1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48
49 struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
52 };
53
54 struct btrfs_dio_data {
55 u64 reserve;
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
58 int overwrite;
59 };
60
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 struct kmem_cache *btrfs_free_space_bitmap_cachep;
76
77 #define S_SHIFT 12
78 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
80 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
81 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
82 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
83 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
84 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
85 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 };
87
88 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
89 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
90 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
91 static noinline int cow_file_range(struct inode *inode,
92 struct page *locked_page,
93 u64 start, u64 end, u64 delalloc_end,
94 int *page_started, unsigned long *nr_written,
95 int unlock, struct btrfs_dedupe_hash *hash);
96 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
97 u64 orig_start, u64 block_start,
98 u64 block_len, u64 orig_block_len,
99 u64 ram_bytes, int compress_type,
100 int type);
101
102 static void __endio_write_update_ordered(struct inode *inode,
103 const u64 offset, const u64 bytes,
104 const bool uptodate);
105
106 /*
107 * Cleanup all submitted ordered extents in specified range to handle errors
108 * from the fill_dellaloc() callback.
109 *
110 * NOTE: caller must ensure that when an error happens, it can not call
111 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
112 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
113 * to be released, which we want to happen only when finishing the ordered
114 * extent (btrfs_finish_ordered_io()).
115 */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)116 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
117 struct page *locked_page,
118 u64 offset, u64 bytes)
119 {
120 unsigned long index = offset >> PAGE_SHIFT;
121 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
122 u64 page_start = page_offset(locked_page);
123 u64 page_end = page_start + PAGE_SIZE - 1;
124
125 struct page *page;
126
127 while (index <= end_index) {
128 page = find_get_page(inode->i_mapping, index);
129 index++;
130 if (!page)
131 continue;
132 ClearPagePrivate2(page);
133 put_page(page);
134 }
135
136 /*
137 * In case this page belongs to the delalloc range being instantiated
138 * then skip it, since the first page of a range is going to be
139 * properly cleaned up by the caller of run_delalloc_range
140 */
141 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
142 offset += PAGE_SIZE;
143 bytes -= PAGE_SIZE;
144 }
145
146 return __endio_write_update_ordered(inode, offset, bytes, false);
147 }
148
149 static int btrfs_dirty_inode(struct inode *inode);
150
151 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)152 void btrfs_test_inode_set_ops(struct inode *inode)
153 {
154 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
155 }
156 #endif
157
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)158 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
159 struct inode *inode, struct inode *dir,
160 const struct qstr *qstr)
161 {
162 int err;
163
164 err = btrfs_init_acl(trans, inode, dir);
165 if (!err)
166 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
167 return err;
168 }
169
170 /*
171 * this does all the hard work for inserting an inline extent into
172 * the btree. The caller should have done a btrfs_drop_extents so that
173 * no overlapping inline items exist in the btree
174 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)175 static int insert_inline_extent(struct btrfs_trans_handle *trans,
176 struct btrfs_path *path, int extent_inserted,
177 struct btrfs_root *root, struct inode *inode,
178 u64 start, size_t size, size_t compressed_size,
179 int compress_type,
180 struct page **compressed_pages)
181 {
182 struct extent_buffer *leaf;
183 struct page *page = NULL;
184 char *kaddr;
185 unsigned long ptr;
186 struct btrfs_file_extent_item *ei;
187 int ret;
188 size_t cur_size = size;
189 unsigned long offset;
190
191 if (compressed_size && compressed_pages)
192 cur_size = compressed_size;
193
194 inode_add_bytes(inode, size);
195
196 if (!extent_inserted) {
197 struct btrfs_key key;
198 size_t datasize;
199
200 key.objectid = btrfs_ino(BTRFS_I(inode));
201 key.offset = start;
202 key.type = BTRFS_EXTENT_DATA_KEY;
203
204 datasize = btrfs_file_extent_calc_inline_size(cur_size);
205 path->leave_spinning = 1;
206 ret = btrfs_insert_empty_item(trans, root, path, &key,
207 datasize);
208 if (ret)
209 goto fail;
210 }
211 leaf = path->nodes[0];
212 ei = btrfs_item_ptr(leaf, path->slots[0],
213 struct btrfs_file_extent_item);
214 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
215 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
216 btrfs_set_file_extent_encryption(leaf, ei, 0);
217 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
218 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
219 ptr = btrfs_file_extent_inline_start(ei);
220
221 if (compress_type != BTRFS_COMPRESS_NONE) {
222 struct page *cpage;
223 int i = 0;
224 while (compressed_size > 0) {
225 cpage = compressed_pages[i];
226 cur_size = min_t(unsigned long, compressed_size,
227 PAGE_SIZE);
228
229 kaddr = kmap_atomic(cpage);
230 write_extent_buffer(leaf, kaddr, ptr, cur_size);
231 kunmap_atomic(kaddr);
232
233 i++;
234 ptr += cur_size;
235 compressed_size -= cur_size;
236 }
237 btrfs_set_file_extent_compression(leaf, ei,
238 compress_type);
239 } else {
240 page = find_get_page(inode->i_mapping,
241 start >> PAGE_SHIFT);
242 btrfs_set_file_extent_compression(leaf, ei, 0);
243 kaddr = kmap_atomic(page);
244 offset = start & (PAGE_SIZE - 1);
245 write_extent_buffer(leaf, kaddr + offset, ptr, size);
246 kunmap_atomic(kaddr);
247 put_page(page);
248 }
249 btrfs_mark_buffer_dirty(leaf);
250 btrfs_release_path(path);
251
252 /*
253 * we're an inline extent, so nobody can
254 * extend the file past i_size without locking
255 * a page we already have locked.
256 *
257 * We must do any isize and inode updates
258 * before we unlock the pages. Otherwise we
259 * could end up racing with unlink.
260 */
261 BTRFS_I(inode)->disk_i_size = inode->i_size;
262 ret = btrfs_update_inode(trans, root, inode);
263
264 fail:
265 return ret;
266 }
267
268
269 /*
270 * conditionally insert an inline extent into the file. This
271 * does the checks required to make sure the data is small enough
272 * to fit as an inline extent.
273 */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)274 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
275 u64 end, size_t compressed_size,
276 int compress_type,
277 struct page **compressed_pages)
278 {
279 struct btrfs_root *root = BTRFS_I(inode)->root;
280 struct btrfs_fs_info *fs_info = root->fs_info;
281 struct btrfs_trans_handle *trans;
282 u64 isize = i_size_read(inode);
283 u64 actual_end = min(end + 1, isize);
284 u64 inline_len = actual_end - start;
285 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
286 u64 data_len = inline_len;
287 int ret;
288 struct btrfs_path *path;
289 int extent_inserted = 0;
290 u32 extent_item_size;
291
292 if (compressed_size)
293 data_len = compressed_size;
294
295 if (start > 0 ||
296 actual_end > fs_info->sectorsize ||
297 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
298 (!compressed_size &&
299 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
300 end + 1 < isize ||
301 data_len > fs_info->max_inline) {
302 return 1;
303 }
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 trans = btrfs_join_transaction(root);
310 if (IS_ERR(trans)) {
311 btrfs_free_path(path);
312 return PTR_ERR(trans);
313 }
314 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
315
316 if (compressed_size && compressed_pages)
317 extent_item_size = btrfs_file_extent_calc_inline_size(
318 compressed_size);
319 else
320 extent_item_size = btrfs_file_extent_calc_inline_size(
321 inline_len);
322
323 ret = __btrfs_drop_extents(trans, root, inode, path,
324 start, aligned_end, NULL,
325 1, 1, extent_item_size, &extent_inserted);
326 if (ret) {
327 btrfs_abort_transaction(trans, ret);
328 goto out;
329 }
330
331 if (isize > actual_end)
332 inline_len = min_t(u64, isize, actual_end);
333 ret = insert_inline_extent(trans, path, extent_inserted,
334 root, inode, start,
335 inline_len, compressed_size,
336 compress_type, compressed_pages);
337 if (ret && ret != -ENOSPC) {
338 btrfs_abort_transaction(trans, ret);
339 goto out;
340 } else if (ret == -ENOSPC) {
341 ret = 1;
342 goto out;
343 }
344
345 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
346 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
347 out:
348 /*
349 * Don't forget to free the reserved space, as for inlined extent
350 * it won't count as data extent, free them directly here.
351 * And at reserve time, it's always aligned to page size, so
352 * just free one page here.
353 */
354 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
355 btrfs_free_path(path);
356 btrfs_end_transaction(trans);
357 return ret;
358 }
359
360 struct async_extent {
361 u64 start;
362 u64 ram_size;
363 u64 compressed_size;
364 struct page **pages;
365 unsigned long nr_pages;
366 int compress_type;
367 struct list_head list;
368 };
369
370 struct async_cow {
371 struct inode *inode;
372 struct btrfs_root *root;
373 struct page *locked_page;
374 u64 start;
375 u64 end;
376 unsigned int write_flags;
377 struct list_head extents;
378 struct btrfs_work work;
379 };
380
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)381 static noinline int add_async_extent(struct async_cow *cow,
382 u64 start, u64 ram_size,
383 u64 compressed_size,
384 struct page **pages,
385 unsigned long nr_pages,
386 int compress_type)
387 {
388 struct async_extent *async_extent;
389
390 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 BUG_ON(!async_extent); /* -ENOMEM */
392 async_extent->start = start;
393 async_extent->ram_size = ram_size;
394 async_extent->compressed_size = compressed_size;
395 async_extent->pages = pages;
396 async_extent->nr_pages = nr_pages;
397 async_extent->compress_type = compress_type;
398 list_add_tail(&async_extent->list, &cow->extents);
399 return 0;
400 }
401
402 /*
403 * Check if the inode has flags compatible with compression
404 */
inode_can_compress(struct inode * inode)405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 return false;
410 return true;
411 }
412
413 /*
414 * Check if the inode needs to be submitted to compression, based on mount
415 * options, defragmentation, properties or heuristics.
416 */
inode_need_compress(struct inode * inode,u64 start,u64 end)417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420
421 if (!inode_can_compress(inode)) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 btrfs_ino(BTRFS_I(inode)));
425 return 0;
426 }
427 /* force compress */
428 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 return 1;
430 /* defrag ioctl */
431 if (BTRFS_I(inode)->defrag_compress)
432 return 1;
433 /* bad compression ratios */
434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 return 0;
436 if (btrfs_test_opt(fs_info, COMPRESS) ||
437 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 BTRFS_I(inode)->prop_compress)
439 return btrfs_compress_heuristic(inode, start, end);
440 return 0;
441 }
442
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 /* If this is a small write inside eof, kick off a defrag */
447 if (num_bytes < small_write &&
448 (start > 0 || end + 1 < inode->disk_i_size))
449 btrfs_add_inode_defrag(NULL, inode);
450 }
451
452 /*
453 * we create compressed extents in two phases. The first
454 * phase compresses a range of pages that have already been
455 * locked (both pages and state bits are locked).
456 *
457 * This is done inside an ordered work queue, and the compression
458 * is spread across many cpus. The actual IO submission is step
459 * two, and the ordered work queue takes care of making sure that
460 * happens in the same order things were put onto the queue by
461 * writepages and friends.
462 *
463 * If this code finds it can't get good compression, it puts an
464 * entry onto the work queue to write the uncompressed bytes. This
465 * makes sure that both compressed inodes and uncompressed inodes
466 * are written in the same order that the flusher thread sent them
467 * down.
468 */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)469 static noinline void compress_file_range(struct inode *inode,
470 struct page *locked_page,
471 u64 start, u64 end,
472 struct async_cow *async_cow,
473 int *num_added)
474 {
475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
476 u64 blocksize = fs_info->sectorsize;
477 u64 actual_end;
478 u64 isize = i_size_read(inode);
479 int ret = 0;
480 struct page **pages = NULL;
481 unsigned long nr_pages;
482 unsigned long total_compressed = 0;
483 unsigned long total_in = 0;
484 int i;
485 int will_compress;
486 int compress_type = fs_info->compress_type;
487 int redirty = 0;
488
489 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 SZ_16K);
491
492 actual_end = min_t(u64, isize, end + 1);
493 again:
494 will_compress = 0;
495 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
496 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
497 nr_pages = min_t(unsigned long, nr_pages,
498 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
499
500 /*
501 * we don't want to send crud past the end of i_size through
502 * compression, that's just a waste of CPU time. So, if the
503 * end of the file is before the start of our current
504 * requested range of bytes, we bail out to the uncompressed
505 * cleanup code that can deal with all of this.
506 *
507 * It isn't really the fastest way to fix things, but this is a
508 * very uncommon corner.
509 */
510 if (actual_end <= start)
511 goto cleanup_and_bail_uncompressed;
512
513 total_compressed = actual_end - start;
514
515 /*
516 * skip compression for a small file range(<=blocksize) that
517 * isn't an inline extent, since it doesn't save disk space at all.
518 */
519 if (total_compressed <= blocksize &&
520 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
521 goto cleanup_and_bail_uncompressed;
522
523 total_compressed = min_t(unsigned long, total_compressed,
524 BTRFS_MAX_UNCOMPRESSED);
525 total_in = 0;
526 ret = 0;
527
528 /*
529 * we do compression for mount -o compress and when the
530 * inode has not been flagged as nocompress. This flag can
531 * change at any time if we discover bad compression ratios.
532 */
533 if (inode_need_compress(inode, start, end)) {
534 WARN_ON(pages);
535 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
536 if (!pages) {
537 /* just bail out to the uncompressed code */
538 nr_pages = 0;
539 goto cont;
540 }
541
542 if (BTRFS_I(inode)->defrag_compress)
543 compress_type = BTRFS_I(inode)->defrag_compress;
544 else if (BTRFS_I(inode)->prop_compress)
545 compress_type = BTRFS_I(inode)->prop_compress;
546
547 /*
548 * we need to call clear_page_dirty_for_io on each
549 * page in the range. Otherwise applications with the file
550 * mmap'd can wander in and change the page contents while
551 * we are compressing them.
552 *
553 * If the compression fails for any reason, we set the pages
554 * dirty again later on.
555 *
556 * Note that the remaining part is redirtied, the start pointer
557 * has moved, the end is the original one.
558 */
559 if (!redirty) {
560 extent_range_clear_dirty_for_io(inode, start, end);
561 redirty = 1;
562 }
563
564 /* Compression level is applied here and only here */
565 ret = btrfs_compress_pages(
566 compress_type | (fs_info->compress_level << 4),
567 inode->i_mapping, start,
568 pages,
569 &nr_pages,
570 &total_in,
571 &total_compressed);
572
573 if (!ret) {
574 unsigned long offset = total_compressed &
575 (PAGE_SIZE - 1);
576 struct page *page = pages[nr_pages - 1];
577 char *kaddr;
578
579 /* zero the tail end of the last page, we might be
580 * sending it down to disk
581 */
582 if (offset) {
583 kaddr = kmap_atomic(page);
584 memset(kaddr + offset, 0,
585 PAGE_SIZE - offset);
586 kunmap_atomic(kaddr);
587 }
588 will_compress = 1;
589 }
590 }
591 cont:
592 if (start == 0) {
593 /* lets try to make an inline extent */
594 if (ret || total_in < actual_end) {
595 /* we didn't compress the entire range, try
596 * to make an uncompressed inline extent.
597 */
598 ret = cow_file_range_inline(inode, start, end, 0,
599 BTRFS_COMPRESS_NONE, NULL);
600 } else {
601 /* try making a compressed inline extent */
602 ret = cow_file_range_inline(inode, start, end,
603 total_compressed,
604 compress_type, pages);
605 }
606 if (ret <= 0) {
607 unsigned long clear_flags = EXTENT_DELALLOC |
608 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
609 EXTENT_DO_ACCOUNTING;
610 unsigned long page_error_op;
611
612 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
613
614 /*
615 * inline extent creation worked or returned error,
616 * we don't need to create any more async work items.
617 * Unlock and free up our temp pages.
618 *
619 * We use DO_ACCOUNTING here because we need the
620 * delalloc_release_metadata to be done _after_ we drop
621 * our outstanding extent for clearing delalloc for this
622 * range.
623 */
624 extent_clear_unlock_delalloc(inode, start, end, end,
625 NULL, clear_flags,
626 PAGE_UNLOCK |
627 PAGE_CLEAR_DIRTY |
628 PAGE_SET_WRITEBACK |
629 page_error_op |
630 PAGE_END_WRITEBACK);
631
632 /*
633 * Ensure we only free the compressed pages if we have
634 * them allocated, as we can still reach here with
635 * inode_need_compress() == false.
636 */
637 if (pages) {
638 for (i = 0; i < nr_pages; i++) {
639 WARN_ON(pages[i]->mapping);
640 put_page(pages[i]);
641 }
642 kfree(pages);
643 }
644
645 return;
646 }
647 }
648
649 if (will_compress) {
650 /*
651 * we aren't doing an inline extent round the compressed size
652 * up to a block size boundary so the allocator does sane
653 * things
654 */
655 total_compressed = ALIGN(total_compressed, blocksize);
656
657 /*
658 * one last check to make sure the compression is really a
659 * win, compare the page count read with the blocks on disk,
660 * compression must free at least one sector size
661 */
662 total_in = ALIGN(total_in, PAGE_SIZE);
663 if (total_compressed + blocksize <= total_in) {
664 *num_added += 1;
665
666 /*
667 * The async work queues will take care of doing actual
668 * allocation on disk for these compressed pages, and
669 * will submit them to the elevator.
670 */
671 add_async_extent(async_cow, start, total_in,
672 total_compressed, pages, nr_pages,
673 compress_type);
674
675 if (start + total_in < end) {
676 start += total_in;
677 pages = NULL;
678 cond_resched();
679 goto again;
680 }
681 return;
682 }
683 }
684 if (pages) {
685 /*
686 * the compression code ran but failed to make things smaller,
687 * free any pages it allocated and our page pointer array
688 */
689 for (i = 0; i < nr_pages; i++) {
690 WARN_ON(pages[i]->mapping);
691 put_page(pages[i]);
692 }
693 kfree(pages);
694 pages = NULL;
695 total_compressed = 0;
696 nr_pages = 0;
697
698 /* flag the file so we don't compress in the future */
699 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
700 !(BTRFS_I(inode)->prop_compress)) {
701 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
702 }
703 }
704 cleanup_and_bail_uncompressed:
705 /*
706 * No compression, but we still need to write the pages in the file
707 * we've been given so far. redirty the locked page if it corresponds
708 * to our extent and set things up for the async work queue to run
709 * cow_file_range to do the normal delalloc dance.
710 */
711 if (page_offset(locked_page) >= start &&
712 page_offset(locked_page) <= end)
713 __set_page_dirty_nobuffers(locked_page);
714 /* unlocked later on in the async handlers */
715
716 if (redirty)
717 extent_range_redirty_for_io(inode, start, end);
718 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
719 BTRFS_COMPRESS_NONE);
720 *num_added += 1;
721
722 return;
723 }
724
free_async_extent_pages(struct async_extent * async_extent)725 static void free_async_extent_pages(struct async_extent *async_extent)
726 {
727 int i;
728
729 if (!async_extent->pages)
730 return;
731
732 for (i = 0; i < async_extent->nr_pages; i++) {
733 WARN_ON(async_extent->pages[i]->mapping);
734 put_page(async_extent->pages[i]);
735 }
736 kfree(async_extent->pages);
737 async_extent->nr_pages = 0;
738 async_extent->pages = NULL;
739 }
740
741 /*
742 * phase two of compressed writeback. This is the ordered portion
743 * of the code, which only gets called in the order the work was
744 * queued. We walk all the async extents created by compress_file_range
745 * and send them down to the disk.
746 */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)747 static noinline void submit_compressed_extents(struct inode *inode,
748 struct async_cow *async_cow)
749 {
750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
751 struct async_extent *async_extent;
752 u64 alloc_hint = 0;
753 struct btrfs_key ins;
754 struct extent_map *em;
755 struct btrfs_root *root = BTRFS_I(inode)->root;
756 struct extent_io_tree *io_tree;
757 int ret = 0;
758
759 again:
760 while (!list_empty(&async_cow->extents)) {
761 async_extent = list_entry(async_cow->extents.next,
762 struct async_extent, list);
763 list_del(&async_extent->list);
764
765 io_tree = &BTRFS_I(inode)->io_tree;
766
767 retry:
768 /* did the compression code fall back to uncompressed IO? */
769 if (!async_extent->pages) {
770 int page_started = 0;
771 unsigned long nr_written = 0;
772
773 lock_extent(io_tree, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1);
776
777 /* allocate blocks */
778 ret = cow_file_range(inode, async_cow->locked_page,
779 async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1,
782 async_extent->start +
783 async_extent->ram_size - 1,
784 &page_started, &nr_written, 0,
785 NULL);
786
787 /* JDM XXX */
788
789 /*
790 * if page_started, cow_file_range inserted an
791 * inline extent and took care of all the unlocking
792 * and IO for us. Otherwise, we need to submit
793 * all those pages down to the drive.
794 */
795 if (!page_started && !ret)
796 extent_write_locked_range(inode,
797 async_extent->start,
798 async_extent->start +
799 async_extent->ram_size - 1,
800 WB_SYNC_ALL);
801 else if (ret)
802 unlock_page(async_cow->locked_page);
803 kfree(async_extent);
804 cond_resched();
805 continue;
806 }
807
808 lock_extent(io_tree, async_extent->start,
809 async_extent->start + async_extent->ram_size - 1);
810
811 ret = btrfs_reserve_extent(root, async_extent->ram_size,
812 async_extent->compressed_size,
813 async_extent->compressed_size,
814 0, alloc_hint, &ins, 1, 1);
815 if (ret) {
816 free_async_extent_pages(async_extent);
817
818 if (ret == -ENOSPC) {
819 unlock_extent(io_tree, async_extent->start,
820 async_extent->start +
821 async_extent->ram_size - 1);
822
823 /*
824 * we need to redirty the pages if we decide to
825 * fallback to uncompressed IO, otherwise we
826 * will not submit these pages down to lower
827 * layers.
828 */
829 extent_range_redirty_for_io(inode,
830 async_extent->start,
831 async_extent->start +
832 async_extent->ram_size - 1);
833
834 goto retry;
835 }
836 goto out_free;
837 }
838 /*
839 * here we're doing allocation and writeback of the
840 * compressed pages
841 */
842 em = create_io_em(inode, async_extent->start,
843 async_extent->ram_size, /* len */
844 async_extent->start, /* orig_start */
845 ins.objectid, /* block_start */
846 ins.offset, /* block_len */
847 ins.offset, /* orig_block_len */
848 async_extent->ram_size, /* ram_bytes */
849 async_extent->compress_type,
850 BTRFS_ORDERED_COMPRESSED);
851 if (IS_ERR(em))
852 /* ret value is not necessary due to void function */
853 goto out_free_reserve;
854 free_extent_map(em);
855
856 ret = btrfs_add_ordered_extent_compress(inode,
857 async_extent->start,
858 ins.objectid,
859 async_extent->ram_size,
860 ins.offset,
861 BTRFS_ORDERED_COMPRESSED,
862 async_extent->compress_type);
863 if (ret) {
864 btrfs_drop_extent_cache(BTRFS_I(inode),
865 async_extent->start,
866 async_extent->start +
867 async_extent->ram_size - 1, 0);
868 goto out_free_reserve;
869 }
870 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
871
872 /*
873 * clear dirty, set writeback and unlock the pages.
874 */
875 extent_clear_unlock_delalloc(inode, async_extent->start,
876 async_extent->start +
877 async_extent->ram_size - 1,
878 async_extent->start +
879 async_extent->ram_size - 1,
880 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
881 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
882 PAGE_SET_WRITEBACK);
883 if (btrfs_submit_compressed_write(inode,
884 async_extent->start,
885 async_extent->ram_size,
886 ins.objectid,
887 ins.offset, async_extent->pages,
888 async_extent->nr_pages,
889 async_cow->write_flags)) {
890 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
891 struct page *p = async_extent->pages[0];
892 const u64 start = async_extent->start;
893 const u64 end = start + async_extent->ram_size - 1;
894
895 p->mapping = inode->i_mapping;
896 tree->ops->writepage_end_io_hook(p, start, end,
897 NULL, 0);
898 p->mapping = NULL;
899 extent_clear_unlock_delalloc(inode, start, end, end,
900 NULL, 0,
901 PAGE_END_WRITEBACK |
902 PAGE_SET_ERROR);
903 free_async_extent_pages(async_extent);
904 }
905 alloc_hint = ins.objectid + ins.offset;
906 kfree(async_extent);
907 cond_resched();
908 }
909 return;
910 out_free_reserve:
911 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
912 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
913 out_free:
914 extent_clear_unlock_delalloc(inode, async_extent->start,
915 async_extent->start +
916 async_extent->ram_size - 1,
917 async_extent->start +
918 async_extent->ram_size - 1,
919 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
920 EXTENT_DELALLOC_NEW |
921 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
922 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
923 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
924 PAGE_SET_ERROR);
925 free_async_extent_pages(async_extent);
926 kfree(async_extent);
927 goto again;
928 }
929
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)930 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
931 u64 num_bytes)
932 {
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 struct extent_map *em;
935 u64 alloc_hint = 0;
936
937 read_lock(&em_tree->lock);
938 em = search_extent_mapping(em_tree, start, num_bytes);
939 if (em) {
940 /*
941 * if block start isn't an actual block number then find the
942 * first block in this inode and use that as a hint. If that
943 * block is also bogus then just don't worry about it.
944 */
945 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
946 free_extent_map(em);
947 em = search_extent_mapping(em_tree, 0, 0);
948 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
949 alloc_hint = em->block_start;
950 if (em)
951 free_extent_map(em);
952 } else {
953 alloc_hint = em->block_start;
954 free_extent_map(em);
955 }
956 }
957 read_unlock(&em_tree->lock);
958
959 return alloc_hint;
960 }
961
962 /*
963 * when extent_io.c finds a delayed allocation range in the file,
964 * the call backs end up in this code. The basic idea is to
965 * allocate extents on disk for the range, and create ordered data structs
966 * in ram to track those extents.
967 *
968 * locked_page is the page that writepage had locked already. We use
969 * it to make sure we don't do extra locks or unlocks.
970 *
971 * *page_started is set to one if we unlock locked_page and do everything
972 * required to start IO on it. It may be clean and already done with
973 * IO when we return.
974 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)975 static noinline int cow_file_range(struct inode *inode,
976 struct page *locked_page,
977 u64 start, u64 end, u64 delalloc_end,
978 int *page_started, unsigned long *nr_written,
979 int unlock, struct btrfs_dedupe_hash *hash)
980 {
981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
982 struct btrfs_root *root = BTRFS_I(inode)->root;
983 u64 alloc_hint = 0;
984 u64 num_bytes;
985 unsigned long ram_size;
986 u64 cur_alloc_size = 0;
987 u64 min_alloc_size;
988 u64 blocksize = fs_info->sectorsize;
989 struct btrfs_key ins;
990 struct extent_map *em;
991 unsigned clear_bits;
992 unsigned long page_ops;
993 bool extent_reserved = false;
994 int ret = 0;
995
996 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
997 WARN_ON_ONCE(1);
998 ret = -EINVAL;
999 goto out_unlock;
1000 }
1001
1002 num_bytes = ALIGN(end - start + 1, blocksize);
1003 num_bytes = max(blocksize, num_bytes);
1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1005
1006 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1007
1008 if (start == 0) {
1009 /* lets try to make an inline extent */
1010 ret = cow_file_range_inline(inode, start, end, 0,
1011 BTRFS_COMPRESS_NONE, NULL);
1012 if (ret == 0) {
1013 /*
1014 * We use DO_ACCOUNTING here because we need the
1015 * delalloc_release_metadata to be run _after_ we drop
1016 * our outstanding extent for clearing delalloc for this
1017 * range.
1018 */
1019 extent_clear_unlock_delalloc(inode, start, end,
1020 delalloc_end, NULL,
1021 EXTENT_LOCKED | EXTENT_DELALLOC |
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
1026 *nr_written = *nr_written +
1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
1028 *page_started = 1;
1029 goto out;
1030 } else if (ret < 0) {
1031 goto out_unlock;
1032 }
1033 }
1034
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1037 start + num_bytes - 1, 0);
1038
1039 /*
1040 * Relocation relies on the relocated extents to have exactly the same
1041 * size as the original extents. Normally writeback for relocation data
1042 * extents follows a NOCOW path because relocation preallocates the
1043 * extents. However, due to an operation such as scrub turning a block
1044 * group to RO mode, it may fallback to COW mode, so we must make sure
1045 * an extent allocated during COW has exactly the requested size and can
1046 * not be split into smaller extents, otherwise relocation breaks and
1047 * fails during the stage where it updates the bytenr of file extent
1048 * items.
1049 */
1050 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1051 min_alloc_size = num_bytes;
1052 else
1053 min_alloc_size = fs_info->sectorsize;
1054
1055 while (num_bytes > 0) {
1056 cur_alloc_size = num_bytes;
1057 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1058 min_alloc_size, 0, alloc_hint,
1059 &ins, 1, 1);
1060 if (ret < 0)
1061 goto out_unlock;
1062 cur_alloc_size = ins.offset;
1063 extent_reserved = true;
1064
1065 ram_size = ins.offset;
1066 em = create_io_em(inode, start, ins.offset, /* len */
1067 start, /* orig_start */
1068 ins.objectid, /* block_start */
1069 ins.offset, /* block_len */
1070 ins.offset, /* orig_block_len */
1071 ram_size, /* ram_bytes */
1072 BTRFS_COMPRESS_NONE, /* compress_type */
1073 BTRFS_ORDERED_REGULAR /* type */);
1074 if (IS_ERR(em)) {
1075 ret = PTR_ERR(em);
1076 goto out_reserve;
1077 }
1078 free_extent_map(em);
1079
1080 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1081 ram_size, cur_alloc_size, 0);
1082 if (ret)
1083 goto out_drop_extent_cache;
1084
1085 if (root->root_key.objectid ==
1086 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1087 ret = btrfs_reloc_clone_csums(inode, start,
1088 cur_alloc_size);
1089 /*
1090 * Only drop cache here, and process as normal.
1091 *
1092 * We must not allow extent_clear_unlock_delalloc()
1093 * at out_unlock label to free meta of this ordered
1094 * extent, as its meta should be freed by
1095 * btrfs_finish_ordered_io().
1096 *
1097 * So we must continue until @start is increased to
1098 * skip current ordered extent.
1099 */
1100 if (ret)
1101 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1102 start + ram_size - 1, 0);
1103 }
1104
1105 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1106
1107 /* we're not doing compressed IO, don't unlock the first
1108 * page (which the caller expects to stay locked), don't
1109 * clear any dirty bits and don't set any writeback bits
1110 *
1111 * Do set the Private2 bit so we know this page was properly
1112 * setup for writepage
1113 */
1114 page_ops = unlock ? PAGE_UNLOCK : 0;
1115 page_ops |= PAGE_SET_PRIVATE2;
1116
1117 extent_clear_unlock_delalloc(inode, start,
1118 start + ram_size - 1,
1119 delalloc_end, locked_page,
1120 EXTENT_LOCKED | EXTENT_DELALLOC,
1121 page_ops);
1122 if (num_bytes < cur_alloc_size)
1123 num_bytes = 0;
1124 else
1125 num_bytes -= cur_alloc_size;
1126 alloc_hint = ins.objectid + ins.offset;
1127 start += cur_alloc_size;
1128 extent_reserved = false;
1129
1130 /*
1131 * btrfs_reloc_clone_csums() error, since start is increased
1132 * extent_clear_unlock_delalloc() at out_unlock label won't
1133 * free metadata of current ordered extent, we're OK to exit.
1134 */
1135 if (ret)
1136 goto out_unlock;
1137 }
1138 out:
1139 return ret;
1140
1141 out_drop_extent_cache:
1142 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1143 out_reserve:
1144 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1145 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1146 out_unlock:
1147 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1148 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1149 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1150 PAGE_END_WRITEBACK;
1151 /*
1152 * If we reserved an extent for our delalloc range (or a subrange) and
1153 * failed to create the respective ordered extent, then it means that
1154 * when we reserved the extent we decremented the extent's size from
1155 * the data space_info's bytes_may_use counter and incremented the
1156 * space_info's bytes_reserved counter by the same amount. We must make
1157 * sure extent_clear_unlock_delalloc() does not try to decrement again
1158 * the data space_info's bytes_may_use counter, therefore we do not pass
1159 * it the flag EXTENT_CLEAR_DATA_RESV.
1160 */
1161 if (extent_reserved) {
1162 extent_clear_unlock_delalloc(inode, start,
1163 start + cur_alloc_size - 1,
1164 start + cur_alloc_size - 1,
1165 locked_page,
1166 clear_bits,
1167 page_ops);
1168 start += cur_alloc_size;
1169 if (start >= end)
1170 goto out;
1171 }
1172 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1173 locked_page,
1174 clear_bits | EXTENT_CLEAR_DATA_RESV,
1175 page_ops);
1176 goto out;
1177 }
1178
1179 /*
1180 * work queue call back to started compression on a file and pages
1181 */
async_cow_start(struct btrfs_work * work)1182 static noinline void async_cow_start(struct btrfs_work *work)
1183 {
1184 struct async_cow *async_cow;
1185 int num_added = 0;
1186 async_cow = container_of(work, struct async_cow, work);
1187
1188 compress_file_range(async_cow->inode, async_cow->locked_page,
1189 async_cow->start, async_cow->end, async_cow,
1190 &num_added);
1191 if (num_added == 0) {
1192 btrfs_add_delayed_iput(async_cow->inode);
1193 async_cow->inode = NULL;
1194 }
1195 }
1196
1197 /*
1198 * work queue call back to submit previously compressed pages
1199 */
async_cow_submit(struct btrfs_work * work)1200 static noinline void async_cow_submit(struct btrfs_work *work)
1201 {
1202 struct btrfs_fs_info *fs_info;
1203 struct async_cow *async_cow;
1204 struct btrfs_root *root;
1205 unsigned long nr_pages;
1206
1207 async_cow = container_of(work, struct async_cow, work);
1208
1209 root = async_cow->root;
1210 fs_info = root->fs_info;
1211 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1212 PAGE_SHIFT;
1213
1214 /* atomic_sub_return implies a barrier */
1215 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1216 5 * SZ_1M)
1217 cond_wake_up_nomb(&fs_info->async_submit_wait);
1218
1219 if (async_cow->inode)
1220 submit_compressed_extents(async_cow->inode, async_cow);
1221 }
1222
async_cow_free(struct btrfs_work * work)1223 static noinline void async_cow_free(struct btrfs_work *work)
1224 {
1225 struct async_cow *async_cow;
1226 async_cow = container_of(work, struct async_cow, work);
1227 if (async_cow->inode)
1228 btrfs_add_delayed_iput(async_cow->inode);
1229 kfree(async_cow);
1230 }
1231
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1232 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1233 u64 start, u64 end, int *page_started,
1234 unsigned long *nr_written,
1235 unsigned int write_flags)
1236 {
1237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1238 struct async_cow *async_cow;
1239 struct btrfs_root *root = BTRFS_I(inode)->root;
1240 unsigned long nr_pages;
1241 u64 cur_end;
1242
1243 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1244 1, 0, NULL);
1245 while (start < end) {
1246 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1247 BUG_ON(!async_cow); /* -ENOMEM */
1248 async_cow->inode = igrab(inode);
1249 async_cow->root = root;
1250 async_cow->locked_page = locked_page;
1251 async_cow->start = start;
1252 async_cow->write_flags = write_flags;
1253
1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1255 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1256 cur_end = end;
1257 else
1258 cur_end = min(end, start + SZ_512K - 1);
1259
1260 async_cow->end = cur_end;
1261 INIT_LIST_HEAD(&async_cow->extents);
1262
1263 btrfs_init_work(&async_cow->work,
1264 btrfs_delalloc_helper,
1265 async_cow_start, async_cow_submit,
1266 async_cow_free);
1267
1268 nr_pages = (cur_end - start + PAGE_SIZE) >>
1269 PAGE_SHIFT;
1270 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1271
1272 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1273
1274 *nr_written += nr_pages;
1275 start = cur_end + 1;
1276 }
1277 *page_started = 1;
1278 return 0;
1279 }
1280
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1281 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1282 u64 bytenr, u64 num_bytes)
1283 {
1284 int ret;
1285 struct btrfs_ordered_sum *sums;
1286 LIST_HEAD(list);
1287
1288 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1289 bytenr + num_bytes - 1, &list, 0);
1290 if (ret == 0 && list_empty(&list))
1291 return 0;
1292
1293 while (!list_empty(&list)) {
1294 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1295 list_del(&sums->list);
1296 kfree(sums);
1297 }
1298 if (ret < 0)
1299 return ret;
1300 return 1;
1301 }
1302
1303 /*
1304 * when nowcow writeback call back. This checks for snapshots or COW copies
1305 * of the extents that exist in the file, and COWs the file as required.
1306 *
1307 * If no cow copies or snapshots exist, we write directly to the existing
1308 * blocks on disk
1309 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1310 static noinline int run_delalloc_nocow(struct inode *inode,
1311 struct page *locked_page,
1312 u64 start, u64 end, int *page_started, int force,
1313 unsigned long *nr_written)
1314 {
1315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1316 struct btrfs_root *root = BTRFS_I(inode)->root;
1317 struct extent_buffer *leaf;
1318 struct btrfs_path *path;
1319 struct btrfs_file_extent_item *fi;
1320 struct btrfs_key found_key;
1321 struct extent_map *em;
1322 u64 cow_start;
1323 u64 cur_offset;
1324 u64 extent_end;
1325 u64 extent_offset;
1326 u64 disk_bytenr;
1327 u64 num_bytes;
1328 u64 disk_num_bytes;
1329 u64 ram_bytes;
1330 int extent_type;
1331 int ret;
1332 int type;
1333 int nocow;
1334 int check_prev = 1;
1335 bool nolock;
1336 u64 ino = btrfs_ino(BTRFS_I(inode));
1337
1338 path = btrfs_alloc_path();
1339 if (!path) {
1340 extent_clear_unlock_delalloc(inode, start, end, end,
1341 locked_page,
1342 EXTENT_LOCKED | EXTENT_DELALLOC |
1343 EXTENT_DO_ACCOUNTING |
1344 EXTENT_DEFRAG, PAGE_UNLOCK |
1345 PAGE_CLEAR_DIRTY |
1346 PAGE_SET_WRITEBACK |
1347 PAGE_END_WRITEBACK);
1348 return -ENOMEM;
1349 }
1350
1351 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1352
1353 cow_start = (u64)-1;
1354 cur_offset = start;
1355 while (1) {
1356 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1357 cur_offset, 0);
1358 if (ret < 0)
1359 goto error;
1360 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1361 leaf = path->nodes[0];
1362 btrfs_item_key_to_cpu(leaf, &found_key,
1363 path->slots[0] - 1);
1364 if (found_key.objectid == ino &&
1365 found_key.type == BTRFS_EXTENT_DATA_KEY)
1366 path->slots[0]--;
1367 }
1368 check_prev = 0;
1369 next_slot:
1370 leaf = path->nodes[0];
1371 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1372 ret = btrfs_next_leaf(root, path);
1373 if (ret < 0) {
1374 if (cow_start != (u64)-1)
1375 cur_offset = cow_start;
1376 goto error;
1377 }
1378 if (ret > 0)
1379 break;
1380 leaf = path->nodes[0];
1381 }
1382
1383 nocow = 0;
1384 disk_bytenr = 0;
1385 num_bytes = 0;
1386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1387
1388 if (found_key.objectid > ino)
1389 break;
1390 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1391 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1392 path->slots[0]++;
1393 goto next_slot;
1394 }
1395 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1396 found_key.offset > end)
1397 break;
1398
1399 if (found_key.offset > cur_offset) {
1400 extent_end = found_key.offset;
1401 extent_type = 0;
1402 goto out_check;
1403 }
1404
1405 fi = btrfs_item_ptr(leaf, path->slots[0],
1406 struct btrfs_file_extent_item);
1407 extent_type = btrfs_file_extent_type(leaf, fi);
1408
1409 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1410 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1411 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1412 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1413 extent_offset = btrfs_file_extent_offset(leaf, fi);
1414 extent_end = found_key.offset +
1415 btrfs_file_extent_num_bytes(leaf, fi);
1416 disk_num_bytes =
1417 btrfs_file_extent_disk_num_bytes(leaf, fi);
1418 if (extent_end <= start) {
1419 path->slots[0]++;
1420 goto next_slot;
1421 }
1422 if (disk_bytenr == 0)
1423 goto out_check;
1424 if (btrfs_file_extent_compression(leaf, fi) ||
1425 btrfs_file_extent_encryption(leaf, fi) ||
1426 btrfs_file_extent_other_encoding(leaf, fi))
1427 goto out_check;
1428 /*
1429 * Do the same check as in btrfs_cross_ref_exist but
1430 * without the unnecessary search.
