• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 
47 #ifdef CONFIG_64BIT
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49  * structures are incorrect, as the timespec structure from userspace
50  * is 4 bytes too small. We define these alternatives here to teach
51  * the kernel about the 32-bit struct packing.
52  */
53 struct btrfs_ioctl_timespec_32 {
54 	__u64 sec;
55 	__u32 nsec;
56 } __attribute__ ((__packed__));
57 
58 struct btrfs_ioctl_received_subvol_args_32 {
59 	char	uuid[BTRFS_UUID_SIZE];	/* in */
60 	__u64	stransid;		/* in */
61 	__u64	rtransid;		/* out */
62 	struct btrfs_ioctl_timespec_32 stime; /* in */
63 	struct btrfs_ioctl_timespec_32 rtime; /* out */
64 	__u64	flags;			/* in */
65 	__u64	reserved[16];		/* in */
66 } __attribute__ ((__packed__));
67 
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 				struct btrfs_ioctl_received_subvol_args_32)
70 #endif
71 
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 	__s64 send_fd;			/* in */
75 	__u64 clone_sources_count;	/* in */
76 	compat_uptr_t clone_sources;	/* in */
77 	__u64 parent_root;		/* in */
78 	__u64 flags;			/* in */
79 	__u64 reserved[4];		/* in */
80 } __attribute__ ((__packed__));
81 
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 			       struct btrfs_ioctl_send_args_32)
84 #endif
85 
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
88 		       int no_time_update);
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
check_fsflags(unsigned int flags)168 static int check_fsflags(unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
btrfs_ioctl_setflags(struct file * file,void __user * arg)183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 	struct btrfs_inode *binode = BTRFS_I(inode);
188 	struct btrfs_root *root = binode->root;
189 	struct btrfs_trans_handle *trans;
190 	unsigned int fsflags, old_fsflags;
191 	int ret;
192 	u64 old_flags;
193 	unsigned int old_i_flags;
194 	umode_t mode;
195 
196 	if (!inode_owner_or_capable(inode))
197 		return -EPERM;
198 
199 	if (btrfs_root_readonly(root))
200 		return -EROFS;
201 
202 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
203 		return -EFAULT;
204 
205 	ret = check_fsflags(fsflags);
206 	if (ret)
207 		return ret;
208 
209 	ret = mnt_want_write_file(file);
210 	if (ret)
211 		return ret;
212 
213 	inode_lock(inode);
214 
215 	old_flags = binode->flags;
216 	old_i_flags = inode->i_flags;
217 	mode = inode->i_mode;
218 
219 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
220 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
221 	if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
222 		if (!capable(CAP_LINUX_IMMUTABLE)) {
223 			ret = -EPERM;
224 			goto out_unlock;
225 		}
226 	}
227 
228 	if (fsflags & FS_SYNC_FL)
229 		binode->flags |= BTRFS_INODE_SYNC;
230 	else
231 		binode->flags &= ~BTRFS_INODE_SYNC;
232 	if (fsflags & FS_IMMUTABLE_FL)
233 		binode->flags |= BTRFS_INODE_IMMUTABLE;
234 	else
235 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
236 	if (fsflags & FS_APPEND_FL)
237 		binode->flags |= BTRFS_INODE_APPEND;
238 	else
239 		binode->flags &= ~BTRFS_INODE_APPEND;
240 	if (fsflags & FS_NODUMP_FL)
241 		binode->flags |= BTRFS_INODE_NODUMP;
242 	else
243 		binode->flags &= ~BTRFS_INODE_NODUMP;
244 	if (fsflags & FS_NOATIME_FL)
245 		binode->flags |= BTRFS_INODE_NOATIME;
246 	else
247 		binode->flags &= ~BTRFS_INODE_NOATIME;
248 	if (fsflags & FS_DIRSYNC_FL)
249 		binode->flags |= BTRFS_INODE_DIRSYNC;
250 	else
251 		binode->flags &= ~BTRFS_INODE_DIRSYNC;
252 	if (fsflags & FS_NOCOW_FL) {
253 		if (S_ISREG(mode)) {
254 			/*
255 			 * It's safe to turn csums off here, no extents exist.
256 			 * Otherwise we want the flag to reflect the real COW
257 			 * status of the file and will not set it.
258 			 */
259 			if (inode->i_size == 0)
260 				binode->flags |= BTRFS_INODE_NODATACOW
261 					      | BTRFS_INODE_NODATASUM;
262 		} else {
263 			binode->flags |= BTRFS_INODE_NODATACOW;
264 		}
265 	} else {
266 		/*
267 		 * Revert back under same assumptions as above
268 		 */
269 		if (S_ISREG(mode)) {
270 			if (inode->i_size == 0)
271 				binode->flags &= ~(BTRFS_INODE_NODATACOW
272 				             | BTRFS_INODE_NODATASUM);
273 		} else {
274 			binode->flags &= ~BTRFS_INODE_NODATACOW;
275 		}
276 	}
277 
278 	/*
279 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
280 	 * flag may be changed automatically if compression code won't make
281 	 * things smaller.
282 	 */
283 	if (fsflags & FS_NOCOMP_FL) {
284 		binode->flags &= ~BTRFS_INODE_COMPRESS;
285 		binode->flags |= BTRFS_INODE_NOCOMPRESS;
286 
287 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
288 		if (ret && ret != -ENODATA)
289 			goto out_drop;
290 	} else if (fsflags & FS_COMPR_FL) {
291 		const char *comp;
292 
293 		binode->flags |= BTRFS_INODE_COMPRESS;
294 		binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
295 
296 		comp = btrfs_compress_type2str(fs_info->compress_type);
297 		if (!comp || comp[0] == 0)
298 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
299 
300 		ret = btrfs_set_prop(inode, "btrfs.compression",
301 				     comp, strlen(comp), 0);
302 		if (ret)
303 			goto out_drop;
304 
305 	} else {
306 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
307 		if (ret && ret != -ENODATA)
308 			goto out_drop;
309 		binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
310 	}
311 
312 	trans = btrfs_start_transaction(root, 1);
313 	if (IS_ERR(trans)) {
314 		ret = PTR_ERR(trans);
315 		goto out_drop;
316 	}
317 
318 	btrfs_sync_inode_flags_to_i_flags(inode);
319 	inode_inc_iversion(inode);
320 	inode->i_ctime = current_time(inode);
321 	ret = btrfs_update_inode(trans, root, inode);
322 
323 	btrfs_end_transaction(trans);
324  out_drop:
325 	if (ret) {
326 		binode->flags = old_flags;
327 		inode->i_flags = old_i_flags;
328 	}
329 
330  out_unlock:
331 	inode_unlock(inode);
332 	mnt_drop_write_file(file);
333 	return ret;
334 }
335 
336 /*
337  * Translate btrfs internal inode flags to xflags as expected by the
338  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
339  * silently dropped.
340  */
btrfs_inode_flags_to_xflags(unsigned int flags)341 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
342 {
343 	unsigned int xflags = 0;
344 
345 	if (flags & BTRFS_INODE_APPEND)
346 		xflags |= FS_XFLAG_APPEND;
347 	if (flags & BTRFS_INODE_IMMUTABLE)
348 		xflags |= FS_XFLAG_IMMUTABLE;
349 	if (flags & BTRFS_INODE_NOATIME)
350 		xflags |= FS_XFLAG_NOATIME;
351 	if (flags & BTRFS_INODE_NODUMP)
352 		xflags |= FS_XFLAG_NODUMP;
353 	if (flags & BTRFS_INODE_SYNC)
354 		xflags |= FS_XFLAG_SYNC;
355 
356 	return xflags;
357 }
358 
359 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)360 static int check_xflags(unsigned int flags)
361 {
362 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
363 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
364 		return -EOPNOTSUPP;
365 	return 0;
366 }
367 
368 /*
369  * Set the xflags from the internal inode flags. The remaining items of fsxattr
370  * are zeroed.
371  */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)372 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
373 {
374 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
375 	struct fsxattr fa;
376 
377 	memset(&fa, 0, sizeof(fa));
378 	fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
379 
380 	if (copy_to_user(arg, &fa, sizeof(fa)))
381 		return -EFAULT;
382 
383 	return 0;
384 }
385 
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
387 {
388 	struct inode *inode = file_inode(file);
389 	struct btrfs_inode *binode = BTRFS_I(inode);
390 	struct btrfs_root *root = binode->root;
391 	struct btrfs_trans_handle *trans;
392 	struct fsxattr fa;
393 	unsigned old_flags;
394 	unsigned old_i_flags;
395 	int ret = 0;
396 
397 	if (!inode_owner_or_capable(inode))
398 		return -EPERM;
399 
400 	if (btrfs_root_readonly(root))
401 		return -EROFS;
402 
403 	memset(&fa, 0, sizeof(fa));
404 	if (copy_from_user(&fa, arg, sizeof(fa)))
405 		return -EFAULT;
406 
407 	ret = check_xflags(fa.fsx_xflags);
408 	if (ret)
409 		return ret;
410 
411 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
412 		return -EOPNOTSUPP;
413 
414 	ret = mnt_want_write_file(file);
415 	if (ret)
416 		return ret;
417 
418 	inode_lock(inode);
419 
420 	old_flags = binode->flags;
421 	old_i_flags = inode->i_flags;
422 
423 	/* We need the capabilities to change append-only or immutable inode */
424 	if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
425 	     (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
426 	    !capable(CAP_LINUX_IMMUTABLE)) {
427 		ret = -EPERM;
428 		goto out_unlock;
429 	}
430 
431 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
432 		binode->flags |= BTRFS_INODE_SYNC;
433 	else
434 		binode->flags &= ~BTRFS_INODE_SYNC;
435 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
436 		binode->flags |= BTRFS_INODE_IMMUTABLE;
437 	else
438 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
439 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
440 		binode->flags |= BTRFS_INODE_APPEND;
441 	else
442 		binode->flags &= ~BTRFS_INODE_APPEND;
443 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
444 		binode->flags |= BTRFS_INODE_NODUMP;
445 	else
446 		binode->flags &= ~BTRFS_INODE_NODUMP;
447 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
448 		binode->flags |= BTRFS_INODE_NOATIME;
449 	else
450 		binode->flags &= ~BTRFS_INODE_NOATIME;
451 
452 	/* 1 item for the inode */
453 	trans = btrfs_start_transaction(root, 1);
454 	if (IS_ERR(trans)) {
455 		ret = PTR_ERR(trans);
456 		goto out_unlock;
457 	}
458 
459 	btrfs_sync_inode_flags_to_i_flags(inode);
460 	inode_inc_iversion(inode);
461 	inode->i_ctime = current_time(inode);
462 	ret = btrfs_update_inode(trans, root, inode);
463 
464 	btrfs_end_transaction(trans);
465 
466 out_unlock:
467 	if (ret) {
468 		binode->flags = old_flags;
469 		inode->i_flags = old_i_flags;
470 	}
471 
472 	inode_unlock(inode);
473 	mnt_drop_write_file(file);
474 
475 	return ret;
476 }
477 
btrfs_ioctl_getversion(struct file * file,int __user * arg)478 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
479 {
480 	struct inode *inode = file_inode(file);
481 
482 	return put_user(inode->i_generation, arg);
483 }
484 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)485 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
486 {
487 	struct inode *inode = file_inode(file);
488 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
489 	struct btrfs_device *device;
490 	struct request_queue *q;
491 	struct fstrim_range range;
492 	u64 minlen = ULLONG_MAX;
493 	u64 num_devices = 0;
494 	int ret;
495 
496 	if (!capable(CAP_SYS_ADMIN))
497 		return -EPERM;
498 
499 	/*
500 	 * If the fs is mounted with nologreplay, which requires it to be
501 	 * mounted in RO mode as well, we can not allow discard on free space
502 	 * inside block groups, because log trees refer to extents that are not
503 	 * pinned in a block group's free space cache (pinning the extents is
504 	 * precisely the first phase of replaying a log tree).
505 	 */
506 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
507 		return -EROFS;
508 
509 	rcu_read_lock();
510 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
511 				dev_list) {
512 		if (!device->bdev)
513 			continue;
514 		q = bdev_get_queue(device->bdev);
515 		if (blk_queue_discard(q)) {
516 			num_devices++;
517 			minlen = min_t(u64, q->limits.discard_granularity,
518 				     minlen);
519 		}
520 	}
521 	rcu_read_unlock();
522 
523 	if (!num_devices)
524 		return -EOPNOTSUPP;
525 	if (copy_from_user(&range, arg, sizeof(range)))
526 		return -EFAULT;
527 
528 	/*
529 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
530 	 * block group is in the logical address space, which can be any
531 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
532 	 */
533 	if (range.len < fs_info->sb->s_blocksize)
534 		return -EINVAL;
535 
536 	range.minlen = max(range.minlen, minlen);
537 	ret = btrfs_trim_fs(fs_info, &range);
538 	if (ret < 0)
539 		return ret;
540 
541 	if (copy_to_user(arg, &range, sizeof(range)))
542 		return -EFAULT;
543 
544 	return 0;
545 }
546 
btrfs_is_empty_uuid(u8 * uuid)547 int btrfs_is_empty_uuid(u8 *uuid)
548 {
549 	int i;
550 
551 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
552 		if (uuid[i])
553 			return 0;
554 	}
555 	return 1;
556 }
557 
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)558 static noinline int create_subvol(struct inode *dir,
559 				  struct dentry *dentry,
560 				  const char *name, int namelen,
561 				  u64 *async_transid,
562 				  struct btrfs_qgroup_inherit *inherit)
563 {
564 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
565 	struct btrfs_trans_handle *trans;
566 	struct btrfs_key key;
567 	struct btrfs_root_item *root_item;
568 	struct btrfs_inode_item *inode_item;
569 	struct extent_buffer *leaf;
570 	struct btrfs_root *root = BTRFS_I(dir)->root;
571 	struct btrfs_root *new_root;
572 	struct btrfs_block_rsv block_rsv;
573 	struct timespec64 cur_time = current_time(dir);
574 	struct inode *inode;
575 	int ret;
576 	int err;
577 	u64 objectid;
578 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
579 	u64 index = 0;
580 	uuid_le new_uuid;
581 
582 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
583 	if (!root_item)
584 		return -ENOMEM;
585 
586 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
587 	if (ret)
588 		goto fail_free;
589 
590 	/*
591 	 * Don't create subvolume whose level is not zero. Or qgroup will be
592 	 * screwed up since it assumes subvolume qgroup's level to be 0.
593 	 */
594 	if (btrfs_qgroup_level(objectid)) {
595 		ret = -ENOSPC;
596 		goto fail_free;
597 	}
598 
599 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
600 	/*
601 	 * The same as the snapshot creation, please see the comment
602 	 * of create_snapshot().
603 	 */
604 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
605 	if (ret)
606 		goto fail_free;
607 
608 	trans = btrfs_start_transaction(root, 0);
609 	if (IS_ERR(trans)) {
610 		ret = PTR_ERR(trans);
611 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
612 		goto fail_free;
613 	}
614 	trans->block_rsv = &block_rsv;
615 	trans->bytes_reserved = block_rsv.size;
616 
617 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
618 	if (ret)
619 		goto fail;
620 
621 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
622 	if (IS_ERR(leaf)) {
623 		ret = PTR_ERR(leaf);
624 		goto fail;
625 	}
626 
627 	btrfs_mark_buffer_dirty(leaf);
628 
629 	inode_item = &root_item->inode;
630 	btrfs_set_stack_inode_generation(inode_item, 1);
631 	btrfs_set_stack_inode_size(inode_item, 3);
632 	btrfs_set_stack_inode_nlink(inode_item, 1);
633 	btrfs_set_stack_inode_nbytes(inode_item,
634 				     fs_info->nodesize);
635 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
636 
637 	btrfs_set_root_flags(root_item, 0);
638 	btrfs_set_root_limit(root_item, 0);
639 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
640 
641 	btrfs_set_root_bytenr(root_item, leaf->start);
642 	btrfs_set_root_generation(root_item, trans->transid);
643 	btrfs_set_root_level(root_item, 0);
644 	btrfs_set_root_refs(root_item, 1);
645 	btrfs_set_root_used(root_item, leaf->len);
646 	btrfs_set_root_last_snapshot(root_item, 0);
647 
648 	btrfs_set_root_generation_v2(root_item,
649 			btrfs_root_generation(root_item));
650 	uuid_le_gen(&new_uuid);
651 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
652 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
653 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
654 	root_item->ctime = root_item->otime;
655 	btrfs_set_root_ctransid(root_item, trans->transid);
656 	btrfs_set_root_otransid(root_item, trans->transid);
657 
658 	btrfs_tree_unlock(leaf);
659 	free_extent_buffer(leaf);
660 	leaf = NULL;
661 
662 	btrfs_set_root_dirid(root_item, new_dirid);
663 
664 	key.objectid = objectid;
665 	key.offset = 0;
666 	key.type = BTRFS_ROOT_ITEM_KEY;
667 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
668 				root_item);
669 	if (ret)
670 		goto fail;
671 
672 	key.offset = (u64)-1;
673 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
674 	if (IS_ERR(new_root)) {
675 		ret = PTR_ERR(new_root);
676 		btrfs_abort_transaction(trans, ret);
677 		goto fail;
678 	}
679 
680 	btrfs_record_root_in_trans(trans, new_root);
681 
682 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
683 	if (ret) {
684 		/* We potentially lose an unused inode item here */
685 		btrfs_abort_transaction(trans, ret);
686 		goto fail;
687 	}
688 
689 	mutex_lock(&new_root->objectid_mutex);
690 	new_root->highest_objectid = new_dirid;
691 	mutex_unlock(&new_root->objectid_mutex);
692 
693 	/*
694 	 * insert the directory item
695 	 */
696 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
697 	if (ret) {
698 		btrfs_abort_transaction(trans, ret);
699 		goto fail;
700 	}
701 
702 	ret = btrfs_insert_dir_item(trans, root,
703 				    name, namelen, BTRFS_I(dir), &key,
704 				    BTRFS_FT_DIR, index);
705 	if (ret) {
706 		btrfs_abort_transaction(trans, ret);
707 		goto fail;
708 	}
709 
710 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
711 	ret = btrfs_update_inode(trans, root, dir);
712 	if (ret) {
713 		btrfs_abort_transaction(trans, ret);
714 		goto fail;
715 	}
716 
717 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
718 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
719 	if (ret) {
720 		btrfs_abort_transaction(trans, ret);
721 		goto fail;
722 	}
723 
724 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
725 				  BTRFS_UUID_KEY_SUBVOL, objectid);
726 	if (ret)
727 		btrfs_abort_transaction(trans, ret);
728 
729 fail:
730 	kfree(root_item);
731 	trans->block_rsv = NULL;
732 	trans->bytes_reserved = 0;
733 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
734 
735 	if (async_transid) {
736 		*async_transid = trans->transid;
737 		err = btrfs_commit_transaction_async(trans, 1);
738 		if (err)
739 			err = btrfs_commit_transaction(trans);
740 	} else {
741 		err = btrfs_commit_transaction(trans);
742 	}
743 	if (err && !ret)
744 		ret = err;
745 
746 	if (!ret) {
747 		inode = btrfs_lookup_dentry(dir, dentry);
748 		if (IS_ERR(inode))
749 			return PTR_ERR(inode);
750 		d_instantiate(dentry, inode);
751 	}
752 	return ret;
753 
754 fail_free:
755 	kfree(root_item);
756 	return ret;
757 }
758 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)759 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
760 			   struct dentry *dentry,
761 			   u64 *async_transid, bool readonly,
762 			   struct btrfs_qgroup_inherit *inherit)
763 {
764 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
765 	struct inode *inode;
766 	struct btrfs_pending_snapshot *pending_snapshot;
767 	struct btrfs_trans_handle *trans;
768 	int ret;
769 	bool snapshot_force_cow = false;
770 
771 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
772 		return -EINVAL;
773 
774 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
775 	if (!pending_snapshot)
776 		return -ENOMEM;
777 
778 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
779 			GFP_KERNEL);
780 	pending_snapshot->path = btrfs_alloc_path();
781 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
782 		ret = -ENOMEM;
783 		goto free_pending;
784 	}
785 
786 	/*
787 	 * Force new buffered writes to reserve space even when NOCOW is
788 	 * possible. This is to avoid later writeback (running dealloc) to
789 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
790 	 */
791 	atomic_inc(&root->will_be_snapshotted);
792 	smp_mb__after_atomic();
793 	/* wait for no snapshot writes */
794 	wait_event(root->subv_writers->wait,
795 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
796 
797 	ret = btrfs_start_delalloc_snapshot(root);
798 	if (ret)
799 		goto dec_and_free;
800 
801 	/*
802 	 * All previous writes have started writeback in NOCOW mode, so now
803 	 * we force future writes to fallback to COW mode during snapshot
804 	 * creation.
805 	 */
806 	atomic_inc(&root->snapshot_force_cow);
807 	snapshot_force_cow = true;
808 
809 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
810 
811 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
812 			     BTRFS_BLOCK_RSV_TEMP);
813 	/*
814 	 * 1 - parent dir inode
815 	 * 2 - dir entries
816 	 * 1 - root item
817 	 * 2 - root ref/backref
818 	 * 1 - root of snapshot
819 	 * 1 - UUID item
820 	 */
821 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
822 					&pending_snapshot->block_rsv, 8,
823 					false);
824 	if (ret)
825 		goto dec_and_free;
826 
827 	pending_snapshot->dentry = dentry;
828 	pending_snapshot->root = root;
829 	pending_snapshot->readonly = readonly;
830 	pending_snapshot->dir = dir;
831 	pending_snapshot->inherit = inherit;
832 
833 	trans = btrfs_start_transaction(root, 0);
834 	if (IS_ERR(trans)) {
835 		ret = PTR_ERR(trans);
836 		goto fail;
837 	}
838 
839 	spin_lock(&fs_info->trans_lock);
840 	list_add(&pending_snapshot->list,
841 		 &trans->transaction->pending_snapshots);
842 	spin_unlock(&fs_info->trans_lock);
843 	if (async_transid) {
844 		*async_transid = trans->transid;
845 		ret = btrfs_commit_transaction_async(trans, 1);
846 		if (ret)
847 			ret = btrfs_commit_transaction(trans);
848 	} else {
849 		ret = btrfs_commit_transaction(trans);
850 	}
851 	if (ret)
852 		goto fail;
853 
854 	ret = pending_snapshot->error;
855 	if (ret)
856 		goto fail;
857 
858 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
859 	if (ret)
860 		goto fail;
861 
862 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
863 	if (IS_ERR(inode)) {
864 		ret = PTR_ERR(inode);
865 		goto fail;
866 	}
867 
868 	d_instantiate(dentry, inode);
869 	ret = 0;
870 fail:
871 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
872 dec_and_free:
873 	if (snapshot_force_cow)
874 		atomic_dec(&root->snapshot_force_cow);
875 	if (atomic_dec_and_test(&root->will_be_snapshotted))
876 		wake_up_var(&root->will_be_snapshotted);
877 free_pending:
878 	kfree(pending_snapshot->root_item);
879 	btrfs_free_path(pending_snapshot->path);
880 	kfree(pending_snapshot);
881 
882 	return ret;
883 }
884 
885 /*  copy of may_delete in fs/namei.c()
886  *	Check whether we can remove a link victim from directory dir, check
887  *  whether the type of victim is right.
