1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20
21 /* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30
31 /*
32 * directory trouble cases
33 *
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
38 *
39 * mkdir foo/some_dir
40 * normal commit
41 * rename foo/some_dir foo2/some_dir
42 * mkdir foo/some_dir
43 * fsync foo/some_dir/some_file
44 *
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
48 *
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
51 *
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
55 *
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
58 *
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
61 *
62 * mkdir f1/foo
63 * normal commit
64 * rm -rf f1/foo
65 * fsync(f1)
66 *
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
71 * ugly details.
72 */
73
74 /*
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
79 *
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
82 */
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
87
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
90 int inode_only,
91 const loff_t start,
92 const loff_t end,
93 struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
102
103 /*
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
106 *
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
110 *
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
116 *
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
120 *
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
124 */
125
126 /*
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
130 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
134 {
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 int ret = 0;
137
138 mutex_lock(&root->log_mutex);
139
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
142 ret = -EAGAIN;
143 goto out;
144 }
145
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 }
152 } else {
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
157 if (ret)
158 goto out;
159
160 ret = btrfs_add_log_tree(trans, root);
161 if (ret)
162 goto out;
163
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
166 }
167
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
170 if (ctx) {
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
174 }
175
176 out:
177 mutex_unlock(&root->log_mutex);
178 return ret;
179 }
180
181 /*
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
184 * in progress
185 */
join_running_log_trans(struct btrfs_root * root)186 static int join_running_log_trans(struct btrfs_root *root)
187 {
188 int ret = -ENOENT;
189
190 smp_mb();
191 if (!root->log_root)
192 return -ENOENT;
193
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
196 ret = 0;
197 atomic_inc(&root->log_writers);
198 }
199 mutex_unlock(&root->log_mutex);
200 return ret;
201 }
202
203 /*
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
207 */
btrfs_pin_log_trans(struct btrfs_root * root)208 int btrfs_pin_log_trans(struct btrfs_root *root)
209 {
210 int ret = -ENOENT;
211
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215 return ret;
216 }
217
218 /*
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
221 */
btrfs_end_log_trans(struct btrfs_root * root)222 void btrfs_end_log_trans(struct btrfs_root *root)
223 {
224 if (atomic_dec_and_test(&root->log_writers)) {
225 /* atomic_dec_and_test implies a barrier */
226 cond_wake_up_nomb(&root->log_writer_wait);
227 }
228 }
229
230
231 /*
232 * the walk control struct is used to pass state down the chain when
233 * processing the log tree. The stage field tells us which part
234 * of the log tree processing we are currently doing. The others
235 * are state fields used for that specific part
236 */
237 struct walk_control {
238 /* should we free the extent on disk when done? This is used
239 * at transaction commit time while freeing a log tree
240 */
241 int free;
242
243 /* should we write out the extent buffer? This is used
244 * while flushing the log tree to disk during a sync
245 */
246 int write;
247
248 /* should we wait for the extent buffer io to finish? Also used
249 * while flushing the log tree to disk for a sync
250 */
251 int wait;
252
253 /* pin only walk, we record which extents on disk belong to the
254 * log trees
255 */
256 int pin;
257
258 /* what stage of the replay code we're currently in */
259 int stage;
260
261 /*
262 * Ignore any items from the inode currently being processed. Needs
263 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
264 * the LOG_WALK_REPLAY_INODES stage.
265 */
266 bool ignore_cur_inode;
267
268 /* the root we are currently replaying */
269 struct btrfs_root *replay_dest;
270
271 /* the trans handle for the current replay */
272 struct btrfs_trans_handle *trans;
273
274 /* the function that gets used to process blocks we find in the
275 * tree. Note the extent_buffer might not be up to date when it is
276 * passed in, and it must be checked or read if you need the data
277 * inside it
278 */
279 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
280 struct walk_control *wc, u64 gen, int level);
281 };
282
283 /*
284 * process_func used to pin down extents, write them or wait on them
285 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)286 static int process_one_buffer(struct btrfs_root *log,
287 struct extent_buffer *eb,
288 struct walk_control *wc, u64 gen, int level)
289 {
290 struct btrfs_fs_info *fs_info = log->fs_info;
291 int ret = 0;
292
293 /*
294 * If this fs is mixed then we need to be able to process the leaves to
295 * pin down any logged extents, so we have to read the block.
296 */
297 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
298 ret = btrfs_read_buffer(eb, gen, level, NULL);
299 if (ret)
300 return ret;
301 }
302
303 if (wc->pin)
304 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
305 eb->len);
306
307 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
308 if (wc->pin && btrfs_header_level(eb) == 0)
309 ret = btrfs_exclude_logged_extents(fs_info, eb);
310 if (wc->write)
311 btrfs_write_tree_block(eb);
312 if (wc->wait)
313 btrfs_wait_tree_block_writeback(eb);
314 }
315 return ret;
316 }
317
318 /*
319 * Item overwrite used by replay and tree logging. eb, slot and key all refer
320 * to the src data we are copying out.
321 *
322 * root is the tree we are copying into, and path is a scratch
323 * path for use in this function (it should be released on entry and
324 * will be released on exit).
325 *
326 * If the key is already in the destination tree the existing item is
327 * overwritten. If the existing item isn't big enough, it is extended.
328 * If it is too large, it is truncated.
329 *
330 * If the key isn't in the destination yet, a new item is inserted.
331 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)332 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
333 struct btrfs_root *root,
334 struct btrfs_path *path,
335 struct extent_buffer *eb, int slot,
336 struct btrfs_key *key)
337 {
338 struct btrfs_fs_info *fs_info = root->fs_info;
339 int ret;
340 u32 item_size;
341 u64 saved_i_size = 0;
342 int save_old_i_size = 0;
343 unsigned long src_ptr;
344 unsigned long dst_ptr;
345 int overwrite_root = 0;
346 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
347
348 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
349 overwrite_root = 1;
350
351 item_size = btrfs_item_size_nr(eb, slot);
352 src_ptr = btrfs_item_ptr_offset(eb, slot);
353
354 /* look for the key in the destination tree */
355 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
356 if (ret < 0)
357 return ret;
358
359 if (ret == 0) {
360 char *src_copy;
361 char *dst_copy;
362 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
363 path->slots[0]);
364 if (dst_size != item_size)
365 goto insert;
366
367 if (item_size == 0) {
368 btrfs_release_path(path);
369 return 0;
370 }
371 dst_copy = kmalloc(item_size, GFP_NOFS);
372 src_copy = kmalloc(item_size, GFP_NOFS);
373 if (!dst_copy || !src_copy) {
374 btrfs_release_path(path);
375 kfree(dst_copy);
376 kfree(src_copy);
377 return -ENOMEM;
378 }
379
380 read_extent_buffer(eb, src_copy, src_ptr, item_size);
381
382 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
383 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
384 item_size);
385 ret = memcmp(dst_copy, src_copy, item_size);
386
387 kfree(dst_copy);
388 kfree(src_copy);
389 /*
390 * they have the same contents, just return, this saves
391 * us from cowing blocks in the destination tree and doing
392 * extra writes that may not have been done by a previous
393 * sync
394 */
395 if (ret == 0) {
396 btrfs_release_path(path);
397 return 0;
398 }
399
400 /*
401 * We need to load the old nbytes into the inode so when we
402 * replay the extents we've logged we get the right nbytes.
403 */
404 if (inode_item) {
405 struct btrfs_inode_item *item;
406 u64 nbytes;
407 u32 mode;
408
409 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
410 struct btrfs_inode_item);
411 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
412 item = btrfs_item_ptr(eb, slot,
413 struct btrfs_inode_item);
414 btrfs_set_inode_nbytes(eb, item, nbytes);
415
416 /*
417 * If this is a directory we need to reset the i_size to
418 * 0 so that we can set it up properly when replaying
419 * the rest of the items in this log.
420 */
421 mode = btrfs_inode_mode(eb, item);
422 if (S_ISDIR(mode))
423 btrfs_set_inode_size(eb, item, 0);
424 }
425 } else if (inode_item) {
426 struct btrfs_inode_item *item;
427 u32 mode;
428
429 /*
430 * New inode, set nbytes to 0 so that the nbytes comes out
431 * properly when we replay the extents.
432 */
433 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
434 btrfs_set_inode_nbytes(eb, item, 0);
435
436 /*
437 * If this is a directory we need to reset the i_size to 0 so
438 * that we can set it up properly when replaying the rest of
439 * the items in this log.
440 */
441 mode = btrfs_inode_mode(eb, item);
442 if (S_ISDIR(mode))
443 btrfs_set_inode_size(eb, item, 0);
444 }
445 insert:
446 btrfs_release_path(path);
447 /* try to insert the key into the destination tree */
448 path->skip_release_on_error = 1;
449 ret = btrfs_insert_empty_item(trans, root, path,
450 key, item_size);
451 path->skip_release_on_error = 0;
452
453 /* make sure any existing item is the correct size */
454 if (ret == -EEXIST || ret == -EOVERFLOW) {
455 u32 found_size;
456 found_size = btrfs_item_size_nr(path->nodes[0],
457 path->slots[0]);
458 if (found_size > item_size)
459 btrfs_truncate_item(fs_info, path, item_size, 1);
460 else if (found_size < item_size)
461 btrfs_extend_item(fs_info, path,
462 item_size - found_size);
463 } else if (ret) {
464 return ret;
465 }
466 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
467 path->slots[0]);
468
469 /* don't overwrite an existing inode if the generation number
470 * was logged as zero. This is done when the tree logging code
471 * is just logging an inode to make sure it exists after recovery.
472 *
473 * Also, don't overwrite i_size on directories during replay.
474 * log replay inserts and removes directory items based on the
475 * state of the tree found in the subvolume, and i_size is modified
476 * as it goes
477 */
478 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
479 struct btrfs_inode_item *src_item;
480 struct btrfs_inode_item *dst_item;
481
482 src_item = (struct btrfs_inode_item *)src_ptr;
483 dst_item = (struct btrfs_inode_item *)dst_ptr;
484
485 if (btrfs_inode_generation(eb, src_item) == 0) {
486 struct extent_buffer *dst_eb = path->nodes[0];
487 const u64 ino_size = btrfs_inode_size(eb, src_item);
488
489 /*
490 * For regular files an ino_size == 0 is used only when
491 * logging that an inode exists, as part of a directory
492 * fsync, and the inode wasn't fsynced before. In this
493 * case don't set the size of the inode in the fs/subvol
494 * tree, otherwise we would be throwing valid data away.
495 */
496 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
498 ino_size != 0) {
499 struct btrfs_map_token token;
500
501 btrfs_init_map_token(&token);
502 btrfs_set_token_inode_size(dst_eb, dst_item,
503 ino_size, &token);
504 }
505 goto no_copy;
506 }
507
508 if (overwrite_root &&
509 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
510 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
511 save_old_i_size = 1;
512 saved_i_size = btrfs_inode_size(path->nodes[0],
513 dst_item);
514 }
515 }
516
517 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
518 src_ptr, item_size);
519
520 if (save_old_i_size) {
521 struct btrfs_inode_item *dst_item;
522 dst_item = (struct btrfs_inode_item *)dst_ptr;
523 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
524 }
525
526 /* make sure the generation is filled in */
527 if (key->type == BTRFS_INODE_ITEM_KEY) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
531 btrfs_set_inode_generation(path->nodes[0], dst_item,
532 trans->transid);
533 }
534 }
535 no_copy:
536 btrfs_mark_buffer_dirty(path->nodes[0]);
537 btrfs_release_path(path);
538 return 0;
539 }
540
541 /*
542 * simple helper to read an inode off the disk from a given root
543 * This can only be called for subvolume roots and not for the log
544 */
read_one_inode(struct btrfs_root * root,u64 objectid)545 static noinline struct inode *read_one_inode(struct btrfs_root *root,
546 u64 objectid)
547 {
548 struct btrfs_key key;
549 struct inode *inode;
550
551 key.objectid = objectid;
552 key.type = BTRFS_INODE_ITEM_KEY;
553 key.offset = 0;
554 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
555 if (IS_ERR(inode))
556 inode = NULL;
557 return inode;
558 }
559
560 /* replays a single extent in 'eb' at 'slot' with 'key' into the
561 * subvolume 'root'. path is released on entry and should be released
562 * on exit.
563 *
564 * extents in the log tree have not been allocated out of the extent
565 * tree yet. So, this completes the allocation, taking a reference
566 * as required if the extent already exists or creating a new extent
567 * if it isn't in the extent allocation tree yet.
568 *
569 * The extent is inserted into the file, dropping any existing extents
570 * from the file that overlap the new one.
571 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)572 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root,
574 struct btrfs_path *path,
575 struct extent_buffer *eb, int slot,
576 struct btrfs_key *key)
577 {
578 struct btrfs_fs_info *fs_info = root->fs_info;
579 int found_type;
580 u64 extent_end;
581 u64 start = key->offset;
582 u64 nbytes = 0;
583 struct btrfs_file_extent_item *item;
584 struct inode *inode = NULL;
585 unsigned long size;
586 int ret = 0;
587
588 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 found_type = btrfs_file_extent_type(eb, item);
590
591 if (found_type == BTRFS_FILE_EXTENT_REG ||
592 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 nbytes = btrfs_file_extent_num_bytes(eb, item);
594 extent_end = start + nbytes;
595
596 /*
597 * We don't add to the inodes nbytes if we are prealloc or a
598 * hole.