1431 */
1432 if (!nolock &&
1433 btrfs_file_extent_generation(leaf, fi) <=
1434 btrfs_root_last_snapshot(&root->root_item))
1435 goto out_check;
1436 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1437 goto out_check;
1438 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1439 goto out_check;
1440 ret = btrfs_cross_ref_exist(root, ino,
1441 found_key.offset -
1442 extent_offset, disk_bytenr);
1443 if (ret) {
1444 /*
1445 * ret could be -EIO if the above fails to read
1446 * metadata.
1447 */
1448 if (ret < 0) {
1449 if (cow_start != (u64)-1)
1450 cur_offset = cow_start;
1451 goto error;
1452 }
1453
1454 WARN_ON_ONCE(nolock);
1455 goto out_check;
1456 }
1457 disk_bytenr += extent_offset;
1458 disk_bytenr += cur_offset - found_key.offset;
1459 num_bytes = min(end + 1, extent_end) - cur_offset;
1460 /*
1461 * if there are pending snapshots for this root,
1462 * we fall into common COW way.
1463 */
1464 if (!nolock && atomic_read(&root->snapshot_force_cow))
1465 goto out_check;
1466 /*
1467 * force cow if csum exists in the range.
1468 * this ensure that csum for a given extent are
1469 * either valid or do not exist.
1470 */
1471 ret = csum_exist_in_range(fs_info, disk_bytenr,
1472 num_bytes);
1473 if (ret) {
1474 /*
1475 * ret could be -EIO if the above fails to read
1476 * metadata.
1477 */
1478 if (ret < 0) {
1479 if (cow_start != (u64)-1)
1480 cur_offset = cow_start;
1481 goto error;
1482 }
1483 WARN_ON_ONCE(nolock);
1484 goto out_check;
1485 }
1486 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1487 goto out_check;
1488 nocow = 1;
1489 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1490 extent_end = found_key.offset +
1491 btrfs_file_extent_ram_bytes(leaf, fi);
1492 extent_end = ALIGN(extent_end,
1493 fs_info->sectorsize);
1494 } else {
1495 BUG_ON(1);
1496 }
1497 out_check:
1498 if (extent_end <= start) {
1499 path->slots[0]++;
1500 if (nocow)
1501 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1502 goto next_slot;
1503 }
1504 if (!nocow) {
1505 if (cow_start == (u64)-1)
1506 cow_start = cur_offset;
1507 cur_offset = extent_end;
1508 if (cur_offset > end)
1509 break;
1510 path->slots[0]++;
1511 goto next_slot;
1512 }
1513
1514 btrfs_release_path(path);
1515 if (cow_start != (u64)-1) {
1516 ret = cow_file_range(inode, locked_page,
1517 cow_start, found_key.offset - 1,
1518 end, page_started, nr_written, 1,
1519 NULL);
1520 if (ret) {
1521 if (nocow)
1522 btrfs_dec_nocow_writers(fs_info,
1523 disk_bytenr);
1524 goto error;
1525 }
1526 cow_start = (u64)-1;
1527 }
1528
1529 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1530 u64 orig_start = found_key.offset - extent_offset;
1531
1532 em = create_io_em(inode, cur_offset, num_bytes,
1533 orig_start,
1534 disk_bytenr, /* block_start */
1535 num_bytes, /* block_len */
1536 disk_num_bytes, /* orig_block_len */
1537 ram_bytes, BTRFS_COMPRESS_NONE,
1538 BTRFS_ORDERED_PREALLOC);
1539 if (IS_ERR(em)) {
1540 if (nocow)
1541 btrfs_dec_nocow_writers(fs_info,
1542 disk_bytenr);
1543 ret = PTR_ERR(em);
1544 goto error;
1545 }
1546 free_extent_map(em);
1547 }
1548
1549 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1550 type = BTRFS_ORDERED_PREALLOC;
1551 } else {
1552 type = BTRFS_ORDERED_NOCOW;
1553 }
1554
1555 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1556 num_bytes, num_bytes, type);
1557 if (nocow)
1558 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1559 BUG_ON(ret); /* -ENOMEM */
1560
1561 if (root->root_key.objectid ==
1562 BTRFS_DATA_RELOC_TREE_OBJECTID)
1563 /*
1564 * Error handled later, as we must prevent
1565 * extent_clear_unlock_delalloc() in error handler
1566 * from freeing metadata of created ordered extent.
1567 */
1568 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1569 num_bytes);
1570
1571 extent_clear_unlock_delalloc(inode, cur_offset,
1572 cur_offset + num_bytes - 1, end,
1573 locked_page, EXTENT_LOCKED |
1574 EXTENT_DELALLOC |
1575 EXTENT_CLEAR_DATA_RESV,
1576 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1577
1578 cur_offset = extent_end;
1579
1580 /*
1581 * btrfs_reloc_clone_csums() error, now we're OK to call error
1582 * handler, as metadata for created ordered extent will only
1583 * be freed by btrfs_finish_ordered_io().
1584 */
1585 if (ret)
1586 goto error;
1587 if (cur_offset > end)
1588 break;
1589 }
1590 btrfs_release_path(path);
1591
1592 if (cur_offset <= end && cow_start == (u64)-1)
1593 cow_start = cur_offset;
1594
1595 if (cow_start != (u64)-1) {
1596 cur_offset = end;
1597 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1598 page_started, nr_written, 1, NULL);
1599 if (ret)
1600 goto error;
1601 }
1602
1603 error:
1604 if (ret && cur_offset < end)
1605 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1606 locked_page, EXTENT_LOCKED |
1607 EXTENT_DELALLOC | EXTENT_DEFRAG |
1608 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1609 PAGE_CLEAR_DIRTY |
1610 PAGE_SET_WRITEBACK |
1611 PAGE_END_WRITEBACK);
1612 btrfs_free_path(path);
1613 return ret;
1614 }
1615
need_force_cow(struct inode * inode,u64 start,u64 end)1616 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1617 {
1618
1619 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1620 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1621 return 0;
1622
1623 /*
1624 * @defrag_bytes is a hint value, no spinlock held here,
1625 * if is not zero, it means the file is defragging.
1626 * Force cow if given extent needs to be defragged.
1627 */
1628 if (BTRFS_I(inode)->defrag_bytes &&
1629 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1630 EXTENT_DEFRAG, 0, NULL))
1631 return 1;
1632
1633 return 0;
1634 }
1635
1636 /*
1637 * Function to process delayed allocation (create CoW) for ranges which are
1638 * being touched for the first time.
1639 */
btrfs_run_delalloc_range(void * private_data,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1640 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1641 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1642 struct writeback_control *wbc)
1643 {
1644 struct inode *inode = private_data;
1645 int ret;
1646 int force_cow = need_force_cow(inode, start, end);
1647 unsigned int write_flags = wbc_to_write_flags(wbc);
1648
1649 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1650 ret = run_delalloc_nocow(inode, locked_page, start, end,
1651 page_started, 1, nr_written);
1652 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1653 ret = run_delalloc_nocow(inode, locked_page, start, end,
1654 page_started, 0, nr_written);
1655 } else if (!inode_can_compress(inode) ||
1656 !inode_need_compress(inode, start, end)) {
1657 ret = cow_file_range(inode, locked_page, start, end, end,
1658 page_started, nr_written, 1, NULL);
1659 } else {
1660 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1661 &BTRFS_I(inode)->runtime_flags);
1662 ret = cow_file_range_async(inode, locked_page, start, end,
1663 page_started, nr_written,
1664 write_flags);
1665 }
1666 if (ret)
1667 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1668 end - start + 1);
1669 return ret;
1670 }
1671
btrfs_split_extent_hook(void * private_data,struct extent_state * orig,u64 split)1672 static void btrfs_split_extent_hook(void *private_data,
1673 struct extent_state *orig, u64 split)
1674 {
1675 struct inode *inode = private_data;
1676 u64 size;
1677
1678 /* not delalloc, ignore it */
1679 if (!(orig->state & EXTENT_DELALLOC))
1680 return;
1681
1682 size = orig->end - orig->start + 1;
1683 if (size > BTRFS_MAX_EXTENT_SIZE) {
1684 u32 num_extents;
1685 u64 new_size;
1686
1687 /*
1688 * See the explanation in btrfs_merge_extent_hook, the same
1689 * applies here, just in reverse.
1690 */
1691 new_size = orig->end - split + 1;
1692 num_extents = count_max_extents(new_size);
1693 new_size = split - orig->start;
1694 num_extents += count_max_extents(new_size);
1695 if (count_max_extents(size) >= num_extents)
1696 return;
1697 }
1698
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 }
1703
1704 /*
1705 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1706 * extents so we can keep track of new extents that are just merged onto old
1707 * extents, such as when we are doing sequential writes, so we can properly
1708 * account for the metadata space we'll need.
1709 */
btrfs_merge_extent_hook(void * private_data,struct extent_state * new,struct extent_state * other)1710 static void btrfs_merge_extent_hook(void *private_data,
1711 struct extent_state *new,
1712 struct extent_state *other)
1713 {
1714 struct inode *inode = private_data;
1715 u64 new_size, old_size;
1716 u32 num_extents;
1717
1718 /* not delalloc, ignore it */
1719 if (!(other->state & EXTENT_DELALLOC))
1720 return;
1721
1722 if (new->start > other->start)
1723 new_size = new->end - other->start + 1;
1724 else
1725 new_size = other->end - new->start + 1;
1726
1727 /* we're not bigger than the max, unreserve the space and go */
1728 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1729 spin_lock(&BTRFS_I(inode)->lock);
1730 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1731 spin_unlock(&BTRFS_I(inode)->lock);
1732 return;
1733 }
1734
1735 /*
1736 * We have to add up either side to figure out how many extents were
1737 * accounted for before we merged into one big extent. If the number of
1738 * extents we accounted for is <= the amount we need for the new range
1739 * then we can return, otherwise drop. Think of it like this
1740 *
1741 * [ 4k][MAX_SIZE]
1742 *
1743 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1744 * need 2 outstanding extents, on one side we have 1 and the other side
1745 * we have 1 so they are == and we can return. But in this case
1746 *
1747 * [MAX_SIZE+4k][MAX_SIZE+4k]
1748 *
1749 * Each range on their own accounts for 2 extents, but merged together
1750 * they are only 3 extents worth of accounting, so we need to drop in
1751 * this case.
1752 */
1753 old_size = other->end - other->start + 1;
1754 num_extents = count_max_extents(old_size);
1755 old_size = new->end - new->start + 1;
1756 num_extents += count_max_extents(old_size);
1757 if (count_max_extents(new_size) >= num_extents)
1758 return;
1759
1760 spin_lock(&BTRFS_I(inode)->lock);
1761 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1762 spin_unlock(&BTRFS_I(inode)->lock);
1763 }
1764
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1765 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1766 struct inode *inode)
1767 {
1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769
1770 spin_lock(&root->delalloc_lock);
1771 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1772 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1773 &root->delalloc_inodes);
1774 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1775 &BTRFS_I(inode)->runtime_flags);
1776 root->nr_delalloc_inodes++;
1777 if (root->nr_delalloc_inodes == 1) {
1778 spin_lock(&fs_info->delalloc_root_lock);
1779 BUG_ON(!list_empty(&root->delalloc_root));
1780 list_add_tail(&root->delalloc_root,
1781 &fs_info->delalloc_roots);
1782 spin_unlock(&fs_info->delalloc_root_lock);
1783 }
1784 }
1785 spin_unlock(&root->delalloc_lock);
1786 }
1787
1788
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1789 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1790 struct btrfs_inode *inode)
1791 {
1792 struct btrfs_fs_info *fs_info = root->fs_info;
1793
1794 if (!list_empty(&inode->delalloc_inodes)) {
1795 list_del_init(&inode->delalloc_inodes);
1796 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1797 &inode->runtime_flags);
1798 root->nr_delalloc_inodes--;
1799 if (!root->nr_delalloc_inodes) {
1800 ASSERT(list_empty(&root->delalloc_inodes));
1801 spin_lock(&fs_info->delalloc_root_lock);
1802 BUG_ON(list_empty(&root->delalloc_root));
1803 list_del_init(&root->delalloc_root);
1804 spin_unlock(&fs_info->delalloc_root_lock);
1805 }
1806 }
1807 }
1808
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1809 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1810 struct btrfs_inode *inode)
1811 {
1812 spin_lock(&root->delalloc_lock);
1813 __btrfs_del_delalloc_inode(root, inode);
1814 spin_unlock(&root->delalloc_lock);
1815 }
1816
1817 /*
1818 * extent_io.c set_bit_hook, used to track delayed allocation
1819 * bytes in this file, and to maintain the list of inodes that
1820 * have pending delalloc work to be done.
1821 */
btrfs_set_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1822 static void btrfs_set_bit_hook(void *private_data,
1823 struct extent_state *state, unsigned *bits)
1824 {
1825 struct inode *inode = private_data;
1826
1827 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1828
1829 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1830 WARN_ON(1);
1831 /*
1832 * set_bit and clear bit hooks normally require _irqsave/restore
1833 * but in this case, we are only testing for the DELALLOC
1834 * bit, which is only set or cleared with irqs on
1835 */
1836 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1837 struct btrfs_root *root = BTRFS_I(inode)->root;
1838 u64 len = state->end + 1 - state->start;
1839 u32 num_extents = count_max_extents(len);
1840 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1841
1842 spin_lock(&BTRFS_I(inode)->lock);
1843 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1844 spin_unlock(&BTRFS_I(inode)->lock);
1845
1846 /* For sanity tests */
1847 if (btrfs_is_testing(fs_info))
1848 return;
1849
1850 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1851 fs_info->delalloc_batch);
1852 spin_lock(&BTRFS_I(inode)->lock);
1853 BTRFS_I(inode)->delalloc_bytes += len;
1854 if (*bits & EXTENT_DEFRAG)
1855 BTRFS_I(inode)->defrag_bytes += len;
1856 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1857 &BTRFS_I(inode)->runtime_flags))
1858 btrfs_add_delalloc_inodes(root, inode);
1859 spin_unlock(&BTRFS_I(inode)->lock);
1860 }
1861
1862 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1863 (*bits & EXTENT_DELALLOC_NEW)) {
1864 spin_lock(&BTRFS_I(inode)->lock);
1865 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1866 state->start;
1867 spin_unlock(&BTRFS_I(inode)->lock);
1868 }
1869 }
1870
1871 /*
1872 * extent_io.c clear_bit_hook, see set_bit_hook for why
1873 */
btrfs_clear_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1874 static void btrfs_clear_bit_hook(void *private_data,
1875 struct extent_state *state,
1876 unsigned *bits)
1877 {
1878 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1880 u64 len = state->end + 1 - state->start;
1881 u32 num_extents = count_max_extents(len);
1882
1883 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1884 spin_lock(&inode->lock);
1885 inode->defrag_bytes -= len;
1886 spin_unlock(&inode->lock);
1887 }
1888
1889 /*
1890 * set_bit and clear bit hooks normally require _irqsave/restore
1891 * but in this case, we are only testing for the DELALLOC
1892 * bit, which is only set or cleared with irqs on
1893 */
1894 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1895 struct btrfs_root *root = inode->root;
1896 bool do_list = !btrfs_is_free_space_inode(inode);
1897
1898 spin_lock(&inode->lock);
1899 btrfs_mod_outstanding_extents(inode, -num_extents);
1900 spin_unlock(&inode->lock);
1901
1902 /*
1903 * We don't reserve metadata space for space cache inodes so we
1904 * don't need to call dellalloc_release_metadata if there is an
1905 * error.
1906 */
1907 if (*bits & EXTENT_CLEAR_META_RESV &&
1908 root != fs_info->tree_root)
1909 btrfs_delalloc_release_metadata(inode, len, false);
1910
1911 /* For sanity tests. */
1912 if (btrfs_is_testing(fs_info))
1913 return;
1914
1915 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1916 do_list && !(state->state & EXTENT_NORESERVE) &&
1917 (*bits & EXTENT_CLEAR_DATA_RESV))
1918 btrfs_free_reserved_data_space_noquota(
1919 &inode->vfs_inode,
1920 state->start, len);
1921
1922 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1923 fs_info->delalloc_batch);
1924 spin_lock(&inode->lock);
1925 inode->delalloc_bytes -= len;
1926 if (do_list && inode->delalloc_bytes == 0 &&
1927 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1928 &inode->runtime_flags))
1929 btrfs_del_delalloc_inode(root, inode);
1930 spin_unlock(&inode->lock);
1931 }
1932
1933 if ((state->state & EXTENT_DELALLOC_NEW) &&
1934 (*bits & EXTENT_DELALLOC_NEW)) {
1935 spin_lock(&inode->lock);
1936 ASSERT(inode->new_delalloc_bytes >= len);
1937 inode->new_delalloc_bytes -= len;
1938 spin_unlock(&inode->lock);
1939 }
1940 }
1941
1942 /*
1943 * Merge bio hook, this must check the chunk tree to make sure we don't create
1944 * bios that span stripes or chunks
1945 *
1946 * return 1 if page cannot be merged to bio
1947 * return 0 if page can be merged to bio
1948 * return error otherwise
1949 */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1950 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1951 size_t size, struct bio *bio,
1952 unsigned long bio_flags)
1953 {
1954 struct inode *inode = page->mapping->host;
1955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1956 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1957 u64 length = 0;
1958 u64 map_length;
1959 int ret;
1960
1961 if (bio_flags & EXTENT_BIO_COMPRESSED)
1962 return 0;
1963
1964 length = bio->bi_iter.bi_size;
1965 map_length = length;
1966 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1967 NULL, 0);
1968 if (ret < 0)
1969 return ret;
1970 if (map_length < length + size)
1971 return 1;
1972 return 0;
1973 }
1974
1975 /*
1976 * in order to insert checksums into the metadata in large chunks,
1977 * we wait until bio submission time. All the pages in the bio are
1978 * checksummed and sums are attached onto the ordered extent record.
1979 *
1980 * At IO completion time the cums attached on the ordered extent record
1981 * are inserted into the btree
1982 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)1983 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1984 u64 bio_offset)
1985 {
1986 struct inode *inode = private_data;
1987 blk_status_t ret = 0;
1988
1989 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1990 BUG_ON(ret); /* -ENOMEM */
1991 return 0;
1992 }
1993
1994 /*
1995 * in order to insert checksums into the metadata in large chunks,
1996 * we wait until bio submission time. All the pages in the bio are
1997 * checksummed and sums are attached onto the ordered extent record.
1998 *
1999 * At IO completion time the cums attached on the ordered extent record
2000 * are inserted into the btree
2001 */
btrfs_submit_bio_done(void * private_data,struct bio * bio,int mirror_num)2002 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
2003 int mirror_num)
2004 {
2005 struct inode *inode = private_data;
2006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2007 blk_status_t ret;
2008
2009 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
2010 if (ret) {
2011 bio->bi_status = ret;
2012 bio_endio(bio);
2013 }
2014 return ret;
2015 }
2016
2017 /*
2018 * extent_io.c submission hook. This does the right thing for csum calculation
2019 * on write, or reading the csums from the tree before a read.
2020 *
2021 * Rules about async/sync submit,
2022 * a) read: sync submit
2023 *
2024 * b) write without checksum: sync submit
2025 *
2026 * c) write with checksum:
2027 * c-1) if bio is issued by fsync: sync submit
2028 * (sync_writers != 0)
2029 *
2030 * c-2) if root is reloc root: sync submit
2031 * (only in case of buffered IO)
2032 *
2033 * c-3) otherwise: async submit
2034 */
btrfs_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)2035 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
2036 int mirror_num, unsigned long bio_flags,
2037 u64 bio_offset)
2038 {
2039 struct inode *inode = private_data;
2040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 struct btrfs_root *root = BTRFS_I(inode)->root;
2042 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2043 blk_status_t ret = 0;
2044 int skip_sum;
2045 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2046
2047 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2048
2049 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2050 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2051
2052 if (bio_op(bio) != REQ_OP_WRITE) {
2053 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2054 if (ret)
2055 goto out;
2056
2057 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2058 ret = btrfs_submit_compressed_read(inode, bio,
2059 mirror_num,
2060 bio_flags);
2061 goto out;
2062 } else if (!skip_sum) {
2063 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2064 if (ret)
2065 goto out;
2066 }
2067 goto mapit;
2068 } else if (async && !skip_sum) {
2069 /* csum items have already been cloned */
2070 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2071 goto mapit;
2072 /* we're doing a write, do the async checksumming */
2073 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2074 bio_offset, inode,
2075 btrfs_submit_bio_start);
2076 goto out;
2077 } else if (!skip_sum) {
2078 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2079 if (ret)
2080 goto out;
2081 }
2082
2083 mapit:
2084 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2085
2086 out:
2087 if (ret) {
2088 bio->bi_status = ret;
2089 bio_endio(bio);
2090 }
2091 return ret;
2092 }
2093
2094 /*
2095 * given a list of ordered sums record them in the inode. This happens
2096 * at IO completion time based on sums calculated at bio submission time.
2097 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2098 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2099 struct inode *inode, struct list_head *list)
2100 {
2101 struct btrfs_ordered_sum *sum;
2102 int ret;
2103
2104 list_for_each_entry(sum, list, list) {
2105 trans->adding_csums = true;
2106 ret = btrfs_csum_file_blocks(trans,
2107 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2108 trans->adding_csums = false;
2109 if (ret)
2110 return ret;
2111 }
2112 return 0;
2113 }
2114
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state,int dedupe)2115 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2116 unsigned int extra_bits,
2117 struct extent_state **cached_state, int dedupe)
2118 {
2119 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2120 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2121 extra_bits, cached_state);
2122 }
2123
2124 /* see btrfs_writepage_start_hook for details on why this is required */
2125 struct btrfs_writepage_fixup {
2126 struct page *page;
2127 struct btrfs_work work;
2128 };
2129
btrfs_writepage_fixup_worker(struct btrfs_work * work)2130 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2131 {
2132 struct btrfs_writepage_fixup *fixup;
2133 struct btrfs_ordered_extent *ordered;
2134 struct extent_state *cached_state = NULL;
2135 struct extent_changeset *data_reserved = NULL;
2136 struct page *page;
2137 struct inode *inode;
2138 u64 page_start;
2139 u64 page_end;
2140 int ret;
2141
2142 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2143 page = fixup->page;
2144 again:
2145 lock_page(page);
2146 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2147 ClearPageChecked(page);
2148 goto out_page;
2149 }
2150
2151 inode = page->mapping->host;
2152 page_start = page_offset(page);
2153 page_end = page_offset(page) + PAGE_SIZE - 1;
2154
2155 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2156 &cached_state);
2157
2158 /* already ordered? We're done */
2159 if (PagePrivate2(page))
2160 goto out;
2161
2162 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2163 PAGE_SIZE);
2164 if (ordered) {
2165 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2166 page_end, &cached_state);
2167 unlock_page(page);
2168 btrfs_start_ordered_extent(inode, ordered, 1);
2169 btrfs_put_ordered_extent(ordered);
2170 goto again;
2171 }
2172
2173 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2174 PAGE_SIZE);
2175 if (ret) {
2176 mapping_set_error(page->mapping, ret);
2177 end_extent_writepage(page, ret, page_start, page_end);
2178 ClearPageChecked(page);
2179 goto out;
2180 }
2181
2182 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2183 &cached_state, 0);
2184 if (ret) {
2185 mapping_set_error(page->mapping, ret);
2186 end_extent_writepage(page, ret, page_start, page_end);
2187 ClearPageChecked(page);
2188 goto out_reserved;
2189 }
2190
2191 ClearPageChecked(page);
2192 set_page_dirty(page);
2193 out_reserved:
2194 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2195 if (ret)
2196 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2197 PAGE_SIZE, true);
2198 out:
2199 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2200 &cached_state);
2201 out_page:
2202 unlock_page(page);
2203 put_page(page);
2204 kfree(fixup);
2205 extent_changeset_free(data_reserved);
2206 }
2207
2208 /*
2209 * There are a few paths in the higher layers of the kernel that directly
2210 * set the page dirty bit without asking the filesystem if it is a
2211 * good idea. This causes problems because we want to make sure COW
2212 * properly happens and the data=ordered rules are followed.
2213 *
2214 * In our case any range that doesn't have the ORDERED bit set
2215 * hasn't been properly setup for IO. We kick off an async process
2216 * to fix it up. The async helper will wait for ordered extents, set
2217 * the delalloc bit and make it safe to write the page.
2218 */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2219 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2220 {
2221 struct inode *inode = page->mapping->host;
2222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2223 struct btrfs_writepage_fixup *fixup;
2224
2225 /* this page is properly in the ordered list */
2226 if (TestClearPagePrivate2(page))
2227 return 0;
2228
2229 if (PageChecked(page))
2230 return -EAGAIN;
2231
2232 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2233 if (!fixup)
2234 return -EAGAIN;
2235
2236 SetPageChecked(page);
2237 get_page(page);
2238 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2239 btrfs_writepage_fixup_worker, NULL, NULL);
2240 fixup->page = page;
2241 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2242 return -EBUSY;
2243 }
2244
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2245 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2246 struct inode *inode, u64 file_pos,
2247 u64 disk_bytenr, u64 disk_num_bytes,
2248 u64 num_bytes, u64 ram_bytes,
2249 u8 compression, u8 encryption,
2250 u16 other_encoding, int extent_type)
2251 {
2252 struct btrfs_root *root = BTRFS_I(inode)->root;
2253 struct btrfs_file_extent_item *fi;
2254 struct btrfs_path *path;
2255 struct extent_buffer *leaf;
2256 struct btrfs_key ins;
2257 u64 qg_released;
2258 int extent_inserted = 0;
2259 int ret;
2260
2261 path = btrfs_alloc_path();
2262 if (!path)
2263 return -ENOMEM;
2264
2265 /*
2266 * we may be replacing one extent in the tree with another.
2267 * The new extent is pinned in the extent map, and we don't want
2268 * to drop it from the cache until it is completely in the btree.
2269 *
2270 * So, tell btrfs_drop_extents to leave this extent in the cache.
2271 * the caller is expected to unpin it and allow it to be merged
2272 * with the others.
2273 */
2274 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2275 file_pos + num_bytes, NULL, 0,
2276 1, sizeof(*fi), &extent_inserted);
2277 if (ret)
2278 goto out;
2279
2280 if (!extent_inserted) {
2281 ins.objectid = btrfs_ino(BTRFS_I(inode));
2282 ins.offset = file_pos;
2283 ins.type = BTRFS_EXTENT_DATA_KEY;
2284
2285 path->leave_spinning = 1;
2286 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2287 sizeof(*fi));
2288 if (ret)
2289 goto out;
2290 }
2291 leaf = path->nodes[0];
2292 fi = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_file_extent_item);
2294 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2295 btrfs_set_file_extent_type(leaf, fi, extent_type);
2296 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2297 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2298 btrfs_set_file_extent_offset(leaf, fi, 0);
2299 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2300 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2301 btrfs_set_file_extent_compression(leaf, fi, compression);
2302 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2303 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2304
2305 btrfs_mark_buffer_dirty(leaf);
2306 btrfs_release_path(path);
2307
2308 inode_add_bytes(inode, num_bytes);
2309
2310 ins.objectid = disk_bytenr;
2311 ins.offset = disk_num_bytes;
2312 ins.type = BTRFS_EXTENT_ITEM_KEY;
2313
2314 /*
2315 * Release the reserved range from inode dirty range map, as it is
2316 * already moved into delayed_ref_head
2317 */
2318 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2319 if (ret < 0)
2320 goto out;
2321 qg_released = ret;
2322 ret = btrfs_alloc_reserved_file_extent(trans, root,
2323 btrfs_ino(BTRFS_I(inode)),
2324 file_pos, qg_released, &ins);
2325 out:
2326 btrfs_free_path(path);
2327
2328 return ret;
2329 }
2330
2331 /* snapshot-aware defrag */
2332 struct sa_defrag_extent_backref {
2333 struct rb_node node;
2334 struct old_sa_defrag_extent *old;
2335 u64 root_id;
2336 u64 inum;
2337 u64 file_pos;
2338 u64 extent_offset;
2339 u64 num_bytes;
2340 u64 generation;
2341 };
2342
2343 struct old_sa_defrag_extent {
2344 struct list_head list;
2345 struct new_sa_defrag_extent *new;
2346
2347 u64 extent_offset;
2348 u64 bytenr;
2349 u64 offset;
2350 u64 len;
2351 int count;
2352 };
2353
2354 struct new_sa_defrag_extent {
2355 struct rb_root root;
2356 struct list_head head;
2357 struct btrfs_path *path;
2358 struct inode *inode;
2359 u64 file_pos;
2360 u64 len;
2361 u64 bytenr;
2362 u64 disk_len;
2363 u8 compress_type;
2364 };
2365
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2366 static int backref_comp(struct sa_defrag_extent_backref *b1,
2367 struct sa_defrag_extent_backref *b2)
2368 {
2369 if (b1->root_id < b2->root_id)
2370 return -1;
2371 else if (b1->root_id > b2->root_id)
2372 return 1;
2373
2374 if (b1->inum < b2->inum)
2375 return -1;
2376 else if (b1->inum > b2->inum)
2377 return 1;
2378
2379 if (b1->file_pos < b2->file_pos)
2380 return -1;
2381 else if (b1->file_pos > b2->file_pos)
2382 return 1;
2383
2384 /*
2385 * [------------------------------] ===> (a range of space)
2386 * |<--->| |<---->| =============> (fs/file tree A)
2387 * |<---------------------------->| ===> (fs/file tree B)
2388 *
2389 * A range of space can refer to two file extents in one tree while
2390 * refer to only one file extent in another tree.
2391 *
2392 * So we may process a disk offset more than one time(two extents in A)
2393 * and locate at the same extent(one extent in B), then insert two same
2394 * backrefs(both refer to the extent in B).
2395 */
2396 return 0;
2397 }
2398
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2399 static void backref_insert(struct rb_root *root,
2400 struct sa_defrag_extent_backref *backref)
2401 {
2402 struct rb_node **p = &root->rb_node;
2403 struct rb_node *parent = NULL;
2404 struct sa_defrag_extent_backref *entry;
2405 int ret;
2406
2407 while (*p) {
2408 parent = *p;
2409 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2410
2411 ret = backref_comp(backref, entry);
2412 if (ret < 0)
2413 p = &(*p)->rb_left;
2414 else
2415 p = &(*p)->rb_right;
2416 }
2417
2418 rb_link_node(&backref->node, parent, p);
2419 rb_insert_color(&backref->node, root);
2420 }
2421
2422 /*
2423 * Note the backref might has changed, and in this case we just return 0.
2424 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2425 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2426 void *ctx)
2427 {
2428 struct btrfs_file_extent_item *extent;
2429 struct old_sa_defrag_extent *old = ctx;
2430 struct new_sa_defrag_extent *new = old->new;
2431 struct btrfs_path *path = new->path;
2432 struct btrfs_key key;
2433 struct btrfs_root *root;
2434 struct sa_defrag_extent_backref *backref;
2435 struct extent_buffer *leaf;
2436 struct inode *inode = new->inode;
2437 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2438 int slot;
2439 int ret;
2440 u64 extent_offset;
2441 u64 num_bytes;
2442
2443 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2444 inum == btrfs_ino(BTRFS_I(inode)))
2445 return 0;
2446
2447 key.objectid = root_id;
2448 key.type = BTRFS_ROOT_ITEM_KEY;
2449 key.offset = (u64)-1;
2450
2451 root = btrfs_read_fs_root_no_name(fs_info, &key);
2452 if (IS_ERR(root)) {
2453 if (PTR_ERR(root) == -ENOENT)
2454 return 0;
2455 WARN_ON(1);
2456 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2457 inum, offset, root_id);
2458 return PTR_ERR(root);
2459 }
2460
2461 key.objectid = inum;
2462 key.type = BTRFS_EXTENT_DATA_KEY;
2463 if (offset > (u64)-1 << 32)
2464 key.offset = 0;
2465 else
2466 key.offset = offset;
2467
2468 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2469 if (WARN_ON(ret < 0))
2470 return ret;
2471 ret = 0;
2472
2473 while (1) {
2474 cond_resched();
2475
2476 leaf = path->nodes[0];
2477 slot = path->slots[0];
2478
2479 if (slot >= btrfs_header_nritems(leaf)) {
2480 ret = btrfs_next_leaf(root, path);
2481 if (ret < 0) {
2482 goto out;
2483 } else if (ret > 0) {
2484 ret = 0;
2485 goto out;
2486 }
2487 continue;
2488 }
2489
2490 path->slots[0]++;
2491
2492 btrfs_item_key_to_cpu(leaf, &key, slot);
2493
2494 if (key.objectid > inum)
2495 goto out;
2496
2497 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2498 continue;
2499
2500 extent = btrfs_item_ptr(leaf, slot,
2501 struct btrfs_file_extent_item);
2502
2503 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2504 continue;
2505
2506 /*
2507 * 'offset' refers to the exact key.offset,
2508 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2509 * (key.offset - extent_offset).
2510 */
2511 if (key.offset != offset)
2512 continue;
2513
2514 extent_offset = btrfs_file_extent_offset(leaf, extent);
2515 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2516
2517 if (extent_offset >= old->extent_offset + old->offset +
2518 old->len || extent_offset + num_bytes <=
2519 old->extent_offset + old->offset)
2520 continue;
2521 break;
2522 }
2523
2524 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2525 if (!backref) {
2526 ret = -ENOENT;
2527 goto out;
2528 }
2529
2530 backref->root_id = root_id;
2531 backref->inum = inum;
2532 backref->file_pos = offset;
2533 backref->num_bytes = num_bytes;
2534 backref->extent_offset = extent_offset;
2535 backref->generation = btrfs_file_extent_generation(leaf, extent);
2536 backref->old = old;
2537 backref_insert(&new->root, backref);
2538 old->count++;
2539 out:
2540 btrfs_release_path(path);
2541 WARN_ON(ret);
2542 return ret;
2543 }
2544
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2545 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2546 struct new_sa_defrag_extent *new)
2547 {
2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549 struct old_sa_defrag_extent *old, *tmp;
2550 int ret;
2551
2552 new->path = path;
2553
2554 list_for_each_entry_safe(old, tmp, &new->head, list) {
2555 ret = iterate_inodes_from_logical(old->bytenr +
2556 old->extent_offset, fs_info,
2557 path, record_one_backref,
2558 old, false);
2559 if (ret < 0 && ret != -ENOENT)
2560 return false;
2561
2562 /* no backref to be processed for this extent */
2563 if (!old->count) {
2564 list_del(&old->list);
2565 kfree(old);
2566 }
2567 }
2568
2569 if (list_empty(&new->head))
2570 return false;
2571
2572 return true;
2573 }
2574
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2575 static int relink_is_mergable(struct extent_buffer *leaf,
2576 struct btrfs_file_extent_item *fi,
2577 struct new_sa_defrag_extent *new)
2578 {
2579 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2580 return 0;
2581
2582 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2583 return 0;
2584
2585 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2586 return 0;
2587
2588 if (btrfs_file_extent_encryption(leaf, fi) ||
2589 btrfs_file_extent_other_encoding(leaf, fi))
2590 return 0;
2591
2592 return 1;
2593 }
2594
2595 /*
2596 * Note the backref might has changed, and in this case we just return 0.