888  *  1. We can't do it if dir is read-only (done in permission())
889  *  2. We should have write and exec permissions on dir
890  *  3. We can't remove anything from append-only dir
891  *  4. We can't do anything with immutable dir (done in permission())
892  *  5. If the sticky bit on dir is set we should either
893  *	a. be owner of dir, or
894  *	b. be owner of victim, or
895  *	c. have CAP_FOWNER capability
896  *  6. If the victim is append-only or immutable we can't do anything with
897  *     links pointing to it.
898  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
899  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
900  *  9. We can't remove a root or mountpoint.
901  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
902  *     nfs_async_unlink().
903  */
904 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)905 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
906 {
907 	int error;
908 
909 	if (d_really_is_negative(victim))
910 		return -ENOENT;
911 
912 	BUG_ON(d_inode(victim->d_parent) != dir);
913 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
914 
915 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
916 	if (error)
917 		return error;
918 	if (IS_APPEND(dir))
919 		return -EPERM;
920 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
921 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
922 		return -EPERM;
923 	if (isdir) {
924 		if (!d_is_dir(victim))
925 			return -ENOTDIR;
926 		if (IS_ROOT(victim))
927 			return -EBUSY;
928 	} else if (d_is_dir(victim))
929 		return -EISDIR;
930 	if (IS_DEADDIR(dir))
931 		return -ENOENT;
932 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
933 		return -EBUSY;
934 	return 0;
935 }
936 
937 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)938 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
939 {
940 	if (d_really_is_positive(child))
941 		return -EEXIST;
942 	if (IS_DEADDIR(dir))
943 		return -ENOENT;
944 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
945 }
946 
947 /*
948  * Create a new subvolume below @parent.  This is largely modeled after
949  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
950  * inside this filesystem so it's quite a bit simpler.
951  */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)952 static noinline int btrfs_mksubvol(const struct path *parent,
953 				   const char *name, int namelen,
954 				   struct btrfs_root *snap_src,
955 				   u64 *async_transid, bool readonly,
956 				   struct btrfs_qgroup_inherit *inherit)
957 {
958 	struct inode *dir = d_inode(parent->dentry);
959 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
960 	struct dentry *dentry;
961 	int error;
962 
963 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
964 	if (error == -EINTR)
965 		return error;
966 
967 	dentry = lookup_one_len(name, parent->dentry, namelen);
968 	error = PTR_ERR(dentry);
969 	if (IS_ERR(dentry))
970 		goto out_unlock;
971 
972 	error = btrfs_may_create(dir, dentry);
973 	if (error)
974 		goto out_dput;
975 
976 	/*
977 	 * even if this name doesn't exist, we may get hash collisions.
978 	 * check for them now when we can safely fail
979 	 */
980 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
981 					       dir->i_ino, name,
982 					       namelen);
983 	if (error)
984 		goto out_dput;
985 
986 	down_read(&fs_info->subvol_sem);
987 
988 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
989 		goto out_up_read;
990 
991 	if (snap_src) {
992 		error = create_snapshot(snap_src, dir, dentry,
993 					async_transid, readonly, inherit);
994 	} else {
995 		error = create_subvol(dir, dentry, name, namelen,
996 				      async_transid, inherit);
997 	}
998 	if (!error)
999 		fsnotify_mkdir(dir, dentry);
1000 out_up_read:
1001 	up_read(&fs_info->subvol_sem);
1002 out_dput:
1003 	dput(dentry);
1004 out_unlock:
1005 	inode_unlock(dir);
1006 	return error;
1007 }
1008 
1009 /*
1010  * When we're defragging a range, we don't want to kick it off again
1011  * if it is really just waiting for delalloc to send it down.
1012  * If we find a nice big extent or delalloc range for the bytes in the
1013  * file you want to defrag, we return 0 to let you know to skip this
1014  * part of the file
1015  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1016 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1017 {
1018 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1019 	struct extent_map *em = NULL;
1020 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1021 	u64 end;
1022 
1023 	read_lock(&em_tree->lock);
1024 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1025 	read_unlock(&em_tree->lock);
1026 
1027 	if (em) {
1028 		end = extent_map_end(em);
1029 		free_extent_map(em);
1030 		if (end - offset > thresh)
1031 			return 0;
1032 	}
1033 	/* if we already have a nice delalloc here, just stop */
1034 	thresh /= 2;
1035 	end = count_range_bits(io_tree, &offset, offset + thresh,
1036 			       thresh, EXTENT_DELALLOC, 1);
1037 	if (end >= thresh)
1038 		return 0;
1039 	return 1;
1040 }
1041 
1042 /*
1043  * helper function to walk through a file and find extents
1044  * newer than a specific transid, and smaller than thresh.
1045  *
1046  * This is used by the defragging code to find new and small
1047  * extents
1048  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1049 static int find_new_extents(struct btrfs_root *root,
1050 			    struct inode *inode, u64 newer_than,
1051 			    u64 *off, u32 thresh)
1052 {
1053 	struct btrfs_path *path;
1054 	struct btrfs_key min_key;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_file_extent_item *extent;
1057 	int type;
1058 	int ret;
1059 	u64 ino = btrfs_ino(BTRFS_I(inode));
1060 
1061 	path = btrfs_alloc_path();
1062 	if (!path)
1063 		return -ENOMEM;
1064 
1065 	min_key.objectid = ino;
1066 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1067 	min_key.offset = *off;
1068 
1069 	while (1) {
1070 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1071 		if (ret != 0)
1072 			goto none;
1073 process_slot:
1074 		if (min_key.objectid != ino)
1075 			goto none;
1076 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1077 			goto none;
1078 
1079 		leaf = path->nodes[0];
1080 		extent = btrfs_item_ptr(leaf, path->slots[0],
1081 					struct btrfs_file_extent_item);
1082 
1083 		type = btrfs_file_extent_type(leaf, extent);
1084 		if (type == BTRFS_FILE_EXTENT_REG &&
1085 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1086 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1087 			*off = min_key.offset;
1088 			btrfs_free_path(path);
1089 			return 0;
1090 		}
1091 
1092 		path->slots[0]++;
1093 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1094 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1095 			goto process_slot;
1096 		}
1097 
1098 		if (min_key.offset == (u64)-1)
1099 			goto none;
1100 
1101 		min_key.offset++;
1102 		btrfs_release_path(path);
1103 	}
1104 none:
1105 	btrfs_free_path(path);
1106 	return -ENOENT;
1107 }
1108 
defrag_lookup_extent(struct inode * inode,u64 start)1109 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1110 {
1111 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1112 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1113 	struct extent_map *em;
1114 	u64 len = PAGE_SIZE;
1115 
1116 	/*
1117 	 * hopefully we have this extent in the tree already, try without
1118 	 * the full extent lock
1119 	 */
1120 	read_lock(&em_tree->lock);
1121 	em = lookup_extent_mapping(em_tree, start, len);
1122 	read_unlock(&em_tree->lock);
1123 
1124 	if (!em) {
1125 		struct extent_state *cached = NULL;
1126 		u64 end = start + len - 1;
1127 
1128 		/* get the big lock and read metadata off disk */
1129 		lock_extent_bits(io_tree, start, end, &cached);
1130 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1131 		unlock_extent_cached(io_tree, start, end, &cached);
1132 
1133 		if (IS_ERR(em))
1134 			return NULL;
1135 	}
1136 
1137 	return em;
1138 }
1139 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1140 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1141 {
1142 	struct extent_map *next;
1143 	bool ret = true;
1144 
1145 	/* this is the last extent */
1146 	if (em->start + em->len >= i_size_read(inode))
1147 		return false;
1148 
1149 	next = defrag_lookup_extent(inode, em->start + em->len);
1150 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1151 		ret = false;
1152 	else if ((em->block_start + em->block_len == next->block_start) &&
1153 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1154 		ret = false;
1155 
1156 	free_extent_map(next);
1157 	return ret;
1158 }
1159 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1160 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1161 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1162 			       int compress)
1163 {
1164 	struct extent_map *em;
1165 	int ret = 1;
1166 	bool next_mergeable = true;
1167 	bool prev_mergeable = true;
1168 
1169 	/*
1170 	 * make sure that once we start defragging an extent, we keep on
1171 	 * defragging it
1172 	 */
1173 	if (start < *defrag_end)
1174 		return 1;
1175 
1176 	*skip = 0;
1177 
1178 	em = defrag_lookup_extent(inode, start);
1179 	if (!em)
1180 		return 0;
1181 
1182 	/* this will cover holes, and inline extents */
1183 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1184 		ret = 0;
1185 		goto out;
1186 	}
1187 
1188 	if (!*defrag_end)
1189 		prev_mergeable = false;
1190 
1191 	next_mergeable = defrag_check_next_extent(inode, em);
1192 	/*
1193 	 * we hit a real extent, if it is big or the next extent is not a
1194 	 * real extent, don't bother defragging it
1195 	 */
1196 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1197 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1198 		ret = 0;
1199 out:
1200 	/*
1201 	 * last_len ends up being a counter of how many bytes we've defragged.
1202 	 * every time we choose not to defrag an extent, we reset *last_len
1203 	 * so that the next tiny extent will force a defrag.
1204 	 *
1205 	 * The end result of this is that tiny extents before a single big
1206 	 * extent will force at least part of that big extent to be defragged.
1207 	 */
1208 	if (ret) {
1209 		*defrag_end = extent_map_end(em);
1210 	} else {
1211 		*last_len = 0;
1212 		*skip = extent_map_end(em);
1213 		*defrag_end = 0;
1214 	}
1215 
1216 	free_extent_map(em);
1217 	return ret;
1218 }
1219 
1220 /*
1221  * it doesn't do much good to defrag one or two pages
1222  * at a time.  This pulls in a nice chunk of pages
1223  * to COW and defrag.
1224  *
1225  * It also makes sure the delalloc code has enough
1226  * dirty data to avoid making new small extents as part
1227  * of the defrag
1228  *
1229  * It's a good idea to start RA on this range
1230  * before calling this.
1231  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1232 static int cluster_pages_for_defrag(struct inode *inode,
1233 				    struct page **pages,
1234 				    unsigned long start_index,
1235 				    unsigned long num_pages)
1236 {
1237 	unsigned long file_end;
1238 	u64 isize = i_size_read(inode);
1239 	u64 page_start;
1240 	u64 page_end;
1241 	u64 page_cnt;
1242 	int ret;
1243 	int i;
1244 	int i_done;
1245 	struct btrfs_ordered_extent *ordered;
1246 	struct extent_state *cached_state = NULL;
1247 	struct extent_io_tree *tree;
1248 	struct extent_changeset *data_reserved = NULL;
1249 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1250 
1251 	file_end = (isize - 1) >> PAGE_SHIFT;
1252 	if (!isize || start_index > file_end)
1253 		return 0;
1254 
1255 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1256 
1257 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1258 			start_index << PAGE_SHIFT,
1259 			page_cnt << PAGE_SHIFT);
1260 	if (ret)
1261 		return ret;
1262 	i_done = 0;
1263 	tree = &BTRFS_I(inode)->io_tree;
1264 
1265 	/* step one, lock all the pages */
1266 	for (i = 0; i < page_cnt; i++) {
1267 		struct page *page;
1268 again:
1269 		page = find_or_create_page(inode->i_mapping,
1270 					   start_index + i, mask);
1271 		if (!page)
1272 			break;
1273 
1274 		page_start = page_offset(page);
1275 		page_end = page_start + PAGE_SIZE - 1;
1276 		while (1) {
1277 			lock_extent_bits(tree, page_start, page_end,
1278 					 &cached_state);
1279 			ordered = btrfs_lookup_ordered_extent(inode,
1280 							      page_start);
1281 			unlock_extent_cached(tree, page_start, page_end,
1282 					     &cached_state);
1283 			if (!ordered)
1284 				break;
1285 
1286 			unlock_page(page);
1287 			btrfs_start_ordered_extent(inode, ordered, 1);
1288 			btrfs_put_ordered_extent(ordered);
1289 			lock_page(page);
1290 			/*
1291 			 * we unlocked the page above, so we need check if
1292 			 * it was released or not.
1293 			 */
1294 			if (page->mapping != inode->i_mapping) {
1295 				unlock_page(page);
1296 				put_page(page);
1297 				goto again;
1298 			}
1299 		}
1300 
1301 		if (!PageUptodate(page)) {
1302 			btrfs_readpage(NULL, page);
1303 			lock_page(page);
1304 			if (!PageUptodate(page)) {
1305 				unlock_page(page);
1306 				put_page(page);
1307 				ret = -EIO;
1308 				break;
1309 			}
1310 		}
1311 
1312 		if (page->mapping != inode->i_mapping) {
1313 			unlock_page(page);
1314 			put_page(page);
1315 			goto again;
1316 		}
1317 
1318 		pages[i] = page;
1319 		i_done++;
1320 	}
1321 	if (!i_done || ret)
1322 		goto out;
1323 
1324 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1325 		goto out;
1326 
1327 	/*
1328 	 * so now we have a nice long stream of locked
1329 	 * and up to date pages, lets wait on them
1330 	 */
1331 	for (i = 0; i < i_done; i++)
1332 		wait_on_page_writeback(pages[i]);
1333 
1334 	page_start = page_offset(pages[0]);
1335 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1336 
1337 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1338 			 page_start, page_end - 1, &cached_state);
1339 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1340 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1341 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1342 			  &cached_state);
1343 
1344 	if (i_done != page_cnt) {
1345 		spin_lock(&BTRFS_I(inode)->lock);
1346 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1347 		spin_unlock(&BTRFS_I(inode)->lock);
1348 		btrfs_delalloc_release_space(inode, data_reserved,
1349 				start_index << PAGE_SHIFT,
1350 				(page_cnt - i_done) << PAGE_SHIFT, true);
1351 	}
1352 
1353 
1354 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1355 			  &cached_state);
1356 
1357 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1358 			     page_start, page_end - 1, &cached_state);
1359 
1360 	for (i = 0; i < i_done; i++) {
1361 		clear_page_dirty_for_io(pages[i]);
1362 		ClearPageChecked(pages[i]);
1363 		set_page_extent_mapped(pages[i]);
1364 		set_page_dirty(pages[i]);
1365 		unlock_page(pages[i]);
1366 		put_page(pages[i]);
1367 	}
1368 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1369 	extent_changeset_free(data_reserved);
1370 	return i_done;
1371 out:
1372 	for (i = 0; i < i_done; i++) {
1373 		unlock_page(pages[i]);
1374 		put_page(pages[i]);
1375 	}
1376 	btrfs_delalloc_release_space(inode, data_reserved,
1377 			start_index << PAGE_SHIFT,
1378 			page_cnt << PAGE_SHIFT, true);
1379 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1380 	extent_changeset_free(data_reserved);
1381 	return ret;
1382 
1383 }
1384 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1385 int btrfs_defrag_file(struct inode *inode, struct file *file,
1386 		      struct btrfs_ioctl_defrag_range_args *range,
1387 		      u64 newer_than, unsigned long max_to_defrag)
1388 {
1389 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1390 	struct btrfs_root *root = BTRFS_I(inode)->root;
1391 	struct file_ra_state *ra = NULL;
1392 	unsigned long last_index;
1393 	u64 isize = i_size_read(inode);
1394 	u64 last_len = 0;
1395 	u64 skip = 0;
1396 	u64 defrag_end = 0;
1397 	u64 newer_off = range->start;
1398 	unsigned long i;
1399 	unsigned long ra_index = 0;
1400 	int ret;
1401 	int defrag_count = 0;
1402 	int compress_type = BTRFS_COMPRESS_ZLIB;
1403 	u32 extent_thresh = range->extent_thresh;
1404 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1405 	unsigned long cluster = max_cluster;
1406 	u64 new_align = ~((u64)SZ_128K - 1);
1407 	struct page **pages = NULL;
1408 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1409 
1410 	if (isize == 0)
1411 		return 0;
1412 
1413 	if (range->start >= isize)
1414 		return -EINVAL;
1415 
1416 	if (do_compress) {
1417 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1418 			return -EINVAL;
1419 		if (range->compress_type)
1420 			compress_type = range->compress_type;
1421 	}
1422 
1423 	if (extent_thresh == 0)
1424 		extent_thresh = SZ_256K;
1425 
1426 	/*
1427 	 * If we were not given a file, allocate a readahead context. As
1428 	 * readahead is just an optimization, defrag will work without it so
1429 	 * we don't error out.
1430 	 */
1431 	if (!file) {
1432 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1433 		if (ra)
1434 			file_ra_state_init(ra, inode->i_mapping);
1435 	} else {
1436 		ra = &file->f_ra;
1437 	}
1438 
1439 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1440 	if (!pages) {
1441 		ret = -ENOMEM;
1442 		goto out_ra;
1443 	}
1444 
1445 	/* find the last page to defrag */
1446 	if (range->start + range->len > range->start) {
1447 		last_index = min_t(u64, isize - 1,
1448 			 range->start + range->len - 1) >> PAGE_SHIFT;
1449 	} else {
1450 		last_index = (isize - 1) >> PAGE_SHIFT;
1451 	}
1452 
1453 	if (newer_than) {
1454 		ret = find_new_extents(root, inode, newer_than,
1455 				       &newer_off, SZ_64K);
1456 		if (!ret) {
1457 			range->start = newer_off;
1458 			/*
1459 			 * we always align our defrag to help keep
1460 			 * the extents in the file evenly spaced
1461 			 */
1462 			i = (newer_off & new_align) >> PAGE_SHIFT;
1463 		} else
1464 			goto out_ra;
1465 	} else {
1466 		i = range->start >> PAGE_SHIFT;
1467 	}
1468 	if (!max_to_defrag)
1469 		max_to_defrag = last_index - i + 1;
1470 
1471 	/*
1472 	 * make writeback starts from i, so the defrag range can be
1473 	 * written sequentially.
