goto out;
951 }
952
953 prealloc = alloc_extent_state_atomic(prealloc);
954 BUG_ON(!prealloc);
955 err = split_state(tree, state, prealloc, start);
956 if (err)
957 extent_io_tree_panic(tree, err);
958
959 prealloc = NULL;
960 if (err)
961 goto out;
962 if (state->end <= end) {
963 set_state_bits(tree, state, &bits, changeset);
964 cache_state(state, cached_state);
965 merge_state(tree, state);
966 if (last_end == (u64)-1)
967 goto out;
968 start = last_end + 1;
969 state = next_state(state);
970 if (start < end && state && state->start == start &&
971 !need_resched())
972 goto hit_next;
973 }
974 goto search_again;
975 }
976 /*
977 * | ---- desired range ---- |
978 * | state | or | state |
979 *
980 * There's a hole, we need to insert something in it and
981 * ignore the extent we found.
982 */
983 if (state->start > start) {
984 u64 this_end;
985 if (end < last_start)
986 this_end = end;
987 else
988 this_end = last_start - 1;
989
990 prealloc = alloc_extent_state_atomic(prealloc);
991 BUG_ON(!prealloc);
992
993 /*
994 * Avoid to free 'prealloc' if it can be merged with
995 * the later extent.
996 */
997 err = insert_state(tree, prealloc, start, this_end,
998 NULL, NULL, &bits, changeset);
999 if (err)
1000 extent_io_tree_panic(tree, err);
1001
1002 cache_state(prealloc, cached_state);
1003 prealloc = NULL;
1004 start = this_end + 1;
1005 goto search_again;
1006 }
1007 /*
1008 * | ---- desired range ---- |
1009 * | state |
1010 * We need to split the extent, and set the bit
1011 * on the first half
1012 */
1013 if (state->start <= end && state->end > end) {
1014 if (state->state & exclusive_bits) {
1015 *failed_start = start;
1016 err = -EEXIST;
1017 goto out;
1018 }
1019
1020 prealloc = alloc_extent_state_atomic(prealloc);
1021 BUG_ON(!prealloc);
1022 err = split_state(tree, state, prealloc, end + 1);
1023 if (err)
1024 extent_io_tree_panic(tree, err);
1025
1026 set_state_bits(tree, prealloc, &bits, changeset);
1027 cache_state(prealloc, cached_state);
1028 merge_state(tree, prealloc);
1029 prealloc = NULL;
1030 goto out;
1031 }
1032
1033 search_again:
1034 if (start > end)
1035 goto out;
1036 spin_unlock(&tree->lock);
1037 if (gfpflags_allow_blocking(mask))
1038 cond_resched();
1039 goto again;
1040
1041 out:
1042 spin_unlock(&tree->lock);
1043 if (prealloc)
1044 free_extent_state(prealloc);
1045
1046 return err;
1047
1048 }
1049
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1050 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1051 unsigned bits, u64 * failed_start,
1052 struct extent_state **cached_state, gfp_t mask)
1053 {
1054 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1055 cached_state, mask, NULL);
1056 }
1057
1058
1059 /**
1060 * convert_extent_bit - convert all bits in a given range from one bit to
1061 * another
1062 * @tree: the io tree to search
1063 * @start: the start offset in bytes
1064 * @end: the end offset in bytes (inclusive)
1065 * @bits: the bits to set in this range
1066 * @clear_bits: the bits to clear in this range
1067 * @cached_state: state that we're going to cache
1068 *
1069 * This will go through and set bits for the given range. If any states exist
1070 * already in this range they are set with the given bit and cleared of the
1071 * clear_bits. This is only meant to be used by things that are mergeable, ie
1072 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1073 * boundary bits like LOCK.
1074 *
1075 * All allocations are done with GFP_NOFS.
1076 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state)1077 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1078 unsigned bits, unsigned clear_bits,
1079 struct extent_state **cached_state)
1080 {
1081 struct extent_state *state;
1082 struct extent_state *prealloc = NULL;
1083 struct rb_node *node;
1084 struct rb_node **p;
1085 struct rb_node *parent;
1086 int err = 0;
1087 u64 last_start;
1088 u64 last_end;
1089 bool first_iteration = true;
1090
1091 btrfs_debug_check_extent_io_range(tree, start, end);
1092
1093 again:
1094 if (!prealloc) {
1095 /*
1096 * Best effort, don't worry if extent state allocation fails
1097 * here for the first iteration. We might have a cached state
1098 * that matches exactly the target range, in which case no
1099 * extent state allocations are needed. We'll only know this
1100 * after locking the tree.
1101 */
1102 prealloc = alloc_extent_state(GFP_NOFS);
1103 if (!prealloc && !first_iteration)
1104 return -ENOMEM;
1105 }
1106
1107 spin_lock(&tree->lock);
1108 if (cached_state && *cached_state) {
1109 state = *cached_state;
1110 if (state->start <= start && state->end > start &&
1111 extent_state_in_tree(state)) {
1112 node = &state->rb_node;
1113 goto hit_next;
1114 }
1115 }
1116
1117 /*
1118 * this search will find all the extents that end after
1119 * our range starts.
1120 */
1121 node = tree_search_for_insert(tree, start, &p, &parent);
1122 if (!node) {
1123 prealloc = alloc_extent_state_atomic(prealloc);
1124 if (!prealloc) {
1125 err = -ENOMEM;
1126 goto out;
1127 }
1128 err = insert_state(tree, prealloc, start, end,
1129 &p, &parent, &bits, NULL);
1130 if (err)
1131 extent_io_tree_panic(tree, err);
1132 cache_state(prealloc, cached_state);
1133 prealloc = NULL;
1134 goto out;
1135 }
1136 state = rb_entry(node, struct extent_state, rb_node);
1137 hit_next:
1138 last_start = state->start;
1139 last_end = state->end;
1140
1141 /*
1142 * | ---- desired range ---- |
1143 * | state |
1144 *
1145 * Just lock what we found and keep going
1146 */
1147 if (state->start == start && state->end <= end) {
1148 set_state_bits(tree, state, &bits, NULL);
1149 cache_state(state, cached_state);
1150 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1151 if (last_end == (u64)-1)
1152 goto out;
1153 start = last_end + 1;
1154 if (start < end && state && state->start == start &&
1155 !need_resched())
1156 goto hit_next;
1157 goto search_again;
1158 }
1159
1160 /*
1161 * | ---- desired range ---- |
1162 * | state |
1163 * or
1164 * | ------------- state -------------- |
1165 *
1166 * We need to split the extent we found, and may flip bits on
1167 * second half.
1168 *
1169 * If the extent we found extends past our
1170 * range, we just split and search again. It'll get split
1171 * again the next time though.
1172 *
1173 * If the extent we found is inside our range, we set the
1174 * desired bit on it.
1175 */
1176 if (state->start < start) {
1177 prealloc = alloc_extent_state_atomic(prealloc);
1178 if (!prealloc) {
1179 err = -ENOMEM;
1180 goto out;
1181 }
1182 err = split_state(tree, state, prealloc, start);
1183 if (err)
1184 extent_io_tree_panic(tree, err);
1185 prealloc = NULL;
1186 if (err)
1187 goto out;
1188 if (state->end <= end) {
1189 set_state_bits(tree, state, &bits, NULL);
1190 cache_state(state, cached_state);
1191 state = clear_state_bit(tree, state, &clear_bits, 0,
1192 NULL);
1193 if (last_end == (u64)-1)
1194 goto out;
1195 start = last_end + 1;
1196 if (start < end && state && state->start == start &&
1197 !need_resched())
1198 goto hit_next;
1199 }
1200 goto search_again;
1201 }
1202 /*
1203 * | ---- desired range ---- |
1204 * | state | or | state |
1205 *
1206 * There's a hole, we need to insert something in it and
1207 * ignore the extent we found.
1208 */
1209 if (state->start > start) {
1210 u64 this_end;
1211 if (end < last_start)
1212 this_end = end;
1213 else
1214 this_end = last_start - 1;
1215
1216 prealloc = alloc_extent_state_atomic(prealloc);
1217 if (!prealloc) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
1221
1222 /*
1223 * Avoid to free 'prealloc' if it can be merged with
1224 * the later extent.
1225 */
1226 err = insert_state(tree, prealloc, start, this_end,
1227 NULL, NULL, &bits, NULL);
1228 if (err)
1229 extent_io_tree_panic(tree, err);
1230 cache_state(prealloc, cached_state);
1231 prealloc = NULL;
1232 start = this_end + 1;
1233 goto search_again;
1234 }
1235 /*
1236 * | ---- desired range ---- |
1237 * | state |
1238 * We need to split the extent, and set the bit
1239 * on the first half
1240 */
1241 if (state->start <= end && state->end > end) {
1242 prealloc = alloc_extent_state_atomic(prealloc);
1243 if (!prealloc) {
1244 err = -ENOMEM;
1245 goto out;
1246 }
1247
1248 err = split_state(tree, state, prealloc, end + 1);
1249 if (err)
1250 extent_io_tree_panic(tree, err);
1251
1252 set_state_bits(tree, prealloc, &bits, NULL);
1253 cache_state(prealloc, cached_state);
1254 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1255 prealloc = NULL;
1256 goto out;
1257 }
1258
1259 search_again:
1260 if (start > end)
1261 goto out;
1262 spin_unlock(&tree->lock);
1263 cond_resched();
1264 first_iteration = false;
1265 goto again;
1266
1267 out:
1268 spin_unlock(&tree->lock);
1269 if (prealloc)
1270 free_extent_state(prealloc);
1271
1272 return err;
1273 }
1274
1275 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1276 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1277 unsigned bits, struct extent_changeset *changeset)
1278 {
1279 /*
1280 * We don't support EXTENT_LOCKED yet, as current changeset will
1281 * record any bits changed, so for EXTENT_LOCKED case, it will
1282 * either fail with -EEXIST or changeset will record the whole
1283 * range.
1284 */
1285 BUG_ON(bits & EXTENT_LOCKED);
1286
1287 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1288 changeset);
1289 }
1290
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached)1291 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1292 unsigned bits, int wake, int delete,
1293 struct extent_state **cached)
1294 {
1295 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1296 cached, GFP_NOFS, NULL);
1297 }
1298
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1299 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1300 unsigned bits, struct extent_changeset *changeset)
1301 {
1302 /*
1303 * Don't support EXTENT_LOCKED case, same reason as
1304 * set_record_extent_bits().
1305 */
1306 BUG_ON(bits & EXTENT_LOCKED);
1307
1308 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1309 changeset);
1310 }
1311
1312 /*
1313 * either insert or lock state struct between start and end use mask to tell
1314 * us if waiting is desired.
1315 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1316 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 struct extent_state **cached_state)
1318 {
1319 int err;
1320 u64 failed_start;
1321
1322 while (1) {
1323 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1324 EXTENT_LOCKED, &failed_start,
1325 cached_state, GFP_NOFS, NULL);
1326 if (err == -EEXIST) {
1327 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1328 start = failed_start;
1329 } else
1330 break;
1331 WARN_ON(start > end);
1332 }
1333 return err;
1334 }
1335
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1336 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1337 {
1338 int err;
1339 u64 failed_start;
1340
1341 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1342 &failed_start, NULL, GFP_NOFS, NULL);
1343 if (err == -EEXIST) {
1344 if (failed_start > start)
1345 clear_extent_bit(tree, start, failed_start - 1,
1346 EXTENT_LOCKED, 1, 0, NULL);
1347 return 0;
1348 }
1349 return 1;
1350 }
1351
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1352 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1353 {
1354 unsigned long index = start >> PAGE_SHIFT;
1355 unsigned long end_index = end >> PAGE_SHIFT;
1356 struct page *page;
1357
1358 while (index <= end_index) {
1359 page = find_get_page(inode->i_mapping, index);
1360 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1361 clear_page_dirty_for_io(page);
1362 put_page(page);
1363 index++;
1364 }
1365 }
1366
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1367 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1368 {
1369 unsigned long index = start >> PAGE_SHIFT;
1370 unsigned long end_index = end >> PAGE_SHIFT;
1371 struct page *page;
1372
1373 while (index <= end_index) {
1374 page = find_get_page(inode->i_mapping, index);
1375 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1376 __set_page_dirty_nobuffers(page);
1377 account_page_redirty(page);
1378 put_page(page);
1379 index++;
1380 }
1381 }
1382
1383 /* find the first state struct with 'bits' set after 'start', and
1384 * return it. tree->lock must be held. NULL will returned if
1385 * nothing was found after 'start'
1386 */
1387 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1388 find_first_extent_bit_state(struct extent_io_tree *tree,
1389 u64 start, unsigned bits)
1390 {
1391 struct rb_node *node;
1392 struct extent_state *state;
1393
1394 /*
1395 * this search will find all the extents that end after
1396 * our range starts.
1397 */
1398 node = tree_search(tree, start);
1399 if (!node)
1400 goto out;
1401
1402 while (1) {
1403 state = rb_entry(node, struct extent_state, rb_node);
1404 if (state->end >= start && (state->state & bits))
1405 return state;
1406
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1410 }
1411 out:
1412 return NULL;
1413 }
1414
1415 /*
1416 * find the first offset in the io tree with 'bits' set. zero is
1417 * returned if we find something, and *start_ret and *end_ret are
1418 * set to reflect the state struct that was found.
1419 *
1420 * If nothing was found, 1 is returned. If found something, return 0.
1421 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1422 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1423 u64 *start_ret, u64 *end_ret, unsigned bits,
1424 struct extent_state **cached_state)
1425 {
1426 struct extent_state *state;
1427 struct rb_node *n;
1428 int ret = 1;
1429
1430 spin_lock(&tree->lock);
1431 if (cached_state && *cached_state) {
1432 state = *cached_state;
1433 if (state->end == start - 1 && extent_state_in_tree(state)) {
1434 n = rb_next(&state->rb_node);
1435 while (n) {
1436 state = rb_entry(n, struct extent_state,
1437 rb_node);
1438 if (state->state & bits)
1439 goto got_it;
1440 n = rb_next(n);
1441 }
1442 free_extent_state(*cached_state);
1443 *cached_state = NULL;
1444 goto out;
1445 }
1446 free_extent_state(*cached_state);
1447 *cached_state = NULL;
1448 }
1449
1450 state = find_first_extent_bit_state(tree, start, bits);
1451 got_it:
1452 if (state) {
1453 cache_state_if_flags(state, cached_state, 0);
1454 *start_ret = state->start;
1455 *end_ret = state->end;
1456 ret = 0;
1457 }
1458 out:
1459 spin_unlock(&tree->lock);
1460 return ret;
1461 }
1462
1463 /*
1464 * find a contiguous range of bytes in the file marked as delalloc, not
1465 * more than 'max_bytes'. start and end are used to return the range,
1466 *
1467 * 1 is returned if we find something, 0 if nothing was in the tree
1468 */
find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1469 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1470 u64 *start, u64 *end, u64 max_bytes,
1471 struct extent_state **cached_state)
1472 {
1473 struct rb_node *node;
1474 struct extent_state *state;
1475 u64 cur_start = *start;
1476 u64 found = 0;
1477 u64 total_bytes = 0;
1478
1479 spin_lock(&tree->lock);
1480
1481 /*
1482 * this search will find all the extents that end after
1483 * our range starts.
1484 */
1485 node = tree_search(tree, cur_start);
1486 if (!node) {
1487 if (!found)
1488 *end = (u64)-1;
1489 goto out;
1490 }
1491
1492 while (1) {
1493 state = rb_entry(node, struct extent_state, rb_node);
1494 if (found && (state->start != cur_start ||
1495 (state->state & EXTENT_BOUNDARY))) {
1496 goto out;
1497 }
1498 if (!(state->state & EXTENT_DELALLOC)) {
1499 if (!found)
1500 *end = state->end;
1501 goto out;
1502 }
1503 if (!found) {
1504 *start = state->start;
1505 *cached_state = state;
1506 refcount_inc(&state->refs);
1507 }
1508 found++;
1509 *end = state->end;
1510 cur_start = state->end + 1;
1511 node = rb_next(node);
1512 total_bytes += state->end - state->start + 1;
1513 if (total_bytes >= max_bytes)
1514 break;
1515 if (!node)
1516 break;
1517 }
1518 out:
1519 spin_unlock(&tree->lock);
1520 return found;
1521 }
1522
1523 static int __process_pages_contig(struct address_space *mapping,
1524 struct page *locked_page,
1525 pgoff_t start_index, pgoff_t end_index,
1526 unsigned long page_ops, pgoff_t *index_ret);
1527
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1528 static noinline void __unlock_for_delalloc(struct inode *inode,
1529 struct page *locked_page,
1530 u64 start, u64 end)
1531 {
1532 unsigned long index = start >> PAGE_SHIFT;
1533 unsigned long end_index = end >> PAGE_SHIFT;
1534
1535 ASSERT(locked_page);
1536 if (index == locked_page->index && end_index == index)
1537 return;
1538
1539 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1540 PAGE_UNLOCK, NULL);
1541 }
1542
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1543 static noinline int lock_delalloc_pages(struct inode *inode,
1544 struct page *locked_page,
1545 u64 delalloc_start,
1546 u64 delalloc_end)
1547 {
1548 unsigned long index = delalloc_start >> PAGE_SHIFT;
1549 unsigned long index_ret = index;
1550 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1551 int ret;
1552
1553 ASSERT(locked_page);
1554 if (index == locked_page->index && index == end_index)
1555 return 0;
1556
1557 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1558 end_index, PAGE_LOCK, &index_ret);
1559 if (ret == -EAGAIN)
1560 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1561 (u64)index_ret << PAGE_SHIFT);
1562 return ret;
1563 }
1564
1565 /*
1566 * find a contiguous range of bytes in the file marked as delalloc, not
1567 * more than 'max_bytes'. start and end are used to return the range,
1568 *
1569 * 1 is returned if we find something, 0 if nothing was in the tree
1570 */
find_lock_delalloc_range(struct inode * inode,struct extent_io_tree * tree,struct page * locked_page,u64 * start,u64 * end,u64 max_bytes)1571 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1572 struct extent_io_tree *tree,
1573 struct page *locked_page, u64 *start,
1574 u64 *end, u64 max_bytes)
1575 {
1576 u64 delalloc_start;
1577 u64 delalloc_end;
1578 u64 found;
1579 struct extent_state *cached_state = NULL;
1580 int ret;
1581 int loops = 0;
1582
1583 again:
1584 /* step one, find a bunch of delalloc bytes starting at start */
1585 delalloc_start = *start;
1586 delalloc_end = 0;
1587 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1588 max_bytes, &cached_state);
1589 if (!found || delalloc_end <= *start) {
1590 *start = delalloc_start;
1591 *end = delalloc_end;
1592 free_extent_state(cached_state);
1593 return 0;
1594 }
1595
1596 /*
1597 * start comes from the offset of locked_page. We have to lock
1598 * pages in order, so we can't process delalloc bytes before
1599 * locked_page
1600 */
1601 if (delalloc_start < *start)
1602 delalloc_start = *start;
1603
1604 /*
1605 * make sure to limit the number of pages we try to lock down
1606 */
1607 if (delalloc_end + 1 - delalloc_start > max_bytes)
1608 delalloc_end = delalloc_start + max_bytes - 1;
1609
1610 /* step two, lock all the pages after the page that has start */
1611 ret = lock_delalloc_pages(inode, locked_page,
1612 delalloc_start, delalloc_end);
1613 if (ret == -EAGAIN) {
1614 /* some of the pages are gone, lets avoid looping by
1615 * shortening the size of the delalloc range we're searching
1616 */
1617 free_extent_state(cached_state);
1618 cached_state = NULL;
1619 if (!loops) {
1620 max_bytes = PAGE_SIZE;
1621 loops = 1;
1622 goto again;
1623 } else {
1624 found = 0;
1625 goto out_failed;
1626 }
1627 }
1628 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1629
1630 /* step three, lock the state bits for the whole range */
1631 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1632
1633 /* then test to make sure it is all still delalloc */
1634 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1635 EXTENT_DELALLOC, 1, cached_state);
1636 if (!ret) {
1637 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1638 &cached_state);
1639 __unlock_for_delalloc(inode, locked_page,
1640 delalloc_start, delalloc_end);
1641 cond_resched();
1642 goto again;
1643 }
1644 free_extent_state(cached_state);
1645 *start = delalloc_start;
1646 *end = delalloc_end;
1647 out_failed:
1648 return found;
1649 }
1650
__process_pages_contig(struct address_space * mapping,struct page * locked_page,pgoff_t start_index,pgoff_t end_index,unsigned long page_ops,pgoff_t * index_ret)1651 static int __process_pages_contig(struct address_space *mapping,
1652 struct page *locked_page,
1653 pgoff_t start_index, pgoff_t end_index,
1654 unsigned long page_ops, pgoff_t *index_ret)
1655 {
1656 unsigned long nr_pages = end_index - start_index + 1;
1657 unsigned long pages_locked = 0;
1658 pgoff_t index = start_index;
1659 struct page *pages[16];
1660 unsigned ret;
1661 int err = 0;
1662 int i;
1663
1664 if (page_ops & PAGE_LOCK) {
1665 ASSERT(page_ops == PAGE_LOCK);
1666 ASSERT(index_ret && *index_ret == start_index);
1667 }
1668
1669 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1670 mapping_set_error(mapping, -EIO);
1671
1672 while (nr_pages > 0) {
1673 ret = find_get_pages_contig(mapping, index,
1674 min_t(unsigned long,
1675 nr_pages, ARRAY_SIZE(pages)), pages);
1676 if (ret == 0) {
1677 /*
1678 * Only if we're going to lock these pages,
1679 * can we find nothing at @index.