2597 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2598 static noinline int relink_extent_backref(struct btrfs_path *path,
2599 struct sa_defrag_extent_backref *prev,
2600 struct sa_defrag_extent_backref *backref)
2601 {
2602 struct btrfs_file_extent_item *extent;
2603 struct btrfs_file_extent_item *item;
2604 struct btrfs_ordered_extent *ordered;
2605 struct btrfs_trans_handle *trans;
2606 struct btrfs_root *root;
2607 struct btrfs_key key;
2608 struct extent_buffer *leaf;
2609 struct old_sa_defrag_extent *old = backref->old;
2610 struct new_sa_defrag_extent *new = old->new;
2611 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2612 struct inode *inode;
2613 struct extent_state *cached = NULL;
2614 int ret = 0;
2615 u64 start;
2616 u64 len;
2617 u64 lock_start;
2618 u64 lock_end;
2619 bool merge = false;
2620 int index;
2621
2622 if (prev && prev->root_id == backref->root_id &&
2623 prev->inum == backref->inum &&
2624 prev->file_pos + prev->num_bytes == backref->file_pos)
2625 merge = true;
2626
2627 /* step 1: get root */
2628 key.objectid = backref->root_id;
2629 key.type = BTRFS_ROOT_ITEM_KEY;
2630 key.offset = (u64)-1;
2631
2632 index = srcu_read_lock(&fs_info->subvol_srcu);
2633
2634 root = btrfs_read_fs_root_no_name(fs_info, &key);
2635 if (IS_ERR(root)) {
2636 srcu_read_unlock(&fs_info->subvol_srcu, index);
2637 if (PTR_ERR(root) == -ENOENT)
2638 return 0;
2639 return PTR_ERR(root);
2640 }
2641
2642 if (btrfs_root_readonly(root)) {
2643 srcu_read_unlock(&fs_info->subvol_srcu, index);
2644 return 0;
2645 }
2646
2647 /* step 2: get inode */
2648 key.objectid = backref->inum;
2649 key.type = BTRFS_INODE_ITEM_KEY;
2650 key.offset = 0;
2651
2652 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2653 if (IS_ERR(inode)) {
2654 srcu_read_unlock(&fs_info->subvol_srcu, index);
2655 return 0;
2656 }
2657
2658 srcu_read_unlock(&fs_info->subvol_srcu, index);
2659
2660 /* step 3: relink backref */
2661 lock_start = backref->file_pos;
2662 lock_end = backref->file_pos + backref->num_bytes - 1;
2663 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2664 &cached);
2665
2666 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2667 if (ordered) {
2668 btrfs_put_ordered_extent(ordered);
2669 goto out_unlock;
2670 }
2671
2672 trans = btrfs_join_transaction(root);
2673 if (IS_ERR(trans)) {
2674 ret = PTR_ERR(trans);
2675 goto out_unlock;
2676 }
2677
2678 key.objectid = backref->inum;
2679 key.type = BTRFS_EXTENT_DATA_KEY;
2680 key.offset = backref->file_pos;
2681
2682 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2683 if (ret < 0) {
2684 goto out_free_path;
2685 } else if (ret > 0) {
2686 ret = 0;
2687 goto out_free_path;
2688 }
2689
2690 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2691 struct btrfs_file_extent_item);
2692
2693 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2694 backref->generation)
2695 goto out_free_path;
2696
2697 btrfs_release_path(path);
2698
2699 start = backref->file_pos;
2700 if (backref->extent_offset < old->extent_offset + old->offset)
2701 start += old->extent_offset + old->offset -
2702 backref->extent_offset;
2703
2704 len = min(backref->extent_offset + backref->num_bytes,
2705 old->extent_offset + old->offset + old->len);
2706 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2707
2708 ret = btrfs_drop_extents(trans, root, inode, start,
2709 start + len, 1);
2710 if (ret)
2711 goto out_free_path;
2712 again:
2713 key.objectid = btrfs_ino(BTRFS_I(inode));
2714 key.type = BTRFS_EXTENT_DATA_KEY;
2715 key.offset = start;
2716
2717 path->leave_spinning = 1;
2718 if (merge) {
2719 struct btrfs_file_extent_item *fi;
2720 u64 extent_len;
2721 struct btrfs_key found_key;
2722
2723 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2724 if (ret < 0)
2725 goto out_free_path;
2726
2727 path->slots[0]--;
2728 leaf = path->nodes[0];
2729 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2730
2731 fi = btrfs_item_ptr(leaf, path->slots[0],
2732 struct btrfs_file_extent_item);
2733 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2734
2735 if (extent_len + found_key.offset == start &&
2736 relink_is_mergable(leaf, fi, new)) {
2737 btrfs_set_file_extent_num_bytes(leaf, fi,
2738 extent_len + len);
2739 btrfs_mark_buffer_dirty(leaf);
2740 inode_add_bytes(inode, len);
2741
2742 ret = 1;
2743 goto out_free_path;
2744 } else {
2745 merge = false;
2746 btrfs_release_path(path);
2747 goto again;
2748 }
2749 }
2750
2751 ret = btrfs_insert_empty_item(trans, root, path, &key,
2752 sizeof(*extent));
2753 if (ret) {
2754 btrfs_abort_transaction(trans, ret);
2755 goto out_free_path;
2756 }
2757
2758 leaf = path->nodes[0];
2759 item = btrfs_item_ptr(leaf, path->slots[0],
2760 struct btrfs_file_extent_item);
2761 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2762 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2763 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2764 btrfs_set_file_extent_num_bytes(leaf, item, len);
2765 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2766 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2767 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2768 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2769 btrfs_set_file_extent_encryption(leaf, item, 0);
2770 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2771
2772 btrfs_mark_buffer_dirty(leaf);
2773 inode_add_bytes(inode, len);
2774 btrfs_release_path(path);
2775
2776 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2777 new->disk_len, 0,
2778 backref->root_id, backref->inum,
2779 new->file_pos); /* start - extent_offset */
2780 if (ret) {
2781 btrfs_abort_transaction(trans, ret);
2782 goto out_free_path;
2783 }
2784
2785 ret = 1;
2786 out_free_path:
2787 btrfs_release_path(path);
2788 path->leave_spinning = 0;
2789 btrfs_end_transaction(trans);
2790 out_unlock:
2791 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2792 &cached);
2793 iput(inode);
2794 return ret;
2795 }
2796
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2797 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2798 {
2799 struct old_sa_defrag_extent *old, *tmp;
2800
2801 if (!new)
2802 return;
2803
2804 list_for_each_entry_safe(old, tmp, &new->head, list) {
2805 kfree(old);
2806 }
2807 kfree(new);
2808 }
2809
relink_file_extents(struct new_sa_defrag_extent * new)2810 static void relink_file_extents(struct new_sa_defrag_extent *new)
2811 {
2812 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2813 struct btrfs_path *path;
2814 struct sa_defrag_extent_backref *backref;
2815 struct sa_defrag_extent_backref *prev = NULL;
2816 struct inode *inode;
2817 struct rb_node *node;
2818 int ret;
2819
2820 inode = new->inode;
2821
2822 path = btrfs_alloc_path();
2823 if (!path)
2824 return;
2825
2826 if (!record_extent_backrefs(path, new)) {
2827 btrfs_free_path(path);
2828 goto out;
2829 }
2830 btrfs_release_path(path);
2831
2832 while (1) {
2833 node = rb_first(&new->root);
2834 if (!node)
2835 break;
2836 rb_erase(node, &new->root);
2837
2838 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2839
2840 ret = relink_extent_backref(path, prev, backref);
2841 WARN_ON(ret < 0);
2842
2843 kfree(prev);
2844
2845 if (ret == 1)
2846 prev = backref;
2847 else
2848 prev = NULL;
2849 cond_resched();
2850 }
2851 kfree(prev);
2852
2853 btrfs_free_path(path);
2854 out:
2855 free_sa_defrag_extent(new);
2856
2857 atomic_dec(&fs_info->defrag_running);
2858 wake_up(&fs_info->transaction_wait);
2859 }
2860
2861 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2862 record_old_file_extents(struct inode *inode,
2863 struct btrfs_ordered_extent *ordered)
2864 {
2865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2866 struct btrfs_root *root = BTRFS_I(inode)->root;
2867 struct btrfs_path *path;
2868 struct btrfs_key key;
2869 struct old_sa_defrag_extent *old;
2870 struct new_sa_defrag_extent *new;
2871 int ret;
2872
2873 new = kmalloc(sizeof(*new), GFP_NOFS);
2874 if (!new)
2875 return NULL;
2876
2877 new->inode = inode;
2878 new->file_pos = ordered->file_offset;
2879 new->len = ordered->len;
2880 new->bytenr = ordered->start;
2881 new->disk_len = ordered->disk_len;
2882 new->compress_type = ordered->compress_type;
2883 new->root = RB_ROOT;
2884 INIT_LIST_HEAD(&new->head);
2885
2886 path = btrfs_alloc_path();
2887 if (!path)
2888 goto out_kfree;
2889
2890 key.objectid = btrfs_ino(BTRFS_I(inode));
2891 key.type = BTRFS_EXTENT_DATA_KEY;
2892 key.offset = new->file_pos;
2893
2894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895 if (ret < 0)
2896 goto out_free_path;
2897 if (ret > 0 && path->slots[0] > 0)
2898 path->slots[0]--;
2899
2900 /* find out all the old extents for the file range */
2901 while (1) {
2902 struct btrfs_file_extent_item *extent;
2903 struct extent_buffer *l;
2904 int slot;
2905 u64 num_bytes;
2906 u64 offset;
2907 u64 end;
2908 u64 disk_bytenr;
2909 u64 extent_offset;
2910
2911 l = path->nodes[0];
2912 slot = path->slots[0];
2913
2914 if (slot >= btrfs_header_nritems(l)) {
2915 ret = btrfs_next_leaf(root, path);
2916 if (ret < 0)
2917 goto out_free_path;
2918 else if (ret > 0)
2919 break;
2920 continue;
2921 }
2922
2923 btrfs_item_key_to_cpu(l, &key, slot);
2924
2925 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2926 break;
2927 if (key.type != BTRFS_EXTENT_DATA_KEY)
2928 break;
2929 if (key.offset >= new->file_pos + new->len)
2930 break;
2931
2932 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2933
2934 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2935 if (key.offset + num_bytes < new->file_pos)
2936 goto next;
2937
2938 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2939 if (!disk_bytenr)
2940 goto next;
2941
2942 extent_offset = btrfs_file_extent_offset(l, extent);
2943
2944 old = kmalloc(sizeof(*old), GFP_NOFS);
2945 if (!old)
2946 goto out_free_path;
2947
2948 offset = max(new->file_pos, key.offset);
2949 end = min(new->file_pos + new->len, key.offset + num_bytes);
2950
2951 old->bytenr = disk_bytenr;
2952 old->extent_offset = extent_offset;
2953 old->offset = offset - key.offset;
2954 old->len = end - offset;
2955 old->new = new;
2956 old->count = 0;
2957 list_add_tail(&old->list, &new->head);
2958 next:
2959 path->slots[0]++;
2960 cond_resched();
2961 }
2962
2963 btrfs_free_path(path);
2964 atomic_inc(&fs_info->defrag_running);
2965
2966 return new;
2967
2968 out_free_path:
2969 btrfs_free_path(path);
2970 out_kfree:
2971 free_sa_defrag_extent(new);
2972 return NULL;
2973 }
2974
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2975 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2976 u64 start, u64 len)
2977 {
2978 struct btrfs_block_group_cache *cache;
2979
2980 cache = btrfs_lookup_block_group(fs_info, start);
2981 ASSERT(cache);
2982
2983 spin_lock(&cache->lock);
2984 cache->delalloc_bytes -= len;
2985 spin_unlock(&cache->lock);
2986
2987 btrfs_put_block_group(cache);
2988 }
2989
2990 /* as ordered data IO finishes, this gets called so we can finish
2991 * an ordered extent if the range of bytes in the file it covers are
2992 * fully written.
2993 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2994 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2995 {
2996 struct inode *inode = ordered_extent->inode;
2997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2998 struct btrfs_root *root = BTRFS_I(inode)->root;
2999 struct btrfs_trans_handle *trans = NULL;
3000 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3001 struct extent_state *cached_state = NULL;
3002 struct new_sa_defrag_extent *new = NULL;
3003 int compress_type = 0;
3004 int ret = 0;
3005 u64 logical_len = ordered_extent->len;
3006 bool nolock;
3007 bool truncated = false;
3008 bool range_locked = false;
3009 bool clear_new_delalloc_bytes = false;
3010 bool clear_reserved_extent = true;
3011
3012 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3013 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3014 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3015 clear_new_delalloc_bytes = true;
3016
3017 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3018
3019 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3020 ret = -EIO;
3021 goto out;
3022 }
3023
3024 btrfs_free_io_failure_record(BTRFS_I(inode),
3025 ordered_extent->file_offset,
3026 ordered_extent->file_offset +
3027 ordered_extent->len - 1);
3028
3029 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3030 truncated = true;
3031 logical_len = ordered_extent->truncated_len;
3032 /* Truncated the entire extent, don't bother adding */
3033 if (!logical_len)
3034 goto out;
3035 }
3036
3037 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3038 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3039
3040 /*
3041 * For mwrite(mmap + memset to write) case, we still reserve
3042 * space for NOCOW range.
3043 * As NOCOW won't cause a new delayed ref, just free the space
3044 */
3045 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3046 ordered_extent->len);
3047 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3048 if (nolock)
3049 trans = btrfs_join_transaction_nolock(root);
3050 else
3051 trans = btrfs_join_transaction(root);
3052 if (IS_ERR(trans)) {
3053 ret = PTR_ERR(trans);
3054 trans = NULL;
3055 goto out;
3056 }
3057 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3058 ret = btrfs_update_inode_fallback(trans, root, inode);
3059 if (ret) /* -ENOMEM or corruption */
3060 btrfs_abort_transaction(trans, ret);
3061 goto out;
3062 }
3063
3064 range_locked = true;
3065 lock_extent_bits(io_tree, ordered_extent->file_offset,
3066 ordered_extent->file_offset + ordered_extent->len - 1,
3067 &cached_state);
3068
3069 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3070 ordered_extent->file_offset + ordered_extent->len - 1,
3071 EXTENT_DEFRAG, 0, cached_state);
3072 if (ret) {
3073 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3074 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3075 /* the inode is shared */
3076 new = record_old_file_extents(inode, ordered_extent);
3077
3078 clear_extent_bit(io_tree, ordered_extent->file_offset,
3079 ordered_extent->file_offset + ordered_extent->len - 1,
3080 EXTENT_DEFRAG, 0, 0, &cached_state);
3081 }
3082
3083 if (nolock)
3084 trans = btrfs_join_transaction_nolock(root);
3085 else
3086 trans = btrfs_join_transaction(root);
3087 if (IS_ERR(trans)) {
3088 ret = PTR_ERR(trans);
3089 trans = NULL;
3090 goto out;
3091 }
3092
3093 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3094
3095 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3096 compress_type = ordered_extent->compress_type;
3097 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3098 BUG_ON(compress_type);
3099 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3100 ordered_extent->len);
3101 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3102 ordered_extent->file_offset,
3103 ordered_extent->file_offset +
3104 logical_len);
3105 } else {
3106 BUG_ON(root == fs_info->tree_root);
3107 ret = insert_reserved_file_extent(trans, inode,
3108 ordered_extent->file_offset,
3109 ordered_extent->start,
3110 ordered_extent->disk_len,
3111 logical_len, logical_len,
3112 compress_type, 0, 0,
3113 BTRFS_FILE_EXTENT_REG);
3114 if (!ret) {
3115 clear_reserved_extent = false;
3116 btrfs_release_delalloc_bytes(fs_info,
3117 ordered_extent->start,
3118 ordered_extent->disk_len);
3119 }
3120 }
3121 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3122 ordered_extent->file_offset, ordered_extent->len,
3123 trans->transid);
3124 if (ret < 0) {
3125 btrfs_abort_transaction(trans, ret);
3126 goto out;
3127 }
3128
3129 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3130 if (ret) {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134
3135 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3136 ret = btrfs_update_inode_fallback(trans, root, inode);
3137 if (ret) { /* -ENOMEM or corruption */
3138 btrfs_abort_transaction(trans, ret);
3139 goto out;
3140 }
3141 ret = 0;
3142 out:
3143 if (range_locked || clear_new_delalloc_bytes) {
3144 unsigned int clear_bits = 0;
3145
3146 if (range_locked)
3147 clear_bits |= EXTENT_LOCKED;
3148 if (clear_new_delalloc_bytes)
3149 clear_bits |= EXTENT_DELALLOC_NEW;
3150 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3151 ordered_extent->file_offset,
3152 ordered_extent->file_offset +
3153 ordered_extent->len - 1,
3154 clear_bits,
3155 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3156 0, &cached_state);
3157 }
3158
3159 if (trans)
3160 btrfs_end_transaction(trans);
3161
3162 if (ret || truncated) {
3163 u64 start, end;
3164
3165 if (truncated)
3166 start = ordered_extent->file_offset + logical_len;
3167 else
3168 start = ordered_extent->file_offset;
3169 end = ordered_extent->file_offset + ordered_extent->len - 1;
3170 clear_extent_uptodate(io_tree, start, end, NULL);
3171
3172 /* Drop the cache for the part of the extent we didn't write. */
3173 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3174
3175 /*
3176 * If the ordered extent had an IOERR or something else went
3177 * wrong we need to return the space for this ordered extent
3178 * back to the allocator. We only free the extent in the
3179 * truncated case if we didn't write out the extent at all.
3180 *
3181 * If we made it past insert_reserved_file_extent before we
3182 * errored out then we don't need to do this as the accounting
3183 * has already been done.
3184 */
3185 if ((ret || !logical_len) &&
3186 clear_reserved_extent &&
3187 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3188 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3189 btrfs_free_reserved_extent(fs_info,
3190 ordered_extent->start,
3191 ordered_extent->disk_len, 1);
3192 }
3193
3194
3195 /*
3196 * This needs to be done to make sure anybody waiting knows we are done
3197 * updating everything for this ordered extent.
3198 */
3199 btrfs_remove_ordered_extent(inode, ordered_extent);
3200
3201 /* for snapshot-aware defrag */
3202 if (new) {
3203 if (ret) {
3204 free_sa_defrag_extent(new);
3205 atomic_dec(&fs_info->defrag_running);
3206 } else {
3207 relink_file_extents(new);
3208 }
3209 }
3210
3211 /* once for us */
3212 btrfs_put_ordered_extent(ordered_extent);
3213 /* once for the tree */
3214 btrfs_put_ordered_extent(ordered_extent);
3215
3216 return ret;
3217 }
3218
finish_ordered_fn(struct btrfs_work * work)3219 static void finish_ordered_fn(struct btrfs_work *work)
3220 {
3221 struct btrfs_ordered_extent *ordered_extent;
3222 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3223 btrfs_finish_ordered_io(ordered_extent);
3224 }
3225
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3226 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3227 struct extent_state *state, int uptodate)
3228 {
3229 struct inode *inode = page->mapping->host;
3230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3231 struct btrfs_ordered_extent *ordered_extent = NULL;
3232 struct btrfs_workqueue *wq;
3233 btrfs_work_func_t func;
3234
3235 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3236
3237 ClearPagePrivate2(page);
3238 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3239 end - start + 1, uptodate))
3240 return;
3241
3242 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3243 wq = fs_info->endio_freespace_worker;
3244 func = btrfs_freespace_write_helper;
3245 } else {
3246 wq = fs_info->endio_write_workers;
3247 func = btrfs_endio_write_helper;
3248 }
3249
3250 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3251 NULL);
3252 btrfs_queue_work(wq, &ordered_extent->work);
3253 }
3254
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3255 static int __readpage_endio_check(struct inode *inode,
3256 struct btrfs_io_bio *io_bio,
3257 int icsum, struct page *page,
3258 int pgoff, u64 start, size_t len)
3259 {
3260 char *kaddr;
3261 u32 csum_expected;
3262 u32 csum = ~(u32)0;
3263
3264 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3265
3266 kaddr = kmap_atomic(page);
3267 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3268 btrfs_csum_final(csum, (u8 *)&csum);
3269 if (csum != csum_expected)
3270 goto zeroit;
3271
3272 kunmap_atomic(kaddr);
3273 return 0;
3274 zeroit:
3275 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3276 io_bio->mirror_num);
3277 memset(kaddr + pgoff, 1, len);
3278 flush_dcache_page(page);
3279 kunmap_atomic(kaddr);
3280 return -EIO;
3281 }
3282
3283 /*
3284 * when reads are done, we need to check csums to verify the data is correct
3285 * if there's a match, we allow the bio to finish. If not, the code in
3286 * extent_io.c will try to find good copies for us.
3287 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3288 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3289 u64 phy_offset, struct page *page,
3290 u64 start, u64 end, int mirror)
3291 {
3292 size_t offset = start - page_offset(page);
3293 struct inode *inode = page->mapping->host;
3294 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3295 struct btrfs_root *root = BTRFS_I(inode)->root;
3296
3297 if (PageChecked(page)) {
3298 ClearPageChecked(page);
3299 return 0;
3300 }
3301
3302 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3303 return 0;
3304
3305 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3306 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3307 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3308 return 0;
3309 }
3310
3311 phy_offset >>= inode->i_sb->s_blocksize_bits;
3312 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3313 start, (size_t)(end - start + 1));
3314 }
3315
3316 /*
3317 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3318 *
3319 * @inode: The inode we want to perform iput on
3320 *
3321 * This function uses the generic vfs_inode::i_count to track whether we should
3322 * just decrement it (in case it's > 1) or if this is the last iput then link
3323 * the inode to the delayed iput machinery. Delayed iputs are processed at
3324 * transaction commit time/superblock commit/cleaner kthread.
3325 */
btrfs_add_delayed_iput(struct inode * inode)3326 void btrfs_add_delayed_iput(struct inode *inode)
3327 {
3328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3329 struct btrfs_inode *binode = BTRFS_I(inode);
3330
3331 if (atomic_add_unless(&inode->i_count, -1, 1))
3332 return;
3333
3334 spin_lock(&fs_info->delayed_iput_lock);
3335 ASSERT(list_empty(&binode->delayed_iput));
3336 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3337 spin_unlock(&fs_info->delayed_iput_lock);
3338 }
3339
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3340 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3341 {
3342
3343 spin_lock(&fs_info->delayed_iput_lock);
3344 while (!list_empty(&fs_info->delayed_iputs)) {
3345 struct btrfs_inode *inode;
3346
3347 inode = list_first_entry(&fs_info->delayed_iputs,
3348 struct btrfs_inode, delayed_iput);
3349 list_del_init(&inode->delayed_iput);
3350 spin_unlock(&fs_info->delayed_iput_lock);
3351 iput(&inode->vfs_inode);
3352 spin_lock(&fs_info->delayed_iput_lock);
3353 }
3354 spin_unlock(&fs_info->delayed_iput_lock);
3355 }
3356
3357 /*
3358 * This creates an orphan entry for the given inode in case something goes wrong
3359 * in the middle of an unlink.
3360 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3361 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3362 struct btrfs_inode *inode)
3363 {
3364 int ret;
3365
3366 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3367 if (ret && ret != -EEXIST) {
3368 btrfs_abort_transaction(trans, ret);
3369 return ret;
3370 }
3371
3372 return 0;
3373 }
3374
3375 /*
3376 * We have done the delete so we can go ahead and remove the orphan item for
3377 * this particular inode.
3378 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3379 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3380 struct btrfs_inode *inode)
3381 {
3382 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3383 }
3384
3385 /*
3386 * this cleans up any orphans that may be left on the list from the last use
3387 * of this root.
3388 */
btrfs_orphan_cleanup(struct btrfs_root * root)3389 int btrfs_orphan_cleanup(struct btrfs_root *root)
3390 {
3391 struct btrfs_fs_info *fs_info = root->fs_info;
3392 struct btrfs_path *path;
3393 struct extent_buffer *leaf;
3394 struct btrfs_key key, found_key;
3395 struct btrfs_trans_handle *trans;
3396 struct inode *inode;
3397 u64 last_objectid = 0;
3398 int ret = 0, nr_unlink = 0;
3399
3400 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3401 return 0;
3402
3403 path = btrfs_alloc_path();
3404 if (!path) {
3405 ret = -ENOMEM;
3406 goto out;
3407 }
3408 path->reada = READA_BACK;
3409
3410 key.objectid = BTRFS_ORPHAN_OBJECTID;
3411 key.type = BTRFS_ORPHAN_ITEM_KEY;
3412 key.offset = (u64)-1;
3413
3414 while (1) {
3415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3416 if (ret < 0)
3417 goto out;
3418
3419 /*
3420 * if ret == 0 means we found what we were searching for, which
3421 * is weird, but possible, so only screw with path if we didn't
3422 * find the key and see if we have stuff that matches
3423 */
3424 if (ret > 0) {
3425 ret = 0;
3426 if (path->slots[0] == 0)
3427 break;
3428 path->slots[0]--;
3429 }
3430
3431 /* pull out the item */
3432 leaf = path->nodes[0];
3433 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3434
3435 /* make sure the item matches what we want */
3436 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3437 break;
3438 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3439 break;
3440
3441 /* release the path since we're done with it */
3442 btrfs_release_path(path);
3443
3444 /*
3445 * this is where we are basically btrfs_lookup, without the
3446 * crossing root thing. we store the inode number in the
3447 * offset of the orphan item.
3448 */
3449
3450 if (found_key.offset == last_objectid) {
3451 btrfs_err(fs_info,
3452 "Error removing orphan entry, stopping orphan cleanup");
3453 ret = -EINVAL;
3454 goto out;
3455 }
3456
3457 last_objectid = found_key.offset;
3458
3459 found_key.objectid = found_key.offset;
3460 found_key.type = BTRFS_INODE_ITEM_KEY;
3461 found_key.offset = 0;
3462 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3463 ret = PTR_ERR_OR_ZERO(inode);
3464 if (ret && ret != -ENOENT)
3465 goto out;
3466
3467 if (ret == -ENOENT && root == fs_info->tree_root) {
3468 struct btrfs_root *dead_root;
3469 struct btrfs_fs_info *fs_info = root->fs_info;
3470 int is_dead_root = 0;
3471
3472 /*
3473 * this is an orphan in the tree root. Currently these
3474 * could come from 2 sources:
3475 * a) a snapshot deletion in progress
3476 * b) a free space cache inode
3477 * We need to distinguish those two, as the snapshot
3478 * orphan must not get deleted.
3479 * find_dead_roots already ran before us, so if this
3480 * is a snapshot deletion, we should find the root
3481 * in the dead_roots list
3482 */
3483 spin_lock(&fs_info->trans_lock);
3484 list_for_each_entry(dead_root, &fs_info->dead_roots,
3485 root_list) {
3486 if (dead_root->root_key.objectid ==
3487 found_key.objectid) {
3488 is_dead_root = 1;
3489 break;
3490 }
3491 }
3492 spin_unlock(&fs_info->trans_lock);
3493 if (is_dead_root) {
3494 /* prevent this orphan from being found again */
3495 key.offset = found_key.objectid - 1;
3496 continue;
3497 }
3498
3499 }
3500
3501 /*
3502 * If we have an inode with links, there are a couple of
3503 * possibilities. Old kernels (before v3.12) used to create an
3504 * orphan item for truncate indicating that there were possibly
3505 * extent items past i_size that needed to be deleted. In v3.12,
3506 * truncate was changed to update i_size in sync with the extent
3507 * items, but the (useless) orphan item was still created. Since
3508 * v4.18, we don't create the orphan item for truncate at all.
3509 *
3510 * So, this item could mean that we need to do a truncate, but
3511 * only if this filesystem was last used on a pre-v3.12 kernel
3512 * and was not cleanly unmounted. The odds of that are quite
3513 * slim, and it's a pain to do the truncate now, so just delete
3514 * the orphan item.
3515 *
3516 * It's also possible that this orphan item was supposed to be
3517 * deleted but wasn't. The inode number may have been reused,
3518 * but either way, we can delete the orphan item.
3519 */
3520 if (ret == -ENOENT || inode->i_nlink) {
3521 if (!ret)
3522 iput(inode);
3523 trans = btrfs_start_transaction(root, 1);
3524 if (IS_ERR(trans)) {
3525 ret = PTR_ERR(trans);
3526 goto out;
3527 }
3528 btrfs_debug(fs_info, "auto deleting %Lu",
3529 found_key.objectid);
3530 ret = btrfs_del_orphan_item(trans, root,
3531 found_key.objectid);
3532 btrfs_end_transaction(trans);
3533 if (ret)
3534 goto out;
3535 continue;
3536 }
3537
3538 nr_unlink++;
3539
3540 /* this will do delete_inode and everything for us */
3541 iput(inode);
3542 if (ret)
3543 goto out;
3544 }
3545 /* release the path since we're done with it */
3546 btrfs_release_path(path);
3547
3548 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3549
3550 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3551 trans = btrfs_join_transaction(root);
3552 if (!IS_ERR(trans))
3553 btrfs_end_transaction(trans);
3554 }
3555
3556 if (nr_unlink)
3557 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3558
3559 out:
3560 if (ret)
3561 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3562 btrfs_free_path(path);
3563 return ret;
3564 }
3565
3566 /*
3567 * very simple check to peek ahead in the leaf looking for xattrs. If we
3568 * don't find any xattrs, we know there can't be any acls.
3569 *
3570 * slot is the slot the inode is in, objectid is the objectid of the inode
3571 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3572 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3573 int slot, u64 objectid,
3574 int *first_xattr_slot)
3575 {
3576 u32 nritems = btrfs_header_nritems(leaf);
3577 struct btrfs_key found_key;
3578 static u64 xattr_access = 0;
3579 static u64 xattr_default = 0;
3580 int scanned = 0;
3581
3582 if (!xattr_access) {
3583 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3584 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3585 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3586 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3587 }
3588
3589 slot++;
3590 *first_xattr_slot = -1;
3591 while (slot < nritems) {
3592 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3593
3594 /* we found a different objectid, there must not be acls */
3595 if (found_key.objectid != objectid)
3596 return 0;
3597
3598 /* we found an xattr, assume we've got an acl */
3599 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3600 if (*first_xattr_slot == -1)
3601 *first_xattr_slot = slot;
3602 if (found_key.offset == xattr_access ||
3603 found_key.offset == xattr_default)
3604 return 1;
3605 }
3606
3607 /*
3608 * we found a key greater than an xattr key, there can't
3609 * be any acls later on
3610 */
3611 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3612 return 0;
3613
3614 slot++;
3615 scanned++;
3616
3617 /*
3618 * it goes inode, inode backrefs, xattrs, extents,
3619 * so if there are a ton of hard links to an inode there can
3620 * be a lot of backrefs. Don't waste time searching too hard,
3621 * this is just an optimization
3622 */
3623 if (scanned >= 8)
3624 break;
3625 }
3626 /* we hit the end of the leaf before we found an xattr or
3627 * something larger than an xattr. We have to assume the inode
3628 * has acls
3629 */
3630 if (*first_xattr_slot == -1)
3631 *first_xattr_slot = slot;
3632 return 1;
3633 }
3634
3635 /*
3636 * read an inode from the btree into the in-memory inode
3637 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3638 static int btrfs_read_locked_inode(struct inode *inode,
3639 struct btrfs_path *in_path)
3640 {
3641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3642 struct btrfs_path *path = in_path;
3643 struct extent_buffer *leaf;
3644 struct btrfs_inode_item *inode_item;
3645 struct btrfs_root *root = BTRFS_I(inode)->root;
3646 struct btrfs_key location;
3647 unsigned long ptr;
3648 int maybe_acls;
3649 u32 rdev;
3650 int ret;
3651 bool filled = false;
3652 int first_xattr_slot;
3653
3654 ret = btrfs_fill_inode(inode, &rdev);
3655 if (!ret)
3656 filled = true;
3657
3658 if (!path) {
3659 path = btrfs_alloc_path();
3660 if (!path)
3661 return -ENOMEM;
3662 }
3663
3664 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3665
3666 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3667 if (ret) {
3668 if (path != in_path)
3669 btrfs_free_path(path);
3670 return ret;
3671 }
3672
3673 leaf = path->nodes[0];
3674
3675 if (filled)
3676 goto cache_index;
3677
3678 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3679 struct btrfs_inode_item);
3680 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3681 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3682 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3683 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3684 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3685
3686 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3687 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3688
3689 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3690 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3691
3692 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3693 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3694
3695 BTRFS_I(inode)->i_otime.tv_sec =
3696 btrfs_timespec_sec(leaf, &inode_item->otime);
3697 BTRFS_I(inode)->i_otime.tv_nsec =
3698 btrfs_timespec_nsec(leaf, &inode_item->otime);
3699
3700 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3701 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3702 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3703
3704 inode_set_iversion_queried(inode,
3705 btrfs_inode_sequence(leaf, inode_item));
3706 inode->i_generation = BTRFS_I(inode)->generation;
3707 inode->i_rdev = 0;
3708 rdev = btrfs_inode_rdev(leaf, inode_item);
3709
3710 BTRFS_I(inode)->index_cnt = (u64)-1;
3711 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3712
3713 cache_index:
3714 /*
3715 * If we were modified in the current generation and evicted from memory
3716 * and then re-read we need to do a full sync since we don't have any
3717 * idea about which extents were modified before we were evicted from
3718 * cache.
3719 *
3720 * This is required for both inode re-read from disk and delayed inode
3721 * in delayed_nodes_tree.
3722 */
3723 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3724 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3725 &BTRFS_I(inode)->runtime_flags);
3726
3727 /*
3728 * We don't persist the id of the transaction where an unlink operation
3729 * against the inode was last made. So here we assume the inode might
3730 * have been evicted, and therefore the exact value of last_unlink_trans
3731 * lost, and set it to last_trans to avoid metadata inconsistencies
3732 * between the inode and its parent if the inode is fsync'ed and the log
3733 * replayed. For example, in the scenario:
3734 *
3735 * touch mydir/foo
3736 * ln mydir/foo mydir/bar
3737 * sync
3738 * unlink mydir/bar
3739 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3740 * xfs_io -c fsync mydir/foo
3741 * <power failure>
3742 * mount fs, triggers fsync log replay
3743 *
3744 * We must make sure that when we fsync our inode foo we also log its
3745 * parent inode, otherwise after log replay the parent still has the
3746 * dentry with the "bar" name but our inode foo has a link count of 1
3747 * and doesn't have an inode ref with the name "bar" anymore.
3748 *
3749 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3750 * but it guarantees correctness at the expense of occasional full
3751 * transaction commits on fsync if our inode is a directory, or if our
3752 * inode is not a directory, logging its parent unnecessarily.
3753 */
3754 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3755 /*
3756 * Similar reasoning for last_link_trans, needs to be set otherwise
3757 * for a case like the following:
3758 *
3759 * mkdir A
3760 * touch foo
3761 * ln foo A/bar
3762 * echo 2 > /proc/sys/vm/drop_caches
3763 * fsync foo
3764 * <power failure>
3765 *
3766 * Would result in link bar and directory A not existing after the power
3767 * failure.
3768 */
3769 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3770
3771 path->slots[0]++;
3772 if (inode->i_nlink != 1 ||
3773 path->slots[0] >= btrfs_header_nritems(leaf))
3774 goto cache_acl;
3775
3776 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3777 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3778 goto cache_acl;
3779
3780 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3781 if (location.type == BTRFS_INODE_REF_KEY) {
3782 struct btrfs_inode_ref *ref;
3783
3784 ref = (struct btrfs_inode_ref *)ptr;
3785 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3786 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3787 struct btrfs_inode_extref *extref;
3788
3789 extref = (struct btrfs_inode_extref *)ptr;
3790 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3791 extref);
3792 }
3793 cache_acl:
3794 /*
3795 * try to precache a NULL acl entry for files that don't have
3796 * any xattrs or acls
3797 */
3798 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3799 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3800 if (first_xattr_slot != -1) {
3801 path->slots[0] = first_xattr_slot;
3802 ret = btrfs_load_inode_props(inode, path);
3803 if (ret)
3804 btrfs_err(fs_info,
3805 "error loading props for ino %llu (root %llu): %d",
3806 btrfs_ino(BTRFS_I(inode)),
3807 root->root_key.objectid, ret);
3808 }
3809 if (path != in_path)
3810 btrfs_free_path(path);
3811
3812 if (!maybe_acls)
3813 cache_no_acl(inode);
3814
3815 switch (inode->i_mode & S_IFMT) {
3816 case S_IFREG:
3817 inode->i_mapping->a_ops = &btrfs_aops;
3818 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3819 inode->i_fop = &btrfs_file_operations;
3820 inode->i_op = &btrfs_file_inode_operations;
3821 break;
3822 case S_IFDIR:
3823 inode->i_fop = &btrfs_dir_file_operations;
3824 inode->i_op = &btrfs_dir_inode_operations;
3825 break;
3826 case S_IFLNK:
3827 inode->i_op = &btrfs_symlink_inode_operations;
3828 inode_nohighmem(inode);
3829 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3830 break;
3831 default:
3832 inode->i_op = &btrfs_special_inode_operations;
3833 init_special_inode(inode, inode->i_mode, rdev);
3834 break;
3835 }
3836
3837 btrfs_sync_inode_flags_to_i_flags(inode);
3838 return 0;
3839 }
3840
3841 /*
3842 * given a leaf and an inode, copy the inode fields into the leaf
3843 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3844 static void fill_inode_item(struct btrfs_trans_handle *trans,
3845 struct extent_buffer *leaf,
3846 struct btrfs_inode_item *item,
3847 struct inode *inode)
3848 {
3849 struct btrfs_map_token token;
3850
3851 btrfs_init_map_token(&token);
3852
3853 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3854 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3855 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3856 &token);
3857 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3858 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3859
3860 btrfs_set_token_timespec_sec(leaf, &item->atime,
3861 inode->i_atime.tv_sec, &token);
3862 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3863 inode->i_atime.tv_nsec, &token);
3864
3865 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3866 inode->i_mtime.tv_sec, &token);
3867 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3868 inode->i_mtime.tv_nsec, &token);
3869
3870 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3871 inode->i_ctime.tv_sec, &token);
3872 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3873 inode->i_ctime.tv_nsec, &token);
3874
3875 btrfs_set_token_timespec_sec(leaf, &item->otime,
3876 BTRFS_I(inode)->i_otime.tv_sec, &token);
3877 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3878 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3879
3880 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3881 &token);
3882 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3883 &token);
3884 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3885 &token);
3886 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3887 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3888 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3889 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3890 }
3891
3892 /*
3893 * copy everything in the in-memory inode into the btree.
3894 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3895 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3896 struct btrfs_root *root, struct inode *inode)
3897 {
3898 struct btrfs_inode_item *inode_item;
3899 struct btrfs_path *path;
3900 struct extent_buffer *leaf;
3901 int ret;
3902
3903 path = btrfs_alloc_path();
3904 if (!path)
3905 return -ENOMEM;
3906
3907 path->leave_spinning = 1;
3908 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3909 1);
3910 if (ret) {
3911 if (ret > 0)
3912 ret = -ENOENT;
3913 goto failed;
3914 }
3915
3916 leaf = path->nodes[0];
3917 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3918 struct btrfs_inode_item);
3919
3920 fill_inode_item(trans, leaf, inode_item, inode);
3921 btrfs_mark_buffer_dirty(leaf);
3922 btrfs_set_inode_last_trans(trans, inode);
3923 ret = 0;
3924 failed:
3925 btrfs_free_path(path);
3926 return ret;
3927 }
3928
3929 /*
3930 * copy everything in the in-memory inode into the btree.
3931 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3932 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3933 struct btrfs_root *root, struct inode *inode)
3934 {
3935 struct btrfs_fs_info *fs_info = root->fs_info;
3936 int ret;
3937
3938 /*
3939 * If the inode is a free space inode, we can deadlock during commit
3940 * if we put it into the delayed code.
3941 *
3942 * The data relocation inode should also be directly updated
3943 * without delay
3944 */
3945 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3946 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3947 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3948 btrfs_update_root_times(trans, root);
3949
3950 ret = btrfs_delayed_update_inode(trans, root, inode);
3951 if (!ret)
3952 btrfs_set_inode_last_trans(trans, inode);
3953 return ret;
3954 }
3955
3956 return btrfs_update_inode_item(trans, root, inode);
3957 }
3958
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3959 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root,
3961 struct inode *inode)
3962 {
3963 int ret;
3964
3965 ret = btrfs_update_inode(trans, root, inode);
3966 if (ret == -ENOSPC)
3967 return btrfs_update_inode_item(trans, root, inode);
3968 return ret;
3969 }
3970
3971 /*
3972 * unlink helper that gets used here in inode.c and in the tree logging
3973 * recovery code. It remove a link in a directory with a given name, and
3974 * also drops the back refs in the inode to the directory
3975 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3976 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3977 struct btrfs_root *root,
3978 struct btrfs_inode *dir,
3979 struct btrfs_inode *inode,
3980 const char *name, int name_len)
3981 {
3982 struct btrfs_fs_info *fs_info = root->fs_info;
3983 struct btrfs_path *path;
3984 int ret = 0;
3985 struct extent_buffer *leaf;
3986 struct btrfs_dir_item *di;
3987 struct btrfs_key key;
3988 u64 index;
3989 u64 ino = btrfs_ino(inode);
3990 u64 dir_ino = btrfs_ino(dir);
3991
3992 path = btrfs_alloc_path();
3993 if (!path) {
3994 ret = -ENOMEM;
3995 goto out;
3996 }
3997
3998 path->leave_spinning = 1;
3999 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4000 name, name_len, -1);
4001 if (IS_ERR(di)) {
4002 ret = PTR_ERR(di);
4003 goto err;
4004 }
4005 if (!di) {
4006 ret = -ENOENT;
4007 goto err;
4008 }
4009 leaf = path->nodes[0];
4010 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4011 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4012 if (ret)
4013 goto err;
4014 btrfs_release_path(path);
4015
4016 /*
4017 * If we don't have dir index, we have to get it by looking up
4018 * the inode ref, since we get the inode ref, remove it directly,
4019 * it is unnecessary to do delayed deletion.
4020 *
4021 * But if we have dir index, needn't search inode ref to get it.
4022 * Since the inode ref is close to the inode item, it is better
4023 * that we delay to delete it, and just do this deletion when
4024 * we update the inode item.
4025 */
4026 if (inode->dir_index) {
4027 ret = btrfs_delayed_delete_inode_ref(inode);
4028 if (!ret) {
4029 index = inode->dir_index;
4030 goto skip_backref;
4031 }
4032 }
4033
4034 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4035 dir_ino, &index);
4036 if (ret) {
4037 btrfs_info(fs_info,
4038 "failed to delete reference to %.*s, inode %llu parent %llu",
4039 name_len, name, ino, dir_ino);
4040 btrfs_abort_transaction(trans, ret);
4041 goto err;
4042 }
4043 skip_backref:
4044 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4045 if (ret) {
4046 btrfs_abort_transaction(trans, ret);
4047 goto err;
4048 }
4049
4050 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4051 dir_ino);
4052 if (ret != 0 && ret != -ENOENT) {
4053 btrfs_abort_transaction(trans, ret);
4054 goto err;
4055 }
4056
4057 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4058 index);
4059 if (ret == -ENOENT)
4060 ret = 0;
4061 else if (ret)
4062 btrfs_abort_transaction(trans, ret);
4063 err:
4064 btrfs_free_path(path);
4065 if (ret)
4066 goto out;
4067
4068 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4069 inode_inc_iversion(&inode->vfs_inode);
4070 inode_inc_iversion(&dir->vfs_inode);
4071 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4072 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4073 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4074 out:
4075 return ret;
4076 }
4077
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4078 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4079 struct btrfs_root *root,
4080 struct btrfs_inode *dir, struct btrfs_inode *inode,
4081 const char *name, int name_len)
4082 {
4083 int ret;
4084 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4085 if (!ret) {
4086 drop_nlink(&inode->vfs_inode);
4087 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4088 }
4089 return ret;
4090 }
4091
4092 /*
4093 * helper to start transaction for unlink and rmdir.
4094 *
4095 * unlink and rmdir are special in btrfs, they do not always free space, so
4096 * if we cannot make our reservations the normal way try and see if there is
4097 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4098 * allow the unlink to occur.