1474 	 */
1475 	if (i < inode->i_mapping->writeback_index)
1476 		inode->i_mapping->writeback_index = i;
1477 
1478 	while (i <= last_index && defrag_count < max_to_defrag &&
1479 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1480 		/*
1481 		 * make sure we stop running if someone unmounts
1482 		 * the FS
1483 		 */
1484 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1485 			break;
1486 
1487 		if (btrfs_defrag_cancelled(fs_info)) {
1488 			btrfs_debug(fs_info, "defrag_file cancelled");
1489 			ret = -EAGAIN;
1490 			break;
1491 		}
1492 
1493 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1494 					 extent_thresh, &last_len, &skip,
1495 					 &defrag_end, do_compress)){
1496 			unsigned long next;
1497 			/*
1498 			 * the should_defrag function tells us how much to skip
1499 			 * bump our counter by the suggested amount
1500 			 */
1501 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1502 			i = max(i + 1, next);
1503 			continue;
1504 		}
1505 
1506 		if (!newer_than) {
1507 			cluster = (PAGE_ALIGN(defrag_end) >>
1508 				   PAGE_SHIFT) - i;
1509 			cluster = min(cluster, max_cluster);
1510 		} else {
1511 			cluster = max_cluster;
1512 		}
1513 
1514 		if (i + cluster > ra_index) {
1515 			ra_index = max(i, ra_index);
1516 			if (ra)
1517 				page_cache_sync_readahead(inode->i_mapping, ra,
1518 						file, ra_index, cluster);
1519 			ra_index += cluster;
1520 		}
1521 
1522 		inode_lock(inode);
1523 		if (do_compress)
1524 			BTRFS_I(inode)->defrag_compress = compress_type;
1525 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1526 		if (ret < 0) {
1527 			inode_unlock(inode);
1528 			goto out_ra;
1529 		}
1530 
1531 		defrag_count += ret;
1532 		balance_dirty_pages_ratelimited(inode->i_mapping);
1533 		inode_unlock(inode);
1534 
1535 		if (newer_than) {
1536 			if (newer_off == (u64)-1)
1537 				break;
1538 
1539 			if (ret > 0)
1540 				i += ret;
1541 
1542 			newer_off = max(newer_off + 1,
1543 					(u64)i << PAGE_SHIFT);
1544 
1545 			ret = find_new_extents(root, inode, newer_than,
1546 					       &newer_off, SZ_64K);
1547 			if (!ret) {
1548 				range->start = newer_off;
1549 				i = (newer_off & new_align) >> PAGE_SHIFT;
1550 			} else {
1551 				break;
1552 			}
1553 		} else {
1554 			if (ret > 0) {
1555 				i += ret;
1556 				last_len += ret << PAGE_SHIFT;
1557 			} else {
1558 				i++;
1559 				last_len = 0;
1560 			}
1561 		}
1562 	}
1563 
1564 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1565 		filemap_flush(inode->i_mapping);
1566 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1567 			     &BTRFS_I(inode)->runtime_flags))
1568 			filemap_flush(inode->i_mapping);
1569 	}
1570 
1571 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1572 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1573 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1574 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1575 	}
1576 
1577 	ret = defrag_count;
1578 
1579 out_ra:
1580 	if (do_compress) {
1581 		inode_lock(inode);
1582 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1583 		inode_unlock(inode);
1584 	}
1585 	if (!file)
1586 		kfree(ra);
1587 	kfree(pages);
1588 	return ret;
1589 }
1590 
btrfs_ioctl_resize(struct file * file,void __user * arg)1591 static noinline int btrfs_ioctl_resize(struct file *file,
1592 					void __user *arg)
1593 {
1594 	struct inode *inode = file_inode(file);
1595 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1596 	u64 new_size;
1597 	u64 old_size;
1598 	u64 devid = 1;
1599 	struct btrfs_root *root = BTRFS_I(inode)->root;
1600 	struct btrfs_ioctl_vol_args *vol_args;
1601 	struct btrfs_trans_handle *trans;
1602 	struct btrfs_device *device = NULL;
1603 	char *sizestr;
1604 	char *retptr;
1605 	char *devstr = NULL;
1606 	int ret = 0;
1607 	int mod = 0;
1608 
1609 	if (!capable(CAP_SYS_ADMIN))
1610 		return -EPERM;
1611 
1612 	ret = mnt_want_write_file(file);
1613 	if (ret)
1614 		return ret;
1615 
1616 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1617 		mnt_drop_write_file(file);
1618 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1619 	}
1620 
1621 	vol_args = memdup_user(arg, sizeof(*vol_args));
1622 	if (IS_ERR(vol_args)) {
1623 		ret = PTR_ERR(vol_args);
1624 		goto out;
1625 	}
1626 
1627 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1628 
1629 	sizestr = vol_args->name;
1630 	devstr = strchr(sizestr, ':');
1631 	if (devstr) {
1632 		sizestr = devstr + 1;
1633 		*devstr = '\0';
1634 		devstr = vol_args->name;
1635 		ret = kstrtoull(devstr, 10, &devid);
1636 		if (ret)
1637 			goto out_free;
1638 		if (!devid) {
1639 			ret = -EINVAL;
1640 			goto out_free;
1641 		}
1642 		btrfs_info(fs_info, "resizing devid %llu", devid);
1643 	}
1644 
1645 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1646 	if (!device) {
1647 		btrfs_info(fs_info, "resizer unable to find device %llu",
1648 			   devid);
1649 		ret = -ENODEV;
1650 		goto out_free;
1651 	}
1652 
1653 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1654 		btrfs_info(fs_info,
1655 			   "resizer unable to apply on readonly device %llu",
1656 		       devid);
1657 		ret = -EPERM;
1658 		goto out_free;
1659 	}
1660 
1661 	if (!strcmp(sizestr, "max"))
1662 		new_size = device->bdev->bd_inode->i_size;
1663 	else {
1664 		if (sizestr[0] == '-') {
1665 			mod = -1;
1666 			sizestr++;
1667 		} else if (sizestr[0] == '+') {
1668 			mod = 1;
1669 			sizestr++;
1670 		}
1671 		new_size = memparse(sizestr, &retptr);
1672 		if (*retptr != '\0' || new_size == 0) {
1673 			ret = -EINVAL;
1674 			goto out_free;
1675 		}
1676 	}
1677 
1678 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1679 		ret = -EPERM;
1680 		goto out_free;
1681 	}
1682 
1683 	old_size = btrfs_device_get_total_bytes(device);
1684 
1685 	if (mod < 0) {
1686 		if (new_size > old_size) {
1687 			ret = -EINVAL;
1688 			goto out_free;
1689 		}
1690 		new_size = old_size - new_size;
1691 	} else if (mod > 0) {
1692 		if (new_size > ULLONG_MAX - old_size) {
1693 			ret = -ERANGE;
1694 			goto out_free;
1695 		}
1696 		new_size = old_size + new_size;
1697 	}
1698 
1699 	if (new_size < SZ_256M) {
1700 		ret = -EINVAL;
1701 		goto out_free;
1702 	}
1703 	if (new_size > device->bdev->bd_inode->i_size) {
1704 		ret = -EFBIG;
1705 		goto out_free;
1706 	}
1707 
1708 	new_size = round_down(new_size, fs_info->sectorsize);
1709 
1710 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1711 			  rcu_str_deref(device->name), new_size);
1712 
1713 	if (new_size > old_size) {
1714 		trans = btrfs_start_transaction(root, 0);
1715 		if (IS_ERR(trans)) {
1716 			ret = PTR_ERR(trans);
1717 			goto out_free;
1718 		}
1719 		ret = btrfs_grow_device(trans, device, new_size);
1720 		btrfs_commit_transaction(trans);
1721 	} else if (new_size < old_size) {
1722 		ret = btrfs_shrink_device(device, new_size);
1723 	} /* equal, nothing need to do */
1724 
1725 out_free:
1726 	kfree(vol_args);
1727 out:
1728 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1729 	mnt_drop_write_file(file);
1730 	return ret;
1731 }
1732 
btrfs_ioctl_snap_create_transid(struct file * file,const char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1733 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1734 				const char *name, unsigned long fd, int subvol,
1735 				u64 *transid, bool readonly,
1736 				struct btrfs_qgroup_inherit *inherit)
1737 {
1738 	int namelen;
1739 	int ret = 0;
1740 
1741 	if (!S_ISDIR(file_inode(file)->i_mode))
1742 		return -ENOTDIR;
1743 
1744 	ret = mnt_want_write_file(file);
1745 	if (ret)
1746 		goto out;
1747 
1748 	namelen = strlen(name);
1749 	if (strchr(name, '/')) {
1750 		ret = -EINVAL;
1751 		goto out_drop_write;
1752 	}
1753 
1754 	if (name[0] == '.' &&
1755 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1756 		ret = -EEXIST;
1757 		goto out_drop_write;
1758 	}
1759 
1760 	if (subvol) {
1761 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1762 				     NULL, transid, readonly, inherit);
1763 	} else {
1764 		struct fd src = fdget(fd);
1765 		struct inode *src_inode;
1766 		if (!src.file) {
1767 			ret = -EINVAL;
1768 			goto out_drop_write;
1769 		}
1770 
1771 		src_inode = file_inode(src.file);
1772 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1773 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1774 				   "Snapshot src from another FS");
1775 			ret = -EXDEV;
1776 		} else if (!inode_owner_or_capable(src_inode)) {
1777 			/*
1778 			 * Subvolume creation is not restricted, but snapshots
1779 			 * are limited to own subvolumes only
1780 			 */
1781 			ret = -EPERM;
1782 		} else {
1783 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1784 					     BTRFS_I(src_inode)->root,
1785 					     transid, readonly, inherit);
1786 		}
1787 		fdput(src);
1788 	}
1789 out_drop_write:
1790 	mnt_drop_write_file(file);
1791 out:
1792 	return ret;
1793 }
1794 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1795 static noinline int btrfs_ioctl_snap_create(struct file *file,
1796 					    void __user *arg, int subvol)
1797 {
1798 	struct btrfs_ioctl_vol_args *vol_args;
1799 	int ret;
1800 
1801 	if (!S_ISDIR(file_inode(file)->i_mode))
1802 		return -ENOTDIR;
1803 
1804 	vol_args = memdup_user(arg, sizeof(*vol_args));
1805 	if (IS_ERR(vol_args))
1806 		return PTR_ERR(vol_args);
1807 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1808 
1809 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1810 					      vol_args->fd, subvol,
1811 					      NULL, false, NULL);
1812 
1813 	kfree(vol_args);
1814 	return ret;
1815 }
1816 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1817 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1818 					       void __user *arg, int subvol)
1819 {
1820 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1821 	int ret;
1822 	u64 transid = 0;
1823 	u64 *ptr = NULL;
1824 	bool readonly = false;
1825 	struct btrfs_qgroup_inherit *inherit = NULL;
1826 
1827 	if (!S_ISDIR(file_inode(file)->i_mode))
1828 		return -ENOTDIR;
1829 
1830 	vol_args = memdup_user(arg, sizeof(*vol_args));
1831 	if (IS_ERR(vol_args))
1832 		return PTR_ERR(vol_args);
1833 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1834 
1835 	if (vol_args->flags &
1836 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1837 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1838 		ret = -EOPNOTSUPP;
1839 		goto free_args;
1840 	}
1841 
1842 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1843 		ptr = &transid;
1844 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1845 		readonly = true;
1846 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1847 		if (vol_args->size > PAGE_SIZE) {
1848 			ret = -EINVAL;
1849 			goto free_args;
1850 		}
1851 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1852 		if (IS_ERR(inherit)) {
1853 			ret = PTR_ERR(inherit);
1854 			goto free_args;
1855 		}
1856 	}
1857 
1858 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1859 					      vol_args->fd, subvol, ptr,
1860 					      readonly, inherit);
1861 	if (ret)
1862 		goto free_inherit;
1863 
1864 	if (ptr && copy_to_user(arg +
1865 				offsetof(struct btrfs_ioctl_vol_args_v2,
1866 					transid),
1867 				ptr, sizeof(*ptr)))
1868 		ret = -EFAULT;
1869 
1870 free_inherit:
1871 	kfree(inherit);
1872 free_args:
1873 	kfree(vol_args);
1874 	return ret;
1875 }
1876 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1877 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1878 						void __user *arg)
1879 {
1880 	struct inode *inode = file_inode(file);
1881 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1882 	struct btrfs_root *root = BTRFS_I(inode)->root;
1883 	int ret = 0;
1884 	u64 flags = 0;
1885 
1886 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1887 		return -EINVAL;
1888 
1889 	down_read(&fs_info->subvol_sem);
1890 	if (btrfs_root_readonly(root))
1891 		flags |= BTRFS_SUBVOL_RDONLY;
1892 	up_read(&fs_info->subvol_sem);
1893 
1894 	if (copy_to_user(arg, &flags, sizeof(flags)))
1895 		ret = -EFAULT;
1896 
1897 	return ret;
1898 }
1899 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1900 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1901 					      void __user *arg)
1902 {
1903 	struct inode *inode = file_inode(file);
1904 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1905 	struct btrfs_root *root = BTRFS_I(inode)->root;
1906 	struct btrfs_trans_handle *trans;
1907 	u64 root_flags;
1908 	u64 flags;
1909 	int ret = 0;
1910 
1911 	if (!inode_owner_or_capable(inode))
1912 		return -EPERM;
1913 
1914 	ret = mnt_want_write_file(file);
1915 	if (ret)
1916 		goto out;
1917 
1918 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1919 		ret = -EINVAL;
1920 		goto out_drop_write;
1921 	}
1922 
1923 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1924 		ret = -EFAULT;
1925 		goto out_drop_write;
1926 	}
1927 
1928 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1929 		ret = -EINVAL;
1930 		goto out_drop_write;
1931 	}
1932 
1933 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1934 		ret = -EOPNOTSUPP;
1935 		goto out_drop_write;
1936 	}
1937 
1938 	down_write(&fs_info->subvol_sem);
1939 
1940 	/* nothing to do */
1941 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1942 		goto out_drop_sem;
1943 
1944 	root_flags = btrfs_root_flags(&root->root_item);
1945 	if (flags & BTRFS_SUBVOL_RDONLY) {
1946 		btrfs_set_root_flags(&root->root_item,
1947 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1948 	} else {
1949 		/*
1950 		 * Block RO -> RW transition if this subvolume is involved in
1951 		 * send
1952 		 */
1953 		spin_lock(&root->root_item_lock);
1954 		if (root->send_in_progress == 0) {
1955 			btrfs_set_root_flags(&root->root_item,
1956 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1957 			spin_unlock(&root->root_item_lock);
1958 		} else {
1959 			spin_unlock(&root->root_item_lock);
1960 			btrfs_warn(fs_info,
1961 				   "Attempt to set subvolume %llu read-write during send",
1962 				   root->root_key.objectid);
1963 			ret = -EPERM;
1964 			goto out_drop_sem;
1965 		}
1966 	}
1967 
1968 	trans = btrfs_start_transaction(root, 1);
1969 	if (IS_ERR(trans)) {
1970 		ret = PTR_ERR(trans);
1971 		goto out_reset;
1972 	}
1973 
1974 	ret = btrfs_update_root(trans, fs_info->tree_root,
1975 				&root->root_key, &root->root_item);
1976 	if (ret < 0) {
1977 		btrfs_end_transaction(trans);
1978 		goto out_reset;
1979 	}
1980 
1981 	ret = btrfs_commit_transaction(trans);
1982 
1983 out_reset:
1984 	if (ret)
1985 		btrfs_set_root_flags(&root->root_item, root_flags);
1986 out_drop_sem:
1987 	up_write(&fs_info->subvol_sem);
1988 out_drop_write:
1989 	mnt_drop_write_file(file);
1990 out:
1991 	return ret;
1992 }
1993 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)1994 static noinline int key_in_sk(struct btrfs_key *key,
1995 			      struct btrfs_ioctl_search_key *sk)
1996 {
1997 	struct btrfs_key test;
1998 	int ret;
1999 
2000 	test.objectid = sk->min_objectid;
2001 	test.type = sk->min_type;
2002 	test.offset = sk->min_offset;
2003 
2004 	ret = btrfs_comp_cpu_keys(key, &test);
2005 	if (ret < 0)
2006 		return 0;
2007 
2008 	test.objectid = sk->max_objectid;
2009 	test.type = sk->max_type;
2010 	test.offset = sk->max_offset;
2011 
2012 	ret = btrfs_comp_cpu_keys(key, &test);
2013 	if (ret > 0)
2014 		return 0;
2015 	return 1;
2016 }
2017 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2018 static noinline int copy_to_sk(struct btrfs_path *path,
2019 			       struct btrfs_key *key,
2020 			       struct btrfs_ioctl_search_key *sk,
2021 			       size_t *buf_size,
2022 			       char __user *ubuf,
2023 			       unsigned long *sk_offset,
2024 			       int *num_found)
2025 {
2026 	u64 found_transid;
2027 	struct extent_buffer *leaf;
2028 	struct btrfs_ioctl_search_header sh;
2029 	struct btrfs_key test;
2030 	unsigned long item_off;
2031 	unsigned long item_len;
2032 	int nritems;
2033 	int i;
2034 	int slot;
2035 	int ret = 0;
2036 
2037 	leaf = path->nodes[0];
2038 	slot = path->slots[0];
2039 	nritems = btrfs_header_nritems(leaf);
2040 
2041 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2042 		i = nritems;
2043 		goto advance_key;
2044 	}
2045 	found_transid = btrfs_header_generation(leaf);
2046 
2047 	for (i = slot; i < nritems; i++) {
2048 		item_off = btrfs_item_ptr_offset(leaf, i);
2049 		item_len = btrfs_item_size_nr(leaf, i);
2050 
2051 		btrfs_item_key_to_cpu(leaf, key, i);
2052 		if (!key_in_sk(key, sk))
2053 			continue;
2054 
2055 		if (sizeof(sh) + item_len > *buf_size) {
2056 			if (*num_found) {
2057 				ret = 1;
2058 				goto out;
2059 			}
2060 
2061 			/*
2062 			 * return one empty item back for v1, which does not
2063 			 * handle -EOVERFLOW
2064 			 */
2065 
2066 			*buf_size = sizeof(sh) + item_len;
2067 			item_len = 0;
2068 			ret = -EOVERFLOW;
2069 		}
2070 
2071 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2072 			ret = 1;
2073 			goto out;
2074 		}
2075 
2076 		sh.objectid = key->objectid;
2077 		sh.offset = key->offset;
2078 		sh.type = key->type;
2079 		sh.len = item_len;
2080 		sh.transid = found_transid;
2081 
2082 		/*
2083 		 * Copy search result header. If we fault then loop again so we
2084 		 * can fault in the pages and -EFAULT there if there's a
2085 		 * problem. Otherwise we'll fault and then copy the buffer in
2086 		 * properly this next time through
2087 		 */
2088 		if (probe_user_write(ubuf + *sk_offset, &sh, sizeof(sh))) {
2089 			ret = 0;
2090 			goto out;
2091 		}
2092 
2093 		*sk_offset += sizeof(sh);
2094 
2095 		if (item_len) {
2096 			char __user *up = ubuf + *sk_offset;
2097 			/*
2098 			 * Copy the item, same behavior as above, but reset the
2099 			 * * sk_offset so we copy the full thing again.
2100 			 */
2101 			if (read_extent_buffer_to_user_nofault(leaf, up,
2102 						item_off, item_len)) {
2103 				ret = 0;
2104 				*sk_offset -= sizeof(sh);
2105 				goto out;
2106 			}
2107 
2108 			*sk_offset += item_len;
2109 		}
2110 		(*num_found)++;
2111 
2112 		if (ret) /* -EOVERFLOW from above */
2113 			goto out;
2114 
2115 		if (*num_found >= sk->nr_items) {
2116 			ret = 1;
2117 			goto out;
2118 		}
2119 	}
2120 advance_key:
2121 	ret = 0;
2122 	test.objectid = sk->max_objectid;
2123 	test.type = sk->max_type;
2124 	test.offset = sk->max_offset;
2125 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2126 		ret = 1;
2127 	else if (key->offset < (u64)-1)
2128 		key->offset++;
2129 	else if (key->type < (u8)-1) {
2130 		key->offset = 0;
2131 		key->type++;
2132 	} else if (key->objectid < (u64)-1) {
2133 		key->offset = 0;
2134 		key->type = 0;
2135 		key->objectid++;
2136 	} else
2137 		ret = 1;
2138 out:
2139 	/*
2140 	 *  0: all items from this leaf copied, continue with next
2141 	 *  1: * more items can be copied, but unused buffer is too small
2142 	 *     * all items were found
2143 	 *     Either way, it will stops the loop which iterates to the next
2144 	 *     leaf
2145 	 *  -EOVERFLOW: item was to large for buffer
2146 	 *  -EFAULT: could not copy extent buffer back to userspace
2147 	 */
2148 	return ret;
2149 }
2150 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2151 static noinline int search_ioctl(struct inode *inode,
2152 				 struct btrfs_ioctl_search_key *sk,
2153 				 size_t *buf_size,
2154 				 char __user *ubuf)
2155 {
2156 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2157 	struct btrfs_root *root;
2158 	struct btrfs_key key;
2159 	struct btrfs_path *path;
2160 	int ret;
2161 	int num_found = 0;
2162 	unsigned long sk_offset = 0;
2163 
2164 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2165 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2166 		return -EOVERFLOW;
2167 	}
2168 
2169 	path = btrfs_alloc_path();
2170 	if (!path)
2171 		return -ENOMEM;
2172 
2173 	if (sk->tree_id == 0) {
2174 		/* search the root of the inode that was passed */
2175 		root = BTRFS_I(inode)->root;
2176 	} else {
2177 		key.objectid = sk->tree_id;
2178 		key.type = BTRFS_ROOT_ITEM_KEY;
2179 		key.offset = (u64)-1;
2180 		root = btrfs_read_fs_root_no_name(info, &key);
2181 		if (IS_ERR(root)) {
2182 			btrfs_free_path(path);
2183 			return PTR_ERR(root);
2184 		}
2185 	}
2186 
2187 	key.objectid = sk->min_objectid;
2188 	key.type = sk->min_type;
2189 	key.offset = sk->min_offset;
2190 
2191 	while (1) {
2192 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2193 					       *buf_size - sk_offset);
2194 		if (ret)
2195 			break;
2196 
2197 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2198 		if (ret != 0) {
2199 			if (ret > 0)
2200 				ret = 0;
2201 			goto err;
2202 		}
2203 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2204 				 &sk_offset, &num_found);
2205 		btrfs_release_path(path);
2206 		if (ret)
2207 			break;
2208 
2209 	}
2210 	if (ret > 0)
2211 		ret = 0;
2212 err:
2213 	sk->nr_items = num_found;
2214 	btrfs_free_path(path);
2215 	return ret;
2216 }
2217 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2218 static noinline int btrfs_ioctl_tree_search(struct file *file,
2219 					   void __user *argp)
2220 {
2221 	struct btrfs_ioctl_search_args __user *uargs;
2222 	struct btrfs_ioctl_search_key sk;
2223 	struct inode *inode;
2224 	int ret;
2225 	size_t buf_size;
2226 
2227 	if (!capable(CAP_SYS_ADMIN))
2228 		return -EPERM;
2229 
2230 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2231 
2232 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2233 		return -EFAULT;
2234 
2235 	buf_size = sizeof(uargs->buf);
2236 
2237 	inode = file_inode(file);
2238 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2239 
2240 	/*
2241 	 * In the origin implementation an overflow is handled by returning a
2242 	 * search header with a len of zero, so reset ret.
2243 	 */
2244 	if (ret == -EOVERFLOW)
2245 		ret = 0;
2246 
2247 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2248 		ret = -EFAULT;
2249 	return ret;
2250 }
2251 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2252 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2253 					       void __user *argp)
2254 {
2255 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2256 	struct btrfs_ioctl_search_args_v2 args;
2257 	struct inode *inode;
2258 	int ret;
2259 	size_t buf_size;
2260 	const size_t buf_limit = SZ_16M;
2261 
2262 	if (!capable(CAP_SYS_ADMIN))
2263 		return -EPERM;
2264 
2265 	/* copy search header and buffer size */
2266 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2267 	if (copy_from_user(&args, uarg, sizeof(args)))
2268 		return -EFAULT;
2269 
2270 	buf_size = args.buf_size;
2271 
2272 	/* limit result size to 16MB */
2273 	if (buf_size > buf_limit)
2274 		buf_size = buf_limit;
2275 
2276 	inode = file_inode(file);
2277 	ret = search_ioctl(inode, &args.key, &buf_size,
2278 			   (char __user *)(&uarg->buf[0]));
2279 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2280 		ret = -EFAULT;
2281 	else if (ret == -EOVERFLOW &&
2282 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2283 		ret = -EFAULT;
2284 
2285 	return ret;
2286 }
2287 
2288 /*
2289  * Search INODE_REFs to identify path name of 'dirid' directory
2290  * in a 'tree_id' tree. and sets path name to 'name'.
2291  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2292 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2293 				u64 tree_id, u64 dirid, char *name)
2294 {
2295 	struct btrfs_root *root;
2296 	struct btrfs_key key;
2297 	char *ptr;
2298 	int ret = -1;
2299 	int slot;
2300 	int len;
2301 	int total_len = 0;
2302 	struct btrfs_inode_ref *iref;
2303 	struct extent_buffer *l;
2304 	struct btrfs_path *path;
2305 
2306 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2307 		name[0]='\0';
2308 		return 0;
2309 	}
2310 
2311 	path = btrfs_alloc_path();
2312 	if (!path)
2313 		return -ENOMEM;
2314 
2315 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2316 
2317 	key.objectid = tree_id;
2318 	key.type = BTRFS_ROOT_ITEM_KEY;
2319 	key.offset = (u64)-1;
2320 	root = btrfs_read_fs_root_no_name(info, &key);
2321 	if (IS_ERR(root)) {
2322 		ret = PTR_ERR(root);
2323 		goto out;
2324 	}
2325 
2326 	key.objectid = dirid;
2327 	key.type = BTRFS_INODE_REF_KEY;
2328 	key.offset = (u64)-1;
2329 
2330 	while (1) {
2331 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2332 		if (ret < 0)
2333 			goto out;
2334 		else if (ret > 0) {
2335 			ret = btrfs_previous_item(root, path, dirid,
2336 						  BTRFS_INODE_REF_KEY);
2337 			if (ret < 0)
2338 				goto out;
2339 			else if (ret > 0) {
2340 				ret = -ENOENT;
2341 				goto out;
2342 			}
2343 		}
2344 
2345 		l = path->nodes[0];
2346 		slot = path->slots[0];
2347 		btrfs_item_key_to_cpu(l, &key, slot);
2348 
2349 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2350 		len = btrfs_inode_ref_name_len(l, iref);
2351 		ptr -= len + 1;
2352 		total_len += len + 1;
2353 		if (ptr < name) {
2354 			ret = -ENAMETOOLONG;
2355 			goto out;
2356 		}
2357 
2358 		*(ptr + len) = '/';
2359 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2360 
2361 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2362 			break;
2363 
2364 		btrfs_release_path(path);
2365 		key.objectid = key.offset;
2366 		key.offset = (u64)-1;
2367 		dirid = key.objectid;
2368 	}
2369 	memmove(name, ptr, total_len);
2370 	name[total_len] = '\0';
2371 	ret = 0;
2372 out:
2373 	btrfs_free_path(path);
2374 	return ret;
2375 }
2376 
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2377 static int btrfs_search_path_in_tree_user(struct inode *inode,
2378 				struct btrfs_ioctl_ino_lookup_user_args *args)
2379 {
2380 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2381 	struct super_block *sb = inode->i_sb;
2382 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2383 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2384 	u64 dirid = args->dirid;
2385 	unsigned long item_off;
2386 	unsigned long item_len;
2387 	struct btrfs_inode_ref *iref;
2388 	struct btrfs_root_ref *rref;
2389 	struct btrfs_root *root;
2390 	struct btrfs_path *path;
2391 	struct btrfs_key key, key2;
2392 	struct extent_buffer *leaf;
2393 	struct inode *temp_inode;
2394 	char *ptr;
2395 	int slot;
2396 	int len;
2397 	int total_len = 0;
2398 	int ret;
2399 
2400 	path = btrfs_alloc_path();
2401 	if (!path)
2402 		return -ENOMEM;
2403 
2404 	/*
2405 	 * If the bottom subvolume does not exist directly under upper_limit,
2406 	 * construct the path in from the bottom up.
