1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Facebook. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "locking.h"
11 #include "delayed-ref.h"
12 #include "ref-verify.h"
13
14 /*
15 * Used to keep track the roots and number of refs each root has for a given
16 * bytenr. This just tracks the number of direct references, no shared
17 * references.
18 */
19 struct root_entry {
20 u64 root_objectid;
21 u64 num_refs;
22 struct rb_node node;
23 };
24
25 /*
26 * These are meant to represent what should exist in the extent tree, these can
27 * be used to verify the extent tree is consistent as these should all match
28 * what the extent tree says.
29 */
30 struct ref_entry {
31 u64 root_objectid;
32 u64 parent;
33 u64 owner;
34 u64 offset;
35 u64 num_refs;
36 struct rb_node node;
37 };
38
39 #define MAX_TRACE 16
40
41 /*
42 * Whenever we add/remove a reference we record the action. The action maps
43 * back to the delayed ref action. We hold the ref we are changing in the
44 * action so we can account for the history properly, and we record the root we
45 * were called with since it could be different from ref_root. We also store
46 * stack traces because thats how I roll.
47 */
48 struct ref_action {
49 int action;
50 u64 root;
51 struct ref_entry ref;
52 struct list_head list;
53 unsigned long trace[MAX_TRACE];
54 unsigned int trace_len;
55 };
56
57 /*
58 * One of these for every block we reference, it holds the roots and references
59 * to it as well as all of the ref actions that have occured to it. We never
60 * free it until we unmount the file system in order to make sure re-allocations
61 * are happening properly.
62 */
63 struct block_entry {
64 u64 bytenr;
65 u64 len;
66 u64 num_refs;
67 int metadata;
68 int from_disk;
69 struct rb_root roots;
70 struct rb_root refs;
71 struct rb_node node;
72 struct list_head actions;
73 };
74
insert_block_entry(struct rb_root * root,struct block_entry * be)75 static struct block_entry *insert_block_entry(struct rb_root *root,
76 struct block_entry *be)
77 {
78 struct rb_node **p = &root->rb_node;
79 struct rb_node *parent_node = NULL;
80 struct block_entry *entry;
81
82 while (*p) {
83 parent_node = *p;
84 entry = rb_entry(parent_node, struct block_entry, node);
85 if (entry->bytenr > be->bytenr)
86 p = &(*p)->rb_left;
87 else if (entry->bytenr < be->bytenr)
88 p = &(*p)->rb_right;
89 else
90 return entry;
91 }
92
93 rb_link_node(&be->node, parent_node, p);
94 rb_insert_color(&be->node, root);
95 return NULL;
96 }
97
lookup_block_entry(struct rb_root * root,u64 bytenr)98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
99 {
100 struct rb_node *n;
101 struct block_entry *entry = NULL;
102
103 n = root->rb_node;
104 while (n) {
105 entry = rb_entry(n, struct block_entry, node);
106 if (entry->bytenr < bytenr)
107 n = n->rb_right;
108 else if (entry->bytenr > bytenr)
109 n = n->rb_left;
110 else
111 return entry;
112 }
113 return NULL;
114 }
115
insert_root_entry(struct rb_root * root,struct root_entry * re)116 static struct root_entry *insert_root_entry(struct rb_root *root,
117 struct root_entry *re)
118 {
119 struct rb_node **p = &root->rb_node;
120 struct rb_node *parent_node = NULL;
121 struct root_entry *entry;
122
123 while (*p) {
124 parent_node = *p;
125 entry = rb_entry(parent_node, struct root_entry, node);
126 if (entry->root_objectid > re->root_objectid)
127 p = &(*p)->rb_left;
128 else if (entry->root_objectid < re->root_objectid)
129 p = &(*p)->rb_right;
130 else
131 return entry;
132 }
133
134 rb_link_node(&re->node, parent_node, p);
135 rb_insert_color(&re->node, root);
136 return NULL;
137
138 }
139