4099 */
__unlink_start_trans(struct inode * dir)4100 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4101 {
4102 struct btrfs_root *root = BTRFS_I(dir)->root;
4103
4104 /*
4105 * 1 for the possible orphan item
4106 * 1 for the dir item
4107 * 1 for the dir index
4108 * 1 for the inode ref
4109 * 1 for the inode
4110 */
4111 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4112 }
4113
btrfs_unlink(struct inode * dir,struct dentry * dentry)4114 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4115 {
4116 struct btrfs_root *root = BTRFS_I(dir)->root;
4117 struct btrfs_trans_handle *trans;
4118 struct inode *inode = d_inode(dentry);
4119 int ret;
4120
4121 trans = __unlink_start_trans(dir);
4122 if (IS_ERR(trans))
4123 return PTR_ERR(trans);
4124
4125 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4126 0);
4127
4128 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4129 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4130 dentry->d_name.len);
4131 if (ret)
4132 goto out;
4133
4134 if (inode->i_nlink == 0) {
4135 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4136 if (ret)
4137 goto out;
4138 }
4139
4140 out:
4141 btrfs_end_transaction(trans);
4142 btrfs_btree_balance_dirty(root->fs_info);
4143 return ret;
4144 }
4145
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4146 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4147 struct inode *dir, struct dentry *dentry)
4148 {
4149 struct btrfs_root *root = BTRFS_I(dir)->root;
4150 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4151 struct btrfs_path *path;
4152 struct extent_buffer *leaf;
4153 struct btrfs_dir_item *di;
4154 struct btrfs_key key;
4155 const char *name = dentry->d_name.name;
4156 int name_len = dentry->d_name.len;
4157 u64 index;
4158 int ret;
4159 u64 objectid;
4160 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4161
4162 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4163 objectid = inode->root->root_key.objectid;
4164 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4165 objectid = inode->location.objectid;
4166 } else {
4167 WARN_ON(1);
4168 return -EINVAL;
4169 }
4170
4171 path = btrfs_alloc_path();
4172 if (!path)
4173 return -ENOMEM;
4174
4175 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4176 name, name_len, -1);
4177 if (IS_ERR_OR_NULL(di)) {
4178 if (!di)
4179 ret = -ENOENT;
4180 else
4181 ret = PTR_ERR(di);
4182 goto out;
4183 }
4184
4185 leaf = path->nodes[0];
4186 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4187 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4188 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4189 if (ret) {
4190 btrfs_abort_transaction(trans, ret);
4191 goto out;
4192 }
4193 btrfs_release_path(path);
4194
4195 /*
4196 * This is a placeholder inode for a subvolume we didn't have a
4197 * reference to at the time of the snapshot creation. In the meantime
4198 * we could have renamed the real subvol link into our snapshot, so
4199 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4200 * Instead simply lookup the dir_index_item for this entry so we can
4201 * remove it. Otherwise we know we have a ref to the root and we can
4202 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4203 */
4204 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4205 di = btrfs_search_dir_index_item(root, path, dir_ino,
4206 name, name_len);
4207 if (IS_ERR_OR_NULL(di)) {
4208 if (!di)
4209 ret = -ENOENT;
4210 else
4211 ret = PTR_ERR(di);
4212 btrfs_abort_transaction(trans, ret);
4213 goto out;
4214 }
4215
4216 leaf = path->nodes[0];
4217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4218 index = key.offset;
4219 btrfs_release_path(path);
4220 } else {
4221 ret = btrfs_del_root_ref(trans, objectid,
4222 root->root_key.objectid, dir_ino,
4223 &index, name, name_len);
4224 if (ret) {
4225 btrfs_abort_transaction(trans, ret);
4226 goto out;
4227 }
4228 }
4229
4230 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4231 if (ret) {
4232 btrfs_abort_transaction(trans, ret);
4233 goto out;
4234 }
4235
4236 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4237 inode_inc_iversion(dir);
4238 dir->i_mtime = dir->i_ctime = current_time(dir);
4239 ret = btrfs_update_inode_fallback(trans, root, dir);
4240 if (ret)
4241 btrfs_abort_transaction(trans, ret);
4242 out:
4243 btrfs_free_path(path);
4244 return ret;
4245 }
4246
4247 /*
4248 * Helper to check if the subvolume references other subvolumes or if it's
4249 * default.
4250 */
may_destroy_subvol(struct btrfs_root * root)4251 static noinline int may_destroy_subvol(struct btrfs_root *root)
4252 {
4253 struct btrfs_fs_info *fs_info = root->fs_info;
4254 struct btrfs_path *path;
4255 struct btrfs_dir_item *di;
4256 struct btrfs_key key;
4257 u64 dir_id;
4258 int ret;
4259
4260 path = btrfs_alloc_path();
4261 if (!path)
4262 return -ENOMEM;
4263
4264 /* Make sure this root isn't set as the default subvol */
4265 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4266 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4267 dir_id, "default", 7, 0);
4268 if (di && !IS_ERR(di)) {
4269 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4270 if (key.objectid == root->root_key.objectid) {
4271 ret = -EPERM;
4272 btrfs_err(fs_info,
4273 "deleting default subvolume %llu is not allowed",
4274 key.objectid);
4275 goto out;
4276 }
4277 btrfs_release_path(path);
4278 }
4279
4280 key.objectid = root->root_key.objectid;
4281 key.type = BTRFS_ROOT_REF_KEY;
4282 key.offset = (u64)-1;
4283
4284 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4285 if (ret < 0)
4286 goto out;
4287 BUG_ON(ret == 0);
4288
4289 ret = 0;
4290 if (path->slots[0] > 0) {
4291 path->slots[0]--;
4292 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4293 if (key.objectid == root->root_key.objectid &&
4294 key.type == BTRFS_ROOT_REF_KEY)
4295 ret = -ENOTEMPTY;
4296 }
4297 out:
4298 btrfs_free_path(path);
4299 return ret;
4300 }
4301
4302 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4303 static void btrfs_prune_dentries(struct btrfs_root *root)
4304 {
4305 struct btrfs_fs_info *fs_info = root->fs_info;
4306 struct rb_node *node;
4307 struct rb_node *prev;
4308 struct btrfs_inode *entry;
4309 struct inode *inode;
4310 u64 objectid = 0;
4311
4312 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4313 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4314
4315 spin_lock(&root->inode_lock);
4316 again:
4317 node = root->inode_tree.rb_node;
4318 prev = NULL;
4319 while (node) {
4320 prev = node;
4321 entry = rb_entry(node, struct btrfs_inode, rb_node);
4322
4323 if (objectid < btrfs_ino(entry))
4324 node = node->rb_left;
4325 else if (objectid > btrfs_ino(entry))
4326 node = node->rb_right;
4327 else
4328 break;
4329 }
4330 if (!node) {
4331 while (prev) {
4332 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4333 if (objectid <= btrfs_ino(entry)) {
4334 node = prev;
4335 break;
4336 }
4337 prev = rb_next(prev);
4338 }
4339 }
4340 while (node) {
4341 entry = rb_entry(node, struct btrfs_inode, rb_node);
4342 objectid = btrfs_ino(entry) + 1;
4343 inode = igrab(&entry->vfs_inode);
4344 if (inode) {
4345 spin_unlock(&root->inode_lock);
4346 if (atomic_read(&inode->i_count) > 1)
4347 d_prune_aliases(inode);
4348 /*
4349 * btrfs_drop_inode will have it removed from the inode
4350 * cache when its usage count hits zero.
4351 */
4352 iput(inode);
4353 cond_resched();
4354 spin_lock(&root->inode_lock);
4355 goto again;
4356 }
4357
4358 if (cond_resched_lock(&root->inode_lock))
4359 goto again;
4360
4361 node = rb_next(node);
4362 }
4363 spin_unlock(&root->inode_lock);
4364 }
4365
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4366 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4367 {
4368 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4369 struct btrfs_root *root = BTRFS_I(dir)->root;
4370 struct inode *inode = d_inode(dentry);
4371 struct btrfs_root *dest = BTRFS_I(inode)->root;
4372 struct btrfs_trans_handle *trans;
4373 struct btrfs_block_rsv block_rsv;
4374 u64 root_flags;
4375 int ret;
4376 int err;
4377
4378 /*
4379 * Don't allow to delete a subvolume with send in progress. This is
4380 * inside the inode lock so the error handling that has to drop the bit
4381 * again is not run concurrently.
4382 */
4383 spin_lock(&dest->root_item_lock);
4384 root_flags = btrfs_root_flags(&dest->root_item);
4385 if (dest->send_in_progress == 0) {
4386 btrfs_set_root_flags(&dest->root_item,
4387 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4388 spin_unlock(&dest->root_item_lock);
4389 } else {
4390 spin_unlock(&dest->root_item_lock);
4391 btrfs_warn(fs_info,
4392 "attempt to delete subvolume %llu during send",
4393 dest->root_key.objectid);
4394 return -EPERM;
4395 }
4396
4397 down_write(&fs_info->subvol_sem);
4398
4399 err = may_destroy_subvol(dest);
4400 if (err)
4401 goto out_up_write;
4402
4403 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4404 /*
4405 * One for dir inode,
4406 * two for dir entries,
4407 * two for root ref/backref.
4408 */
4409 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4410 if (err)
4411 goto out_up_write;
4412
4413 trans = btrfs_start_transaction(root, 0);
4414 if (IS_ERR(trans)) {
4415 err = PTR_ERR(trans);
4416 goto out_release;
4417 }
4418 trans->block_rsv = &block_rsv;
4419 trans->bytes_reserved = block_rsv.size;
4420
4421 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4422
4423 ret = btrfs_unlink_subvol(trans, dir, dentry);
4424 if (ret) {
4425 err = ret;
4426 btrfs_abort_transaction(trans, ret);
4427 goto out_end_trans;
4428 }
4429
4430 btrfs_record_root_in_trans(trans, dest);
4431
4432 memset(&dest->root_item.drop_progress, 0,
4433 sizeof(dest->root_item.drop_progress));
4434 dest->root_item.drop_level = 0;
4435 btrfs_set_root_refs(&dest->root_item, 0);
4436
4437 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4438 ret = btrfs_insert_orphan_item(trans,
4439 fs_info->tree_root,
4440 dest->root_key.objectid);
4441 if (ret) {
4442 btrfs_abort_transaction(trans, ret);
4443 err = ret;
4444 goto out_end_trans;
4445 }
4446 }
4447
4448 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4449 BTRFS_UUID_KEY_SUBVOL,
4450 dest->root_key.objectid);
4451 if (ret && ret != -ENOENT) {
4452 btrfs_abort_transaction(trans, ret);
4453 err = ret;
4454 goto out_end_trans;
4455 }
4456 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4457 ret = btrfs_uuid_tree_remove(trans,
4458 dest->root_item.received_uuid,
4459 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4460 dest->root_key.objectid);
4461 if (ret && ret != -ENOENT) {
4462 btrfs_abort_transaction(trans, ret);
4463 err = ret;
4464 goto out_end_trans;
4465 }
4466 }
4467
4468 free_anon_bdev(dest->anon_dev);
4469 dest->anon_dev = 0;
4470 out_end_trans:
4471 trans->block_rsv = NULL;
4472 trans->bytes_reserved = 0;
4473 ret = btrfs_end_transaction(trans);
4474 if (ret && !err)
4475 err = ret;
4476 inode->i_flags |= S_DEAD;
4477 out_release:
4478 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4479 out_up_write:
4480 up_write(&fs_info->subvol_sem);
4481 if (err) {
4482 spin_lock(&dest->root_item_lock);
4483 root_flags = btrfs_root_flags(&dest->root_item);
4484 btrfs_set_root_flags(&dest->root_item,
4485 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4486 spin_unlock(&dest->root_item_lock);
4487 } else {
4488 d_invalidate(dentry);
4489 btrfs_prune_dentries(dest);
4490 ASSERT(dest->send_in_progress == 0);
4491
4492 /* the last ref */
4493 if (dest->ino_cache_inode) {
4494 iput(dest->ino_cache_inode);
4495 dest->ino_cache_inode = NULL;
4496 }
4497 }
4498
4499 return err;
4500 }
4501
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4502 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4503 {
4504 struct inode *inode = d_inode(dentry);
4505 int err = 0;
4506 struct btrfs_root *root = BTRFS_I(dir)->root;
4507 struct btrfs_trans_handle *trans;
4508 u64 last_unlink_trans;
4509
4510 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4511 return -ENOTEMPTY;
4512 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4513 return btrfs_delete_subvolume(dir, dentry);
4514
4515 trans = __unlink_start_trans(dir);
4516 if (IS_ERR(trans))
4517 return PTR_ERR(trans);
4518
4519 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4520 err = btrfs_unlink_subvol(trans, dir, dentry);
4521 goto out;
4522 }
4523
4524 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4525 if (err)
4526 goto out;
4527
4528 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4529
4530 /* now the directory is empty */
4531 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4532 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4533 dentry->d_name.len);
4534 if (!err) {
4535 btrfs_i_size_write(BTRFS_I(inode), 0);
4536 /*
4537 * Propagate the last_unlink_trans value of the deleted dir to
4538 * its parent directory. This is to prevent an unrecoverable
4539 * log tree in the case we do something like this:
4540 * 1) create dir foo
4541 * 2) create snapshot under dir foo
4542 * 3) delete the snapshot
4543 * 4) rmdir foo
4544 * 5) mkdir foo
4545 * 6) fsync foo or some file inside foo
4546 */
4547 if (last_unlink_trans >= trans->transid)
4548 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4549 }
4550 out:
4551 btrfs_end_transaction(trans);
4552 btrfs_btree_balance_dirty(root->fs_info);
4553
4554 return err;
4555 }
4556
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4557 static int truncate_space_check(struct btrfs_trans_handle *trans,
4558 struct btrfs_root *root,
4559 u64 bytes_deleted)
4560 {
4561 struct btrfs_fs_info *fs_info = root->fs_info;
4562 int ret;
4563
4564 /*
4565 * This is only used to apply pressure to the enospc system, we don't
4566 * intend to use this reservation at all.
4567 */
4568 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4569 bytes_deleted *= fs_info->nodesize;
4570 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4571 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4572 if (!ret) {
4573 trace_btrfs_space_reservation(fs_info, "transaction",
4574 trans->transid,
4575 bytes_deleted, 1);
4576 trans->bytes_reserved += bytes_deleted;
4577 }
4578 return ret;
4579
4580 }
4581
4582 /*
4583 * Return this if we need to call truncate_block for the last bit of the
4584 * truncate.
4585 */
4586 #define NEED_TRUNCATE_BLOCK 1
4587
4588 /*
4589 * this can truncate away extent items, csum items and directory items.
4590 * It starts at a high offset and removes keys until it can't find
4591 * any higher than new_size
4592 *
4593 * csum items that cross the new i_size are truncated to the new size
4594 * as well.
4595 *
4596 * min_type is the minimum key type to truncate down to. If set to 0, this
4597 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4598 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4599 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4600 struct btrfs_root *root,
4601 struct inode *inode,
4602 u64 new_size, u32 min_type)
4603 {
4604 struct btrfs_fs_info *fs_info = root->fs_info;
4605 struct btrfs_path *path;
4606 struct extent_buffer *leaf;
4607 struct btrfs_file_extent_item *fi;
4608 struct btrfs_key key;
4609 struct btrfs_key found_key;
4610 u64 extent_start = 0;
4611 u64 extent_num_bytes = 0;
4612 u64 extent_offset = 0;
4613 u64 item_end = 0;
4614 u64 last_size = new_size;
4615 u32 found_type = (u8)-1;
4616 int found_extent;
4617 int del_item;
4618 int pending_del_nr = 0;
4619 int pending_del_slot = 0;
4620 int extent_type = -1;
4621 int ret;
4622 u64 ino = btrfs_ino(BTRFS_I(inode));
4623 u64 bytes_deleted = 0;
4624 bool be_nice = false;
4625 bool should_throttle = false;
4626 bool should_end = false;
4627
4628 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4629
4630 /*
4631 * for non-free space inodes and ref cows, we want to back off from
4632 * time to time
4633 */
4634 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4635 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4636 be_nice = true;
4637
4638 path = btrfs_alloc_path();
4639 if (!path)
4640 return -ENOMEM;
4641 path->reada = READA_BACK;
4642
4643 /*
4644 * We want to drop from the next block forward in case this new size is
4645 * not block aligned since we will be keeping the last block of the
4646 * extent just the way it is.
4647 */
4648 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4649 root == fs_info->tree_root)
4650 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4651 fs_info->sectorsize),
4652 (u64)-1, 0);
4653
4654 /*
4655 * This function is also used to drop the items in the log tree before
4656 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4657 * it is used to drop the loged items. So we shouldn't kill the delayed
4658 * items.
4659 */
4660 if (min_type == 0 && root == BTRFS_I(inode)->root)
4661 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4662
4663 key.objectid = ino;
4664 key.offset = (u64)-1;
4665 key.type = (u8)-1;
4666
4667 search_again:
4668 /*
4669 * with a 16K leaf size and 128MB extents, you can actually queue
4670 * up a huge file in a single leaf. Most of the time that
4671 * bytes_deleted is > 0, it will be huge by the time we get here
4672 */
4673 if (be_nice && bytes_deleted > SZ_32M &&
4674 btrfs_should_end_transaction(trans)) {
4675 ret = -EAGAIN;
4676 goto out;
4677 }
4678
4679 path->leave_spinning = 1;
4680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4681 if (ret < 0)
4682 goto out;
4683
4684 if (ret > 0) {
4685 ret = 0;
4686 /* there are no items in the tree for us to truncate, we're
4687 * done
4688 */
4689 if (path->slots[0] == 0)
4690 goto out;
4691 path->slots[0]--;
4692 }
4693
4694 while (1) {
4695 fi = NULL;
4696 leaf = path->nodes[0];
4697 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4698 found_type = found_key.type;
4699
4700 if (found_key.objectid != ino)
4701 break;
4702
4703 if (found_type < min_type)
4704 break;
4705
4706 item_end = found_key.offset;
4707 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4708 fi = btrfs_item_ptr(leaf, path->slots[0],
4709 struct btrfs_file_extent_item);
4710 extent_type = btrfs_file_extent_type(leaf, fi);
4711 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4712 item_end +=
4713 btrfs_file_extent_num_bytes(leaf, fi);
4714
4715 trace_btrfs_truncate_show_fi_regular(
4716 BTRFS_I(inode), leaf, fi,
4717 found_key.offset);
4718 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4719 item_end += btrfs_file_extent_ram_bytes(leaf,
4720 fi);
4721
4722 trace_btrfs_truncate_show_fi_inline(
4723 BTRFS_I(inode), leaf, fi, path->slots[0],
4724 found_key.offset);
4725 }
4726 item_end--;
4727 }
4728 if (found_type > min_type) {
4729 del_item = 1;
4730 } else {
4731 if (item_end < new_size)
4732 break;
4733 if (found_key.offset >= new_size)
4734 del_item = 1;
4735 else
4736 del_item = 0;
4737 }
4738 found_extent = 0;
4739 /* FIXME, shrink the extent if the ref count is only 1 */
4740 if (found_type != BTRFS_EXTENT_DATA_KEY)
4741 goto delete;
4742
4743 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4744 u64 num_dec;
4745 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4746 if (!del_item) {
4747 u64 orig_num_bytes =
4748 btrfs_file_extent_num_bytes(leaf, fi);
4749 extent_num_bytes = ALIGN(new_size -
4750 found_key.offset,
4751 fs_info->sectorsize);
4752 btrfs_set_file_extent_num_bytes(leaf, fi,
4753 extent_num_bytes);
4754 num_dec = (orig_num_bytes -
4755 extent_num_bytes);
4756 if (test_bit(BTRFS_ROOT_REF_COWS,
4757 &root->state) &&
4758 extent_start != 0)
4759 inode_sub_bytes(inode, num_dec);
4760 btrfs_mark_buffer_dirty(leaf);
4761 } else {
4762 extent_num_bytes =
4763 btrfs_file_extent_disk_num_bytes(leaf,
4764 fi);
4765 extent_offset = found_key.offset -
4766 btrfs_file_extent_offset(leaf, fi);
4767
4768 /* FIXME blocksize != 4096 */
4769 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4770 if (extent_start != 0) {
4771 found_extent = 1;
4772 if (test_bit(BTRFS_ROOT_REF_COWS,
4773 &root->state))
4774 inode_sub_bytes(inode, num_dec);
4775 }
4776 }
4777 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4778 /*
4779 * we can't truncate inline items that have had
4780 * special encodings
4781 */
4782 if (!del_item &&
4783 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4784 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4785 btrfs_file_extent_compression(leaf, fi) == 0) {
4786 u32 size = (u32)(new_size - found_key.offset);
4787
4788 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4789 size = btrfs_file_extent_calc_inline_size(size);
4790 btrfs_truncate_item(root->fs_info, path, size, 1);
4791 } else if (!del_item) {
4792 /*
4793 * We have to bail so the last_size is set to
4794 * just before this extent.
4795 */
4796 ret = NEED_TRUNCATE_BLOCK;
4797 break;
4798 }
4799
4800 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4801 inode_sub_bytes(inode, item_end + 1 - new_size);
4802 }
4803 delete:
4804 if (del_item)
4805 last_size = found_key.offset;
4806 else
4807 last_size = new_size;
4808 if (del_item) {
4809 if (!pending_del_nr) {
4810 /* no pending yet, add ourselves */
4811 pending_del_slot = path->slots[0];
4812 pending_del_nr = 1;
4813 } else if (pending_del_nr &&
4814 path->slots[0] + 1 == pending_del_slot) {
4815 /* hop on the pending chunk */
4816 pending_del_nr++;
4817 pending_del_slot = path->slots[0];
4818 } else {
4819 BUG();
4820 }
4821 } else {
4822 break;
4823 }
4824 should_throttle = false;
4825
4826 if (found_extent &&
4827 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4828 root == fs_info->tree_root)) {
4829 btrfs_set_path_blocking(path);
4830 bytes_deleted += extent_num_bytes;
4831 ret = btrfs_free_extent(trans, root, extent_start,
4832 extent_num_bytes, 0,
4833 btrfs_header_owner(leaf),
4834 ino, extent_offset);
4835 if (ret) {
4836 btrfs_abort_transaction(trans, ret);
4837 break;
4838 }
4839 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4840 btrfs_async_run_delayed_refs(fs_info,
4841 trans->delayed_ref_updates * 2,
4842 trans->transid, 0);
4843 if (be_nice) {
4844 if (truncate_space_check(trans, root,
4845 extent_num_bytes)) {
4846 should_end = true;
4847 }
4848 if (btrfs_should_throttle_delayed_refs(trans,
4849 fs_info))
4850 should_throttle = true;
4851 }
4852 }
4853
4854 if (found_type == BTRFS_INODE_ITEM_KEY)
4855 break;
4856
4857 if (path->slots[0] == 0 ||
4858 path->slots[0] != pending_del_slot ||
4859 should_throttle || should_end) {
4860 if (pending_del_nr) {
4861 ret = btrfs_del_items(trans, root, path,
4862 pending_del_slot,
4863 pending_del_nr);
4864 if (ret) {
4865 btrfs_abort_transaction(trans, ret);
4866 break;
4867 }
4868 pending_del_nr = 0;
4869 }
4870 btrfs_release_path(path);
4871 if (should_throttle) {
4872 unsigned long updates = trans->delayed_ref_updates;
4873 if (updates) {
4874 trans->delayed_ref_updates = 0;
4875 ret = btrfs_run_delayed_refs(trans,
4876 updates * 2);
4877 if (ret)
4878 break;
4879 }
4880 }
4881 /*
4882 * if we failed to refill our space rsv, bail out
4883 * and let the transaction restart
4884 */
4885 if (should_end) {
4886 ret = -EAGAIN;
4887 break;
4888 }
4889 goto search_again;
4890 } else {
4891 path->slots[0]--;
4892 }
4893 }
4894 out:
4895 if (ret >= 0 && pending_del_nr) {
4896 int err;
4897
4898 err = btrfs_del_items(trans, root, path, pending_del_slot,
4899 pending_del_nr);
4900 if (err) {
4901 btrfs_abort_transaction(trans, err);
4902 ret = err;
4903 }
4904 }
4905 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4906 ASSERT(last_size >= new_size);
4907 if (!ret && last_size > new_size)
4908 last_size = new_size;
4909 btrfs_ordered_update_i_size(inode, last_size, NULL);
4910 }
4911
4912 btrfs_free_path(path);
4913
4914 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4915 unsigned long updates = trans->delayed_ref_updates;
4916 int err;
4917
4918 if (updates) {
4919 trans->delayed_ref_updates = 0;
4920 err = btrfs_run_delayed_refs(trans, updates * 2);
4921 if (err)
4922 ret = err;
4923 }
4924 }
4925 return ret;
4926 }
4927
4928 /*
4929 * btrfs_truncate_block - read, zero a chunk and write a block
4930 * @inode - inode that we're zeroing
4931 * @from - the offset to start zeroing
4932 * @len - the length to zero, 0 to zero the entire range respective to the
4933 * offset
4934 * @front - zero up to the offset instead of from the offset on
4935 *
4936 * This will find the block for the "from" offset and cow the block and zero the
4937 * part we want to zero. This is used with truncate and hole punching.
4938 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4939 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4940 int front)
4941 {
4942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4943 struct address_space *mapping = inode->i_mapping;
4944 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4945 struct btrfs_ordered_extent *ordered;
4946 struct extent_state *cached_state = NULL;
4947 struct extent_changeset *data_reserved = NULL;
4948 char *kaddr;
4949 u32 blocksize = fs_info->sectorsize;
4950 pgoff_t index = from >> PAGE_SHIFT;
4951 unsigned offset = from & (blocksize - 1);
4952 struct page *page;
4953 gfp_t mask = btrfs_alloc_write_mask(mapping);
4954 int ret = 0;
4955 u64 block_start;
4956 u64 block_end;
4957
4958 if (IS_ALIGNED(offset, blocksize) &&
4959 (!len || IS_ALIGNED(len, blocksize)))
4960 goto out;
4961
4962 block_start = round_down(from, blocksize);
4963 block_end = block_start + blocksize - 1;
4964
4965 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4966 block_start, blocksize);
4967 if (ret)
4968 goto out;
4969
4970 again:
4971 page = find_or_create_page(mapping, index, mask);
4972 if (!page) {
4973 btrfs_delalloc_release_space(inode, data_reserved,
4974 block_start, blocksize, true);
4975 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4976 ret = -ENOMEM;
4977 goto out;
4978 }
4979
4980 if (!PageUptodate(page)) {
4981 ret = btrfs_readpage(NULL, page);
4982 lock_page(page);
4983 if (page->mapping != mapping) {
4984 unlock_page(page);
4985 put_page(page);
4986 goto again;
4987 }
4988 if (!PageUptodate(page)) {
4989 ret = -EIO;
4990 goto out_unlock;
4991 }
4992 }
4993 wait_on_page_writeback(page);
4994
4995 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4996 set_page_extent_mapped(page);
4997
4998 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4999 if (ordered) {
5000 unlock_extent_cached(io_tree, block_start, block_end,
5001 &cached_state);
5002 unlock_page(page);
5003 put_page(page);
5004 btrfs_start_ordered_extent(inode, ordered, 1);
5005 btrfs_put_ordered_extent(ordered);
5006 goto again;
5007 }
5008
5009 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5010 EXTENT_DIRTY | EXTENT_DELALLOC |
5011 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5012 0, 0, &cached_state);
5013
5014 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5015 &cached_state, 0);
5016 if (ret) {
5017 unlock_extent_cached(io_tree, block_start, block_end,
5018 &cached_state);
5019 goto out_unlock;
5020 }
5021
5022 if (offset != blocksize) {
5023 if (!len)
5024 len = blocksize - offset;
5025 kaddr = kmap(page);
5026 if (front)
5027 memset(kaddr + (block_start - page_offset(page)),
5028 0, offset);
5029 else
5030 memset(kaddr + (block_start - page_offset(page)) + offset,
5031 0, len);
5032 flush_dcache_page(page);
5033 kunmap(page);
5034 }
5035 ClearPageChecked(page);
5036 set_page_dirty(page);
5037 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5038
5039 out_unlock:
5040 if (ret)
5041 btrfs_delalloc_release_space(inode, data_reserved, block_start,
5042 blocksize, true);
5043 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5044 unlock_page(page);
5045 put_page(page);
5046 out:
5047 extent_changeset_free(data_reserved);
5048 return ret;
5049 }
5050
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5051 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5052 u64 offset, u64 len)
5053 {
5054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5055 struct btrfs_trans_handle *trans;
5056 int ret;
5057
5058 /*
5059 * Still need to make sure the inode looks like it's been updated so
5060 * that any holes get logged if we fsync.
5061 */
5062 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5063 BTRFS_I(inode)->last_trans = fs_info->generation;
5064 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5065 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5066 return 0;
5067 }
5068
5069 /*
5070 * 1 - for the one we're dropping
5071 * 1 - for the one we're adding
5072 * 1 - for updating the inode.
5073 */
5074 trans = btrfs_start_transaction(root, 3);
5075 if (IS_ERR(trans))
5076 return PTR_ERR(trans);
5077
5078 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5079 if (ret) {
5080 btrfs_abort_transaction(trans, ret);
5081 btrfs_end_transaction(trans);
5082 return ret;
5083 }
5084
5085 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5086 offset, 0, 0, len, 0, len, 0, 0, 0);
5087 if (ret)
5088 btrfs_abort_transaction(trans, ret);
5089 else
5090 btrfs_update_inode(trans, root, inode);
5091 btrfs_end_transaction(trans);
5092 return ret;
5093 }
5094
5095 /*
5096 * This function puts in dummy file extents for the area we're creating a hole
5097 * for. So if we are truncating this file to a larger size we need to insert
5098 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5099 * the range between oldsize and size
5100 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5101 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5102 {
5103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5104 struct btrfs_root *root = BTRFS_I(inode)->root;
5105 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5106 struct extent_map *em = NULL;
5107 struct extent_state *cached_state = NULL;
5108 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5109 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5110 u64 block_end = ALIGN(size, fs_info->sectorsize);
5111 u64 last_byte;
5112 u64 cur_offset;
5113 u64 hole_size;
5114 int err = 0;
5115
5116 /*
5117 * If our size started in the middle of a block we need to zero out the
5118 * rest of the block before we expand the i_size, otherwise we could
5119 * expose stale data.
5120 */
5121 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5122 if (err)
5123 return err;
5124
5125 if (size <= hole_start)
5126 return 0;
5127
5128 while (1) {
5129 struct btrfs_ordered_extent *ordered;
5130
5131 lock_extent_bits(io_tree, hole_start, block_end - 1,
5132 &cached_state);
5133 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5134 block_end - hole_start);
5135 if (!ordered)
5136 break;
5137 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5138 &cached_state);
5139 btrfs_start_ordered_extent(inode, ordered, 1);
5140 btrfs_put_ordered_extent(ordered);
5141 }
5142
5143 cur_offset = hole_start;
5144 while (1) {
5145 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5146 block_end - cur_offset, 0);
5147 if (IS_ERR(em)) {
5148 err = PTR_ERR(em);
5149 em = NULL;
5150 break;
5151 }
5152 last_byte = min(extent_map_end(em), block_end);
5153 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5154 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5155 struct extent_map *hole_em;
5156 hole_size = last_byte - cur_offset;
5157
5158 err = maybe_insert_hole(root, inode, cur_offset,
5159 hole_size);
5160 if (err)
5161 break;
5162 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5163 cur_offset + hole_size - 1, 0);
5164 hole_em = alloc_extent_map();
5165 if (!hole_em) {
5166 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5167 &BTRFS_I(inode)->runtime_flags);
5168 goto next;
5169 }
5170 hole_em->start = cur_offset;
5171 hole_em->len = hole_size;
5172 hole_em->orig_start = cur_offset;
5173
5174 hole_em->block_start = EXTENT_MAP_HOLE;
5175 hole_em->block_len = 0;
5176 hole_em->orig_block_len = 0;
5177 hole_em->ram_bytes = hole_size;
5178 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5179 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5180 hole_em->generation = fs_info->generation;
5181
5182 while (1) {
5183 write_lock(&em_tree->lock);
5184 err = add_extent_mapping(em_tree, hole_em, 1);
5185 write_unlock(&em_tree->lock);
5186 if (err != -EEXIST)
5187 break;
5188 btrfs_drop_extent_cache(BTRFS_I(inode),
5189 cur_offset,
5190 cur_offset +
5191 hole_size - 1, 0);
5192 }
5193 free_extent_map(hole_em);
5194 }
5195 next:
5196 free_extent_map(em);
5197 em = NULL;
5198 cur_offset = last_byte;
5199 if (cur_offset >= block_end)
5200 break;
5201 }
5202 free_extent_map(em);
5203 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5204 return err;
5205 }
5206
btrfs_setsize(struct inode * inode,struct iattr * attr)5207 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5208 {
5209 struct btrfs_root *root = BTRFS_I(inode)->root;
5210 struct btrfs_trans_handle *trans;
5211 loff_t oldsize = i_size_read(inode);
5212 loff_t newsize = attr->ia_size;
5213 int mask = attr->ia_valid;
5214 int ret;
5215
5216 /*
5217 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5218 * special case where we need to update the times despite not having
5219 * these flags set. For all other operations the VFS set these flags
5220 * explicitly if it wants a timestamp update.
5221 */
5222 if (newsize != oldsize) {
5223 inode_inc_iversion(inode);
5224 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5225 inode->i_ctime = inode->i_mtime =
5226 current_time(inode);
5227 }
5228
5229 if (newsize > oldsize) {
5230 /*
5231 * Don't do an expanding truncate while snapshotting is ongoing.
5232 * This is to ensure the snapshot captures a fully consistent
5233 * state of this file - if the snapshot captures this expanding
5234 * truncation, it must capture all writes that happened before
5235 * this truncation.
5236 */
5237 btrfs_wait_for_snapshot_creation(root);
5238 ret = btrfs_cont_expand(inode, oldsize, newsize);
5239 if (ret) {
5240 btrfs_end_write_no_snapshotting(root);
5241 return ret;
5242 }
5243
5244 trans = btrfs_start_transaction(root, 1);
5245 if (IS_ERR(trans)) {
5246 btrfs_end_write_no_snapshotting(root);
5247 return PTR_ERR(trans);
5248 }
5249
5250 i_size_write(inode, newsize);
5251 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5252 pagecache_isize_extended(inode, oldsize, newsize);
5253 ret = btrfs_update_inode(trans, root, inode);
5254 btrfs_end_write_no_snapshotting(root);
5255 btrfs_end_transaction(trans);
5256 } else {
5257
5258 /*
5259 * We're truncating a file that used to have good data down to
5260 * zero. Make sure it gets into the ordered flush list so that
5261 * any new writes get down to disk quickly.
5262 */
5263 if (newsize == 0)
5264 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5265 &BTRFS_I(inode)->runtime_flags);
5266
5267 truncate_setsize(inode, newsize);
5268
5269 /* Disable nonlocked read DIO to avoid the end less truncate */
5270 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5271 inode_dio_wait(inode);
5272 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5273
5274 ret = btrfs_truncate(inode, newsize == oldsize);
5275 if (ret && inode->i_nlink) {
5276 int err;
5277
5278 /*
5279 * Truncate failed, so fix up the in-memory size. We
5280 * adjusted disk_i_size down as we removed extents, so
5281 * wait for disk_i_size to be stable and then update the
5282 * in-memory size to match.
5283 */
5284 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5285 if (err)
5286 return err;
5287 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5288 }
5289 }
5290
5291 return ret;
5292 }
5293
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5294 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5295 {
5296 struct inode *inode = d_inode(dentry);
5297 struct btrfs_root *root = BTRFS_I(inode)->root;
5298 int err;
5299
5300 if (btrfs_root_readonly(root))
5301 return -EROFS;
5302
5303 err = setattr_prepare(dentry, attr);
5304 if (err)
5305 return err;
5306
5307 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5308 err = btrfs_setsize(inode, attr);
5309 if (err)
5310 return err;
5311 }
5312
5313 if (attr->ia_valid) {
5314 setattr_copy(inode, attr);
5315 inode_inc_iversion(inode);
5316 err = btrfs_dirty_inode(inode);
5317
5318 if (!err && attr->ia_valid & ATTR_MODE)
5319 err = posix_acl_chmod(inode, inode->i_mode);
5320 }
5321
5322 return err;
5323 }
5324
5325 /*
5326 * While truncating the inode pages during eviction, we get the VFS calling
5327 * btrfs_invalidatepage() against each page of the inode. This is slow because
5328 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5329 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5330 * extent_state structures over and over, wasting lots of time.
5331 *
5332 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5333 * those expensive operations on a per page basis and do only the ordered io
5334 * finishing, while we release here the extent_map and extent_state structures,
5335 * without the excessive merging and splitting.
5336 */
evict_inode_truncate_pages(struct inode * inode)5337 static void evict_inode_truncate_pages(struct inode *inode)
5338 {
5339 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5340 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5341 struct rb_node *node;
5342
5343 ASSERT(inode->i_state & I_FREEING);
5344 truncate_inode_pages_final(&inode->i_data);
5345
5346 write_lock(&map_tree->lock);
5347 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5348 struct extent_map *em;
5349
5350 node = rb_first(&map_tree->map);
5351 em = rb_entry(node, struct extent_map, rb_node);
5352 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5353 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5354 remove_extent_mapping(map_tree, em);
5355 free_extent_map(em);
5356 if (need_resched()) {
5357 write_unlock(&map_tree->lock);
5358 cond_resched();
5359 write_lock(&map_tree->lock);
5360 }
5361 }
5362 write_unlock(&map_tree->lock);
5363
5364 /*
5365 * Keep looping until we have no more ranges in the io tree.
5366 * We can have ongoing bios started by readpages (called from readahead)
5367 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5368 * still in progress (unlocked the pages in the bio but did not yet
5369 * unlocked the ranges in the io tree). Therefore this means some
5370 * ranges can still be locked and eviction started because before
5371 * submitting those bios, which are executed by a separate task (work
5372 * queue kthread), inode references (inode->i_count) were not taken
5373 * (which would be dropped in the end io callback of each bio).
5374 * Therefore here we effectively end up waiting for those bios and
5375 * anyone else holding locked ranges without having bumped the inode's
5376 * reference count - if we don't do it, when they access the inode's
5377 * io_tree to unlock a range it may be too late, leading to an
5378 * use-after-free issue.
5379 */
5380 spin_lock(&io_tree->lock);
5381 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5382 struct extent_state *state;
5383 struct extent_state *cached_state = NULL;
5384 u64 start;
5385 u64 end;
5386 unsigned state_flags;
5387
5388 node = rb_first(&io_tree->state);
5389 state = rb_entry(node, struct extent_state, rb_node);
5390 start = state->start;
5391 end = state->end;
5392 state_flags = state->state;
5393 spin_unlock(&io_tree->lock);
5394
5395 lock_extent_bits(io_tree, start, end, &cached_state);
5396
5397 /*
5398 * If still has DELALLOC flag, the extent didn't reach disk,
5399 * and its reserved space won't be freed by delayed_ref.
5400 * So we need to free its reserved space here.
5401 * (Refer to comment in btrfs_invalidatepage, case 2)
5402 *
5403 * Note, end is the bytenr of last byte, so we need + 1 here.
5404 */
5405 if (state_flags & EXTENT_DELALLOC)
5406 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5407
5408 clear_extent_bit(io_tree, start, end,
5409 EXTENT_LOCKED | EXTENT_DIRTY |
5410 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5411 EXTENT_DEFRAG, 1, 1, &cached_state);
5412
5413 cond_resched();
5414 spin_lock(&io_tree->lock);
5415 }
5416 spin_unlock(&io_tree->lock);
5417 }
5418
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 min_size)5419 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5420 struct btrfs_block_rsv *rsv,
5421 u64 min_size)
5422 {
5423 struct btrfs_fs_info *fs_info = root->fs_info;
5424 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5425 int failures = 0;
5426
5427 for (;;) {
5428 struct btrfs_trans_handle *trans;
5429 int ret;
5430
5431 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5432 BTRFS_RESERVE_FLUSH_LIMIT);
5433
5434 if (ret && ++failures > 2) {
5435 btrfs_warn(fs_info,
5436 "could not allocate space for a delete; will truncate on mount");
5437 return ERR_PTR(-ENOSPC);
5438 }
5439
5440 trans = btrfs_join_transaction(root);
5441 if (IS_ERR(trans) || !ret)
5442 return trans;
5443
5444 /*
5445 * Try to steal from the global reserve if there is space for
5446 * it.
5447 */
5448 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5449 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5450 return trans;
5451
5452 /* If not, commit and try again. */
5453 ret = btrfs_commit_transaction(trans);
5454 if (ret)
5455 return ERR_PTR(ret);
5456 }
5457 }
5458
btrfs_evict_inode(struct inode * inode)5459 void btrfs_evict_inode(struct inode *inode)
5460 {
5461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5462 struct btrfs_trans_handle *trans;
5463 struct btrfs_root *root = BTRFS_I(inode)->root;
5464 struct btrfs_block_rsv *rsv;
5465 u64 min_size;
5466 int ret;
5467
5468 trace_btrfs_inode_evict(inode);
5469
5470 if (!root) {
5471 clear_inode(inode);
5472 return;
5473 }
5474
5475 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5476
5477 evict_inode_truncate_pages(inode);
5478
5479 if (inode->i_nlink &&
5480 ((btrfs_root_refs(&root->root_item) != 0 &&
5481 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5482 btrfs_is_free_space_inode(BTRFS_I(inode))))
5483 goto no_delete;
5484
5485 if (is_bad_inode(inode))
5486 goto no_delete;
5487 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5488 if (!special_file(inode->i_mode))
5489 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5490
5491 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5492
5493 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5494 goto no_delete;
5495
5496 if (inode->i_nlink > 0) {
5497 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5498 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5499 goto no_delete;
5500 }
5501
5502 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5503 if (ret)
5504 goto no_delete;
5505
5506 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5507 if (!rsv)
5508 goto no_delete;
5509 rsv->size = min_size;
5510 rsv->failfast = 1;
5511
5512 btrfs_i_size_write(BTRFS_I(inode), 0);
5513
5514 while (1) {
5515 trans = evict_refill_and_join(root, rsv, min_size);
5516 if (IS_ERR(trans))
5517 goto free_rsv;
5518
5519 trans->block_rsv = rsv;
5520
5521 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5522 trans->block_rsv = &fs_info->trans_block_rsv;
5523 btrfs_end_transaction(trans);
5524 btrfs_btree_balance_dirty(fs_info);
5525 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5526 goto free_rsv;
5527 else if (!ret)
5528 break;
5529 }
5530
5531 /*
5532 * Errors here aren't a big deal, it just means we leave orphan items in
5533 * the tree. They will be cleaned up on the next mount. If the inode
5534 * number gets reused, cleanup deletes the orphan item without doing
5535 * anything, and unlink reuses the existing orphan item.