2407 	 */
2408 	if (dirid != upper_limit.objectid) {
2409 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2410 
2411 		key.objectid = treeid;
2412 		key.type = BTRFS_ROOT_ITEM_KEY;
2413 		key.offset = (u64)-1;
2414 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2415 		if (IS_ERR(root)) {
2416 			ret = PTR_ERR(root);
2417 			goto out;
2418 		}
2419 
2420 		key.objectid = dirid;
2421 		key.type = BTRFS_INODE_REF_KEY;
2422 		key.offset = (u64)-1;
2423 		while (1) {
2424 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2425 			if (ret < 0) {
2426 				goto out;
2427 			} else if (ret > 0) {
2428 				ret = btrfs_previous_item(root, path, dirid,
2429 							  BTRFS_INODE_REF_KEY);
2430 				if (ret < 0) {
2431 					goto out;
2432 				} else if (ret > 0) {
2433 					ret = -ENOENT;
2434 					goto out;
2435 				}
2436 			}
2437 
2438 			leaf = path->nodes[0];
2439 			slot = path->slots[0];
2440 			btrfs_item_key_to_cpu(leaf, &key, slot);
2441 
2442 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2443 			len = btrfs_inode_ref_name_len(leaf, iref);
2444 			ptr -= len + 1;
2445 			total_len += len + 1;
2446 			if (ptr < args->path) {
2447 				ret = -ENAMETOOLONG;
2448 				goto out;
2449 			}
2450 
2451 			*(ptr + len) = '/';
2452 			read_extent_buffer(leaf, ptr,
2453 					(unsigned long)(iref + 1), len);
2454 
2455 			/* Check the read+exec permission of this directory */
2456 			ret = btrfs_previous_item(root, path, dirid,
2457 						  BTRFS_INODE_ITEM_KEY);
2458 			if (ret < 0) {
2459 				goto out;
2460 			} else if (ret > 0) {
2461 				ret = -ENOENT;
2462 				goto out;
2463 			}
2464 
2465 			leaf = path->nodes[0];
2466 			slot = path->slots[0];
2467 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2468 			if (key2.objectid != dirid) {
2469 				ret = -ENOENT;
2470 				goto out;
2471 			}
2472 
2473 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2474 			if (IS_ERR(temp_inode)) {
2475 				ret = PTR_ERR(temp_inode);
2476 				goto out;
2477 			}
2478 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2479 			iput(temp_inode);
2480 			if (ret) {
2481 				ret = -EACCES;
2482 				goto out;
2483 			}
2484 
2485 			if (key.offset == upper_limit.objectid)
2486 				break;
2487 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2488 				ret = -EACCES;
2489 				goto out;
2490 			}
2491 
2492 			btrfs_release_path(path);
2493 			key.objectid = key.offset;
2494 			key.offset = (u64)-1;
2495 			dirid = key.objectid;
2496 		}
2497 
2498 		memmove(args->path, ptr, total_len);
2499 		args->path[total_len] = '\0';
2500 		btrfs_release_path(path);
2501 	}
2502 
2503 	/* Get the bottom subvolume's name from ROOT_REF */
2504 	root = fs_info->tree_root;
2505 	key.objectid = treeid;
2506 	key.type = BTRFS_ROOT_REF_KEY;
2507 	key.offset = args->treeid;
2508 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2509 	if (ret < 0) {
2510 		goto out;
2511 	} else if (ret > 0) {
2512 		ret = -ENOENT;
2513 		goto out;
2514 	}
2515 
2516 	leaf = path->nodes[0];
2517 	slot = path->slots[0];
2518 	btrfs_item_key_to_cpu(leaf, &key, slot);
2519 
2520 	item_off = btrfs_item_ptr_offset(leaf, slot);
2521 	item_len = btrfs_item_size_nr(leaf, slot);
2522 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2523 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2524 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2525 		ret = -EINVAL;
2526 		goto out;
2527 	}
2528 
2529 	/* Copy subvolume's name */
2530 	item_off += sizeof(struct btrfs_root_ref);
2531 	item_len -= sizeof(struct btrfs_root_ref);
2532 	read_extent_buffer(leaf, args->name, item_off, item_len);
2533 	args->name[item_len] = 0;
2534 
2535 out:
2536 	btrfs_free_path(path);
2537 	return ret;
2538 }
2539 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2540 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2541 					   void __user *argp)
2542 {
2543 	struct btrfs_ioctl_ino_lookup_args *args;
2544 	struct inode *inode;
2545 	int ret = 0;
2546 
2547 	args = memdup_user(argp, sizeof(*args));
2548 	if (IS_ERR(args))
2549 		return PTR_ERR(args);
2550 
2551 	inode = file_inode(file);
2552 
2553 	/*
2554 	 * Unprivileged query to obtain the containing subvolume root id. The
2555 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2556 	 */
2557 	if (args->treeid == 0)
2558 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2559 
2560 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2561 		args->name[0] = 0;
2562 		goto out;
2563 	}
2564 
2565 	if (!capable(CAP_SYS_ADMIN)) {
2566 		ret = -EPERM;
2567 		goto out;
2568 	}
2569 
2570 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2571 					args->treeid, args->objectid,
2572 					args->name);
2573 
2574 out:
2575 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2576 		ret = -EFAULT;
2577 
2578 	kfree(args);
2579 	return ret;
2580 }
2581 
2582 /*
2583  * Version of ino_lookup ioctl (unprivileged)
2584  *
2585  * The main differences from ino_lookup ioctl are:
2586  *
2587  *   1. Read + Exec permission will be checked using inode_permission() during
2588  *      path construction. -EACCES will be returned in case of failure.
2589  *   2. Path construction will be stopped at the inode number which corresponds
2590  *      to the fd with which this ioctl is called. If constructed path does not
2591  *      exist under fd's inode, -EACCES will be returned.
2592  *   3. The name of bottom subvolume is also searched and filled.
2593  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2594 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2595 {
2596 	struct btrfs_ioctl_ino_lookup_user_args *args;
2597 	struct inode *inode;
2598 	int ret;
2599 
2600 	args = memdup_user(argp, sizeof(*args));
2601 	if (IS_ERR(args))
2602 		return PTR_ERR(args);
2603 
2604 	inode = file_inode(file);
2605 
2606 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2607 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2608 		/*
2609 		 * The subvolume does not exist under fd with which this is
2610 		 * called
2611 		 */
2612 		kfree(args);
2613 		return -EACCES;
2614 	}
2615 
2616 	ret = btrfs_search_path_in_tree_user(inode, args);
2617 
2618 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2619 		ret = -EFAULT;
2620 
2621 	kfree(args);
2622 	return ret;
2623 }
2624 
2625 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2626 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2627 {
2628 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2629 	struct btrfs_fs_info *fs_info;
2630 	struct btrfs_root *root;
2631 	struct btrfs_path *path;
2632 	struct btrfs_key key;
2633 	struct btrfs_root_item *root_item;
2634 	struct btrfs_root_ref *rref;
2635 	struct extent_buffer *leaf;
2636 	unsigned long item_off;
2637 	unsigned long item_len;
2638 	struct inode *inode;
2639 	int slot;
2640 	int ret = 0;
2641 
2642 	path = btrfs_alloc_path();
2643 	if (!path)
2644 		return -ENOMEM;
2645 
2646 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2647 	if (!subvol_info) {
2648 		btrfs_free_path(path);
2649 		return -ENOMEM;
2650 	}
2651 
2652 	inode = file_inode(file);
2653 	fs_info = BTRFS_I(inode)->root->fs_info;
2654 
2655 	/* Get root_item of inode's subvolume */
2656 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2657 	key.type = BTRFS_ROOT_ITEM_KEY;
2658 	key.offset = (u64)-1;
2659 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2660 	if (IS_ERR(root)) {
2661 		ret = PTR_ERR(root);
2662 		goto out;
2663 	}
2664 	root_item = &root->root_item;
2665 
2666 	subvol_info->treeid = key.objectid;
2667 
2668 	subvol_info->generation = btrfs_root_generation(root_item);
2669 	subvol_info->flags = btrfs_root_flags(root_item);
2670 
2671 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2672 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2673 						    BTRFS_UUID_SIZE);
2674 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2675 						    BTRFS_UUID_SIZE);
2676 
2677 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2678 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2679 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2680 
2681 	subvol_info->otransid = btrfs_root_otransid(root_item);
2682 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2683 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2684 
2685 	subvol_info->stransid = btrfs_root_stransid(root_item);
2686 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2687 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2688 
2689 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2690 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2691 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2692 
2693 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2694 		/* Search root tree for ROOT_BACKREF of this subvolume */
2695 		root = fs_info->tree_root;
2696 
2697 		key.type = BTRFS_ROOT_BACKREF_KEY;
2698 		key.offset = 0;
2699 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2700 		if (ret < 0) {
2701 			goto out;
2702 		} else if (path->slots[0] >=
2703 			   btrfs_header_nritems(path->nodes[0])) {
2704 			ret = btrfs_next_leaf(root, path);
2705 			if (ret < 0) {
2706 				goto out;
2707 			} else if (ret > 0) {
2708 				ret = -EUCLEAN;
2709 				goto out;
2710 			}
2711 		}
2712 
2713 		leaf = path->nodes[0];
2714 		slot = path->slots[0];
2715 		btrfs_item_key_to_cpu(leaf, &key, slot);
2716 		if (key.objectid == subvol_info->treeid &&
2717 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2718 			subvol_info->parent_id = key.offset;
2719 
2720 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2721 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2722 
2723 			item_off = btrfs_item_ptr_offset(leaf, slot)
2724 					+ sizeof(struct btrfs_root_ref);
2725 			item_len = btrfs_item_size_nr(leaf, slot)
2726 					- sizeof(struct btrfs_root_ref);
2727 			read_extent_buffer(leaf, subvol_info->name,
2728 					   item_off, item_len);
2729 		} else {
2730 			ret = -ENOENT;
2731 			goto out;
2732 		}
2733 	}
2734 
2735 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2736 		ret = -EFAULT;
2737 
2738 out:
2739 	btrfs_free_path(path);
2740 	kzfree(subvol_info);
2741 	return ret;
2742 }
2743 
2744 /*
2745  * Return ROOT_REF information of the subvolume containing this inode
2746  * except the subvolume name.
2747  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2748 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2749 {
2750 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2751 	struct btrfs_root_ref *rref;
2752 	struct btrfs_root *root;
2753 	struct btrfs_path *path;
2754 	struct btrfs_key key;
2755 	struct extent_buffer *leaf;
2756 	struct inode *inode;
2757 	u64 objectid;
2758 	int slot;
2759 	int ret;
2760 	u8 found;
2761 
2762 	path = btrfs_alloc_path();
2763 	if (!path)
2764 		return -ENOMEM;
2765 
2766 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2767 	if (IS_ERR(rootrefs)) {
2768 		btrfs_free_path(path);
2769 		return PTR_ERR(rootrefs);
2770 	}
2771 
2772 	inode = file_inode(file);
2773 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2774 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2775 
2776 	key.objectid = objectid;
2777 	key.type = BTRFS_ROOT_REF_KEY;
2778 	key.offset = rootrefs->min_treeid;
2779 	found = 0;
2780 
2781 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2782 	if (ret < 0) {
2783 		goto out;
2784 	} else if (path->slots[0] >=
2785 		   btrfs_header_nritems(path->nodes[0])) {
2786 		ret = btrfs_next_leaf(root, path);
2787 		if (ret < 0) {
2788 			goto out;
2789 		} else if (ret > 0) {
2790 			ret = -EUCLEAN;
2791 			goto out;
2792 		}
2793 	}
2794 	while (1) {
2795 		leaf = path->nodes[0];
2796 		slot = path->slots[0];
2797 
2798 		btrfs_item_key_to_cpu(leaf, &key, slot);
2799 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2800 			ret = 0;
2801 			goto out;
2802 		}
2803 
2804 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2805 			ret = -EOVERFLOW;
2806 			goto out;
2807 		}
2808 
2809 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2810 		rootrefs->rootref[found].treeid = key.offset;
2811 		rootrefs->rootref[found].dirid =
2812 				  btrfs_root_ref_dirid(leaf, rref);
2813 		found++;
2814 
2815 		ret = btrfs_next_item(root, path);
2816 		if (ret < 0) {
2817 			goto out;
2818 		} else if (ret > 0) {
2819 			ret = -EUCLEAN;
2820 			goto out;
2821 		}
2822 	}
2823 
2824 out:
2825 	if (!ret || ret == -EOVERFLOW) {
2826 		rootrefs->num_items = found;
2827 		/* update min_treeid for next search */
2828 		if (found)
2829 			rootrefs->min_treeid =
2830 				rootrefs->rootref[found - 1].treeid + 1;
2831 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2832 			ret = -EFAULT;
2833 	}
2834 
2835 	kfree(rootrefs);
2836 	btrfs_free_path(path);
2837 
2838 	return ret;
2839 }
2840 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2841 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2842 					     void __user *arg)
2843 {
2844 	struct dentry *parent = file->f_path.dentry;
2845 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2846 	struct dentry *dentry;
2847 	struct inode *dir = d_inode(parent);
2848 	struct inode *inode;
2849 	struct btrfs_root *root = BTRFS_I(dir)->root;
2850 	struct btrfs_root *dest = NULL;
2851 	struct btrfs_ioctl_vol_args *vol_args;
2852 	int namelen;
2853 	int err = 0;
2854 
2855 	if (!S_ISDIR(dir->i_mode))
2856 		return -ENOTDIR;
2857 
2858 	vol_args = memdup_user(arg, sizeof(*vol_args));
2859 	if (IS_ERR(vol_args))
2860 		return PTR_ERR(vol_args);
2861 
2862 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2863 	namelen = strlen(vol_args->name);
2864 	if (strchr(vol_args->name, '/') ||
2865 	    strncmp(vol_args->name, "..", namelen) == 0) {
2866 		err = -EINVAL;
2867 		goto out;
2868 	}
2869 
2870 	err = mnt_want_write_file(file);
2871 	if (err)
2872 		goto out;
2873 
2874 
2875 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2876 	if (err == -EINTR)
2877 		goto out_drop_write;
2878 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2879 	if (IS_ERR(dentry)) {
2880 		err = PTR_ERR(dentry);
2881 		goto out_unlock_dir;
2882 	}
2883 
2884 	if (d_really_is_negative(dentry)) {
2885 		err = -ENOENT;
2886 		goto out_dput;
2887 	}
2888 
2889 	inode = d_inode(dentry);
2890 	dest = BTRFS_I(inode)->root;
2891 	if (!capable(CAP_SYS_ADMIN)) {
2892 		/*
2893 		 * Regular user.  Only allow this with a special mount
2894 		 * option, when the user has write+exec access to the
2895 		 * subvol root, and when rmdir(2) would have been
2896 		 * allowed.
2897 		 *
2898 		 * Note that this is _not_ check that the subvol is
2899 		 * empty or doesn't contain data that we wouldn't
2900 		 * otherwise be able to delete.
2901 		 *
2902 		 * Users who want to delete empty subvols should try
2903 		 * rmdir(2).
2904 		 */
2905 		err = -EPERM;
2906 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2907 			goto out_dput;
2908 
2909 		/*
2910 		 * Do not allow deletion if the parent dir is the same
2911 		 * as the dir to be deleted.  That means the ioctl
2912 		 * must be called on the dentry referencing the root
2913 		 * of the subvol, not a random directory contained
2914 		 * within it.
2915 		 */
2916 		err = -EINVAL;
2917 		if (root == dest)
2918 			goto out_dput;
2919 
2920 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2921 		if (err)
2922 			goto out_dput;
2923 	}
2924 
2925 	/* check if subvolume may be deleted by a user */
2926 	err = btrfs_may_delete(dir, dentry, 1);
2927 	if (err)
2928 		goto out_dput;
2929 
2930 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2931 		err = -EINVAL;
2932 		goto out_dput;
2933 	}
2934 
2935 	inode_lock(inode);
2936 	err = btrfs_delete_subvolume(dir, dentry);
2937 	inode_unlock(inode);
2938 	if (!err)
2939 		d_delete(dentry);
2940 
2941 out_dput:
2942 	dput(dentry);
2943 out_unlock_dir:
2944 	inode_unlock(dir);
2945 out_drop_write:
2946 	mnt_drop_write_file(file);
2947 out:
2948 	kfree(vol_args);
2949 	return err;
2950 }
2951 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2952 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2953 {
2954 	struct inode *inode = file_inode(file);
2955 	struct btrfs_root *root = BTRFS_I(inode)->root;
2956 	struct btrfs_ioctl_defrag_range_args *range;
2957 	int ret;
2958 
2959 	ret = mnt_want_write_file(file);
2960 	if (ret)
2961 		return ret;
2962 
2963 	if (btrfs_root_readonly(root)) {
2964 		ret = -EROFS;
2965 		goto out;
2966 	}
2967 
2968 	switch (inode->i_mode & S_IFMT) {
2969 	case S_IFDIR:
2970 		if (!capable(CAP_SYS_ADMIN)) {
2971 			ret = -EPERM;
2972 			goto out;
2973 		}
2974 		ret = btrfs_defrag_root(root);
2975 		break;
2976 	case S_IFREG:
2977 		/*
2978 		 * Note that this does not check the file descriptor for write
2979 		 * access. This prevents defragmenting executables that are
2980 		 * running and allows defrag on files open in read-only mode.
2981 		 */
2982 		if (!capable(CAP_SYS_ADMIN) &&
2983 		    inode_permission(inode, MAY_WRITE)) {
2984 			ret = -EPERM;
2985 			goto out;
2986 		}
2987 
2988 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2989 		if (!range) {
2990 			ret = -ENOMEM;
2991 			goto out;
2992 		}
2993 
2994 		if (argp) {
2995 			if (copy_from_user(range, argp,
2996 					   sizeof(*range))) {
2997 				ret = -EFAULT;
2998 				kfree(range);
2999 				goto out;
3000 			}
3001 			/* compression requires us to start the IO */
3002 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3003 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3004 				range->extent_thresh = (u32)-1;
3005 			}
3006 		} else {
3007 			/* the rest are all set to zero by kzalloc */
3008 			range->len = (u64)-1;
3009 		}
3010 		ret = btrfs_defrag_file(file_inode(file), file,
3011 					range, BTRFS_OLDEST_GENERATION, 0);
3012 		if (ret > 0)
3013 			ret = 0;
3014 		kfree(range);
3015 		break;
3016 	default:
3017 		ret = -EINVAL;
3018 	}
3019 out:
3020 	mnt_drop_write_file(file);
3021 	return ret;
3022 }
3023 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3024 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3025 {
3026 	struct btrfs_ioctl_vol_args *vol_args;
3027 	int ret;
3028 
3029 	if (!capable(CAP_SYS_ADMIN))
3030 		return -EPERM;
3031 
3032 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3033 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3034 
3035 	vol_args = memdup_user(arg, sizeof(*vol_args));
3036 	if (IS_ERR(vol_args)) {
3037 		ret = PTR_ERR(vol_args);
3038 		goto out;
3039 	}
3040 
3041 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3042 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3043 
3044 	if (!ret)
3045 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3046 
3047 	kfree(vol_args);
3048 out:
3049 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3050 	return ret;
3051 }
3052 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3053 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3054 {
3055 	struct inode *inode = file_inode(file);
3056 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3057 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3058 	int ret;
3059 
3060 	if (!capable(CAP_SYS_ADMIN))
3061 		return -EPERM;
3062 
3063 	ret = mnt_want_write_file(file);
3064 	if (ret)
3065 		return ret;
3066 
3067 	vol_args = memdup_user(arg, sizeof(*vol_args));
3068 	if (IS_ERR(vol_args)) {
3069 		ret = PTR_ERR(vol_args);
3070 		goto err_drop;
3071 	}
3072 
3073 	/* Check for compatibility reject unknown flags */
3074 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3075 		ret = -EOPNOTSUPP;
3076 		goto out;
3077 	}
3078 
3079 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3080 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3081 		goto out;
3082 	}
3083 
3084 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3085 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3086 	} else {
3087 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3088 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3089 	}
3090 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3091 
3092 	if (!ret) {
3093 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3094 			btrfs_info(fs_info, "device deleted: id %llu",
3095 					vol_args->devid);
3096 		else
3097 			btrfs_info(fs_info, "device deleted: %s",
3098 					vol_args->name);
3099 	}
3100 out:
3101 	kfree(vol_args);
3102 err_drop:
3103 	mnt_drop_write_file(file);
3104 	return ret;
3105 }
3106 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3107 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3108 {
3109 	struct inode *inode = file_inode(file);
3110 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3111 	struct btrfs_ioctl_vol_args *vol_args;
3112 	int ret;
3113 
3114 	if (!capable(CAP_SYS_ADMIN))
3115 		return -EPERM;
3116 
3117 	ret = mnt_want_write_file(file);
3118 	if (ret)
3119 		return ret;
3120 
3121 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3122 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3123 		goto out_drop_write;
3124 	}
3125 
3126 	vol_args = memdup_user(arg, sizeof(*vol_args));
3127 	if (IS_ERR(vol_args)) {
3128 		ret = PTR_ERR(vol_args);
3129 		goto out;
3130 	}
3131 
3132 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3133 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3134 
3135 	if (!ret)
3136 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3137 	kfree(vol_args);
3138 out:
3139 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3140 out_drop_write:
3141 	mnt_drop_write_file(file);
3142 
3143 	return ret;
3144 }
3145 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3146 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3147 				void __user *arg)
3148 {
3149 	struct btrfs_ioctl_fs_info_args *fi_args;
3150 	struct btrfs_device *device;
3151 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3152 	int ret = 0;
3153 
3154 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3155 	if (!fi_args)
3156 		return -ENOMEM;
3157 
3158 	rcu_read_lock();
3159 	fi_args->num_devices = fs_devices->num_devices;
3160 
3161 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3162 		if (device->devid > fi_args->max_id)
3163 			fi_args->max_id = device->devid;
3164 	}
3165 	rcu_read_unlock();
3166 
3167 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
3168 	fi_args->nodesize = fs_info->nodesize;
3169 	fi_args->sectorsize = fs_info->sectorsize;
3170 	fi_args->clone_alignment = fs_info->sectorsize;
3171 
3172 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3173 		ret = -EFAULT;
3174 
3175 	kfree(fi_args);
3176 	return ret;
3177 }
3178 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3179 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3180 				 void __user *arg)
3181 {
3182 	struct btrfs_ioctl_dev_info_args *di_args;
3183 	struct btrfs_device *dev;
3184 	int ret = 0;
3185 	char *s_uuid = NULL;
3186 
3187 	di_args = memdup_user(arg, sizeof(*di_args));
3188 	if (IS_ERR(di_args))
3189 		return PTR_ERR(di_args);
3190 
3191 	if (!btrfs_is_empty_uuid(di_args->uuid))
3192 		s_uuid = di_args->uuid;
3193 
3194 	rcu_read_lock();
3195 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3196 				NULL, true);
3197 
3198 	if (!dev) {
3199 		ret = -ENODEV;
3200 		goto out;
3201 	}
3202 
3203 	di_args->devid = dev->devid;
3204 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3205 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3206 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3207 	if (dev->name) {
3208 		strncpy(di_args->path, rcu_str_deref(dev->name),
3209 				sizeof(di_args->path) - 1);
3210 		di_args->path[sizeof(di_args->path) - 1] = 0;
3211 	} else {
3212 		di_args->path[0] = '\0';
3213 	}
3214 
3215 out:
3216 	rcu_read_unlock();
3217 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3218 		ret = -EFAULT;
3219 
3220 	kfree(di_args);
3221 	return ret;
3222 }
3223 
extent_same_get_page(struct inode * inode,pgoff_t index)3224 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
3225 {
3226 	struct page *page;
3227 
3228 	page = grab_cache_page(inode->i_mapping, index);
3229 	if (!page)
3230 		return ERR_PTR(-ENOMEM);
3231 
3232 	if (!PageUptodate(page)) {
3233 		int ret;
3234 
3235 		ret = btrfs_readpage(NULL, page);
3236 		if (ret)
3237 			return ERR_PTR(ret);
3238 		lock_page(page);
3239 		if (!PageUptodate(page)) {
3240 			unlock_page(page);
3241 			put_page(page);
3242 			return ERR_PTR(-EIO);
3243 		}
3244 		if (page->mapping != inode->i_mapping) {
3245 			unlock_page(page);
3246 			put_page(page);
3247 			return ERR_PTR(-EAGAIN);
3248 		}
3249 	}
3250 
3251 	return page;
3252 }
3253 
gather_extent_pages(struct inode * inode,struct page ** pages,int num_pages,u64 off)3254 static int gather_extent_pages(struct inode *inode, struct page **pages,
3255 			       int num_pages, u64 off)
3256 {
3257 	int i;
3258 	pgoff_t index = off >> PAGE_SHIFT;
3259 
3260 	for (i = 0; i < num_pages; i++) {
3261 again:
3262 		pages[i] = extent_same_get_page(inode, index + i);
3263 		if (IS_ERR(pages[i])) {
3264 			int err = PTR_ERR(pages[i]);
3265 
3266 			if (err == -EAGAIN)
3267 				goto again;
3268 			pages[i] = NULL;
3269 			return err;
3270 		}
3271 	}
3272 	return 0;
3273 }
3274 
lock_extent_range(struct inode * inode,u64 off,u64 len,bool retry_range_locking)3275 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
3276 			     bool retry_range_locking)
3277 {
3278 	/*
3279 	 * Do any pending delalloc/csum calculations on inode, one way or
3280 	 * another, and lock file content.