599 */
600 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 nbytes = 0;
602 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 size = btrfs_file_extent_ram_bytes(eb, item);
604 nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 extent_end = ALIGN(start + size,
606 fs_info->sectorsize);
607 } else {
608 ret = 0;
609 goto out;
610 }
611
612 inode = read_one_inode(root, key->objectid);
613 if (!inode) {
614 ret = -EIO;
615 goto out;
616 }
617
618 /*
619 * first check to see if we already have this extent in the
620 * file. This must be done before the btrfs_drop_extents run
621 * so we don't try to drop this extent.
622 */
623 ret = btrfs_lookup_file_extent(trans, root, path,
624 btrfs_ino(BTRFS_I(inode)), start, 0);
625
626 if (ret == 0 &&
627 (found_type == BTRFS_FILE_EXTENT_REG ||
628 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 struct btrfs_file_extent_item cmp1;
630 struct btrfs_file_extent_item cmp2;
631 struct btrfs_file_extent_item *existing;
632 struct extent_buffer *leaf;
633
634 leaf = path->nodes[0];
635 existing = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
637
638 read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 sizeof(cmp1));
640 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 sizeof(cmp2));
642
643 /*
644 * we already have a pointer to this exact extent,
645 * we don't have to do anything
646 */
647 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 btrfs_release_path(path);
649 goto out;
650 }
651 }
652 btrfs_release_path(path);
653
654 /* drop any overlapping extents */
655 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 if (ret)
657 goto out;
658
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 u64 offset;
662 unsigned long dest_offset;
663 struct btrfs_key ins;
664
665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 btrfs_fs_incompat(fs_info, NO_HOLES))
667 goto update_inode;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 /*
684 * Manually record dirty extent, as here we did a shallow
685 * file extent item copy and skip normal backref update,
686 * but modifying extent tree all by ourselves.
687 * So need to manually record dirty extent for qgroup,
688 * as the owner of the file extent changed from log tree
689 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 */
691 ret = btrfs_qgroup_trace_extent(trans,
692 btrfs_file_extent_disk_bytenr(eb, item),
693 btrfs_file_extent_disk_num_bytes(eb, item),
694 GFP_NOFS);
695 if (ret < 0)
696 goto out;
697
698 if (ins.objectid > 0) {
699 u64 csum_start;
700 u64 csum_end;
701 LIST_HEAD(ordered_sums);
702 /*
703 * is this extent already allocated in the extent
704 * allocation tree? If so, just add a reference
705 */
706 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
707 ins.offset);
708 if (ret == 0) {
709 ret = btrfs_inc_extent_ref(trans, root,
710 ins.objectid, ins.offset,
711 0, root->root_key.objectid,
712 key->objectid, offset);
713 if (ret)
714 goto out;
715 } else {
716 /*
717 * insert the extent pointer in the extent
718 * allocation tree
719 */
720 ret = btrfs_alloc_logged_file_extent(trans,
721 root->root_key.objectid,
722 key->objectid, offset, &ins);
723 if (ret)
724 goto out;
725 }
726 btrfs_release_path(path);
727
728 if (btrfs_file_extent_compression(eb, item)) {
729 csum_start = ins.objectid;
730 csum_end = csum_start + ins.offset;
731 } else {
732 csum_start = ins.objectid +
733 btrfs_file_extent_offset(eb, item);
734 csum_end = csum_start +
735 btrfs_file_extent_num_bytes(eb, item);
736 }
737
738 ret = btrfs_lookup_csums_range(root->log_root,
739 csum_start, csum_end - 1,
740 &ordered_sums, 0);
741 if (ret)
742 goto out;
743 /*
744 * Now delete all existing cums in the csum root that
745 * cover our range. We do this because we can have an
746 * extent that is completely referenced by one file
747 * extent item and partially referenced by another
748 * file extent item (like after using the clone or
749 * extent_same ioctls). In this case if we end up doing
750 * the replay of the one that partially references the
751 * extent first, and we do not do the csum deletion
752 * below, we can get 2 csum items in the csum tree that
753 * overlap each other. For example, imagine our log has
754 * the two following file extent items:
755 *
756 * key (257 EXTENT_DATA 409600)
757 * extent data disk byte 12845056 nr 102400
758 * extent data offset 20480 nr 20480 ram 102400
759 *
760 * key (257 EXTENT_DATA 819200)
761 * extent data disk byte 12845056 nr 102400
762 * extent data offset 0 nr 102400 ram 102400
763 *
764 * Where the second one fully references the 100K extent
765 * that starts at disk byte 12845056, and the log tree
766 * has a single csum item that covers the entire range
767 * of the extent:
768 *
769 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
770 *
771 * After the first file extent item is replayed, the
772 * csum tree gets the following csum item:
773 *
774 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
775 *
776 * Which covers the 20K sub-range starting at offset 20K
777 * of our extent. Now when we replay the second file
778 * extent item, if we do not delete existing csum items
779 * that cover any of its blocks, we end up getting two
780 * csum items in our csum tree that overlap each other:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
784 *
785 * Which is a problem, because after this anyone trying
786 * to lookup up for the checksum of any block of our
787 * extent starting at an offset of 40K or higher, will
788 * end up looking at the second csum item only, which
789 * does not contain the checksum for any block starting
790 * at offset 40K or higher of our extent.
791 */
792 while (!list_empty(&ordered_sums)) {
793 struct btrfs_ordered_sum *sums;
794 sums = list_entry(ordered_sums.next,
795 struct btrfs_ordered_sum,
796 list);
797 if (!ret)
798 ret = btrfs_del_csums(trans,
799 fs_info->csum_root,
800 sums->bytenr,
801 sums->len);
802 if (!ret)
803 ret = btrfs_csum_file_blocks(trans,
804 fs_info->csum_root, sums);
805 list_del(&sums->list);
806 kfree(sums);
807 }
808 if (ret)
809 goto out;
810 } else {
811 btrfs_release_path(path);
812 }
813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 /* inline extents are easy, we just overwrite them */
815 ret = overwrite_item(trans, root, path, eb, slot, key);
816 if (ret)
817 goto out;
818 }
819
820 inode_add_bytes(inode, nbytes);
821 update_inode:
822 ret = btrfs_update_inode(trans, root, inode);
823 out:
824 if (inode)
825 iput(inode);
826 return ret;
827 }
828
829 /*
830 * when cleaning up conflicts between the directory names in the
831 * subvolume, directory names in the log and directory names in the
832 * inode back references, we may have to unlink inodes from directories.
833 *
834 * This is a helper function to do the unlink of a specific directory
835 * item
836 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)837 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path,
840 struct btrfs_inode *dir,
841 struct btrfs_dir_item *di)
842 {
843 struct inode *inode;
844 char *name;
845 int name_len;
846 struct extent_buffer *leaf;
847 struct btrfs_key location;
848 int ret;
849
850 leaf = path->nodes[0];
851
852 btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 name_len = btrfs_dir_name_len(leaf, di);
854 name = kmalloc(name_len, GFP_NOFS);
855 if (!name)
856 return -ENOMEM;
857
858 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 btrfs_release_path(path);
860
861 inode = read_one_inode(root, location.objectid);
862 if (!inode) {
863 ret = -EIO;
864 goto out;
865 }
866
867 ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 if (ret)
869 goto out;
870
871 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 name_len);
873 if (ret)
874 goto out;
875 else
876 ret = btrfs_run_delayed_items(trans);
877 out:
878 kfree(name);
879 iput(inode);
880 return ret;
881 }
882
883 /*
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
887 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)888 static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
892 {
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
896
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
905 btrfs_release_path(path);
906
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915 out:
916 btrfs_release_path(path);
917 return match;
918 }
919
920 /*
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
924 *
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
929 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)930 static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
932 u64 ref_objectid,
933 const char *name, int namelen)
934 {
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
948
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
952
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path->nodes[0],
957 path->slots[0],
958 ref_objectid,
959 name, namelen, NULL))
960 match = 1;
961
962 goto out;
963 }
964
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
973 name_ptr, namelen);
974 if (ret == 0) {
975 match = 1;
976 goto out;
977 }
978 }
979 ptr = (unsigned long)(ref + 1) + found_name_len;
980 }
981 out:
982 btrfs_free_path(path);
983 return match;
984 }
985
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)986 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 struct btrfs_path *path,
989 struct btrfs_root *log_root,
990 struct btrfs_inode *dir,
991 struct btrfs_inode *inode,
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
994 int *search_done)
995 {
996 int ret;
997 char *victim_name;
998 int victim_name_len;
999 struct extent_buffer *leaf;
1000 struct btrfs_dir_item *di;
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
1003
1004 again:
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1010 if (ret == 0) {
1011 struct btrfs_inode_ref *victim_ref;
1012 unsigned long ptr;
1013 unsigned long ptr_end;
1014
1015 leaf = path->nodes[0];
1016
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1019 */
1020 if (search_key.objectid == search_key.offset)
1021 return 1;
1022
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1026 */
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029 while (ptr < ptr_end) {
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 victim_ref);
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034 if (!victim_name)
1035 return -ENOMEM;
1036
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1039 victim_name_len);
1040
1041 if (!backref_in_log(log_root, &search_key,
1042 parent_objectid,
1043 victim_name,
1044 victim_name_len)) {
1045 inc_nlink(&inode->vfs_inode);
1046 btrfs_release_path(path);
1047
1048 ret = btrfs_unlink_inode(trans, root, dir, inode,
1049 victim_name, victim_name_len);
1050 kfree(victim_name);
1051 if (ret)
1052 return ret;
1053 ret = btrfs_run_delayed_items(trans);
1054 if (ret)
1055 return ret;
1056 *search_done = 1;
1057 goto again;
1058 }
1059 kfree(victim_name);
1060
1061 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 }
1063
1064 /*
1065 * NOTE: we have searched root tree and checked the
1066 * corresponding ref, it does not need to check again.