5536 *
5537 * If it turns out that we are dropping too many of these, we might want
5538 * to add a mechanism for retrying these after a commit.
5539 */
5540 trans = evict_refill_and_join(root, rsv, min_size);
5541 if (!IS_ERR(trans)) {
5542 trans->block_rsv = rsv;
5543 btrfs_orphan_del(trans, BTRFS_I(inode));
5544 trans->block_rsv = &fs_info->trans_block_rsv;
5545 btrfs_end_transaction(trans);
5546 }
5547
5548 if (!(root == fs_info->tree_root ||
5549 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5550 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5551
5552 free_rsv:
5553 btrfs_free_block_rsv(fs_info, rsv);
5554 no_delete:
5555 /*
5556 * If we didn't successfully delete, the orphan item will still be in
5557 * the tree and we'll retry on the next mount. Again, we might also want
5558 * to retry these periodically in the future.
5559 */
5560 btrfs_remove_delayed_node(BTRFS_I(inode));
5561 clear_inode(inode);
5562 }
5563
5564 /*
5565 * Return the key found in the dir entry in the location pointer, fill @type
5566 * with BTRFS_FT_*, and return 0.
5567 *
5568 * If no dir entries were found, returns -ENOENT.
5569 * If found a corrupted location in dir entry, returns -EUCLEAN.
5570 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5571 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5572 struct btrfs_key *location, u8 *type)
5573 {
5574 const char *name = dentry->d_name.name;
5575 int namelen = dentry->d_name.len;
5576 struct btrfs_dir_item *di;
5577 struct btrfs_path *path;
5578 struct btrfs_root *root = BTRFS_I(dir)->root;
5579 int ret = 0;
5580
5581 path = btrfs_alloc_path();
5582 if (!path)
5583 return -ENOMEM;
5584
5585 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5586 name, namelen, 0);
5587 if (!di) {
5588 ret = -ENOENT;
5589 goto out;
5590 }
5591 if (IS_ERR(di)) {
5592 ret = PTR_ERR(di);
5593 goto out;
5594 }
5595
5596 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5597 if (location->type != BTRFS_INODE_ITEM_KEY &&
5598 location->type != BTRFS_ROOT_ITEM_KEY) {
5599 ret = -EUCLEAN;
5600 btrfs_warn(root->fs_info,
5601 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5602 __func__, name, btrfs_ino(BTRFS_I(dir)),
5603 location->objectid, location->type, location->offset);
5604 }
5605 if (!ret)
5606 *type = btrfs_dir_type(path->nodes[0], di);
5607 out:
5608 btrfs_free_path(path);
5609 return ret;
5610 }
5611
5612 /*
5613 * when we hit a tree root in a directory, the btrfs part of the inode
5614 * needs to be changed to reflect the root directory of the tree root. This
5615 * is kind of like crossing a mount point.
5616 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5617 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5618 struct inode *dir,
5619 struct dentry *dentry,
5620 struct btrfs_key *location,
5621 struct btrfs_root **sub_root)
5622 {
5623 struct btrfs_path *path;
5624 struct btrfs_root *new_root;
5625 struct btrfs_root_ref *ref;
5626 struct extent_buffer *leaf;
5627 struct btrfs_key key;
5628 int ret;
5629 int err = 0;
5630
5631 path = btrfs_alloc_path();
5632 if (!path) {
5633 err = -ENOMEM;
5634 goto out;
5635 }
5636
5637 err = -ENOENT;
5638 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5639 key.type = BTRFS_ROOT_REF_KEY;
5640 key.offset = location->objectid;
5641
5642 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5643 if (ret) {
5644 if (ret < 0)
5645 err = ret;
5646 goto out;
5647 }
5648
5649 leaf = path->nodes[0];
5650 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5651 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5652 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5653 goto out;
5654
5655 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5656 (unsigned long)(ref + 1),
5657 dentry->d_name.len);
5658 if (ret)
5659 goto out;
5660
5661 btrfs_release_path(path);
5662
5663 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5664 if (IS_ERR(new_root)) {
5665 err = PTR_ERR(new_root);
5666 goto out;
5667 }
5668
5669 *sub_root = new_root;
5670 location->objectid = btrfs_root_dirid(&new_root->root_item);
5671 location->type = BTRFS_INODE_ITEM_KEY;
5672 location->offset = 0;
5673 err = 0;
5674 out:
5675 btrfs_free_path(path);
5676 return err;
5677 }
5678
inode_tree_add(struct inode * inode)5679 static void inode_tree_add(struct inode *inode)
5680 {
5681 struct btrfs_root *root = BTRFS_I(inode)->root;
5682 struct btrfs_inode *entry;
5683 struct rb_node **p;
5684 struct rb_node *parent;
5685 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5686 u64 ino = btrfs_ino(BTRFS_I(inode));
5687
5688 if (inode_unhashed(inode))
5689 return;
5690 parent = NULL;
5691 spin_lock(&root->inode_lock);
5692 p = &root->inode_tree.rb_node;
5693 while (*p) {
5694 parent = *p;
5695 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5696
5697 if (ino < btrfs_ino(entry))
5698 p = &parent->rb_left;
5699 else if (ino > btrfs_ino(entry))
5700 p = &parent->rb_right;
5701 else {
5702 WARN_ON(!(entry->vfs_inode.i_state &
5703 (I_WILL_FREE | I_FREEING)));
5704 rb_replace_node(parent, new, &root->inode_tree);
5705 RB_CLEAR_NODE(parent);
5706 spin_unlock(&root->inode_lock);
5707 return;
5708 }
5709 }
5710 rb_link_node(new, parent, p);
5711 rb_insert_color(new, &root->inode_tree);
5712 spin_unlock(&root->inode_lock);
5713 }
5714
inode_tree_del(struct inode * inode)5715 static void inode_tree_del(struct inode *inode)
5716 {
5717 struct btrfs_root *root = BTRFS_I(inode)->root;
5718 int empty = 0;
5719
5720 spin_lock(&root->inode_lock);
5721 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5722 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5723 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5724 empty = RB_EMPTY_ROOT(&root->inode_tree);
5725 }
5726 spin_unlock(&root->inode_lock);
5727
5728 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5729 spin_lock(&root->inode_lock);
5730 empty = RB_EMPTY_ROOT(&root->inode_tree);
5731 spin_unlock(&root->inode_lock);
5732 if (empty)
5733 btrfs_add_dead_root(root);
5734 }
5735 }
5736
5737
btrfs_init_locked_inode(struct inode * inode,void * p)5738 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5739 {
5740 struct btrfs_iget_args *args = p;
5741 inode->i_ino = args->location->objectid;
5742 memcpy(&BTRFS_I(inode)->location, args->location,
5743 sizeof(*args->location));
5744 BTRFS_I(inode)->root = args->root;
5745 return 0;
5746 }
5747
btrfs_find_actor(struct inode * inode,void * opaque)5748 static int btrfs_find_actor(struct inode *inode, void *opaque)
5749 {
5750 struct btrfs_iget_args *args = opaque;
5751 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5752 args->root == BTRFS_I(inode)->root;
5753 }
5754
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5755 static struct inode *btrfs_iget_locked(struct super_block *s,
5756 struct btrfs_key *location,
5757 struct btrfs_root *root)
5758 {
5759 struct inode *inode;
5760 struct btrfs_iget_args args;
5761 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5762
5763 args.location = location;
5764 args.root = root;
5765
5766 inode = iget5_locked(s, hashval, btrfs_find_actor,
5767 btrfs_init_locked_inode,
5768 (void *)&args);
5769 return inode;
5770 }
5771
5772 /* Get an inode object given its location and corresponding root.
5773 * Returns in *is_new if the inode was read from disk
5774 */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5775 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5776 struct btrfs_root *root, int *new,
5777 struct btrfs_path *path)
5778 {
5779 struct inode *inode;
5780
5781 inode = btrfs_iget_locked(s, location, root);
5782 if (!inode)
5783 return ERR_PTR(-ENOMEM);
5784
5785 if (inode->i_state & I_NEW) {
5786 int ret;
5787
5788 ret = btrfs_read_locked_inode(inode, path);
5789 if (!ret) {
5790 inode_tree_add(inode);
5791 unlock_new_inode(inode);
5792 if (new)
5793 *new = 1;
5794 } else {
5795 iget_failed(inode);
5796 /*
5797 * ret > 0 can come from btrfs_search_slot called by
5798 * btrfs_read_locked_inode, this means the inode item
5799 * was not found.
5800 */
5801 if (ret > 0)
5802 ret = -ENOENT;
5803 inode = ERR_PTR(ret);
5804 }
5805 }
5806
5807 return inode;
5808 }
5809
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5810 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5811 struct btrfs_root *root, int *new)
5812 {
5813 return btrfs_iget_path(s, location, root, new, NULL);
5814 }
5815
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5816 static struct inode *new_simple_dir(struct super_block *s,
5817 struct btrfs_key *key,
5818 struct btrfs_root *root)
5819 {
5820 struct inode *inode = new_inode(s);
5821
5822 if (!inode)
5823 return ERR_PTR(-ENOMEM);
5824
5825 BTRFS_I(inode)->root = root;
5826 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5827 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5828
5829 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5830 inode->i_op = &btrfs_dir_ro_inode_operations;
5831 inode->i_opflags &= ~IOP_XATTR;
5832 inode->i_fop = &simple_dir_operations;
5833 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5834 inode->i_mtime = current_time(inode);
5835 inode->i_atime = inode->i_mtime;
5836 inode->i_ctime = inode->i_mtime;
5837 BTRFS_I(inode)->i_otime = inode->i_mtime;
5838
5839 return inode;
5840 }
5841
btrfs_inode_type(struct inode * inode)5842 static inline u8 btrfs_inode_type(struct inode *inode)
5843 {
5844 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5845 }
5846
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5847 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5848 {
5849 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5850 struct inode *inode;
5851 struct btrfs_root *root = BTRFS_I(dir)->root;
5852 struct btrfs_root *sub_root = root;
5853 struct btrfs_key location;
5854 u8 di_type = 0;
5855 int index;
5856 int ret = 0;
5857
5858 if (dentry->d_name.len > BTRFS_NAME_LEN)
5859 return ERR_PTR(-ENAMETOOLONG);
5860
5861 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5862 if (ret < 0)
5863 return ERR_PTR(ret);
5864
5865 if (location.type == BTRFS_INODE_ITEM_KEY) {
5866 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5867 if (IS_ERR(inode))
5868 return inode;
5869
5870 /* Do extra check against inode mode with di_type */
5871 if (btrfs_inode_type(inode) != di_type) {
5872 btrfs_crit(fs_info,
5873 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5874 inode->i_mode, btrfs_inode_type(inode),
5875 di_type);
5876 iput(inode);
5877 return ERR_PTR(-EUCLEAN);
5878 }
5879 return inode;
5880 }
5881
5882 index = srcu_read_lock(&fs_info->subvol_srcu);
5883 ret = fixup_tree_root_location(fs_info, dir, dentry,
5884 &location, &sub_root);
5885 if (ret < 0) {
5886 if (ret != -ENOENT)
5887 inode = ERR_PTR(ret);
5888 else
5889 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5890 } else {
5891 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5892 }
5893 srcu_read_unlock(&fs_info->subvol_srcu, index);
5894
5895 if (!IS_ERR(inode) && root != sub_root) {
5896 down_read(&fs_info->cleanup_work_sem);
5897 if (!sb_rdonly(inode->i_sb))
5898 ret = btrfs_orphan_cleanup(sub_root);
5899 up_read(&fs_info->cleanup_work_sem);
5900 if (ret) {
5901 iput(inode);
5902 inode = ERR_PTR(ret);
5903 }
5904 }
5905
5906 return inode;
5907 }
5908
btrfs_dentry_delete(const struct dentry * dentry)5909 static int btrfs_dentry_delete(const struct dentry *dentry)
5910 {
5911 struct btrfs_root *root;
5912 struct inode *inode = d_inode(dentry);
5913
5914 if (!inode && !IS_ROOT(dentry))
5915 inode = d_inode(dentry->d_parent);
5916
5917 if (inode) {
5918 root = BTRFS_I(inode)->root;
5919 if (btrfs_root_refs(&root->root_item) == 0)
5920 return 1;
5921
5922 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5923 return 1;
5924 }
5925 return 0;
5926 }
5927
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5928 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5929 unsigned int flags)
5930 {
5931 struct inode *inode;
5932
5933 inode = btrfs_lookup_dentry(dir, dentry);
5934 if (IS_ERR(inode)) {
5935 if (PTR_ERR(inode) == -ENOENT)
5936 inode = NULL;
5937 else
5938 return ERR_CAST(inode);
5939 }
5940
5941 return d_splice_alias(inode, dentry);
5942 }
5943
5944 unsigned char btrfs_filetype_table[] = {
5945 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5946 };
5947
5948 /*
5949 * All this infrastructure exists because dir_emit can fault, and we are holding
5950 * the tree lock when doing readdir. For now just allocate a buffer and copy
5951 * our information into that, and then dir_emit from the buffer. This is
5952 * similar to what NFS does, only we don't keep the buffer around in pagecache
5953 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5954 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5955 * tree lock.
5956 */
btrfs_opendir(struct inode * inode,struct file * file)5957 static int btrfs_opendir(struct inode *inode, struct file *file)
5958 {
5959 struct btrfs_file_private *private;
5960
5961 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5962 if (!private)
5963 return -ENOMEM;
5964 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5965 if (!private->filldir_buf) {
5966 kfree(private);
5967 return -ENOMEM;
5968 }
5969 file->private_data = private;
5970 return 0;
5971 }
5972
5973 struct dir_entry {
5974 u64 ino;
5975 u64 offset;
5976 unsigned type;
5977 int name_len;
5978 };
5979
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5980 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5981 {
5982 while (entries--) {
5983 struct dir_entry *entry = addr;
5984 char *name = (char *)(entry + 1);
5985
5986 ctx->pos = get_unaligned(&entry->offset);
5987 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5988 get_unaligned(&entry->ino),
5989 get_unaligned(&entry->type)))
5990 return 1;
5991 addr += sizeof(struct dir_entry) +
5992 get_unaligned(&entry->name_len);
5993 ctx->pos++;
5994 }
5995 return 0;
5996 }
5997
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5998 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5999 {
6000 struct inode *inode = file_inode(file);
6001 struct btrfs_root *root = BTRFS_I(inode)->root;
6002 struct btrfs_file_private *private = file->private_data;
6003 struct btrfs_dir_item *di;
6004 struct btrfs_key key;
6005 struct btrfs_key found_key;
6006 struct btrfs_path *path;
6007 void *addr;
6008 struct list_head ins_list;
6009 struct list_head del_list;
6010 int ret;
6011 struct extent_buffer *leaf;
6012 int slot;
6013 char *name_ptr;
6014 int name_len;
6015 int entries = 0;
6016 int total_len = 0;
6017 bool put = false;
6018 struct btrfs_key location;
6019
6020 if (!dir_emit_dots(file, ctx))
6021 return 0;
6022
6023 path = btrfs_alloc_path();
6024 if (!path)
6025 return -ENOMEM;
6026
6027 addr = private->filldir_buf;
6028 path->reada = READA_FORWARD;
6029
6030 INIT_LIST_HEAD(&ins_list);
6031 INIT_LIST_HEAD(&del_list);
6032 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6033
6034 again:
6035 key.type = BTRFS_DIR_INDEX_KEY;
6036 key.offset = ctx->pos;
6037 key.objectid = btrfs_ino(BTRFS_I(inode));
6038
6039 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6040 if (ret < 0)
6041 goto err;
6042
6043 while (1) {
6044 struct dir_entry *entry;
6045
6046 leaf = path->nodes[0];
6047 slot = path->slots[0];
6048 if (slot >= btrfs_header_nritems(leaf)) {
6049 ret = btrfs_next_leaf(root, path);
6050 if (ret < 0)
6051 goto err;
6052 else if (ret > 0)
6053 break;
6054 continue;
6055 }
6056
6057 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6058
6059 if (found_key.objectid != key.objectid)
6060 break;
6061 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6062 break;
6063 if (found_key.offset < ctx->pos)
6064 goto next;
6065 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6066 goto next;
6067 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6068 name_len = btrfs_dir_name_len(leaf, di);
6069 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6070 PAGE_SIZE) {
6071 btrfs_release_path(path);
6072 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6073 if (ret)
6074 goto nopos;
6075 addr = private->filldir_buf;
6076 entries = 0;
6077 total_len = 0;
6078 goto again;
6079 }
6080
6081 entry = addr;
6082 put_unaligned(name_len, &entry->name_len);
6083 name_ptr = (char *)(entry + 1);
6084 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6085 name_len);
6086 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6087 &entry->type);
6088 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6089 put_unaligned(location.objectid, &entry->ino);
6090 put_unaligned(found_key.offset, &entry->offset);
6091 entries++;
6092 addr += sizeof(struct dir_entry) + name_len;
6093 total_len += sizeof(struct dir_entry) + name_len;
6094 next:
6095 path->slots[0]++;
6096 }
6097 btrfs_release_path(path);
6098
6099 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6100 if (ret)
6101 goto nopos;
6102
6103 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6104 if (ret)
6105 goto nopos;
6106
6107 /*
6108 * Stop new entries from being returned after we return the last
6109 * entry.
6110 *
6111 * New directory entries are assigned a strictly increasing
6112 * offset. This means that new entries created during readdir
6113 * are *guaranteed* to be seen in the future by that readdir.
6114 * This has broken buggy programs which operate on names as
6115 * they're returned by readdir. Until we re-use freed offsets
6116 * we have this hack to stop new entries from being returned
6117 * under the assumption that they'll never reach this huge
6118 * offset.
6119 *
6120 * This is being careful not to overflow 32bit loff_t unless the
6121 * last entry requires it because doing so has broken 32bit apps
6122 * in the past.
6123 */
6124 if (ctx->pos >= INT_MAX)
6125 ctx->pos = LLONG_MAX;
6126 else
6127 ctx->pos = INT_MAX;
6128 nopos:
6129 ret = 0;
6130 err:
6131 if (put)
6132 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6133 btrfs_free_path(path);
6134 return ret;
6135 }
6136
6137 /*
6138 * This is somewhat expensive, updating the tree every time the
6139 * inode changes. But, it is most likely to find the inode in cache.
6140 * FIXME, needs more benchmarking...there are no reasons other than performance
6141 * to keep or drop this code.
6142 */
btrfs_dirty_inode(struct inode * inode)6143 static int btrfs_dirty_inode(struct inode *inode)
6144 {
6145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6146 struct btrfs_root *root = BTRFS_I(inode)->root;
6147 struct btrfs_trans_handle *trans;
6148 int ret;
6149
6150 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6151 return 0;
6152
6153 trans = btrfs_join_transaction(root);
6154 if (IS_ERR(trans))
6155 return PTR_ERR(trans);
6156
6157 ret = btrfs_update_inode(trans, root, inode);
6158 if (ret && ret == -ENOSPC) {
6159 /* whoops, lets try again with the full transaction */
6160 btrfs_end_transaction(trans);
6161 trans = btrfs_start_transaction(root, 1);
6162 if (IS_ERR(trans))
6163 return PTR_ERR(trans);
6164
6165 ret = btrfs_update_inode(trans, root, inode);
6166 }
6167 btrfs_end_transaction(trans);
6168 if (BTRFS_I(inode)->delayed_node)
6169 btrfs_balance_delayed_items(fs_info);
6170
6171 return ret;
6172 }
6173
6174 /*
6175 * This is a copy of file_update_time. We need this so we can return error on
6176 * ENOSPC for updating the inode in the case of file write and mmap writes.
6177 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6178 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6179 int flags)
6180 {
6181 struct btrfs_root *root = BTRFS_I(inode)->root;
6182 bool dirty = flags & ~S_VERSION;
6183
6184 if (btrfs_root_readonly(root))
6185 return -EROFS;
6186
6187 if (flags & S_VERSION)
6188 dirty |= inode_maybe_inc_iversion(inode, dirty);
6189 if (flags & S_CTIME)
6190 inode->i_ctime = *now;
6191 if (flags & S_MTIME)
6192 inode->i_mtime = *now;
6193 if (flags & S_ATIME)
6194 inode->i_atime = *now;
6195 return dirty ? btrfs_dirty_inode(inode) : 0;
6196 }
6197
6198 /*
6199 * find the highest existing sequence number in a directory
6200 * and then set the in-memory index_cnt variable to reflect
6201 * free sequence numbers
6202 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6203 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6204 {
6205 struct btrfs_root *root = inode->root;
6206 struct btrfs_key key, found_key;
6207 struct btrfs_path *path;
6208 struct extent_buffer *leaf;
6209 int ret;
6210
6211 key.objectid = btrfs_ino(inode);
6212 key.type = BTRFS_DIR_INDEX_KEY;
6213 key.offset = (u64)-1;
6214
6215 path = btrfs_alloc_path();
6216 if (!path)
6217 return -ENOMEM;
6218
6219 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6220 if (ret < 0)
6221 goto out;
6222 /* FIXME: we should be able to handle this */
6223 if (ret == 0)
6224 goto out;
6225 ret = 0;
6226
6227 /*
6228 * MAGIC NUMBER EXPLANATION:
6229 * since we search a directory based on f_pos we have to start at 2
6230 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6231 * else has to start at 2
6232 */
6233 if (path->slots[0] == 0) {
6234 inode->index_cnt = 2;
6235 goto out;
6236 }
6237
6238 path->slots[0]--;
6239
6240 leaf = path->nodes[0];
6241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6242
6243 if (found_key.objectid != btrfs_ino(inode) ||
6244 found_key.type != BTRFS_DIR_INDEX_KEY) {
6245 inode->index_cnt = 2;
6246 goto out;
6247 }
6248
6249 inode->index_cnt = found_key.offset + 1;
6250 out:
6251 btrfs_free_path(path);
6252 return ret;
6253 }
6254
6255 /*
6256 * helper to find a free sequence number in a given directory. This current
6257 * code is very simple, later versions will do smarter things in the btree
6258 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6259 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6260 {
6261 int ret = 0;
6262
6263 if (dir->index_cnt == (u64)-1) {
6264 ret = btrfs_inode_delayed_dir_index_count(dir);
6265 if (ret) {
6266 ret = btrfs_set_inode_index_count(dir);
6267 if (ret)
6268 return ret;
6269 }
6270 }
6271
6272 *index = dir->index_cnt;
6273 dir->index_cnt++;
6274
6275 return ret;
6276 }
6277
btrfs_insert_inode_locked(struct inode * inode)6278 static int btrfs_insert_inode_locked(struct inode *inode)
6279 {
6280 struct btrfs_iget_args args;
6281 args.location = &BTRFS_I(inode)->location;
6282 args.root = BTRFS_I(inode)->root;
6283
6284 return insert_inode_locked4(inode,
6285 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6286 btrfs_find_actor, &args);
6287 }
6288
6289 /*
6290 * Inherit flags from the parent inode.
6291 *
6292 * Currently only the compression flags and the cow flags are inherited.
6293 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6294 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6295 {
6296 unsigned int flags;
6297
6298 if (!dir)
6299 return;
6300
6301 flags = BTRFS_I(dir)->flags;
6302
6303 if (flags & BTRFS_INODE_NOCOMPRESS) {
6304 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6305 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6306 } else if (flags & BTRFS_INODE_COMPRESS) {
6307 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6308 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6309 }
6310
6311 if (flags & BTRFS_INODE_NODATACOW) {
6312 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6313 if (S_ISREG(inode->i_mode))
6314 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6315 }
6316
6317 btrfs_sync_inode_flags_to_i_flags(inode);
6318 }
6319
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6320 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6321 struct btrfs_root *root,
6322 struct inode *dir,
6323 const char *name, int name_len,
6324 u64 ref_objectid, u64 objectid,
6325 umode_t mode, u64 *index)
6326 {
6327 struct btrfs_fs_info *fs_info = root->fs_info;
6328 struct inode *inode;
6329 struct btrfs_inode_item *inode_item;
6330 struct btrfs_key *location;
6331 struct btrfs_path *path;
6332 struct btrfs_inode_ref *ref;
6333 struct btrfs_key key[2];
6334 u32 sizes[2];
6335 int nitems = name ? 2 : 1;
6336 unsigned long ptr;
6337 int ret;
6338
6339 path = btrfs_alloc_path();
6340 if (!path)
6341 return ERR_PTR(-ENOMEM);
6342
6343 inode = new_inode(fs_info->sb);
6344 if (!inode) {
6345 btrfs_free_path(path);
6346 return ERR_PTR(-ENOMEM);
6347 }
6348
6349 /*
6350 * O_TMPFILE, set link count to 0, so that after this point,
6351 * we fill in an inode item with the correct link count.
6352 */
6353 if (!name)
6354 set_nlink(inode, 0);
6355
6356 /*
6357 * we have to initialize this early, so we can reclaim the inode
6358 * number if we fail afterwards in this function.
6359 */
6360 inode->i_ino = objectid;
6361
6362 if (dir && name) {
6363 trace_btrfs_inode_request(dir);
6364
6365 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6366 if (ret) {
6367 btrfs_free_path(path);
6368 iput(inode);
6369 return ERR_PTR(ret);
6370 }
6371 } else if (dir) {
6372 *index = 0;
6373 }
6374 /*
6375 * index_cnt is ignored for everything but a dir,
6376 * btrfs_set_inode_index_count has an explanation for the magic
6377 * number
6378 */
6379 BTRFS_I(inode)->index_cnt = 2;
6380 BTRFS_I(inode)->dir_index = *index;
6381 BTRFS_I(inode)->root = root;
6382 BTRFS_I(inode)->generation = trans->transid;
6383 inode->i_generation = BTRFS_I(inode)->generation;
6384
6385 /*
6386 * We could have gotten an inode number from somebody who was fsynced
6387 * and then removed in this same transaction, so let's just set full
6388 * sync since it will be a full sync anyway and this will blow away the
6389 * old info in the log.
6390 */
6391 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6392
6393 key[0].objectid = objectid;
6394 key[0].type = BTRFS_INODE_ITEM_KEY;
6395 key[0].offset = 0;
6396
6397 sizes[0] = sizeof(struct btrfs_inode_item);
6398
6399 if (name) {
6400 /*
6401 * Start new inodes with an inode_ref. This is slightly more
6402 * efficient for small numbers of hard links since they will
6403 * be packed into one item. Extended refs will kick in if we
6404 * add more hard links than can fit in the ref item.
6405 */
6406 key[1].objectid = objectid;
6407 key[1].type = BTRFS_INODE_REF_KEY;
6408 key[1].offset = ref_objectid;
6409
6410 sizes[1] = name_len + sizeof(*ref);
6411 }
6412
6413 location = &BTRFS_I(inode)->location;
6414 location->objectid = objectid;
6415 location->offset = 0;
6416 location->type = BTRFS_INODE_ITEM_KEY;
6417
6418 ret = btrfs_insert_inode_locked(inode);
6419 if (ret < 0) {
6420 iput(inode);
6421 goto fail;
6422 }
6423
6424 path->leave_spinning = 1;
6425 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6426 if (ret != 0)
6427 goto fail_unlock;
6428
6429 inode_init_owner(inode, dir, mode);
6430 inode_set_bytes(inode, 0);
6431
6432 inode->i_mtime = current_time(inode);
6433 inode->i_atime = inode->i_mtime;
6434 inode->i_ctime = inode->i_mtime;
6435 BTRFS_I(inode)->i_otime = inode->i_mtime;
6436
6437 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6438 struct btrfs_inode_item);
6439 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6440 sizeof(*inode_item));
6441 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6442
6443 if (name) {
6444 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6445 struct btrfs_inode_ref);
6446 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6447 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6448 ptr = (unsigned long)(ref + 1);
6449 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6450 }
6451
6452 btrfs_mark_buffer_dirty(path->nodes[0]);
6453 btrfs_free_path(path);
6454
6455 btrfs_inherit_iflags(inode, dir);
6456
6457 if (S_ISREG(mode)) {
6458 if (btrfs_test_opt(fs_info, NODATASUM))
6459 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6460 if (btrfs_test_opt(fs_info, NODATACOW))
6461 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6462 BTRFS_INODE_NODATASUM;
6463 }
6464
6465 inode_tree_add(inode);
6466
6467 trace_btrfs_inode_new(inode);
6468 btrfs_set_inode_last_trans(trans, inode);
6469
6470 btrfs_update_root_times(trans, root);
6471
6472 ret = btrfs_inode_inherit_props(trans, inode, dir);
6473 if (ret)
6474 btrfs_err(fs_info,
6475 "error inheriting props for ino %llu (root %llu): %d",
6476 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6477
6478 return inode;
6479
6480 fail_unlock:
6481 discard_new_inode(inode);
6482 fail:
6483 if (dir && name)
6484 BTRFS_I(dir)->index_cnt--;
6485 btrfs_free_path(path);
6486 return ERR_PTR(ret);
6487 }
6488
6489 /*
6490 * utility function to add 'inode' into 'parent_inode' with
6491 * a give name and a given sequence number.
6492 * if 'add_backref' is true, also insert a backref from the
6493 * inode to the parent directory.
6494 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6495 int btrfs_add_link(struct btrfs_trans_handle *trans,
6496 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6497 const char *name, int name_len, int add_backref, u64 index)
6498 {
6499 int ret = 0;
6500 struct btrfs_key key;
6501 struct btrfs_root *root = parent_inode->root;
6502 u64 ino = btrfs_ino(inode);
6503 u64 parent_ino = btrfs_ino(parent_inode);
6504
6505 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6506 memcpy(&key, &inode->root->root_key, sizeof(key));
6507 } else {
6508 key.objectid = ino;
6509 key.type = BTRFS_INODE_ITEM_KEY;
6510 key.offset = 0;
6511 }
6512
6513 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6514 ret = btrfs_add_root_ref(trans, key.objectid,
6515 root->root_key.objectid, parent_ino,
6516 index, name, name_len);
6517 } else if (add_backref) {
6518 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6519 parent_ino, index);
6520 }
6521
6522 /* Nothing to clean up yet */
6523 if (ret)
6524 return ret;
6525
6526 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6527 parent_inode, &key,
6528 btrfs_inode_type(&inode->vfs_inode), index);
6529 if (ret == -EEXIST || ret == -EOVERFLOW)
6530 goto fail_dir_item;
6531 else if (ret) {
6532 btrfs_abort_transaction(trans, ret);
6533 return ret;
6534 }
6535
6536 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6537 name_len * 2);
6538 inode_inc_iversion(&parent_inode->vfs_inode);
6539 /*
6540 * If we are replaying a log tree, we do not want to update the mtime
6541 * and ctime of the parent directory with the current time, since the
6542 * log replay procedure is responsible for setting them to their correct
6543 * values (the ones it had when the fsync was done).
6544 */
6545 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6546 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6547
6548 parent_inode->vfs_inode.i_mtime = now;
6549 parent_inode->vfs_inode.i_ctime = now;
6550 }
6551 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6552 if (ret)
6553 btrfs_abort_transaction(trans, ret);
6554 return ret;
6555
6556 fail_dir_item:
6557 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6558 u64 local_index;
6559 int err;
6560 err = btrfs_del_root_ref(trans, key.objectid,
6561 root->root_key.objectid, parent_ino,
6562 &local_index, name, name_len);
6563 if (err)
6564 btrfs_abort_transaction(trans, err);
6565 } else if (add_backref) {
6566 u64 local_index;
6567 int err;
6568
6569 err = btrfs_del_inode_ref(trans, root, name, name_len,
6570 ino, parent_ino, &local_index);
6571 if (err)
6572 btrfs_abort_transaction(trans, err);
6573 }
6574
6575 /* Return the original error code */
6576 return ret;
6577 }
6578
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6579 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6580 struct btrfs_inode *dir, struct dentry *dentry,
6581 struct btrfs_inode *inode, int backref, u64 index)
6582 {
6583 int err = btrfs_add_link(trans, dir, inode,
6584 dentry->d_name.name, dentry->d_name.len,
6585 backref, index);
6586 if (err > 0)
6587 err = -EEXIST;
6588 return err;
6589 }
6590
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6591 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6592 umode_t mode, dev_t rdev)
6593 {
6594 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6595 struct btrfs_trans_handle *trans;
6596 struct btrfs_root *root = BTRFS_I(dir)->root;
6597 struct inode *inode = NULL;
6598 int err;
6599 u64 objectid;
6600 u64 index = 0;
6601
6602 /*
6603 * 2 for inode item and ref
6604 * 2 for dir items
6605 * 1 for xattr if selinux is on
6606 */
6607 trans = btrfs_start_transaction(root, 5);
6608 if (IS_ERR(trans))
6609 return PTR_ERR(trans);
6610
6611 err = btrfs_find_free_ino(root, &objectid);
6612 if (err)
6613 goto out_unlock;
6614
6615 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6616 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6617 mode, &index);
6618 if (IS_ERR(inode)) {
6619 err = PTR_ERR(inode);
6620 inode = NULL;
6621 goto out_unlock;
6622 }
6623
6624 /*
6625 * If the active LSM wants to access the inode during
6626 * d_instantiate it needs these. Smack checks to see
6627 * if the filesystem supports xattrs by looking at the
6628 * ops vector.
6629 */
6630 inode->i_op = &btrfs_special_inode_operations;
6631 init_special_inode(inode, inode->i_mode, rdev);
6632
6633 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6634 if (err)
6635 goto out_unlock;
6636
6637 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6638 0, index);
6639 if (err)
6640 goto out_unlock;
6641
6642 btrfs_update_inode(trans, root, inode);
6643 d_instantiate_new(dentry, inode);
6644
6645 out_unlock:
6646 btrfs_end_transaction(trans);
6647 btrfs_btree_balance_dirty(fs_info);
6648 if (err && inode) {
6649 inode_dec_link_count(inode);
6650 discard_new_inode(inode);
6651 }
6652 return err;
6653 }
6654
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6655 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6656 umode_t mode, bool excl)
6657 {
6658 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6659 struct btrfs_trans_handle *trans;
6660 struct btrfs_root *root = BTRFS_I(dir)->root;
6661 struct inode *inode = NULL;
6662 int err;
6663 u64 objectid;
6664 u64 index = 0;
6665
6666 /*
6667 * 2 for inode item and ref
6668 * 2 for dir items
6669 * 1 for xattr if selinux is on
6670 */
6671 trans = btrfs_start_transaction(root, 5);
6672 if (IS_ERR(trans))
6673 return PTR_ERR(trans);
6674
6675 err = btrfs_find_free_ino(root, &objectid);
6676 if (err)
6677 goto out_unlock;
6678
6679 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6680 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6681 mode, &index);
6682 if (IS_ERR(inode)) {
6683 err = PTR_ERR(inode);
6684 inode = NULL;
6685 goto out_unlock;
6686 }
6687 /*
6688 * If the active LSM wants to access the inode during
6689 * d_instantiate it needs these. Smack checks to see
6690 * if the filesystem supports xattrs by looking at the
6691 * ops vector.
6692 */
6693 inode->i_fop = &btrfs_file_operations;
6694 inode->i_op = &btrfs_file_inode_operations;
6695 inode->i_mapping->a_ops = &btrfs_aops;
6696
6697 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6698 if (err)
6699 goto out_unlock;
6700
6701 err = btrfs_update_inode(trans, root, inode);
6702 if (err)
6703 goto out_unlock;
6704
6705 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6706 0, index);
6707 if (err)
6708 goto out_unlock;
6709
6710 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6711 d_instantiate_new(dentry, inode);
6712
6713 out_unlock:
6714 btrfs_end_transaction(trans);
6715 if (err && inode) {
6716 inode_dec_link_count(inode);
6717 discard_new_inode(inode);
6718 }
6719 btrfs_btree_balance_dirty(fs_info);
6720 return err;
6721 }
6722
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6723 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6724 struct dentry *dentry)
6725 {
6726 struct btrfs_trans_handle *trans = NULL;
6727 struct btrfs_root *root = BTRFS_I(dir)->root;
6728 struct inode *inode = d_inode(old_dentry);
6729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6730 u64 index;
6731 int err;
6732 int drop_inode = 0;
6733
6734 /* do not allow sys_link's with other subvols of the same device */
6735 if (root->objectid != BTRFS_I(inode)->root->objectid)
6736 return -EXDEV;
6737
6738 if (inode->i_nlink >= BTRFS_LINK_MAX)
6739 return -EMLINK;
6740
6741 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6742 if (err)
6743 goto fail;
6744
6745 /*
6746 * 2 items for inode and inode ref
6747 * 2 items for dir items
6748 * 1 item for parent inode
6749 * 1 item for orphan item deletion if O_TMPFILE
6750 */
6751 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6752 if (IS_ERR(trans)) {
6753 err = PTR_ERR(trans);
6754 trans = NULL;
6755 goto fail;
6756 }
6757
6758 /* There are several dir indexes for this inode, clear the cache. */
6759 BTRFS_I(inode)->dir_index = 0ULL;
6760 inc_nlink(inode);
6761 inode_inc_iversion(inode);
6762 inode->i_ctime = current_time(inode);
6763 ihold(inode);
6764 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6765
6766 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6767 1, index);
6768
6769 if (err) {
6770 drop_inode = 1;
6771 } else {
6772 struct dentry *parent = dentry->d_parent;
6773 int ret;
6774
6775 err = btrfs_update_inode(trans, root, inode);
6776 if (err)
6777 goto fail;
6778 if (inode->i_nlink == 1) {
6779 /*
6780 * If new hard link count is 1, it's a file created
6781 * with open(2) O_TMPFILE flag.
6782 */
6783 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6784 if (err)
6785 goto fail;
6786 }
6787 BTRFS_I(inode)->last_link_trans = trans->transid;
6788 d_instantiate(dentry, inode);
6789 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6790 true, NULL);
6791 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6792 err = btrfs_commit_transaction(trans);
6793 trans = NULL;
6794 }
6795 }
6796
6797 fail:
6798 if (trans)
6799 btrfs_end_transaction(trans);
6800 if (drop_inode) {
6801 inode_dec_link_count(inode);
6802 iput(inode);
6803 }
6804 btrfs_btree_balance_dirty(fs_info);
6805 return err;
6806 }
6807
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6808 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6809 {
6810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6811 struct inode *inode = NULL;
6812 struct btrfs_trans_handle *trans;
6813 struct btrfs_root *root = BTRFS_I(dir)->root;
6814 int err = 0;
6815 int drop_on_err = 0;
6816 u64 objectid = 0;
6817 u64 index = 0;
6818
6819 /*
6820 * 2 items for inode and ref
6821 * 2 items for dir items
6822 * 1 for xattr if selinux is on
6823 */
6824 trans = btrfs_start_transaction(root, 5);
6825 if (IS_ERR(trans))
6826 return PTR_ERR(trans);
6827
6828 err = btrfs_find_free_ino(root, &objectid);
6829 if (err)
6830 goto out_fail;
6831
6832 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6833 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6834 S_IFDIR | mode, &index);
6835 if (IS_ERR(inode)) {
6836 err = PTR_ERR(inode);
6837 inode = NULL;
6838 goto out_fail;
6839 }
6840
6841 drop_on_err = 1;
6842 /* these must be set before we unlock the inode */
6843 inode->i_op = &btrfs_dir_inode_operations;
6844 inode->i_fop = &btrfs_dir_file_operations;
6845
6846 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6847 if (err)
6848 goto out_fail;
6849
6850 btrfs_i_size_write(BTRFS_I(inode), 0);
6851 err = btrfs_update_inode(trans, root, inode);
6852 if (err)
6853 goto out_fail;
6854
6855 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6856 dentry->d_name.name,
6857 dentry->d_name.len, 0, index);
6858 if (err)
6859 goto out_fail;
6860
6861 d_instantiate_new(dentry, inode);
6862 drop_on_err = 0;
6863
6864 out_fail:
6865 btrfs_end_transaction(trans);
6866 if (err && inode) {
6867 inode_dec_link_count(inode);
6868 discard_new_inode(inode);
6869 }
6870 btrfs_btree_balance_dirty(fs_info);
6871 return err;
6872 }
6873
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6874 static noinline int uncompress_inline(struct btrfs_path *path,
6875 struct page *page,
6876 size_t pg_offset, u64 extent_offset,
6877 struct btrfs_file_extent_item *item)
6878 {
6879 int ret;
6880 struct extent_buffer *leaf = path->nodes[0];
6881 char *tmp;
6882 size_t max_size;
6883 unsigned long inline_size;
6884 unsigned long ptr;
6885 int compress_type;
6886
6887 WARN_ON(pg_offset != 0);
6888 compress_type = btrfs_file_extent_compression(leaf, item);
6889 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6890 inline_size = btrfs_file_extent_inline_item_len(leaf,
6891 btrfs_item_nr(path->slots[0]));
6892 tmp = kmalloc(inline_size, GFP_NOFS);
6893 if (!tmp)
6894 return -ENOMEM;
6895 ptr = btrfs_file_extent_inline_start(item);
6896
6897 read_extent_buffer(leaf, tmp, ptr, inline_size);
6898
6899 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6900 ret = btrfs_decompress(compress_type, tmp, page,
6901 extent_offset, inline_size, max_size);
6902
6903 /*
6904 * decompression code contains a memset to fill in any space between the end
6905 * of the uncompressed data and the end of max_size in case the decompressed
6906 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6907 * the end of an inline extent and the beginning of the next block, so we
6908 * cover that region here.