3281 	 * The locking order is:
3282 	 *
3283 	 *   1) pages
3284 	 *   2) range in the inode's io tree
3285 	 */
3286 	while (1) {
3287 		struct btrfs_ordered_extent *ordered;
3288 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3289 		ordered = btrfs_lookup_first_ordered_extent(inode,
3290 							    off + len - 1);
3291 		if ((!ordered ||
3292 		     ordered->file_offset + ordered->len <= off ||
3293 		     ordered->file_offset >= off + len) &&
3294 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
3295 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
3296 			if (ordered)
3297 				btrfs_put_ordered_extent(ordered);
3298 			break;
3299 		}
3300 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3301 		if (ordered)
3302 			btrfs_put_ordered_extent(ordered);
3303 		if (!retry_range_locking)
3304 			return -EAGAIN;
3305 		btrfs_wait_ordered_range(inode, off, len);
3306 	}
3307 	return 0;
3308 }
3309 
btrfs_double_inode_unlock(struct inode * inode1,struct inode * inode2)3310 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
3311 {
3312 	inode_unlock(inode1);
3313 	inode_unlock(inode2);
3314 }
3315 
btrfs_double_inode_lock(struct inode * inode1,struct inode * inode2)3316 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
3317 {
3318 	if (inode1 < inode2)
3319 		swap(inode1, inode2);
3320 
3321 	inode_lock_nested(inode1, I_MUTEX_PARENT);
3322 	inode_lock_nested(inode2, I_MUTEX_CHILD);
3323 }
3324 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3325 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3326 				      struct inode *inode2, u64 loff2, u64 len)
3327 {
3328 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3329 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3330 }
3331 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len,bool retry_range_locking)3332 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3333 				    struct inode *inode2, u64 loff2, u64 len,
3334 				    bool retry_range_locking)
3335 {
3336 	int ret;
3337 
3338 	if (inode1 < inode2) {
3339 		swap(inode1, inode2);
3340 		swap(loff1, loff2);
3341 	}
3342 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
3343 	if (ret)
3344 		return ret;
3345 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
3346 	if (ret)
3347 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3348 			      loff1 + len - 1);
3349 	return ret;
3350 }
3351 
3352 struct cmp_pages {
3353 	int		num_pages;
3354 	struct page	**src_pages;
3355 	struct page	**dst_pages;
3356 };
3357 
btrfs_cmp_data_free(struct cmp_pages * cmp)3358 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3359 {
3360 	int i;
3361 	struct page *pg;
3362 
3363 	for (i = 0; i < cmp->num_pages; i++) {
3364 		pg = cmp->src_pages[i];
3365 		if (pg) {
3366 			unlock_page(pg);
3367 			put_page(pg);
3368 			cmp->src_pages[i] = NULL;
3369 		}
3370 		pg = cmp->dst_pages[i];
3371 		if (pg) {
3372 			unlock_page(pg);
3373 			put_page(pg);
3374 			cmp->dst_pages[i] = NULL;
3375 		}
3376 	}
3377 }
3378 
btrfs_cmp_data_prepare(struct inode * src,u64 loff,struct inode * dst,u64 dst_loff,u64 len,struct cmp_pages * cmp)3379 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3380 				  struct inode *dst, u64 dst_loff,
3381 				  u64 len, struct cmp_pages *cmp)
3382 {
3383 	int ret;
3384 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3385 
3386 	cmp->num_pages = num_pages;
3387 
3388 	ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
3389 	if (ret)
3390 		goto out;
3391 
3392 	ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
3393 
3394 out:
3395 	if (ret)
3396 		btrfs_cmp_data_free(cmp);
3397 	return ret;
3398 }
3399 
btrfs_cmp_data(u64 len,struct cmp_pages * cmp)3400 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3401 {
3402 	int ret = 0;
3403 	int i;
3404 	struct page *src_page, *dst_page;
3405 	unsigned int cmp_len = PAGE_SIZE;
3406 	void *addr, *dst_addr;
3407 
3408 	i = 0;
3409 	while (len) {
3410 		if (len < PAGE_SIZE)
3411 			cmp_len = len;
3412 
3413 		BUG_ON(i >= cmp->num_pages);
3414 
3415 		src_page = cmp->src_pages[i];
3416 		dst_page = cmp->dst_pages[i];
3417 		ASSERT(PageLocked(src_page));
3418 		ASSERT(PageLocked(dst_page));
3419 
3420 		addr = kmap_atomic(src_page);
3421 		dst_addr = kmap_atomic(dst_page);
3422 
3423 		flush_dcache_page(src_page);
3424 		flush_dcache_page(dst_page);
3425 
3426 		if (memcmp(addr, dst_addr, cmp_len))
3427 			ret = -EBADE;
3428 
3429 		kunmap_atomic(addr);
3430 		kunmap_atomic(dst_addr);
3431 
3432 		if (ret)
3433 			break;
3434 
3435 		len -= cmp_len;
3436 		i++;
3437 	}
3438 
3439 	return ret;
3440 }
3441 
extent_same_check_offsets(struct inode * inode,u64 off,u64 * plen,u64 olen)3442 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3443 				     u64 olen)
3444 {
3445 	u64 len = *plen;
3446 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3447 
3448 	if (off + olen > inode->i_size || off + olen < off)
3449 		return -EINVAL;
3450 
3451 	/* if we extend to eof, continue to block boundary */
3452 	if (off + len == inode->i_size)
3453 		*plen = len = ALIGN(inode->i_size, bs) - off;
3454 
3455 	/* Check that we are block aligned - btrfs_clone() requires this */
3456 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3457 		return -EINVAL;
3458 
3459 	return 0;
3460 }
3461 
btrfs_extent_same_range(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff,struct cmp_pages * cmp)3462 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
3463 				   struct inode *dst, u64 dst_loff,
3464 				   struct cmp_pages *cmp)
3465 {
3466 	int ret;
3467 	u64 len = olen;
3468 	bool same_inode = (src == dst);
3469 	u64 same_lock_start = 0;
3470 	u64 same_lock_len = 0;
3471 
3472 	ret = extent_same_check_offsets(src, loff, &len, olen);
3473 	if (ret)
3474 		return ret;
3475 
3476 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3477 	if (ret)
3478 		return ret;
3479 
3480 	if (same_inode) {
3481 		/*
3482 		 * Single inode case wants the same checks, except we
3483 		 * don't want our length pushed out past i_size as
3484 		 * comparing that data range makes no sense.
3485 		 *
3486 		 * extent_same_check_offsets() will do this for an
3487 		 * unaligned length at i_size, so catch it here and
3488 		 * reject the request.
3489 		 *
3490 		 * This effectively means we require aligned extents
3491 		 * for the single-inode case, whereas the other cases
3492 		 * allow an unaligned length so long as it ends at
3493 		 * i_size.
3494 		 */
3495 		if (len != olen)
3496 			return -EINVAL;
3497 
3498 		/* Check for overlapping ranges */
3499 		if (dst_loff + len > loff && dst_loff < loff + len)
3500 			return -EINVAL;
3501 
3502 		same_lock_start = min_t(u64, loff, dst_loff);
3503 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3504 	} else {
3505 		/*
3506 		 * If the source and destination inodes are different, the
3507 		 * source's range end offset matches the source's i_size, that
3508 		 * i_size is not a multiple of the sector size, and the
3509 		 * destination range does not go past the destination's i_size,
3510 		 * we must round down the length to the nearest sector size
3511 		 * multiple. If we don't do this adjustment we end replacing
3512 		 * with zeroes the bytes in the range that starts at the
3513 		 * deduplication range's end offset and ends at the next sector
3514 		 * size multiple.
3515 		 */
3516 		if (loff + olen == i_size_read(src) &&
3517 		    dst_loff + len < i_size_read(dst)) {
3518 			const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
3519 
3520 			len = round_down(i_size_read(src), sz) - loff;
3521 			if (len == 0)
3522 				return 0;
3523 			olen = len;
3524 		}
3525 	}
3526 
3527 again:
3528 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
3529 	if (ret)
3530 		return ret;
3531 
3532 	if (same_inode)
3533 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3534 					false);
3535 	else
3536 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3537 					       false);
3538 	/*
3539 	 * If one of the inodes has dirty pages in the respective range or
3540 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3541 	 * extents in the range. We must unlock the pages and the ranges in the
3542 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3543 	 * pages) and when waiting for ordered extents to complete (they require
3544 	 * range locking).
3545 	 */
3546 	if (ret == -EAGAIN) {
3547 		/*
3548 		 * Ranges in the io trees already unlocked. Now unlock all
3549 		 * pages before waiting for all IO to complete.
3550 		 */
3551 		btrfs_cmp_data_free(cmp);
3552 		if (same_inode) {
3553 			btrfs_wait_ordered_range(src, same_lock_start,
3554 						 same_lock_len);
3555 		} else {
3556 			btrfs_wait_ordered_range(src, loff, len);
3557 			btrfs_wait_ordered_range(dst, dst_loff, len);
3558 		}
3559 		goto again;
3560 	}
3561 	ASSERT(ret == 0);
3562 	if (WARN_ON(ret)) {
3563 		/* ranges in the io trees already unlocked */
3564 		btrfs_cmp_data_free(cmp);
3565 		return ret;
3566 	}
3567 
3568 	/* pass original length for comparison so we stay within i_size */
3569 	ret = btrfs_cmp_data(olen, cmp);
3570 	if (ret == 0)
3571 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3572 
3573 	if (same_inode)
3574 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3575 			      same_lock_start + same_lock_len - 1);
3576 	else
3577 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3578 
3579 	btrfs_cmp_data_free(cmp);
3580 
3581 	return ret;
3582 }
3583 
3584 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3585 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3586 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3587 			     struct inode *dst, u64 dst_loff)
3588 {
3589 	int ret;
3590 	struct cmp_pages cmp;
3591 	int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
3592 	bool same_inode = (src == dst);
3593 	u64 i, tail_len, chunk_count;
3594 
3595 	if (olen == 0)
3596 		return 0;
3597 
3598 	if (same_inode)
3599 		inode_lock(src);
3600 	else
3601 		btrfs_double_inode_lock(src, dst);
3602 
3603 	/* don't make the dst file partly checksummed */
3604 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3605 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3606 		ret = -EINVAL;
3607 		goto out_unlock;
3608 	}
3609 
3610 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3611 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3612 	if (chunk_count == 0)
3613 		num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
3614 
3615 	/*
3616 	 * If deduping ranges in the same inode, locking rules make it
3617 	 * mandatory to always lock pages in ascending order to avoid deadlocks
3618 	 * with concurrent tasks (such as starting writeback/delalloc).
3619 	 */
3620 	if (same_inode && dst_loff < loff)
3621 		swap(loff, dst_loff);
3622 
3623 	/*
3624 	 * We must gather up all the pages before we initiate our extent
3625 	 * locking. We use an array for the page pointers. Size of the array is
3626 	 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
3627 	 */
3628 	cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3629 				       GFP_KERNEL | __GFP_ZERO);
3630 	cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3631 				       GFP_KERNEL | __GFP_ZERO);
3632 	if (!cmp.src_pages || !cmp.dst_pages) {
3633 		ret = -ENOMEM;
3634 		goto out_free;
3635 	}
3636 
3637 	for (i = 0; i < chunk_count; i++) {
3638 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3639 					      dst, dst_loff, &cmp);
3640 		if (ret)
3641 			goto out_free;
3642 
3643 		loff += BTRFS_MAX_DEDUPE_LEN;
3644 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3645 	}
3646 
3647 	if (tail_len > 0)
3648 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3649 					      dst_loff, &cmp);
3650 
3651 out_free:
3652 	kvfree(cmp.src_pages);
3653 	kvfree(cmp.dst_pages);
3654 
3655 out_unlock:
3656 	if (same_inode)
3657 		inode_unlock(src);
3658 	else
3659 		btrfs_double_inode_unlock(src, dst);
3660 
3661 	return ret;
3662 }
3663 
btrfs_dedupe_file_range(struct file * src_file,loff_t src_loff,struct file * dst_file,loff_t dst_loff,u64 olen)3664 int btrfs_dedupe_file_range(struct file *src_file, loff_t src_loff,
3665 			    struct file *dst_file, loff_t dst_loff,
3666 			    u64 olen)
3667 {
3668 	struct inode *src = file_inode(src_file);
3669 	struct inode *dst = file_inode(dst_file);
3670 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3671 
3672 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3673 		/*
3674 		 * Btrfs does not support blocksize < page_size. As a
3675 		 * result, btrfs_cmp_data() won't correctly handle
3676 		 * this situation without an update.
3677 		 */
3678 		return -EINVAL;
3679 	}
3680 
3681 	return btrfs_extent_same(src, src_loff, olen, dst, dst_loff);
3682 }
3683 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3684 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3685 				     struct inode *inode,
3686 				     u64 endoff,
3687 				     const u64 destoff,
3688 				     const u64 olen,
3689 				     int no_time_update)
3690 {
3691 	struct btrfs_root *root = BTRFS_I(inode)->root;
3692 	int ret;
3693 
3694 	inode_inc_iversion(inode);
3695 	if (!no_time_update)
3696 		inode->i_mtime = inode->i_ctime = current_time(inode);
3697 	/*
3698 	 * We round up to the block size at eof when determining which
3699 	 * extents to clone above, but shouldn't round up the file size.
3700 	 */
3701 	if (endoff > destoff + olen)
3702 		endoff = destoff + olen;
3703 	if (endoff > inode->i_size)
3704 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3705 
3706 	ret = btrfs_update_inode(trans, root, inode);
3707 	if (ret) {
3708 		btrfs_abort_transaction(trans, ret);
3709 		btrfs_end_transaction(trans);
3710 		goto out;
3711 	}
3712 	ret = btrfs_end_transaction(trans);
3713 out:
3714 	return ret;
3715 }
3716 
clone_update_extent_map(struct btrfs_inode * inode,const struct btrfs_trans_handle * trans,const struct btrfs_path * path,const u64 hole_offset,const u64 hole_len)3717 static void clone_update_extent_map(struct btrfs_inode *inode,
3718 				    const struct btrfs_trans_handle *trans,
3719 				    const struct btrfs_path *path,
3720 				    const u64 hole_offset,
3721 				    const u64 hole_len)
3722 {
3723 	struct extent_map_tree *em_tree = &inode->extent_tree;
3724 	struct extent_map *em;
3725 	int ret;
3726 
3727 	em = alloc_extent_map();
3728 	if (!em) {
3729 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3730 		return;
3731 	}
3732 
3733 	if (path) {
3734 		struct btrfs_file_extent_item *fi;
3735 
3736 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3737 				    struct btrfs_file_extent_item);
3738 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3739 		em->generation = -1;
3740 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3741 		    BTRFS_FILE_EXTENT_INLINE)
3742 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3743 					&inode->runtime_flags);
3744 	} else {
3745 		em->start = hole_offset;
3746 		em->len = hole_len;
3747 		em->ram_bytes = em->len;
3748 		em->orig_start = hole_offset;
3749 		em->block_start = EXTENT_MAP_HOLE;
3750 		em->block_len = 0;
3751 		em->orig_block_len = 0;
3752 		em->compress_type = BTRFS_COMPRESS_NONE;
3753 		em->generation = trans->transid;
3754 	}
3755 
3756 	while (1) {
3757 		write_lock(&em_tree->lock);
3758 		ret = add_extent_mapping(em_tree, em, 1);
3759 		write_unlock(&em_tree->lock);
3760 		if (ret != -EEXIST) {
3761 			free_extent_map(em);
3762 			break;
3763 		}
3764 		btrfs_drop_extent_cache(inode, em->start,
3765 					em->start + em->len - 1, 0);
3766 	}
3767 
3768 	if (ret)
3769 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3770 }
3771 
3772 /*
3773  * Make sure we do not end up inserting an inline extent into a file that has
3774  * already other (non-inline) extents. If a file has an inline extent it can
3775  * not have any other extents and the (single) inline extent must start at the
3776  * file offset 0. Failing to respect these rules will lead to file corruption,
3777  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3778  *
3779  * We can have extents that have been already written to disk or we can have
3780  * dirty ranges still in delalloc, in which case the extent maps and items are
3781  * created only when we run delalloc, and the delalloc ranges might fall outside
3782  * the range we are currently locking in the inode's io tree. So we check the
3783  * inode's i_size because of that (i_size updates are done while holding the
3784  * i_mutex, which we are holding here).
3785  * We also check to see if the inode has a size not greater than "datal" but has
3786  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3787  * protected against such concurrent fallocate calls by the i_mutex).
3788  *
3789  * If the file has no extents but a size greater than datal, do not allow the
3790  * copy because we would need turn the inline extent into a non-inline one (even
3791  * with NO_HOLES enabled). If we find our destination inode only has one inline
3792  * extent, just overwrite it with the source inline extent if its size is less
3793  * than the source extent's size, or we could copy the source inline extent's
3794  * data into the destination inode's inline extent if the later is greater then
3795  * the former.
3796  */
clone_copy_inline_extent(struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3797 static int clone_copy_inline_extent(struct inode *dst,
3798 				    struct btrfs_trans_handle *trans,
3799 				    struct btrfs_path *path,
3800 				    struct btrfs_key *new_key,
3801 				    const u64 drop_start,
3802 				    const u64 datal,
3803 				    const u64 skip,
3804 				    const u64 size,
3805 				    char *inline_data)
3806 {
3807 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3808 	struct btrfs_root *root = BTRFS_I(dst)->root;
3809 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3810 				      fs_info->sectorsize);
3811 	int ret;
3812 	struct btrfs_key key;
3813 
3814 	if (new_key->offset > 0)
3815 		return -EOPNOTSUPP;
3816 
3817 	key.objectid = btrfs_ino(BTRFS_I(dst));
3818 	key.type = BTRFS_EXTENT_DATA_KEY;
3819 	key.offset = 0;
3820 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3821 	if (ret < 0) {
3822 		return ret;
3823 	} else if (ret > 0) {
3824 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3825 			ret = btrfs_next_leaf(root, path);
3826 			if (ret < 0)
3827 				return ret;
3828 			else if (ret > 0)
3829 				goto copy_inline_extent;
3830 		}
3831 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3832 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3833 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3834 			ASSERT(key.offset > 0);
3835 			return -EOPNOTSUPP;
3836 		}
3837 	} else if (i_size_read(dst) <= datal) {
3838 		struct btrfs_file_extent_item *ei;
3839 		u64 ext_len;
3840 
3841 		/*
3842 		 * If the file size is <= datal, make sure there are no other
3843 		 * extents following (can happen do to an fallocate call with
3844 		 * the flag FALLOC_FL_KEEP_SIZE).
3845 		 */
3846 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3847 				    struct btrfs_file_extent_item);
3848 		/*
3849 		 * If it's an inline extent, it can not have other extents
3850 		 * following it.
3851 		 */
3852 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3853 		    BTRFS_FILE_EXTENT_INLINE)
3854 			goto copy_inline_extent;
3855 
3856 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3857 		if (ext_len > aligned_end)
3858 			return -EOPNOTSUPP;
3859 
3860 		ret = btrfs_next_item(root, path);
3861 		if (ret < 0) {
3862 			return ret;
3863 		} else if (ret == 0) {
3864 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3865 					      path->slots[0]);
3866 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3867 			    key.type == BTRFS_EXTENT_DATA_KEY)
3868 				return -EOPNOTSUPP;
3869 		}
3870 	}
3871 
3872 copy_inline_extent:
3873 	/*
3874 	 * We have no extent items, or we have an extent at offset 0 which may
3875 	 * or may not be inlined. All these cases are dealt the same way.
3876 	 */
3877 	if (i_size_read(dst) > datal) {
3878 		/*
3879 		 * If the destination inode has an inline extent...
3880 		 * This would require copying the data from the source inline
3881 		 * extent into the beginning of the destination's inline extent.
3882 		 * But this is really complex, both extents can be compressed
3883 		 * or just one of them, which would require decompressing and
3884 		 * re-compressing data (which could increase the new compressed
3885 		 * size, not allowing the compressed data to fit anymore in an
3886 		 * inline extent).
3887 		 * So just don't support this case for now (it should be rare,
3888 		 * we are not really saving space when cloning inline extents).