comp_refs(struct ref_entry * ref1,struct ref_entry * ref2)140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
141 {
142 if (ref1->root_objectid < ref2->root_objectid)
143 return -1;
144 if (ref1->root_objectid > ref2->root_objectid)
145 return 1;
146 if (ref1->parent < ref2->parent)
147 return -1;
148 if (ref1->parent > ref2->parent)
149 return 1;
150 if (ref1->owner < ref2->owner)
151 return -1;
152 if (ref1->owner > ref2->owner)
153 return 1;
154 if (ref1->offset < ref2->offset)
155 return -1;
156 if (ref1->offset > ref2->offset)
157 return 1;
158 return 0;
159 }
160
insert_ref_entry(struct rb_root * root,struct ref_entry * ref)161 static struct ref_entry *insert_ref_entry(struct rb_root *root,
162 struct ref_entry *ref)
163 {
164 struct rb_node **p = &root->rb_node;
165 struct rb_node *parent_node = NULL;
166 struct ref_entry *entry;
167 int cmp;
168
169 while (*p) {
170 parent_node = *p;
171 entry = rb_entry(parent_node, struct ref_entry, node);
172 cmp = comp_refs(entry, ref);
173 if (cmp > 0)
174 p = &(*p)->rb_left;
175 else if (cmp < 0)
176 p = &(*p)->rb_right;
177 else
178 return entry;
179 }
180
181 rb_link_node(&ref->node, parent_node, p);
182 rb_insert_color(&ref->node, root);
183 return NULL;
184
185 }
186
lookup_root_entry(struct rb_root * root,u64 objectid)187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
188 {
189 struct rb_node *n;
190 struct root_entry *entry = NULL;
191
192 n = root->rb_node;
193 while (n) {
194 entry = rb_entry(n, struct root_entry, node);
195 if (entry->root_objectid < objectid)
196 n = n->rb_right;
197 else if (entry->root_objectid > objectid)
198 n = n->rb_left;
199 else
200 return entry;
201 }
202 return NULL;
203 }
204
205 #ifdef CONFIG_STACKTRACE
__save_stack_trace(struct ref_action * ra)206 static void __save_stack_trace(struct ref_action *ra)
207 {
208 struct stack_trace stack_trace;
209
210 stack_trace.max_entries = MAX_TRACE;
211 stack_trace.nr_entries = 0;
212 stack_trace.entries = ra->trace;
213 stack_trace.skip = 2;
214 save_stack_trace(&stack_trace);
215 ra->trace_len = stack_trace.nr_entries;
216 }
217
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)218 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
219 struct ref_action *ra)
220 {
221 struct stack_trace trace;
222
223 if (ra->trace_len == 0) {
224 btrfs_err(fs_info, " ref-verify: no stacktrace");
225 return;
226 }
227 trace.nr_entries = ra->trace_len;
228 trace.entries = ra->trace;
229 print_stack_trace(&trace, 2);
230 }
231 #else
__save_stack_trace(struct ref_action * ra)232 static void inline __save_stack_trace(struct ref_action *ra)
233 {
234 }
235
__print_stack_trace(struct btrfs_fs_info * fs_info,struct ref_action * ra)236 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
237 struct ref_action *ra)
238 {
239 btrfs_err(fs_info, " ref-verify: no stacktrace support");
240 }
241 #endif
242
free_block_entry(struct block_entry * be)243 static void free_block_entry(struct block_entry *be)
244 {
245 struct root_entry *re;
246 struct ref_entry *ref;
247 struct ref_action *ra;
248 struct rb_node *n;
249
250 while ((n = rb_first(&be->roots))) {
251 re = rb_entry(n, struct root_entry, node);
252 rb_erase(&re->node, &be->roots);
253 kfree(re);
254 }
255
256 while((n = rb_first(&be->refs))) {
257 ref = rb_entry(n, struct ref_entry, node);
258 rb_erase(&ref->node, &be->refs);
259 kfree(ref);
260 }
261
262 while (!list_empty(&be->actions)) {
263 ra = list_first_entry(&be->actions, struct ref_action,
264 list);
265 list_del(&ra->list);
266 kfree(ra);
267 }
268 kfree(be);
269 }
270
add_block_entry(struct btrfs_fs_info * fs_info,u64 bytenr,u64 len,u64 root_objectid)271 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