1067 */
1068 *search_done = 1;
1069 }
1070 btrfs_release_path(path);
1071
1072 /* Same search but for extended refs */
1073 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 inode_objectid, parent_objectid, 0,
1075 0);
1076 if (!IS_ERR_OR_NULL(extref)) {
1077 u32 item_size;
1078 u32 cur_offset = 0;
1079 unsigned long base;
1080 struct inode *victim_parent;
1081
1082 leaf = path->nodes[0];
1083
1084 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086
1087 while (cur_offset < item_size) {
1088 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089
1090 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091
1092 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093 goto next;
1094
1095 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1096 if (!victim_name)
1097 return -ENOMEM;
1098 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099 victim_name_len);
1100
1101 search_key.objectid = inode_objectid;
1102 search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 search_key.offset = btrfs_extref_hash(parent_objectid,
1104 victim_name,
1105 victim_name_len);
1106 ret = 0;
1107 if (!backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1109 victim_name_len)) {
1110 ret = -ENOENT;
1111 victim_parent = read_one_inode(root,
1112 parent_objectid);
1113 if (victim_parent) {
1114 inc_nlink(&inode->vfs_inode);
1115 btrfs_release_path(path);
1116
1117 ret = btrfs_unlink_inode(trans, root,
1118 BTRFS_I(victim_parent),
1119 inode,
1120 victim_name,
1121 victim_name_len);
1122 if (!ret)
1123 ret = btrfs_run_delayed_items(
1124 trans);
1125 }
1126 iput(victim_parent);
1127 kfree(victim_name);
1128 if (ret)
1129 return ret;
1130 *search_done = 1;
1131 goto again;
1132 }
1133 kfree(victim_name);
1134 next:
1135 cur_offset += victim_name_len + sizeof(*extref);
1136 }
1137 *search_done = 1;
1138 }
1139 btrfs_release_path(path);
1140
1141 /* look for a conflicting sequence number */
1142 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143 ref_index, name, namelen, 0);
1144 if (di && !IS_ERR(di)) {
1145 ret = drop_one_dir_item(trans, root, path, dir, di);
1146 if (ret)
1147 return ret;
1148 }
1149 btrfs_release_path(path);
1150
1151 /* look for a conflicing name */
1152 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1153 name, namelen, 0);
1154 if (di && !IS_ERR(di)) {
1155 ret = drop_one_dir_item(trans, root, path, dir, di);
1156 if (ret)
1157 return ret;
1158 }
1159 btrfs_release_path(path);
1160
1161 return 0;
1162 }
1163
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1164 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 u32 *namelen, char **name, u64 *index,
1166 u64 *parent_objectid)
1167 {
1168 struct btrfs_inode_extref *extref;
1169
1170 extref = (struct btrfs_inode_extref *)ref_ptr;
1171
1172 *namelen = btrfs_inode_extref_name_len(eb, extref);
1173 *name = kmalloc(*namelen, GFP_NOFS);
1174 if (*name == NULL)
1175 return -ENOMEM;
1176
1177 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 *namelen);
1179
1180 if (index)
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185 return 0;
1186 }
1187
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1190 {
1191 struct btrfs_inode_ref *ref;
1192
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1199
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1202 if (index)
1203 *index = btrfs_inode_ref_index(eb, ref);
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1214 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1215 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path,
1218 struct btrfs_inode *inode,
1219 struct extent_buffer *log_eb,
1220 int log_slot,
1221 struct btrfs_key *key)
1222 {
1223 int ret;
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
1226 struct extent_buffer *eb;
1227
1228 again:
1229 btrfs_release_path(path);
1230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231 if (ret > 0) {
1232 ret = 0;
1233 goto out;
1234 }
1235 if (ret < 0)
1236 goto out;
1237
1238 eb = path->nodes[0];
1239 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 while (ref_ptr < ref_end) {
1242 char *name = NULL;
1243 int namelen;
1244 u64 parent_id;
1245
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL, &parent_id);
1249 } else {
1250 parent_id = key->offset;
1251 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252 NULL);
1253 }
1254 if (ret)
1255 goto out;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 parent_id, name,
1260 namelen, NULL);
1261 else
1262 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263 namelen, NULL);
1264
1265 if (!ret) {
1266 struct inode *dir;
1267
1268 btrfs_release_path(path);
1269 dir = read_one_inode(root, parent_id);
1270 if (!dir) {
1271 ret = -ENOENT;
1272 kfree(name);
1273 goto out;
1274 }
1275 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 inode, name, namelen);
1277 kfree(name);
1278 iput(dir);
1279 if (ret)
1280 goto out;
1281 goto again;
1282 }
1283
1284 kfree(name);
1285 ref_ptr += namelen;
1286 if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 ref_ptr += sizeof(struct btrfs_inode_extref);
1288 else
1289 ref_ptr += sizeof(struct btrfs_inode_ref);
1290 }
1291 ret = 0;
1292 out:
1293 btrfs_release_path(path);
1294 return ret;
1295 }
1296
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1297 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1298 const u8 ref_type, const char *name,
1299 const int namelen)
1300 {
1301 struct btrfs_key key;
1302 struct btrfs_path *path;
1303 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1304 int ret;
1305
1306 path = btrfs_alloc_path();
1307 if (!path)
1308 return -ENOMEM;
1309
1310 key.objectid = btrfs_ino(BTRFS_I(inode));
1311 key.type = ref_type;
1312 if (key.type == BTRFS_INODE_REF_KEY)
1313 key.offset = parent_id;
1314 else
1315 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1316
1317 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1318 if (ret < 0)
1319 goto out;
1320 if (ret > 0) {
1321 ret = 0;
1322 goto out;
1323 }
1324 if (key.type == BTRFS_INODE_EXTREF_KEY)
1325 ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1326 path->slots[0], parent_id,
1327 name, namelen, NULL);
1328 else
1329 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1330 name, namelen, NULL);
1331
1332 out:
1333 btrfs_free_path(path);
1334 return ret;
1335 }
1336
1337 /*
1338 * replay one inode back reference item found in the log tree.
1339 * eb, slot and key refer to the buffer and key found in the log tree.
1340 * root is the destination we are replaying into, and path is for temp
1341 * use by this function. (it should be released on return).
1342 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1343 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1344 struct btrfs_root *root,
1345 struct btrfs_root *log,
1346 struct btrfs_path *path,
1347 struct extent_buffer *eb, int slot,
1348 struct btrfs_key *key)
1349 {
1350 struct inode *dir = NULL;
1351 struct inode *inode = NULL;
1352 unsigned long ref_ptr;
1353 unsigned long ref_end;
1354 char *name = NULL;
1355 int namelen;
1356 int ret;
1357 int search_done = 0;
1358 int log_ref_ver = 0;
1359 u64 parent_objectid;
1360 u64 inode_objectid;
1361 u64 ref_index = 0;
1362 int ref_struct_size;
1363
1364 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1365 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1366
1367 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1368 struct btrfs_inode_extref *r;
1369
1370 ref_struct_size = sizeof(struct btrfs_inode_extref);
1371 log_ref_ver = 1;
1372 r = (struct btrfs_inode_extref *)ref_ptr;
1373 parent_objectid = btrfs_inode_extref_parent(eb, r);
1374 } else {
1375 ref_struct_size = sizeof(struct btrfs_inode_ref);
1376 parent_objectid = key->offset;
1377 }
1378 inode_objectid = key->objectid;
1379
1380 /*
1381 * it is possible that we didn't log all the parent directories
1382 * for a given inode. If we don't find the dir, just don't
1383 * copy the back ref in. The link count fixup code will take
1384 * care of the rest
1385 */
1386 dir = read_one_inode(root, parent_objectid);
1387 if (!dir) {
1388 ret = -ENOENT;
1389 goto out;
1390 }
1391
1392 inode = read_one_inode(root, inode_objectid);
1393 if (!inode) {
1394 ret = -EIO;
1395 goto out;
1396 }
1397
1398 while (ref_ptr < ref_end) {
1399 if (log_ref_ver) {
1400 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1401 &ref_index, &parent_objectid);
1402 /*
1403 * parent object can change from one array
1404 * item to another.
1405 */
1406 if (!dir)
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 } else {
1413 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1414 &ref_index);
1415 }
1416 if (ret)
1417 goto out;
1418
1419 /* if we already have a perfect match, we're done */
1420 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421 btrfs_ino(BTRFS_I(inode)), ref_index,
1422 name, namelen)) {
1423 /*
1424 * look for a conflicting back reference in the
1425 * metadata. if we find one we have to unlink that name
1426 * of the file before we add our new link. Later on, we
1427 * overwrite any existing back reference, and we don't
1428 * want to create dangling pointers in the directory.
1429 */
1430
1431 if (!search_done) {
1432 ret = __add_inode_ref(trans, root, path, log,
1433 BTRFS_I(dir),
1434 BTRFS_I(inode),
1435 inode_objectid,
1436 parent_objectid,
1437 ref_index, name, namelen,
1438 &search_done);
1439 if (ret) {
1440 if (ret == 1)
1441 ret = 0;
1442 goto out;
1443 }
1444 }
1445
1446 /*
1447 * If a reference item already exists for this inode
1448 * with the same parent and name, but different index,
1449 * drop it and the corresponding directory index entries
1450 * from the parent before adding the new reference item
1451 * and dir index entries, otherwise we would fail with
1452 * -EEXIST returned from btrfs_add_link() below.
1453 */
1454 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1455 name, namelen);
1456 if (ret > 0) {
1457 ret = btrfs_unlink_inode(trans, root,
1458 BTRFS_I(dir),
1459 BTRFS_I(inode),
1460 name, namelen);
1461 /*
1462 * If we dropped the link count to 0, bump it so
1463 * that later the iput() on the inode will not
1464 * free it. We will fixup the link count later.
1465 */
1466 if (!ret && inode->i_nlink == 0)
1467 inc_nlink(inode);
1468 }
1469 if (ret < 0)
1470 goto out;
1471
1472 /* insert our name */
1473 ret = btrfs_add_link(trans, BTRFS_I(dir),
1474 BTRFS_I(inode),
1475 name, namelen, 0, ref_index);
1476 if (ret)
1477 goto out;
1478
1479 btrfs_update_inode(trans, root, inode);
1480 }
1481
1482 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1483 kfree(name);
1484 name = NULL;
1485 if (log_ref_ver) {
1486 iput(dir);
1487 dir = NULL;
1488 }
1489 }
1490
1491 /*
1492 * Before we overwrite the inode reference item in the subvolume tree
1493 * with the item from the log tree, we must unlink all names from the
1494 * parent directory that are in the subvolume's tree inode reference
1495 * item, otherwise we end up with an inconsistent subvolume tree where
1496 * dir index entries exist for a name but there is no inode reference
1497 * item with the same name.
1498 */
1499 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1500 key);
1501 if (ret)
1502 goto out;
1503
1504 /* finally write the back reference in the inode */
1505 ret = overwrite_item(trans, root, path, eb, slot, key);
1506 out:
1507 btrfs_release_path(path);
1508 kfree(name);
1509 iput(dir);
1510 iput(inode);
1511 return ret;
1512 }
1513
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1514 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1515 struct btrfs_root *root, u64 ino)
1516 {
1517 int ret;
1518
1519 ret = btrfs_insert_orphan_item(trans, root, ino);
1520 if (ret == -EEXIST)
1521 ret = 0;
1522
1523 return ret;
1524 }
1525
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1526 static int count_inode_extrefs(struct btrfs_root *root,
1527 struct btrfs_inode *inode, struct btrfs_path *path)
1528 {
1529 int ret = 0;
1530 int name_len;
1531 unsigned int nlink = 0;
1532 u32 item_size;
1533 u32 cur_offset = 0;
1534 u64 inode_objectid = btrfs_ino(inode);
1535 u64 offset = 0;
1536 unsigned long ptr;
1537 struct btrfs_inode_extref *extref;
1538 struct extent_buffer *leaf;
1539
1540 while (1) {
1541 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1542 &extref, &offset);
1543 if (ret)
1544 break;
1545
1546 leaf = path->nodes[0];
1547 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1548 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1549 cur_offset = 0;
1550
1551 while (cur_offset < item_size) {
1552 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1553 name_len = btrfs_inode_extref_name_len(leaf, extref);
1554
1555 nlink++;
1556
1557 cur_offset += name_len + sizeof(*extref);
1558 }
1559
1560 offset++;
1561 btrfs_release_path(path);
1562 }
1563 btrfs_release_path(path);
1564
1565 if (ret < 0 && ret != -ENOENT)
1566 return ret;
1567 return nlink;
1568 }
1569
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1570 static int count_inode_refs(struct btrfs_root *root,
1571 struct btrfs_inode *inode, struct btrfs_path *path)
1572 {
1573 int ret;
1574 struct btrfs_key key;
1575 unsigned int nlink = 0;
1576 unsigned long ptr;
1577 unsigned long ptr_end;
1578 int name_len;
1579 u64 ino = btrfs_ino(inode);
1580
1581 key.objectid = ino;
1582 key.type = BTRFS_INODE_REF_KEY;
1583 key.offset = (u64)-1;
1584
1585 while (1) {
1586 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1587 if (ret < 0)
1588 break;
1589 if (ret > 0) {
1590 if (path->slots[0] == 0)
1591 break;
1592 path->slots[0]--;
1593 }
1594 process_slot:
1595 btrfs_item_key_to_cpu(path->nodes[0], &key,
1596 path->slots[0]);
1597 if (key.objectid != ino ||
1598 key.type != BTRFS_INODE_REF_KEY)
1599 break;
1600 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1601 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1602 path->slots[0]);
1603 while (ptr < ptr_end) {
1604 struct btrfs_inode_ref *ref;
1605
1606 ref = (struct btrfs_inode_ref *)ptr;
1607 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1608 ref);
1609 ptr = (unsigned long)(ref + 1) + name_len;
1610 nlink++;
1611 }
1612
1613 if (key.offset == 0)
1614 break;
1615 if (path->slots[0] > 0) {
1616 path->slots[0]--;
1617 goto process_slot;
1618 }
1619 key.offset--;
1620 btrfs_release_path(path);
1621 }
1622 btrfs_release_path(path);
1623
1624 return nlink;
1625 }
1626
1627 /*
1628 * There are a few corners where the link count of the file can't
1629 * be properly maintained during replay. So, instead of adding
1630 * lots of complexity to the log code, we just scan the backrefs
1631 * for any file that has been through replay.
1632 *
1633 * The scan will update the link count on the inode to reflect the
1634 * number of back refs found. If it goes down to zero, the iput
1635 * will free the inode.