1680 */
1681 ASSERT(page_ops & PAGE_LOCK);
1682 err = -EAGAIN;
1683 goto out;
1684 }
1685
1686 for (i = 0; i < ret; i++) {
1687 if (page_ops & PAGE_SET_PRIVATE2)
1688 SetPagePrivate2(pages[i]);
1689
1690 if (pages[i] == locked_page) {
1691 put_page(pages[i]);
1692 pages_locked++;
1693 continue;
1694 }
1695 if (page_ops & PAGE_CLEAR_DIRTY)
1696 clear_page_dirty_for_io(pages[i]);
1697 if (page_ops & PAGE_SET_WRITEBACK)
1698 set_page_writeback(pages[i]);
1699 if (page_ops & PAGE_SET_ERROR)
1700 SetPageError(pages[i]);
1701 if (page_ops & PAGE_END_WRITEBACK)
1702 end_page_writeback(pages[i]);
1703 if (page_ops & PAGE_UNLOCK)
1704 unlock_page(pages[i]);
1705 if (page_ops & PAGE_LOCK) {
1706 lock_page(pages[i]);
1707 if (!PageDirty(pages[i]) ||
1708 pages[i]->mapping != mapping) {
1709 unlock_page(pages[i]);
1710 for (; i < ret; i++)
1711 put_page(pages[i]);
1712 err = -EAGAIN;
1713 goto out;
1714 }
1715 }
1716 put_page(pages[i]);
1717 pages_locked++;
1718 }
1719 nr_pages -= ret;
1720 index += ret;
1721 cond_resched();
1722 }
1723 out:
1724 if (err && index_ret)
1725 *index_ret = start_index + pages_locked - 1;
1726 return err;
1727 }
1728
extent_clear_unlock_delalloc(struct inode * inode,u64 start,u64 end,u64 delalloc_end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)1729 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 u64 delalloc_end, struct page *locked_page,
1731 unsigned clear_bits,
1732 unsigned long page_ops)
1733 {
1734 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1735 NULL);
1736
1737 __process_pages_contig(inode->i_mapping, locked_page,
1738 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1739 page_ops, NULL);
1740 }
1741
1742 /*
1743 * count the number of bytes in the tree that have a given bit(s)
1744 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1745 * cached. The total number found is returned.
1746 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)1747 u64 count_range_bits(struct extent_io_tree *tree,
1748 u64 *start, u64 search_end, u64 max_bytes,
1749 unsigned bits, int contig)
1750 {
1751 struct rb_node *node;
1752 struct extent_state *state;
1753 u64 cur_start = *start;
1754 u64 total_bytes = 0;
1755 u64 last = 0;
1756 int found = 0;
1757
1758 if (WARN_ON(search_end <= cur_start))
1759 return 0;
1760
1761 spin_lock(&tree->lock);
1762 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1763 total_bytes = tree->dirty_bytes;
1764 goto out;
1765 }
1766 /*
1767 * this search will find all the extents that end after
1768 * our range starts.
1769 */
1770 node = tree_search(tree, cur_start);
1771 if (!node)
1772 goto out;
1773
1774 while (1) {
1775 state = rb_entry(node, struct extent_state, rb_node);
1776 if (state->start > search_end)
1777 break;
1778 if (contig && found && state->start > last + 1)
1779 break;
1780 if (state->end >= cur_start && (state->state & bits) == bits) {
1781 total_bytes += min(search_end, state->end) + 1 -
1782 max(cur_start, state->start);
1783 if (total_bytes >= max_bytes)
1784 break;
1785 if (!found) {
1786 *start = max(cur_start, state->start);
1787 found = 1;
1788 }
1789 last = state->end;
1790 } else if (contig && found) {
1791 break;
1792 }
1793 node = rb_next(node);
1794 if (!node)
1795 break;
1796 }
1797 out:
1798 spin_unlock(&tree->lock);
1799 return total_bytes;
1800 }
1801
1802 /*
1803 * set the private field for a given byte offset in the tree. If there isn't
1804 * an extent_state there already, this does nothing.
1805 */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)1806 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1807 struct io_failure_record *failrec)
1808 {
1809 struct rb_node *node;
1810 struct extent_state *state;
1811 int ret = 0;
1812
1813 spin_lock(&tree->lock);
1814 /*
1815 * this search will find all the extents that end after
1816 * our range starts.
1817 */
1818 node = tree_search(tree, start);
1819 if (!node) {
1820 ret = -ENOENT;
1821 goto out;
1822 }
1823 state = rb_entry(node, struct extent_state, rb_node);
1824 if (state->start != start) {
1825 ret = -ENOENT;
1826 goto out;
1827 }
1828 state->failrec = failrec;
1829 out:
1830 spin_unlock(&tree->lock);
1831 return ret;
1832 }
1833
get_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record ** failrec)1834 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1835 struct io_failure_record **failrec)
1836 {
1837 struct rb_node *node;
1838 struct extent_state *state;
1839 int ret = 0;
1840
1841 spin_lock(&tree->lock);
1842 /*
1843 * this search will find all the extents that end after
1844 * our range starts.
1845 */
1846 node = tree_search(tree, start);
1847 if (!node) {
1848 ret = -ENOENT;
1849 goto out;
1850 }
1851 state = rb_entry(node, struct extent_state, rb_node);
1852 if (state->start != start) {
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 *failrec = state->failrec;
1857 out:
1858 spin_unlock(&tree->lock);
1859 return ret;
1860 }
1861
1862 /*
1863 * searches a range in the state tree for a given mask.
1864 * If 'filled' == 1, this returns 1 only if every extent in the tree
1865 * has the bits set. Otherwise, 1 is returned if any bit in the
1866 * range is found set.
1867 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)1868 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1869 unsigned bits, int filled, struct extent_state *cached)
1870 {
1871 struct extent_state *state = NULL;
1872 struct rb_node *node;
1873 int bitset = 0;
1874
1875 spin_lock(&tree->lock);
1876 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1877 cached->end > start)
1878 node = &cached->rb_node;
1879 else
1880 node = tree_search(tree, start);
1881 while (node && start <= end) {
1882 state = rb_entry(node, struct extent_state, rb_node);
1883
1884 if (filled && state->start > start) {
1885 bitset = 0;
1886 break;
1887 }
1888
1889 if (state->start > end)
1890 break;
1891
1892 if (state->state & bits) {
1893 bitset = 1;
1894 if (!filled)
1895 break;
1896 } else if (filled) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->end == (u64)-1)
1902 break;
1903
1904 start = state->end + 1;
1905 if (start > end)
1906 break;
1907 node = rb_next(node);
1908 if (!node) {
1909 if (filled)
1910 bitset = 0;
1911 break;
1912 }
1913 }
1914 spin_unlock(&tree->lock);
1915 return bitset;
1916 }
1917
1918 /*
1919 * helper function to set a given page up to date if all the
1920 * extents in the tree for that page are up to date
1921 */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)1922 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1923 {
1924 u64 start = page_offset(page);
1925 u64 end = start + PAGE_SIZE - 1;
1926 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1927 SetPageUptodate(page);
1928 }
1929
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)1930 int free_io_failure(struct extent_io_tree *failure_tree,
1931 struct extent_io_tree *io_tree,
1932 struct io_failure_record *rec)
1933 {
1934 int ret;
1935 int err = 0;
1936
1937 set_state_failrec(failure_tree, rec->start, NULL);
1938 ret = clear_extent_bits(failure_tree, rec->start,
1939 rec->start + rec->len - 1,
1940 EXTENT_LOCKED | EXTENT_DIRTY);
1941 if (ret)
1942 err = ret;
1943
1944 ret = clear_extent_bits(io_tree, rec->start,
1945 rec->start + rec->len - 1,
1946 EXTENT_DAMAGED);
1947 if (ret && !err)
1948 err = ret;
1949
1950 kfree(rec);
1951 return err;
1952 }
1953
1954 /*
1955 * this bypasses the standard btrfs submit functions deliberately, as
1956 * the standard behavior is to write all copies in a raid setup. here we only
1957 * want to write the one bad copy. so we do the mapping for ourselves and issue
1958 * submit_bio directly.
1959 * to avoid any synchronization issues, wait for the data after writing, which
1960 * actually prevents the read that triggered the error from finishing.
1961 * currently, there can be no more than two copies of every data bit. thus,
1962 * exactly one rewrite is required.
1963 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)1964 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1965 u64 length, u64 logical, struct page *page,
1966 unsigned int pg_offset, int mirror_num)
1967 {
1968 struct bio *bio;
1969 struct btrfs_device *dev;
1970 u64 map_length = 0;
1971 u64 sector;
1972 struct btrfs_bio *bbio = NULL;
1973 int ret;
1974
1975 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1976 BUG_ON(!mirror_num);
1977
1978 bio = btrfs_io_bio_alloc(1);
1979 bio->bi_iter.bi_size = 0;
1980 map_length = length;
1981
1982 /*
1983 * Avoid races with device replace and make sure our bbio has devices
1984 * associated to its stripes that don't go away while we are doing the
1985 * read repair operation.
1986 */
1987 btrfs_bio_counter_inc_blocked(fs_info);
1988 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1989 /*
1990 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1991 * to update all raid stripes, but here we just want to correct
1992 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1993 * stripe's dev and sector.
1994 */
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1996 &map_length, &bbio, 0);
1997 if (ret) {
1998 btrfs_bio_counter_dec(fs_info);
1999 bio_put(bio);
2000 return -EIO;
2001 }
2002 ASSERT(bbio->mirror_num == 1);
2003 } else {
2004 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2005 &map_length, &bbio, mirror_num);
2006 if (ret) {
2007 btrfs_bio_counter_dec(fs_info);
2008 bio_put(bio);
2009 return -EIO;
2010 }
2011 BUG_ON(mirror_num != bbio->mirror_num);
2012 }
2013
2014 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2015 bio->bi_iter.bi_sector = sector;
2016 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2017 btrfs_put_bbio(bbio);
2018 if (!dev || !dev->bdev ||
2019 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2020 btrfs_bio_counter_dec(fs_info);
2021 bio_put(bio);
2022 return -EIO;
2023 }
2024 bio_set_dev(bio, dev->bdev);
2025 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2026 bio_add_page(bio, page, length, pg_offset);
2027
2028 if (btrfsic_submit_bio_wait(bio)) {
2029 /* try to remap that extent elsewhere? */
2030 btrfs_bio_counter_dec(fs_info);
2031 bio_put(bio);
2032 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2033 return -EIO;
2034 }
2035
2036 btrfs_info_rl_in_rcu(fs_info,
2037 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2038 ino, start,
2039 rcu_str_deref(dev->name), sector);
2040 btrfs_bio_counter_dec(fs_info);
2041 bio_put(bio);
2042 return 0;
2043 }
2044
repair_eb_io_failure(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int mirror_num)2045 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2046 struct extent_buffer *eb, int mirror_num)
2047 {
2048 u64 start = eb->start;
2049 int i, num_pages = num_extent_pages(eb);
2050 int ret = 0;
2051
2052 if (sb_rdonly(fs_info->sb))
2053 return -EROFS;
2054
2055 for (i = 0; i < num_pages; i++) {
2056 struct page *p = eb->pages[i];
2057
2058 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2059 start - page_offset(p), mirror_num);
2060 if (ret)
2061 break;
2062 start += PAGE_SIZE;
2063 }
2064
2065 return ret;
2066 }
2067
2068 /*
2069 * each time an IO finishes, we do a fast check in the IO failure tree
2070 * to see if we need to process or clean up an io_failure_record
2071 */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2072 int clean_io_failure(struct btrfs_fs_info *fs_info,
2073 struct extent_io_tree *failure_tree,
2074 struct extent_io_tree *io_tree, u64 start,
2075 struct page *page, u64 ino, unsigned int pg_offset)
2076 {
2077 u64 private;
2078 struct io_failure_record *failrec;
2079 struct extent_state *state;
2080 int num_copies;
2081 int ret;
2082
2083 private = 0;
2084 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2085 EXTENT_DIRTY, 0);
2086 if (!ret)
2087 return 0;
2088
2089 ret = get_state_failrec(failure_tree, start, &failrec);
2090 if (ret)
2091 return 0;
2092
2093 BUG_ON(!failrec->this_mirror);
2094
2095 if (failrec->in_validation) {
2096 /* there was no real error, just free the record */
2097 btrfs_debug(fs_info,
2098 "clean_io_failure: freeing dummy error at %llu",
2099 failrec->start);
2100 goto out;
2101 }
2102 if (sb_rdonly(fs_info->sb))
2103 goto out;
2104
2105 spin_lock(&io_tree->lock);
2106 state = find_first_extent_bit_state(io_tree,
2107 failrec->start,
2108 EXTENT_LOCKED);
2109 spin_unlock(&io_tree->lock);
2110
2111 if (state && state->start <= failrec->start &&
2112 state->end >= failrec->start + failrec->len - 1) {
2113 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2114 failrec->len);
2115 if (num_copies > 1) {
2116 repair_io_failure(fs_info, ino, start, failrec->len,
2117 failrec->logical, page, pg_offset,
2118 failrec->failed_mirror);
2119 }
2120 }
2121
2122 out:
2123 free_io_failure(failure_tree, io_tree, failrec);
2124
2125 return 0;
2126 }
2127
2128 /*
2129 * Can be called when
2130 * - hold extent lock
2131 * - under ordered extent
2132 * - the inode is freeing
2133 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2134 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2135 {
2136 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2137 struct io_failure_record *failrec;
2138 struct extent_state *state, *next;
2139
2140 if (RB_EMPTY_ROOT(&failure_tree->state))
2141 return;
2142
2143 spin_lock(&failure_tree->lock);
2144 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2145 while (state) {
2146 if (state->start > end)
2147 break;
2148
2149 ASSERT(state->end <= end);
2150
2151 next = next_state(state);
2152
2153 failrec = state->failrec;
2154 free_extent_state(state);
2155 kfree(failrec);
2156
2157 state = next;
2158 }
2159 spin_unlock(&failure_tree->lock);
2160 }
2161
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end,struct io_failure_record ** failrec_ret)2162 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2163 struct io_failure_record **failrec_ret)
2164 {
2165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2166 struct io_failure_record *failrec;
2167 struct extent_map *em;
2168 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2169 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2170 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2171 int ret;
2172 u64 logical;
2173
2174 ret = get_state_failrec(failure_tree, start, &failrec);
2175 if (ret) {
2176 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2177 if (!failrec)
2178 return -ENOMEM;
2179
2180 failrec->start = start;
2181 failrec->len = end - start + 1;
2182 failrec->this_mirror = 0;
2183 failrec->bio_flags = 0;
2184 failrec->in_validation = 0;
2185
2186 read_lock(&em_tree->lock);
2187 em = lookup_extent_mapping(em_tree, start, failrec->len);
2188 if (!em) {
2189 read_unlock(&em_tree->lock);
2190 kfree(failrec);
2191 return -EIO;
2192 }
2193
2194 if (em->start > start || em->start + em->len <= start) {
2195 free_extent_map(em);
2196 em = NULL;
2197 }
2198 read_unlock(&em_tree->lock);
2199 if (!em) {
2200 kfree(failrec);
2201 return -EIO;
2202 }
2203
2204 logical = start - em->start;
2205 logical = em->block_start + logical;
2206 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2207 logical = em->block_start;
2208 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2209 extent_set_compress_type(&failrec->bio_flags,
2210 em->compress_type);
2211 }
2212
2213 btrfs_debug(fs_info,
2214 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2215 logical, start, failrec->len);
2216
2217 failrec->logical = logical;
2218 free_extent_map(em);
2219
2220 /* set the bits in the private failure tree */
2221 ret = set_extent_bits(failure_tree, start, end,
2222 EXTENT_LOCKED | EXTENT_DIRTY);
2223 if (ret >= 0)
2224 ret = set_state_failrec(failure_tree, start, failrec);
2225 /* set the bits in the inode's tree */
2226 if (ret >= 0)
2227 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2228 if (ret < 0) {
2229 kfree(failrec);
2230 return ret;
2231 }
2232 } else {
2233 btrfs_debug(fs_info,
2234 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2235 failrec->logical, failrec->start, failrec->len,
2236 failrec->in_validation);
2237 /*
2238 * when data can be on disk more than twice, add to failrec here
2239 * (e.g. with a list for failed_mirror) to make
2240 * clean_io_failure() clean all those errors at once.