272 u64 bytenr, u64 len,
273 u64 root_objectid)
274 {
275 struct block_entry *be = NULL, *exist;
276 struct root_entry *re = NULL;
277
278 re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
279 be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
280 if (!be || !re) {
281 kfree(re);
282 kfree(be);
283 return ERR_PTR(-ENOMEM);
284 }
285 be->bytenr = bytenr;
286 be->len = len;
287
288 re->root_objectid = root_objectid;
289 re->num_refs = 0;
290
291 spin_lock(&fs_info->ref_verify_lock);
292 exist = insert_block_entry(&fs_info->block_tree, be);
293 if (exist) {
294 if (root_objectid) {
295 struct root_entry *exist_re;
296
297 exist_re = insert_root_entry(&exist->roots, re);
298 if (exist_re)
299 kfree(re);
300 } else {
301 kfree(re);
302 }
303 kfree(be);
304 return exist;
305 }
306
307 be->num_refs = 0;
308 be->metadata = 0;
309 be->from_disk = 0;
310 be->roots = RB_ROOT;
311 be->refs = RB_ROOT;
312 INIT_LIST_HEAD(&be->actions);
313 if (root_objectid)
314 insert_root_entry(&be->roots, re);
315 else
316 kfree(re);
317 return be;
318 }
319
add_tree_block(struct btrfs_fs_info * fs_info,u64 ref_root,u64 parent,u64 bytenr,int level)320 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
321 u64 parent, u64 bytenr, int level)
322 {
323 struct block_entry *be;
324 struct root_entry *re;
325 struct ref_entry *ref = NULL, *exist;
326
327 ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
328 if (!ref)
329 return -ENOMEM;
330
331 if (parent)
332 ref->root_objectid = 0;
333 else
334 ref->root_objectid = ref_root;
335 ref->parent = parent;
336 ref->owner = level;
337 ref->offset = 0;
338 ref->num_refs = 1;
339
340 be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
341 if (IS_ERR(be)) {
342 kfree(ref);
343 return PTR_ERR(be);
344 }
345 be->num_refs++;
346 be->from_disk = 1;
347 be->metadata = 1;
348
349 if (!parent) {
350 ASSERT(ref_root);
351 re = lookup_root_entry(&be->roots, ref_root);
352 ASSERT(re);
353 re->num_refs++;
354 }
355 exist = insert_ref_entry(&be->refs, ref);
356 if (exist) {
357 exist->num_refs++;
358 kfree(ref);
359 }
360 spin_unlock(&fs_info->ref_verify_lock);
361
362 return 0;
363 }
364
add_shared_data_ref(struct btrfs_fs_info * fs_info,u64 parent,u32 num_refs,u64 bytenr,u64 num_bytes)365 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
366 u64 parent, u32 num_refs, u64 bytenr,
367 u64 num_bytes)
368 {
369 struct block_entry *be;
370 struct ref_entry *ref;
371
372 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
373 if (!ref)
374 return -ENOMEM;
375 be = add_block_entry(fs_info, bytenr, num_bytes, 0);
376 if (IS_ERR(be)) {
377 kfree(ref);
378 return PTR_ERR(be);
379 }
380 be->num_refs += num_refs;
381
382 ref->parent = parent;
383 ref->num_refs = num_refs;
384 if (insert_ref_entry(&be->refs, ref)) {
385 spin_unlock(&fs_info->ref_verify_lock);
386 btrfs_err(fs_info, "existing shared ref when reading from disk?");
387 kfree(ref);
388 return -EINVAL;
389 }
390 spin_unlock(&fs_info->ref_verify_lock);
391 return 0;
392 }
393
add_extent_data_ref(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_extent_data_ref * dref,u64 bytenr,u64 num_bytes)394 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
395 struct extent_buffer *leaf,
396 struct btrfs_extent_data_ref *dref,
397 u64 bytenr, u64 num_bytes)
398 {
399 struct block_entry *be;
400 struct ref_entry *ref;
401 struct root_entry *re;
402 u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
403 u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
404 u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
405 u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
406