6909 */
6910
6911 if (max_size + pg_offset < PAGE_SIZE) {
6912 char *map = kmap(page);
6913 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6914 kunmap(page);
6915 }
6916 kfree(tmp);
6917 return ret;
6918 }
6919
6920 /*
6921 * a bit scary, this does extent mapping from logical file offset to the disk.
6922 * the ugly parts come from merging extents from the disk with the in-ram
6923 * representation. This gets more complex because of the data=ordered code,
6924 * where the in-ram extents might be locked pending data=ordered completion.
6925 *
6926 * This also copies inline extents directly into the page.
6927 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6928 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6929 struct page *page,
6930 size_t pg_offset, u64 start, u64 len,
6931 int create)
6932 {
6933 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6934 int ret;
6935 int err = 0;
6936 u64 extent_start = 0;
6937 u64 extent_end = 0;
6938 u64 objectid = btrfs_ino(inode);
6939 u32 found_type;
6940 struct btrfs_path *path = NULL;
6941 struct btrfs_root *root = inode->root;
6942 struct btrfs_file_extent_item *item;
6943 struct extent_buffer *leaf;
6944 struct btrfs_key found_key;
6945 struct extent_map *em = NULL;
6946 struct extent_map_tree *em_tree = &inode->extent_tree;
6947 struct extent_io_tree *io_tree = &inode->io_tree;
6948 const bool new_inline = !page || create;
6949
6950 read_lock(&em_tree->lock);
6951 em = lookup_extent_mapping(em_tree, start, len);
6952 if (em)
6953 em->bdev = fs_info->fs_devices->latest_bdev;
6954 read_unlock(&em_tree->lock);
6955
6956 if (em) {
6957 if (em->start > start || em->start + em->len <= start)
6958 free_extent_map(em);
6959 else if (em->block_start == EXTENT_MAP_INLINE && page)
6960 free_extent_map(em);
6961 else
6962 goto out;
6963 }
6964 em = alloc_extent_map();
6965 if (!em) {
6966 err = -ENOMEM;
6967 goto out;
6968 }
6969 em->bdev = fs_info->fs_devices->latest_bdev;
6970 em->start = EXTENT_MAP_HOLE;
6971 em->orig_start = EXTENT_MAP_HOLE;
6972 em->len = (u64)-1;
6973 em->block_len = (u64)-1;
6974
6975 if (!path) {
6976 path = btrfs_alloc_path();
6977 if (!path) {
6978 err = -ENOMEM;
6979 goto out;
6980 }
6981 /*
6982 * Chances are we'll be called again, so go ahead and do
6983 * readahead
6984 */
6985 path->reada = READA_FORWARD;
6986 }
6987
6988 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6989 if (ret < 0) {
6990 err = ret;
6991 goto out;
6992 }
6993
6994 if (ret != 0) {
6995 if (path->slots[0] == 0)
6996 goto not_found;
6997 path->slots[0]--;
6998 }
6999
7000 leaf = path->nodes[0];
7001 item = btrfs_item_ptr(leaf, path->slots[0],
7002 struct btrfs_file_extent_item);
7003 /* are we inside the extent that was found? */
7004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7005 found_type = found_key.type;
7006 if (found_key.objectid != objectid ||
7007 found_type != BTRFS_EXTENT_DATA_KEY) {
7008 /*
7009 * If we backup past the first extent we want to move forward
7010 * and see if there is an extent in front of us, otherwise we'll
7011 * say there is a hole for our whole search range which can
7012 * cause problems.
7013 */
7014 extent_end = start;
7015 goto next;
7016 }
7017
7018 found_type = btrfs_file_extent_type(leaf, item);
7019 extent_start = found_key.offset;
7020 if (found_type == BTRFS_FILE_EXTENT_REG ||
7021 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7022 /* Only regular file could have regular/prealloc extent */
7023 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7024 err = -EUCLEAN;
7025 btrfs_crit(fs_info,
7026 "regular/prealloc extent found for non-regular inode %llu",
7027 btrfs_ino(inode));
7028 goto out;
7029 }
7030 extent_end = extent_start +
7031 btrfs_file_extent_num_bytes(leaf, item);
7032
7033 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7034 extent_start);
7035 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7036 size_t size;
7037
7038 size = btrfs_file_extent_ram_bytes(leaf, item);
7039 extent_end = ALIGN(extent_start + size,
7040 fs_info->sectorsize);
7041
7042 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7043 path->slots[0],
7044 extent_start);
7045 }
7046 next:
7047 if (start >= extent_end) {
7048 path->slots[0]++;
7049 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7050 ret = btrfs_next_leaf(root, path);
7051 if (ret < 0) {
7052 err = ret;
7053 goto out;
7054 }
7055 if (ret > 0)
7056 goto not_found;
7057 leaf = path->nodes[0];
7058 }
7059 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7060 if (found_key.objectid != objectid ||
7061 found_key.type != BTRFS_EXTENT_DATA_KEY)
7062 goto not_found;
7063 if (start + len <= found_key.offset)
7064 goto not_found;
7065 if (start > found_key.offset)
7066 goto next;
7067 em->start = start;
7068 em->orig_start = start;
7069 em->len = found_key.offset - start;
7070 goto not_found_em;
7071 }
7072
7073 btrfs_extent_item_to_extent_map(inode, path, item,
7074 new_inline, em);
7075
7076 if (found_type == BTRFS_FILE_EXTENT_REG ||
7077 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7078 goto insert;
7079 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7080 unsigned long ptr;
7081 char *map;
7082 size_t size;
7083 size_t extent_offset;
7084 size_t copy_size;
7085
7086 if (new_inline)
7087 goto out;
7088
7089 size = btrfs_file_extent_ram_bytes(leaf, item);
7090 extent_offset = page_offset(page) + pg_offset - extent_start;
7091 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7092 size - extent_offset);
7093 em->start = extent_start + extent_offset;
7094 em->len = ALIGN(copy_size, fs_info->sectorsize);
7095 em->orig_block_len = em->len;
7096 em->orig_start = em->start;
7097 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7098 if (!PageUptodate(page)) {
7099 if (btrfs_file_extent_compression(leaf, item) !=
7100 BTRFS_COMPRESS_NONE) {
7101 ret = uncompress_inline(path, page, pg_offset,
7102 extent_offset, item);
7103 if (ret) {
7104 err = ret;
7105 goto out;
7106 }
7107 } else {
7108 map = kmap(page);
7109 read_extent_buffer(leaf, map + pg_offset, ptr,
7110 copy_size);
7111 if (pg_offset + copy_size < PAGE_SIZE) {
7112 memset(map + pg_offset + copy_size, 0,
7113 PAGE_SIZE - pg_offset -
7114 copy_size);
7115 }
7116 kunmap(page);
7117 }
7118 flush_dcache_page(page);
7119 }
7120 set_extent_uptodate(io_tree, em->start,
7121 extent_map_end(em) - 1, NULL, GFP_NOFS);
7122 goto insert;
7123 }
7124 not_found:
7125 em->start = start;
7126 em->orig_start = start;
7127 em->len = len;
7128 not_found_em:
7129 em->block_start = EXTENT_MAP_HOLE;
7130 insert:
7131 btrfs_release_path(path);
7132 if (em->start > start || extent_map_end(em) <= start) {
7133 btrfs_err(fs_info,
7134 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7135 em->start, em->len, start, len);
7136 err = -EIO;
7137 goto out;
7138 }
7139
7140 err = 0;
7141 write_lock(&em_tree->lock);
7142 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7143 write_unlock(&em_tree->lock);
7144 out:
7145
7146 trace_btrfs_get_extent(root, inode, em);
7147
7148 btrfs_free_path(path);
7149 if (err) {
7150 free_extent_map(em);
7151 return ERR_PTR(err);
7152 }
7153 BUG_ON(!em); /* Error is always set */
7154 return em;
7155 }
7156
btrfs_get_extent_fiemap(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7157 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7158 struct page *page,
7159 size_t pg_offset, u64 start, u64 len,
7160 int create)
7161 {
7162 struct extent_map *em;
7163 struct extent_map *hole_em = NULL;
7164 u64 range_start = start;
7165 u64 end;
7166 u64 found;
7167 u64 found_end;
7168 int err = 0;
7169
7170 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7171 if (IS_ERR(em))
7172 return em;
7173 /*
7174 * If our em maps to:
7175 * - a hole or
7176 * - a pre-alloc extent,
7177 * there might actually be delalloc bytes behind it.
7178 */
7179 if (em->block_start != EXTENT_MAP_HOLE &&
7180 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7181 return em;
7182 else
7183 hole_em = em;
7184
7185 /* check to see if we've wrapped (len == -1 or similar) */
7186 end = start + len;
7187 if (end < start)
7188 end = (u64)-1;
7189 else
7190 end -= 1;
7191
7192 em = NULL;
7193
7194 /* ok, we didn't find anything, lets look for delalloc */
7195 found = count_range_bits(&inode->io_tree, &range_start,
7196 end, len, EXTENT_DELALLOC, 1);
7197 found_end = range_start + found;
7198 if (found_end < range_start)
7199 found_end = (u64)-1;
7200
7201 /*
7202 * we didn't find anything useful, return
7203 * the original results from get_extent()
7204 */
7205 if (range_start > end || found_end <= start) {
7206 em = hole_em;
7207 hole_em = NULL;
7208 goto out;
7209 }
7210
7211 /* adjust the range_start to make sure it doesn't
7212 * go backwards from the start they passed in
7213 */
7214 range_start = max(start, range_start);
7215 found = found_end - range_start;
7216
7217 if (found > 0) {
7218 u64 hole_start = start;
7219 u64 hole_len = len;
7220
7221 em = alloc_extent_map();
7222 if (!em) {
7223 err = -ENOMEM;
7224 goto out;
7225 }
7226 /*
7227 * when btrfs_get_extent can't find anything it
7228 * returns one huge hole
7229 *
7230 * make sure what it found really fits our range, and
7231 * adjust to make sure it is based on the start from
7232 * the caller
7233 */
7234 if (hole_em) {
7235 u64 calc_end = extent_map_end(hole_em);
7236
7237 if (calc_end <= start || (hole_em->start > end)) {
7238 free_extent_map(hole_em);
7239 hole_em = NULL;
7240 } else {
7241 hole_start = max(hole_em->start, start);
7242 hole_len = calc_end - hole_start;
7243 }
7244 }
7245 em->bdev = NULL;
7246 if (hole_em && range_start > hole_start) {
7247 /* our hole starts before our delalloc, so we
7248 * have to return just the parts of the hole
7249 * that go until the delalloc starts
7250 */
7251 em->len = min(hole_len,
7252 range_start - hole_start);
7253 em->start = hole_start;
7254 em->orig_start = hole_start;
7255 /*
7256 * don't adjust block start at all,
7257 * it is fixed at EXTENT_MAP_HOLE
7258 */
7259 em->block_start = hole_em->block_start;
7260 em->block_len = hole_len;
7261 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7262 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7263 } else {
7264 em->start = range_start;
7265 em->len = found;
7266 em->orig_start = range_start;
7267 em->block_start = EXTENT_MAP_DELALLOC;
7268 em->block_len = found;
7269 }
7270 } else {
7271 return hole_em;
7272 }
7273 out:
7274
7275 free_extent_map(hole_em);
7276 if (err) {
7277 free_extent_map(em);
7278 return ERR_PTR(err);
7279 }
7280 return em;
7281 }
7282
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7283 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7284 const u64 start,
7285 const u64 len,
7286 const u64 orig_start,
7287 const u64 block_start,
7288 const u64 block_len,
7289 const u64 orig_block_len,
7290 const u64 ram_bytes,
7291 const int type)
7292 {
7293 struct extent_map *em = NULL;
7294 int ret;
7295
7296 if (type != BTRFS_ORDERED_NOCOW) {
7297 em = create_io_em(inode, start, len, orig_start,
7298 block_start, block_len, orig_block_len,
7299 ram_bytes,
7300 BTRFS_COMPRESS_NONE, /* compress_type */
7301 type);
7302 if (IS_ERR(em))
7303 goto out;
7304 }
7305 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7306 len, block_len, type);
7307 if (ret) {
7308 if (em) {
7309 free_extent_map(em);
7310 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7311 start + len - 1, 0);
7312 }
7313 em = ERR_PTR(ret);
7314 }
7315 out:
7316
7317 return em;
7318 }
7319
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7320 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7321 u64 start, u64 len)
7322 {
7323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7324 struct btrfs_root *root = BTRFS_I(inode)->root;
7325 struct extent_map *em;
7326 struct btrfs_key ins;
7327 u64 alloc_hint;
7328 int ret;
7329
7330 alloc_hint = get_extent_allocation_hint(inode, start, len);
7331 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7332 0, alloc_hint, &ins, 1, 1);
7333 if (ret)
7334 return ERR_PTR(ret);
7335
7336 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7337 ins.objectid, ins.offset, ins.offset,
7338 ins.offset, BTRFS_ORDERED_REGULAR);
7339 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7340 if (IS_ERR(em))
7341 btrfs_free_reserved_extent(fs_info, ins.objectid,
7342 ins.offset, 1);
7343
7344 return em;
7345 }
7346
7347 /*
7348 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7349 * block must be cow'd
7350 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7351 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7352 u64 *orig_start, u64 *orig_block_len,
7353 u64 *ram_bytes)
7354 {
7355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7356 struct btrfs_path *path;
7357 int ret;
7358 struct extent_buffer *leaf;
7359 struct btrfs_root *root = BTRFS_I(inode)->root;
7360 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7361 struct btrfs_file_extent_item *fi;
7362 struct btrfs_key key;
7363 u64 disk_bytenr;
7364 u64 backref_offset;
7365 u64 extent_end;
7366 u64 num_bytes;
7367 int slot;
7368 int found_type;
7369 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7370
7371 path = btrfs_alloc_path();
7372 if (!path)
7373 return -ENOMEM;
7374
7375 ret = btrfs_lookup_file_extent(NULL, root, path,
7376 btrfs_ino(BTRFS_I(inode)), offset, 0);
7377 if (ret < 0)
7378 goto out;
7379
7380 slot = path->slots[0];
7381 if (ret == 1) {
7382 if (slot == 0) {
7383 /* can't find the item, must cow */
7384 ret = 0;
7385 goto out;
7386 }
7387 slot--;
7388 }
7389 ret = 0;
7390 leaf = path->nodes[0];
7391 btrfs_item_key_to_cpu(leaf, &key, slot);
7392 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7393 key.type != BTRFS_EXTENT_DATA_KEY) {
7394 /* not our file or wrong item type, must cow */
7395 goto out;
7396 }
7397
7398 if (key.offset > offset) {
7399 /* Wrong offset, must cow */
7400 goto out;
7401 }
7402
7403 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7404 found_type = btrfs_file_extent_type(leaf, fi);
7405 if (found_type != BTRFS_FILE_EXTENT_REG &&
7406 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7407 /* not a regular extent, must cow */
7408 goto out;
7409 }
7410
7411 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7412 goto out;
7413
7414 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7415 if (extent_end <= offset)
7416 goto out;
7417
7418 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7419 if (disk_bytenr == 0)
7420 goto out;
7421
7422 if (btrfs_file_extent_compression(leaf, fi) ||
7423 btrfs_file_extent_encryption(leaf, fi) ||
7424 btrfs_file_extent_other_encoding(leaf, fi))
7425 goto out;
7426
7427 /*
7428 * Do the same check as in btrfs_cross_ref_exist but without the
7429 * unnecessary search.
7430 */
7431 if (btrfs_file_extent_generation(leaf, fi) <=
7432 btrfs_root_last_snapshot(&root->root_item))
7433 goto out;
7434
7435 backref_offset = btrfs_file_extent_offset(leaf, fi);
7436
7437 if (orig_start) {
7438 *orig_start = key.offset - backref_offset;
7439 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7440 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7441 }
7442
7443 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7444 goto out;
7445
7446 num_bytes = min(offset + *len, extent_end) - offset;
7447 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7448 u64 range_end;
7449
7450 range_end = round_up(offset + num_bytes,
7451 root->fs_info->sectorsize) - 1;
7452 ret = test_range_bit(io_tree, offset, range_end,
7453 EXTENT_DELALLOC, 0, NULL);
7454 if (ret) {
7455 ret = -EAGAIN;
7456 goto out;
7457 }
7458 }
7459
7460 btrfs_release_path(path);
7461
7462 /*
7463 * look for other files referencing this extent, if we
7464 * find any we must cow
7465 */
7466
7467 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7468 key.offset - backref_offset, disk_bytenr);
7469 if (ret) {
7470 ret = 0;
7471 goto out;
7472 }
7473
7474 /*
7475 * adjust disk_bytenr and num_bytes to cover just the bytes
7476 * in this extent we are about to write. If there
7477 * are any csums in that range we have to cow in order
7478 * to keep the csums correct
7479 */
7480 disk_bytenr += backref_offset;
7481 disk_bytenr += offset - key.offset;
7482 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7483 goto out;
7484 /*
7485 * all of the above have passed, it is safe to overwrite this extent
7486 * without cow
7487 */
7488 *len = num_bytes;
7489 ret = 1;
7490 out:
7491 btrfs_free_path(path);
7492 return ret;
7493 }
7494
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7495 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7496 struct extent_state **cached_state, int writing)
7497 {
7498 struct btrfs_ordered_extent *ordered;
7499 int ret = 0;
7500
7501 while (1) {
7502 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7503 cached_state);
7504 /*
7505 * We're concerned with the entire range that we're going to be
7506 * doing DIO to, so we need to make sure there's no ordered
7507 * extents in this range.
7508 */
7509 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7510 lockend - lockstart + 1);
7511
7512 /*
7513 * We need to make sure there are no buffered pages in this
7514 * range either, we could have raced between the invalidate in
7515 * generic_file_direct_write and locking the extent. The
7516 * invalidate needs to happen so that reads after a write do not
7517 * get stale data.
7518 */
7519 if (!ordered &&
7520 (!writing || !filemap_range_has_page(inode->i_mapping,
7521 lockstart, lockend)))
7522 break;
7523
7524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7525 cached_state);
7526
7527 if (ordered) {
7528 /*
7529 * If we are doing a DIO read and the ordered extent we
7530 * found is for a buffered write, we can not wait for it
7531 * to complete and retry, because if we do so we can
7532 * deadlock with concurrent buffered writes on page
7533 * locks. This happens only if our DIO read covers more
7534 * than one extent map, if at this point has already
7535 * created an ordered extent for a previous extent map
7536 * and locked its range in the inode's io tree, and a
7537 * concurrent write against that previous extent map's
7538 * range and this range started (we unlock the ranges
7539 * in the io tree only when the bios complete and
7540 * buffered writes always lock pages before attempting
7541 * to lock range in the io tree).
7542 */
7543 if (writing ||
7544 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7545 btrfs_start_ordered_extent(inode, ordered, 1);
7546 else
7547 ret = -ENOTBLK;
7548 btrfs_put_ordered_extent(ordered);
7549 } else {
7550 /*
7551 * We could trigger writeback for this range (and wait
7552 * for it to complete) and then invalidate the pages for
7553 * this range (through invalidate_inode_pages2_range()),
7554 * but that can lead us to a deadlock with a concurrent
7555 * call to readpages() (a buffered read or a defrag call
7556 * triggered a readahead) on a page lock due to an
7557 * ordered dio extent we created before but did not have
7558 * yet a corresponding bio submitted (whence it can not
7559 * complete), which makes readpages() wait for that
7560 * ordered extent to complete while holding a lock on
7561 * that page.
7562 */
7563 ret = -ENOTBLK;
7564 }
7565
7566 if (ret)
7567 break;
7568
7569 cond_resched();
7570 }
7571
7572 return ret;
7573 }
7574
7575 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7576 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7577 u64 orig_start, u64 block_start,
7578 u64 block_len, u64 orig_block_len,
7579 u64 ram_bytes, int compress_type,
7580 int type)
7581 {
7582 struct extent_map_tree *em_tree;
7583 struct extent_map *em;
7584 struct btrfs_root *root = BTRFS_I(inode)->root;
7585 int ret;
7586
7587 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7588 type == BTRFS_ORDERED_COMPRESSED ||
7589 type == BTRFS_ORDERED_NOCOW ||
7590 type == BTRFS_ORDERED_REGULAR);
7591
7592 em_tree = &BTRFS_I(inode)->extent_tree;
7593 em = alloc_extent_map();
7594 if (!em)
7595 return ERR_PTR(-ENOMEM);
7596
7597 em->start = start;
7598 em->orig_start = orig_start;
7599 em->len = len;
7600 em->block_len = block_len;
7601 em->block_start = block_start;
7602 em->bdev = root->fs_info->fs_devices->latest_bdev;
7603 em->orig_block_len = orig_block_len;
7604 em->ram_bytes = ram_bytes;
7605 em->generation = -1;
7606 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7607 if (type == BTRFS_ORDERED_PREALLOC) {
7608 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7609 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7610 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7611 em->compress_type = compress_type;
7612 }
7613
7614 do {
7615 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7616 em->start + em->len - 1, 0);
7617 write_lock(&em_tree->lock);
7618 ret = add_extent_mapping(em_tree, em, 1);
7619 write_unlock(&em_tree->lock);
7620 /*
7621 * The caller has taken lock_extent(), who could race with us
7622 * to add em?
7623 */
7624 } while (ret == -EEXIST);
7625
7626 if (ret) {
7627 free_extent_map(em);
7628 return ERR_PTR(ret);
7629 }
7630
7631 /* em got 2 refs now, callers needs to do free_extent_map once. */
7632 return em;
7633 }
7634
7635
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7636 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7637 struct buffer_head *bh_result,
7638 struct inode *inode,
7639 u64 start, u64 len)
7640 {
7641 if (em->block_start == EXTENT_MAP_HOLE ||
7642 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7643 return -ENOENT;
7644
7645 len = min(len, em->len - (start - em->start));
7646
7647 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7648 inode->i_blkbits;
7649 bh_result->b_size = len;
7650 bh_result->b_bdev = em->bdev;
7651 set_buffer_mapped(bh_result);
7652
7653 return 0;
7654 }
7655
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7656 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7657 struct buffer_head *bh_result,
7658 struct inode *inode,
7659 struct btrfs_dio_data *dio_data,
7660 u64 start, u64 len)
7661 {
7662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7663 struct extent_map *em = *map;
7664 int ret = 0;
7665
7666 /*
7667 * We don't allocate a new extent in the following cases
7668 *
7669 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7670 * existing extent.
7671 * 2) The extent is marked as PREALLOC. We're good to go here and can
7672 * just use the extent.
7673 *
7674 */
7675 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7676 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7677 em->block_start != EXTENT_MAP_HOLE)) {
7678 int type;
7679 u64 block_start, orig_start, orig_block_len, ram_bytes;
7680
7681 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7682 type = BTRFS_ORDERED_PREALLOC;
7683 else
7684 type = BTRFS_ORDERED_NOCOW;
7685 len = min(len, em->len - (start - em->start));
7686 block_start = em->block_start + (start - em->start);
7687
7688 if (can_nocow_extent(inode, start, &len, &orig_start,
7689 &orig_block_len, &ram_bytes) == 1 &&
7690 btrfs_inc_nocow_writers(fs_info, block_start)) {
7691 struct extent_map *em2;
7692
7693 em2 = btrfs_create_dio_extent(inode, start, len,
7694 orig_start, block_start,
7695 len, orig_block_len,
7696 ram_bytes, type);
7697 btrfs_dec_nocow_writers(fs_info, block_start);
7698 if (type == BTRFS_ORDERED_PREALLOC) {
7699 free_extent_map(em);
7700 *map = em = em2;
7701 }
7702
7703 if (em2 && IS_ERR(em2)) {
7704 ret = PTR_ERR(em2);
7705 goto out;
7706 }
7707 /*
7708 * For inode marked NODATACOW or extent marked PREALLOC,
7709 * use the existing or preallocated extent, so does not
7710 * need to adjust btrfs_space_info's bytes_may_use.
7711 */
7712 btrfs_free_reserved_data_space_noquota(inode, start,
7713 len);
7714 goto skip_cow;
7715 }
7716 }
7717
7718 /* this will cow the extent */
7719 len = bh_result->b_size;
7720 free_extent_map(em);
7721 *map = em = btrfs_new_extent_direct(inode, start, len);
7722 if (IS_ERR(em)) {
7723 ret = PTR_ERR(em);
7724 goto out;
7725 }
7726
7727 len = min(len, em->len - (start - em->start));
7728
7729 skip_cow:
7730 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7731 inode->i_blkbits;
7732 bh_result->b_size = len;
7733 bh_result->b_bdev = em->bdev;
7734 set_buffer_mapped(bh_result);
7735
7736 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7737 set_buffer_new(bh_result);
7738
7739 /*
7740 * Need to update the i_size under the extent lock so buffered
7741 * readers will get the updated i_size when we unlock.
7742 */
7743 if (!dio_data->overwrite && start + len > i_size_read(inode))
7744 i_size_write(inode, start + len);
7745
7746 WARN_ON(dio_data->reserve < len);
7747 dio_data->reserve -= len;
7748 dio_data->unsubmitted_oe_range_end = start + len;
7749 current->journal_info = dio_data;
7750 out:
7751 return ret;
7752 }
7753
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7754 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7755 struct buffer_head *bh_result, int create)
7756 {
7757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7758 struct extent_map *em;
7759 struct extent_state *cached_state = NULL;
7760 struct btrfs_dio_data *dio_data = NULL;
7761 u64 start = iblock << inode->i_blkbits;
7762 u64 lockstart, lockend;
7763 u64 len = bh_result->b_size;
7764 int unlock_bits = EXTENT_LOCKED;
7765 int ret = 0;
7766
7767 if (create)
7768 unlock_bits |= EXTENT_DIRTY;
7769 else
7770 len = min_t(u64, len, fs_info->sectorsize);
7771
7772 lockstart = start;
7773 lockend = start + len - 1;
7774
7775 if (current->journal_info) {
7776 /*
7777 * Need to pull our outstanding extents and set journal_info to NULL so
7778 * that anything that needs to check if there's a transaction doesn't get
7779 * confused.
7780 */
7781 dio_data = current->journal_info;
7782 current->journal_info = NULL;
7783 }
7784
7785 /*
7786 * If this errors out it's because we couldn't invalidate pagecache for
7787 * this range and we need to fallback to buffered.
7788 */
7789 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7790 create)) {
7791 ret = -ENOTBLK;
7792 goto err;
7793 }
7794
7795 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7796 if (IS_ERR(em)) {
7797 ret = PTR_ERR(em);
7798 goto unlock_err;
7799 }
7800
7801 /*
7802 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7803 * io. INLINE is special, and we could probably kludge it in here, but
7804 * it's still buffered so for safety lets just fall back to the generic
7805 * buffered path.
7806 *
7807 * For COMPRESSED we _have_ to read the entire extent in so we can
7808 * decompress it, so there will be buffering required no matter what we
7809 * do, so go ahead and fallback to buffered.
7810 *
7811 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7812 * to buffered IO. Don't blame me, this is the price we pay for using
7813 * the generic code.
7814 */
7815 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7816 em->block_start == EXTENT_MAP_INLINE) {
7817 free_extent_map(em);
7818 ret = -ENOTBLK;
7819 goto unlock_err;
7820 }
7821
7822 if (create) {
7823 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7824 dio_data, start, len);
7825 if (ret < 0)
7826 goto unlock_err;
7827
7828 /* clear and unlock the entire range */
7829 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7830 unlock_bits, 1, 0, &cached_state);
7831 } else {
7832 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7833 start, len);
7834 /* Can be negative only if we read from a hole */
7835 if (ret < 0) {
7836 ret = 0;
7837 free_extent_map(em);
7838 goto unlock_err;
7839 }
7840 /*
7841 * We need to unlock only the end area that we aren't using.
7842 * The rest is going to be unlocked by the endio routine.
7843 */
7844 lockstart = start + bh_result->b_size;
7845 if (lockstart < lockend) {
7846 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7847 lockend, unlock_bits, 1, 0,
7848 &cached_state);
7849 } else {
7850 free_extent_state(cached_state);
7851 }
7852 }
7853
7854 free_extent_map(em);
7855
7856 return 0;
7857
7858 unlock_err:
7859 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7860 unlock_bits, 1, 0, &cached_state);
7861 err:
7862 if (dio_data)
7863 current->journal_info = dio_data;
7864 return ret;
7865 }
7866
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7867 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7868 struct bio *bio,
7869 int mirror_num)
7870 {
7871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7872 blk_status_t ret;
7873
7874 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7875
7876 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7877 if (ret)
7878 return ret;
7879
7880 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7881
7882 return ret;
7883 }
7884
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7885 static int btrfs_check_dio_repairable(struct inode *inode,
7886 struct bio *failed_bio,
7887 struct io_failure_record *failrec,
7888 int failed_mirror)
7889 {
7890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7891 int num_copies;
7892
7893 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7894 if (num_copies == 1) {
7895 /*
7896 * we only have a single copy of the data, so don't bother with
7897 * all the retry and error correction code that follows. no
7898 * matter what the error is, it is very likely to persist.
7899 */
7900 btrfs_debug(fs_info,
7901 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7902 num_copies, failrec->this_mirror, failed_mirror);
7903 return 0;
7904 }
7905
7906 failrec->failed_mirror = failed_mirror;
7907 failrec->this_mirror++;
7908 if (failrec->this_mirror == failed_mirror)
7909 failrec->this_mirror++;
7910
7911 if (failrec->this_mirror > num_copies) {
7912 btrfs_debug(fs_info,
7913 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7914 num_copies, failrec->this_mirror, failed_mirror);
7915 return 0;
7916 }
7917
7918 return 1;
7919 }
7920
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7921 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7922 struct page *page, unsigned int pgoff,
7923 u64 start, u64 end, int failed_mirror,
7924 bio_end_io_t *repair_endio, void *repair_arg)
7925 {
7926 struct io_failure_record *failrec;
7927 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7928 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7929 struct bio *bio;
7930 int isector;
7931 unsigned int read_mode = 0;
7932 int segs;
7933 int ret;
7934 blk_status_t status;
7935 struct bio_vec bvec;
7936
7937 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7938
7939 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7940 if (ret)
7941 return errno_to_blk_status(ret);
7942
7943 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7944 failed_mirror);
7945 if (!ret) {
7946 free_io_failure(failure_tree, io_tree, failrec);
7947 return BLK_STS_IOERR;
7948 }
7949
7950 segs = bio_segments(failed_bio);
7951 bio_get_first_bvec(failed_bio, &bvec);
7952 if (segs > 1 ||
7953 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7954 read_mode |= REQ_FAILFAST_DEV;
7955
7956 isector = start - btrfs_io_bio(failed_bio)->logical;
7957 isector >>= inode->i_sb->s_blocksize_bits;
7958 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7959 pgoff, isector, repair_endio, repair_arg);
7960 bio->bi_opf = REQ_OP_READ | read_mode;
7961
7962 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7963 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7964 read_mode, failrec->this_mirror, failrec->in_validation);
7965
7966 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7967 if (status) {
7968 free_io_failure(failure_tree, io_tree, failrec);
7969 bio_put(bio);
7970 }
7971
7972 return status;
7973 }
7974
7975 struct btrfs_retry_complete {
7976 struct completion done;
7977 struct inode *inode;
7978 u64 start;
7979 int uptodate;
7980 };
7981
btrfs_retry_endio_nocsum(struct bio * bio)7982 static void btrfs_retry_endio_nocsum(struct bio *bio)
7983 {
7984 struct btrfs_retry_complete *done = bio->bi_private;
7985 struct inode *inode = done->inode;
7986 struct bio_vec *bvec;
7987 struct extent_io_tree *io_tree, *failure_tree;
7988 int i;
7989
7990 if (bio->bi_status)
7991 goto end;
7992
7993 ASSERT(bio->bi_vcnt == 1);
7994 io_tree = &BTRFS_I(inode)->io_tree;
7995 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7996 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7997
7998 done->uptodate = 1;
7999 ASSERT(!bio_flagged(bio, BIO_CLONED));
8000 bio_for_each_segment_all(bvec, bio, i)
8001 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8002 io_tree, done->start, bvec->bv_page,
8003 btrfs_ino(BTRFS_I(inode)), 0);
8004 end:
8005 complete(&done->done);
8006 bio_put(bio);
8007 }
8008
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8009 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8010 struct btrfs_io_bio *io_bio)
8011 {
8012 struct btrfs_fs_info *fs_info;
8013 struct bio_vec bvec;
8014 struct bvec_iter iter;
8015 struct btrfs_retry_complete done;
8016 u64 start;
8017 unsigned int pgoff;
8018 u32 sectorsize;
8019 int nr_sectors;
8020 blk_status_t ret;
8021 blk_status_t err = BLK_STS_OK;
8022
8023 fs_info = BTRFS_I(inode)->root->fs_info;
8024 sectorsize = fs_info->sectorsize;
8025
8026 start = io_bio->logical;
8027 done.inode = inode;
8028 io_bio->bio.bi_iter = io_bio->iter;
8029
8030 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8031 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8032 pgoff = bvec.bv_offset;
8033
8034 next_block_or_try_again:
8035 done.uptodate = 0;
8036 done.start = start;
8037 init_completion(&done.done);
8038
8039 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8040 pgoff, start, start + sectorsize - 1,
8041 io_bio->mirror_num,
8042 btrfs_retry_endio_nocsum, &done);
8043 if (ret) {
8044 err = ret;
8045 goto next;
8046 }
8047
8048 wait_for_completion_io(&done.done);
8049
8050 if (!done.uptodate) {
8051 /* We might have another mirror, so try again */
8052 goto next_block_or_try_again;
8053 }
8054
8055 next:
8056 start += sectorsize;
8057
8058 nr_sectors--;
8059 if (nr_sectors) {
8060 pgoff += sectorsize;
8061 ASSERT(pgoff < PAGE_SIZE);
8062 goto next_block_or_try_again;
8063 }
8064 }
8065
8066 return err;
8067 }
8068
btrfs_retry_endio(struct bio * bio)8069 static void btrfs_retry_endio(struct bio *bio)
8070 {
8071 struct btrfs_retry_complete *done = bio->bi_private;
8072 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8073 struct extent_io_tree *io_tree, *failure_tree;
8074 struct inode *inode = done->inode;
8075 struct bio_vec *bvec;
8076 int uptodate;
8077 int ret;
8078 int i;
8079
8080 if (bio->bi_status)
8081 goto end;
8082
8083 uptodate = 1;
8084
8085 ASSERT(bio->bi_vcnt == 1);
8086 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8087
8088 io_tree = &BTRFS_I(inode)->io_tree;
8089 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8090
8091 ASSERT(!bio_flagged(bio, BIO_CLONED));
8092 bio_for_each_segment_all(bvec, bio, i) {
8093 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8094 bvec->bv_offset, done->start,
8095 bvec->bv_len);
8096 if (!ret)
8097 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8098 failure_tree, io_tree, done->start,
8099 bvec->bv_page,
8100 btrfs_ino(BTRFS_I(inode)),
8101 bvec->bv_offset);
8102 else
8103 uptodate = 0;
8104 }
8105
8106 done->uptodate = uptodate;
8107 end:
8108 complete(&done->done);
8109 bio_put(bio);
8110 }
8111
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8112 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8113 struct btrfs_io_bio *io_bio, blk_status_t err)
8114 {
8115 struct btrfs_fs_info *fs_info;
8116 struct bio_vec bvec;
8117 struct bvec_iter iter;
8118 struct btrfs_retry_complete done;
8119 u64 start;
8120 u64 offset = 0;
8121 u32 sectorsize;
8122 int nr_sectors;
8123 unsigned int pgoff;
8124 int csum_pos;
8125 bool uptodate = (err == 0);
8126 int ret;
8127 blk_status_t status;
8128
8129 fs_info = BTRFS_I(inode)->root->fs_info;
8130 sectorsize = fs_info->sectorsize;
8131
8132 err = BLK_STS_OK;
8133 start = io_bio->logical;
8134 done.inode = inode;
8135 io_bio->bio.bi_iter = io_bio->iter;
8136
8137 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8138 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8139
8140 pgoff = bvec.bv_offset;
8141 next_block:
8142 if (uptodate) {
8143 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8144 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8145 bvec.bv_page, pgoff, start, sectorsize);
8146 if (likely(!ret))
8147 goto next;
8148 }
8149 try_again:
8150 done.uptodate = 0;
8151 done.start = start;
8152 init_completion(&done.done);
8153
8154 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8155 pgoff, start, start + sectorsize - 1,
8156 io_bio->mirror_num, btrfs_retry_endio,
8157 &done);
8158 if (status) {
8159 err = status;
8160 goto next;
8161 }
8162
8163 wait_for_completion_io(&done.done);
8164
8165 if (!done.uptodate) {
8166 /* We might have another mirror, so try again */
8167 goto try_again;
8168 }
8169 next:
8170 offset += sectorsize;
8171 start += sectorsize;
8172
8173 ASSERT(nr_sectors);
8174
8175 nr_sectors--;
8176 if (nr_sectors) {
8177 pgoff += sectorsize;
8178 ASSERT(pgoff < PAGE_SIZE);
8179 goto next_block;
8180 }
8181 }
8182
8183 return err;
8184 }
8185
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8186 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8187 struct btrfs_io_bio *io_bio, blk_status_t err)
8188 {
8189 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8190
8191 if (skip_csum) {
8192 if (unlikely(err))
8193 return __btrfs_correct_data_nocsum(inode, io_bio);
8194 else
8195 return BLK_STS_OK;
8196 } else {
8197 return __btrfs_subio_endio_read(inode, io_bio, err);
8198 }
8199 }
8200
btrfs_endio_direct_read(struct bio * bio)8201 static void btrfs_endio_direct_read(struct bio *bio)
8202 {
8203 struct btrfs_dio_private *dip = bio->bi_private;
8204 struct inode *inode = dip->inode;
8205 struct bio *dio_bio;
8206 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8207 blk_status_t err = bio->bi_status;
8208
8209 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8210 err = btrfs_subio_endio_read(inode, io_bio, err);
8211
8212 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8213 dip->logical_offset + dip->bytes - 1);
8214 dio_bio = dip->dio_bio;
8215
8216 kfree(dip);
8217
8218 dio_bio->bi_status = err;
8219 dio_end_io(dio_bio);
8220
8221 if (io_bio->end_io)
8222 io_bio->end_io(io_bio, blk_status_to_errno(err));
8223 bio_put(bio);
8224 }
8225
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8226 static void __endio_write_update_ordered(struct inode *inode,
8227 const u64 offset, const u64 bytes,
8228 const bool uptodate)
8229 {
8230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8231 struct btrfs_ordered_extent *ordered = NULL;
8232 struct btrfs_workqueue *wq;
8233 btrfs_work_func_t func;
8234 u64 ordered_offset = offset;
8235 u64 ordered_bytes = bytes;
8236 u64 last_offset;
8237
8238 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8239 wq = fs_info->endio_freespace_worker;
8240 func = btrfs_freespace_write_helper;
8241 } else {
8242 wq = fs_info->endio_write_workers;
8243 func = btrfs_endio_write_helper;
8244 }
8245
8246 while (ordered_offset < offset + bytes) {
8247 last_offset = ordered_offset;
8248 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8249 &ordered_offset,
8250 ordered_bytes,
8251 uptodate)) {
8252 btrfs_init_work(&ordered->work, func,
8253 finish_ordered_fn,
8254 NULL, NULL);
8255 btrfs_queue_work(wq, &ordered->work);
8256 }
8257 /*
8258 * If btrfs_dec_test_ordered_pending does not find any ordered
8259 * extent in the range, we can exit.