3889 		 */
3890 		return -EOPNOTSUPP;
3891 	}
3892 
3893 	btrfs_release_path(path);
3894 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3895 	if (ret)
3896 		return ret;
3897 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3898 	if (ret)
3899 		return ret;
3900 
3901 	if (skip) {
3902 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3903 
3904 		memmove(inline_data + start, inline_data + start + skip, datal);
3905 	}
3906 
3907 	write_extent_buffer(path->nodes[0], inline_data,
3908 			    btrfs_item_ptr_offset(path->nodes[0],
3909 						  path->slots[0]),
3910 			    size);
3911 	inode_add_bytes(dst, datal);
3912 
3913 	return 0;
3914 }
3915 
3916 /**
3917  * btrfs_clone() - clone a range from inode file to another
3918  *
3919  * @src: Inode to clone from
3920  * @inode: Inode to clone to
3921  * @off: Offset within source to start clone from
3922  * @olen: Original length, passed by user, of range to clone
3923  * @olen_aligned: Block-aligned value of olen
3924  * @destoff: Offset within @inode to start clone
3925  * @no_time_update: Whether to update mtime/ctime on the target inode
3926  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3927 static int btrfs_clone(struct inode *src, struct inode *inode,
3928 		       const u64 off, const u64 olen, const u64 olen_aligned,
3929 		       const u64 destoff, int no_time_update)
3930 {
3931 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3932 	struct btrfs_root *root = BTRFS_I(inode)->root;
3933 	struct btrfs_path *path = NULL;
3934 	struct extent_buffer *leaf;
3935 	struct btrfs_trans_handle *trans;
3936 	char *buf = NULL;
3937 	struct btrfs_key key;
3938 	u32 nritems;
3939 	int slot;
3940 	int ret;
3941 	const u64 len = olen_aligned;
3942 	u64 last_dest_end = destoff;
3943 
3944 	ret = -ENOMEM;
3945 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3946 	if (!buf)
3947 		return ret;
3948 
3949 	path = btrfs_alloc_path();
3950 	if (!path) {
3951 		kvfree(buf);
3952 		return ret;
3953 	}
3954 
3955 	path->reada = READA_FORWARD;
3956 	/* clone data */
3957 	key.objectid = btrfs_ino(BTRFS_I(src));
3958 	key.type = BTRFS_EXTENT_DATA_KEY;
3959 	key.offset = off;
3960 
3961 	while (1) {
3962 		u64 next_key_min_offset = key.offset + 1;
3963 
3964 		/*
3965 		 * note the key will change type as we walk through the
3966 		 * tree.
3967 		 */
3968 		path->leave_spinning = 1;
3969 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3970 				0, 0);
3971 		if (ret < 0)
3972 			goto out;
3973 		/*
3974 		 * First search, if no extent item that starts at offset off was
3975 		 * found but the previous item is an extent item, it's possible
3976 		 * it might overlap our target range, therefore process it.
3977 		 */
3978 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3979 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3980 					      path->slots[0] - 1);
3981 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3982 				path->slots[0]--;
3983 		}
3984 
3985 		nritems = btrfs_header_nritems(path->nodes[0]);
3986 process_slot:
3987 		if (path->slots[0] >= nritems) {
3988 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3989 			if (ret < 0)
3990 				goto out;
3991 			if (ret > 0)
3992 				break;
3993 			nritems = btrfs_header_nritems(path->nodes[0]);
3994 		}
3995 		leaf = path->nodes[0];
3996 		slot = path->slots[0];
3997 
3998 		btrfs_item_key_to_cpu(leaf, &key, slot);
3999 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
4000 		    key.objectid != btrfs_ino(BTRFS_I(src)))
4001 			break;
4002 
4003 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
4004 			struct btrfs_file_extent_item *extent;
4005 			int type;
4006 			u32 size;
4007 			struct btrfs_key new_key;
4008 			u64 disko = 0, diskl = 0;
4009 			u64 datao = 0, datal = 0;
4010 			u8 comp;
4011 			u64 drop_start;
4012 
4013 			extent = btrfs_item_ptr(leaf, slot,
4014 						struct btrfs_file_extent_item);
4015 			comp = btrfs_file_extent_compression(leaf, extent);
4016 			type = btrfs_file_extent_type(leaf, extent);
4017 			if (type == BTRFS_FILE_EXTENT_REG ||
4018 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
4019 				disko = btrfs_file_extent_disk_bytenr(leaf,
4020 								      extent);
4021 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
4022 								 extent);
4023 				datao = btrfs_file_extent_offset(leaf, extent);
4024 				datal = btrfs_file_extent_num_bytes(leaf,
4025 								    extent);
4026 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
4027 				/* take upper bound, may be compressed */
4028 				datal = btrfs_file_extent_ram_bytes(leaf,
4029 								    extent);
4030 			}
4031 
4032 			/*
4033 			 * The first search might have left us at an extent
4034 			 * item that ends before our target range's start, can
4035 			 * happen if we have holes and NO_HOLES feature enabled.
4036 			 */
4037 			if (key.offset + datal <= off) {
4038 				path->slots[0]++;
4039 				goto process_slot;
4040 			} else if (key.offset >= off + len) {
4041 				break;
4042 			}
4043 			next_key_min_offset = key.offset + datal;
4044 			size = btrfs_item_size_nr(leaf, slot);
4045 			read_extent_buffer(leaf, buf,
4046 					   btrfs_item_ptr_offset(leaf, slot),
4047 					   size);
4048 
4049 			btrfs_release_path(path);
4050 			path->leave_spinning = 0;
4051 
4052 			memcpy(&new_key, &key, sizeof(new_key));
4053 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
4054 			if (off <= key.offset)
4055 				new_key.offset = key.offset + destoff - off;
4056 			else
4057 				new_key.offset = destoff;
4058 
4059 			/*
4060 			 * Deal with a hole that doesn't have an extent item
4061 			 * that represents it (NO_HOLES feature enabled).
4062 			 * This hole is either in the middle of the cloning
4063 			 * range or at the beginning (fully overlaps it or
4064 			 * partially overlaps it).
4065 			 */
4066 			if (new_key.offset != last_dest_end)
4067 				drop_start = last_dest_end;
4068 			else
4069 				drop_start = new_key.offset;
4070 
4071 			/*
4072 			 * 1 - adjusting old extent (we may have to split it)
4073 			 * 1 - add new extent
4074 			 * 1 - inode update
4075 			 */
4076 			trans = btrfs_start_transaction(root, 3);
4077 			if (IS_ERR(trans)) {
4078 				ret = PTR_ERR(trans);
4079 				goto out;
4080 			}
4081 
4082 			if (type == BTRFS_FILE_EXTENT_REG ||
4083 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
4084 				/*
4085 				 *    a  | --- range to clone ---|  b
4086 				 * | ------------- extent ------------- |
4087 				 */
4088 
4089 				/* subtract range b */
4090 				if (key.offset + datal > off + len)
4091 					datal = off + len - key.offset;
4092 
4093 				/* subtract range a */
4094 				if (off > key.offset) {
4095 					datao += off - key.offset;
4096 					datal -= off - key.offset;
4097 				}
4098 
4099 				ret = btrfs_drop_extents(trans, root, inode,
4100 							 drop_start,
4101 							 new_key.offset + datal,
4102 							 1);
4103 				if (ret) {
4104 					if (ret != -EOPNOTSUPP)
4105 						btrfs_abort_transaction(trans,
4106 									ret);
4107 					btrfs_end_transaction(trans);
4108 					goto out;
4109 				}
4110 
4111 				ret = btrfs_insert_empty_item(trans, root, path,
4112 							      &new_key, size);
4113 				if (ret) {
4114 					btrfs_abort_transaction(trans, ret);
4115 					btrfs_end_transaction(trans);
4116 					goto out;
4117 				}
4118 
4119 				leaf = path->nodes[0];
4120 				slot = path->slots[0];
4121 				write_extent_buffer(leaf, buf,
4122 					    btrfs_item_ptr_offset(leaf, slot),
4123 					    size);
4124 
4125 				extent = btrfs_item_ptr(leaf, slot,
4126 						struct btrfs_file_extent_item);
4127 
4128 				/* disko == 0 means it's a hole */
4129 				if (!disko)
4130 					datao = 0;
4131 
4132 				btrfs_set_file_extent_offset(leaf, extent,
4133 							     datao);
4134 				btrfs_set_file_extent_num_bytes(leaf, extent,
4135 								datal);
4136 
4137 				if (disko) {
4138 					inode_add_bytes(inode, datal);
4139 					ret = btrfs_inc_extent_ref(trans,
4140 							root,
4141 							disko, diskl, 0,
4142 							root->root_key.objectid,
4143 							btrfs_ino(BTRFS_I(inode)),
4144 							new_key.offset - datao);
4145 					if (ret) {
4146 						btrfs_abort_transaction(trans,
4147 									ret);
4148 						btrfs_end_transaction(trans);
4149 						goto out;
4150 
4151 					}
4152 				}
4153 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
4154 				u64 skip = 0;
4155 				u64 trim = 0;
4156 
4157 				if (off > key.offset) {
4158 					skip = off - key.offset;
4159 					new_key.offset += skip;
4160 				}
4161 
4162 				if (key.offset + datal > off + len)
4163 					trim = key.offset + datal - (off + len);
4164 
4165 				if (comp && (skip || trim)) {
4166 					ret = -EINVAL;
4167 					btrfs_end_transaction(trans);
4168 					goto out;
4169 				}
4170 				size -= skip + trim;
4171 				datal -= skip + trim;
4172 
4173 				ret = clone_copy_inline_extent(inode,
4174 							       trans, path,
4175 							       &new_key,
4176 							       drop_start,
4177 							       datal,
4178 							       skip, size, buf);
4179 				if (ret) {
4180 					if (ret != -EOPNOTSUPP)
4181 						btrfs_abort_transaction(trans,
4182 									ret);
4183 					btrfs_end_transaction(trans);
4184 					goto out;
4185 				}
4186 				leaf = path->nodes[0];
4187 				slot = path->slots[0];
4188 			}
4189 
4190 			/* If we have an implicit hole (NO_HOLES feature). */
4191 			if (drop_start < new_key.offset)
4192 				clone_update_extent_map(BTRFS_I(inode), trans,
4193 						NULL, drop_start,
4194 						new_key.offset - drop_start);
4195 
4196 			clone_update_extent_map(BTRFS_I(inode), trans,
4197 					path, 0, 0);
4198 
4199 			btrfs_mark_buffer_dirty(leaf);
4200 			btrfs_release_path(path);
4201 
4202 			last_dest_end = ALIGN(new_key.offset + datal,
4203 					      fs_info->sectorsize);
4204 			ret = clone_finish_inode_update(trans, inode,
4205 							last_dest_end,
4206 							destoff, olen,
4207 							no_time_update);
4208 			if (ret)
4209 				goto out;
4210 			if (new_key.offset + datal >= destoff + len)
4211 				break;
4212 		}
4213 		btrfs_release_path(path);
4214 		key.offset = next_key_min_offset;
4215 
4216 		if (fatal_signal_pending(current)) {
4217 			ret = -EINTR;
4218 			goto out;
4219 		}
4220 	}
4221 	ret = 0;
4222 
4223 	if (last_dest_end < destoff + len) {
4224 		/*
4225 		 * We have an implicit hole (NO_HOLES feature is enabled) that
4226 		 * fully or partially overlaps our cloning range at its end.
4227 		 */
4228 		btrfs_release_path(path);
4229 
4230 		/*
4231 		 * 1 - remove extent(s)
4232 		 * 1 - inode update
4233 		 */
4234 		trans = btrfs_start_transaction(root, 2);
4235 		if (IS_ERR(trans)) {
4236 			ret = PTR_ERR(trans);
4237 			goto out;
4238 		}
4239 		ret = btrfs_drop_extents(trans, root, inode,
4240 					 last_dest_end, destoff + len, 1);
4241 		if (ret) {
4242 			if (ret != -EOPNOTSUPP)
4243 				btrfs_abort_transaction(trans, ret);
4244 			btrfs_end_transaction(trans);
4245 			goto out;
4246 		}
4247 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
4248 				last_dest_end,
4249 				destoff + len - last_dest_end);
4250 		ret = clone_finish_inode_update(trans, inode, destoff + len,
4251 						destoff, olen, no_time_update);
4252 	}
4253 
4254 out:
4255 	btrfs_free_path(path);
4256 	kvfree(buf);
4257 	return ret;
4258 }
4259 
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)4260 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
4261 					u64 off, u64 olen, u64 destoff)
4262 {
4263 	struct inode *inode = file_inode(file);
4264 	struct inode *src = file_inode(file_src);
4265 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4266 	struct btrfs_root *root = BTRFS_I(inode)->root;
4267 	int ret;
4268 	u64 len = olen;
4269 	u64 bs = fs_info->sb->s_blocksize;
4270 	int same_inode = src == inode;
4271 
4272 	/*
4273 	 * TODO:
4274 	 * - split compressed inline extents.  annoying: we need to
4275 	 *   decompress into destination's address_space (the file offset
4276 	 *   may change, so source mapping won't do), then recompress (or
4277 	 *   otherwise reinsert) a subrange.
4278 	 *
4279 	 * - split destination inode's inline extents.  The inline extents can
4280 	 *   be either compressed or non-compressed.
4281 	 */
4282 
4283 	if (btrfs_root_readonly(root))
4284 		return -EROFS;
4285 
4286 	if (file_src->f_path.mnt != file->f_path.mnt ||
4287 	    src->i_sb != inode->i_sb)
4288 		return -EXDEV;
4289 
4290 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
4291 		return -EISDIR;
4292 
4293 	if (!same_inode) {
4294 		btrfs_double_inode_lock(src, inode);
4295 	} else {
4296 		inode_lock(src);
4297 	}
4298 
4299 	/* don't make the dst file partly checksummed */
4300 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
4301 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
4302 		ret = -EINVAL;
4303 		goto out_unlock;
4304 	}
4305 
4306 	/* determine range to clone */
4307 	ret = -EINVAL;
4308 	if (off + len > src->i_size || off + len < off)
4309 		goto out_unlock;
4310 	if (len == 0)
4311 		olen = len = src->i_size - off;
4312 	/*
4313 	 * If we extend to eof, continue to block boundary if and only if the
4314 	 * destination end offset matches the destination file's size, otherwise
4315 	 * we would be corrupting data by placing the eof block into the middle
4316 	 * of a file.
4317 	 */
4318 	if (off + len == src->i_size) {
4319 		if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
4320 			goto out_unlock;
4321 		len = ALIGN(src->i_size, bs) - off;
4322 	}
4323 
4324 	if (len == 0) {
4325 		ret = 0;
4326 		goto out_unlock;
4327 	}
4328 
4329 	/* verify the end result is block aligned */
4330 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4331 	    !IS_ALIGNED(destoff, bs))
4332 		goto out_unlock;
4333 
4334 	/* verify if ranges are overlapped within the same file */
4335 	if (same_inode) {
4336 		if (destoff + len > off && destoff < off + len)
4337 			goto out_unlock;
4338 	}
4339 
4340 	if (destoff > inode->i_size) {
4341 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4342 		if (ret)
4343 			goto out_unlock;
4344 	}
4345 
4346 	/*
4347 	 * Lock the target range too. Right after we replace the file extent
4348 	 * items in the fs tree (which now point to the cloned data), we might
4349 	 * have a worker replace them with extent items relative to a write
4350 	 * operation that was issued before this clone operation (i.e. confront
4351 	 * with inode.c:btrfs_finish_ordered_io).
4352 	 */
4353 	if (same_inode) {
4354 		u64 lock_start = min_t(u64, off, destoff);
4355 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4356 
4357 		ret = lock_extent_range(src, lock_start, lock_len, true);
4358 	} else {
4359 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4360 					       true);
4361 	}
4362 	ASSERT(ret == 0);
4363 	if (WARN_ON(ret)) {
4364 		/* ranges in the io trees already unlocked */
4365 		goto out_unlock;
4366 	}
4367 
4368 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4369 
4370 	if (same_inode) {
4371 		u64 lock_start = min_t(u64, off, destoff);
4372 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
4373 
4374 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4375 	} else {
4376 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
4377 	}
4378 	/*
4379 	 * Truncate page cache pages so that future reads will see the cloned
4380 	 * data immediately and not the previous data.
4381 	 */
4382 	truncate_inode_pages_range(&inode->i_data,
4383 				round_down(destoff, PAGE_SIZE),
4384 				round_up(destoff + len, PAGE_SIZE) - 1);
4385 out_unlock:
4386 	if (!same_inode)
4387 		btrfs_double_inode_unlock(src, inode);
4388 	else
4389 		inode_unlock(src);
4390 	return ret;
4391 }
4392 
btrfs_clone_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,u64 len)4393 int btrfs_clone_file_range(struct file *src_file, loff_t off,
4394 		struct file *dst_file, loff_t destoff, u64 len)
4395 {
4396 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
4397 }
4398 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4399 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4400 {
4401 	struct inode *inode = file_inode(file);
4402 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4403 	struct btrfs_root *root = BTRFS_I(inode)->root;
4404 	struct btrfs_root *new_root;
4405 	struct btrfs_dir_item *di;
4406 	struct btrfs_trans_handle *trans;
4407 	struct btrfs_path *path;
4408 	struct btrfs_key location;
4409 	struct btrfs_disk_key disk_key;
4410 	u64 objectid = 0;
4411 	u64 dir_id;
4412 	int ret;
4413 
4414 	if (!capable(CAP_SYS_ADMIN))
4415 		return -EPERM;
4416 
4417 	ret = mnt_want_write_file(file);
4418 	if (ret)
4419 		return ret;
4420 
4421 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4422 		ret = -EFAULT;
4423 		goto out;
4424 	}
4425 
4426 	if (!objectid)
4427 		objectid = BTRFS_FS_TREE_OBJECTID;
4428 
4429 	location.objectid = objectid;
4430 	location.type = BTRFS_ROOT_ITEM_KEY;
4431 	location.offset = (u64)-1;
4432 
4433 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4434 	if (IS_ERR(new_root)) {
4435 		ret = PTR_ERR(new_root);
4436 		goto out;
4437 	}
4438 	if (!is_fstree(new_root->objectid)) {
4439 		ret = -ENOENT;
4440 		goto out;
4441 	}
4442 
4443 	path = btrfs_alloc_path();
4444 	if (!path) {
4445 		ret = -ENOMEM;
4446 		goto out;
4447 	}
4448 	path->leave_spinning = 1;
4449 
4450 	trans = btrfs_start_transaction(root, 1);
4451 	if (IS_ERR(trans)) {
4452 		btrfs_free_path(path);
4453 		ret = PTR_ERR(trans);
4454 		goto out;
4455 	}
4456 
4457 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4458 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4459 				   dir_id, "default", 7, 1);
4460 	if (IS_ERR_OR_NULL(di)) {
4461 		btrfs_free_path(path);
4462 		btrfs_end_transaction(trans);
4463 		btrfs_err(fs_info,
4464 			  "Umm, you don't have the default diritem, this isn't going to work");
4465 		ret = -ENOENT;
4466 		goto out;
4467 	}
4468 
4469 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4470 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4471 	btrfs_mark_buffer_dirty(path->nodes[0]);
4472 	btrfs_free_path(path);
4473 
4474 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4475 	btrfs_end_transaction(trans);
4476 out:
4477 	mnt_drop_write_file(file);
4478 	return ret;
4479 }
4480 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4481 static void get_block_group_info(struct list_head *groups_list,
4482 				 struct btrfs_ioctl_space_info *space)
4483 {
4484 	struct btrfs_block_group_cache *block_group;
4485 
4486 	space->total_bytes = 0;
4487 	space->used_bytes = 0;
4488 	space->flags = 0;
4489 	list_for_each_entry(block_group, groups_list, list) {
4490 		space->flags = block_group->flags;
4491 		space->total_bytes += block_group->key.offset;
4492 		space->used_bytes +=
4493 			btrfs_block_group_used(&block_group->item);
4494 	}
4495 }
4496 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)4497 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4498 				   void __user *arg)
4499 {
4500 	struct btrfs_ioctl_space_args space_args;
4501 	struct btrfs_ioctl_space_info space;
4502 	struct btrfs_ioctl_space_info *dest;
4503 	struct btrfs_ioctl_space_info *dest_orig;
4504 	struct btrfs_ioctl_space_info __user *user_dest;
4505 	struct btrfs_space_info *info;
4506 	static const u64 types[] = {
4507 		BTRFS_BLOCK_GROUP_DATA,
4508 		BTRFS_BLOCK_GROUP_SYSTEM,
4509 		BTRFS_BLOCK_GROUP_METADATA,
4510 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4511 	};
4512 	int num_types = 4;
4513 	int alloc_size;
4514 	int ret = 0;
4515 	u64 slot_count = 0;
4516 	int i, c;
4517 
4518 	if (copy_from_user(&space_args,
4519 			   (struct btrfs_ioctl_space_args __user *)arg,
4520 			   sizeof(space_args)))
4521 		return -EFAULT;
4522 
4523 	for (i = 0; i < num_types; i++) {
4524 		struct btrfs_space_info *tmp;
4525 
4526 		info = NULL;
4527 		rcu_read_lock();
4528 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4529 					list) {
4530 			if (tmp->flags == types[i]) {
4531 				info = tmp;
4532 				break;
4533 			}
4534 		}
4535 		rcu_read_unlock();
4536 
4537 		if (!info)
4538 			continue;
4539 
4540 		down_read(&info->groups_sem);
4541 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4542 			if (!list_empty(&info->block_groups[c]))
4543 				slot_count++;
4544 		}
4545 		up_read(&info->groups_sem);
4546 	}
4547 
4548 	/*
4549 	 * Global block reserve, exported as a space_info
4550 	 */
4551 	slot_count++;
4552 
4553 	/* space_slots == 0 means they are asking for a count */
4554 	if (space_args.space_slots == 0) {
4555 		space_args.total_spaces = slot_count;
4556 		goto out;
4557 	}
4558 
4559 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4560 
4561 	alloc_size = sizeof(*dest) * slot_count;
4562 
4563 	/* we generally have at most 6 or so space infos, one for each raid
4564 	 * level.  So, a whole page should be more than enough for everyone
4565 	 */
4566 	if (alloc_size > PAGE_SIZE)
4567 		return -ENOMEM;
4568 
4569 	space_args.total_spaces = 0;
4570 	dest = kmalloc(alloc_size, GFP_KERNEL);
4571 	if (!dest)
4572 		return -ENOMEM;
4573 	dest_orig = dest;
4574 
4575 	/* now we have a buffer to copy into */
4576 	for (i = 0; i < num_types; i++) {
4577 		struct btrfs_space_info *tmp;
4578 
4579 		if (!slot_count)
4580 			break;
4581 
4582 		info = NULL;
4583 		rcu_read_lock();
4584 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4585 					list) {
4586 			if (tmp->flags == types[i]) {
4587 				info = tmp;
4588 				break;
4589 			}
4590 		}
4591 		rcu_read_unlock();
4592 
4593 		if (!info)
4594 			continue;
4595 		down_read(&info->groups_sem);
4596 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4597 			if (!list_empty(&info->block_groups[c])) {
4598 				get_block_group_info(&info->block_groups[c],
4599 						     &space);