407 ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
408 if (!ref)
409 return -ENOMEM;
410 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
411 if (IS_ERR(be)) {
412 kfree(ref);
413 return PTR_ERR(be);
414 }
415 be->num_refs += num_refs;
416
417 ref->parent = 0;
418 ref->owner = owner;
419 ref->root_objectid = ref_root;
420 ref->offset = offset;
421 ref->num_refs = num_refs;
422 if (insert_ref_entry(&be->refs, ref)) {
423 spin_unlock(&fs_info->ref_verify_lock);
424 btrfs_err(fs_info, "existing ref when reading from disk?");
425 kfree(ref);
426 return -EINVAL;
427 }
428
429 re = lookup_root_entry(&be->roots, ref_root);
430 if (!re) {
431 spin_unlock(&fs_info->ref_verify_lock);
432 btrfs_err(fs_info, "missing root in new block entry?");
433 return -EINVAL;
434 }
435 re->num_refs += num_refs;
436 spin_unlock(&fs_info->ref_verify_lock);
437 return 0;
438 }
439
process_extent_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,int slot,int * tree_block_level)440 static int process_extent_item(struct btrfs_fs_info *fs_info,
441 struct btrfs_path *path, struct btrfs_key *key,
442 int slot, int *tree_block_level)
443 {
444 struct btrfs_extent_item *ei;
445 struct btrfs_extent_inline_ref *iref;
446 struct btrfs_extent_data_ref *dref;
447 struct btrfs_shared_data_ref *sref;
448 struct extent_buffer *leaf = path->nodes[0];
449 u32 item_size = btrfs_item_size_nr(leaf, slot);
450 unsigned long end, ptr;
451 u64 offset, flags, count;
452 int type, ret;
453
454 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
455 flags = btrfs_extent_flags(leaf, ei);
456
457 if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
458 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
459 struct btrfs_tree_block_info *info;
460
461 info = (struct btrfs_tree_block_info *)(ei + 1);
462 *tree_block_level = btrfs_tree_block_level(leaf, info);
463 iref = (struct btrfs_extent_inline_ref *)(info + 1);
464 } else {
465 if (key->type == BTRFS_METADATA_ITEM_KEY)
466 *tree_block_level = key->offset;
467 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
468 }
469
470 ptr = (unsigned long)iref;
471 end = (unsigned long)ei + item_size;
472 while (ptr < end) {
473 iref = (struct btrfs_extent_inline_ref *)ptr;
474 type = btrfs_extent_inline_ref_type(leaf, iref);
475 offset = btrfs_extent_inline_ref_offset(leaf, iref);
476 switch (type) {
477 case BTRFS_TREE_BLOCK_REF_KEY:
478 ret = add_tree_block(fs_info, offset, 0, key->objectid,
479 *tree_block_level);
480 break;
481 case BTRFS_SHARED_BLOCK_REF_KEY:
482 ret = add_tree_block(fs_info, 0, offset, key->objectid,
483 *tree_block_level);
484 break;
485 case BTRFS_EXTENT_DATA_REF_KEY:
486 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
487 ret = add_extent_data_ref(fs_info, leaf, dref,
488 key->objectid, key->offset);
489 break;
490 case BTRFS_SHARED_DATA_REF_KEY:
491 sref = (struct btrfs_shared_data_ref *)(iref + 1);
492 count = btrfs_shared_data_ref_count(leaf, sref);
493 ret = add_shared_data_ref(fs_info, offset, count,
494 key->objectid, key->offset);
495 break;
496 default:
497 btrfs_err(fs_info, "invalid key type in iref");
498 ret = -EINVAL;
499 break;
500 }
501 if (ret)
502 break;
503 ptr += btrfs_extent_inline_ref_size(type);
504 }
505 return ret;
506 }
507
process_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 * bytenr,u64 * num_bytes)508 static int process_leaf(struct btrfs_root *root,
509 struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
510 {
511 struct btrfs_fs_info *fs_info = root->fs_info;
512 struct extent_buffer *leaf = path->nodes[0];
513 struct btrfs_extent_data_ref *dref;
514 struct btrfs_shared_data_ref *sref;
515 u32 count;
516 int i = 0, tree_block_level = 0, ret = 0;