1636 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1637 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1638 struct btrfs_root *root,
1639 struct inode *inode)
1640 {
1641 struct btrfs_path *path;
1642 int ret;
1643 u64 nlink = 0;
1644 u64 ino = btrfs_ino(BTRFS_I(inode));
1645
1646 path = btrfs_alloc_path();
1647 if (!path)
1648 return -ENOMEM;
1649
1650 ret = count_inode_refs(root, BTRFS_I(inode), path);
1651 if (ret < 0)
1652 goto out;
1653
1654 nlink = ret;
1655
1656 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1657 if (ret < 0)
1658 goto out;
1659
1660 nlink += ret;
1661
1662 ret = 0;
1663
1664 if (nlink != inode->i_nlink) {
1665 set_nlink(inode, nlink);
1666 btrfs_update_inode(trans, root, inode);
1667 }
1668 BTRFS_I(inode)->index_cnt = (u64)-1;
1669
1670 if (inode->i_nlink == 0) {
1671 if (S_ISDIR(inode->i_mode)) {
1672 ret = replay_dir_deletes(trans, root, NULL, path,
1673 ino, 1);
1674 if (ret)
1675 goto out;
1676 }
1677 ret = insert_orphan_item(trans, root, ino);
1678 }
1679
1680 out:
1681 btrfs_free_path(path);
1682 return ret;
1683 }
1684
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1685 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1686 struct btrfs_root *root,
1687 struct btrfs_path *path)
1688 {
1689 int ret;
1690 struct btrfs_key key;
1691 struct inode *inode;
1692
1693 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1694 key.type = BTRFS_ORPHAN_ITEM_KEY;
1695 key.offset = (u64)-1;
1696 while (1) {
1697 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1698 if (ret < 0)
1699 break;
1700
1701 if (ret == 1) {
1702 if (path->slots[0] == 0)
1703 break;
1704 path->slots[0]--;
1705 }
1706
1707 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1708 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1709 key.type != BTRFS_ORPHAN_ITEM_KEY)
1710 break;
1711
1712 ret = btrfs_del_item(trans, root, path);
1713 if (ret)
1714 goto out;
1715
1716 btrfs_release_path(path);
1717 inode = read_one_inode(root, key.offset);
1718 if (!inode)
1719 return -EIO;
1720
1721 ret = fixup_inode_link_count(trans, root, inode);
1722 iput(inode);
1723 if (ret)
1724 goto out;
1725
1726 /*
1727 * fixup on a directory may create new entries,
1728 * make sure we always look for the highset possible
1729 * offset
1730 */
1731 key.offset = (u64)-1;
1732 }
1733 ret = 0;
1734 out:
1735 btrfs_release_path(path);
1736 return ret;
1737 }
1738
1739
1740 /*
1741 * record a given inode in the fixup dir so we can check its link
1742 * count when replay is done. The link count is incremented here
1743 * so the inode won't go away until we check it
1744 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1745 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1746 struct btrfs_root *root,
1747 struct btrfs_path *path,
1748 u64 objectid)
1749 {
1750 struct btrfs_key key;
1751 int ret = 0;
1752 struct inode *inode;
1753
1754 inode = read_one_inode(root, objectid);
1755 if (!inode)
1756 return -EIO;
1757
1758 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1759 key.type = BTRFS_ORPHAN_ITEM_KEY;
1760 key.offset = objectid;
1761
1762 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1763
1764 btrfs_release_path(path);
1765 if (ret == 0) {
1766 if (!inode->i_nlink)
1767 set_nlink(inode, 1);
1768 else
1769 inc_nlink(inode);
1770 ret = btrfs_update_inode(trans, root, inode);
1771 } else if (ret == -EEXIST) {
1772 ret = 0;
1773 } else {
1774 BUG(); /* Logic Error */
1775 }
1776 iput(inode);
1777
1778 return ret;
1779 }
1780
1781 /*
1782 * when replaying the log for a directory, we only insert names
1783 * for inodes that actually exist. This means an fsync on a directory
1784 * does not implicitly fsync all the new files in it
1785 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1786 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1787 struct btrfs_root *root,
1788 u64 dirid, u64 index,
1789 char *name, int name_len,
1790 struct btrfs_key *location)
1791 {
1792 struct inode *inode;
1793 struct inode *dir;
1794 int ret;
1795
1796 inode = read_one_inode(root, location->objectid);
1797 if (!inode)
1798 return -ENOENT;
1799
1800 dir = read_one_inode(root, dirid);
1801 if (!dir) {
1802 iput(inode);
1803 return -EIO;
1804 }
1805
1806 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1807 name_len, 1, index);
1808
1809 /* FIXME, put inode into FIXUP list */
1810
1811 iput(inode);
1812 iput(dir);
1813 return ret;
1814 }
1815
1816 /*
1817 * Return true if an inode reference exists in the log for the given name,
1818 * inode and parent inode.
1819 */
name_in_log_ref(struct btrfs_root * log_root,const char * name,const int name_len,const u64 dirid,const u64 ino)1820 static bool name_in_log_ref(struct btrfs_root *log_root,
1821 const char *name, const int name_len,
1822 const u64 dirid, const u64 ino)
1823 {
1824 struct btrfs_key search_key;
1825
1826 search_key.objectid = ino;
1827 search_key.type = BTRFS_INODE_REF_KEY;
1828 search_key.offset = dirid;
1829 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1830 return true;
1831
1832 search_key.type = BTRFS_INODE_EXTREF_KEY;
1833 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1834 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1835 return true;
1836
1837 return false;
1838 }
1839
1840 /*
1841 * take a single entry in a log directory item and replay it into
1842 * the subvolume.
1843 *
1844 * if a conflicting item exists in the subdirectory already,
1845 * the inode it points to is unlinked and put into the link count
1846 * fix up tree.
1847 *
1848 * If a name from the log points to a file or directory that does
1849 * not exist in the FS, it is skipped. fsyncs on directories
1850 * do not force down inodes inside that directory, just changes to the
1851 * names or unlinks in a directory.
1852 *
1853 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1854 * non-existing inode) and 1 if the name was replayed.
1855 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1856 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1857 struct btrfs_root *root,
1858 struct btrfs_path *path,
1859 struct extent_buffer *eb,
1860 struct btrfs_dir_item *di,
1861 struct btrfs_key *key)
1862 {
1863 char *name;
1864 int name_len;
1865 struct btrfs_dir_item *dst_di;
1866 struct btrfs_key found_key;
1867 struct btrfs_key log_key;
1868 struct inode *dir;
1869 u8 log_type;
1870 int exists;
1871 int ret = 0;
1872 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1873 bool name_added = false;
1874
1875 dir = read_one_inode(root, key->objectid);
1876 if (!dir)
1877 return -EIO;
1878
1879 name_len = btrfs_dir_name_len(eb, di);
1880 name = kmalloc(name_len, GFP_NOFS);
1881 if (!name) {
1882 ret = -ENOMEM;
1883 goto out;
1884 }
1885
1886 log_type = btrfs_dir_type(eb, di);
1887 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1888 name_len);
1889
1890 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1891 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1892 if (exists == 0)
1893 exists = 1;
1894 else
1895 exists = 0;
1896 btrfs_release_path(path);
1897
1898 if (key->type == BTRFS_DIR_ITEM_KEY) {
1899 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1900 name, name_len, 1);
1901 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1902 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1903 key->objectid,
1904 key->offset, name,
1905 name_len, 1);
1906 } else {
1907 /* Corruption */
1908 ret = -EINVAL;
1909 goto out;
1910 }
1911 if (IS_ERR_OR_NULL(dst_di)) {
1912 /* we need a sequence number to insert, so we only
1913 * do inserts for the BTRFS_DIR_INDEX_KEY types
1914 */
1915 if (key->type != BTRFS_DIR_INDEX_KEY)
1916 goto out;
1917 goto insert;
1918 }
1919
1920 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1921 /* the existing item matches the logged item */
1922 if (found_key.objectid == log_key.objectid &&
1923 found_key.type == log_key.type &&
1924 found_key.offset == log_key.offset &&
1925 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1926 update_size = false;
1927 goto out;
1928 }
1929
1930 /*
1931 * don't drop the conflicting directory entry if the inode
1932 * for the new entry doesn't exist
1933 */
1934 if (!exists)
1935 goto out;
1936
1937 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1938 if (ret)
1939 goto out;
1940
1941 if (key->type == BTRFS_DIR_INDEX_KEY)
1942 goto insert;
1943 out:
1944 btrfs_release_path(path);
1945 if (!ret && update_size) {
1946 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1947 ret = btrfs_update_inode(trans, root, dir);
1948 }
1949 kfree(name);
1950 iput(dir);
1951 if (!ret && name_added)
1952 ret = 1;
1953 return ret;
1954
1955 insert:
1956 if (name_in_log_ref(root->log_root, name, name_len,
1957 key->objectid, log_key.objectid)) {
1958 /* The dentry will be added later. */
1959 ret = 0;
1960 update_size = false;
1961 goto out;
1962 }
1963 btrfs_release_path(path);
1964 ret = insert_one_name(trans, root, key->objectid, key->offset,
1965 name, name_len, &log_key);
1966 if (ret && ret != -ENOENT && ret != -EEXIST)
1967 goto out;
1968 if (!ret)
1969 name_added = true;
1970 update_size = false;
1971 ret = 0;
1972 goto out;
1973 }
1974
1975 /*
1976 * find all the names in a directory item and reconcile them into
1977 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1978 * one name in a directory item, but the same code gets used for
1979 * both directory index types
1980 */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1981 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 struct btrfs_path *path,
1984 struct extent_buffer *eb, int slot,
1985 struct btrfs_key *key)
1986 {
1987 int ret = 0;
1988 u32 item_size = btrfs_item_size_nr(eb, slot);
1989 struct btrfs_dir_item *di;
1990 int name_len;
1991 unsigned long ptr;
1992 unsigned long ptr_end;
1993 struct btrfs_path *fixup_path = NULL;
1994
1995 ptr = btrfs_item_ptr_offset(eb, slot);
1996 ptr_end = ptr + item_size;
1997 while (ptr < ptr_end) {
1998 di = (struct btrfs_dir_item *)ptr;
1999 name_len = btrfs_dir_name_len(eb, di);
2000 ret = replay_one_name(trans, root, path, eb, di, key);
2001 if (ret < 0)
2002 break;
2003 ptr = (unsigned long)(di + 1);
2004 ptr += name_len;
2005
2006 /*
2007 * If this entry refers to a non-directory (directories can not
2008 * have a link count > 1) and it was added in the transaction
2009 * that was not committed, make sure we fixup the link count of
2010 * the inode it the entry points to. Otherwise something like
2011 * the following would result in a directory pointing to an
2012 * inode with a wrong link that does not account for this dir
2013 * entry:
2014 *
2015 * mkdir testdir
2016 * touch testdir/foo
2017 * touch testdir/bar
2018 * sync
2019 *
2020 * ln testdir/bar testdir/bar_link
2021 * ln testdir/foo testdir/foo_link
2022 * xfs_io -c "fsync" testdir/bar
2023 *
2024 * <power failure>
2025 *
2026 * mount fs, log replay happens
2027 *
2028 * File foo would remain with a link count of 1 when it has two
2029 * entries pointing to it in the directory testdir. This would
2030 * make it impossible to ever delete the parent directory has
2031 * it would result in stale dentries that can never be deleted.
2032 */
2033 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2034 struct btrfs_key di_key;
2035
2036 if (!fixup_path) {
2037 fixup_path = btrfs_alloc_path();
2038 if (!fixup_path) {
2039 ret = -ENOMEM;
2040 break;
2041 }
2042 }
2043
2044 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2045 ret = link_to_fixup_dir(trans, root, fixup_path,
2046 di_key.objectid);
2047 if (ret)
2048 break;
2049 }
2050 ret = 0;
2051 }
2052 btrfs_free_path(fixup_path);
2053 return ret;
2054 }
2055
2056 /*
2057 * directory replay has two parts. There are the standard directory
2058 * items in the log copied from the subvolume, and range items
2059 * created in the log while the subvolume was logged.
2060 *
2061 * The range items tell us which parts of the key space the log
2062 * is authoritative for. During replay, if a key in the subvolume
2063 * directory is in a logged range item, but not actually in the log
2064 * that means it was deleted from the directory before the fsync
2065 * and should be removed.