4600 				memcpy(dest, &space, sizeof(space));
4601 				dest++;
4602 				space_args.total_spaces++;
4603 				slot_count--;
4604 			}
4605 			if (!slot_count)
4606 				break;
4607 		}
4608 		up_read(&info->groups_sem);
4609 	}
4610 
4611 	/*
4612 	 * Add global block reserve
4613 	 */
4614 	if (slot_count) {
4615 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4616 
4617 		spin_lock(&block_rsv->lock);
4618 		space.total_bytes = block_rsv->size;
4619 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4620 		spin_unlock(&block_rsv->lock);
4621 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4622 		memcpy(dest, &space, sizeof(space));
4623 		space_args.total_spaces++;
4624 	}
4625 
4626 	user_dest = (struct btrfs_ioctl_space_info __user *)
4627 		(arg + sizeof(struct btrfs_ioctl_space_args));
4628 
4629 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4630 		ret = -EFAULT;
4631 
4632 	kfree(dest_orig);
4633 out:
4634 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4635 		ret = -EFAULT;
4636 
4637 	return ret;
4638 }
4639 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4640 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4641 					    void __user *argp)
4642 {
4643 	struct btrfs_trans_handle *trans;
4644 	u64 transid;
4645 	int ret;
4646 
4647 	trans = btrfs_attach_transaction_barrier(root);
4648 	if (IS_ERR(trans)) {
4649 		if (PTR_ERR(trans) != -ENOENT)
4650 			return PTR_ERR(trans);
4651 
4652 		/* No running transaction, don't bother */
4653 		transid = root->fs_info->last_trans_committed;
4654 		goto out;
4655 	}
4656 	transid = trans->transid;
4657 	ret = btrfs_commit_transaction_async(trans, 0);
4658 	if (ret) {
4659 		btrfs_end_transaction(trans);
4660 		return ret;
4661 	}
4662 out:
4663 	if (argp)
4664 		if (copy_to_user(argp, &transid, sizeof(transid)))
4665 			return -EFAULT;
4666 	return 0;
4667 }
4668 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4669 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4670 					   void __user *argp)
4671 {
4672 	u64 transid;
4673 
4674 	if (argp) {
4675 		if (copy_from_user(&transid, argp, sizeof(transid)))
4676 			return -EFAULT;
4677 	} else {
4678 		transid = 0;  /* current trans */
4679 	}
4680 	return btrfs_wait_for_commit(fs_info, transid);
4681 }
4682 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4683 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4684 {
4685 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4686 	struct btrfs_ioctl_scrub_args *sa;
4687 	int ret;
4688 
4689 	if (!capable(CAP_SYS_ADMIN))
4690 		return -EPERM;
4691 
4692 	sa = memdup_user(arg, sizeof(*sa));
4693 	if (IS_ERR(sa))
4694 		return PTR_ERR(sa);
4695 
4696 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4697 		ret = mnt_want_write_file(file);
4698 		if (ret)
4699 			goto out;
4700 	}
4701 
4702 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4703 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4704 			      0);
4705 
4706 	if (copy_to_user(arg, sa, sizeof(*sa)))
4707 		ret = -EFAULT;
4708 
4709 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4710 		mnt_drop_write_file(file);
4711 out:
4712 	kfree(sa);
4713 	return ret;
4714 }
4715 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4716 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4717 {
4718 	if (!capable(CAP_SYS_ADMIN))
4719 		return -EPERM;
4720 
4721 	return btrfs_scrub_cancel(fs_info);
4722 }
4723 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4724 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4725 				       void __user *arg)
4726 {
4727 	struct btrfs_ioctl_scrub_args *sa;
4728 	int ret;
4729 
4730 	if (!capable(CAP_SYS_ADMIN))
4731 		return -EPERM;
4732 
4733 	sa = memdup_user(arg, sizeof(*sa));
4734 	if (IS_ERR(sa))
4735 		return PTR_ERR(sa);
4736 
4737 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4738 
4739 	if (copy_to_user(arg, sa, sizeof(*sa)))
4740 		ret = -EFAULT;
4741 
4742 	kfree(sa);
4743 	return ret;
4744 }
4745 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4746 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4747 				      void __user *arg)
4748 {
4749 	struct btrfs_ioctl_get_dev_stats *sa;
4750 	int ret;
4751 
4752 	sa = memdup_user(arg, sizeof(*sa));
4753 	if (IS_ERR(sa))
4754 		return PTR_ERR(sa);
4755 
4756 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4757 		kfree(sa);
4758 		return -EPERM;
4759 	}
4760 
4761 	ret = btrfs_get_dev_stats(fs_info, sa);
4762 
4763 	if (copy_to_user(arg, sa, sizeof(*sa)))
4764 		ret = -EFAULT;
4765 
4766 	kfree(sa);
4767 	return ret;
4768 }
4769 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4770 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4771 				    void __user *arg)
4772 {
4773 	struct btrfs_ioctl_dev_replace_args *p;
4774 	int ret;
4775 
4776 	if (!capable(CAP_SYS_ADMIN))
4777 		return -EPERM;
4778 
4779 	p = memdup_user(arg, sizeof(*p));
4780 	if (IS_ERR(p))
4781 		return PTR_ERR(p);
4782 
4783 	switch (p->cmd) {
4784 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4785 		if (sb_rdonly(fs_info->sb)) {
4786 			ret = -EROFS;
4787 			goto out;
4788 		}
4789 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4790 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4791 		} else {
4792 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4793 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4794 		}
4795 		break;
4796 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4797 		btrfs_dev_replace_status(fs_info, p);
4798 		ret = 0;
4799 		break;
4800 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4801 		p->result = btrfs_dev_replace_cancel(fs_info);
4802 		ret = 0;
4803 		break;
4804 	default:
4805 		ret = -EINVAL;
4806 		break;
4807 	}
4808 
4809 	if (copy_to_user(arg, p, sizeof(*p)))
4810 		ret = -EFAULT;
4811 out:
4812 	kfree(p);
4813 	return ret;
4814 }
4815 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4816 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4817 {
4818 	int ret = 0;
4819 	int i;
4820 	u64 rel_ptr;
4821 	int size;
4822 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4823 	struct inode_fs_paths *ipath = NULL;
4824 	struct btrfs_path *path;
4825 
4826 	if (!capable(CAP_DAC_READ_SEARCH))
4827 		return -EPERM;
4828 
4829 	path = btrfs_alloc_path();
4830 	if (!path) {
4831 		ret = -ENOMEM;
4832 		goto out;
4833 	}
4834 
4835 	ipa = memdup_user(arg, sizeof(*ipa));
4836 	if (IS_ERR(ipa)) {
4837 		ret = PTR_ERR(ipa);
4838 		ipa = NULL;
4839 		goto out;
4840 	}
4841 
4842 	size = min_t(u32, ipa->size, 4096);
4843 	ipath = init_ipath(size, root, path);
4844 	if (IS_ERR(ipath)) {
4845 		ret = PTR_ERR(ipath);
4846 		ipath = NULL;
4847 		goto out;
4848 	}
4849 
4850 	ret = paths_from_inode(ipa->inum, ipath);
4851 	if (ret < 0)
4852 		goto out;
4853 
4854 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4855 		rel_ptr = ipath->fspath->val[i] -
4856 			  (u64)(unsigned long)ipath->fspath->val;
4857 		ipath->fspath->val[i] = rel_ptr;
4858 	}
4859 
4860 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4861 			   ipath->fspath, size);
4862 	if (ret) {
4863 		ret = -EFAULT;
4864 		goto out;
4865 	}
4866 
4867 out:
4868 	btrfs_free_path(path);
4869 	free_ipath(ipath);
4870 	kfree(ipa);
4871 
4872 	return ret;
4873 }
4874 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4875 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4876 {
4877 	struct btrfs_data_container *inodes = ctx;
4878 	const size_t c = 3 * sizeof(u64);
4879 
4880 	if (inodes->bytes_left >= c) {
4881 		inodes->bytes_left -= c;
4882 		inodes->val[inodes->elem_cnt] = inum;
4883 		inodes->val[inodes->elem_cnt + 1] = offset;
4884 		inodes->val[inodes->elem_cnt + 2] = root;
4885 		inodes->elem_cnt += 3;
4886 	} else {
4887 		inodes->bytes_missing += c - inodes->bytes_left;
4888 		inodes->bytes_left = 0;
4889 		inodes->elem_missed += 3;
4890 	}
4891 
4892 	return 0;
4893 }
4894 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4895 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4896 					void __user *arg, int version)
4897 {
4898 	int ret = 0;
4899 	int size;
4900 	struct btrfs_ioctl_logical_ino_args *loi;
4901 	struct btrfs_data_container *inodes = NULL;
4902 	struct btrfs_path *path = NULL;
4903 	bool ignore_offset;
4904 
4905 	if (!capable(CAP_SYS_ADMIN))
4906 		return -EPERM;
4907 
4908 	loi = memdup_user(arg, sizeof(*loi));
4909 	if (IS_ERR(loi))
4910 		return PTR_ERR(loi);
4911 
4912 	if (version == 1) {
4913 		ignore_offset = false;
4914 		size = min_t(u32, loi->size, SZ_64K);
4915 	} else {
4916 		/* All reserved bits must be 0 for now */
4917 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4918 			ret = -EINVAL;
4919 			goto out_loi;
4920 		}
4921 		/* Only accept flags we have defined so far */
4922 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4923 			ret = -EINVAL;
4924 			goto out_loi;
4925 		}
4926 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4927 		size = min_t(u32, loi->size, SZ_16M);
4928 	}
4929 
4930 	path = btrfs_alloc_path();
4931 	if (!path) {
4932 		ret = -ENOMEM;
4933 		goto out;
4934 	}
4935 
4936 	inodes = init_data_container(size);
4937 	if (IS_ERR(inodes)) {
4938 		ret = PTR_ERR(inodes);
4939 		inodes = NULL;
4940 		goto out;
4941 	}
4942 
4943 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4944 					  build_ino_list, inodes, ignore_offset);
4945 	if (ret == -EINVAL)
4946 		ret = -ENOENT;
4947 	if (ret < 0)
4948 		goto out;
4949 
4950 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4951 			   size);
4952 	if (ret)
4953 		ret = -EFAULT;
4954 
4955 out:
4956 	btrfs_free_path(path);
4957 	kvfree(inodes);
4958 out_loi:
4959 	kfree(loi);
4960 
4961 	return ret;
4962 }
4963 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4964 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4965 			       struct btrfs_ioctl_balance_args *bargs)
4966 {
4967 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4968 
4969 	bargs->flags = bctl->flags;
4970 
4971 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4972 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4973 	if (atomic_read(&fs_info->balance_pause_req))
4974 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4975 	if (atomic_read(&fs_info->balance_cancel_req))
4976 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4977 
4978 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4979 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4980 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4981 
4982 	spin_lock(&fs_info->balance_lock);
4983 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4984 	spin_unlock(&fs_info->balance_lock);
4985 }
4986 
btrfs_ioctl_balance(struct file * file,void __user * arg)4987 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4988 {
4989 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4990 	struct btrfs_fs_info *fs_info = root->fs_info;
4991 	struct btrfs_ioctl_balance_args *bargs;
4992 	struct btrfs_balance_control *bctl;
4993 	bool need_unlock; /* for mut. excl. ops lock */
4994 	int ret;
4995 
4996 	if (!capable(CAP_SYS_ADMIN))
4997 		return -EPERM;
4998 
4999 	ret = mnt_want_write_file(file);
5000 	if (ret)
5001 		return ret;
5002 
5003 again:
5004 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
5005 		mutex_lock(&fs_info->balance_mutex);
5006 		need_unlock = true;
5007 		goto locked;
5008 	}
5009 
5010 	/*
5011 	 * mut. excl. ops lock is locked.  Three possibilities:
5012 	 *   (1) some other op is running
5013 	 *   (2) balance is running
5014 	 *   (3) balance is paused -- special case (think resume)
5015 	 */
5016 	mutex_lock(&fs_info->balance_mutex);
5017 	if (fs_info->balance_ctl) {
5018 		/* this is either (2) or (3) */
5019 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5020 			mutex_unlock(&fs_info->balance_mutex);
5021 			/*
5022 			 * Lock released to allow other waiters to continue,
5023 			 * we'll reexamine the status again.
5024 			 */
5025 			mutex_lock(&fs_info->balance_mutex);
5026 
5027 			if (fs_info->balance_ctl &&
5028 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5029 				/* this is (3) */
5030 				need_unlock = false;
5031 				goto locked;
5032 			}
5033 
5034 			mutex_unlock(&fs_info->balance_mutex);
5035 			goto again;
5036 		} else {
5037 			/* this is (2) */
5038 			mutex_unlock(&fs_info->balance_mutex);
5039 			ret = -EINPROGRESS;
5040 			goto out;
5041 		}
5042 	} else {
5043 		/* this is (1) */
5044 		mutex_unlock(&fs_info->balance_mutex);
5045 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
5046 		goto out;
5047 	}
5048 
5049 locked:
5050 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
5051 
5052 	if (arg) {
5053 		bargs = memdup_user(arg, sizeof(*bargs));
5054 		if (IS_ERR(bargs)) {
5055 			ret = PTR_ERR(bargs);
5056 			goto out_unlock;
5057 		}
5058 
5059 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
5060 			if (!fs_info->balance_ctl) {
5061 				ret = -ENOTCONN;
5062 				goto out_bargs;
5063 			}
5064 
5065 			bctl = fs_info->balance_ctl;
5066 			spin_lock(&fs_info->balance_lock);
5067 			bctl->flags |= BTRFS_BALANCE_RESUME;
5068 			spin_unlock(&fs_info->balance_lock);
5069 
5070 			goto do_balance;
5071 		}
5072 	} else {
5073 		bargs = NULL;
5074 	}
5075 
5076 	if (fs_info->balance_ctl) {
5077 		ret = -EINPROGRESS;
5078 		goto out_bargs;
5079 	}
5080 
5081 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
5082 	if (!bctl) {
5083 		ret = -ENOMEM;
5084 		goto out_bargs;
5085 	}
5086 
5087 	if (arg) {
5088 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
5089 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
5090 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
5091 
5092 		bctl->flags = bargs->flags;
5093 	} else {
5094 		/* balance everything - no filters */
5095 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
5096 	}
5097 
5098 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
5099 		ret = -EINVAL;
5100 		goto out_bctl;
5101 	}
5102 
5103 do_balance:
5104 	/*
5105 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
5106 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
5107 	 * restriper was paused all the way until unmount, in free_fs_info.
5108 	 * The flag should be cleared after reset_balance_state.
5109 	 */
5110 	need_unlock = false;
5111 
5112 	ret = btrfs_balance(fs_info, bctl, bargs);
5113 	bctl = NULL;
5114 
5115 	if (arg) {
5116 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
5117 			ret = -EFAULT;
5118 	}
5119 
5120 out_bctl:
5121 	kfree(bctl);
5122 out_bargs:
5123 	kfree(bargs);
5124 out_unlock:
5125 	mutex_unlock(&fs_info->balance_mutex);
5126 	if (need_unlock)
5127 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
5128 out:
5129 	mnt_drop_write_file(file);
5130 	return ret;
5131 }
5132 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)5133 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
5134 {
5135 	if (!capable(CAP_SYS_ADMIN))
5136 		return -EPERM;
5137 
5138 	switch (cmd) {
5139 	case BTRFS_BALANCE_CTL_PAUSE:
5140 		return btrfs_pause_balance(fs_info);
5141 	case BTRFS_BALANCE_CTL_CANCEL:
5142 		return btrfs_cancel_balance(fs_info);
5143 	}
5144 
5145 	return -EINVAL;
5146 }
5147 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)5148 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
5149 					 void __user *arg)
5150 {
5151 	struct btrfs_ioctl_balance_args *bargs;
5152 	int ret = 0;
5153 
5154 	if (!capable(CAP_SYS_ADMIN))
5155 		return -EPERM;
5156 
5157 	mutex_lock(&fs_info->balance_mutex);
5158 	if (!fs_info->balance_ctl) {
5159 		ret = -ENOTCONN;
5160 		goto out;
5161 	}
5162 
5163 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
5164 	if (!bargs) {
5165 		ret = -ENOMEM;
5166 		goto out;
5167 	}
5168 
5169 	btrfs_update_ioctl_balance_args(fs_info, bargs);
5170 
5171 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
5172 		ret = -EFAULT;
5173 
5174 	kfree(bargs);
5175 out:
5176 	mutex_unlock(&fs_info->balance_mutex);
5177 	return ret;
5178 }
5179 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)5180 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
5181 {
5182 	struct inode *inode = file_inode(file);
5183 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5184 	struct btrfs_ioctl_quota_ctl_args *sa;
5185 	int ret;
5186 
5187 	if (!capable(CAP_SYS_ADMIN))
5188 		return -EPERM;
5189 
5190 	ret = mnt_want_write_file(file);
5191 	if (ret)
5192 		return ret;
5193 
5194 	sa = memdup_user(arg, sizeof(*sa));
5195 	if (IS_ERR(sa)) {
5196 		ret = PTR_ERR(sa);
5197 		goto drop_write;
5198 	}
5199 
5200 	down_write(&fs_info->subvol_sem);
5201 
5202 	switch (sa->cmd) {
5203 	case BTRFS_QUOTA_CTL_ENABLE:
5204 		ret = btrfs_quota_enable(fs_info);
5205 		break;
5206 	case BTRFS_QUOTA_CTL_DISABLE:
5207 		ret = btrfs_quota_disable(fs_info);
5208 		break;
5209 	default:
5210 		ret = -EINVAL;
5211 		break;
5212 	}
5213 
5214 	kfree(sa);
5215 	up_write(&fs_info->subvol_sem);
5216 drop_write:
5217 	mnt_drop_write_file(file);
5218 	return ret;
5219 }
5220 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)5221 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
5222 {
5223 	struct inode *inode = file_inode(file);
5224 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5225 	struct btrfs_root *root = BTRFS_I(inode)->root;
5226 	struct btrfs_ioctl_qgroup_assign_args *sa;
5227 	struct btrfs_trans_handle *trans;
5228 	int ret;
5229 	int err;
5230 
5231 	if (!capable(CAP_SYS_ADMIN))
5232 		return -EPERM;
5233 
5234 	ret = mnt_want_write_file(file);
5235 	if (ret)
5236 		return ret;
5237 
5238 	sa = memdup_user(arg, sizeof(*sa));
5239 	if (IS_ERR(sa)) {
5240 		ret = PTR_ERR(sa);
5241 		goto drop_write;
5242 	}
5243 
5244 	trans = btrfs_join_transaction(root);
5245 	if (IS_ERR(trans)) {
5246 		ret = PTR_ERR(trans);
5247 		goto out;
5248 	}
5249 
5250 	if (sa->assign) {
5251 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
5252 	} else {
5253 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
5254 	}
5255 
5256 	/* update qgroup status and info */
5257 	err = btrfs_run_qgroups(trans);
5258 	if (err < 0)
5259 		btrfs_handle_fs_error(fs_info, err,
5260 				      "failed to update qgroup status and info");
5261 	err = btrfs_end_transaction(trans);
5262 	if (err && !ret)
5263 		ret = err;
5264 
5265 out:
5266 	kfree(sa);
5267 drop_write:
5268 	mnt_drop_write_file(file);
5269 	return ret;
5270 }
5271 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)5272 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5273 {
5274 	struct inode *inode = file_inode(file);
5275 	struct btrfs_root *root = BTRFS_I(inode)->root;
5276 	struct btrfs_ioctl_qgroup_create_args *sa;
5277 	struct btrfs_trans_handle *trans;
5278 	int ret;
5279 	int err;
5280 
5281 	if (!capable(CAP_SYS_ADMIN))
5282 		return -EPERM;
5283 
5284 	ret = mnt_want_write_file(file);
5285 	if (ret)
5286 		return ret;
5287 
5288 	sa = memdup_user(arg, sizeof(*sa));
5289 	if (IS_ERR(sa)) {
5290 		ret = PTR_ERR(sa);
5291 		goto drop_write;
5292 	}
5293 
5294 	if (!sa->qgroupid) {
5295 		ret = -EINVAL;
5296 		goto out;
5297 	}
5298 
5299 	trans = btrfs_join_transaction(root);
5300 	if (IS_ERR(trans)) {
5301 		ret = PTR_ERR(trans);
5302 		goto out;
5303 	}
5304 
5305 	if (sa->create) {
5306 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
5307 	} else {
5308 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
5309 	}
5310 
5311 	err = btrfs_end_transaction(trans);
5312 	if (err && !ret)
5313 		ret = err;
5314 
5315 out:
5316 	kfree(sa);
5317 drop_write:
5318 	mnt_drop_write_file(file);
5319 	return ret;
5320 }
5321 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)5322 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5323 {
5324 	struct inode *inode = file_inode(file);
5325 	struct btrfs_root *root = BTRFS_I(inode)->root;
5326 	struct btrfs_ioctl_qgroup_limit_args *sa;
5327 	struct btrfs_trans_handle *trans;
5328 	int ret;
5329 	int err;
5330 	u64 qgroupid;
5331 
5332 	if (!capable(CAP_SYS_ADMIN))
5333 		return -EPERM;
5334 
5335 	ret = mnt_want_write_file(file);
5336 	if (ret)
5337 		return ret;
5338 
5339 	sa = memdup_user(arg, sizeof(*sa));
5340 	if (IS_ERR(sa)) {
5341 		ret = PTR_ERR(sa);
5342 		goto drop_write;
5343 	}
5344 
5345 	trans = btrfs_join_transaction(root);
5346 	if (IS_ERR(trans)) {
5347 		ret = PTR_ERR(trans);
5348 		goto out;
5349 	}
5350 
5351 	qgroupid = sa->qgroupid;
5352 	if (!qgroupid) {
5353 		/* take the current subvol as qgroup */
5354 		qgroupid = root->root_key.objectid;
5355 	}
5356 
5357 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5358 
5359 	err = btrfs_end_transaction(trans);
5360 	if (err && !ret)
5361 		ret = err;
5362 
5363 out:
5364 	kfree(sa);
5365 drop_write:
5366 	mnt_drop_write_file(file);
5367 	return ret;
5368 }
5369 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5370 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5371 {
5372 	struct inode *inode = file_inode(file);
5373 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5374 	struct btrfs_ioctl_quota_rescan_args *qsa;
5375 	int ret;
5376 
5377 	if (!capable(CAP_SYS_ADMIN))
5378 		return -EPERM;
5379 
5380 	ret = mnt_want_write_file(file);
5381 	if (ret)
5382 		return ret;
5383 
5384 	qsa = memdup_user(arg, sizeof(*qsa));
5385 	if (IS_ERR(qsa)) {
5386 		ret = PTR_ERR(qsa);
5387 		goto drop_write;
5388 	}
5389 
5390 	if (qsa->flags) {
5391 		ret = -EINVAL;
5392 		goto out;
5393 	}
5394 
5395 	ret = btrfs_qgroup_rescan(fs_info);
5396 
5397 out:
5398 	kfree(qsa);
5399 drop_write:
5400 	mnt_drop_write_file(file);
5401 	return ret;
5402 }
5403 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5404 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5405 {
5406 	struct inode *inode = file_inode(file);
5407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5408 	struct btrfs_ioctl_quota_rescan_args *qsa;