2241 */
2242 }
2243
2244 *failrec_ret = failrec;
2245
2246 return 0;
2247 }
2248
btrfs_check_repairable(struct inode * inode,unsigned failed_bio_pages,struct io_failure_record * failrec,int failed_mirror)2249 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2250 struct io_failure_record *failrec, int failed_mirror)
2251 {
2252 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2253 int num_copies;
2254
2255 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2256 if (num_copies == 1) {
2257 /*
2258 * we only have a single copy of the data, so don't bother with
2259 * all the retry and error correction code that follows. no
2260 * matter what the error is, it is very likely to persist.
2261 */
2262 btrfs_debug(fs_info,
2263 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2264 num_copies, failrec->this_mirror, failed_mirror);
2265 return false;
2266 }
2267
2268 /*
2269 * there are two premises:
2270 * a) deliver good data to the caller
2271 * b) correct the bad sectors on disk
2272 */
2273 if (failed_bio_pages > 1) {
2274 /*
2275 * to fulfill b), we need to know the exact failing sectors, as
2276 * we don't want to rewrite any more than the failed ones. thus,
2277 * we need separate read requests for the failed bio
2278 *
2279 * if the following BUG_ON triggers, our validation request got
2280 * merged. we need separate requests for our algorithm to work.
2281 */
2282 BUG_ON(failrec->in_validation);
2283 failrec->in_validation = 1;
2284 failrec->this_mirror = failed_mirror;
2285 } else {
2286 /*
2287 * we're ready to fulfill a) and b) alongside. get a good copy
2288 * of the failed sector and if we succeed, we have setup
2289 * everything for repair_io_failure to do the rest for us.
2290 */
2291 if (failrec->in_validation) {
2292 BUG_ON(failrec->this_mirror != failed_mirror);
2293 failrec->in_validation = 0;
2294 failrec->this_mirror = 0;
2295 }
2296 failrec->failed_mirror = failed_mirror;
2297 failrec->this_mirror++;
2298 if (failrec->this_mirror == failed_mirror)
2299 failrec->this_mirror++;
2300 }
2301
2302 if (failrec->this_mirror > num_copies) {
2303 btrfs_debug(fs_info,
2304 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2305 num_copies, failrec->this_mirror, failed_mirror);
2306 return false;
2307 }
2308
2309 return true;
2310 }
2311
2312
btrfs_create_repair_bio(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,struct page * page,int pg_offset,int icsum,bio_end_io_t * endio_func,void * data)2313 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2314 struct io_failure_record *failrec,
2315 struct page *page, int pg_offset, int icsum,
2316 bio_end_io_t *endio_func, void *data)
2317 {
2318 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2319 struct bio *bio;
2320 struct btrfs_io_bio *btrfs_failed_bio;
2321 struct btrfs_io_bio *btrfs_bio;
2322
2323 bio = btrfs_io_bio_alloc(1);
2324 bio->bi_end_io = endio_func;
2325 bio->bi_iter.bi_sector = failrec->logical >> 9;
2326 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2327 bio->bi_iter.bi_size = 0;
2328 bio->bi_private = data;
2329
2330 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2331 if (btrfs_failed_bio->csum) {
2332 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2333
2334 btrfs_bio = btrfs_io_bio(bio);
2335 btrfs_bio->csum = btrfs_bio->csum_inline;
2336 icsum *= csum_size;
2337 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2338 csum_size);
2339 }
2340
2341 bio_add_page(bio, page, failrec->len, pg_offset);
2342
2343 return bio;
2344 }
2345
2346 /*
2347 * this is a generic handler for readpage errors (default
2348 * readpage_io_failed_hook). if other copies exist, read those and write back
2349 * good data to the failed position. does not investigate in remapping the
2350 * failed extent elsewhere, hoping the device will be smart enough to do this as
2351 * needed
2352 */
2353
bio_readpage_error(struct bio * failed_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int failed_mirror)2354 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2355 struct page *page, u64 start, u64 end,
2356 int failed_mirror)
2357 {
2358 struct io_failure_record *failrec;
2359 struct inode *inode = page->mapping->host;
2360 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2361 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2362 struct bio *bio;
2363 int read_mode = 0;
2364 blk_status_t status;
2365 int ret;
2366 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2367
2368 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2369
2370 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2371 if (ret)
2372 return ret;
2373
2374 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2375 failed_mirror)) {
2376 free_io_failure(failure_tree, tree, failrec);
2377 return -EIO;
2378 }
2379
2380 if (failed_bio_pages > 1)
2381 read_mode |= REQ_FAILFAST_DEV;
2382
2383 phy_offset >>= inode->i_sb->s_blocksize_bits;
2384 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2385 start - page_offset(page),
2386 (int)phy_offset, failed_bio->bi_end_io,
2387 NULL);
2388 bio->bi_opf = REQ_OP_READ | read_mode;
2389
2390 btrfs_debug(btrfs_sb(inode->i_sb),
2391 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2392 read_mode, failrec->this_mirror, failrec->in_validation);
2393
2394 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2395 failrec->bio_flags, 0);
2396 if (status) {
2397 free_io_failure(failure_tree, tree, failrec);
2398 bio_put(bio);
2399 ret = blk_status_to_errno(status);
2400 }
2401
2402 return ret;
2403 }
2404
2405 /* lots and lots of room for performance fixes in the end_bio funcs */
2406
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2407 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2408 {
2409 int uptodate = (err == 0);
2410 struct extent_io_tree *tree;
2411 int ret = 0;
2412
2413 tree = &BTRFS_I(page->mapping->host)->io_tree;
2414
2415 if (tree->ops && tree->ops->writepage_end_io_hook)
2416 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2417 uptodate);
2418
2419 if (!uptodate) {
2420 ClearPageUptodate(page);
2421 SetPageError(page);
2422 ret = err < 0 ? err : -EIO;
2423 mapping_set_error(page->mapping, ret);
2424 }
2425 }
2426
2427 /*
2428 * after a writepage IO is done, we need to:
2429 * clear the uptodate bits on error
2430 * clear the writeback bits in the extent tree for this IO
2431 * end_page_writeback if the page has no more pending IO
2432 *
2433 * Scheduling is not allowed, so the extent state tree is expected
2434 * to have one and only one object corresponding to this IO.
2435 */
end_bio_extent_writepage(struct bio * bio)2436 static void end_bio_extent_writepage(struct bio *bio)
2437 {
2438 int error = blk_status_to_errno(bio->bi_status);
2439 struct bio_vec *bvec;
2440 u64 start;
2441 u64 end;
2442 int i;
2443
2444 ASSERT(!bio_flagged(bio, BIO_CLONED));
2445 bio_for_each_segment_all(bvec, bio, i) {
2446 struct page *page = bvec->bv_page;
2447 struct inode *inode = page->mapping->host;
2448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449
2450 /* We always issue full-page reads, but if some block
2451 * in a page fails to read, blk_update_request() will
2452 * advance bv_offset and adjust bv_len to compensate.
2453 * Print a warning for nonzero offsets, and an error
2454 * if they don't add up to a full page. */
2455 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2456 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2457 btrfs_err(fs_info,
2458 "partial page write in btrfs with offset %u and length %u",
2459 bvec->bv_offset, bvec->bv_len);
2460 else
2461 btrfs_info(fs_info,
2462 "incomplete page write in btrfs with offset %u and length %u",
2463 bvec->bv_offset, bvec->bv_len);
2464 }
2465
2466 start = page_offset(page);
2467 end = start + bvec->bv_offset + bvec->bv_len - 1;
2468
2469 end_extent_writepage(page, error, start, end);
2470 end_page_writeback(page);
2471 }
2472
2473 bio_put(bio);
2474 }
2475
2476 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2477 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2478 int uptodate)
2479 {
2480 struct extent_state *cached = NULL;
2481 u64 end = start + len - 1;
2482
2483 if (uptodate && tree->track_uptodate)
2484 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2485 unlock_extent_cached_atomic(tree, start, end, &cached);
2486 }
2487
2488 /*
2489 * after a readpage IO is done, we need to:
2490 * clear the uptodate bits on error
2491 * set the uptodate bits if things worked
2492 * set the page up to date if all extents in the tree are uptodate
2493 * clear the lock bit in the extent tree
2494 * unlock the page if there are no other extents locked for it
2495 *
2496 * Scheduling is not allowed, so the extent state tree is expected
2497 * to have one and only one object corresponding to this IO.
2498 */
end_bio_extent_readpage(struct bio * bio)2499 static void end_bio_extent_readpage(struct bio *bio)
2500 {
2501 struct bio_vec *bvec;
2502 int uptodate = !bio->bi_status;
2503 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2504 struct extent_io_tree *tree, *failure_tree;
2505 u64 offset = 0;
2506 u64 start;
2507 u64 end;
2508 u64 len;
2509 u64 extent_start = 0;
2510 u64 extent_len = 0;
2511 int mirror;
2512 int ret;
2513 int i;
2514
2515 ASSERT(!bio_flagged(bio, BIO_CLONED));
2516 bio_for_each_segment_all(bvec, bio, i) {
2517 struct page *page = bvec->bv_page;
2518 struct inode *inode = page->mapping->host;
2519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2520
2521 btrfs_debug(fs_info,
2522 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2523 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2524 io_bio->mirror_num);
2525 tree = &BTRFS_I(inode)->io_tree;
2526 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2527
2528 /* We always issue full-page reads, but if some block
2529 * in a page fails to read, blk_update_request() will
2530 * advance bv_offset and adjust bv_len to compensate.
2531 * Print a warning for nonzero offsets, and an error
2532 * if they don't add up to a full page. */
2533 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2534 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2535 btrfs_err(fs_info,
2536 "partial page read in btrfs with offset %u and length %u",
2537 bvec->bv_offset, bvec->bv_len);
2538 else
2539 btrfs_info(fs_info,
2540 "incomplete page read in btrfs with offset %u and length %u",
2541 bvec->bv_offset, bvec->bv_len);
2542 }
2543
2544 start = page_offset(page);
2545 end = start + bvec->bv_offset + bvec->bv_len - 1;
2546 len = bvec->bv_len;
2547
2548 mirror = io_bio->mirror_num;
2549 if (likely(uptodate && tree->ops)) {
2550 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2551 page, start, end,
2552 mirror);
2553 if (ret)
2554 uptodate = 0;
2555 else
2556 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2557 failure_tree, tree, start,
2558 page,
2559 btrfs_ino(BTRFS_I(inode)), 0);
2560 }
2561
2562 if (likely(uptodate))
2563 goto readpage_ok;
2564
2565 if (tree->ops) {
2566 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2567 if (ret == -EAGAIN) {
2568 /*
2569 * Data inode's readpage_io_failed_hook() always
2570 * returns -EAGAIN.
2571 *
2572 * The generic bio_readpage_error handles errors
2573 * the following way: If possible, new read
2574 * requests are created and submitted and will
2575 * end up in end_bio_extent_readpage as well (if
2576 * we're lucky, not in the !uptodate case). In
2577 * that case it returns 0 and we just go on with
2578 * the next page in our bio. If it can't handle
2579 * the error it will return -EIO and we remain
2580 * responsible for that page.
2581 */
2582 ret = bio_readpage_error(bio, offset, page,
2583 start, end, mirror);
2584 if (ret == 0) {
2585 uptodate = !bio->bi_status;
2586 offset += len;
2587 continue;
2588 }
2589 }
2590
2591 /*
2592 * metadata's readpage_io_failed_hook() always returns
2593 * -EIO and fixes nothing. -EIO is also returned if
2594 * data inode error could not be fixed.
2595 */
2596 ASSERT(ret == -EIO);
2597 }
2598 readpage_ok:
2599 if (likely(uptodate)) {
2600 loff_t i_size = i_size_read(inode);
2601 pgoff_t end_index = i_size >> PAGE_SHIFT;
2602 unsigned off;
2603
2604 /* Zero out the end if this page straddles i_size */
2605 off = i_size & (PAGE_SIZE-1);
2606 if (page->index == end_index && off)
2607 zero_user_segment(page, off, PAGE_SIZE);
2608 SetPageUptodate(page);
2609 } else {
2610 ClearPageUptodate(page);
2611 SetPageError(page);
2612 }
2613 unlock_page(page);
2614 offset += len;
2615
2616 if (unlikely(!uptodate)) {
2617 if (extent_len) {
2618 endio_readpage_release_extent(tree,
2619 extent_start,
2620 extent_len, 1);
2621 extent_start = 0;
2622 extent_len = 0;
2623 }
2624 endio_readpage_release_extent(tree, start,
2625 end - start + 1, 0);
2626 } else if (!extent_len) {
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 } else if (extent_start + extent_len == start) {
2630 extent_len += end + 1 - start;
2631 } else {
2632 endio_readpage_release_extent(tree, extent_start,
2633 extent_len, uptodate);
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 }
2637 }
2638
2639 if (extent_len)
2640 endio_readpage_release_extent(tree, extent_start, extent_len,
2641 uptodate);
2642 if (io_bio->end_io)
2643 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2644 bio_put(bio);
2645 }
2646
2647 /*
2648 * Initialize the members up to but not including 'bio'. Use after allocating a
2649 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2650 * 'bio' because use of __GFP_ZERO is not supported.