2066 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2067 static noinline int find_dir_range(struct btrfs_root *root,
2068 struct btrfs_path *path,
2069 u64 dirid, int key_type,
2070 u64 *start_ret, u64 *end_ret)
2071 {
2072 struct btrfs_key key;
2073 u64 found_end;
2074 struct btrfs_dir_log_item *item;
2075 int ret;
2076 int nritems;
2077
2078 if (*start_ret == (u64)-1)
2079 return 1;
2080
2081 key.objectid = dirid;
2082 key.type = key_type;
2083 key.offset = *start_ret;
2084
2085 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2086 if (ret < 0)
2087 goto out;
2088 if (ret > 0) {
2089 if (path->slots[0] == 0)
2090 goto out;
2091 path->slots[0]--;
2092 }
2093 if (ret != 0)
2094 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2095
2096 if (key.type != key_type || key.objectid != dirid) {
2097 ret = 1;
2098 goto next;
2099 }
2100 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2101 struct btrfs_dir_log_item);
2102 found_end = btrfs_dir_log_end(path->nodes[0], item);
2103
2104 if (*start_ret >= key.offset && *start_ret <= found_end) {
2105 ret = 0;
2106 *start_ret = key.offset;
2107 *end_ret = found_end;
2108 goto out;
2109 }
2110 ret = 1;
2111 next:
2112 /* check the next slot in the tree to see if it is a valid item */
2113 nritems = btrfs_header_nritems(path->nodes[0]);
2114 path->slots[0]++;
2115 if (path->slots[0] >= nritems) {
2116 ret = btrfs_next_leaf(root, path);
2117 if (ret)
2118 goto out;
2119 }
2120
2121 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2122
2123 if (key.type != key_type || key.objectid != dirid) {
2124 ret = 1;
2125 goto out;
2126 }
2127 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2128 struct btrfs_dir_log_item);
2129 found_end = btrfs_dir_log_end(path->nodes[0], item);
2130 *start_ret = key.offset;
2131 *end_ret = found_end;
2132 ret = 0;
2133 out:
2134 btrfs_release_path(path);
2135 return ret;
2136 }
2137
2138 /*
2139 * this looks for a given directory item in the log. If the directory
2140 * item is not in the log, the item is removed and the inode it points
2141 * to is unlinked
2142 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2143 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2144 struct btrfs_root *root,
2145 struct btrfs_root *log,
2146 struct btrfs_path *path,
2147 struct btrfs_path *log_path,
2148 struct inode *dir,
2149 struct btrfs_key *dir_key)
2150 {
2151 int ret;
2152 struct extent_buffer *eb;
2153 int slot;
2154 u32 item_size;
2155 struct btrfs_dir_item *di;
2156 struct btrfs_dir_item *log_di;
2157 int name_len;
2158 unsigned long ptr;
2159 unsigned long ptr_end;
2160 char *name;
2161 struct inode *inode;
2162 struct btrfs_key location;
2163
2164 again:
2165 eb = path->nodes[0];
2166 slot = path->slots[0];
2167 item_size = btrfs_item_size_nr(eb, slot);
2168 ptr = btrfs_item_ptr_offset(eb, slot);
2169 ptr_end = ptr + item_size;
2170 while (ptr < ptr_end) {
2171 di = (struct btrfs_dir_item *)ptr;
2172 name_len = btrfs_dir_name_len(eb, di);
2173 name = kmalloc(name_len, GFP_NOFS);
2174 if (!name) {
2175 ret = -ENOMEM;
2176 goto out;
2177 }
2178 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2179 name_len);
2180 log_di = NULL;
2181 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2182 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2183 dir_key->objectid,
2184 name, name_len, 0);
2185 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2186 log_di = btrfs_lookup_dir_index_item(trans, log,
2187 log_path,
2188 dir_key->objectid,
2189 dir_key->offset,
2190 name, name_len, 0);
2191 }
2192 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2193 btrfs_dir_item_key_to_cpu(eb, di, &location);
2194 btrfs_release_path(path);
2195 btrfs_release_path(log_path);
2196 inode = read_one_inode(root, location.objectid);
2197 if (!inode) {
2198 kfree(name);
2199 return -EIO;
2200 }
2201
2202 ret = link_to_fixup_dir(trans, root,
2203 path, location.objectid);
2204 if (ret) {
2205 kfree(name);
2206 iput(inode);
2207 goto out;
2208 }
2209
2210 inc_nlink(inode);
2211 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2212 BTRFS_I(inode), name, name_len);
2213 if (!ret)
2214 ret = btrfs_run_delayed_items(trans);
2215 kfree(name);
2216 iput(inode);
2217 if (ret)
2218 goto out;
2219
2220 /* there might still be more names under this key
2221 * check and repeat if required
2222 */
2223 ret = btrfs_search_slot(NULL, root, dir_key, path,
2224 0, 0);
2225 if (ret == 0)
2226 goto again;
2227 ret = 0;
2228 goto out;
2229 } else if (IS_ERR(log_di)) {
2230 kfree(name);
2231 return PTR_ERR(log_di);
2232 }
2233 btrfs_release_path(log_path);
2234 kfree(name);
2235
2236 ptr = (unsigned long)(di + 1);
2237 ptr += name_len;
2238 }
2239 ret = 0;
2240 out:
2241 btrfs_release_path(path);
2242 btrfs_release_path(log_path);
2243 return ret;
2244 }
2245
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2246 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2247 struct btrfs_root *root,
2248 struct btrfs_root *log,
2249 struct btrfs_path *path,
2250 const u64 ino)
2251 {
2252 struct btrfs_key search_key;
2253 struct btrfs_path *log_path;
2254 int i;
2255 int nritems;
2256 int ret;
2257
2258 log_path = btrfs_alloc_path();
2259 if (!log_path)
2260 return -ENOMEM;
2261
2262 search_key.objectid = ino;
2263 search_key.type = BTRFS_XATTR_ITEM_KEY;
2264 search_key.offset = 0;
2265 again:
2266 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2267 if (ret < 0)
2268 goto out;
2269 process_leaf:
2270 nritems = btrfs_header_nritems(path->nodes[0]);
2271 for (i = path->slots[0]; i < nritems; i++) {
2272 struct btrfs_key key;
2273 struct btrfs_dir_item *di;
2274 struct btrfs_dir_item *log_di;
2275 u32 total_size;
2276 u32 cur;
2277
2278 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2279 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2280 ret = 0;
2281 goto out;
2282 }
2283
2284 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2285 total_size = btrfs_item_size_nr(path->nodes[0], i);
2286 cur = 0;
2287 while (cur < total_size) {
2288 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2289 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2290 u32 this_len = sizeof(*di) + name_len + data_len;
2291 char *name;
2292
2293 name = kmalloc(name_len, GFP_NOFS);
2294 if (!name) {
2295 ret = -ENOMEM;
2296 goto out;
2297 }
2298 read_extent_buffer(path->nodes[0], name,
2299 (unsigned long)(di + 1), name_len);
2300
2301 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2302 name, name_len, 0);
2303 btrfs_release_path(log_path);
2304 if (!log_di) {
2305 /* Doesn't exist in log tree, so delete it. */
2306 btrfs_release_path(path);
2307 di = btrfs_lookup_xattr(trans, root, path, ino,
2308 name, name_len, -1);
2309 kfree(name);
2310 if (IS_ERR(di)) {
2311 ret = PTR_ERR(di);
2312 goto out;
2313 }
2314 ASSERT(di);
2315 ret = btrfs_delete_one_dir_name(trans, root,
2316 path, di);
2317 if (ret)
2318 goto out;
2319 btrfs_release_path(path);
2320 search_key = key;
2321 goto again;
2322 }
2323 kfree(name);
2324 if (IS_ERR(log_di)) {
2325 ret = PTR_ERR(log_di);
2326 goto out;
2327 }
2328 cur += this_len;
2329 di = (struct btrfs_dir_item *)((char *)di + this_len);
2330 }
2331 }
2332 ret = btrfs_next_leaf(root, path);
2333 if (ret > 0)
2334 ret = 0;
2335 else if (ret == 0)
2336 goto process_leaf;
2337 out:
2338 btrfs_free_path(log_path);
2339 btrfs_release_path(path);
2340 return ret;
2341 }
2342
2343
2344 /*
2345 * deletion replay happens before we copy any new directory items
2346 * out of the log or out of backreferences from inodes. It
2347 * scans the log to find ranges of keys that log is authoritative for,
2348 * and then scans the directory to find items in those ranges that are
2349 * not present in the log.
2350 *
2351 * Anything we don't find in the log is unlinked and removed from the
2352 * directory.
2353 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2354 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 struct btrfs_root *log,
2357 struct btrfs_path *path,
2358 u64 dirid, int del_all)
2359 {
2360 u64 range_start;
2361 u64 range_end;
2362 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2363 int ret = 0;
2364 struct btrfs_key dir_key;
2365 struct btrfs_key found_key;
2366 struct btrfs_path *log_path;
2367 struct inode *dir;
2368
2369 dir_key.objectid = dirid;
2370 dir_key.type = BTRFS_DIR_ITEM_KEY;
2371 log_path = btrfs_alloc_path();
2372 if (!log_path)
2373 return -ENOMEM;
2374
2375 dir = read_one_inode(root, dirid);
2376 /* it isn't an error if the inode isn't there, that can happen
2377 * because we replay the deletes before we copy in the inode item
2378 * from the log
2379 */
2380 if (!dir) {
2381 btrfs_free_path(log_path);
2382 return 0;
2383 }
2384 again:
2385 range_start = 0;
2386 range_end = 0;
2387 while (1) {
2388 if (del_all)
2389 range_end = (u64)-1;
2390 else {
2391 ret = find_dir_range(log, path, dirid, key_type,
2392 &range_start, &range_end);
2393 if (ret != 0)
2394 break;
2395 }
2396
2397 dir_key.offset = range_start;
2398 while (1) {
2399 int nritems;
2400 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2401 0, 0);
2402 if (ret < 0)
2403 goto out;
2404
2405 nritems = btrfs_header_nritems(path->nodes[0]);
2406 if (path->slots[0] >= nritems) {
2407 ret = btrfs_next_leaf(root, path);
2408 if (ret == 1)
2409 break;
2410 else if (ret < 0)
2411 goto out;
2412 }
2413 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2414 path->slots[0]);
2415 if (found_key.objectid != dirid ||
2416 found_key.type != dir_key.type)
2417 goto next_type;
2418
2419 if (found_key.offset > range_end)
2420 break;
2421
2422 ret = check_item_in_log(trans, root, log, path,
2423 log_path, dir,
2424 &found_key);
2425 if (ret)
2426 goto out;
2427 if (found_key.offset == (u64)-1)
2428 break;
2429 dir_key.offset = found_key.offset + 1;
2430 }
2431 btrfs_release_path(path);
2432 if (range_end == (u64)-1)
2433 break;
2434 range_start = range_end + 1;
2435 }
2436
2437 next_type:
2438 ret = 0;
2439 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2440 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2441 dir_key.type = BTRFS_DIR_INDEX_KEY;
2442 btrfs_release_path(path);
2443 goto again;
2444 }
2445 out:
2446 btrfs_release_path(path);
2447 btrfs_free_path(log_path);
2448 iput(dir);
2449 return ret;
2450 }
2451
2452 /*
2453 * the process_func used to replay items from the log tree. This
2454 * gets called in two different stages. The first stage just looks
2455 * for inodes and makes sure they are all copied into the subvolume.
2456 *
2457 * The second stage copies all the other item types from the log into
2458 * the subvolume. The two stage approach is slower, but gets rid of
2459 * lots of complexity around inodes referencing other inodes that exist
2460 * only in the log (references come from either directory items or inode
2461 * back refs).
2462 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2463 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2464 struct walk_control *wc, u64 gen, int level)
2465 {
2466 int nritems;
2467 struct btrfs_path *path;
2468 struct btrfs_root *root = wc->replay_dest;
2469 struct btrfs_key key;
2470 int i;
2471 int ret;
2472
2473 ret = btrfs_read_buffer(eb, gen, level, NULL);
2474 if (ret)
2475 return ret;
2476
2477 level = btrfs_header_level(eb);
2478
2479 if (level != 0)
2480 return 0;
2481
2482 path = btrfs_alloc_path();
2483 if (!path)
2484 return -ENOMEM;
2485
2486 nritems = btrfs_header_nritems(eb);
2487 for (i = 0; i < nritems; i++) {
2488 btrfs_item_key_to_cpu(eb, &key, i);
2489
2490 /* inode keys are done during the first stage */
2491 if (key.type == BTRFS_INODE_ITEM_KEY &&
2492 wc->stage == LOG_WALK_REPLAY_INODES) {
2493 struct btrfs_inode_item *inode_item;
2494 u32 mode;
2495
2496 inode_item = btrfs_item_ptr(eb, i,
2497 struct btrfs_inode_item);
2498 /*
2499 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2500 * and never got linked before the fsync, skip it, as
2501 * replaying it is pointless since it would be deleted
2502 * later. We skip logging tmpfiles, but it's always
2503 * possible we are replaying a log created with a kernel
2504 * that used to log tmpfiles.
2505 */
2506 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2507 wc->ignore_cur_inode = true;
2508 continue;
2509 } else {
2510 wc->ignore_cur_inode = false;
2511 }
2512 ret = replay_xattr_deletes(wc->trans, root, log,
2513 path, key.objectid);
2514 if (ret)
2515 break;
2516 mode = btrfs_inode_mode(eb, inode_item);
2517 if (S_ISDIR(mode)) {
2518 ret = replay_dir_deletes(wc->trans,
2519 root, log, path, key.objectid, 0);
2520 if (ret)
2521 break;
2522 }
2523 ret = overwrite_item(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527
2528 /*
2529 * Before replaying extents, truncate the inode to its
2530 * size. We need to do it now and not after log replay
2531 * because before an fsync we can have prealloc extents
2532 * added beyond the inode's i_size. If we did it after,
2533 * through orphan cleanup for example, we would drop
2534 * those prealloc extents just after replaying them.