517 struct btrfs_key key;
518 int nritems = btrfs_header_nritems(leaf);
519
520 for (i = 0; i < nritems; i++) {
521 btrfs_item_key_to_cpu(leaf, &key, i);
522 switch (key.type) {
523 case BTRFS_EXTENT_ITEM_KEY:
524 *num_bytes = key.offset;
525 case BTRFS_METADATA_ITEM_KEY:
526 *bytenr = key.objectid;
527 ret = process_extent_item(fs_info, path, &key, i,
528 &tree_block_level);
529 break;
530 case BTRFS_TREE_BLOCK_REF_KEY:
531 ret = add_tree_block(fs_info, key.offset, 0,
532 key.objectid, tree_block_level);
533 break;
534 case BTRFS_SHARED_BLOCK_REF_KEY:
535 ret = add_tree_block(fs_info, 0, key.offset,
536 key.objectid, tree_block_level);
537 break;
538 case BTRFS_EXTENT_DATA_REF_KEY:
539 dref = btrfs_item_ptr(leaf, i,
540 struct btrfs_extent_data_ref);
541 ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
542 *num_bytes);
543 break;
544 case BTRFS_SHARED_DATA_REF_KEY:
545 sref = btrfs_item_ptr(leaf, i,
546 struct btrfs_shared_data_ref);
547 count = btrfs_shared_data_ref_count(leaf, sref);
548 ret = add_shared_data_ref(fs_info, key.offset, count,
549 *bytenr, *num_bytes);
550 break;
551 default:
552 break;
553 }
554 if (ret)
555 break;
556 }
557 return ret;
558 }
559
560 /* Walk down to the leaf from the given level */
walk_down_tree(struct btrfs_root * root,struct btrfs_path * path,int level,u64 * bytenr,u64 * num_bytes)561 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
562 int level, u64 *bytenr, u64 *num_bytes)
563 {
564 struct btrfs_fs_info *fs_info = root->fs_info;
565 struct extent_buffer *eb;
566 u64 block_bytenr, gen;
567 int ret = 0;
568
569 while (level >= 0) {
570 if (level) {
571 struct btrfs_key first_key;
572
573 block_bytenr = btrfs_node_blockptr(path->nodes[level],
574 path->slots[level]);
575 gen = btrfs_node_ptr_generation(path->nodes[level],
576 path->slots[level]);
577 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
578 path->slots[level]);
579 eb = read_tree_block(fs_info, block_bytenr, gen,
580 level - 1, &first_key);
581 if (IS_ERR(eb))
582 return PTR_ERR(eb);
583 if (!extent_buffer_uptodate(eb)) {
584 free_extent_buffer(eb);
585 return -EIO;
586 }
587 btrfs_tree_read_lock(eb);
588 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
589 path->nodes[level-1] = eb;
590 path->slots[level-1] = 0;
591 path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
592 } else {
593 ret = process_leaf(root, path, bytenr, num_bytes);
594 if (ret)
595 break;
596 }
597 level--;
598 }
599 return ret;
600 }
601
602 /* Walk up to the next node that needs to be processed */
walk_up_tree(struct btrfs_path * path,int * level)603 static int walk_up_tree(struct btrfs_path *path, int *level)
604 {
605 int l;
606
607 for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
608 if (!path->nodes[l])
609 continue;
610 if (l) {
611 path->slots[l]++;
612 if (path->slots[l] <
613 btrfs_header_nritems(path->nodes[l])) {
614 *level = l;
615 return 0;
616 }
617 }
618 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
619 free_extent_buffer(path->nodes[l]);
620 path->nodes[l] = NULL;
621 path->slots[l] = 0;
622 path->locks[l] = 0;
623 }
624
625 return 1;
626 }
627
dump_ref_action(struct btrfs_fs_info * fs_info,struct ref_action * ra)628 static void dump_ref_action(struct btrfs_fs_info *fs_info,
629 struct ref_action *ra)
630 {
631 btrfs_err(fs_info,
632 " Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
633 ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
634 ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
635 __print_stack_trace(fs_info, ra);
636 }
637
638 /*
639 * Dumps all the information from the block entry to printk, it's going to be
640 * awesome.