2651 */
btrfs_io_bio_init(struct btrfs_io_bio * btrfs_bio)2652 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2653 {
2654 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2655 }
2656
2657 /*
2658 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2659 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2660 * for the appropriate container_of magic
2661 */
btrfs_bio_alloc(struct block_device * bdev,u64 first_byte)2662 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2663 {
2664 struct bio *bio;
2665
2666 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2667 bio_set_dev(bio, bdev);
2668 bio->bi_iter.bi_sector = first_byte >> 9;
2669 btrfs_io_bio_init(btrfs_io_bio(bio));
2670 return bio;
2671 }
2672
btrfs_bio_clone(struct bio * bio)2673 struct bio *btrfs_bio_clone(struct bio *bio)
2674 {
2675 struct btrfs_io_bio *btrfs_bio;
2676 struct bio *new;
2677
2678 /* Bio allocation backed by a bioset does not fail */
2679 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2680 btrfs_bio = btrfs_io_bio(new);
2681 btrfs_io_bio_init(btrfs_bio);
2682 btrfs_bio->iter = bio->bi_iter;
2683 return new;
2684 }
2685
btrfs_io_bio_alloc(unsigned int nr_iovecs)2686 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2687 {
2688 struct bio *bio;
2689
2690 /* Bio allocation backed by a bioset does not fail */
2691 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2692 btrfs_io_bio_init(btrfs_io_bio(bio));
2693 return bio;
2694 }
2695
btrfs_bio_clone_partial(struct bio * orig,int offset,int size)2696 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2697 {
2698 struct bio *bio;
2699 struct btrfs_io_bio *btrfs_bio;
2700
2701 /* this will never fail when it's backed by a bioset */
2702 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2703 ASSERT(bio);
2704
2705 btrfs_bio = btrfs_io_bio(bio);
2706 btrfs_io_bio_init(btrfs_bio);
2707
2708 bio_trim(bio, offset >> 9, size >> 9);
2709 btrfs_bio->iter = bio->bi_iter;
2710 return bio;
2711 }
2712
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)2713 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2714 unsigned long bio_flags)
2715 {
2716 blk_status_t ret = 0;
2717 struct bio_vec *bvec = bio_last_bvec_all(bio);
2718 struct page *page = bvec->bv_page;
2719 struct extent_io_tree *tree = bio->bi_private;
2720 u64 start;
2721
2722 start = page_offset(page) + bvec->bv_offset;
2723
2724 bio->bi_private = NULL;
2725
2726 if (tree->ops)
2727 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2728 mirror_num, bio_flags, start);
2729 else
2730 btrfsic_submit_bio(bio);
2731
2732 return blk_status_to_errno(ret);
2733 }
2734
2735 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)2736 static void end_write_bio(struct extent_page_data *epd, int ret)
2737 {
2738 if (epd->bio) {
2739 epd->bio->bi_status = errno_to_blk_status(ret);
2740 bio_endio(epd->bio);
2741 epd->bio = NULL;
2742 }
2743 }
2744
2745 /*
2746 * @opf: bio REQ_OP_* and REQ_* flags as one value
2747 * @tree: tree so we can call our merge_bio hook
2748 * @wbc: optional writeback control for io accounting
2749 * @page: page to add to the bio
2750 * @pg_offset: offset of the new bio or to check whether we are adding
2751 * a contiguous page to the previous one
2752 * @size: portion of page that we want to write
2753 * @offset: starting offset in the page
2754 * @bdev: attach newly created bios to this bdev
2755 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2756 * @end_io_func: end_io callback for new bio
2757 * @mirror_num: desired mirror to read/write
2758 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2759 * @bio_flags: flags of the current bio to see if we can merge them
2760 */
submit_extent_page(unsigned int opf,struct extent_io_tree * tree,struct writeback_control * wbc,struct page * page,u64 offset,size_t size,unsigned long pg_offset,struct block_device * bdev,struct bio ** bio_ret,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)2761 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2762 struct writeback_control *wbc,
2763 struct page *page, u64 offset,
2764 size_t size, unsigned long pg_offset,
2765 struct block_device *bdev,
2766 struct bio **bio_ret,
2767 bio_end_io_t end_io_func,
2768 int mirror_num,
2769 unsigned long prev_bio_flags,
2770 unsigned long bio_flags,
2771 bool force_bio_submit)
2772 {
2773 int ret = 0;
2774 struct bio *bio;
2775 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2776 sector_t sector = offset >> 9;
2777
2778 ASSERT(bio_ret);
2779
2780 if (*bio_ret) {
2781 bool contig;
2782 bool can_merge = true;
2783
2784 bio = *bio_ret;
2785 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2786 contig = bio->bi_iter.bi_sector == sector;
2787 else
2788 contig = bio_end_sector(bio) == sector;
2789
2790 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2791 bio, bio_flags))
2792 can_merge = false;
2793
2794 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2795 force_bio_submit ||
2796 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2797 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2798 if (ret < 0) {
2799 *bio_ret = NULL;
2800 return ret;
2801 }
2802 bio = NULL;
2803 } else {
2804 if (wbc)
2805 wbc_account_io(wbc, page, page_size);
2806 return 0;
2807 }
2808 }
2809
2810 bio = btrfs_bio_alloc(bdev, offset);
2811 bio_add_page(bio, page, page_size, pg_offset);
2812 bio->bi_end_io = end_io_func;
2813 bio->bi_private = tree;
2814 bio->bi_write_hint = page->mapping->host->i_write_hint;
2815 bio->bi_opf = opf;
2816 if (wbc) {
2817 wbc_init_bio(wbc, bio);
2818 wbc_account_io(wbc, page, page_size);
2819 }
2820
2821 *bio_ret = bio;
2822
2823 return ret;
2824 }
2825
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)2826 static void attach_extent_buffer_page(struct extent_buffer *eb,
2827 struct page *page)
2828 {
2829 if (!PagePrivate(page)) {
2830 SetPagePrivate(page);
2831 get_page(page);
2832 set_page_private(page, (unsigned long)eb);
2833 } else {
2834 WARN_ON(page->private != (unsigned long)eb);
2835 }
2836 }
2837
set_page_extent_mapped(struct page * page)2838 void set_page_extent_mapped(struct page *page)
2839 {
2840 if (!PagePrivate(page)) {
2841 SetPagePrivate(page);
2842 get_page(page);
2843 set_page_private(page, EXTENT_PAGE_PRIVATE);
2844 }
2845 }
2846
2847 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,get_extent_t * get_extent,struct extent_map ** em_cached)2848 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2849 u64 start, u64 len, get_extent_t *get_extent,
2850 struct extent_map **em_cached)
2851 {
2852 struct extent_map *em;
2853
2854 if (em_cached && *em_cached) {
2855 em = *em_cached;
2856 if (extent_map_in_tree(em) && start >= em->start &&
2857 start < extent_map_end(em)) {
2858 refcount_inc(&em->refs);
2859 return em;
2860 }
2861
2862 free_extent_map(em);
2863 *em_cached = NULL;
2864 }
2865
2866 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2867 if (em_cached && !IS_ERR_OR_NULL(em)) {
2868 BUG_ON(*em_cached);
2869 refcount_inc(&em->refs);
2870 *em_cached = em;
2871 }
2872 return em;
2873 }
2874 /*
2875 * basic readpage implementation. Locked extent state structs are inserted
2876 * into the tree that are removed when the IO is done (by the end_io
2877 * handlers)
2878 * XXX JDM: This needs looking at to ensure proper page locking
2879 * return 0 on success, otherwise return error
2880 */
__do_readpage(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,unsigned int read_flags,u64 * prev_em_start)2881 static int __do_readpage(struct extent_io_tree *tree,
2882 struct page *page,
2883 get_extent_t *get_extent,
2884 struct extent_map **em_cached,
2885 struct bio **bio, int mirror_num,
2886 unsigned long *bio_flags, unsigned int read_flags,
2887 u64 *prev_em_start)
2888 {
2889 struct inode *inode = page->mapping->host;
2890 u64 start = page_offset(page);
2891 const u64 end = start + PAGE_SIZE - 1;
2892 u64 cur = start;
2893 u64 extent_offset;
2894 u64 last_byte = i_size_read(inode);
2895 u64 block_start;
2896 u64 cur_end;
2897 struct extent_map *em;
2898 struct block_device *bdev;
2899 int ret = 0;
2900 int nr = 0;
2901 size_t pg_offset = 0;
2902 size_t iosize;
2903 size_t disk_io_size;
2904 size_t blocksize = inode->i_sb->s_blocksize;
2905 unsigned long this_bio_flag = 0;
2906
2907 set_page_extent_mapped(page);
2908
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
2912 unlock_extent(tree, start, end);
2913 goto out;
2914 }
2915 }
2916
2917 if (page->index == last_byte >> PAGE_SHIFT) {
2918 char *userpage;
2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2920
2921 if (zero_offset) {
2922 iosize = PAGE_SIZE - zero_offset;
2923 userpage = kmap_atomic(page);
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
2926 kunmap_atomic(userpage);
2927 }
2928 }
2929 while (cur <= end) {
2930 bool force_bio_submit = false;
2931 u64 offset;
2932
2933 if (cur >= last_byte) {
2934 char *userpage;
2935 struct extent_state *cached = NULL;
2936
2937 iosize = PAGE_SIZE - pg_offset;
2938 userpage = kmap_atomic(page);
2939 memset(userpage + pg_offset, 0, iosize);
2940 flush_dcache_page(page);
2941 kunmap_atomic(userpage);
2942 set_extent_uptodate(tree, cur, cur + iosize - 1,
2943 &cached, GFP_NOFS);
2944 unlock_extent_cached(tree, cur,
2945 cur + iosize - 1, &cached);
2946 break;
2947 }
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
2950 if (IS_ERR_OR_NULL(em)) {
2951 SetPageError(page);
2952 unlock_extent(tree, cur, end);
2953 break;
2954 }
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
2964
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
2967 iosize = ALIGN(iosize, blocksize);
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
2970 offset = em->block_start;
2971 } else {
2972 offset = em->block_start + extent_offset;
2973 disk_io_size = iosize;
2974 }
2975 bdev = em->bdev;
2976 block_start = em->block_start;
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->start;
3021
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
3028 struct extent_state *cached = NULL;
3029
3030 userpage = kmap_atomic(page);
3031 memset(userpage + pg_offset, 0, iosize);
3032 flush_dcache_page(page);
3033 kunmap_atomic(userpage);
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
3036 &cached, GFP_NOFS);
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1, &cached);
3039 cur = cur + iosize;
3040 pg_offset += iosize;
3041 continue;
3042 }
3043 /* the get_extent function already copied into the page */
3044 if (test_range_bit(tree, cur, cur_end,
3045 EXTENT_UPTODATE, 1, NULL)) {
3046 check_page_uptodate(tree, page);
3047 unlock_extent(tree, cur, cur + iosize - 1);
3048 cur = cur + iosize;
3049 pg_offset += iosize;
3050 continue;
3051 }
3052 /* we have an inline extent but it didn't get marked up
3053 * to date. Error out
3054 */
3055 if (block_start == EXTENT_MAP_INLINE) {
3056 SetPageError(page);
3057 unlock_extent(tree, cur, cur + iosize - 1);
3058 cur = cur + iosize;
3059 pg_offset += iosize;
3060 continue;
3061 }
3062
3063 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3064 page, offset, disk_io_size,
3065 pg_offset, bdev, bio,
3066 end_bio_extent_readpage, mirror_num,
3067 *bio_flags,
3068 this_bio_flag,
3069 force_bio_submit);
3070 if (!ret) {
3071 nr++;
3072 *bio_flags = this_bio_flag;
3073 } else {
3074 SetPageError(page);
3075 unlock_extent(tree, cur, cur + iosize - 1);
3076 goto out;
3077 }
3078 cur = cur + iosize;
3079 pg_offset += iosize;
3080 }
3081 out:
3082 if (!nr) {
3083 if (!PageError(page))
3084 SetPageUptodate(page);
3085 unlock_page(page);
3086 }
3087 return ret;
3088 }
3089
__do_contiguous_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3090 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3091 struct page *pages[], int nr_pages,
3092 u64 start, u64 end,
3093 struct extent_map **em_cached,
3094 struct bio **bio,
3095 unsigned long *bio_flags,
3096 u64 *prev_em_start)
3097 {
3098 struct inode *inode;
3099 struct btrfs_ordered_extent *ordered;
3100 int index;
3101
3102 inode = pages[0]->mapping->host;
3103 while (1) {
3104 lock_extent(tree, start, end);
3105 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3106 end - start + 1);
3107 if (!ordered)
3108 break;
3109 unlock_extent(tree, start, end);
3110 btrfs_start_ordered_extent(inode, ordered, 1);
3111 btrfs_put_ordered_extent(ordered);
3112 }
3113
3114 for (index = 0; index < nr_pages; index++) {
3115 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3116 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3117 put_page(pages[index]);
3118 }
3119 }
3120
__extent_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3121 static void __extent_readpages(struct extent_io_tree *tree,
3122 struct page *pages[],
3123 int nr_pages,
3124 struct extent_map **em_cached,
3125 struct bio **bio, unsigned long *bio_flags,
3126 u64 *prev_em_start)
3127 {
3128 u64 start = 0;
3129 u64 end = 0;
3130 u64 page_start;
3131 int index;
3132 int first_index = 0;
3133
3134 for (index = 0; index < nr_pages; index++) {
3135 page_start = page_offset(pages[index]);
3136 if (!end) {
3137 start = page_start;
3138 end = start + PAGE_SIZE - 1;
3139 first_index = index;
3140 } else if (end + 1 == page_start) {
3141 end += PAGE_SIZE;
3142 } else {
3143 __do_contiguous_readpages(tree, &pages[first_index],
3144 index - first_index, start,
3145 end, em_cached,
3146 bio, bio_flags,
3147 prev_em_start);
3148 start = page_start;
3149 end = start + PAGE_SIZE - 1;
3150 first_index = index;
3151 }
3152 }
3153
3154 if (end)
3155 __do_contiguous_readpages(tree, &pages[first_index],
3156 index - first_index, start,
3157 end, em_cached, bio,
3158 bio_flags, prev_em_start);
3159 }
3160
__extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct bio ** bio,int mirror_num,unsigned long * bio_flags,unsigned int read_flags)3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags,
3166 unsigned int read_flags)
3167 {
3168 struct inode *inode = page->mapping->host;
3169 struct btrfs_ordered_extent *ordered;
3170 u64 start = page_offset(page);
3171 u64 end = start + PAGE_SIZE - 1;
3172 int ret;
3173
3174 while (1) {
3175 lock_extent(tree, start, end);
3176 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3177 PAGE_SIZE);
3178 if (!ordered)
3179 break;
3180 unlock_extent(tree, start, end);
3181 btrfs_start_ordered_extent(inode, ordered, 1);
3182 btrfs_put_ordered_extent(ordered);
3183 }
3184
3185 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3186 bio_flags, read_flags, NULL);
3187 return ret;
3188 }
3189
extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3190 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3191 get_extent_t *get_extent, int mirror_num)
3192 {
3193 struct bio *bio = NULL;
3194 unsigned long bio_flags = 0;
3195 int ret;
3196
3197 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3198 &bio_flags, 0);
3199 if (bio)
3200 ret = submit_one_bio(bio, mirror_num, bio_flags);
3201 return ret;
3202 }
3203
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3204 static void update_nr_written(struct writeback_control *wbc,
3205 unsigned long nr_written)
3206 {
3207 wbc->nr_to_write -= nr_written;
3208 }
3209
3210 /*
3211 * helper for __extent_writepage, doing all of the delayed allocation setup.
3212 *
3213 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3214 * to write the page (copy into inline extent). In this case the IO has
3215 * been started and the page is already unlocked.
3216 *
3217 * This returns 0 if all went well (page still locked)
3218 * This returns < 0 if there were errors (page still locked)
3219 */
writepage_delalloc(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,u64 delalloc_start,unsigned long * nr_written)3220 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 struct page *page, struct writeback_control *wbc,
3222 struct extent_page_data *epd,
3223 u64 delalloc_start,
3224 unsigned long *nr_written)
3225 {
3226 struct extent_io_tree *tree = epd->tree;
3227 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3228 u64 nr_delalloc;
3229 u64 delalloc_to_write = 0;
3230 u64 delalloc_end = 0;
3231 int ret;
3232 int page_started = 0;
3233
3234 if (epd->extent_locked)
3235 return 0;
3236
3237 while (delalloc_end < page_end) {
3238 nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 page,
3240 &delalloc_start,
3241 &delalloc_end,
3242 BTRFS_MAX_EXTENT_SIZE);
3243 if (nr_delalloc == 0) {
3244 delalloc_start = delalloc_end + 1;
3245 continue;
3246 }
3247 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3248 delalloc_end, &page_started, nr_written, wbc);
3249 /* File system has been set read-only */
3250 if (ret) {
3251 SetPageError(page);
3252 /*
3253 * btrfs_run_delalloc_range should return < 0 for error
3254 * but just in case, we use > 0 here meaning the IO is
3255 * started, so we don't want to return > 0 unless
3256 * things are going well.
3257 */
3258 ret = ret < 0 ? ret : -EIO;
3259 goto done;
3260 }
3261 /*
3262 * delalloc_end is already one less than the total length, so
3263 * we don't subtract one from PAGE_SIZE
3264 */
3265 delalloc_to_write += (delalloc_end - delalloc_start +
3266 PAGE_SIZE) >> PAGE_SHIFT;
3267 delalloc_start = delalloc_end + 1;
3268 }
3269 if (wbc->nr_to_write < delalloc_to_write) {
3270 int thresh = 8192;
3271
3272 if (delalloc_to_write < thresh * 2)
3273 thresh = delalloc_to_write;
3274 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3275 thresh);
3276 }
3277
3278 /* did the fill delalloc function already unlock and start
3279 * the IO?
3280 */
3281 if (page_started) {
3282 /*
3283 * we've unlocked the page, so we can't update
3284 * the mapping's writeback index, just update
3285 * nr_to_write.
3286 */
3287 wbc->nr_to_write -= *nr_written;
3288 return 1;
3289 }
3290
3291 ret = 0;
3292
3293 done:
3294 return ret;
3295 }
3296
3297 /*
3298 * helper for __extent_writepage. This calls the writepage start hooks,
3299 * and does the loop to map the page into extents and bios.
3300 *
3301 * We return 1 if the IO is started and the page is unlocked,
3302 * 0 if all went well (page still locked)
3303 * < 0 if there were errors (page still locked)
3304 */
__extent_writepage_io(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,unsigned int write_flags,int * nr_ret)3305 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3306 struct page *page,
3307 struct writeback_control *wbc,
3308 struct extent_page_data *epd,
3309 loff_t i_size,
3310 unsigned long nr_written,
3311 unsigned int write_flags, int *nr_ret)
3312 {
3313 struct extent_io_tree *tree = epd->tree;
3314 u64 start = page_offset(page);
3315 u64 page_end = start + PAGE_SIZE - 1;
3316 u64 end;
3317 u64 cur = start;
3318 u64 extent_offset;
3319 u64 block_start;
3320 u64 iosize;
3321 struct extent_map *em;
3322 struct block_device *bdev;
3323 size_t pg_offset = 0;
3324 size_t blocksize;
3325 int ret = 0;
3326 int nr = 0;
3327 bool compressed;
3328
3329 if (tree->ops && tree->ops->writepage_start_hook) {
3330 ret = tree->ops->writepage_start_hook(page, start,
3331 page_end);
3332 if (ret) {
3333 /* Fixup worker will requeue */
3334 if (ret == -EBUSY)
3335 wbc->pages_skipped++;
3336 else
3337 redirty_page_for_writepage(wbc, page);
3338
3339 update_nr_written(wbc, nr_written);
3340 unlock_page(page);
3341 return 1;
3342 }
3343 }
3344
3345 /*
3346 * we don't want to touch the inode after unlocking the page,
3347 * so we update the mapping writeback index now
3348 */
3349 update_nr_written(wbc, nr_written + 1);
3350
3351 end = page_end;
3352 if (i_size <= start) {
3353 if (tree->ops && tree->ops->writepage_end_io_hook)
3354 tree->ops->writepage_end_io_hook(page, start,
3355 page_end, NULL, 1);
3356 goto done;
3357 }
3358
3359 blocksize = inode->i_sb->s_blocksize;
3360
3361 while (cur <= end) {
3362 u64 em_end;
3363 u64 offset;
3364
3365 if (cur >= i_size) {
3366 if (tree->ops && tree->ops->writepage_end_io_hook)
3367 tree->ops->writepage_end_io_hook(page, cur,
3368 page_end, NULL, 1);
3369 break;
3370 }
3371 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3372 end - cur + 1, 1);
3373 if (IS_ERR_OR_NULL(em)) {
3374 SetPageError(page);
3375 ret = PTR_ERR_OR_ZERO(em);
3376 break;
3377 }
3378
3379 extent_offset = cur - em->start;
3380 em_end = extent_map_end(em);
3381 BUG_ON(em_end <= cur);
3382 BUG_ON(end < cur);
3383 iosize = min(em_end - cur, end - cur + 1);
3384 iosize = ALIGN(iosize, blocksize);
3385 offset = em->block_start + extent_offset;
3386 bdev = em->bdev;
3387 block_start = em->block_start;
3388 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3389 free_extent_map(em);
3390 em = NULL;
3391
3392 /*
3393 * compressed and inline extents are written through other
3394 * paths in the FS
3395 */
3396 if (compressed || block_start == EXTENT_MAP_HOLE ||
3397 block_start == EXTENT_MAP_INLINE) {
3398 /*
3399 * end_io notification does not happen here for
3400 * compressed extents
3401 */
3402 if (!compressed && tree->ops &&
3403 tree->ops->writepage_end_io_hook)
3404 tree->ops->writepage_end_io_hook(page, cur,
3405 cur + iosize - 1,
3406 NULL, 1);
3407 else if (compressed) {
3408 /* we don't want to end_page_writeback on
3409 * a compressed extent. this happens
3410 * elsewhere
3411 */
3412 nr++;
3413 }
3414
3415 cur += iosize;
3416 pg_offset += iosize;
3417 continue;
3418 }
3419
3420 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3421 if (!PageWriteback(page)) {
3422 btrfs_err(BTRFS_I(inode)->root->fs_info,
3423 "page %lu not writeback, cur %llu end %llu",
3424 page->index, cur, end);
3425 }
3426
3427 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3428 page, offset, iosize, pg_offset,
3429 bdev, &epd->bio,
3430 end_bio_extent_writepage,
3431 0, 0, 0, false);
3432 if (ret) {
3433 SetPageError(page);
3434 if (PageWriteback(page))
3435 end_page_writeback(page);
3436 }
3437
3438 cur = cur + iosize;
3439 pg_offset += iosize;
3440 nr++;
3441 }
3442 done:
3443 *nr_ret = nr;
3444 return ret;
3445 }
3446
3447 /*
3448 * the writepage semantics are similar to regular writepage. extent
3449 * records are inserted to lock ranges in the tree, and as dirty areas
3450 * are found, they are marked writeback. Then the lock bits are removed
3451 * and the end_io handler clears the writeback ranges
3452 *
3453 * Return 0 if everything goes well.
3454 * Return <0 for error.