2535 */
2536 if (S_ISREG(mode)) {
2537 struct inode *inode;
2538 u64 from;
2539
2540 inode = read_one_inode(root, key.objectid);
2541 if (!inode) {
2542 ret = -EIO;
2543 break;
2544 }
2545 from = ALIGN(i_size_read(inode),
2546 root->fs_info->sectorsize);
2547 ret = btrfs_drop_extents(wc->trans, root, inode,
2548 from, (u64)-1, 1);
2549 if (!ret) {
2550 /* Update the inode's nbytes. */
2551 ret = btrfs_update_inode(wc->trans,
2552 root, inode);
2553 }
2554 iput(inode);
2555 if (ret)
2556 break;
2557 }
2558
2559 ret = link_to_fixup_dir(wc->trans, root,
2560 path, key.objectid);
2561 if (ret)
2562 break;
2563 }
2564
2565 if (wc->ignore_cur_inode)
2566 continue;
2567
2568 if (key.type == BTRFS_DIR_INDEX_KEY &&
2569 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2570 ret = replay_one_dir_item(wc->trans, root, path,
2571 eb, i, &key);
2572 if (ret)
2573 break;
2574 }
2575
2576 if (wc->stage < LOG_WALK_REPLAY_ALL)
2577 continue;
2578
2579 /* these keys are simply copied */
2580 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2581 ret = overwrite_item(wc->trans, root, path,
2582 eb, i, &key);
2583 if (ret)
2584 break;
2585 } else if (key.type == BTRFS_INODE_REF_KEY ||
2586 key.type == BTRFS_INODE_EXTREF_KEY) {
2587 ret = add_inode_ref(wc->trans, root, log, path,
2588 eb, i, &key);
2589 if (ret && ret != -ENOENT)
2590 break;
2591 ret = 0;
2592 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2593 ret = replay_one_extent(wc->trans, root, path,
2594 eb, i, &key);
2595 if (ret)
2596 break;
2597 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2598 ret = replay_one_dir_item(wc->trans, root, path,
2599 eb, i, &key);
2600 if (ret)
2601 break;
2602 }
2603 }
2604 btrfs_free_path(path);
2605 return ret;
2606 }
2607
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2608 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2609 struct btrfs_root *root,
2610 struct btrfs_path *path, int *level,
2611 struct walk_control *wc)
2612 {
2613 struct btrfs_fs_info *fs_info = root->fs_info;
2614 u64 root_owner;
2615 u64 bytenr;
2616 u64 ptr_gen;
2617 struct extent_buffer *next;
2618 struct extent_buffer *cur;
2619 struct extent_buffer *parent;
2620 u32 blocksize;
2621 int ret = 0;
2622
2623 WARN_ON(*level < 0);
2624 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2625
2626 while (*level > 0) {
2627 struct btrfs_key first_key;
2628
2629 WARN_ON(*level < 0);
2630 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2631 cur = path->nodes[*level];
2632
2633 WARN_ON(btrfs_header_level(cur) != *level);
2634
2635 if (path->slots[*level] >=
2636 btrfs_header_nritems(cur))
2637 break;
2638
2639 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2640 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2641 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2642 blocksize = fs_info->nodesize;
2643
2644 parent = path->nodes[*level];
2645 root_owner = btrfs_header_owner(parent);
2646
2647 next = btrfs_find_create_tree_block(fs_info, bytenr);
2648 if (IS_ERR(next))
2649 return PTR_ERR(next);
2650
2651 if (*level == 1) {
2652 ret = wc->process_func(root, next, wc, ptr_gen,
2653 *level - 1);
2654 if (ret) {
2655 free_extent_buffer(next);
2656 return ret;
2657 }
2658
2659 path->slots[*level]++;
2660 if (wc->free) {
2661 ret = btrfs_read_buffer(next, ptr_gen,
2662 *level - 1, &first_key);
2663 if (ret) {
2664 free_extent_buffer(next);
2665 return ret;
2666 }
2667
2668 if (trans) {
2669 btrfs_tree_lock(next);
2670 btrfs_set_lock_blocking(next);
2671 clean_tree_block(fs_info, next);
2672 btrfs_wait_tree_block_writeback(next);
2673 btrfs_tree_unlock(next);
2674 } else {
2675 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2676 clear_extent_buffer_dirty(next);
2677 }
2678
2679 WARN_ON(root_owner !=
2680 BTRFS_TREE_LOG_OBJECTID);
2681 ret = btrfs_free_and_pin_reserved_extent(
2682 fs_info, bytenr,
2683 blocksize);
2684 if (ret) {
2685 free_extent_buffer(next);
2686 return ret;
2687 }
2688 }
2689 free_extent_buffer(next);
2690 continue;
2691 }
2692 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2693 if (ret) {
2694 free_extent_buffer(next);
2695 return ret;
2696 }
2697
2698 WARN_ON(*level <= 0);
2699 if (path->nodes[*level-1])
2700 free_extent_buffer(path->nodes[*level-1]);
2701 path->nodes[*level-1] = next;
2702 *level = btrfs_header_level(next);
2703 path->slots[*level] = 0;
2704 cond_resched();
2705 }
2706 WARN_ON(*level < 0);
2707 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2708
2709 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2710
2711 cond_resched();
2712 return 0;
2713 }
2714
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2715 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2716 struct btrfs_root *root,
2717 struct btrfs_path *path, int *level,
2718 struct walk_control *wc)
2719 {
2720 struct btrfs_fs_info *fs_info = root->fs_info;
2721 u64 root_owner;
2722 int i;
2723 int slot;
2724 int ret;
2725
2726 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2727 slot = path->slots[i];
2728 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2729 path->slots[i]++;
2730 *level = i;
2731 WARN_ON(*level == 0);
2732 return 0;
2733 } else {
2734 struct extent_buffer *parent;
2735 if (path->nodes[*level] == root->node)
2736 parent = path->nodes[*level];
2737 else
2738 parent = path->nodes[*level + 1];
2739
2740 root_owner = btrfs_header_owner(parent);
2741 ret = wc->process_func(root, path->nodes[*level], wc,
2742 btrfs_header_generation(path->nodes[*level]),
2743 *level);
2744 if (ret)
2745 return ret;
2746
2747 if (wc->free) {
2748 struct extent_buffer *next;
2749
2750 next = path->nodes[*level];
2751
2752 if (trans) {
2753 btrfs_tree_lock(next);
2754 btrfs_set_lock_blocking(next);
2755 clean_tree_block(fs_info, next);
2756 btrfs_wait_tree_block_writeback(next);
2757 btrfs_tree_unlock(next);
2758 } else {
2759 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2760 clear_extent_buffer_dirty(next);
2761 }
2762
2763 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2764 ret = btrfs_free_and_pin_reserved_extent(
2765 fs_info,
2766 path->nodes[*level]->start,
2767 path->nodes[*level]->len);
2768 if (ret)
2769 return ret;
2770 }
2771 free_extent_buffer(path->nodes[*level]);
2772 path->nodes[*level] = NULL;
2773 *level = i + 1;
2774 }
2775 }
2776 return 1;
2777 }
2778
2779 /*
2780 * drop the reference count on the tree rooted at 'snap'. This traverses
2781 * the tree freeing any blocks that have a ref count of zero after being
2782 * decremented.
2783 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2784 static int walk_log_tree(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *log, struct walk_control *wc)
2786 {
2787 struct btrfs_fs_info *fs_info = log->fs_info;
2788 int ret = 0;
2789 int wret;
2790 int level;
2791 struct btrfs_path *path;
2792 int orig_level;
2793
2794 path = btrfs_alloc_path();
2795 if (!path)
2796 return -ENOMEM;
2797
2798 level = btrfs_header_level(log->node);
2799 orig_level = level;
2800 path->nodes[level] = log->node;
2801 extent_buffer_get(log->node);
2802 path->slots[level] = 0;
2803
2804 while (1) {
2805 wret = walk_down_log_tree(trans, log, path, &level, wc);
2806 if (wret > 0)
2807 break;
2808 if (wret < 0) {
2809 ret = wret;
2810 goto out;
2811 }
2812
2813 wret = walk_up_log_tree(trans, log, path, &level, wc);
2814 if (wret > 0)
2815 break;
2816 if (wret < 0) {
2817 ret = wret;
2818 goto out;
2819 }
2820 }
2821
2822 /* was the root node processed? if not, catch it here */
2823 if (path->nodes[orig_level]) {
2824 ret = wc->process_func(log, path->nodes[orig_level], wc,
2825 btrfs_header_generation(path->nodes[orig_level]),
2826 orig_level);
2827 if (ret)
2828 goto out;
2829 if (wc->free) {
2830 struct extent_buffer *next;
2831
2832 next = path->nodes[orig_level];
2833
2834 if (trans) {
2835 btrfs_tree_lock(next);
2836 btrfs_set_lock_blocking(next);
2837 clean_tree_block(fs_info, next);
2838 btrfs_wait_tree_block_writeback(next);
2839 btrfs_tree_unlock(next);
2840 } else {
2841 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2842 clear_extent_buffer_dirty(next);
2843 }
2844
2845 WARN_ON(log->root_key.objectid !=
2846 BTRFS_TREE_LOG_OBJECTID);
2847 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2848 next->start, next->len);
2849 if (ret)
2850 goto out;
2851 }
2852 }
2853
2854 out:
2855 btrfs_free_path(path);
2856 return ret;
2857 }
2858
2859 /*
2860 * helper function to update the item for a given subvolumes log root
2861 * in the tree of log roots
2862 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2863 static int update_log_root(struct btrfs_trans_handle *trans,
2864 struct btrfs_root *log,
2865 struct btrfs_root_item *root_item)
2866 {
2867 struct btrfs_fs_info *fs_info = log->fs_info;
2868 int ret;
2869
2870 if (log->log_transid == 1) {
2871 /* insert root item on the first sync */
2872 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2873 &log->root_key, root_item);
2874 } else {
2875 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2876 &log->root_key, root_item);
2877 }
2878 return ret;
2879 }
2880
wait_log_commit(struct btrfs_root * root,int transid)2881 static void wait_log_commit(struct btrfs_root *root, int transid)
2882 {
2883 DEFINE_WAIT(wait);
2884 int index = transid % 2;
2885
2886 /*
2887 * we only allow two pending log transactions at a time,
2888 * so we know that if ours is more than 2 older than the
2889 * current transaction, we're done
2890 */
2891 for (;;) {
2892 prepare_to_wait(&root->log_commit_wait[index],
2893 &wait, TASK_UNINTERRUPTIBLE);
2894
2895 if (!(root->log_transid_committed < transid &&
2896 atomic_read(&root->log_commit[index])))
2897 break;
2898
2899 mutex_unlock(&root->log_mutex);
2900 schedule();
2901 mutex_lock(&root->log_mutex);
2902 }
2903 finish_wait(&root->log_commit_wait[index], &wait);
2904 }
2905
wait_for_writer(struct btrfs_root * root)2906 static void wait_for_writer(struct btrfs_root *root)
2907 {
2908 DEFINE_WAIT(wait);
2909
2910 for (;;) {
2911 prepare_to_wait(&root->log_writer_wait, &wait,
2912 TASK_UNINTERRUPTIBLE);
2913 if (!atomic_read(&root->log_writers))
2914 break;
2915
2916 mutex_unlock(&root->log_mutex);
2917 schedule();
2918 mutex_lock(&root->log_mutex);
2919 }
2920 finish_wait(&root->log_writer_wait, &wait);
2921 }
2922
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2923 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2924 struct btrfs_log_ctx *ctx)
2925 {
2926 if (!ctx)
2927 return;
2928
2929 mutex_lock(&root->log_mutex);
2930 list_del_init(&ctx->list);
2931 mutex_unlock(&root->log_mutex);
2932 }
2933
2934 /*
2935 * Invoked in log mutex context, or be sure there is no other task which
2936 * can access the list.
2937 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2938 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2939 int index, int error)
2940 {
2941 struct btrfs_log_ctx *ctx;
2942 struct btrfs_log_ctx *safe;
2943
2944 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2945 list_del_init(&ctx->list);
2946 ctx->log_ret = error;
2947 }
2948
2949 INIT_LIST_HEAD(&root->log_ctxs[index]);
2950 }
2951
2952 /*
2953 * btrfs_sync_log does sends a given tree log down to the disk and
2954 * updates the super blocks to record it. When this call is done,
2955 * you know that any inodes previously logged are safely on disk only
2956 * if it returns 0.
2957 *
2958 * Any other return value means you need to call btrfs_commit_transaction.
2959 * Some of the edge cases for fsyncing directories that have had unlinks
2960 * or renames done in the past mean that sometimes the only safe
2961 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2962 * that has happened.
2963 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2964 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2966 {
2967 int index1;
2968 int index2;
2969 int mark;
2970 int ret;
2971 struct btrfs_fs_info *fs_info = root->fs_info;
2972 struct btrfs_root *log = root->log_root;
2973 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2974 struct btrfs_root_item new_root_item;
2975 int log_transid = 0;
2976 struct btrfs_log_ctx root_log_ctx;
2977 struct blk_plug plug;
2978
2979 mutex_lock(&root->log_mutex);
2980 log_transid = ctx->log_transid;
2981 if (root->log_transid_committed >= log_transid) {
2982 mutex_unlock(&root->log_mutex);
2983 return ctx->log_ret;
2984 }
2985
2986 index1 = log_transid % 2;
2987 if (atomic_read(&root->log_commit[index1])) {
2988 wait_log_commit(root, log_transid);
2989 mutex_unlock(&root->log_mutex);
2990 return ctx->log_ret;
2991 }
2992 ASSERT(log_transid == root->log_transid);
2993 atomic_set(&root->log_commit[index1], 1);
2994
2995 /* wait for previous tree log sync to complete */
2996 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2997 wait_log_commit(root, log_transid - 1);
2998
2999 while (1) {
3000 int batch = atomic_read(&root->log_batch);
3001 /* when we're on an ssd, just kick the log commit out */
3002 if (!btrfs_test_opt(fs_info, SSD) &&
3003 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3004 mutex_unlock(&root->log_mutex);
3005 schedule_timeout_uninterruptible(1);
3006 mutex_lock(&root->log_mutex);
3007 }
3008 wait_for_writer(root);
3009 if (batch == atomic_read(&root->log_batch))
3010 break;
3011 }
3012
3013 /* bail out if we need to do a full commit */
3014 if (btrfs_need_log_full_commit(fs_info, trans)) {
3015 ret = -EAGAIN;
3016 mutex_unlock(&root->log_mutex);
3017 goto out;
3018 }
3019
3020 if (log_transid % 2 == 0)
3021 mark = EXTENT_DIRTY;
3022 else
3023 mark = EXTENT_NEW;
3024
3025 /* we start IO on all the marked extents here, but we don't actually
3026 * wait for them until later.