8260 */
8261 if (ordered_offset == last_offset)
8262 return;
8263 /*
8264 * Our bio might span multiple ordered extents. In this case
8265 * we keep goin until we have accounted the whole dio.
8266 */
8267 if (ordered_offset < offset + bytes) {
8268 ordered_bytes = offset + bytes - ordered_offset;
8269 ordered = NULL;
8270 }
8271 }
8272 }
8273
btrfs_endio_direct_write(struct bio * bio)8274 static void btrfs_endio_direct_write(struct bio *bio)
8275 {
8276 struct btrfs_dio_private *dip = bio->bi_private;
8277 struct bio *dio_bio = dip->dio_bio;
8278
8279 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8280 dip->bytes, !bio->bi_status);
8281
8282 kfree(dip);
8283
8284 dio_bio->bi_status = bio->bi_status;
8285 dio_end_io(dio_bio);
8286 bio_put(bio);
8287 }
8288
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8289 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8290 struct bio *bio, u64 offset)
8291 {
8292 struct inode *inode = private_data;
8293 blk_status_t ret;
8294 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8295 BUG_ON(ret); /* -ENOMEM */
8296 return 0;
8297 }
8298
btrfs_end_dio_bio(struct bio * bio)8299 static void btrfs_end_dio_bio(struct bio *bio)
8300 {
8301 struct btrfs_dio_private *dip = bio->bi_private;
8302 blk_status_t err = bio->bi_status;
8303
8304 if (err)
8305 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8306 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8307 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8308 bio->bi_opf,
8309 (unsigned long long)bio->bi_iter.bi_sector,
8310 bio->bi_iter.bi_size, err);
8311
8312 if (dip->subio_endio)
8313 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8314
8315 if (err) {
8316 /*
8317 * We want to perceive the errors flag being set before
8318 * decrementing the reference count. We don't need a barrier
8319 * since atomic operations with a return value are fully
8320 * ordered as per atomic_t.txt
8321 */
8322 dip->errors = 1;
8323 }
8324
8325 /* if there are more bios still pending for this dio, just exit */
8326 if (!atomic_dec_and_test(&dip->pending_bios))
8327 goto out;
8328
8329 if (dip->errors) {
8330 bio_io_error(dip->orig_bio);
8331 } else {
8332 dip->dio_bio->bi_status = BLK_STS_OK;
8333 bio_endio(dip->orig_bio);
8334 }
8335 out:
8336 bio_put(bio);
8337 }
8338
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8339 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8340 struct btrfs_dio_private *dip,
8341 struct bio *bio,
8342 u64 file_offset)
8343 {
8344 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8345 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8346 blk_status_t ret;
8347
8348 /*
8349 * We load all the csum data we need when we submit
8350 * the first bio to reduce the csum tree search and
8351 * contention.
8352 */
8353 if (dip->logical_offset == file_offset) {
8354 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8355 file_offset);
8356 if (ret)
8357 return ret;
8358 }
8359
8360 if (bio == dip->orig_bio)
8361 return 0;
8362
8363 file_offset -= dip->logical_offset;
8364 file_offset >>= inode->i_sb->s_blocksize_bits;
8365 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8366
8367 return 0;
8368 }
8369
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8370 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8371 struct inode *inode, u64 file_offset, int async_submit)
8372 {
8373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8374 struct btrfs_dio_private *dip = bio->bi_private;
8375 bool write = bio_op(bio) == REQ_OP_WRITE;
8376 blk_status_t ret;
8377
8378 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8379 if (async_submit)
8380 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8381
8382 if (!write) {
8383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8384 if (ret)
8385 goto err;
8386 }
8387
8388 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8389 goto map;
8390
8391 if (write && async_submit) {
8392 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8393 file_offset, inode,
8394 btrfs_submit_bio_start_direct_io);
8395 goto err;
8396 } else if (write) {
8397 /*
8398 * If we aren't doing async submit, calculate the csum of the
8399 * bio now.
8400 */
8401 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8402 if (ret)
8403 goto err;
8404 } else {
8405 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8406 file_offset);
8407 if (ret)
8408 goto err;
8409 }
8410 map:
8411 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8412 err:
8413 return ret;
8414 }
8415
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8416 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8417 {
8418 struct inode *inode = dip->inode;
8419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8420 struct bio *bio;
8421 struct bio *orig_bio = dip->orig_bio;
8422 u64 start_sector = orig_bio->bi_iter.bi_sector;
8423 u64 file_offset = dip->logical_offset;
8424 u64 map_length;
8425 int async_submit = 0;
8426 u64 submit_len;
8427 int clone_offset = 0;
8428 int clone_len;
8429 int ret;
8430 blk_status_t status;
8431
8432 map_length = orig_bio->bi_iter.bi_size;
8433 submit_len = map_length;
8434 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8435 &map_length, NULL, 0);
8436 if (ret)
8437 return -EIO;
8438
8439 if (map_length >= submit_len) {
8440 bio = orig_bio;
8441 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8442 goto submit;
8443 }
8444
8445 /* async crcs make it difficult to collect full stripe writes. */
8446 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8447 async_submit = 0;
8448 else
8449 async_submit = 1;
8450
8451 /* bio split */
8452 ASSERT(map_length <= INT_MAX);
8453 do {
8454 clone_len = min_t(int, submit_len, map_length);
8455
8456 /*
8457 * This will never fail as it's passing GPF_NOFS and
8458 * the allocation is backed by btrfs_bioset.
8459 */
8460 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8461 clone_len);
8462 bio->bi_private = dip;
8463 bio->bi_end_io = btrfs_end_dio_bio;
8464 btrfs_io_bio(bio)->logical = file_offset;
8465
8466 ASSERT(submit_len >= clone_len);
8467 submit_len -= clone_len;
8468 if (submit_len == 0)
8469 break;
8470
8471 /*
8472 * Increase the count before we submit the bio so we know
8473 * the end IO handler won't happen before we increase the
8474 * count. Otherwise, the dip might get freed before we're
8475 * done setting it up.
8476 */
8477 atomic_inc(&dip->pending_bios);
8478
8479 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8480 async_submit);
8481 if (status) {
8482 bio_put(bio);
8483 atomic_dec(&dip->pending_bios);
8484 goto out_err;
8485 }
8486
8487 clone_offset += clone_len;
8488 start_sector += clone_len >> 9;
8489 file_offset += clone_len;
8490
8491 map_length = submit_len;
8492 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8493 start_sector << 9, &map_length, NULL, 0);
8494 if (ret)
8495 goto out_err;
8496 } while (submit_len > 0);
8497
8498 submit:
8499 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8500 if (!status)
8501 return 0;
8502
8503 if (bio != orig_bio)
8504 bio_put(bio);
8505 out_err:
8506 dip->errors = 1;
8507 /*
8508 * Before atomic variable goto zero, we must make sure dip->errors is
8509 * perceived to be set. This ordering is ensured by the fact that an
8510 * atomic operations with a return value are fully ordered as per
8511 * atomic_t.txt
8512 */
8513 if (atomic_dec_and_test(&dip->pending_bios))
8514 bio_io_error(dip->orig_bio);
8515
8516 /* bio_end_io() will handle error, so we needn't return it */
8517 return 0;
8518 }
8519
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8520 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8521 loff_t file_offset)
8522 {
8523 struct btrfs_dio_private *dip = NULL;
8524 struct bio *bio = NULL;
8525 struct btrfs_io_bio *io_bio;
8526 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8527 int ret = 0;
8528
8529 bio = btrfs_bio_clone(dio_bio);
8530
8531 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8532 if (!dip) {
8533 ret = -ENOMEM;
8534 goto free_ordered;
8535 }
8536
8537 dip->private = dio_bio->bi_private;
8538 dip->inode = inode;
8539 dip->logical_offset = file_offset;
8540 dip->bytes = dio_bio->bi_iter.bi_size;
8541 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8542 bio->bi_private = dip;
8543 dip->orig_bio = bio;
8544 dip->dio_bio = dio_bio;
8545 atomic_set(&dip->pending_bios, 1);
8546 io_bio = btrfs_io_bio(bio);
8547 io_bio->logical = file_offset;
8548
8549 if (write) {
8550 bio->bi_end_io = btrfs_endio_direct_write;
8551 } else {
8552 bio->bi_end_io = btrfs_endio_direct_read;
8553 dip->subio_endio = btrfs_subio_endio_read;
8554 }
8555
8556 /*
8557 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8558 * even if we fail to submit a bio, because in such case we do the
8559 * corresponding error handling below and it must not be done a second
8560 * time by btrfs_direct_IO().
8561 */
8562 if (write) {
8563 struct btrfs_dio_data *dio_data = current->journal_info;
8564
8565 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8566 dip->bytes;
8567 dio_data->unsubmitted_oe_range_start =
8568 dio_data->unsubmitted_oe_range_end;
8569 }
8570
8571 ret = btrfs_submit_direct_hook(dip);
8572 if (!ret)
8573 return;
8574
8575 if (io_bio->end_io)
8576 io_bio->end_io(io_bio, ret);
8577
8578 free_ordered:
8579 /*
8580 * If we arrived here it means either we failed to submit the dip
8581 * or we either failed to clone the dio_bio or failed to allocate the
8582 * dip. If we cloned the dio_bio and allocated the dip, we can just
8583 * call bio_endio against our io_bio so that we get proper resource
8584 * cleanup if we fail to submit the dip, otherwise, we must do the
8585 * same as btrfs_endio_direct_[write|read] because we can't call these
8586 * callbacks - they require an allocated dip and a clone of dio_bio.
8587 */
8588 if (bio && dip) {
8589 bio_io_error(bio);
8590 /*
8591 * The end io callbacks free our dip, do the final put on bio
8592 * and all the cleanup and final put for dio_bio (through
8593 * dio_end_io()).
8594 */
8595 dip = NULL;
8596 bio = NULL;
8597 } else {
8598 if (write)
8599 __endio_write_update_ordered(inode,
8600 file_offset,
8601 dio_bio->bi_iter.bi_size,
8602 false);
8603 else
8604 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8605 file_offset + dio_bio->bi_iter.bi_size - 1);
8606
8607 dio_bio->bi_status = BLK_STS_IOERR;
8608 /*
8609 * Releases and cleans up our dio_bio, no need to bio_put()
8610 * nor bio_endio()/bio_io_error() against dio_bio.
8611 */
8612 dio_end_io(dio_bio);
8613 }
8614 if (bio)
8615 bio_put(bio);
8616 kfree(dip);
8617 }
8618
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8619 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8620 const struct iov_iter *iter, loff_t offset)
8621 {
8622 int seg;
8623 int i;
8624 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8625 ssize_t retval = -EINVAL;
8626
8627 if (offset & blocksize_mask)
8628 goto out;
8629
8630 if (iov_iter_alignment(iter) & blocksize_mask)
8631 goto out;
8632
8633 /* If this is a write we don't need to check anymore */
8634 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8635 return 0;
8636 /*
8637 * Check to make sure we don't have duplicate iov_base's in this
8638 * iovec, if so return EINVAL, otherwise we'll get csum errors
8639 * when reading back.
8640 */
8641 for (seg = 0; seg < iter->nr_segs; seg++) {
8642 for (i = seg + 1; i < iter->nr_segs; i++) {
8643 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8644 goto out;
8645 }
8646 }
8647 retval = 0;
8648 out:
8649 return retval;
8650 }
8651
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8652 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8653 {
8654 struct file *file = iocb->ki_filp;
8655 struct inode *inode = file->f_mapping->host;
8656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8657 struct btrfs_dio_data dio_data = { 0 };
8658 struct extent_changeset *data_reserved = NULL;
8659 loff_t offset = iocb->ki_pos;
8660 size_t count = 0;
8661 int flags = 0;
8662 bool wakeup = true;
8663 bool relock = false;
8664 ssize_t ret;
8665
8666 if (check_direct_IO(fs_info, iter, offset))
8667 return 0;
8668
8669 inode_dio_begin(inode);
8670
8671 /*
8672 * The generic stuff only does filemap_write_and_wait_range, which
8673 * isn't enough if we've written compressed pages to this area, so
8674 * we need to flush the dirty pages again to make absolutely sure
8675 * that any outstanding dirty pages are on disk.
8676 */
8677 count = iov_iter_count(iter);
8678 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8679 &BTRFS_I(inode)->runtime_flags))
8680 filemap_fdatawrite_range(inode->i_mapping, offset,
8681 offset + count - 1);
8682
8683 if (iov_iter_rw(iter) == WRITE) {
8684 /*
8685 * If the write DIO is beyond the EOF, we need update
8686 * the isize, but it is protected by i_mutex. So we can
8687 * not unlock the i_mutex at this case.
8688 */
8689 if (offset + count <= inode->i_size) {
8690 dio_data.overwrite = 1;
8691 inode_unlock(inode);
8692 relock = true;
8693 }
8694 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8695 offset, count);
8696 if (ret)
8697 goto out;
8698
8699 /*
8700 * We need to know how many extents we reserved so that we can
8701 * do the accounting properly if we go over the number we
8702 * originally calculated. Abuse current->journal_info for this.
8703 */
8704 dio_data.reserve = round_up(count,
8705 fs_info->sectorsize);
8706 dio_data.unsubmitted_oe_range_start = (u64)offset;
8707 dio_data.unsubmitted_oe_range_end = (u64)offset;
8708 current->journal_info = &dio_data;
8709 down_read(&BTRFS_I(inode)->dio_sem);
8710 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8711 &BTRFS_I(inode)->runtime_flags)) {
8712 inode_dio_end(inode);
8713 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8714 wakeup = false;
8715 }
8716
8717 ret = __blockdev_direct_IO(iocb, inode,
8718 fs_info->fs_devices->latest_bdev,
8719 iter, btrfs_get_blocks_direct, NULL,
8720 btrfs_submit_direct, flags);
8721 if (iov_iter_rw(iter) == WRITE) {
8722 up_read(&BTRFS_I(inode)->dio_sem);
8723 current->journal_info = NULL;
8724 if (ret < 0 && ret != -EIOCBQUEUED) {
8725 if (dio_data.reserve)
8726 btrfs_delalloc_release_space(inode, data_reserved,
8727 offset, dio_data.reserve, true);
8728 /*
8729 * On error we might have left some ordered extents
8730 * without submitting corresponding bios for them, so
8731 * cleanup them up to avoid other tasks getting them
8732 * and waiting for them to complete forever.
8733 */
8734 if (dio_data.unsubmitted_oe_range_start <
8735 dio_data.unsubmitted_oe_range_end)
8736 __endio_write_update_ordered(inode,
8737 dio_data.unsubmitted_oe_range_start,
8738 dio_data.unsubmitted_oe_range_end -
8739 dio_data.unsubmitted_oe_range_start,
8740 false);
8741 } else if (ret >= 0 && (size_t)ret < count)
8742 btrfs_delalloc_release_space(inode, data_reserved,
8743 offset, count - (size_t)ret, true);
8744 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8745 }
8746 out:
8747 if (wakeup)
8748 inode_dio_end(inode);
8749 if (relock)
8750 inode_lock(inode);
8751
8752 extent_changeset_free(data_reserved);
8753 return ret;
8754 }
8755
8756 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8757
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8758 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8759 __u64 start, __u64 len)
8760 {
8761 int ret;
8762
8763 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8764 if (ret)
8765 return ret;
8766
8767 return extent_fiemap(inode, fieinfo, start, len);
8768 }
8769
btrfs_readpage(struct file * file,struct page * page)8770 int btrfs_readpage(struct file *file, struct page *page)
8771 {
8772 struct extent_io_tree *tree;
8773 tree = &BTRFS_I(page->mapping->host)->io_tree;
8774 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8775 }
8776
btrfs_writepage(struct page * page,struct writeback_control * wbc)8777 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8778 {
8779 struct inode *inode = page->mapping->host;
8780 int ret;
8781
8782 if (current->flags & PF_MEMALLOC) {
8783 redirty_page_for_writepage(wbc, page);
8784 unlock_page(page);
8785 return 0;
8786 }
8787
8788 /*
8789 * If we are under memory pressure we will call this directly from the
8790 * VM, we need to make sure we have the inode referenced for the ordered
8791 * extent. If not just return like we didn't do anything.
8792 */
8793 if (!igrab(inode)) {
8794 redirty_page_for_writepage(wbc, page);
8795 return AOP_WRITEPAGE_ACTIVATE;
8796 }
8797 ret = extent_write_full_page(page, wbc);
8798 btrfs_add_delayed_iput(inode);
8799 return ret;
8800 }
8801
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8802 static int btrfs_writepages(struct address_space *mapping,
8803 struct writeback_control *wbc)
8804 {
8805 return extent_writepages(mapping, wbc);
8806 }
8807
8808 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8809 btrfs_readpages(struct file *file, struct address_space *mapping,
8810 struct list_head *pages, unsigned nr_pages)
8811 {
8812 return extent_readpages(mapping, pages, nr_pages);
8813 }
8814
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8815 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8816 {
8817 int ret = try_release_extent_mapping(page, gfp_flags);
8818 if (ret == 1) {
8819 ClearPagePrivate(page);
8820 set_page_private(page, 0);
8821 put_page(page);
8822 }
8823 return ret;
8824 }
8825
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8826 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8827 {
8828 if (PageWriteback(page) || PageDirty(page))
8829 return 0;
8830 return __btrfs_releasepage(page, gfp_flags);
8831 }
8832
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8833 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8834 unsigned int length)
8835 {
8836 struct inode *inode = page->mapping->host;
8837 struct extent_io_tree *tree;
8838 struct btrfs_ordered_extent *ordered;
8839 struct extent_state *cached_state = NULL;
8840 u64 page_start = page_offset(page);
8841 u64 page_end = page_start + PAGE_SIZE - 1;
8842 u64 start;
8843 u64 end;
8844 int inode_evicting = inode->i_state & I_FREEING;
8845
8846 /*
8847 * we have the page locked, so new writeback can't start,
8848 * and the dirty bit won't be cleared while we are here.
8849 *
8850 * Wait for IO on this page so that we can safely clear
8851 * the PagePrivate2 bit and do ordered accounting
8852 */
8853 wait_on_page_writeback(page);
8854
8855 tree = &BTRFS_I(inode)->io_tree;
8856 if (offset) {
8857 btrfs_releasepage(page, GFP_NOFS);
8858 return;
8859 }
8860
8861 if (!inode_evicting)
8862 lock_extent_bits(tree, page_start, page_end, &cached_state);
8863 again:
8864 start = page_start;
8865 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8866 page_end - start + 1);
8867 if (ordered) {
8868 end = min(page_end, ordered->file_offset + ordered->len - 1);
8869 /*
8870 * IO on this page will never be started, so we need
8871 * to account for any ordered extents now
8872 */
8873 if (!inode_evicting)
8874 clear_extent_bit(tree, start, end,
8875 EXTENT_DIRTY | EXTENT_DELALLOC |
8876 EXTENT_DELALLOC_NEW |
8877 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8878 EXTENT_DEFRAG, 1, 0, &cached_state);
8879 /*
8880 * whoever cleared the private bit is responsible
8881 * for the finish_ordered_io
8882 */
8883 if (TestClearPagePrivate2(page)) {
8884 struct btrfs_ordered_inode_tree *tree;
8885 u64 new_len;
8886
8887 tree = &BTRFS_I(inode)->ordered_tree;
8888
8889 spin_lock_irq(&tree->lock);
8890 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8891 new_len = start - ordered->file_offset;
8892 if (new_len < ordered->truncated_len)
8893 ordered->truncated_len = new_len;
8894 spin_unlock_irq(&tree->lock);
8895
8896 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8897 start,
8898 end - start + 1, 1))
8899 btrfs_finish_ordered_io(ordered);
8900 }
8901 btrfs_put_ordered_extent(ordered);
8902 if (!inode_evicting) {
8903 cached_state = NULL;
8904 lock_extent_bits(tree, start, end,
8905 &cached_state);
8906 }
8907
8908 start = end + 1;
8909 if (start < page_end)
8910 goto again;
8911 }
8912
8913 /*
8914 * Qgroup reserved space handler
8915 * Page here will be either
8916 * 1) Already written to disk or ordered extent already submitted
8917 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8918 * Qgroup will be handled by its qgroup_record then.
8919 * btrfs_qgroup_free_data() call will do nothing here.
8920 *
8921 * 2) Not written to disk yet
8922 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8923 * bit of its io_tree, and free the qgroup reserved data space.
8924 * Since the IO will never happen for this page.
8925 */
8926 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8927 if (!inode_evicting) {
8928 clear_extent_bit(tree, page_start, page_end,
8929 EXTENT_LOCKED | EXTENT_DIRTY |
8930 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8931 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8932 &cached_state);
8933
8934 __btrfs_releasepage(page, GFP_NOFS);
8935 }
8936
8937 ClearPageChecked(page);
8938 if (PagePrivate(page)) {
8939 ClearPagePrivate(page);
8940 set_page_private(page, 0);
8941 put_page(page);
8942 }
8943 }
8944
8945 /*
8946 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8947 * called from a page fault handler when a page is first dirtied. Hence we must
8948 * be careful to check for EOF conditions here. We set the page up correctly
8949 * for a written page which means we get ENOSPC checking when writing into
8950 * holes and correct delalloc and unwritten extent mapping on filesystems that
8951 * support these features.
8952 *
8953 * We are not allowed to take the i_mutex here so we have to play games to
8954 * protect against truncate races as the page could now be beyond EOF. Because
8955 * truncate_setsize() writes the inode size before removing pages, once we have
8956 * the page lock we can determine safely if the page is beyond EOF. If it is not
8957 * beyond EOF, then the page is guaranteed safe against truncation until we
8958 * unlock the page.
8959 */
btrfs_page_mkwrite(struct vm_fault * vmf)8960 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8961 {
8962 struct page *page = vmf->page;
8963 struct inode *inode = file_inode(vmf->vma->vm_file);
8964 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8965 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8966 struct btrfs_ordered_extent *ordered;
8967 struct extent_state *cached_state = NULL;
8968 struct extent_changeset *data_reserved = NULL;
8969 char *kaddr;
8970 unsigned long zero_start;
8971 loff_t size;
8972 vm_fault_t ret;
8973 int ret2;
8974 int reserved = 0;
8975 u64 reserved_space;
8976 u64 page_start;
8977 u64 page_end;
8978 u64 end;
8979
8980 reserved_space = PAGE_SIZE;
8981
8982 sb_start_pagefault(inode->i_sb);
8983 page_start = page_offset(page);
8984 page_end = page_start + PAGE_SIZE - 1;
8985 end = page_end;
8986
8987 /*
8988 * Reserving delalloc space after obtaining the page lock can lead to
8989 * deadlock. For example, if a dirty page is locked by this function
8990 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8991 * dirty page write out, then the btrfs_writepage() function could
8992 * end up waiting indefinitely to get a lock on the page currently
8993 * being processed by btrfs_page_mkwrite() function.
8994 */
8995 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8996 reserved_space);
8997 if (!ret2) {
8998 ret2 = file_update_time(vmf->vma->vm_file);
8999 reserved = 1;
9000 }
9001 if (ret2) {
9002 ret = vmf_error(ret2);
9003 if (reserved)
9004 goto out;
9005 goto out_noreserve;
9006 }
9007
9008 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9009 again:
9010 lock_page(page);
9011 size = i_size_read(inode);
9012
9013 if ((page->mapping != inode->i_mapping) ||
9014 (page_start >= size)) {
9015 /* page got truncated out from underneath us */
9016 goto out_unlock;
9017 }
9018 wait_on_page_writeback(page);
9019
9020 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9021 set_page_extent_mapped(page);
9022
9023 /*
9024 * we can't set the delalloc bits if there are pending ordered
9025 * extents. Drop our locks and wait for them to finish
9026 */
9027 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9028 PAGE_SIZE);
9029 if (ordered) {
9030 unlock_extent_cached(io_tree, page_start, page_end,
9031 &cached_state);
9032 unlock_page(page);
9033 btrfs_start_ordered_extent(inode, ordered, 1);
9034 btrfs_put_ordered_extent(ordered);
9035 goto again;
9036 }
9037
9038 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9039 reserved_space = round_up(size - page_start,
9040 fs_info->sectorsize);
9041 if (reserved_space < PAGE_SIZE) {
9042 end = page_start + reserved_space - 1;
9043 btrfs_delalloc_release_space(inode, data_reserved,
9044 page_start, PAGE_SIZE - reserved_space,
9045 true);
9046 }
9047 }
9048
9049 /*
9050 * page_mkwrite gets called when the page is firstly dirtied after it's
9051 * faulted in, but write(2) could also dirty a page and set delalloc
9052 * bits, thus in this case for space account reason, we still need to
9053 * clear any delalloc bits within this page range since we have to
9054 * reserve data&meta space before lock_page() (see above comments).
9055 */
9056 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9057 EXTENT_DIRTY | EXTENT_DELALLOC |
9058 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9059 0, 0, &cached_state);
9060
9061 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9062 &cached_state, 0);
9063 if (ret2) {
9064 unlock_extent_cached(io_tree, page_start, page_end,
9065 &cached_state);
9066 ret = VM_FAULT_SIGBUS;
9067 goto out_unlock;
9068 }
9069 ret2 = 0;
9070
9071 /* page is wholly or partially inside EOF */
9072 if (page_start + PAGE_SIZE > size)
9073 zero_start = size & ~PAGE_MASK;
9074 else
9075 zero_start = PAGE_SIZE;
9076
9077 if (zero_start != PAGE_SIZE) {
9078 kaddr = kmap(page);
9079 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9080 flush_dcache_page(page);
9081 kunmap(page);
9082 }
9083 ClearPageChecked(page);
9084 set_page_dirty(page);
9085 SetPageUptodate(page);
9086
9087 BTRFS_I(inode)->last_trans = fs_info->generation;
9088 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9089 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9090
9091 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9092
9093 if (!ret2) {
9094 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9095 sb_end_pagefault(inode->i_sb);
9096 extent_changeset_free(data_reserved);
9097 return VM_FAULT_LOCKED;
9098 }
9099
9100 out_unlock:
9101 unlock_page(page);
9102 out:
9103 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9104 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9105 reserved_space, (ret != 0));
9106 out_noreserve:
9107 sb_end_pagefault(inode->i_sb);
9108 extent_changeset_free(data_reserved);
9109 return ret;
9110 }
9111
btrfs_truncate(struct inode * inode,bool skip_writeback)9112 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9113 {
9114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9115 struct btrfs_root *root = BTRFS_I(inode)->root;
9116 struct btrfs_block_rsv *rsv;
9117 int ret;
9118 struct btrfs_trans_handle *trans;
9119 u64 mask = fs_info->sectorsize - 1;
9120 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9121
9122 if (!skip_writeback) {
9123 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9124 (u64)-1);
9125 if (ret)
9126 return ret;
9127 }
9128
9129 /*
9130 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9131 * things going on here:
9132 *
9133 * 1) We need to reserve space to update our inode.
9134 *
9135 * 2) We need to have something to cache all the space that is going to
9136 * be free'd up by the truncate operation, but also have some slack
9137 * space reserved in case it uses space during the truncate (thank you
9138 * very much snapshotting).
9139 *
9140 * And we need these to be separate. The fact is we can use a lot of
9141 * space doing the truncate, and we have no earthly idea how much space
9142 * we will use, so we need the truncate reservation to be separate so it
9143 * doesn't end up using space reserved for updating the inode. We also
9144 * need to be able to stop the transaction and start a new one, which
9145 * means we need to be able to update the inode several times, and we
9146 * have no idea of knowing how many times that will be, so we can't just
9147 * reserve 1 item for the entirety of the operation, so that has to be
9148 * done separately as well.
9149 *
9150 * So that leaves us with
9151 *
9152 * 1) rsv - for the truncate reservation, which we will steal from the
9153 * transaction reservation.
9154 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9155 * updating the inode.
9156 */
9157 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9158 if (!rsv)
9159 return -ENOMEM;
9160 rsv->size = min_size;
9161 rsv->failfast = 1;
9162
9163 /*
9164 * 1 for the truncate slack space
9165 * 1 for updating the inode.
9166 */
9167 trans = btrfs_start_transaction(root, 2);
9168 if (IS_ERR(trans)) {
9169 ret = PTR_ERR(trans);
9170 goto out;
9171 }
9172
9173 /* Migrate the slack space for the truncate to our reserve */
9174 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9175 min_size, 0);
9176 BUG_ON(ret);
9177
9178 /*
9179 * So if we truncate and then write and fsync we normally would just
9180 * write the extents that changed, which is a problem if we need to
9181 * first truncate that entire inode. So set this flag so we write out
9182 * all of the extents in the inode to the sync log so we're completely
9183 * safe.
9184 */
9185 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9186 trans->block_rsv = rsv;
9187
9188 while (1) {
9189 ret = btrfs_truncate_inode_items(trans, root, inode,
9190 inode->i_size,
9191 BTRFS_EXTENT_DATA_KEY);
9192 trans->block_rsv = &fs_info->trans_block_rsv;
9193 if (ret != -ENOSPC && ret != -EAGAIN)
9194 break;
9195
9196 ret = btrfs_update_inode(trans, root, inode);
9197 if (ret)
9198 break;
9199
9200 btrfs_end_transaction(trans);
9201 btrfs_btree_balance_dirty(fs_info);
9202
9203 trans = btrfs_start_transaction(root, 2);
9204 if (IS_ERR(trans)) {
9205 ret = PTR_ERR(trans);
9206 trans = NULL;
9207 break;
9208 }
9209
9210 btrfs_block_rsv_release(fs_info, rsv, -1);
9211 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9212 rsv, min_size, 0);
9213 BUG_ON(ret); /* shouldn't happen */
9214 trans->block_rsv = rsv;
9215 }
9216
9217 /*
9218 * We can't call btrfs_truncate_block inside a trans handle as we could
9219 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9220 * we've truncated everything except the last little bit, and can do
9221 * btrfs_truncate_block and then update the disk_i_size.
9222 */
9223 if (ret == NEED_TRUNCATE_BLOCK) {
9224 btrfs_end_transaction(trans);
9225 btrfs_btree_balance_dirty(fs_info);
9226
9227 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9228 if (ret)
9229 goto out;
9230 trans = btrfs_start_transaction(root, 1);
9231 if (IS_ERR(trans)) {
9232 ret = PTR_ERR(trans);
9233 goto out;
9234 }
9235 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9236 }
9237
9238 if (trans) {
9239 int ret2;
9240
9241 trans->block_rsv = &fs_info->trans_block_rsv;
9242 ret2 = btrfs_update_inode(trans, root, inode);
9243 if (ret2 && !ret)
9244 ret = ret2;
9245
9246 ret2 = btrfs_end_transaction(trans);
9247 if (ret2 && !ret)
9248 ret = ret2;
9249 btrfs_btree_balance_dirty(fs_info);
9250 }
9251 out:
9252 btrfs_free_block_rsv(fs_info, rsv);
9253
9254 return ret;
9255 }
9256
9257 /*
9258 * create a new subvolume directory/inode (helper for the ioctl).
9259 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9260 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9261 struct btrfs_root *new_root,
9262 struct btrfs_root *parent_root,
9263 u64 new_dirid)
9264 {
9265 struct inode *inode;
9266 int err;
9267 u64 index = 0;
9268
9269 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9270 new_dirid, new_dirid,
9271 S_IFDIR | (~current_umask() & S_IRWXUGO),
9272 &index);
9273 if (IS_ERR(inode))
9274 return PTR_ERR(inode);
9275 inode->i_op = &btrfs_dir_inode_operations;
9276 inode->i_fop = &btrfs_dir_file_operations;
9277
9278 set_nlink(inode, 1);
9279 btrfs_i_size_write(BTRFS_I(inode), 0);
9280 unlock_new_inode(inode);
9281
9282 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9283 if (err)
9284 btrfs_err(new_root->fs_info,
9285 "error inheriting subvolume %llu properties: %d",
9286 new_root->root_key.objectid, err);
9287
9288 err = btrfs_update_inode(trans, new_root, inode);
9289
9290 iput(inode);
9291 return err;
9292 }
9293
btrfs_alloc_inode(struct super_block * sb)9294 struct inode *btrfs_alloc_inode(struct super_block *sb)
9295 {
9296 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9297 struct btrfs_inode *ei;
9298 struct inode *inode;
9299
9300 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9301 if (!ei)
9302 return NULL;
9303
9304 ei->root = NULL;
9305 ei->generation = 0;
9306 ei->last_trans = 0;
9307 ei->last_sub_trans = 0;
9308 ei->logged_trans = 0;
9309 ei->delalloc_bytes = 0;
9310 ei->new_delalloc_bytes = 0;
9311 ei->defrag_bytes = 0;
9312 ei->disk_i_size = 0;
9313 ei->flags = 0;
9314 ei->csum_bytes = 0;
9315 ei->index_cnt = (u64)-1;
9316 ei->dir_index = 0;
9317 ei->last_unlink_trans = 0;
9318 ei->last_link_trans = 0;
9319 ei->last_log_commit = 0;
9320
9321 spin_lock_init(&ei->lock);
9322 ei->outstanding_extents = 0;
9323 if (sb->s_magic != BTRFS_TEST_MAGIC)
9324 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9325 BTRFS_BLOCK_RSV_DELALLOC);
9326 ei->runtime_flags = 0;
9327 ei->prop_compress = BTRFS_COMPRESS_NONE;
9328 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9329
9330 ei->delayed_node = NULL;
9331
9332 ei->i_otime.tv_sec = 0;
9333 ei->i_otime.tv_nsec = 0;
9334
9335 inode = &ei->vfs_inode;
9336 extent_map_tree_init(&ei->extent_tree);
9337 extent_io_tree_init(&ei->io_tree, inode);
9338 extent_io_tree_init(&ei->io_failure_tree, inode);
9339 ei->io_tree.track_uptodate = 1;
9340 ei->io_failure_tree.track_uptodate = 1;
9341 atomic_set(&ei->sync_writers, 0);
9342 mutex_init(&ei->log_mutex);
9343 mutex_init(&ei->delalloc_mutex);
9344 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9345 INIT_LIST_HEAD(&ei->delalloc_inodes);
9346 INIT_LIST_HEAD(&ei->delayed_iput);
9347 RB_CLEAR_NODE(&ei->rb_node);
9348 init_rwsem(&ei->dio_sem);
9349
9350 return inode;
9351 }
9352
9353 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9354 void btrfs_test_destroy_inode(struct inode *inode)
9355 {
9356 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9357 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9358 }
9359 #endif
9360
btrfs_i_callback(struct rcu_head * head)9361 static void btrfs_i_callback(struct rcu_head *head)
9362 {
9363 struct inode *inode = container_of(head, struct inode, i_rcu);
9364 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9365 }
9366
btrfs_destroy_inode(struct inode * inode)9367 void btrfs_destroy_inode(struct inode *inode)
9368 {
9369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9370 struct btrfs_ordered_extent *ordered;
9371 struct btrfs_root *root = BTRFS_I(inode)->root;
9372
9373 WARN_ON(!hlist_empty(&inode->i_dentry));
9374 WARN_ON(inode->i_data.nrpages);
9375 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9376 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9377 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9378 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9379 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9380 WARN_ON(BTRFS_I(inode)->csum_bytes);
9381 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9382
9383 /*
9384 * This can happen where we create an inode, but somebody else also
9385 * created the same inode and we need to destroy the one we already
9386 * created.
9387 */
9388 if (!root)
9389 goto free;
9390
9391 while (1) {
9392 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9393 if (!ordered)
9394 break;
9395 else {
9396 btrfs_err(fs_info,
9397 "found ordered extent %llu %llu on inode cleanup",
9398 ordered->file_offset, ordered->len);
9399 btrfs_remove_ordered_extent(inode, ordered);
9400 btrfs_put_ordered_extent(ordered);
9401 btrfs_put_ordered_extent(ordered);
9402 }
9403 }
9404 btrfs_qgroup_check_reserved_leak(inode);
9405 inode_tree_del(inode);
9406 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9407 free:
9408 call_rcu(&inode->i_rcu, btrfs_i_callback);
9409 }
9410
btrfs_drop_inode(struct inode * inode)9411 int btrfs_drop_inode(struct inode *inode)
9412 {
9413 struct btrfs_root *root = BTRFS_I(inode)->root;
9414
9415 if (root == NULL)
9416 return 1;
9417
9418 /* the snap/subvol tree is on deleting */
9419 if (btrfs_root_refs(&root->root_item) == 0)
9420 return 1;
9421 else
9422 return generic_drop_inode(inode);
9423 }
9424
init_once(void * foo)9425 static void init_once(void *foo)
9426 {
9427 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9428
9429 inode_init_once(&ei->vfs_inode);
9430 }
9431
btrfs_destroy_cachep(void)9432 void __cold btrfs_destroy_cachep(void)
9433 {
9434 /*
9435 * Make sure all delayed rcu free inodes are flushed before we
9436 * destroy cache.
9437 */
9438 rcu_barrier();
9439 kmem_cache_destroy(btrfs_inode_cachep);
9440 kmem_cache_destroy(btrfs_trans_handle_cachep);
9441 kmem_cache_destroy(btrfs_path_cachep);
9442 kmem_cache_destroy(btrfs_free_space_cachep);
9443 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9444 }
9445
btrfs_init_cachep(void)9446 int __init btrfs_init_cachep(void)
9447 {
9448 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9449 sizeof(struct btrfs_inode), 0,
9450 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9451 init_once);
9452 if (!btrfs_inode_cachep)
9453 goto fail;
9454
9455 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9456 sizeof(struct btrfs_trans_handle), 0,
9457 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9458 if (!btrfs_trans_handle_cachep)
9459 goto fail;
9460
9461 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9462 sizeof(struct btrfs_path), 0,
9463 SLAB_MEM_SPREAD, NULL);
9464 if (!btrfs_path_cachep)
9465 goto fail;
9466
9467 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9468 sizeof(struct btrfs_free_space), 0,
9469 SLAB_MEM_SPREAD, NULL);
9470 if (!btrfs_free_space_cachep)
9471 goto fail;
9472
9473 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9474 PAGE_SIZE, PAGE_SIZE,
9475 SLAB_RED_ZONE, NULL);
9476 if (!btrfs_free_space_bitmap_cachep)
9477 goto fail;
9478
9479 return 0;
9480 fail:
9481 btrfs_destroy_cachep();
9482 return -ENOMEM;
9483 }
9484
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9485 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9486 u32 request_mask, unsigned int flags)
9487 {
9488 u64 delalloc_bytes;
9489 struct inode *inode = d_inode(path->dentry);
9490 u32 blocksize = inode->i_sb->s_blocksize;
9491 u32 bi_flags = BTRFS_I(inode)->flags;
9492
9493 stat->result_mask |= STATX_BTIME;
9494 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9495 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9496 if (bi_flags & BTRFS_INODE_APPEND)
9497 stat->attributes |= STATX_ATTR_APPEND;
9498 if (bi_flags & BTRFS_INODE_COMPRESS)
9499 stat->attributes |= STATX_ATTR_COMPRESSED;
9500 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9501 stat->attributes |= STATX_ATTR_IMMUTABLE;
9502 if (bi_flags & BTRFS_INODE_NODUMP)
9503 stat->attributes |= STATX_ATTR_NODUMP;
9504
9505 stat->attributes_mask |= (STATX_ATTR_APPEND |
9506 STATX_ATTR_COMPRESSED |
9507 STATX_ATTR_IMMUTABLE |
9508 STATX_ATTR_NODUMP);
9509
9510 generic_fillattr(inode, stat);
9511 stat->dev = BTRFS_I(inode)->root->anon_dev;
9512
9513 spin_lock(&BTRFS_I(inode)->lock);
9514 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9515 spin_unlock(&BTRFS_I(inode)->lock);
9516 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9517 ALIGN(delalloc_bytes, blocksize)) >> 9;
9518 return 0;
9519 }
9520
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9521 static int btrfs_rename_exchange(struct inode *old_dir,
9522 struct dentry *old_dentry,
9523 struct inode *new_dir,
9524 struct dentry *new_dentry)
9525 {
9526 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9527 struct btrfs_trans_handle *trans;
9528 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9529 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9530 struct inode *new_inode = new_dentry->d_inode;
9531 struct inode *old_inode = old_dentry->d_inode;
9532 struct timespec64 ctime = current_time(old_inode);
9533 struct dentry *parent;
9534 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9535 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9536 u64 old_idx = 0;
9537 u64 new_idx = 0;
9538 int ret;
9539 bool root_log_pinned = false;
9540 bool dest_log_pinned = false;
9541 struct btrfs_log_ctx ctx_root;
9542 struct btrfs_log_ctx ctx_dest;
9543 bool sync_log_root = false;
9544 bool sync_log_dest = false;
9545 bool commit_transaction = false;
9546
9547 /* we only allow rename subvolume link between subvolumes */
9548 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9549 return -EXDEV;
9550
9551 btrfs_init_log_ctx(&ctx_root, old_inode);
9552 btrfs_init_log_ctx(&ctx_dest, new_inode);
9553
9554 /* close the race window with snapshot create/destroy ioctl */
9555 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9556 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9557 down_read(&fs_info->subvol_sem);
9558
9559 /*
9560 * We want to reserve the absolute worst case amount of items. So if
9561 * both inodes are subvols and we need to unlink them then that would
9562 * require 4 item modifications, but if they are both normal inodes it
9563 * would require 5 item modifications, so we'll assume their normal
9564 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9565 * should cover the worst case number of items we'll modify.