3455 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)3456 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3457 struct extent_page_data *epd)
3458 {
3459 struct inode *inode = page->mapping->host;
3460 u64 start = page_offset(page);
3461 u64 page_end = start + PAGE_SIZE - 1;
3462 int ret;
3463 int nr = 0;
3464 size_t pg_offset = 0;
3465 loff_t i_size = i_size_read(inode);
3466 unsigned long end_index = i_size >> PAGE_SHIFT;
3467 unsigned int write_flags = 0;
3468 unsigned long nr_written = 0;
3469
3470 write_flags = wbc_to_write_flags(wbc);
3471
3472 trace___extent_writepage(page, inode, wbc);
3473
3474 WARN_ON(!PageLocked(page));
3475
3476 ClearPageError(page);
3477
3478 pg_offset = i_size & (PAGE_SIZE - 1);
3479 if (page->index > end_index ||
3480 (page->index == end_index && !pg_offset)) {
3481 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3482 unlock_page(page);
3483 return 0;
3484 }
3485
3486 if (page->index == end_index) {
3487 char *userpage;
3488
3489 userpage = kmap_atomic(page);
3490 memset(userpage + pg_offset, 0,
3491 PAGE_SIZE - pg_offset);
3492 kunmap_atomic(userpage);
3493 flush_dcache_page(page);
3494 }
3495
3496 pg_offset = 0;
3497
3498 set_page_extent_mapped(page);
3499
3500 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3501 if (ret == 1)
3502 goto done_unlocked;
3503 if (ret)
3504 goto done;
3505
3506 ret = __extent_writepage_io(inode, page, wbc, epd,
3507 i_size, nr_written, write_flags, &nr);
3508 if (ret == 1)
3509 goto done_unlocked;
3510
3511 done:
3512 if (nr == 0) {
3513 /* make sure the mapping tag for page dirty gets cleared */
3514 set_page_writeback(page);
3515 end_page_writeback(page);
3516 }
3517 if (PageError(page)) {
3518 ret = ret < 0 ? ret : -EIO;
3519 end_extent_writepage(page, ret, start, page_end);
3520 }
3521 unlock_page(page);
3522 ASSERT(ret <= 0);
3523 return ret;
3524
3525 done_unlocked:
3526 return 0;
3527 }
3528
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3529 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3530 {
3531 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3532 TASK_UNINTERRUPTIBLE);
3533 }
3534
3535 static noinline_for_stack int
lock_extent_buffer_for_io(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct extent_page_data * epd)3536 lock_extent_buffer_for_io(struct extent_buffer *eb,
3537 struct btrfs_fs_info *fs_info,
3538 struct extent_page_data *epd)
3539 {
3540 int i, num_pages;
3541 int flush = 0;
3542 int ret = 0;
3543
3544 if (!btrfs_try_tree_write_lock(eb)) {
3545 flush = 1;
3546 flush_write_bio(epd);
3547 btrfs_tree_lock(eb);
3548 }
3549
3550 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3551 btrfs_tree_unlock(eb);
3552 if (!epd->sync_io)
3553 return 0;
3554 if (!flush) {
3555 flush_write_bio(epd);
3556 flush = 1;
3557 }
3558 while (1) {
3559 wait_on_extent_buffer_writeback(eb);
3560 btrfs_tree_lock(eb);
3561 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3562 break;
3563 btrfs_tree_unlock(eb);
3564 }
3565 }
3566
3567 /*
3568 * We need to do this to prevent races in people who check if the eb is
3569 * under IO since we can end up having no IO bits set for a short period
3570 * of time.
3571 */
3572 spin_lock(&eb->refs_lock);
3573 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3574 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3575 spin_unlock(&eb->refs_lock);
3576 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3577 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3578 -eb->len,
3579 fs_info->dirty_metadata_batch);
3580 ret = 1;
3581 } else {
3582 spin_unlock(&eb->refs_lock);
3583 }
3584
3585 btrfs_tree_unlock(eb);
3586
3587 if (!ret)
3588 return ret;
3589
3590 num_pages = num_extent_pages(eb);
3591 for (i = 0; i < num_pages; i++) {
3592 struct page *p = eb->pages[i];
3593
3594 if (!trylock_page(p)) {
3595 if (!flush) {
3596 flush_write_bio(epd);
3597 flush = 1;
3598 }
3599 lock_page(p);
3600 }
3601 }
3602
3603 return ret;
3604 }
3605
end_extent_buffer_writeback(struct extent_buffer * eb)3606 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3607 {
3608 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3609 smp_mb__after_atomic();
3610 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3611 }
3612
set_btree_ioerr(struct page * page)3613 static void set_btree_ioerr(struct page *page)
3614 {
3615 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3616
3617 SetPageError(page);
3618 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3619 return;
3620
3621 /*
3622 * If writeback for a btree extent that doesn't belong to a log tree
3623 * failed, increment the counter transaction->eb_write_errors.
3624 * We do this because while the transaction is running and before it's
3625 * committing (when we call filemap_fdata[write|wait]_range against
3626 * the btree inode), we might have
3627 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3628 * returns an error or an error happens during writeback, when we're
3629 * committing the transaction we wouldn't know about it, since the pages
3630 * can be no longer dirty nor marked anymore for writeback (if a
3631 * subsequent modification to the extent buffer didn't happen before the
3632 * transaction commit), which makes filemap_fdata[write|wait]_range not
3633 * able to find the pages tagged with SetPageError at transaction
3634 * commit time. So if this happens we must abort the transaction,
3635 * otherwise we commit a super block with btree roots that point to
3636 * btree nodes/leafs whose content on disk is invalid - either garbage
3637 * or the content of some node/leaf from a past generation that got
3638 * cowed or deleted and is no longer valid.
3639 *
3640 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3641 * not be enough - we need to distinguish between log tree extents vs
3642 * non-log tree extents, and the next filemap_fdatawait_range() call
3643 * will catch and clear such errors in the mapping - and that call might
3644 * be from a log sync and not from a transaction commit. Also, checking
3645 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3646 * not done and would not be reliable - the eb might have been released
3647 * from memory and reading it back again means that flag would not be
3648 * set (since it's a runtime flag, not persisted on disk).
3649 *
3650 * Using the flags below in the btree inode also makes us achieve the
3651 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3652 * writeback for all dirty pages and before filemap_fdatawait_range()
3653 * is called, the writeback for all dirty pages had already finished
3654 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3655 * filemap_fdatawait_range() would return success, as it could not know
3656 * that writeback errors happened (the pages were no longer tagged for
3657 * writeback).
3658 */
3659 switch (eb->log_index) {
3660 case -1:
3661 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3662 break;
3663 case 0:
3664 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3665 break;
3666 case 1:
3667 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3668 break;
3669 default:
3670 BUG(); /* unexpected, logic error */
3671 }
3672 }
3673
end_bio_extent_buffer_writepage(struct bio * bio)3674 static void end_bio_extent_buffer_writepage(struct bio *bio)
3675 {
3676 struct bio_vec *bvec;
3677 struct extent_buffer *eb;
3678 int i, done;
3679
3680 ASSERT(!bio_flagged(bio, BIO_CLONED));
3681 bio_for_each_segment_all(bvec, bio, i) {
3682 struct page *page = bvec->bv_page;
3683
3684 eb = (struct extent_buffer *)page->private;
3685 BUG_ON(!eb);
3686 done = atomic_dec_and_test(&eb->io_pages);
3687
3688 if (bio->bi_status ||
3689 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3690 ClearPageUptodate(page);
3691 set_btree_ioerr(page);
3692 }
3693
3694 end_page_writeback(page);
3695
3696 if (!done)
3697 continue;
3698
3699 end_extent_buffer_writeback(eb);
3700 }
3701
3702 bio_put(bio);
3703 }
3704
write_one_eb(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct writeback_control * wbc,struct extent_page_data * epd)3705 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3706 struct btrfs_fs_info *fs_info,
3707 struct writeback_control *wbc,
3708 struct extent_page_data *epd)
3709 {
3710 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3711 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3712 u64 offset = eb->start;
3713 u32 nritems;
3714 int i, num_pages;
3715 unsigned long start, end;
3716 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3717 int ret = 0;
3718
3719 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3720 num_pages = num_extent_pages(eb);
3721 atomic_set(&eb->io_pages, num_pages);
3722
3723 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3724 nritems = btrfs_header_nritems(eb);
3725 if (btrfs_header_level(eb) > 0) {
3726 end = btrfs_node_key_ptr_offset(nritems);
3727
3728 memzero_extent_buffer(eb, end, eb->len - end);
3729 } else {
3730 /*
3731 * leaf:
3732 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3733 */
3734 start = btrfs_item_nr_offset(nritems);
3735 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3736 memzero_extent_buffer(eb, start, end - start);
3737 }
3738
3739 for (i = 0; i < num_pages; i++) {
3740 struct page *p = eb->pages[i];
3741
3742 clear_page_dirty_for_io(p);
3743 set_page_writeback(p);
3744 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3745 p, offset, PAGE_SIZE, 0, bdev,
3746 &epd->bio,
3747 end_bio_extent_buffer_writepage,
3748 0, 0, 0, false);
3749 if (ret) {
3750 set_btree_ioerr(p);
3751 if (PageWriteback(p))
3752 end_page_writeback(p);
3753 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3754 end_extent_buffer_writeback(eb);
3755 ret = -EIO;
3756 break;
3757 }
3758 offset += PAGE_SIZE;
3759 update_nr_written(wbc, 1);
3760 unlock_page(p);
3761 }
3762
3763 if (unlikely(ret)) {
3764 for (; i < num_pages; i++) {
3765 struct page *p = eb->pages[i];
3766 clear_page_dirty_for_io(p);
3767 unlock_page(p);
3768 }
3769 }
3770
3771 return ret;
3772 }
3773
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3774 int btree_write_cache_pages(struct address_space *mapping,
3775 struct writeback_control *wbc)
3776 {
3777 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3778 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3779 struct extent_buffer *eb, *prev_eb = NULL;
3780 struct extent_page_data epd = {
3781 .bio = NULL,
3782 .tree = tree,
3783 .extent_locked = 0,
3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3785 };
3786 int ret = 0;
3787 int done = 0;
3788 int nr_to_write_done = 0;
3789 struct pagevec pvec;
3790 int nr_pages;
3791 pgoff_t index;
3792 pgoff_t end; /* Inclusive */
3793 int scanned = 0;
3794 int tag;
3795
3796 pagevec_init(&pvec);
3797 if (wbc->range_cyclic) {
3798 index = mapping->writeback_index; /* Start from prev offset */
3799 end = -1;
3800 } else {
3801 index = wbc->range_start >> PAGE_SHIFT;
3802 end = wbc->range_end >> PAGE_SHIFT;
3803 scanned = 1;
3804 }
3805 if (wbc->sync_mode == WB_SYNC_ALL)
3806 tag = PAGECACHE_TAG_TOWRITE;
3807 else
3808 tag = PAGECACHE_TAG_DIRTY;
3809 retry:
3810 if (wbc->sync_mode == WB_SYNC_ALL)
3811 tag_pages_for_writeback(mapping, index, end);
3812 while (!done && !nr_to_write_done && (index <= end) &&
3813 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3814 tag))) {
3815 unsigned i;
3816
3817 scanned = 1;
3818 for (i = 0; i < nr_pages; i++) {
3819 struct page *page = pvec.pages[i];
3820
3821 if (!PagePrivate(page))
3822 continue;
3823
3824 spin_lock(&mapping->private_lock);
3825 if (!PagePrivate(page)) {
3826 spin_unlock(&mapping->private_lock);
3827 continue;
3828 }
3829
3830 eb = (struct extent_buffer *)page->private;
3831
3832 /*
3833 * Shouldn't happen and normally this would be a BUG_ON
3834 * but no sense in crashing the users box for something
3835 * we can survive anyway.
3836 */
3837 if (WARN_ON(!eb)) {
3838 spin_unlock(&mapping->private_lock);
3839 continue;
3840 }
3841
3842 if (eb == prev_eb) {
3843 spin_unlock(&mapping->private_lock);
3844 continue;
3845 }
3846
3847 ret = atomic_inc_not_zero(&eb->refs);
3848 spin_unlock(&mapping->private_lock);
3849 if (!ret)
3850 continue;
3851
3852 prev_eb = eb;
3853 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3854 if (!ret) {
3855 free_extent_buffer(eb);
3856 continue;
3857 }
3858
3859 ret = write_one_eb(eb, fs_info, wbc, &epd);
3860 if (ret) {
3861 done = 1;
3862 free_extent_buffer(eb);
3863 break;
3864 }
3865 free_extent_buffer(eb);
3866
3867 /*
3868 * the filesystem may choose to bump up nr_to_write.
3869 * We have to make sure to honor the new nr_to_write
3870 * at any time
3871 */
3872 nr_to_write_done = wbc->nr_to_write <= 0;
3873 }
3874 pagevec_release(&pvec);
3875 cond_resched();
3876 }
3877 if (!scanned && !done) {
3878 /*
3879 * We hit the last page and there is more work to be done: wrap
3880 * back to the start of the file
3881 */
3882 scanned = 1;
3883 index = 0;
3884 goto retry;
3885 }
3886 /*
3887 * If something went wrong, don't allow any metadata write bio to be
3888 * submitted.
3889 *
3890 * This would prevent use-after-free if we had dirty pages not
3891 * cleaned up, which can still happen by fuzzed images.
3892 *
3893 * - Bad extent tree
3894 * Allowing existing tree block to be allocated for other trees.
3895 *
3896 * - Log tree operations
3897 * Exiting tree blocks get allocated to log tree, bumps its
3898 * generation, then get cleaned in tree re-balance.
3899 * Such tree block will not be written back, since it's clean,
3900 * thus no WRITTEN flag set.
3901 * And after log writes back, this tree block is not traced by
3902 * any dirty extent_io_tree.
3903 *
3904 * - Offending tree block gets re-dirtied from its original owner
3905 * Since it has bumped generation, no WRITTEN flag, it can be
3906 * reused without COWing. This tree block will not be traced
3907 * by btrfs_transaction::dirty_pages.
3908 *
3909 * Now such dirty tree block will not be cleaned by any dirty
3910 * extent io tree. Thus we don't want to submit such wild eb
3911 * if the fs already has error.
3912 */
3913 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3914 flush_write_bio(&epd);
3915 } else {
3916 ret = -EUCLEAN;
3917 end_write_bio(&epd, ret);
3918 }
3919 return ret;
3920 }
3921
3922 /**
3923 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3924 * @mapping: address space structure to write
3925 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3926 * @data: data passed to __extent_writepage function
3927 *
3928 * If a page is already under I/O, write_cache_pages() skips it, even
3929 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3930 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3931 * and msync() need to guarantee that all the data which was dirty at the time
3932 * the call was made get new I/O started against them. If wbc->sync_mode is
3933 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3934 * existing IO to complete.
3935 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)3936 static int extent_write_cache_pages(struct address_space *mapping,
3937 struct writeback_control *wbc,
3938 struct extent_page_data *epd)
3939 {
3940 struct inode *inode = mapping->host;
3941 int ret = 0;
3942 int done = 0;
3943 int nr_to_write_done = 0;
3944 struct pagevec pvec;
3945 int nr_pages;
3946 pgoff_t index;
3947 pgoff_t end; /* Inclusive */
3948 pgoff_t done_index;
3949 int range_whole = 0;
3950 int scanned = 0;
3951 int tag;
3952
3953 /*
3954 * We have to hold onto the inode so that ordered extents can do their
3955 * work when the IO finishes. The alternative to this is failing to add
3956 * an ordered extent if the igrab() fails there and that is a huge pain
3957 * to deal with, so instead just hold onto the inode throughout the
3958 * writepages operation. If it fails here we are freeing up the inode
3959 * anyway and we'd rather not waste our time writing out stuff that is
3960 * going to be truncated anyway.
3961 */
3962 if (!igrab(inode))
3963 return 0;
3964
3965 pagevec_init(&pvec);
3966 if (wbc->range_cyclic) {
3967 index = mapping->writeback_index; /* Start from prev offset */
3968 end = -1;
3969 } else {
3970 index = wbc->range_start >> PAGE_SHIFT;
3971 end = wbc->range_end >> PAGE_SHIFT;
3972 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3973 range_whole = 1;
3974 scanned = 1;
3975 }
3976
3977 /*
3978 * We do the tagged writepage as long as the snapshot flush bit is set
3979 * and we are the first one who do the filemap_flush() on this inode.
3980 *
3981 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3982 * not race in and drop the bit.
3983 */
3984 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3985 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3986 &BTRFS_I(inode)->runtime_flags))
3987 wbc->tagged_writepages = 1;
3988
3989 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3990 tag = PAGECACHE_TAG_TOWRITE;
3991 else
3992 tag = PAGECACHE_TAG_DIRTY;
3993 retry:
3994 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3995 tag_pages_for_writeback(mapping, index, end);
3996 done_index = index;
3997 while (!done && !nr_to_write_done && (index <= end) &&
3998 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3999 &index, end, tag))) {
4000 unsigned i;
4001
4002 scanned = 1;
4003 for (i = 0; i < nr_pages; i++) {
4004 struct page *page = pvec.pages[i];
4005
4006 done_index = page->index + 1;
4007 /*
4008 * At this point we hold neither the i_pages lock nor
4009 * the page lock: the page may be truncated or
4010 * invalidated (changing page->mapping to NULL),
4011 * or even swizzled back from swapper_space to
4012 * tmpfs file mapping
4013 */
4014 if (!trylock_page(page)) {
4015 flush_write_bio(epd);
4016 lock_page(page);
4017 }
4018
4019 if (unlikely(page->mapping != mapping)) {
4020 unlock_page(page);
4021 continue;
4022 }
4023
4024 if (wbc->sync_mode != WB_SYNC_NONE) {
4025 if (PageWriteback(page))
4026 flush_write_bio(epd);
4027 wait_on_page_writeback(page);
4028 }
4029
4030 if (PageWriteback(page) ||
4031 !clear_page_dirty_for_io(page)) {
4032 unlock_page(page);
4033 continue;
4034 }
4035
4036 ret = __extent_writepage(page, wbc, epd);
4037
4038 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4039 unlock_page(page);
4040 ret = 0;
4041 }
4042 if (ret < 0) {
4043 done = 1;
4044 break;
4045 }
4046
4047 /*
4048 * the filesystem may choose to bump up nr_to_write.
4049 * We have to make sure to honor the new nr_to_write
4050 * at any time
4051 */
4052 nr_to_write_done = wbc->nr_to_write <= 0;
4053 }
4054 pagevec_release(&pvec);
4055 cond_resched();
4056 }
4057 if (!scanned && !done) {
4058 /*
4059 * We hit the last page and there is more work to be done: wrap
4060 * back to the start of the file
4061 */
4062 scanned = 1;
4063 index = 0;
4064
4065 /*
4066 * If we're looping we could run into a page that is locked by a
4067 * writer and that writer could be waiting on writeback for a
4068 * page in our current bio, and thus deadlock, so flush the
4069 * write bio here.