3027 */
3028 blk_start_plug(&plug);
3029 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3030 if (ret) {
3031 blk_finish_plug(&plug);
3032 btrfs_abort_transaction(trans, ret);
3033 btrfs_set_log_full_commit(fs_info, trans);
3034 mutex_unlock(&root->log_mutex);
3035 goto out;
3036 }
3037
3038 /*
3039 * We _must_ update under the root->log_mutex in order to make sure we
3040 * have a consistent view of the log root we are trying to commit at
3041 * this moment.
3042 *
3043 * We _must_ copy this into a local copy, because we are not holding the
3044 * log_root_tree->log_mutex yet. This is important because when we
3045 * commit the log_root_tree we must have a consistent view of the
3046 * log_root_tree when we update the super block to point at the
3047 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3048 * with the commit and possibly point at the new block which we may not
3049 * have written out.
3050 */
3051 btrfs_set_root_node(&log->root_item, log->node);
3052 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3053
3054 root->log_transid++;
3055 log->log_transid = root->log_transid;
3056 root->log_start_pid = 0;
3057 /*
3058 * IO has been started, blocks of the log tree have WRITTEN flag set
3059 * in their headers. new modifications of the log will be written to
3060 * new positions. so it's safe to allow log writers to go in.
3061 */
3062 mutex_unlock(&root->log_mutex);
3063
3064 btrfs_init_log_ctx(&root_log_ctx, NULL);
3065
3066 mutex_lock(&log_root_tree->log_mutex);
3067 atomic_inc(&log_root_tree->log_batch);
3068 atomic_inc(&log_root_tree->log_writers);
3069
3070 index2 = log_root_tree->log_transid % 2;
3071 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3072 root_log_ctx.log_transid = log_root_tree->log_transid;
3073
3074 mutex_unlock(&log_root_tree->log_mutex);
3075
3076 mutex_lock(&log_root_tree->log_mutex);
3077
3078 /*
3079 * Now we are safe to update the log_root_tree because we're under the
3080 * log_mutex, and we're a current writer so we're holding the commit
3081 * open until we drop the log_mutex.
3082 */
3083 ret = update_log_root(trans, log, &new_root_item);
3084
3085 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3086 /* atomic_dec_and_test implies a barrier */
3087 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3088 }
3089
3090 if (ret) {
3091 if (!list_empty(&root_log_ctx.list))
3092 list_del_init(&root_log_ctx.list);
3093
3094 blk_finish_plug(&plug);
3095 btrfs_set_log_full_commit(fs_info, trans);
3096
3097 if (ret != -ENOSPC) {
3098 btrfs_abort_transaction(trans, ret);
3099 mutex_unlock(&log_root_tree->log_mutex);
3100 goto out;
3101 }
3102 btrfs_wait_tree_log_extents(log, mark);
3103 mutex_unlock(&log_root_tree->log_mutex);
3104 ret = -EAGAIN;
3105 goto out;
3106 }
3107
3108 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3109 blk_finish_plug(&plug);
3110 list_del_init(&root_log_ctx.list);
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 ret = root_log_ctx.log_ret;
3113 goto out;
3114 }
3115
3116 index2 = root_log_ctx.log_transid % 2;
3117 if (atomic_read(&log_root_tree->log_commit[index2])) {
3118 blk_finish_plug(&plug);
3119 ret = btrfs_wait_tree_log_extents(log, mark);
3120 wait_log_commit(log_root_tree,
3121 root_log_ctx.log_transid);
3122 mutex_unlock(&log_root_tree->log_mutex);
3123 if (!ret)
3124 ret = root_log_ctx.log_ret;
3125 goto out;
3126 }
3127 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3128 atomic_set(&log_root_tree->log_commit[index2], 1);
3129
3130 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3131 wait_log_commit(log_root_tree,
3132 root_log_ctx.log_transid - 1);
3133 }
3134
3135 wait_for_writer(log_root_tree);
3136
3137 /*
3138 * now that we've moved on to the tree of log tree roots,
3139 * check the full commit flag again
3140 */
3141 if (btrfs_need_log_full_commit(fs_info, trans)) {
3142 blk_finish_plug(&plug);
3143 btrfs_wait_tree_log_extents(log, mark);
3144 mutex_unlock(&log_root_tree->log_mutex);
3145 ret = -EAGAIN;
3146 goto out_wake_log_root;
3147 }
3148
3149 ret = btrfs_write_marked_extents(fs_info,
3150 &log_root_tree->dirty_log_pages,
3151 EXTENT_DIRTY | EXTENT_NEW);
3152 blk_finish_plug(&plug);
3153 if (ret) {
3154 btrfs_set_log_full_commit(fs_info, trans);
3155 btrfs_abort_transaction(trans, ret);
3156 mutex_unlock(&log_root_tree->log_mutex);
3157 goto out_wake_log_root;
3158 }
3159 ret = btrfs_wait_tree_log_extents(log, mark);
3160 if (!ret)
3161 ret = btrfs_wait_tree_log_extents(log_root_tree,
3162 EXTENT_NEW | EXTENT_DIRTY);
3163 if (ret) {
3164 btrfs_set_log_full_commit(fs_info, trans);
3165 mutex_unlock(&log_root_tree->log_mutex);
3166 goto out_wake_log_root;
3167 }
3168
3169 btrfs_set_super_log_root(fs_info->super_for_commit,
3170 log_root_tree->node->start);
3171 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3172 btrfs_header_level(log_root_tree->node));
3173
3174 log_root_tree->log_transid++;
3175 mutex_unlock(&log_root_tree->log_mutex);
3176
3177 /*
3178 * nobody else is going to jump in and write the the ctree
3179 * super here because the log_commit atomic below is protecting
3180 * us. We must be called with a transaction handle pinning
3181 * the running transaction open, so a full commit can't hop
3182 * in and cause problems either.
3183 */
3184 ret = write_all_supers(fs_info, 1);
3185 if (ret) {
3186 btrfs_set_log_full_commit(fs_info, trans);
3187 btrfs_abort_transaction(trans, ret);
3188 goto out_wake_log_root;
3189 }
3190
3191 mutex_lock(&root->log_mutex);
3192 if (root->last_log_commit < log_transid)
3193 root->last_log_commit = log_transid;
3194 mutex_unlock(&root->log_mutex);
3195
3196 out_wake_log_root:
3197 mutex_lock(&log_root_tree->log_mutex);
3198 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3199
3200 log_root_tree->log_transid_committed++;
3201 atomic_set(&log_root_tree->log_commit[index2], 0);
3202 mutex_unlock(&log_root_tree->log_mutex);
3203
3204 /*
3205 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3206 * all the updates above are seen by the woken threads. It might not be
3207 * necessary, but proving that seems to be hard.
3208 */
3209 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3210 out:
3211 mutex_lock(&root->log_mutex);
3212 btrfs_remove_all_log_ctxs(root, index1, ret);
3213 root->log_transid_committed++;
3214 atomic_set(&root->log_commit[index1], 0);
3215 mutex_unlock(&root->log_mutex);
3216
3217 /*
3218 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3219 * all the updates above are seen by the woken threads. It might not be
3220 * necessary, but proving that seems to be hard.
3221 */
3222 cond_wake_up(&root->log_commit_wait[index1]);
3223 return ret;
3224 }
3225
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3226 static void free_log_tree(struct btrfs_trans_handle *trans,
3227 struct btrfs_root *log)
3228 {
3229 int ret;
3230 u64 start;
3231 u64 end;
3232 struct walk_control wc = {
3233 .free = 1,
3234 .process_func = process_one_buffer
3235 };
3236
3237 ret = walk_log_tree(trans, log, &wc);
3238 if (ret) {
3239 if (trans)
3240 btrfs_abort_transaction(trans, ret);
3241 else
3242 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3243 }
3244
3245 while (1) {
3246 ret = find_first_extent_bit(&log->dirty_log_pages,
3247 0, &start, &end,
3248 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3249 NULL);
3250 if (ret)
3251 break;
3252
3253 clear_extent_bits(&log->dirty_log_pages, start, end,
3254 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3255 }
3256
3257 free_extent_buffer(log->node);
3258 kfree(log);
3259 }
3260
3261 /*
3262 * free all the extents used by the tree log. This should be called
3263 * at commit time of the full transaction
3264 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3265 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3266 {
3267 if (root->log_root) {
3268 free_log_tree(trans, root->log_root);
3269 root->log_root = NULL;
3270 }
3271 return 0;
3272 }
3273
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3274 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3275 struct btrfs_fs_info *fs_info)
3276 {
3277 if (fs_info->log_root_tree) {
3278 free_log_tree(trans, fs_info->log_root_tree);
3279 fs_info->log_root_tree = NULL;
3280 }
3281 return 0;
3282 }
3283
3284 /*
3285 * Check if an inode was logged in the current transaction. We can't always rely
3286 * on an inode's logged_trans value, because it's an in-memory only field and
3287 * therefore not persisted. This means that its value is lost if the inode gets
3288 * evicted and loaded again from disk (in which case it has a value of 0, and
3289 * certainly it is smaller then any possible transaction ID), when that happens
3290 * the full_sync flag is set in the inode's runtime flags, so on that case we
3291 * assume eviction happened and ignore the logged_trans value, assuming the
3292 * worst case, that the inode was logged before in the current transaction.
3293 */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3294 static bool inode_logged(struct btrfs_trans_handle *trans,
3295 struct btrfs_inode *inode)
3296 {
3297 if (inode->logged_trans == trans->transid)
3298 return true;
3299
3300 if (inode->last_trans == trans->transid &&
3301 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3302 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3303 return true;
3304
3305 return false;
3306 }
3307
3308 /*
3309 * If both a file and directory are logged, and unlinks or renames are
3310 * mixed in, we have a few interesting corners:
3311 *
3312 * create file X in dir Y
3313 * link file X to X.link in dir Y
3314 * fsync file X
3315 * unlink file X but leave X.link
3316 * fsync dir Y
3317 *
3318 * After a crash we would expect only X.link to exist. But file X
3319 * didn't get fsync'd again so the log has back refs for X and X.link.
3320 *
3321 * We solve this by removing directory entries and inode backrefs from the
3322 * log when a file that was logged in the current transaction is
3323 * unlinked. Any later fsync will include the updated log entries, and
3324 * we'll be able to reconstruct the proper directory items from backrefs.
3325 *
3326 * This optimizations allows us to avoid relogging the entire inode
3327 * or the entire directory.