641 */
dump_block_entry(struct btrfs_fs_info * fs_info,struct block_entry * be)642 static void dump_block_entry(struct btrfs_fs_info *fs_info,
643 struct block_entry *be)
644 {
645 struct ref_entry *ref;
646 struct root_entry *re;
647 struct ref_action *ra;
648 struct rb_node *n;
649
650 btrfs_err(fs_info,
651 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
652 be->bytenr, be->len, be->num_refs, be->metadata,
653 be->from_disk);
654
655 for (n = rb_first(&be->refs); n; n = rb_next(n)) {
656 ref = rb_entry(n, struct ref_entry, node);
657 btrfs_err(fs_info,
658 " ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
659 ref->root_objectid, ref->parent, ref->owner,
660 ref->offset, ref->num_refs);
661 }
662
663 for (n = rb_first(&be->roots); n; n = rb_next(n)) {
664 re = rb_entry(n, struct root_entry, node);
665 btrfs_err(fs_info, " root entry %llu, num_refs %llu",
666 re->root_objectid, re->num_refs);
667 }
668
669 list_for_each_entry(ra, &be->actions, list)
670 dump_ref_action(fs_info, ra);
671 }
672
673 /*
674 * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
675 * @root: the root we are making this modification from.
676 * @bytenr: the bytenr we are modifying.
677 * @num_bytes: number of bytes.
678 * @parent: the parent bytenr.
679 * @ref_root: the original root owner of the bytenr.
680 * @owner: level in the case of metadata, inode in the case of data.
681 * @offset: 0 for metadata, file offset for data.
682 * @action: the action that we are doing, this is the same as the delayed ref
683 * action.
684 *
685 * This will add an action item to the given bytenr and do sanity checks to make
686 * sure we haven't messed something up. If we are making a new allocation and
687 * this block entry has history we will delete all previous actions as long as
688 * our sanity checks pass as they are no longer needed.
689 */
btrfs_ref_tree_mod(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 ref_root,u64 owner,u64 offset,int action)690 int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes,
691 u64 parent, u64 ref_root, u64 owner, u64 offset,
692 int action)
693 {
694 struct btrfs_fs_info *fs_info = root->fs_info;
695 struct ref_entry *ref = NULL, *exist;
696 struct ref_action *ra = NULL;
697 struct block_entry *be = NULL;
698 struct root_entry *re = NULL;
699 int ret = 0;
700 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
701
702 if (!btrfs_test_opt(root->fs_info, REF_VERIFY))
703 return 0;
704
705 ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
706 ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
707 if (!ra || !ref) {
708 kfree(ref);
709 kfree(ra);
710 ret = -ENOMEM;
711 goto out;
712 }
713
714 if (parent) {
715 ref->parent = parent;
716 } else {
717 ref->root_objectid = ref_root;
718 ref->owner = owner;
719 ref->offset = offset;
720 }
721 ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
722
723 memcpy(&ra->ref, ref, sizeof(struct ref_entry));
724 /*
725 * Save the extra info from the delayed ref in the ref action to make it
726 * easier to figure out what is happening. The real ref's we add to the
727 * ref tree need to reflect what we save on disk so it matches any
728 * on-disk refs we pre-loaded.
729 */
730 ra->ref.owner = owner;
731 ra->ref.offset = offset;
732 ra->ref.root_objectid = ref_root;
733 __save_stack_trace(ra);
734
735 INIT_LIST_HEAD(&ra->list);
736 ra->action = action;
737 ra->root = root->objectid;
738
739 /*
740 * This is an allocation, preallocate the block_entry in case we haven't
741 * used it before.
742 */
743 ret = -EINVAL;
744 if (action == BTRFS_ADD_DELAYED_EXTENT) {
745 /*
746 * For subvol_create we'll just pass in whatever the parent root
747 * is and the new root objectid, so let's not treat the passed
748 * in root as if it really has a ref for this bytenr.