9566 */
9567 trans = btrfs_start_transaction(root, 12);
9568 if (IS_ERR(trans)) {
9569 ret = PTR_ERR(trans);
9570 goto out_notrans;
9571 }
9572
9573 if (dest != root)
9574 btrfs_record_root_in_trans(trans, dest);
9575
9576 /*
9577 * We need to find a free sequence number both in the source and
9578 * in the destination directory for the exchange.
9579 */
9580 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9581 if (ret)
9582 goto out_fail;
9583 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9584 if (ret)
9585 goto out_fail;
9586
9587 BTRFS_I(old_inode)->dir_index = 0ULL;
9588 BTRFS_I(new_inode)->dir_index = 0ULL;
9589
9590 /* Reference for the source. */
9591 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9592 /* force full log commit if subvolume involved. */
9593 btrfs_set_log_full_commit(fs_info, trans);
9594 } else {
9595 btrfs_pin_log_trans(root);
9596 root_log_pinned = true;
9597 ret = btrfs_insert_inode_ref(trans, dest,
9598 new_dentry->d_name.name,
9599 new_dentry->d_name.len,
9600 old_ino,
9601 btrfs_ino(BTRFS_I(new_dir)),
9602 old_idx);
9603 if (ret)
9604 goto out_fail;
9605 }
9606
9607 /* And now for the dest. */
9608 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9609 /* force full log commit if subvolume involved. */
9610 btrfs_set_log_full_commit(fs_info, trans);
9611 } else {
9612 btrfs_pin_log_trans(dest);
9613 dest_log_pinned = true;
9614 ret = btrfs_insert_inode_ref(trans, root,
9615 old_dentry->d_name.name,
9616 old_dentry->d_name.len,
9617 new_ino,
9618 btrfs_ino(BTRFS_I(old_dir)),
9619 new_idx);
9620 if (ret)
9621 goto out_fail;
9622 }
9623
9624 /* Update inode version and ctime/mtime. */
9625 inode_inc_iversion(old_dir);
9626 inode_inc_iversion(new_dir);
9627 inode_inc_iversion(old_inode);
9628 inode_inc_iversion(new_inode);
9629 old_dir->i_ctime = old_dir->i_mtime = ctime;
9630 new_dir->i_ctime = new_dir->i_mtime = ctime;
9631 old_inode->i_ctime = ctime;
9632 new_inode->i_ctime = ctime;
9633
9634 if (old_dentry->d_parent != new_dentry->d_parent) {
9635 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9636 BTRFS_I(old_inode), 1);
9637 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9638 BTRFS_I(new_inode), 1);
9639 }
9640
9641 /* src is a subvolume */
9642 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9643 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9644 } else { /* src is an inode */
9645 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9646 BTRFS_I(old_dentry->d_inode),
9647 old_dentry->d_name.name,
9648 old_dentry->d_name.len);
9649 if (!ret)
9650 ret = btrfs_update_inode(trans, root, old_inode);
9651 }
9652 if (ret) {
9653 btrfs_abort_transaction(trans, ret);
9654 goto out_fail;
9655 }
9656
9657 /* dest is a subvolume */
9658 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9659 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9660 } else { /* dest is an inode */
9661 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9662 BTRFS_I(new_dentry->d_inode),
9663 new_dentry->d_name.name,
9664 new_dentry->d_name.len);
9665 if (!ret)
9666 ret = btrfs_update_inode(trans, dest, new_inode);
9667 }
9668 if (ret) {
9669 btrfs_abort_transaction(trans, ret);
9670 goto out_fail;
9671 }
9672
9673 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9674 new_dentry->d_name.name,
9675 new_dentry->d_name.len, 0, old_idx);
9676 if (ret) {
9677 btrfs_abort_transaction(trans, ret);
9678 goto out_fail;
9679 }
9680
9681 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9682 old_dentry->d_name.name,
9683 old_dentry->d_name.len, 0, new_idx);
9684 if (ret) {
9685 btrfs_abort_transaction(trans, ret);
9686 goto out_fail;
9687 }
9688
9689 if (old_inode->i_nlink == 1)
9690 BTRFS_I(old_inode)->dir_index = old_idx;
9691 if (new_inode->i_nlink == 1)
9692 BTRFS_I(new_inode)->dir_index = new_idx;
9693
9694 if (root_log_pinned) {
9695 parent = new_dentry->d_parent;
9696 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9697 BTRFS_I(old_dir), parent,
9698 false, &ctx_root);
9699 if (ret == BTRFS_NEED_LOG_SYNC)
9700 sync_log_root = true;
9701 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9702 commit_transaction = true;
9703 ret = 0;
9704 btrfs_end_log_trans(root);
9705 root_log_pinned = false;
9706 }
9707 if (dest_log_pinned) {
9708 if (!commit_transaction) {
9709 parent = old_dentry->d_parent;
9710 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9711 BTRFS_I(new_dir), parent,
9712 false, &ctx_dest);
9713 if (ret == BTRFS_NEED_LOG_SYNC)
9714 sync_log_dest = true;
9715 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9716 commit_transaction = true;
9717 ret = 0;
9718 }
9719 btrfs_end_log_trans(dest);
9720 dest_log_pinned = false;
9721 }
9722 out_fail:
9723 /*
9724 * If we have pinned a log and an error happened, we unpin tasks
9725 * trying to sync the log and force them to fallback to a transaction
9726 * commit if the log currently contains any of the inodes involved in
9727 * this rename operation (to ensure we do not persist a log with an
9728 * inconsistent state for any of these inodes or leading to any
9729 * inconsistencies when replayed). If the transaction was aborted, the
9730 * abortion reason is propagated to userspace when attempting to commit
9731 * the transaction. If the log does not contain any of these inodes, we
9732 * allow the tasks to sync it.
9733 */
9734 if (ret && (root_log_pinned || dest_log_pinned)) {
9735 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9736 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9737 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9738 (new_inode &&
9739 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9740 btrfs_set_log_full_commit(fs_info, trans);
9741
9742 if (root_log_pinned) {
9743 btrfs_end_log_trans(root);
9744 root_log_pinned = false;
9745 }
9746 if (dest_log_pinned) {
9747 btrfs_end_log_trans(dest);
9748 dest_log_pinned = false;
9749 }
9750 }
9751 if (!ret && sync_log_root && !commit_transaction) {
9752 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9753 &ctx_root);
9754 if (ret)
9755 commit_transaction = true;
9756 }
9757 if (!ret && sync_log_dest && !commit_transaction) {
9758 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9759 &ctx_dest);
9760 if (ret)
9761 commit_transaction = true;
9762 }
9763 if (commit_transaction) {
9764 /*
9765 * We may have set commit_transaction when logging the new name
9766 * in the destination root, in which case we left the source
9767 * root context in the list of log contextes. So make sure we
9768 * remove it to avoid invalid memory accesses, since the context
9769 * was allocated in our stack frame.
9770 */
9771 if (sync_log_root) {
9772 mutex_lock(&root->log_mutex);
9773 list_del_init(&ctx_root.list);
9774 mutex_unlock(&root->log_mutex);
9775 }
9776 ret = btrfs_commit_transaction(trans);
9777 } else {
9778 int ret2;
9779
9780 ret2 = btrfs_end_transaction(trans);
9781 ret = ret ? ret : ret2;
9782 }
9783 out_notrans:
9784 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9785 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9786 up_read(&fs_info->subvol_sem);
9787
9788 ASSERT(list_empty(&ctx_root.list));
9789 ASSERT(list_empty(&ctx_dest.list));
9790
9791 return ret;
9792 }
9793
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9794 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9795 struct btrfs_root *root,
9796 struct inode *dir,
9797 struct dentry *dentry)
9798 {
9799 int ret;
9800 struct inode *inode;
9801 u64 objectid;
9802 u64 index;
9803
9804 ret = btrfs_find_free_ino(root, &objectid);
9805 if (ret)
9806 return ret;
9807
9808 inode = btrfs_new_inode(trans, root, dir,
9809 dentry->d_name.name,
9810 dentry->d_name.len,
9811 btrfs_ino(BTRFS_I(dir)),
9812 objectid,
9813 S_IFCHR | WHITEOUT_MODE,
9814 &index);
9815
9816 if (IS_ERR(inode)) {
9817 ret = PTR_ERR(inode);
9818 return ret;
9819 }
9820
9821 inode->i_op = &btrfs_special_inode_operations;
9822 init_special_inode(inode, inode->i_mode,
9823 WHITEOUT_DEV);
9824
9825 ret = btrfs_init_inode_security(trans, inode, dir,
9826 &dentry->d_name);
9827 if (ret)
9828 goto out;
9829
9830 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9831 BTRFS_I(inode), 0, index);
9832 if (ret)
9833 goto out;
9834
9835 ret = btrfs_update_inode(trans, root, inode);
9836 out:
9837 unlock_new_inode(inode);
9838 if (ret)
9839 inode_dec_link_count(inode);
9840 iput(inode);
9841
9842 return ret;
9843 }
9844
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9845 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9846 struct inode *new_dir, struct dentry *new_dentry,
9847 unsigned int flags)
9848 {
9849 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9850 struct btrfs_trans_handle *trans;
9851 unsigned int trans_num_items;
9852 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9853 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9854 struct inode *new_inode = d_inode(new_dentry);
9855 struct inode *old_inode = d_inode(old_dentry);
9856 u64 index = 0;
9857 int ret;
9858 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9859 bool log_pinned = false;
9860 struct btrfs_log_ctx ctx;
9861 bool sync_log = false;
9862 bool commit_transaction = false;
9863
9864 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9865 return -EPERM;
9866
9867 /* we only allow rename subvolume link between subvolumes */
9868 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9869 return -EXDEV;
9870
9871 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9872 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9873 return -ENOTEMPTY;
9874
9875 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9876 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9877 return -ENOTEMPTY;
9878
9879
9880 /* check for collisions, even if the name isn't there */
9881 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9882 new_dentry->d_name.name,
9883 new_dentry->d_name.len);
9884
9885 if (ret) {
9886 if (ret == -EEXIST) {
9887 /* we shouldn't get
9888 * eexist without a new_inode */
9889 if (WARN_ON(!new_inode)) {
9890 return ret;
9891 }
9892 } else {
9893 /* maybe -EOVERFLOW */
9894 return ret;
9895 }
9896 }
9897 ret = 0;
9898
9899 /*
9900 * we're using rename to replace one file with another. Start IO on it
9901 * now so we don't add too much work to the end of the transaction
9902 */
9903 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9904 filemap_flush(old_inode->i_mapping);
9905
9906 /* close the racy window with snapshot create/destroy ioctl */
9907 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9908 down_read(&fs_info->subvol_sem);
9909 /*
9910 * We want to reserve the absolute worst case amount of items. So if
9911 * both inodes are subvols and we need to unlink them then that would
9912 * require 4 item modifications, but if they are both normal inodes it
9913 * would require 5 item modifications, so we'll assume they are normal
9914 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9915 * should cover the worst case number of items we'll modify.
9916 * If our rename has the whiteout flag, we need more 5 units for the
9917 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9918 * when selinux is enabled).
9919 */
9920 trans_num_items = 11;
9921 if (flags & RENAME_WHITEOUT)
9922 trans_num_items += 5;
9923 trans = btrfs_start_transaction(root, trans_num_items);
9924 if (IS_ERR(trans)) {
9925 ret = PTR_ERR(trans);
9926 goto out_notrans;
9927 }
9928
9929 if (dest != root)
9930 btrfs_record_root_in_trans(trans, dest);
9931
9932 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9933 if (ret)
9934 goto out_fail;
9935
9936 BTRFS_I(old_inode)->dir_index = 0ULL;
9937 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9938 /* force full log commit if subvolume involved. */
9939 btrfs_set_log_full_commit(fs_info, trans);
9940 } else {
9941 btrfs_pin_log_trans(root);
9942 log_pinned = true;
9943 ret = btrfs_insert_inode_ref(trans, dest,
9944 new_dentry->d_name.name,
9945 new_dentry->d_name.len,
9946 old_ino,
9947 btrfs_ino(BTRFS_I(new_dir)), index);
9948 if (ret)
9949 goto out_fail;
9950 }
9951
9952 inode_inc_iversion(old_dir);
9953 inode_inc_iversion(new_dir);
9954 inode_inc_iversion(old_inode);
9955 old_dir->i_ctime = old_dir->i_mtime =
9956 new_dir->i_ctime = new_dir->i_mtime =
9957 old_inode->i_ctime = current_time(old_dir);
9958
9959 if (old_dentry->d_parent != new_dentry->d_parent)
9960 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9961 BTRFS_I(old_inode), 1);
9962
9963 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9964 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9965 } else {
9966 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9967 BTRFS_I(d_inode(old_dentry)),
9968 old_dentry->d_name.name,
9969 old_dentry->d_name.len);
9970 if (!ret)
9971 ret = btrfs_update_inode(trans, root, old_inode);
9972 }
9973 if (ret) {
9974 btrfs_abort_transaction(trans, ret);
9975 goto out_fail;
9976 }
9977
9978 if (new_inode) {
9979 inode_inc_iversion(new_inode);
9980 new_inode->i_ctime = current_time(new_inode);
9981 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9982 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9983 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9984 BUG_ON(new_inode->i_nlink == 0);
9985 } else {
9986 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9987 BTRFS_I(d_inode(new_dentry)),
9988 new_dentry->d_name.name,
9989 new_dentry->d_name.len);
9990 }
9991 if (!ret && new_inode->i_nlink == 0)
9992 ret = btrfs_orphan_add(trans,
9993 BTRFS_I(d_inode(new_dentry)));
9994 if (ret) {
9995 btrfs_abort_transaction(trans, ret);
9996 goto out_fail;
9997 }
9998 }
9999
10000 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10001 new_dentry->d_name.name,
10002 new_dentry->d_name.len, 0, index);
10003 if (ret) {
10004 btrfs_abort_transaction(trans, ret);
10005 goto out_fail;
10006 }
10007
10008 if (old_inode->i_nlink == 1)
10009 BTRFS_I(old_inode)->dir_index = index;
10010
10011 if (log_pinned) {
10012 struct dentry *parent = new_dentry->d_parent;
10013
10014 btrfs_init_log_ctx(&ctx, old_inode);
10015 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10016 BTRFS_I(old_dir), parent,
10017 false, &ctx);
10018 if (ret == BTRFS_NEED_LOG_SYNC)
10019 sync_log = true;
10020 else if (ret == BTRFS_NEED_TRANS_COMMIT)
10021 commit_transaction = true;
10022 ret = 0;
10023 btrfs_end_log_trans(root);
10024 log_pinned = false;
10025 }
10026
10027 if (flags & RENAME_WHITEOUT) {
10028 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10029 old_dentry);
10030
10031 if (ret) {
10032 btrfs_abort_transaction(trans, ret);
10033 goto out_fail;
10034 }
10035 }
10036 out_fail:
10037 /*
10038 * If we have pinned the log and an error happened, we unpin tasks
10039 * trying to sync the log and force them to fallback to a transaction
10040 * commit if the log currently contains any of the inodes involved in
10041 * this rename operation (to ensure we do not persist a log with an
10042 * inconsistent state for any of these inodes or leading to any
10043 * inconsistencies when replayed). If the transaction was aborted, the
10044 * abortion reason is propagated to userspace when attempting to commit
10045 * the transaction. If the log does not contain any of these inodes, we
10046 * allow the tasks to sync it.
10047 */
10048 if (ret && log_pinned) {
10049 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10050 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10051 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10052 (new_inode &&
10053 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10054 btrfs_set_log_full_commit(fs_info, trans);
10055
10056 btrfs_end_log_trans(root);
10057 log_pinned = false;
10058 }
10059 if (!ret && sync_log) {
10060 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10061 if (ret)
10062 commit_transaction = true;
10063 } else if (sync_log) {
10064 mutex_lock(&root->log_mutex);
10065 list_del(&ctx.list);
10066 mutex_unlock(&root->log_mutex);
10067 }
10068 if (commit_transaction) {
10069 ret = btrfs_commit_transaction(trans);
10070 } else {
10071 int ret2;
10072
10073 ret2 = btrfs_end_transaction(trans);
10074 ret = ret ? ret : ret2;
10075 }
10076 out_notrans:
10077 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10078 up_read(&fs_info->subvol_sem);
10079
10080 return ret;
10081 }
10082
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10083 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10084 struct inode *new_dir, struct dentry *new_dentry,
10085 unsigned int flags)
10086 {
10087 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10088 return -EINVAL;
10089
10090 if (flags & RENAME_EXCHANGE)
10091 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10092 new_dentry);
10093
10094 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10095 }
10096
10097 struct btrfs_delalloc_work {
10098 struct inode *inode;
10099 struct completion completion;
10100 struct list_head list;
10101 struct btrfs_work work;
10102 };
10103
btrfs_run_delalloc_work(struct btrfs_work * work)10104 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10105 {
10106 struct btrfs_delalloc_work *delalloc_work;
10107 struct inode *inode;
10108
10109 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10110 work);
10111 inode = delalloc_work->inode;
10112 filemap_flush(inode->i_mapping);
10113 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10114 &BTRFS_I(inode)->runtime_flags))
10115 filemap_flush(inode->i_mapping);
10116
10117 iput(inode);
10118 complete(&delalloc_work->completion);
10119 }
10120
btrfs_alloc_delalloc_work(struct inode * inode)10121 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10122 {
10123 struct btrfs_delalloc_work *work;
10124
10125 work = kmalloc(sizeof(*work), GFP_NOFS);
10126 if (!work)
10127 return NULL;
10128
10129 init_completion(&work->completion);
10130 INIT_LIST_HEAD(&work->list);
10131 work->inode = inode;
10132 WARN_ON_ONCE(!inode);
10133 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10134 btrfs_run_delalloc_work, NULL, NULL);
10135
10136 return work;
10137 }
10138
10139 /*
10140 * some fairly slow code that needs optimization. This walks the list
10141 * of all the inodes with pending delalloc and forces them to disk.
10142 */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10143 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10144 {
10145 struct btrfs_inode *binode;
10146 struct inode *inode;
10147 struct btrfs_delalloc_work *work, *next;
10148 struct list_head works;
10149 struct list_head splice;
10150 int ret = 0;
10151
10152 INIT_LIST_HEAD(&works);
10153 INIT_LIST_HEAD(&splice);
10154
10155 mutex_lock(&root->delalloc_mutex);
10156 spin_lock(&root->delalloc_lock);
10157 list_splice_init(&root->delalloc_inodes, &splice);
10158 while (!list_empty(&splice)) {
10159 binode = list_entry(splice.next, struct btrfs_inode,
10160 delalloc_inodes);
10161
10162 list_move_tail(&binode->delalloc_inodes,
10163 &root->delalloc_inodes);
10164 inode = igrab(&binode->vfs_inode);
10165 if (!inode) {
10166 cond_resched_lock(&root->delalloc_lock);
10167 continue;
10168 }
10169 spin_unlock(&root->delalloc_lock);
10170
10171 if (snapshot)
10172 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10173 &binode->runtime_flags);
10174 work = btrfs_alloc_delalloc_work(inode);
10175 if (!work) {
10176 iput(inode);
10177 ret = -ENOMEM;
10178 goto out;
10179 }
10180 list_add_tail(&work->list, &works);
10181 btrfs_queue_work(root->fs_info->flush_workers,
10182 &work->work);
10183 ret++;
10184 if (nr != -1 && ret >= nr)
10185 goto out;
10186 cond_resched();
10187 spin_lock(&root->delalloc_lock);
10188 }
10189 spin_unlock(&root->delalloc_lock);
10190
10191 out:
10192 list_for_each_entry_safe(work, next, &works, list) {
10193 list_del_init(&work->list);
10194 wait_for_completion(&work->completion);
10195 kfree(work);
10196 }
10197
10198 if (!list_empty(&splice)) {
10199 spin_lock(&root->delalloc_lock);
10200 list_splice_tail(&splice, &root->delalloc_inodes);
10201 spin_unlock(&root->delalloc_lock);
10202 }
10203 mutex_unlock(&root->delalloc_mutex);
10204 return ret;
10205 }
10206
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10207 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10208 {
10209 struct btrfs_fs_info *fs_info = root->fs_info;
10210 int ret;
10211
10212 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10213 return -EROFS;
10214
10215 ret = start_delalloc_inodes(root, -1, true);
10216 if (ret > 0)
10217 ret = 0;
10218 return ret;
10219 }
10220
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10221 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10222 {
10223 struct btrfs_root *root;
10224 struct list_head splice;
10225 int ret;
10226
10227 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10228 return -EROFS;
10229
10230 INIT_LIST_HEAD(&splice);
10231
10232 mutex_lock(&fs_info->delalloc_root_mutex);
10233 spin_lock(&fs_info->delalloc_root_lock);
10234 list_splice_init(&fs_info->delalloc_roots, &splice);
10235 while (!list_empty(&splice) && nr) {
10236 root = list_first_entry(&splice, struct btrfs_root,
10237 delalloc_root);
10238 root = btrfs_grab_fs_root(root);
10239 BUG_ON(!root);
10240 list_move_tail(&root->delalloc_root,
10241 &fs_info->delalloc_roots);
10242 spin_unlock(&fs_info->delalloc_root_lock);
10243
10244 ret = start_delalloc_inodes(root, nr, false);
10245 btrfs_put_fs_root(root);
10246 if (ret < 0)
10247 goto out;
10248
10249 if (nr != -1) {
10250 nr -= ret;
10251 WARN_ON(nr < 0);
10252 }
10253 spin_lock(&fs_info->delalloc_root_lock);
10254 }
10255 spin_unlock(&fs_info->delalloc_root_lock);
10256
10257 ret = 0;
10258 out:
10259 if (!list_empty(&splice)) {
10260 spin_lock(&fs_info->delalloc_root_lock);
10261 list_splice_tail(&splice, &fs_info->delalloc_roots);
10262 spin_unlock(&fs_info->delalloc_root_lock);
10263 }
10264 mutex_unlock(&fs_info->delalloc_root_mutex);
10265 return ret;
10266 }
10267
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10268 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10269 const char *symname)
10270 {
10271 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10272 struct btrfs_trans_handle *trans;
10273 struct btrfs_root *root = BTRFS_I(dir)->root;
10274 struct btrfs_path *path;
10275 struct btrfs_key key;
10276 struct inode *inode = NULL;
10277 int err;
10278 u64 objectid;
10279 u64 index = 0;
10280 int name_len;
10281 int datasize;
10282 unsigned long ptr;
10283 struct btrfs_file_extent_item *ei;
10284 struct extent_buffer *leaf;
10285
10286 name_len = strlen(symname);
10287 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10288 return -ENAMETOOLONG;
10289
10290 /*
10291 * 2 items for inode item and ref
10292 * 2 items for dir items
10293 * 1 item for updating parent inode item
10294 * 1 item for the inline extent item
10295 * 1 item for xattr if selinux is on
10296 */
10297 trans = btrfs_start_transaction(root, 7);
10298 if (IS_ERR(trans))
10299 return PTR_ERR(trans);
10300
10301 err = btrfs_find_free_ino(root, &objectid);
10302 if (err)
10303 goto out_unlock;
10304
10305 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10306 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10307 objectid, S_IFLNK|S_IRWXUGO, &index);
10308 if (IS_ERR(inode)) {
10309 err = PTR_ERR(inode);
10310 inode = NULL;
10311 goto out_unlock;
10312 }
10313
10314 /*
10315 * If the active LSM wants to access the inode during
10316 * d_instantiate it needs these. Smack checks to see
10317 * if the filesystem supports xattrs by looking at the
10318 * ops vector.
10319 */
10320 inode->i_fop = &btrfs_file_operations;
10321 inode->i_op = &btrfs_file_inode_operations;
10322 inode->i_mapping->a_ops = &btrfs_aops;
10323 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10324
10325 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10326 if (err)
10327 goto out_unlock;
10328
10329 path = btrfs_alloc_path();
10330 if (!path) {
10331 err = -ENOMEM;
10332 goto out_unlock;
10333 }
10334 key.objectid = btrfs_ino(BTRFS_I(inode));
10335 key.offset = 0;
10336 key.type = BTRFS_EXTENT_DATA_KEY;
10337 datasize = btrfs_file_extent_calc_inline_size(name_len);
10338 err = btrfs_insert_empty_item(trans, root, path, &key,
10339 datasize);
10340 if (err) {
10341 btrfs_free_path(path);
10342 goto out_unlock;
10343 }
10344 leaf = path->nodes[0];
10345 ei = btrfs_item_ptr(leaf, path->slots[0],
10346 struct btrfs_file_extent_item);
10347 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10348 btrfs_set_file_extent_type(leaf, ei,
10349 BTRFS_FILE_EXTENT_INLINE);
10350 btrfs_set_file_extent_encryption(leaf, ei, 0);
10351 btrfs_set_file_extent_compression(leaf, ei, 0);
10352 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10353 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10354
10355 ptr = btrfs_file_extent_inline_start(ei);
10356 write_extent_buffer(leaf, symname, ptr, name_len);
10357 btrfs_mark_buffer_dirty(leaf);
10358 btrfs_free_path(path);
10359
10360 inode->i_op = &btrfs_symlink_inode_operations;
10361 inode_nohighmem(inode);
10362 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10363 inode_set_bytes(inode, name_len);
10364 btrfs_i_size_write(BTRFS_I(inode), name_len);
10365 err = btrfs_update_inode(trans, root, inode);
10366 /*
10367 * Last step, add directory indexes for our symlink inode. This is the
10368 * last step to avoid extra cleanup of these indexes if an error happens
10369 * elsewhere above.
10370 */
10371 if (!err)
10372 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10373 BTRFS_I(inode), 0, index);
10374 if (err)
10375 goto out_unlock;
10376
10377 d_instantiate_new(dentry, inode);
10378
10379 out_unlock:
10380 btrfs_end_transaction(trans);
10381 if (err && inode) {
10382 inode_dec_link_count(inode);
10383 discard_new_inode(inode);
10384 }
10385 btrfs_btree_balance_dirty(fs_info);
10386 return err;
10387 }
10388
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10389 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10390 u64 start, u64 num_bytes, u64 min_size,
10391 loff_t actual_len, u64 *alloc_hint,
10392 struct btrfs_trans_handle *trans)
10393 {
10394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10395 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10396 struct extent_map *em;
10397 struct btrfs_root *root = BTRFS_I(inode)->root;
10398 struct btrfs_key ins;
10399 u64 cur_offset = start;
10400 u64 clear_offset = start;
10401 u64 i_size;
10402 u64 cur_bytes;
10403 u64 last_alloc = (u64)-1;
10404 int ret = 0;
10405 bool own_trans = true;
10406 u64 end = start + num_bytes - 1;
10407
10408 if (trans)
10409 own_trans = false;
10410 while (num_bytes > 0) {
10411 if (own_trans) {
10412 trans = btrfs_start_transaction(root, 3);
10413 if (IS_ERR(trans)) {
10414 ret = PTR_ERR(trans);
10415 break;
10416 }
10417 }
10418
10419 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10420 cur_bytes = max(cur_bytes, min_size);
10421 /*
10422 * If we are severely fragmented we could end up with really
10423 * small allocations, so if the allocator is returning small
10424 * chunks lets make its job easier by only searching for those
10425 * sized chunks.
10426 */
10427 cur_bytes = min(cur_bytes, last_alloc);
10428 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10429 min_size, 0, *alloc_hint, &ins, 1, 0);
10430 if (ret) {
10431 if (own_trans)
10432 btrfs_end_transaction(trans);
10433 break;
10434 }
10435
10436 /*
10437 * We've reserved this space, and thus converted it from
10438 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10439 * from here on out we will only need to clear our reservation
10440 * for the remaining unreserved area, so advance our
10441 * clear_offset by our extent size.
10442 */
10443 clear_offset += ins.offset;
10444 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10445
10446 last_alloc = ins.offset;
10447 ret = insert_reserved_file_extent(trans, inode,
10448 cur_offset, ins.objectid,
10449 ins.offset, ins.offset,
10450 ins.offset, 0, 0, 0,
10451 BTRFS_FILE_EXTENT_PREALLOC);
10452 if (ret) {
10453 btrfs_free_reserved_extent(fs_info, ins.objectid,
10454 ins.offset, 0);
10455 btrfs_abort_transaction(trans, ret);
10456 if (own_trans)
10457 btrfs_end_transaction(trans);
10458 break;
10459 }
10460
10461 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10462 cur_offset + ins.offset -1, 0);
10463
10464 em = alloc_extent_map();
10465 if (!em) {
10466 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10467 &BTRFS_I(inode)->runtime_flags);
10468 goto next;
10469 }
10470
10471 em->start = cur_offset;
10472 em->orig_start = cur_offset;
10473 em->len = ins.offset;
10474 em->block_start = ins.objectid;
10475 em->block_len = ins.offset;
10476 em->orig_block_len = ins.offset;
10477 em->ram_bytes = ins.offset;
10478 em->bdev = fs_info->fs_devices->latest_bdev;
10479 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10480 em->generation = trans->transid;
10481
10482 while (1) {
10483 write_lock(&em_tree->lock);
10484 ret = add_extent_mapping(em_tree, em, 1);
10485 write_unlock(&em_tree->lock);
10486 if (ret != -EEXIST)
10487 break;
10488 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10489 cur_offset + ins.offset - 1,
10490 0);
10491 }
10492 free_extent_map(em);
10493 next:
10494 num_bytes -= ins.offset;
10495 cur_offset += ins.offset;
10496 *alloc_hint = ins.objectid + ins.offset;
10497
10498 inode_inc_iversion(inode);
10499 inode->i_ctime = current_time(inode);
10500 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10501 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10502 (actual_len > inode->i_size) &&
10503 (cur_offset > inode->i_size)) {
10504 if (cur_offset > actual_len)
10505 i_size = actual_len;
10506 else
10507 i_size = cur_offset;
10508 i_size_write(inode, i_size);
10509 btrfs_ordered_update_i_size(inode, i_size, NULL);
10510 }
10511
10512 ret = btrfs_update_inode(trans, root, inode);
10513
10514 if (ret) {
10515 btrfs_abort_transaction(trans, ret);
10516 if (own_trans)
10517 btrfs_end_transaction(trans);
10518 break;
10519 }
10520
10521 if (own_trans)
10522 btrfs_end_transaction(trans);
10523 }
10524 if (clear_offset < end)
10525 btrfs_free_reserved_data_space(inode, NULL, clear_offset,
10526 end - clear_offset + 1);
10527 return ret;
10528 }
10529
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10530 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10531 u64 start, u64 num_bytes, u64 min_size,
10532 loff_t actual_len, u64 *alloc_hint)
10533 {
10534 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10535 min_size, actual_len, alloc_hint,
10536 NULL);
10537 }
10538
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10539 int btrfs_prealloc_file_range_trans(struct inode *inode,
10540 struct btrfs_trans_handle *trans, int mode,
10541 u64 start, u64 num_bytes, u64 min_size,
10542 loff_t actual_len, u64 *alloc_hint)
10543 {
10544 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10545 min_size, actual_len, alloc_hint, trans);
10546 }
10547
btrfs_set_page_dirty(struct page * page)10548 static int btrfs_set_page_dirty(struct page *page)
10549 {
10550 return __set_page_dirty_nobuffers(page);
10551 }
10552
btrfs_permission(struct inode * inode,int mask)10553 static int btrfs_permission(struct inode *inode, int mask)
10554 {
10555 struct btrfs_root *root = BTRFS_I(inode)->root;
10556 umode_t mode = inode->i_mode;
10557
10558 if (mask & MAY_WRITE &&
10559 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10560 if (btrfs_root_readonly(root))
10561 return -EROFS;
10562 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10563 return -EACCES;
10564 }
10565 return generic_permission(inode, mask);
10566 }
10567
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10568 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10569 {
10570 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10571 struct btrfs_trans_handle *trans;
10572 struct btrfs_root *root = BTRFS_I(dir)->root;
10573 struct inode *inode = NULL;
10574 u64 objectid;
10575 u64 index;
10576 int ret = 0;
10577
10578 /*
10579 * 5 units required for adding orphan entry
10580 */
10581 trans = btrfs_start_transaction(root, 5);
10582 if (IS_ERR(trans))
10583 return PTR_ERR(trans);
10584
10585 ret = btrfs_find_free_ino(root, &objectid);
10586 if (ret)
10587 goto out;
10588
10589 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10590 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10591 if (IS_ERR(inode)) {
10592 ret = PTR_ERR(inode);
10593 inode = NULL;
10594 goto out;
10595 }
10596
10597 inode->i_fop = &btrfs_file_operations;
10598 inode->i_op = &btrfs_file_inode_operations;
10599
10600 inode->i_mapping->a_ops = &btrfs_aops;
10601 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10602
10603 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10604 if (ret)
10605 goto out;
10606
10607 ret = btrfs_update_inode(trans, root, inode);
10608 if (ret)
10609 goto out;
10610 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10611 if (ret)
10612 goto out;
10613
10614 /*
10615 * We set number of links to 0 in btrfs_new_inode(), and here we set
10616 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10617 * through:
10618 *
10619 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10620 */
10621 set_nlink(inode, 1);
10622 d_tmpfile(dentry, inode);
10623 unlock_new_inode(inode);
10624 mark_inode_dirty(inode);
10625 out:
10626 btrfs_end_transaction(trans);
10627 if (ret && inode)
10628 discard_new_inode(inode);
10629 btrfs_btree_balance_dirty(fs_info);
10630 return ret;
10631 }
10632
10633 __attribute__((const))
btrfs_readpage_io_failed_hook(struct page * page,int failed_mirror)10634 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10635 {
10636 return -EAGAIN;
10637 }
10638
btrfs_check_extent_io_range(void * private_data,const char * caller,u64 start,u64 end)10639 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10640 u64 start, u64 end)
10641 {
10642 struct inode *inode = private_data;
10643 u64 isize;
10644
10645 isize = i_size_read(inode);
10646 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10647 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10648 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10649 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10650 }
10651 }
10652
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10653 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10654 {
10655 struct inode *inode = tree->private_data;
10656 unsigned long index = start >> PAGE_SHIFT;
10657 unsigned long end_index = end >> PAGE_SHIFT;
10658 struct page *page;
10659
10660 while (index <= end_index) {
10661 page = find_get_page(inode->i_mapping, index);
10662 ASSERT(page); /* Pages should be in the extent_io_tree */
10663 set_page_writeback(page);
10664 put_page(page);
10665 index++;
10666 }
10667 }
10668
10669 static const struct inode_operations btrfs_dir_inode_operations = {
10670 .getattr = btrfs_getattr,
10671 .lookup = btrfs_lookup,
10672 .create = btrfs_create,
10673 .unlink = btrfs_unlink,
10674 .link = btrfs_link,
10675 .mkdir = btrfs_mkdir,
10676 .rmdir = btrfs_rmdir,
10677 .rename = btrfs_rename2,
10678 .symlink = btrfs_symlink,
10679 .setattr = btrfs_setattr,
10680 .mknod = btrfs_mknod,
10681 .listxattr = btrfs_listxattr,
10682 .permission = btrfs_permission,
10683 .get_acl = btrfs_get_acl,
10684 .set_acl = btrfs_set_acl,
10685 .update_time = btrfs_update_time,
10686 .tmpfile = btrfs_tmpfile,
10687 };
10688 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10689 .lookup = btrfs_lookup,
10690 .permission = btrfs_permission,
10691 .update_time = btrfs_update_time,
10692 };
10693
10694 static const struct file_operations btrfs_dir_file_operations = {
10695 .llseek = generic_file_llseek,
10696 .read = generic_read_dir,
10697 .iterate_shared = btrfs_real_readdir,
10698 .open = btrfs_opendir,
10699 .unlocked_ioctl = btrfs_ioctl,
10700 #ifdef CONFIG_COMPAT
10701 .compat_ioctl = btrfs_compat_ioctl,
10702 #endif
10703 .release = btrfs_release_file,
10704 .fsync = btrfs_sync_file,
10705 };
10706
10707 static const struct extent_io_ops btrfs_extent_io_ops = {
10708 /* mandatory callbacks */
10709 .submit_bio_hook = btrfs_submit_bio_hook,
10710 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10711 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10712
10713 /* optional callbacks */
10714 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10715 .writepage_start_hook = btrfs_writepage_start_hook,
10716 .set_bit_hook = btrfs_set_bit_hook,
10717 .clear_bit_hook = btrfs_clear_bit_hook,
10718 .merge_extent_hook = btrfs_merge_extent_hook,
10719 .split_extent_hook = btrfs_split_extent_hook,
10720 .check_extent_io_range = btrfs_check_extent_io_range,
10721 };
10722
10723 /*
10724 * btrfs doesn't support the bmap operation because swapfiles
10725 * use bmap to make a mapping of extents in the file. They assume
10726 * these extents won't change over the life of the file and they
10727 * use the bmap result to do IO directly to the drive.
10728 *
10729 * the btrfs bmap call would return logical addresses that aren't
10730 * suitable for IO and they also will change frequently as COW
10731 * operations happen. So, swapfile + btrfs == corruption.
10732 *
10733 * For now we're avoiding this by dropping bmap.
10734 */
10735 static const struct address_space_operations btrfs_aops = {
10736 .readpage = btrfs_readpage,
10737 .writepage = btrfs_writepage,
10738 .writepages = btrfs_writepages,
10739 .readpages = btrfs_readpages,
10740 .direct_IO = btrfs_direct_IO,
10741 .invalidatepage = btrfs_invalidatepage,
10742 .releasepage = btrfs_releasepage,
10743 .set_page_dirty = btrfs_set_page_dirty,
10744 .error_remove_page = generic_error_remove_page,
10745 };
10746
10747 static const struct address_space_operations btrfs_symlink_aops = {
10748 .readpage = btrfs_readpage,
10749 .writepage = btrfs_writepage,
10750 .invalidatepage = btrfs_invalidatepage,
10751 .releasepage = btrfs_releasepage,
10752 };
10753
10754 static const struct inode_operations btrfs_file_inode_operations = {
10755 .getattr = btrfs_getattr,
10756 .setattr = btrfs_setattr,
10757 .listxattr = btrfs_listxattr,
10758 .permission = btrfs_permission,
10759 .fiemap = btrfs_fiemap,
10760 .get_acl = btrfs_get_acl,
10761 .set_acl = btrfs_set_acl,
10762 .update_time = btrfs_update_time,
10763 };
10764 static const struct inode_operations btrfs_special_inode_operations = {
10765 .getattr = btrfs_getattr,
10766 .setattr = btrfs_setattr,
10767 .permission = btrfs_permission,
10768 .listxattr = btrfs_listxattr,
10769 .get_acl = btrfs_get_acl,
10770 .set_acl = btrfs_set_acl,
10771 .update_time = btrfs_update_time,
10772 };
10773 static const struct inode_operations btrfs_symlink_inode_operations = {
10774 .get_link = page_get_link,
10775 .getattr = btrfs_getattr,
10776 .setattr = btrfs_setattr,
10777 .permission = btrfs_permission,
10778 .listxattr = btrfs_listxattr,
10779 .update_time = btrfs_update_time,
10780 };
10781
10782 const struct dentry_operations btrfs_dentry_operations = {
10783 .d_delete = btrfs_dentry_delete,
10784 };
10785