4070 */
4071 flush_write_bio(epd);
4072 goto retry;
4073 }
4074
4075 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4076 mapping->writeback_index = done_index;
4077
4078 btrfs_add_delayed_iput(inode);
4079 return ret;
4080 }
4081
flush_write_bio(struct extent_page_data * epd)4082 static void flush_write_bio(struct extent_page_data *epd)
4083 {
4084 if (epd->bio) {
4085 int ret;
4086
4087 ret = submit_one_bio(epd->bio, 0, 0);
4088 BUG_ON(ret < 0); /* -ENOMEM */
4089 epd->bio = NULL;
4090 }
4091 }
4092
extent_write_full_page(struct page * page,struct writeback_control * wbc)4093 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4094 {
4095 int ret;
4096 struct extent_page_data epd = {
4097 .bio = NULL,
4098 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4099 .extent_locked = 0,
4100 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4101 };
4102
4103 ret = __extent_writepage(page, wbc, &epd);
4104 ASSERT(ret <= 0);
4105 if (ret < 0) {
4106 end_write_bio(&epd, ret);
4107 return ret;
4108 }
4109
4110 flush_write_bio(&epd);
4111 return ret;
4112 }
4113
extent_write_locked_range(struct inode * inode,u64 start,u64 end,int mode)4114 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4115 int mode)
4116 {
4117 int ret = 0;
4118 struct address_space *mapping = inode->i_mapping;
4119 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4120 struct page *page;
4121 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4122 PAGE_SHIFT;
4123
4124 struct extent_page_data epd = {
4125 .bio = NULL,
4126 .tree = tree,
4127 .extent_locked = 1,
4128 .sync_io = mode == WB_SYNC_ALL,
4129 };
4130 struct writeback_control wbc_writepages = {
4131 .sync_mode = mode,
4132 .nr_to_write = nr_pages * 2,
4133 .range_start = start,
4134 .range_end = end + 1,
4135 };
4136
4137 while (start <= end) {
4138 page = find_get_page(mapping, start >> PAGE_SHIFT);
4139 if (clear_page_dirty_for_io(page))
4140 ret = __extent_writepage(page, &wbc_writepages, &epd);
4141 else {
4142 if (tree->ops && tree->ops->writepage_end_io_hook)
4143 tree->ops->writepage_end_io_hook(page, start,
4144 start + PAGE_SIZE - 1,
4145 NULL, 1);
4146 unlock_page(page);
4147 }
4148 put_page(page);
4149 start += PAGE_SIZE;
4150 }
4151
4152 flush_write_bio(&epd);
4153 return ret;
4154 }
4155
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)4156 int extent_writepages(struct address_space *mapping,
4157 struct writeback_control *wbc)
4158 {
4159 int ret = 0;
4160 struct extent_page_data epd = {
4161 .bio = NULL,
4162 .tree = &BTRFS_I(mapping->host)->io_tree,
4163 .extent_locked = 0,
4164 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4165 };
4166
4167 ret = extent_write_cache_pages(mapping, wbc, &epd);
4168 flush_write_bio(&epd);
4169 return ret;
4170 }
4171
extent_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages)4172 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4173 unsigned nr_pages)
4174 {
4175 struct bio *bio = NULL;
4176 unsigned page_idx;
4177 unsigned long bio_flags = 0;
4178 struct page *pagepool[16];
4179 struct page *page;
4180 struct extent_map *em_cached = NULL;
4181 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4182 int nr = 0;
4183 u64 prev_em_start = (u64)-1;
4184
4185 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4186 page = list_entry(pages->prev, struct page, lru);
4187
4188 prefetchw(&page->flags);
4189 list_del(&page->lru);
4190 if (add_to_page_cache_lru(page, mapping,
4191 page->index,
4192 readahead_gfp_mask(mapping))) {
4193 put_page(page);
4194 continue;
4195 }
4196
4197 pagepool[nr++] = page;
4198 if (nr < ARRAY_SIZE(pagepool))
4199 continue;
4200 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4201 &bio_flags, &prev_em_start);
4202 nr = 0;
4203 }
4204 if (nr)
4205 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4206 &bio_flags, &prev_em_start);
4207
4208 if (em_cached)
4209 free_extent_map(em_cached);
4210
4211 BUG_ON(!list_empty(pages));
4212 if (bio)
4213 return submit_one_bio(bio, 0, bio_flags);
4214 return 0;
4215 }
4216
4217 /*
4218 * basic invalidatepage code, this waits on any locked or writeback
4219 * ranges corresponding to the page, and then deletes any extent state
4220 * records from the tree
4221 */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4222 int extent_invalidatepage(struct extent_io_tree *tree,
4223 struct page *page, unsigned long offset)
4224 {
4225 struct extent_state *cached_state = NULL;
4226 u64 start = page_offset(page);
4227 u64 end = start + PAGE_SIZE - 1;
4228 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4229
4230 start += ALIGN(offset, blocksize);
4231 if (start > end)
4232 return 0;
4233
4234 lock_extent_bits(tree, start, end, &cached_state);
4235 wait_on_page_writeback(page);
4236 clear_extent_bit(tree, start, end,
4237 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4238 EXTENT_DO_ACCOUNTING,
4239 1, 1, &cached_state);
4240 return 0;
4241 }
4242
4243 /*
4244 * a helper for releasepage, this tests for areas of the page that
4245 * are locked or under IO and drops the related state bits if it is safe
4246 * to drop the page.
4247 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)4248 static int try_release_extent_state(struct extent_io_tree *tree,
4249 struct page *page, gfp_t mask)
4250 {
4251 u64 start = page_offset(page);
4252 u64 end = start + PAGE_SIZE - 1;
4253 int ret = 1;
4254
4255 if (test_range_bit(tree, start, end,
4256 EXTENT_IOBITS, 0, NULL))
4257 ret = 0;
4258 else {
4259 /*
4260 * at this point we can safely clear everything except the
4261 * locked bit and the nodatasum bit
4262 */
4263 ret = __clear_extent_bit(tree, start, end,
4264 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4265 0, 0, NULL, mask, NULL);
4266
4267 /* if clear_extent_bit failed for enomem reasons,
4268 * we can't allow the release to continue.
4269 */
4270 if (ret < 0)
4271 ret = 0;
4272 else
4273 ret = 1;
4274 }
4275 return ret;
4276 }
4277
4278 /*
4279 * a helper for releasepage. As long as there are no locked extents
4280 * in the range corresponding to the page, both state records and extent
4281 * map records are removed
4282 */
try_release_extent_mapping(struct page * page,gfp_t mask)4283 int try_release_extent_mapping(struct page *page, gfp_t mask)
4284 {
4285 struct extent_map *em;
4286 u64 start = page_offset(page);
4287 u64 end = start + PAGE_SIZE - 1;
4288 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4289 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4290 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4291
4292 if (gfpflags_allow_blocking(mask) &&
4293 page->mapping->host->i_size > SZ_16M) {
4294 u64 len;
4295 while (start <= end) {
4296 len = end - start + 1;
4297 write_lock(&map->lock);
4298 em = lookup_extent_mapping(map, start, len);
4299 if (!em) {
4300 write_unlock(&map->lock);
4301 break;
4302 }
4303 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4304 em->start != start) {
4305 write_unlock(&map->lock);
4306 free_extent_map(em);
4307 break;
4308 }
4309 if (!test_range_bit(tree, em->start,
4310 extent_map_end(em) - 1,
4311 EXTENT_LOCKED | EXTENT_WRITEBACK,
4312 0, NULL)) {
4313 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4314 &btrfs_inode->runtime_flags);
4315 remove_extent_mapping(map, em);
4316 /* once for the rb tree */
4317 free_extent_map(em);
4318 }
4319 start = extent_map_end(em);
4320 write_unlock(&map->lock);
4321
4322 /* once for us */
4323 free_extent_map(em);
4324
4325 cond_resched(); /* Allow large-extent preemption. */
4326 }
4327 }
4328 return try_release_extent_state(tree, page, mask);
4329 }
4330
4331 /*
4332 * helper function for fiemap, which doesn't want to see any holes.
4333 * This maps until we find something past 'last'
4334 */
get_extent_skip_holes(struct inode * inode,u64 offset,u64 last)4335 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4336 u64 offset, u64 last)
4337 {
4338 u64 sectorsize = btrfs_inode_sectorsize(inode);
4339 struct extent_map *em;
4340 u64 len;
4341
4342 if (offset >= last)
4343 return NULL;
4344
4345 while (1) {
4346 len = last - offset;
4347 if (len == 0)
4348 break;
4349 len = ALIGN(len, sectorsize);
4350 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4351 len, 0);
4352 if (IS_ERR_OR_NULL(em))
4353 return em;
4354
4355 /* if this isn't a hole return it */
4356 if (em->block_start != EXTENT_MAP_HOLE)
4357 return em;
4358
4359 /* this is a hole, advance to the next extent */
4360 offset = extent_map_end(em);
4361 free_extent_map(em);
4362 if (offset >= last)
4363 break;
4364 }
4365 return NULL;
4366 }
4367
4368 /*
4369 * To cache previous fiemap extent
4370 *
4371 * Will be used for merging fiemap extent
4372 */
4373 struct fiemap_cache {
4374 u64 offset;
4375 u64 phys;
4376 u64 len;
4377 u32 flags;
4378 bool cached;
4379 };
4380
4381 /*
4382 * Helper to submit fiemap extent.
4383 *
4384 * Will try to merge current fiemap extent specified by @offset, @phys,
4385 * @len and @flags with cached one.
4386 * And only when we fails to merge, cached one will be submitted as
4387 * fiemap extent.
4388 *
4389 * Return value is the same as fiemap_fill_next_extent().
4390 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)4391 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4392 struct fiemap_cache *cache,
4393 u64 offset, u64 phys, u64 len, u32 flags)
4394 {
4395 int ret = 0;
4396
4397 if (!cache->cached)
4398 goto assign;
4399
4400 /*
4401 * Sanity check, extent_fiemap() should have ensured that new
4402 * fiemap extent won't overlap with cahced one.
4403 * Not recoverable.
4404 *
4405 * NOTE: Physical address can overlap, due to compression
4406 */
4407 if (cache->offset + cache->len > offset) {
4408 WARN_ON(1);
4409 return -EINVAL;
4410 }
4411
4412 /*
4413 * Only merges fiemap extents if
4414 * 1) Their logical addresses are continuous
4415 *
4416 * 2) Their physical addresses are continuous
4417 * So truly compressed (physical size smaller than logical size)
4418 * extents won't get merged with each other
4419 *
4420 * 3) Share same flags except FIEMAP_EXTENT_LAST
4421 * So regular extent won't get merged with prealloc extent
4422 */
4423 if (cache->offset + cache->len == offset &&
4424 cache->phys + cache->len == phys &&
4425 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4426 (flags & ~FIEMAP_EXTENT_LAST)) {
4427 cache->len += len;
4428 cache->flags |= flags;
4429 goto try_submit_last;
4430 }
4431
4432 /* Not mergeable, need to submit cached one */
4433 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4434 cache->len, cache->flags);
4435 cache->cached = false;
4436 if (ret)
4437 return ret;
4438 assign:
4439 cache->cached = true;
4440 cache->offset = offset;
4441 cache->phys = phys;
4442 cache->len = len;
4443 cache->flags = flags;
4444 try_submit_last:
4445 if (cache->flags & FIEMAP_EXTENT_LAST) {
4446 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4447 cache->phys, cache->len, cache->flags);
4448 cache->cached = false;
4449 }
4450 return ret;
4451 }
4452
4453 /*
4454 * Emit last fiemap cache
4455 *
4456 * The last fiemap cache may still be cached in the following case:
4457 * 0 4k 8k
4458 * |<- Fiemap range ->|
4459 * |<------------ First extent ----------->|
4460 *
4461 * In this case, the first extent range will be cached but not emitted.
4462 * So we must emit it before ending extent_fiemap().
4463 */
emit_last_fiemap_cache(struct btrfs_fs_info * fs_info,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)4464 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4465 struct fiemap_extent_info *fieinfo,
4466 struct fiemap_cache *cache)
4467 {
4468 int ret;
4469
4470 if (!cache->cached)
4471 return 0;
4472
4473 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4474 cache->len, cache->flags);
4475 cache->cached = false;
4476 if (ret > 0)
4477 ret = 0;
4478 return ret;
4479 }
4480
extent_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4481 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4482 __u64 start, __u64 len)
4483 {
4484 int ret = 0;
4485 u64 off = start;
4486 u64 max = start + len;
4487 u32 flags = 0;
4488 u32 found_type;
4489 u64 last;
4490 u64 last_for_get_extent = 0;
4491 u64 disko = 0;
4492 u64 isize = i_size_read(inode);
4493 struct btrfs_key found_key;
4494 struct extent_map *em = NULL;
4495 struct extent_state *cached_state = NULL;
4496 struct btrfs_path *path;
4497 struct btrfs_root *root = BTRFS_I(inode)->root;
4498 struct fiemap_cache cache = { 0 };
4499 int end = 0;
4500 u64 em_start = 0;
4501 u64 em_len = 0;
4502 u64 em_end = 0;
4503
4504 if (len == 0)
4505 return -EINVAL;
4506
4507 path = btrfs_alloc_path();
4508 if (!path)
4509 return -ENOMEM;
4510 path->leave_spinning = 1;
4511
4512 start = round_down(start, btrfs_inode_sectorsize(inode));
4513 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4514
4515 /*
4516 * lookup the last file extent. We're not using i_size here
4517 * because there might be preallocation past i_size
4518 */
4519 ret = btrfs_lookup_file_extent(NULL, root, path,
4520 btrfs_ino(BTRFS_I(inode)), -1, 0);
4521 if (ret < 0) {
4522 btrfs_free_path(path);
4523 return ret;
4524 } else {
4525 WARN_ON(!ret);
4526 if (ret == 1)
4527 ret = 0;
4528 }
4529
4530 path->slots[0]--;
4531 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4532 found_type = found_key.type;
4533
4534 /* No extents, but there might be delalloc bits */
4535 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4536 found_type != BTRFS_EXTENT_DATA_KEY) {
4537 /* have to trust i_size as the end */
4538 last = (u64)-1;
4539 last_for_get_extent = isize;
4540 } else {
4541 /*
4542 * remember the start of the last extent. There are a
4543 * bunch of different factors that go into the length of the
4544 * extent, so its much less complex to remember where it started
4545 */
4546 last = found_key.offset;
4547 last_for_get_extent = last + 1;
4548 }
4549 btrfs_release_path(path);
4550
4551 /*
4552 * we might have some extents allocated but more delalloc past those
4553 * extents. so, we trust isize unless the start of the last extent is
4554 * beyond isize
4555 */
4556 if (last < isize) {
4557 last = (u64)-1;
4558 last_for_get_extent = isize;
4559 }
4560
4561 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4562 &cached_state);
4563
4564 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4565 if (!em)
4566 goto out;
4567 if (IS_ERR(em)) {
4568 ret = PTR_ERR(em);
4569 goto out;
4570 }
4571
4572 while (!end) {
4573 u64 offset_in_extent = 0;
4574
4575 /* break if the extent we found is outside the range */
4576 if (em->start >= max || extent_map_end(em) < off)
4577 break;
4578
4579 /*
4580 * get_extent may return an extent that starts before our
4581 * requested range. We have to make sure the ranges
4582 * we return to fiemap always move forward and don't
4583 * overlap, so adjust the offsets here
4584 */
4585 em_start = max(em->start, off);
4586
4587 /*
4588 * record the offset from the start of the extent
4589 * for adjusting the disk offset below. Only do this if the
4590 * extent isn't compressed since our in ram offset may be past
4591 * what we have actually allocated on disk.
4592 */
4593 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4594 offset_in_extent = em_start - em->start;
4595 em_end = extent_map_end(em);
4596 em_len = em_end - em_start;
4597 flags = 0;
4598 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4599 disko = em->block_start + offset_in_extent;
4600 else
4601 disko = 0;
4602
4603 /*
4604 * bump off for our next call to get_extent
4605 */
4606 off = extent_map_end(em);
4607 if (off >= max)
4608 end = 1;
4609
4610 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4611 end = 1;
4612 flags |= FIEMAP_EXTENT_LAST;
4613 } else if (em->block_start == EXTENT_MAP_INLINE) {
4614 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4615 FIEMAP_EXTENT_NOT_ALIGNED);
4616 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4617 flags |= (FIEMAP_EXTENT_DELALLOC |
4618 FIEMAP_EXTENT_UNKNOWN);
4619 } else if (fieinfo->fi_extents_max) {
4620 u64 bytenr = em->block_start -
4621 (em->start - em->orig_start);
4622
4623 /*
4624 * As btrfs supports shared space, this information
4625 * can be exported to userspace tools via
4626 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4627 * then we're just getting a count and we can skip the
4628 * lookup stuff.
4629 */
4630 ret = btrfs_check_shared(root,
4631 btrfs_ino(BTRFS_I(inode)),
4632 bytenr);
4633 if (ret < 0)
4634 goto out_free;
4635 if (ret)
4636 flags |= FIEMAP_EXTENT_SHARED;
4637 ret = 0;
4638 }
4639 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4640 flags |= FIEMAP_EXTENT_ENCODED;
4641 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4642 flags |= FIEMAP_EXTENT_UNWRITTEN;
4643
4644 free_extent_map(em);
4645 em = NULL;
4646 if ((em_start >= last) || em_len == (u64)-1 ||
4647 (last == (u64)-1 && isize <= em_end)) {
4648 flags |= FIEMAP_EXTENT_LAST;
4649 end = 1;
4650 }
4651
4652 /* now scan forward to see if this is really the last extent. */
4653 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4654 if (IS_ERR(em)) {
4655 ret = PTR_ERR(em);
4656 goto out;
4657 }
4658 if (!em) {
4659 flags |= FIEMAP_EXTENT_LAST;
4660 end = 1;
4661 }
4662 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4663 em_len, flags);
4664 if (ret) {
4665 if (ret == 1)
4666 ret = 0;
4667 goto out_free;
4668 }
4669 }
4670 out_free:
4671 if (!ret)
4672 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4673 free_extent_map(em);
4674 out:
4675 btrfs_free_path(path);
4676 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4677 &cached_state);
4678 return ret;
4679 }
4680
__free_extent_buffer(struct extent_buffer * eb)4681 static void __free_extent_buffer(struct extent_buffer *eb)
4682 {
4683 btrfs_leak_debug_del(&eb->leak_list);
4684 kmem_cache_free(extent_buffer_cache, eb);
4685 }
4686
extent_buffer_under_io(struct extent_buffer * eb)4687 int extent_buffer_under_io(struct extent_buffer *eb)
4688 {
4689 return (atomic_read(&eb->io_pages) ||
4690 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4691 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4692 }
4693
4694 /*
4695 * Release all pages attached to the extent buffer.
4696 */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4697 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4698 {
4699 int i;
4700 int num_pages;
4701 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4702
4703 BUG_ON(extent_buffer_under_io(eb));
4704
4705 num_pages = num_extent_pages(eb);
4706 for (i = 0; i < num_pages; i++) {
4707 struct page *page = eb->pages[i];
4708
4709 if (!page)
4710 continue;
4711 if (mapped)
4712 spin_lock(&page->mapping->private_lock);
4713 /*
4714 * We do this since we'll remove the pages after we've
4715 * removed the eb from the radix tree, so we could race
4716 * and have this page now attached to the new eb. So
4717 * only clear page_private if it's still connected to
4718 * this eb.
4719 */
4720 if (PagePrivate(page) &&
4721 page->private == (unsigned long)eb) {
4722 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4723 BUG_ON(PageDirty(page));
4724 BUG_ON(PageWriteback(page));
4725 /*
4726 * We need to make sure we haven't be attached
4727 * to a new eb.