5409 	int ret = 0;
5410 
5411 	if (!capable(CAP_SYS_ADMIN))
5412 		return -EPERM;
5413 
5414 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5415 	if (!qsa)
5416 		return -ENOMEM;
5417 
5418 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5419 		qsa->flags = 1;
5420 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5421 	}
5422 
5423 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5424 		ret = -EFAULT;
5425 
5426 	kfree(qsa);
5427 	return ret;
5428 }
5429 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5430 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5431 {
5432 	struct inode *inode = file_inode(file);
5433 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5434 
5435 	if (!capable(CAP_SYS_ADMIN))
5436 		return -EPERM;
5437 
5438 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5439 }
5440 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5441 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5442 					    struct btrfs_ioctl_received_subvol_args *sa)
5443 {
5444 	struct inode *inode = file_inode(file);
5445 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5446 	struct btrfs_root *root = BTRFS_I(inode)->root;
5447 	struct btrfs_root_item *root_item = &root->root_item;
5448 	struct btrfs_trans_handle *trans;
5449 	struct timespec64 ct = current_time(inode);
5450 	int ret = 0;
5451 	int received_uuid_changed;
5452 
5453 	if (!inode_owner_or_capable(inode))
5454 		return -EPERM;
5455 
5456 	ret = mnt_want_write_file(file);
5457 	if (ret < 0)
5458 		return ret;
5459 
5460 	down_write(&fs_info->subvol_sem);
5461 
5462 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5463 		ret = -EINVAL;
5464 		goto out;
5465 	}
5466 
5467 	if (btrfs_root_readonly(root)) {
5468 		ret = -EROFS;
5469 		goto out;
5470 	}
5471 
5472 	/*
5473 	 * 1 - root item
5474 	 * 2 - uuid items (received uuid + subvol uuid)
5475 	 */
5476 	trans = btrfs_start_transaction(root, 3);
5477 	if (IS_ERR(trans)) {
5478 		ret = PTR_ERR(trans);
5479 		trans = NULL;
5480 		goto out;
5481 	}
5482 
5483 	sa->rtransid = trans->transid;
5484 	sa->rtime.sec = ct.tv_sec;
5485 	sa->rtime.nsec = ct.tv_nsec;
5486 
5487 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5488 				       BTRFS_UUID_SIZE);
5489 	if (received_uuid_changed &&
5490 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5491 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5492 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5493 					  root->root_key.objectid);
5494 		if (ret && ret != -ENOENT) {
5495 		        btrfs_abort_transaction(trans, ret);
5496 		        btrfs_end_transaction(trans);
5497 		        goto out;
5498 		}
5499 	}
5500 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5501 	btrfs_set_root_stransid(root_item, sa->stransid);
5502 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5503 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5504 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5505 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5506 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5507 
5508 	ret = btrfs_update_root(trans, fs_info->tree_root,
5509 				&root->root_key, &root->root_item);
5510 	if (ret < 0) {
5511 		btrfs_end_transaction(trans);
5512 		goto out;
5513 	}
5514 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5515 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5516 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5517 					  root->root_key.objectid);
5518 		if (ret < 0 && ret != -EEXIST) {
5519 			btrfs_abort_transaction(trans, ret);
5520 			btrfs_end_transaction(trans);
5521 			goto out;
5522 		}
5523 	}
5524 	ret = btrfs_commit_transaction(trans);
5525 out:
5526 	up_write(&fs_info->subvol_sem);
5527 	mnt_drop_write_file(file);
5528 	return ret;
5529 }
5530 
5531 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5532 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5533 						void __user *arg)
5534 {
5535 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5536 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5537 	int ret = 0;
5538 
5539 	args32 = memdup_user(arg, sizeof(*args32));
5540 	if (IS_ERR(args32))
5541 		return PTR_ERR(args32);
5542 
5543 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5544 	if (!args64) {
5545 		ret = -ENOMEM;
5546 		goto out;
5547 	}
5548 
5549 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5550 	args64->stransid = args32->stransid;
5551 	args64->rtransid = args32->rtransid;
5552 	args64->stime.sec = args32->stime.sec;
5553 	args64->stime.nsec = args32->stime.nsec;
5554 	args64->rtime.sec = args32->rtime.sec;
5555 	args64->rtime.nsec = args32->rtime.nsec;
5556 	args64->flags = args32->flags;
5557 
5558 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5559 	if (ret)
5560 		goto out;
5561 
5562 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5563 	args32->stransid = args64->stransid;
5564 	args32->rtransid = args64->rtransid;
5565 	args32->stime.sec = args64->stime.sec;
5566 	args32->stime.nsec = args64->stime.nsec;
5567 	args32->rtime.sec = args64->rtime.sec;
5568 	args32->rtime.nsec = args64->rtime.nsec;
5569 	args32->flags = args64->flags;
5570 
5571 	ret = copy_to_user(arg, args32, sizeof(*args32));
5572 	if (ret)
5573 		ret = -EFAULT;
5574 
5575 out:
5576 	kfree(args32);
5577 	kfree(args64);
5578 	return ret;
5579 }
5580 #endif
5581 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5582 static long btrfs_ioctl_set_received_subvol(struct file *file,
5583 					    void __user *arg)
5584 {
5585 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5586 	int ret = 0;
5587 
5588 	sa = memdup_user(arg, sizeof(*sa));
5589 	if (IS_ERR(sa))
5590 		return PTR_ERR(sa);
5591 
5592 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5593 
5594 	if (ret)
5595 		goto out;
5596 
5597 	ret = copy_to_user(arg, sa, sizeof(*sa));
5598 	if (ret)
5599 		ret = -EFAULT;
5600 
5601 out:
5602 	kfree(sa);
5603 	return ret;
5604 }
5605 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5606 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5607 {
5608 	struct inode *inode = file_inode(file);
5609 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5610 	size_t len;
5611 	int ret;
5612 	char label[BTRFS_LABEL_SIZE];
5613 
5614 	spin_lock(&fs_info->super_lock);
5615 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5616 	spin_unlock(&fs_info->super_lock);
5617 
5618 	len = strnlen(label, BTRFS_LABEL_SIZE);
5619 
5620 	if (len == BTRFS_LABEL_SIZE) {
5621 		btrfs_warn(fs_info,
5622 			   "label is too long, return the first %zu bytes",
5623 			   --len);
5624 	}
5625 
5626 	ret = copy_to_user(arg, label, len);
5627 
5628 	return ret ? -EFAULT : 0;
5629 }
5630 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5631 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5632 {
5633 	struct inode *inode = file_inode(file);
5634 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5635 	struct btrfs_root *root = BTRFS_I(inode)->root;
5636 	struct btrfs_super_block *super_block = fs_info->super_copy;
5637 	struct btrfs_trans_handle *trans;
5638 	char label[BTRFS_LABEL_SIZE];
5639 	int ret;
5640 
5641 	if (!capable(CAP_SYS_ADMIN))
5642 		return -EPERM;
5643 
5644 	if (copy_from_user(label, arg, sizeof(label)))
5645 		return -EFAULT;
5646 
5647 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5648 		btrfs_err(fs_info,
5649 			  "unable to set label with more than %d bytes",
5650 			  BTRFS_LABEL_SIZE - 1);
5651 		return -EINVAL;
5652 	}
5653 
5654 	ret = mnt_want_write_file(file);
5655 	if (ret)
5656 		return ret;
5657 
5658 	trans = btrfs_start_transaction(root, 0);
5659 	if (IS_ERR(trans)) {
5660 		ret = PTR_ERR(trans);
5661 		goto out_unlock;
5662 	}
5663 
5664 	spin_lock(&fs_info->super_lock);
5665 	strcpy(super_block->label, label);
5666 	spin_unlock(&fs_info->super_lock);
5667 	ret = btrfs_commit_transaction(trans);
5668 
5669 out_unlock:
5670 	mnt_drop_write_file(file);
5671 	return ret;
5672 }
5673 
5674 #define INIT_FEATURE_FLAGS(suffix) \
5675 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5676 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5677 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5678 
btrfs_ioctl_get_supported_features(void __user * arg)5679 int btrfs_ioctl_get_supported_features(void __user *arg)
5680 {
5681 	static const struct btrfs_ioctl_feature_flags features[3] = {
5682 		INIT_FEATURE_FLAGS(SUPP),
5683 		INIT_FEATURE_FLAGS(SAFE_SET),
5684 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5685 	};
5686 
5687 	if (copy_to_user(arg, &features, sizeof(features)))
5688 		return -EFAULT;
5689 
5690 	return 0;
5691 }
5692 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5693 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5694 {
5695 	struct inode *inode = file_inode(file);
5696 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5697 	struct btrfs_super_block *super_block = fs_info->super_copy;
5698 	struct btrfs_ioctl_feature_flags features;
5699 
5700 	features.compat_flags = btrfs_super_compat_flags(super_block);
5701 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5702 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5703 
5704 	if (copy_to_user(arg, &features, sizeof(features)))
5705 		return -EFAULT;
5706 
5707 	return 0;
5708 }
5709 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5710 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5711 			      enum btrfs_feature_set set,
5712 			      u64 change_mask, u64 flags, u64 supported_flags,
5713 			      u64 safe_set, u64 safe_clear)
5714 {
5715 	const char *type = btrfs_feature_set_names[set];
5716 	char *names;
5717 	u64 disallowed, unsupported;
5718 	u64 set_mask = flags & change_mask;
5719 	u64 clear_mask = ~flags & change_mask;
5720 
5721 	unsupported = set_mask & ~supported_flags;
5722 	if (unsupported) {
5723 		names = btrfs_printable_features(set, unsupported);
5724 		if (names) {
5725 			btrfs_warn(fs_info,
5726 				   "this kernel does not support the %s feature bit%s",
5727 				   names, strchr(names, ',') ? "s" : "");
5728 			kfree(names);
5729 		} else
5730 			btrfs_warn(fs_info,
5731 				   "this kernel does not support %s bits 0x%llx",
5732 				   type, unsupported);
5733 		return -EOPNOTSUPP;
5734 	}
5735 
5736 	disallowed = set_mask & ~safe_set;
5737 	if (disallowed) {
5738 		names = btrfs_printable_features(set, disallowed);
5739 		if (names) {
5740 			btrfs_warn(fs_info,
5741 				   "can't set the %s feature bit%s while mounted",
5742 				   names, strchr(names, ',') ? "s" : "");
5743 			kfree(names);
5744 		} else
5745 			btrfs_warn(fs_info,
5746 				   "can't set %s bits 0x%llx while mounted",
5747 				   type, disallowed);
5748 		return -EPERM;
5749 	}
5750 
5751 	disallowed = clear_mask & ~safe_clear;
5752 	if (disallowed) {
5753 		names = btrfs_printable_features(set, disallowed);
5754 		if (names) {
5755 			btrfs_warn(fs_info,
5756 				   "can't clear the %s feature bit%s while mounted",
5757 				   names, strchr(names, ',') ? "s" : "");
5758 			kfree(names);
5759 		} else
5760 			btrfs_warn(fs_info,
5761 				   "can't clear %s bits 0x%llx while mounted",
5762 				   type, disallowed);
5763 		return -EPERM;
5764 	}
5765 
5766 	return 0;
5767 }
5768 
5769 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5770 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5771 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5772 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5773 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5774 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5775 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5776 {
5777 	struct inode *inode = file_inode(file);
5778 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5779 	struct btrfs_root *root = BTRFS_I(inode)->root;
5780 	struct btrfs_super_block *super_block = fs_info->super_copy;
5781 	struct btrfs_ioctl_feature_flags flags[2];
5782 	struct btrfs_trans_handle *trans;
5783 	u64 newflags;
5784 	int ret;
5785 
5786 	if (!capable(CAP_SYS_ADMIN))
5787 		return -EPERM;
5788 
5789 	if (copy_from_user(flags, arg, sizeof(flags)))
5790 		return -EFAULT;
5791 
5792 	/* Nothing to do */
5793 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5794 	    !flags[0].incompat_flags)
5795 		return 0;
5796 
5797 	ret = check_feature(fs_info, flags[0].compat_flags,
5798 			    flags[1].compat_flags, COMPAT);
5799 	if (ret)
5800 		return ret;
5801 
5802 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5803 			    flags[1].compat_ro_flags, COMPAT_RO);
5804 	if (ret)
5805 		return ret;
5806 
5807 	ret = check_feature(fs_info, flags[0].incompat_flags,
5808 			    flags[1].incompat_flags, INCOMPAT);
5809 	if (ret)
5810 		return ret;
5811 
5812 	ret = mnt_want_write_file(file);
5813 	if (ret)
5814 		return ret;
5815 
5816 	trans = btrfs_start_transaction(root, 0);
5817 	if (IS_ERR(trans)) {
5818 		ret = PTR_ERR(trans);
5819 		goto out_drop_write;
5820 	}
5821 
5822 	spin_lock(&fs_info->super_lock);
5823 	newflags = btrfs_super_compat_flags(super_block);
5824 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5825 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5826 	btrfs_set_super_compat_flags(super_block, newflags);
5827 
5828 	newflags = btrfs_super_compat_ro_flags(super_block);
5829 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5830 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5831 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5832 
5833 	newflags = btrfs_super_incompat_flags(super_block);
5834 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5835 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5836 	btrfs_set_super_incompat_flags(super_block, newflags);
5837 	spin_unlock(&fs_info->super_lock);
5838 
5839 	ret = btrfs_commit_transaction(trans);
5840 out_drop_write:
5841 	mnt_drop_write_file(file);
5842 
5843 	return ret;
5844 }
5845 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)5846 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5847 {
5848 	struct btrfs_ioctl_send_args *arg;
5849 	int ret;
5850 
5851 	if (compat) {
5852 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5853 		struct btrfs_ioctl_send_args_32 args32;
5854 
5855 		ret = copy_from_user(&args32, argp, sizeof(args32));
5856 		if (ret)
5857 			return -EFAULT;
5858 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5859 		if (!arg)
5860 			return -ENOMEM;
5861 		arg->send_fd = args32.send_fd;
5862 		arg->clone_sources_count = args32.clone_sources_count;
5863 		arg->clone_sources = compat_ptr(args32.clone_sources);
5864 		arg->parent_root = args32.parent_root;
5865 		arg->flags = args32.flags;
5866 		memcpy(arg->reserved, args32.reserved,
5867 		       sizeof(args32.reserved));
5868 #else
5869 		return -ENOTTY;
5870 #endif
5871 	} else {
5872 		arg = memdup_user(argp, sizeof(*arg));
5873 		if (IS_ERR(arg))
5874 			return PTR_ERR(arg);
5875 	}
5876 	ret = btrfs_ioctl_send(file, arg);
5877 	kfree(arg);
5878 	return ret;
5879 }
5880 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5881 long btrfs_ioctl(struct file *file, unsigned int
5882 		cmd, unsigned long arg)
5883 {
5884 	struct inode *inode = file_inode(file);
5885 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5886 	struct btrfs_root *root = BTRFS_I(inode)->root;
5887 	void __user *argp = (void __user *)arg;
5888 
5889 	switch (cmd) {
5890 	case FS_IOC_GETFLAGS:
5891 		return btrfs_ioctl_getflags(file, argp);
5892 	case FS_IOC_SETFLAGS:
5893 		return btrfs_ioctl_setflags(file, argp);
5894 	case FS_IOC_GETVERSION:
5895 		return btrfs_ioctl_getversion(file, argp);
5896 	case FITRIM:
5897 		return btrfs_ioctl_fitrim(file, argp);
5898 	case BTRFS_IOC_SNAP_CREATE:
5899 		return btrfs_ioctl_snap_create(file, argp, 0);
5900 	case BTRFS_IOC_SNAP_CREATE_V2:
5901 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5902 	case BTRFS_IOC_SUBVOL_CREATE:
5903 		return btrfs_ioctl_snap_create(file, argp, 1);
5904 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5905 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5906 	case BTRFS_IOC_SNAP_DESTROY:
5907 		return btrfs_ioctl_snap_destroy(file, argp);
5908 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5909 		return btrfs_ioctl_subvol_getflags(file, argp);
5910 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5911 		return btrfs_ioctl_subvol_setflags(file, argp);
5912 	case BTRFS_IOC_DEFAULT_SUBVOL:
5913 		return btrfs_ioctl_default_subvol(file, argp);
5914 	case BTRFS_IOC_DEFRAG:
5915 		return btrfs_ioctl_defrag(file, NULL);
5916 	case BTRFS_IOC_DEFRAG_RANGE:
5917 		return btrfs_ioctl_defrag(file, argp);
5918 	case BTRFS_IOC_RESIZE:
5919 		return btrfs_ioctl_resize(file, argp);
5920 	case BTRFS_IOC_ADD_DEV:
5921 		return btrfs_ioctl_add_dev(fs_info, argp);
5922 	case BTRFS_IOC_RM_DEV:
5923 		return btrfs_ioctl_rm_dev(file, argp);
5924 	case BTRFS_IOC_RM_DEV_V2:
5925 		return btrfs_ioctl_rm_dev_v2(file, argp);
5926 	case BTRFS_IOC_FS_INFO:
5927 		return btrfs_ioctl_fs_info(fs_info, argp);
5928 	case BTRFS_IOC_DEV_INFO:
5929 		return btrfs_ioctl_dev_info(fs_info, argp);
5930 	case BTRFS_IOC_BALANCE:
5931 		return btrfs_ioctl_balance(file, NULL);
5932 	case BTRFS_IOC_TREE_SEARCH:
5933 		return btrfs_ioctl_tree_search(file, argp);
5934 	case BTRFS_IOC_TREE_SEARCH_V2:
5935 		return btrfs_ioctl_tree_search_v2(file, argp);
5936 	case BTRFS_IOC_INO_LOOKUP:
5937 		return btrfs_ioctl_ino_lookup(file, argp);
5938 	case BTRFS_IOC_INO_PATHS:
5939 		return btrfs_ioctl_ino_to_path(root, argp);
5940 	case BTRFS_IOC_LOGICAL_INO:
5941 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5942 	case BTRFS_IOC_LOGICAL_INO_V2:
5943 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5944 	case BTRFS_IOC_SPACE_INFO:
5945 		return btrfs_ioctl_space_info(fs_info, argp);
5946 	case BTRFS_IOC_SYNC: {
5947 		int ret;
5948 
5949 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5950 		if (ret)
5951 			return ret;
5952 		ret = btrfs_sync_fs(inode->i_sb, 1);
5953 		/*
5954 		 * The transaction thread may want to do more work,
5955 		 * namely it pokes the cleaner kthread that will start
5956 		 * processing uncleaned subvols.
5957 		 */
5958 		wake_up_process(fs_info->transaction_kthread);
5959 		return ret;
5960 	}
5961 	case BTRFS_IOC_START_SYNC:
5962 		return btrfs_ioctl_start_sync(root, argp);
5963 	case BTRFS_IOC_WAIT_SYNC:
5964 		return btrfs_ioctl_wait_sync(fs_info, argp);
5965 	case BTRFS_IOC_SCRUB:
5966 		return btrfs_ioctl_scrub(file, argp);
5967 	case BTRFS_IOC_SCRUB_CANCEL:
5968 		return btrfs_ioctl_scrub_cancel(fs_info);
5969 	case BTRFS_IOC_SCRUB_PROGRESS:
5970 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5971 	case BTRFS_IOC_BALANCE_V2:
5972 		return btrfs_ioctl_balance(file, argp);
5973 	case BTRFS_IOC_BALANCE_CTL:
5974 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5975 	case BTRFS_IOC_BALANCE_PROGRESS:
5976 		return btrfs_ioctl_balance_progress(fs_info, argp);
5977 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5978 		return btrfs_ioctl_set_received_subvol(file, argp);
5979 #ifdef CONFIG_64BIT
5980 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5981 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5982 #endif
5983 	case BTRFS_IOC_SEND:
5984 		return _btrfs_ioctl_send(file, argp, false);
5985 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5986 	case BTRFS_IOC_SEND_32:
5987 		return _btrfs_ioctl_send(file, argp, true);
5988 #endif
5989 	case BTRFS_IOC_GET_DEV_STATS:
5990 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5991 	case BTRFS_IOC_QUOTA_CTL:
5992 		return btrfs_ioctl_quota_ctl(file, argp);
5993 	case BTRFS_IOC_QGROUP_ASSIGN:
5994 		return btrfs_ioctl_qgroup_assign(file, argp);
5995 	case BTRFS_IOC_QGROUP_CREATE:
5996 		return btrfs_ioctl_qgroup_create(file, argp);
5997 	case BTRFS_IOC_QGROUP_LIMIT:
5998 		return btrfs_ioctl_qgroup_limit(file, argp);
5999 	case BTRFS_IOC_QUOTA_RESCAN:
6000 		return btrfs_ioctl_quota_rescan(file, argp);
6001 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
6002 		return btrfs_ioctl_quota_rescan_status(file, argp);
6003 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
6004 		return btrfs_ioctl_quota_rescan_wait(file, argp);
6005 	case BTRFS_IOC_DEV_REPLACE:
6006 		return btrfs_ioctl_dev_replace(fs_info, argp);
6007 	case BTRFS_IOC_GET_FSLABEL:
6008 		return btrfs_ioctl_get_fslabel(file, argp);
6009 	case BTRFS_IOC_SET_FSLABEL:
6010 		return btrfs_ioctl_set_fslabel(file, argp);
6011 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
6012 		return btrfs_ioctl_get_supported_features(argp);
6013 	case BTRFS_IOC_GET_FEATURES:
6014 		return btrfs_ioctl_get_features(file, argp);
6015 	case BTRFS_IOC_SET_FEATURES:
6016 		return btrfs_ioctl_set_features(file, argp);
6017 	case FS_IOC_FSGETXATTR:
6018 		return btrfs_ioctl_fsgetxattr(file, argp);
6019 	case FS_IOC_FSSETXATTR:
6020 		return btrfs_ioctl_fssetxattr(file, argp);
6021 	case BTRFS_IOC_GET_SUBVOL_INFO:
6022 		return btrfs_ioctl_get_subvol_info(file, argp);
6023 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
6024 		return btrfs_ioctl_get_subvol_rootref(file, argp);
6025 	case BTRFS_IOC_INO_LOOKUP_USER:
6026 		return btrfs_ioctl_ino_lookup_user(file, argp);
6027 	}
6028 
6029 	return -ENOTTY;
6030 }
6031 
6032 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6033 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6034 {
6035 	/*
6036 	 * These all access 32-bit values anyway so no further
6037 	 * handling is necessary.
6038 	 */
6039 	switch (cmd) {
6040 	case FS_IOC32_GETFLAGS:
6041 		cmd = FS_IOC_GETFLAGS;
6042 		break;
6043 	case FS_IOC32_SETFLAGS:
6044 		cmd = FS_IOC_SETFLAGS;
6045 		break;
6046 	case FS_IOC32_GETVERSION:
6047 		cmd = FS_IOC_GETVERSION;
6048 		break;
6049 	}
6050 
6051 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
6052 }
6053 #endif
6054