749 */
750 be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root);
751 if (IS_ERR(be)) {
752 kfree(ref);
753 kfree(ra);
754 ret = PTR_ERR(be);
755 goto out;
756 }
757 be->num_refs++;
758 if (metadata)
759 be->metadata = 1;
760
761 if (be->num_refs != 1) {
762 btrfs_err(fs_info,
763 "re-allocated a block that still has references to it!");
764 dump_block_entry(fs_info, be);
765 dump_ref_action(fs_info, ra);
766 kfree(ref);
767 kfree(ra);
768 goto out_unlock;
769 }
770
771 while (!list_empty(&be->actions)) {
772 struct ref_action *tmp;
773
774 tmp = list_first_entry(&be->actions, struct ref_action,
775 list);
776 list_del(&tmp->list);
777 kfree(tmp);
778 }
779 } else {
780 struct root_entry *tmp;
781
782 if (!parent) {
783 re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
784 if (!re) {
785 kfree(ref);
786 kfree(ra);
787 ret = -ENOMEM;
788 goto out;
789 }
790 /*
791 * This is the root that is modifying us, so it's the
792 * one we want to lookup below when we modify the
793 * re->num_refs.
794 */
795 ref_root = root->objectid;
796 re->root_objectid = root->objectid;
797 re->num_refs = 0;
798 }
799
800 spin_lock(&root->fs_info->ref_verify_lock);
801 be = lookup_block_entry(&root->fs_info->block_tree, bytenr);
802 if (!be) {
803 btrfs_err(fs_info,
804 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
805 action, (unsigned long long)bytenr,
806 (unsigned long long)num_bytes);
807 dump_ref_action(fs_info, ra);
808 kfree(ref);
809 kfree(ra);
810 goto out_unlock;
811 }
812
813 if (!parent) {
814 tmp = insert_root_entry(&be->roots, re);
815 if (tmp) {
816 kfree(re);
817 re = tmp;
818 }
819 }
820 }
821
822 exist = insert_ref_entry(&be->refs, ref);
823 if (exist) {
824 if (action == BTRFS_DROP_DELAYED_REF) {
825 if (exist->num_refs == 0) {
826 btrfs_err(fs_info,
827 "dropping a ref for a existing root that doesn't have a ref on the block");
828 dump_block_entry(fs_info, be);
829 dump_ref_action(fs_info, ra);
830 kfree(ref);
831 kfree(ra);
832 goto out_unlock;
833 }
834 exist->num_refs--;
835 if (exist->num_refs == 0) {
836 rb_erase(&exist->node, &be->refs);
837 kfree(exist);
838 }
839 } else if (!be->metadata) {
840 exist->num_refs++;
841 } else {
842 btrfs_err(fs_info,
843 "attempting to add another ref for an existing ref on a tree block");
844 dump_block_entry(fs_info, be);
845 dump_ref_action(fs_info, ra);
846 kfree(ref);
847 kfree(ra);
848 goto out_unlock;
849 }
850 kfree(ref);
851 } else {
852 if (action == BTRFS_DROP_DELAYED_REF) {
853 btrfs_err(fs_info,
854 "dropping a ref for a root that doesn't have a ref on the block");
855 dump_block_entry(fs_info, be);
856 dump_ref_action(fs_info, ra);
857 kfree(ra);
858 goto out_unlock;
859 }
860 }
861
862 if (!parent && !re) {
863 re = lookup_root_entry(&be->roots, ref_root);
864 if (!re) {
865 /*
866 * This shouldn't happen because we will add our re
867 * above when we lookup the be with !parent, but just in
868 * case catch this case so we don't panic because I
869 * didn't thik of some other corner case.