4728 */
4729 ClearPagePrivate(page);
4730 set_page_private(page, 0);
4731 /* One for the page private */
4732 put_page(page);
4733 }
4734
4735 if (mapped)
4736 spin_unlock(&page->mapping->private_lock);
4737
4738 /* One for when we allocated the page */
4739 put_page(page);
4740 }
4741 }
4742
4743 /*
4744 * Helper for releasing the extent buffer.
4745 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4746 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4747 {
4748 btrfs_release_extent_buffer_pages(eb);
4749 __free_extent_buffer(eb);
4750 }
4751
4752 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4753 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4754 unsigned long len)
4755 {
4756 struct extent_buffer *eb = NULL;
4757
4758 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4759 eb->start = start;
4760 eb->len = len;
4761 eb->fs_info = fs_info;
4762 eb->bflags = 0;
4763 rwlock_init(&eb->lock);
4764 atomic_set(&eb->write_locks, 0);
4765 atomic_set(&eb->read_locks, 0);
4766 atomic_set(&eb->blocking_readers, 0);
4767 atomic_set(&eb->blocking_writers, 0);
4768 atomic_set(&eb->spinning_readers, 0);
4769 atomic_set(&eb->spinning_writers, 0);
4770 eb->lock_nested = 0;
4771 init_waitqueue_head(&eb->write_lock_wq);
4772 init_waitqueue_head(&eb->read_lock_wq);
4773
4774 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4775
4776 spin_lock_init(&eb->refs_lock);
4777 atomic_set(&eb->refs, 1);
4778 atomic_set(&eb->io_pages, 0);
4779
4780 /*
4781 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4782 */
4783 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4784 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4785 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4786
4787 return eb;
4788 }
4789
btrfs_clone_extent_buffer(struct extent_buffer * src)4790 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4791 {
4792 int i;
4793 struct page *p;
4794 struct extent_buffer *new;
4795 int num_pages = num_extent_pages(src);
4796
4797 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4798 if (new == NULL)
4799 return NULL;
4800
4801 for (i = 0; i < num_pages; i++) {
4802 p = alloc_page(GFP_NOFS);
4803 if (!p) {
4804 btrfs_release_extent_buffer(new);
4805 return NULL;
4806 }
4807 attach_extent_buffer_page(new, p);
4808 WARN_ON(PageDirty(p));
4809 SetPageUptodate(p);
4810 new->pages[i] = p;
4811 copy_page(page_address(p), page_address(src->pages[i]));
4812 }
4813
4814 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4815 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4816
4817 return new;
4818 }
4819
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4820 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4821 u64 start, unsigned long len)
4822 {
4823 struct extent_buffer *eb;
4824 int num_pages;
4825 int i;
4826
4827 eb = __alloc_extent_buffer(fs_info, start, len);
4828 if (!eb)
4829 return NULL;
4830
4831 num_pages = num_extent_pages(eb);
4832 for (i = 0; i < num_pages; i++) {
4833 eb->pages[i] = alloc_page(GFP_NOFS);
4834 if (!eb->pages[i])
4835 goto err;
4836 }
4837 set_extent_buffer_uptodate(eb);
4838 btrfs_set_header_nritems(eb, 0);
4839 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4840
4841 return eb;
4842 err:
4843 for (; i > 0; i--)
4844 __free_page(eb->pages[i - 1]);
4845 __free_extent_buffer(eb);
4846 return NULL;
4847 }
4848
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4849 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4850 u64 start)
4851 {
4852 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4853 }
4854
check_buffer_tree_ref(struct extent_buffer * eb)4855 static void check_buffer_tree_ref(struct extent_buffer *eb)
4856 {
4857 int refs;
4858 /*
4859 * The TREE_REF bit is first set when the extent_buffer is added
4860 * to the radix tree. It is also reset, if unset, when a new reference
4861 * is created by find_extent_buffer.
4862 *
4863 * It is only cleared in two cases: freeing the last non-tree
4864 * reference to the extent_buffer when its STALE bit is set or
4865 * calling releasepage when the tree reference is the only reference.
4866 *
4867 * In both cases, care is taken to ensure that the extent_buffer's
4868 * pages are not under io. However, releasepage can be concurrently
4869 * called with creating new references, which is prone to race
4870 * conditions between the calls to check_buffer_tree_ref in those
4871 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4872 *
4873 * The actual lifetime of the extent_buffer in the radix tree is
4874 * adequately protected by the refcount, but the TREE_REF bit and
4875 * its corresponding reference are not. To protect against this
4876 * class of races, we call check_buffer_tree_ref from the codepaths
4877 * which trigger io after they set eb->io_pages. Note that once io is
4878 * initiated, TREE_REF can no longer be cleared, so that is the
4879 * moment at which any such race is best fixed.
4880 */
4881 refs = atomic_read(&eb->refs);
4882 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4883 return;
4884
4885 spin_lock(&eb->refs_lock);
4886 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4887 atomic_inc(&eb->refs);
4888 spin_unlock(&eb->refs_lock);
4889 }
4890
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4891 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4892 struct page *accessed)
4893 {
4894 int num_pages, i;
4895
4896 check_buffer_tree_ref(eb);
4897
4898 num_pages = num_extent_pages(eb);
4899 for (i = 0; i < num_pages; i++) {
4900 struct page *p = eb->pages[i];
4901
4902 if (p != accessed)
4903 mark_page_accessed(p);
4904 }
4905 }
4906
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4907 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4908 u64 start)
4909 {
4910 struct extent_buffer *eb;
4911
4912 rcu_read_lock();
4913 eb = radix_tree_lookup(&fs_info->buffer_radix,
4914 start >> PAGE_SHIFT);
4915 if (eb && atomic_inc_not_zero(&eb->refs)) {
4916 rcu_read_unlock();
4917 /*
4918 * Lock our eb's refs_lock to avoid races with
4919 * free_extent_buffer. When we get our eb it might be flagged
4920 * with EXTENT_BUFFER_STALE and another task running
4921 * free_extent_buffer might have seen that flag set,
4922 * eb->refs == 2, that the buffer isn't under IO (dirty and
4923 * writeback flags not set) and it's still in the tree (flag
4924 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4925 * of decrementing the extent buffer's reference count twice.
4926 * So here we could race and increment the eb's reference count,
4927 * clear its stale flag, mark it as dirty and drop our reference
4928 * before the other task finishes executing free_extent_buffer,
4929 * which would later result in an attempt to free an extent
4930 * buffer that is dirty.
4931 */
4932 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4933 spin_lock(&eb->refs_lock);
4934 spin_unlock(&eb->refs_lock);
4935 }
4936 mark_extent_buffer_accessed(eb, NULL);
4937 return eb;
4938 }
4939 rcu_read_unlock();
4940
4941 return NULL;
4942 }
4943
4944 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4945 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4946 u64 start)
4947 {
4948 struct extent_buffer *eb, *exists = NULL;
4949 int ret;
4950
4951 eb = find_extent_buffer(fs_info, start);
4952 if (eb)
4953 return eb;
4954 eb = alloc_dummy_extent_buffer(fs_info, start);
4955 if (!eb)
4956 return ERR_PTR(-ENOMEM);
4957 eb->fs_info = fs_info;
4958 again:
4959 ret = radix_tree_preload(GFP_NOFS);
4960 if (ret) {
4961 exists = ERR_PTR(ret);
4962 goto free_eb;
4963 }
4964 spin_lock(&fs_info->buffer_lock);
4965 ret = radix_tree_insert(&fs_info->buffer_radix,
4966 start >> PAGE_SHIFT, eb);
4967 spin_unlock(&fs_info->buffer_lock);
4968 radix_tree_preload_end();
4969 if (ret == -EEXIST) {
4970 exists = find_extent_buffer(fs_info, start);
4971 if (exists)
4972 goto free_eb;
4973 else
4974 goto again;
4975 }
4976 check_buffer_tree_ref(eb);
4977 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4978
4979 /*
4980 * We will free dummy extent buffer's if they come into
4981 * free_extent_buffer with a ref count of 2, but if we are using this we
4982 * want the buffers to stay in memory until we're done with them, so
4983 * bump the ref count again.
4984 */
4985 atomic_inc(&eb->refs);
4986 return eb;
4987 free_eb:
4988 btrfs_release_extent_buffer(eb);
4989 return exists;
4990 }
4991 #endif
4992
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4993 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4994 u64 start)
4995 {
4996 unsigned long len = fs_info->nodesize;
4997 int num_pages;
4998 int i;
4999 unsigned long index = start >> PAGE_SHIFT;
5000 struct extent_buffer *eb;
5001 struct extent_buffer *exists = NULL;
5002 struct page *p;
5003 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5004 int uptodate = 1;
5005 int ret;
5006
5007 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5008 btrfs_err(fs_info, "bad tree block start %llu", start);
5009 return ERR_PTR(-EINVAL);
5010 }
5011
5012 eb = find_extent_buffer(fs_info, start);
5013 if (eb)
5014 return eb;
5015
5016 eb = __alloc_extent_buffer(fs_info, start, len);
5017 if (!eb)
5018 return ERR_PTR(-ENOMEM);
5019
5020 num_pages = num_extent_pages(eb);
5021 for (i = 0; i < num_pages; i++, index++) {
5022 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5023 if (!p) {
5024 exists = ERR_PTR(-ENOMEM);
5025 goto free_eb;
5026 }
5027
5028 spin_lock(&mapping->private_lock);
5029 if (PagePrivate(p)) {
5030 /*
5031 * We could have already allocated an eb for this page
5032 * and attached one so lets see if we can get a ref on
5033 * the existing eb, and if we can we know it's good and
5034 * we can just return that one, else we know we can just
5035 * overwrite page->private.
5036 */
5037 exists = (struct extent_buffer *)p->private;
5038 if (atomic_inc_not_zero(&exists->refs)) {
5039 spin_unlock(&mapping->private_lock);
5040 unlock_page(p);
5041 put_page(p);
5042 mark_extent_buffer_accessed(exists, p);
5043 goto free_eb;
5044 }
5045 exists = NULL;
5046
5047 /*
5048 * Do this so attach doesn't complain and we need to
5049 * drop the ref the old guy had.
5050 */
5051 ClearPagePrivate(p);
5052 WARN_ON(PageDirty(p));
5053 put_page(p);
5054 }
5055 attach_extent_buffer_page(eb, p);
5056 spin_unlock(&mapping->private_lock);
5057 WARN_ON(PageDirty(p));
5058 eb->pages[i] = p;
5059 if (!PageUptodate(p))
5060 uptodate = 0;
5061
5062 /*
5063 * We can't unlock the pages just yet since the extent buffer
5064 * hasn't been properly inserted in the radix tree, this
5065 * opens a race with btree_releasepage which can free a page
5066 * while we are still filling in all pages for the buffer and
5067 * we could crash.
5068 */
5069 }
5070 if (uptodate)
5071 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5072 again:
5073 ret = radix_tree_preload(GFP_NOFS);
5074 if (ret) {
5075 exists = ERR_PTR(ret);
5076 goto free_eb;
5077 }
5078
5079 spin_lock(&fs_info->buffer_lock);
5080 ret = radix_tree_insert(&fs_info->buffer_radix,
5081 start >> PAGE_SHIFT, eb);
5082 spin_unlock(&fs_info->buffer_lock);
5083 radix_tree_preload_end();
5084 if (ret == -EEXIST) {
5085 exists = find_extent_buffer(fs_info, start);
5086 if (exists)
5087 goto free_eb;
5088 else
5089 goto again;
5090 }
5091 /* add one reference for the tree */
5092 check_buffer_tree_ref(eb);
5093 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5094
5095 /*
5096 * Now it's safe to unlock the pages because any calls to
5097 * btree_releasepage will correctly detect that a page belongs to a
5098 * live buffer and won't free them prematurely.
5099 */
5100 for (i = 0; i < num_pages; i++)
5101 unlock_page(eb->pages[i]);
5102 return eb;
5103
5104 free_eb:
5105 WARN_ON(!atomic_dec_and_test(&eb->refs));
5106 for (i = 0; i < num_pages; i++) {
5107 if (eb->pages[i])
5108 unlock_page(eb->pages[i]);
5109 }
5110
5111 btrfs_release_extent_buffer(eb);
5112 return exists;
5113 }
5114
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5115 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5116 {
5117 struct extent_buffer *eb =
5118 container_of(head, struct extent_buffer, rcu_head);
5119
5120 __free_extent_buffer(eb);
5121 }
5122
release_extent_buffer(struct extent_buffer * eb)5123 static int release_extent_buffer(struct extent_buffer *eb)
5124 {
5125 lockdep_assert_held(&eb->refs_lock);
5126
5127 WARN_ON(atomic_read(&eb->refs) == 0);
5128 if (atomic_dec_and_test(&eb->refs)) {
5129 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5130 struct btrfs_fs_info *fs_info = eb->fs_info;
5131
5132 spin_unlock(&eb->refs_lock);
5133
5134 spin_lock(&fs_info->buffer_lock);
5135 radix_tree_delete(&fs_info->buffer_radix,
5136 eb->start >> PAGE_SHIFT);
5137 spin_unlock(&fs_info->buffer_lock);
5138 } else {
5139 spin_unlock(&eb->refs_lock);
5140 }
5141
5142 /* Should be safe to release our pages at this point */
5143 btrfs_release_extent_buffer_pages(eb);
5144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5145 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5146 __free_extent_buffer(eb);
5147 return 1;
5148 }
5149 #endif
5150 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5151 return 1;
5152 }
5153 spin_unlock(&eb->refs_lock);
5154
5155 return 0;
5156 }
5157
free_extent_buffer(struct extent_buffer * eb)5158 void free_extent_buffer(struct extent_buffer *eb)
5159 {
5160 int refs;
5161 int old;
5162 if (!eb)
5163 return;
5164
5165 while (1) {
5166 refs = atomic_read(&eb->refs);
5167 if (refs <= 3)
5168 break;
5169 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5170 if (old == refs)
5171 return;
5172 }
5173
5174 spin_lock(&eb->refs_lock);
5175 if (atomic_read(&eb->refs) == 2 &&
5176 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
5177 atomic_dec(&eb->refs);
5178
5179 if (atomic_read(&eb->refs) == 2 &&
5180 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5181 !extent_buffer_under_io(eb) &&
5182 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5183 atomic_dec(&eb->refs);
5184
5185 /*
5186 * I know this is terrible, but it's temporary until we stop tracking
5187 * the uptodate bits and such for the extent buffers.
5188 */
5189 release_extent_buffer(eb);
5190 }
5191
free_extent_buffer_stale(struct extent_buffer * eb)5192 void free_extent_buffer_stale(struct extent_buffer *eb)
5193 {
5194 if (!eb)
5195 return;
5196
5197 spin_lock(&eb->refs_lock);
5198 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5199
5200 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5201 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5202 atomic_dec(&eb->refs);
5203 release_extent_buffer(eb);
5204 }
5205
clear_extent_buffer_dirty(struct extent_buffer * eb)5206 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5207 {
5208 int i;
5209 int num_pages;
5210 struct page *page;
5211
5212 num_pages = num_extent_pages(eb);
5213
5214 for (i = 0; i < num_pages; i++) {
5215 page = eb->pages[i];
5216 if (!PageDirty(page))
5217 continue;
5218
5219 lock_page(page);
5220 WARN_ON(!PagePrivate(page));
5221
5222 clear_page_dirty_for_io(page);
5223 xa_lock_irq(&page->mapping->i_pages);
5224 if (!PageDirty(page)) {
5225 radix_tree_tag_clear(&page->mapping->i_pages,
5226 page_index(page),
5227 PAGECACHE_TAG_DIRTY);
5228 }
5229 xa_unlock_irq(&page->mapping->i_pages);
5230 ClearPageError(page);
5231 unlock_page(page);
5232 }
5233 WARN_ON(atomic_read(&eb->refs) == 0);
5234 }
5235
set_extent_buffer_dirty(struct extent_buffer * eb)5236 int set_extent_buffer_dirty(struct extent_buffer *eb)
5237 {
5238 int i;
5239 int num_pages;
5240 int was_dirty = 0;
5241
5242 check_buffer_tree_ref(eb);
5243
5244 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5245
5246 num_pages = num_extent_pages(eb);
5247 WARN_ON(atomic_read(&eb->refs) == 0);
5248 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5249
5250 for (i = 0; i < num_pages; i++)
5251 set_page_dirty(eb->pages[i]);
5252 return was_dirty;
5253 }
5254
clear_extent_buffer_uptodate(struct extent_buffer * eb)5255 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5256 {
5257 int i;
5258 struct page *page;
5259 int num_pages;
5260
5261 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5262 num_pages = num_extent_pages(eb);
5263 for (i = 0; i < num_pages; i++) {
5264 page = eb->pages[i];
5265 if (page)
5266 ClearPageUptodate(page);
5267 }
5268 }
5269
set_extent_buffer_uptodate(struct extent_buffer * eb)5270 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5271 {
5272 int i;
5273 struct page *page;
5274 int num_pages;
5275
5276 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5277 num_pages = num_extent_pages(eb);
5278 for (i = 0; i < num_pages; i++) {
5279 page = eb->pages[i];
5280 SetPageUptodate(page);
5281 }
5282 }
5283
read_extent_buffer_pages(struct extent_io_tree * tree,struct extent_buffer * eb,int wait,int mirror_num)5284 int read_extent_buffer_pages(struct extent_io_tree *tree,
5285 struct extent_buffer *eb, int wait, int mirror_num)
5286 {
5287 int i;
5288 struct page *page;
5289 int err;
5290 int ret = 0;
5291 int locked_pages = 0;
5292 int all_uptodate = 1;
5293 int num_pages;
5294 unsigned long num_reads = 0;
5295 struct bio *bio = NULL;
5296 unsigned long bio_flags = 0;
5297
5298 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5299 return 0;
5300
5301 num_pages = num_extent_pages(eb);
5302 for (i = 0; i < num_pages; i++) {
5303 page = eb->pages[i];
5304 if (wait == WAIT_NONE) {
5305 if (!trylock_page(page))
5306 goto unlock_exit;
5307 } else {
5308 lock_page(page);
5309 }
5310 locked_pages++;
5311 }
5312 /*
5313 * We need to firstly lock all pages to make sure that
5314 * the uptodate bit of our pages won't be affected by
5315 * clear_extent_buffer_uptodate().