870 */
871 btrfs_err(fs_info, "failed to find root %llu for %llu",
872 root->objectid, be->bytenr);
873 dump_block_entry(fs_info, be);
874 dump_ref_action(fs_info, ra);
875 kfree(ra);
876 goto out_unlock;
877 }
878 }
879 if (action == BTRFS_DROP_DELAYED_REF) {
880 if (re)
881 re->num_refs--;
882 be->num_refs--;
883 } else if (action == BTRFS_ADD_DELAYED_REF) {
884 be->num_refs++;
885 if (re)
886 re->num_refs++;
887 }
888 list_add_tail(&ra->list, &be->actions);
889 ret = 0;
890 out_unlock:
891 spin_unlock(&root->fs_info->ref_verify_lock);
892 out:
893 if (ret)
894 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
895 return ret;
896 }
897
898 /* Free up the ref cache */
btrfs_free_ref_cache(struct btrfs_fs_info * fs_info)899 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
900 {
901 struct block_entry *be;
902 struct rb_node *n;
903
904 if (!btrfs_test_opt(fs_info, REF_VERIFY))
905 return;
906
907 spin_lock(&fs_info->ref_verify_lock);
908 while ((n = rb_first(&fs_info->block_tree))) {
909 be = rb_entry(n, struct block_entry, node);
910 rb_erase(&be->node, &fs_info->block_tree);
911 free_block_entry(be);
912 cond_resched_lock(&fs_info->ref_verify_lock);
913 }
914 spin_unlock(&fs_info->ref_verify_lock);
915 }
916
btrfs_free_ref_tree_range(struct btrfs_fs_info * fs_info,u64 start,u64 len)917 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
918 u64 len)
919 {
920 struct block_entry *be = NULL, *entry;
921 struct rb_node *n;
922
923 if (!btrfs_test_opt(fs_info, REF_VERIFY))
924 return;
925
926 spin_lock(&fs_info->ref_verify_lock);
927 n = fs_info->block_tree.rb_node;
928 while (n) {
929 entry = rb_entry(n, struct block_entry, node);
930 if (entry->bytenr < start) {
931 n = n->rb_right;
932 } else if (entry->bytenr > start) {
933 n = n->rb_left;
934 } else {
935 be = entry;
936 break;
937 }
938 /* We want to get as close to start as possible */
939 if (be == NULL ||
940 (entry->bytenr < start && be->bytenr > start) ||
941 (entry->bytenr < start && entry->bytenr > be->bytenr))
942 be = entry;
943 }
944
945 /*
946 * Could have an empty block group, maybe have something to check for
947 * this case to verify we were actually empty?
948 */
949 if (!be) {
950 spin_unlock(&fs_info->ref_verify_lock);
951 return;
952 }
953
954 n = &be->node;
955 while (n) {
956 be = rb_entry(n, struct block_entry, node);
957 n = rb_next(n);
958 if (be->bytenr < start && be->bytenr + be->len > start) {
959 btrfs_err(fs_info,
960 "block entry overlaps a block group [%llu,%llu]!",
961 start, len);
962 dump_block_entry(fs_info, be);
963 continue;
964 }
965 if (be->bytenr < start)
966 continue;
967 if (be->bytenr >= start + len)
968 break;
969 if (be->bytenr + be->len > start + len) {
970 btrfs_err(fs_info,
971 "block entry overlaps a block group [%llu,%llu]!",
972 start, len);
973 dump_block_entry(fs_info, be);
974 }
975 rb_erase(&be->node, &fs_info->block_tree);
976 free_block_entry(be);
977 }
978 spin_unlock(&fs_info->ref_verify_lock);
979 }
980
981 /* Walk down all roots and build the ref tree, meant to be called at mount */
btrfs_build_ref_tree(struct btrfs_fs_info * fs_info)982 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
983 {
984 struct btrfs_path *path;
985 struct extent_buffer *eb;
986 u64 bytenr = 0, num_bytes = 0;
987 int ret, level;
988
989 if (!btrfs_test_opt(fs_info, REF_VERIFY))
990 return 0;
991
992 path = btrfs_alloc_path();
993 if (!path)
994 return -ENOMEM;
995
996 eb = btrfs_read_lock_root_node(fs_info->extent_root);
997 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
998 level = btrfs_header_level(eb);
999 path->nodes[level] = eb;
1000 path->slots[level] = 0;
1001 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1002
1003 while (1) {
1004 /*
1005 * We have to keep track of the bytenr/num_bytes we last hit
1006 * because we could have run out of space for an inline ref, and
1007 * would have had to added a ref key item which may appear on a
1008 * different leaf from the original extent item.
1009 */
1010 ret = walk_down_tree(fs_info->extent_root, path, level,
1011 &bytenr, &num_bytes);
1012 if (ret)
1013 break;
1014 ret = walk_up_tree(path, &level);
1015 if (ret < 0)
1016 break;
1017 if (ret > 0) {
1018 ret = 0;
1019 break;
1020 }
1021 }
1022 if (ret) {
1023 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1024 btrfs_free_ref_cache(fs_info);
1025 }
1026 btrfs_free_path(path);
1027 return ret;
1028 }
1029