5316 */
5317 for (i = 0; i < num_pages; i++) {
5318 page = eb->pages[i];
5319 if (!PageUptodate(page)) {
5320 num_reads++;
5321 all_uptodate = 0;
5322 }
5323 }
5324
5325 if (all_uptodate) {
5326 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5327 goto unlock_exit;
5328 }
5329
5330 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5331 eb->read_mirror = 0;
5332 atomic_set(&eb->io_pages, num_reads);
5333 /*
5334 * It is possible for releasepage to clear the TREE_REF bit before we
5335 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5336 */
5337 check_buffer_tree_ref(eb);
5338 for (i = 0; i < num_pages; i++) {
5339 page = eb->pages[i];
5340
5341 if (!PageUptodate(page)) {
5342 if (ret) {
5343 atomic_dec(&eb->io_pages);
5344 unlock_page(page);
5345 continue;
5346 }
5347
5348 ClearPageError(page);
5349 err = __extent_read_full_page(tree, page,
5350 btree_get_extent, &bio,
5351 mirror_num, &bio_flags,
5352 REQ_META);
5353 if (err) {
5354 ret = err;
5355 /*
5356 * We use &bio in above __extent_read_full_page,
5357 * so we ensure that if it returns error, the
5358 * current page fails to add itself to bio and
5359 * it's been unlocked.
5360 *
5361 * We must dec io_pages by ourselves.
5362 */
5363 atomic_dec(&eb->io_pages);
5364 }
5365 } else {
5366 unlock_page(page);
5367 }
5368 }
5369
5370 if (bio) {
5371 err = submit_one_bio(bio, mirror_num, bio_flags);
5372 if (err)
5373 return err;
5374 }
5375
5376 if (ret || wait != WAIT_COMPLETE)
5377 return ret;
5378
5379 for (i = 0; i < num_pages; i++) {
5380 page = eb->pages[i];
5381 wait_on_page_locked(page);
5382 if (!PageUptodate(page))
5383 ret = -EIO;
5384 }
5385
5386 return ret;
5387
5388 unlock_exit:
5389 while (locked_pages > 0) {
5390 locked_pages--;
5391 page = eb->pages[locked_pages];
5392 unlock_page(page);
5393 }
5394 return ret;
5395 }
5396
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5397 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5398 unsigned long start, unsigned long len)
5399 {
5400 size_t cur;
5401 size_t offset;
5402 struct page *page;
5403 char *kaddr;
5404 char *dst = (char *)dstv;
5405 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5406 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5407
5408 if (start + len > eb->len) {
5409 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5410 eb->start, eb->len, start, len);
5411 memset(dst, 0, len);
5412 return;
5413 }
5414
5415 offset = (start_offset + start) & (PAGE_SIZE - 1);
5416
5417 while (len > 0) {
5418 page = eb->pages[i];
5419
5420 cur = min(len, (PAGE_SIZE - offset));
5421 kaddr = page_address(page);
5422 memcpy(dst, kaddr + offset, cur);
5423
5424 dst += cur;
5425 len -= cur;
5426 offset = 0;
5427 i++;
5428 }
5429 }
5430
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5431 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5432 void __user *dstv,
5433 unsigned long start, unsigned long len)
5434 {
5435 size_t cur;
5436 size_t offset;
5437 struct page *page;
5438 char *kaddr;
5439 char __user *dst = (char __user *)dstv;
5440 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5441 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5442 int ret = 0;
5443
5444 WARN_ON(start > eb->len);
5445 WARN_ON(start + len > eb->start + eb->len);
5446
5447 offset = (start_offset + start) & (PAGE_SIZE - 1);
5448
5449 while (len > 0) {
5450 page = eb->pages[i];
5451
5452 cur = min(len, (PAGE_SIZE - offset));
5453 kaddr = page_address(page);
5454 if (probe_user_write(dst, kaddr + offset, cur)) {
5455 ret = -EFAULT;
5456 break;
5457 }
5458
5459 dst += cur;
5460 len -= cur;
5461 offset = 0;
5462 i++;
5463 }
5464
5465 return ret;
5466 }
5467
5468 /*
5469 * return 0 if the item is found within a page.
5470 * return 1 if the item spans two pages.
5471 * return -EINVAL otherwise.
5472 */
map_private_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long min_len,char ** map,unsigned long * map_start,unsigned long * map_len)5473 int map_private_extent_buffer(const struct extent_buffer *eb,
5474 unsigned long start, unsigned long min_len,
5475 char **map, unsigned long *map_start,
5476 unsigned long *map_len)
5477 {
5478 size_t offset = start & (PAGE_SIZE - 1);
5479 char *kaddr;
5480 struct page *p;
5481 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5482 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5483 unsigned long end_i = (start_offset + start + min_len - 1) >>
5484 PAGE_SHIFT;
5485
5486 if (start + min_len > eb->len) {
5487 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5488 eb->start, eb->len, start, min_len);
5489 return -EINVAL;
5490 }
5491
5492 if (i != end_i)
5493 return 1;
5494
5495 if (i == 0) {
5496 offset = start_offset;
5497 *map_start = 0;
5498 } else {
5499 offset = 0;
5500 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5501 }
5502
5503 p = eb->pages[i];
5504 kaddr = page_address(p);
5505 *map = kaddr + offset;
5506 *map_len = PAGE_SIZE - offset;
5507 return 0;
5508 }
5509
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5510 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5511 unsigned long start, unsigned long len)
5512 {
5513 size_t cur;
5514 size_t offset;
5515 struct page *page;
5516 char *kaddr;
5517 char *ptr = (char *)ptrv;
5518 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5519 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5520 int ret = 0;
5521
5522 WARN_ON(start > eb->len);
5523 WARN_ON(start + len > eb->start + eb->len);
5524
5525 offset = (start_offset + start) & (PAGE_SIZE - 1);
5526
5527 while (len > 0) {
5528 page = eb->pages[i];
5529
5530 cur = min(len, (PAGE_SIZE - offset));
5531
5532 kaddr = page_address(page);
5533 ret = memcmp(ptr, kaddr + offset, cur);
5534 if (ret)
5535 break;
5536
5537 ptr += cur;
5538 len -= cur;
5539 offset = 0;
5540 i++;
5541 }
5542 return ret;
5543 }
5544
write_extent_buffer_chunk_tree_uuid(struct extent_buffer * eb,const void * srcv)5545 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5546 const void *srcv)
5547 {
5548 char *kaddr;
5549
5550 WARN_ON(!PageUptodate(eb->pages[0]));
5551 kaddr = page_address(eb->pages[0]);
5552 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5553 BTRFS_FSID_SIZE);
5554 }
5555
write_extent_buffer_fsid(struct extent_buffer * eb,const void * srcv)5556 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5557 {
5558 char *kaddr;
5559
5560 WARN_ON(!PageUptodate(eb->pages[0]));
5561 kaddr = page_address(eb->pages[0]);
5562 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5563 BTRFS_FSID_SIZE);
5564 }
5565
write_extent_buffer(struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5566 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5567 unsigned long start, unsigned long len)
5568 {
5569 size_t cur;
5570 size_t offset;
5571 struct page *page;
5572 char *kaddr;
5573 char *src = (char *)srcv;
5574 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5575 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5576
5577 WARN_ON(start > eb->len);
5578 WARN_ON(start + len > eb->start + eb->len);
5579
5580 offset = (start_offset + start) & (PAGE_SIZE - 1);
5581
5582 while (len > 0) {
5583 page = eb->pages[i];
5584 WARN_ON(!PageUptodate(page));
5585
5586 cur = min(len, PAGE_SIZE - offset);
5587 kaddr = page_address(page);
5588 memcpy(kaddr + offset, src, cur);
5589
5590 src += cur;
5591 len -= cur;
5592 offset = 0;
5593 i++;
5594 }
5595 }
5596
memzero_extent_buffer(struct extent_buffer * eb,unsigned long start,unsigned long len)5597 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5598 unsigned long len)
5599 {
5600 size_t cur;
5601 size_t offset;
5602 struct page *page;
5603 char *kaddr;
5604 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5605 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5606
5607 WARN_ON(start > eb->len);
5608 WARN_ON(start + len > eb->start + eb->len);
5609
5610 offset = (start_offset + start) & (PAGE_SIZE - 1);
5611
5612 while (len > 0) {
5613 page = eb->pages[i];
5614 WARN_ON(!PageUptodate(page));
5615
5616 cur = min(len, PAGE_SIZE - offset);
5617 kaddr = page_address(page);
5618 memset(kaddr + offset, 0, cur);
5619
5620 len -= cur;
5621 offset = 0;
5622 i++;
5623 }
5624 }
5625
copy_extent_buffer_full(struct extent_buffer * dst,struct extent_buffer * src)5626 void copy_extent_buffer_full(struct extent_buffer *dst,
5627 struct extent_buffer *src)
5628 {
5629 int i;
5630 int num_pages;
5631
5632 ASSERT(dst->len == src->len);
5633
5634 num_pages = num_extent_pages(dst);
5635 for (i = 0; i < num_pages; i++)
5636 copy_page(page_address(dst->pages[i]),
5637 page_address(src->pages[i]));
5638 }
5639
copy_extent_buffer(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5640 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5641 unsigned long dst_offset, unsigned long src_offset,
5642 unsigned long len)
5643 {
5644 u64 dst_len = dst->len;
5645 size_t cur;
5646 size_t offset;
5647 struct page *page;
5648 char *kaddr;
5649 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5650 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5651
5652 WARN_ON(src->len != dst_len);
5653
5654 offset = (start_offset + dst_offset) &
5655 (PAGE_SIZE - 1);
5656
5657 while (len > 0) {
5658 page = dst->pages[i];
5659 WARN_ON(!PageUptodate(page));
5660
5661 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5662
5663 kaddr = page_address(page);
5664 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5665
5666 src_offset += cur;
5667 len -= cur;
5668 offset = 0;
5669 i++;
5670 }
5671 }
5672
5673 /*
5674 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5675 * given bit number
5676 * @eb: the extent buffer
5677 * @start: offset of the bitmap item in the extent buffer
5678 * @nr: bit number
5679 * @page_index: return index of the page in the extent buffer that contains the
5680 * given bit number
5681 * @page_offset: return offset into the page given by page_index
5682 *
5683 * This helper hides the ugliness of finding the byte in an extent buffer which
5684 * contains a given bit.
5685 */
eb_bitmap_offset(struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5686 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5687 unsigned long start, unsigned long nr,
5688 unsigned long *page_index,
5689 size_t *page_offset)
5690 {
5691 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5692 size_t byte_offset = BIT_BYTE(nr);
5693 size_t offset;
5694
5695 /*
5696 * The byte we want is the offset of the extent buffer + the offset of
5697 * the bitmap item in the extent buffer + the offset of the byte in the
5698 * bitmap item.
5699 */
5700 offset = start_offset + start + byte_offset;
5701
5702 *page_index = offset >> PAGE_SHIFT;
5703 *page_offset = offset & (PAGE_SIZE - 1);
5704 }
5705
5706 /**
5707 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5708 * @eb: the extent buffer
5709 * @start: offset of the bitmap item in the extent buffer
5710 * @nr: bit number to test
5711 */
extent_buffer_test_bit(struct extent_buffer * eb,unsigned long start,unsigned long nr)5712 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5713 unsigned long nr)
5714 {
5715 u8 *kaddr;
5716 struct page *page;
5717 unsigned long i;
5718 size_t offset;
5719
5720 eb_bitmap_offset(eb, start, nr, &i, &offset);
5721 page = eb->pages[i];
5722 WARN_ON(!PageUptodate(page));
5723 kaddr = page_address(page);
5724 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5725 }
5726
5727 /**
5728 * extent_buffer_bitmap_set - set an area of a bitmap
5729 * @eb: the extent buffer
5730 * @start: offset of the bitmap item in the extent buffer
5731 * @pos: bit number of the first bit
5732 * @len: number of bits to set
5733 */
extent_buffer_bitmap_set(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5734 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5735 unsigned long pos, unsigned long len)
5736 {
5737 u8 *kaddr;
5738 struct page *page;
5739 unsigned long i;
5740 size_t offset;
5741 const unsigned int size = pos + len;
5742 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5743 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5744
5745 eb_bitmap_offset(eb, start, pos, &i, &offset);
5746 page = eb->pages[i];
5747 WARN_ON(!PageUptodate(page));
5748 kaddr = page_address(page);
5749
5750 while (len >= bits_to_set) {
5751 kaddr[offset] |= mask_to_set;
5752 len -= bits_to_set;
5753 bits_to_set = BITS_PER_BYTE;
5754 mask_to_set = ~0;
5755 if (++offset >= PAGE_SIZE && len > 0) {
5756 offset = 0;
5757 page = eb->pages[++i];
5758 WARN_ON(!PageUptodate(page));
5759 kaddr = page_address(page);
5760 }
5761 }
5762 if (len) {
5763 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5764 kaddr[offset] |= mask_to_set;
5765 }
5766 }
5767
5768
5769 /**
5770 * extent_buffer_bitmap_clear - clear an area of a bitmap
5771 * @eb: the extent buffer
5772 * @start: offset of the bitmap item in the extent buffer
5773 * @pos: bit number of the first bit
5774 * @len: number of bits to clear
5775 */
extent_buffer_bitmap_clear(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5776 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5777 unsigned long pos, unsigned long len)
5778 {
5779 u8 *kaddr;
5780 struct page *page;
5781 unsigned long i;
5782 size_t offset;
5783 const unsigned int size = pos + len;
5784 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5785 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5786
5787 eb_bitmap_offset(eb, start, pos, &i, &offset);
5788 page = eb->pages[i];
5789 WARN_ON(!PageUptodate(page));
5790 kaddr = page_address(page);
5791
5792 while (len >= bits_to_clear) {
5793 kaddr[offset] &= ~mask_to_clear;
5794 len -= bits_to_clear;
5795 bits_to_clear = BITS_PER_BYTE;
5796 mask_to_clear = ~0;
5797 if (++offset >= PAGE_SIZE && len > 0) {
5798 offset = 0;
5799 page = eb->pages[++i];
5800 WARN_ON(!PageUptodate(page));
5801 kaddr = page_address(page);
5802 }
5803 }
5804 if (len) {
5805 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5806 kaddr[offset] &= ~mask_to_clear;
5807 }
5808 }
5809
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5810 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5811 {
5812 unsigned long distance = (src > dst) ? src - dst : dst - src;
5813 return distance < len;
5814 }
5815
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5816 static void copy_pages(struct page *dst_page, struct page *src_page,
5817 unsigned long dst_off, unsigned long src_off,
5818 unsigned long len)
5819 {
5820 char *dst_kaddr = page_address(dst_page);
5821 char *src_kaddr;
5822 int must_memmove = 0;
5823
5824 if (dst_page != src_page) {
5825 src_kaddr = page_address(src_page);
5826 } else {
5827 src_kaddr = dst_kaddr;
5828 if (areas_overlap(src_off, dst_off, len))
5829 must_memmove = 1;
5830 }
5831
5832 if (must_memmove)
5833 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5834 else
5835 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5836 }
5837
memcpy_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5838 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5839 unsigned long src_offset, unsigned long len)
5840 {
5841 struct btrfs_fs_info *fs_info = dst->fs_info;
5842 size_t cur;
5843 size_t dst_off_in_page;
5844 size_t src_off_in_page;
5845 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5846 unsigned long dst_i;
5847 unsigned long src_i;
5848
5849 if (src_offset + len > dst->len) {
5850 btrfs_err(fs_info,
5851 "memmove bogus src_offset %lu move len %lu dst len %lu",
5852 src_offset, len, dst->len);
5853 BUG_ON(1);
5854 }
5855 if (dst_offset + len > dst->len) {
5856 btrfs_err(fs_info,
5857 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5858 dst_offset, len, dst->len);
5859 BUG_ON(1);
5860 }
5861
5862 while (len > 0) {
5863 dst_off_in_page = (start_offset + dst_offset) &
5864 (PAGE_SIZE - 1);
5865 src_off_in_page = (start_offset + src_offset) &
5866 (PAGE_SIZE - 1);
5867
5868 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5869 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5870
5871 cur = min(len, (unsigned long)(PAGE_SIZE -
5872 src_off_in_page));
5873 cur = min_t(unsigned long, cur,
5874 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5875
5876 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5877 dst_off_in_page, src_off_in_page, cur);
5878
5879 src_offset += cur;
5880 dst_offset += cur;
5881 len -= cur;
5882 }
5883 }
5884
memmove_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5885 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5886 unsigned long src_offset, unsigned long len)
5887 {
5888 struct btrfs_fs_info *fs_info = dst->fs_info;
5889 size_t cur;
5890 size_t dst_off_in_page;
5891 size_t src_off_in_page;
5892 unsigned long dst_end = dst_offset + len - 1;
5893 unsigned long src_end = src_offset + len - 1;
5894 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5895 unsigned long dst_i;
5896 unsigned long src_i;
5897
5898 if (src_offset + len > dst->len) {
5899 btrfs_err(fs_info,
5900 "memmove bogus src_offset %lu move len %lu len %lu",
5901 src_offset, len, dst->len);
5902 BUG_ON(1);
5903 }
5904 if (dst_offset + len > dst->len) {
5905 btrfs_err(fs_info,
5906 "memmove bogus dst_offset %lu move len %lu len %lu",
5907 dst_offset, len, dst->len);
5908 BUG_ON(1);
5909 }
5910 if (dst_offset < src_offset) {
5911 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5912 return;
5913 }
5914 while (len > 0) {
5915 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5916 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5917
5918 dst_off_in_page = (start_offset + dst_end) &
5919 (PAGE_SIZE - 1);
5920 src_off_in_page = (start_offset + src_end) &
5921 (PAGE_SIZE - 1);
5922
5923 cur = min_t(unsigned long, len, src_off_in_page + 1);
5924 cur = min(cur, dst_off_in_page + 1);
5925 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5926 dst_off_in_page - cur + 1,
5927 src_off_in_page - cur + 1, cur);
5928
5929 dst_end -= cur;
5930 src_end -= cur;
5931 len -= cur;
5932 }
5933 }
5934
try_release_extent_buffer(struct page * page)5935 int try_release_extent_buffer(struct page *page)
5936 {
5937 struct extent_buffer *eb;
5938
5939 /*
5940 * We need to make sure nobody is attaching this page to an eb right
5941 * now.
5942 */
5943 spin_lock(&page->mapping->private_lock);
5944 if (!PagePrivate(page)) {
5945 spin_unlock(&page->mapping->private_lock);
5946 return 1;
5947 }
5948
5949 eb = (struct extent_buffer *)page->private;
5950 BUG_ON(!eb);
5951
5952 /*
5953 * This is a little awful but should be ok, we need to make sure that
5954 * the eb doesn't disappear out from under us while we're looking at
5955 * this page.
5956 */
5957 spin_lock(&eb->refs_lock);
5958 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5959 spin_unlock(&eb->refs_lock);
5960 spin_unlock(&page->mapping->private_lock);
5961 return 0;
5962 }
5963 spin_unlock(&page->mapping->private_lock);
5964
5965 /*
5966 * If tree ref isn't set then we know the ref on this eb is a real ref,
5967 * so just return, this page will likely be freed soon anyway.
5968 */
5969 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5970 spin_unlock(&eb->refs_lock);
5971 return 0;
5972 }
5973
5974 return release_extent_buffer(eb);
5975 }
5976