3328 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3329 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root,
3331 const char *name, int name_len,
3332 struct btrfs_inode *dir, u64 index)
3333 {
3334 struct btrfs_root *log;
3335 struct btrfs_dir_item *di;
3336 struct btrfs_path *path;
3337 int ret;
3338 int err = 0;
3339 int bytes_del = 0;
3340 u64 dir_ino = btrfs_ino(dir);
3341
3342 if (!inode_logged(trans, dir))
3343 return 0;
3344
3345 ret = join_running_log_trans(root);
3346 if (ret)
3347 return 0;
3348
3349 mutex_lock(&dir->log_mutex);
3350
3351 log = root->log_root;
3352 path = btrfs_alloc_path();
3353 if (!path) {
3354 err = -ENOMEM;
3355 goto out_unlock;
3356 }
3357
3358 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3359 name, name_len, -1);
3360 if (IS_ERR(di)) {
3361 err = PTR_ERR(di);
3362 goto fail;
3363 }
3364 if (di) {
3365 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3366 bytes_del += name_len;
3367 if (ret) {
3368 err = ret;
3369 goto fail;
3370 }
3371 }
3372 btrfs_release_path(path);
3373 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3374 index, name, name_len, -1);
3375 if (IS_ERR(di)) {
3376 err = PTR_ERR(di);
3377 goto fail;
3378 }
3379 if (di) {
3380 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3381 bytes_del += name_len;
3382 if (ret) {
3383 err = ret;
3384 goto fail;
3385 }
3386 }
3387
3388 /* update the directory size in the log to reflect the names
3389 * we have removed
3390 */
3391 if (bytes_del) {
3392 struct btrfs_key key;
3393
3394 key.objectid = dir_ino;
3395 key.offset = 0;
3396 key.type = BTRFS_INODE_ITEM_KEY;
3397 btrfs_release_path(path);
3398
3399 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3400 if (ret < 0) {
3401 err = ret;
3402 goto fail;
3403 }
3404 if (ret == 0) {
3405 struct btrfs_inode_item *item;
3406 u64 i_size;
3407
3408 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3409 struct btrfs_inode_item);
3410 i_size = btrfs_inode_size(path->nodes[0], item);
3411 if (i_size > bytes_del)
3412 i_size -= bytes_del;
3413 else
3414 i_size = 0;
3415 btrfs_set_inode_size(path->nodes[0], item, i_size);
3416 btrfs_mark_buffer_dirty(path->nodes[0]);
3417 } else
3418 ret = 0;
3419 btrfs_release_path(path);
3420 }
3421 fail:
3422 btrfs_free_path(path);
3423 out_unlock:
3424 mutex_unlock(&dir->log_mutex);
3425 if (err == -ENOSPC) {
3426 btrfs_set_log_full_commit(root->fs_info, trans);
3427 err = 0;
3428 } else if (err < 0 && err != -ENOENT) {
3429 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3430 btrfs_abort_transaction(trans, err);
3431 }
3432
3433 btrfs_end_log_trans(root);
3434
3435 return err;
3436 }
3437
3438 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3439 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3440 struct btrfs_root *root,
3441 const char *name, int name_len,
3442 struct btrfs_inode *inode, u64 dirid)
3443 {
3444 struct btrfs_fs_info *fs_info = root->fs_info;
3445 struct btrfs_root *log;
3446 u64 index;
3447 int ret;
3448
3449 if (!inode_logged(trans, inode))
3450 return 0;
3451
3452 ret = join_running_log_trans(root);
3453 if (ret)
3454 return 0;
3455 log = root->log_root;
3456 mutex_lock(&inode->log_mutex);
3457
3458 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3459 dirid, &index);
3460 mutex_unlock(&inode->log_mutex);
3461 if (ret == -ENOSPC) {
3462 btrfs_set_log_full_commit(fs_info, trans);
3463 ret = 0;
3464 } else if (ret < 0 && ret != -ENOENT)
3465 btrfs_abort_transaction(trans, ret);
3466 btrfs_end_log_trans(root);
3467
3468 return ret;
3469 }
3470
3471 /*
3472 * creates a range item in the log for 'dirid'. first_offset and
3473 * last_offset tell us which parts of the key space the log should
3474 * be considered authoritative for.
3475 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3476 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3477 struct btrfs_root *log,
3478 struct btrfs_path *path,
3479 int key_type, u64 dirid,
3480 u64 first_offset, u64 last_offset)
3481 {
3482 int ret;
3483 struct btrfs_key key;
3484 struct btrfs_dir_log_item *item;
3485
3486 key.objectid = dirid;
3487 key.offset = first_offset;
3488 if (key_type == BTRFS_DIR_ITEM_KEY)
3489 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3490 else
3491 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3492 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3493 if (ret)
3494 return ret;
3495
3496 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3497 struct btrfs_dir_log_item);
3498 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3499 btrfs_mark_buffer_dirty(path->nodes[0]);
3500 btrfs_release_path(path);
3501 return 0;
3502 }
3503
3504 /*
3505 * log all the items included in the current transaction for a given
3506 * directory. This also creates the range items in the log tree required
3507 * to replay anything deleted before the fsync
3508 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3509 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, struct btrfs_inode *inode,
3511 struct btrfs_path *path,
3512 struct btrfs_path *dst_path, int key_type,
3513 struct btrfs_log_ctx *ctx,
3514 u64 min_offset, u64 *last_offset_ret)
3515 {
3516 struct btrfs_key min_key;
3517 struct btrfs_root *log = root->log_root;
3518 struct extent_buffer *src;
3519 int err = 0;
3520 int ret;
3521 int i;
3522 int nritems;
3523 u64 first_offset = min_offset;
3524 u64 last_offset = (u64)-1;
3525 u64 ino = btrfs_ino(inode);
3526
3527 log = root->log_root;
3528
3529 min_key.objectid = ino;
3530 min_key.type = key_type;
3531 min_key.offset = min_offset;
3532
3533 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3534
3535 /*
3536 * we didn't find anything from this transaction, see if there
3537 * is anything at all
3538 */
3539 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3540 min_key.objectid = ino;
3541 min_key.type = key_type;
3542 min_key.offset = (u64)-1;
3543 btrfs_release_path(path);
3544 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3545 if (ret < 0) {
3546 btrfs_release_path(path);
3547 return ret;
3548 }
3549 ret = btrfs_previous_item(root, path, ino, key_type);
3550
3551 /* if ret == 0 there are items for this type,
3552 * create a range to tell us the last key of this type.
3553 * otherwise, there are no items in this directory after
3554 * *min_offset, and we create a range to indicate that.
3555 */
3556 if (ret == 0) {
3557 struct btrfs_key tmp;
3558 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3559 path->slots[0]);
3560 if (key_type == tmp.type)
3561 first_offset = max(min_offset, tmp.offset) + 1;
3562 }
3563 goto done;
3564 }
3565
3566 /* go backward to find any previous key */
3567 ret = btrfs_previous_item(root, path, ino, key_type);
3568 if (ret == 0) {
3569 struct btrfs_key tmp;
3570 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3571 if (key_type == tmp.type) {
3572 first_offset = tmp.offset;
3573 ret = overwrite_item(trans, log, dst_path,
3574 path->nodes[0], path->slots[0],
3575 &tmp);
3576 if (ret) {
3577 err = ret;
3578 goto done;
3579 }
3580 }
3581 }
3582 btrfs_release_path(path);
3583
3584 /*
3585 * Find the first key from this transaction again. See the note for
3586 * log_new_dir_dentries, if we're logging a directory recursively we
3587 * won't be holding its i_mutex, which means we can modify the directory
3588 * while we're logging it. If we remove an entry between our first
3589 * search and this search we'll not find the key again and can just
3590 * bail.
3591 */
3592 search:
3593 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3594 if (ret != 0)
3595 goto done;
3596
3597 /*
3598 * we have a block from this transaction, log every item in it
3599 * from our directory
3600 */
3601 while (1) {
3602 struct btrfs_key tmp;
3603 src = path->nodes[0];
3604 nritems = btrfs_header_nritems(src);
3605 for (i = path->slots[0]; i < nritems; i++) {
3606 struct btrfs_dir_item *di;
3607
3608 btrfs_item_key_to_cpu(src, &min_key, i);
3609
3610 if (min_key.objectid != ino || min_key.type != key_type)
3611 goto done;
3612
3613 if (need_resched()) {
3614 btrfs_release_path(path);
3615 cond_resched();
3616 goto search;
3617 }
3618
3619 ret = overwrite_item(trans, log, dst_path, src, i,
3620 &min_key);
3621 if (ret) {
3622 err = ret;
3623 goto done;
3624 }
3625
3626 /*
3627 * We must make sure that when we log a directory entry,
3628 * the corresponding inode, after log replay, has a
3629 * matching link count. For example:
3630 *
3631 * touch foo
3632 * mkdir mydir
3633 * sync
3634 * ln foo mydir/bar
3635 * xfs_io -c "fsync" mydir
3636 * <crash>
3637 * <mount fs and log replay>
3638 *
3639 * Would result in a fsync log that when replayed, our
3640 * file inode would have a link count of 1, but we get
3641 * two directory entries pointing to the same inode.
3642 * After removing one of the names, it would not be
3643 * possible to remove the other name, which resulted
3644 * always in stale file handle errors, and would not
3645 * be possible to rmdir the parent directory, since
3646 * its i_size could never decrement to the value
3647 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3648 */
3649 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3650 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3651 if (ctx &&
3652 (btrfs_dir_transid(src, di) == trans->transid ||
3653 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3654 tmp.type != BTRFS_ROOT_ITEM_KEY)
3655 ctx->log_new_dentries = true;
3656 }
3657 path->slots[0] = nritems;
3658
3659 /*
3660 * look ahead to the next item and see if it is also
3661 * from this directory and from this transaction
3662 */
3663 ret = btrfs_next_leaf(root, path);
3664 if (ret) {
3665 if (ret == 1)
3666 last_offset = (u64)-1;
3667 else
3668 err = ret;
3669 goto done;
3670 }
3671 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3672 if (tmp.objectid != ino || tmp.type != key_type) {
3673 last_offset = (u64)-1;
3674 goto done;
3675 }
3676 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3677 ret = overwrite_item(trans, log, dst_path,
3678 path->nodes[0], path->slots[0],
3679 &tmp);
3680 if (ret)
3681 err = ret;
3682 else
3683 last_offset = tmp.offset;
3684 goto done;
3685 }
3686 }
3687 done:
3688 btrfs_release_path(path);
3689 btrfs_release_path(dst_path);
3690
3691 if (err == 0) {
3692 *last_offset_ret = last_offset;
3693 /*
3694 * insert the log range keys to indicate where the log
3695 * is valid
3696 */
3697 ret = insert_dir_log_key(trans, log, path, key_type,
3698 ino, first_offset, last_offset);
3699 if (ret)
3700 err = ret;
3701 }
3702 return err;
3703 }
3704
3705 /*
3706 * logging directories is very similar to logging inodes, We find all the items
3707 * from the current transaction and write them to the log.
3708 *
3709 * The recovery code scans the directory in the subvolume, and if it finds a
3710 * key in the range logged that is not present in the log tree, then it means
3711 * that dir entry was unlinked during the transaction.
3712 *
3713 * In order for that scan to work, we must include one key smaller than
3714 * the smallest logged by this transaction and one key larger than the largest
3715 * key logged by this transaction.
3716 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3717 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root, struct btrfs_inode *inode,
3719 struct btrfs_path *path,
3720 struct btrfs_path *dst_path,
3721 struct btrfs_log_ctx *ctx)
3722 {
3723 u64 min_key;
3724 u64 max_key;
3725 int ret;
3726 int key_type = BTRFS_DIR_ITEM_KEY;
3727
3728 again:
3729 min_key = 0;
3730 max_key = 0;
3731 while (1) {
3732 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3733 ctx, min_key, &max_key);
3734 if (ret)
3735 return ret;
3736 if (max_key == (u64)-1)
3737 break;
3738 min_key = max_key + 1;
3739 }
3740
3741 if (key_type == BTRFS_DIR_ITEM_KEY) {
3742 key_type = BTRFS_DIR_INDEX_KEY;
3743 goto again;
3744 }
3745 return 0;
3746 }
3747
3748 /*
3749 * a helper function to drop items from the log before we relog an
3750 * inode. max_key_type indicates the highest item type to remove.
3751 * This cannot be run for file data extents because it does not
3752 * free the extents they point to.
3753 */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3754 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3755 struct btrfs_root *log,
3756 struct btrfs_path *path,
3757 u64 objectid, int max_key_type)
3758 {
3759 int ret;
3760 struct btrfs_key key;
3761 struct btrfs_key found_key;
3762 int start_slot;
3763
3764 key.objectid = objectid;
3765 key.type = max_key_type;
3766 key.offset = (u64)-1;
3767
3768 while (1) {
3769 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3770 BUG_ON(ret == 0); /* Logic error */
3771 if (ret < 0)
3772 break;
3773
3774 if (path->slots[0] == 0)
3775 break;
3776
3777 path->slots[0]--;
3778 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3779 path->slots[0]);
3780
3781 if (found_key.objectid != objectid)
3782 break;
3783
3784 found_key.offset = 0;
3785 found_key.type = 0;
3786 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3787 &start_slot);
3788
3789 ret = btrfs_del_items(trans, log, path, start_slot,
3790 path->slots[0] - start_slot + 1);
3791 /*
3792 * If start slot isn't 0 then we don't need to re-search, we've
3793 * found the last guy with the objectid in this tree.
3794 */
3795 if (ret || start_slot != 0)
3796 break;
3797 btrfs_release_path(path);
3798 }
3799 btrfs_release_path(path);
3800 if (ret > 0)
3801 ret = 0;
3802 return ret;
3803 }
3804
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3805 static void fill_inode_item(struct btrfs_trans_handle *trans,
3806 struct extent_buffer *leaf,
3807 struct btrfs_inode_item *item,
3808 struct inode *inode, int log_inode_only,
3809 u64 logged_isize)
3810 {
3811 struct btrfs_map_token token;
3812
3813 btrfs_init_map_token(&token);
3814
3815 if (log_inode_only) {
3816 /* set the generation to zero so the recover code
3817 * can tell the difference between an logging
3818 * just to say 'this inode exists' and a logging
3819 * to say 'update this inode with these values'
3820 */
3821 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3822 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3823 } else {
3824 btrfs_set_token_inode_generation(leaf, item,
3825 BTRFS_I(inode)->generation,
3826 &token);
3827 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3828 }
3829
3830 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3831 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3832 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3833 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3834
3835 btrfs_set_token_timespec_sec(leaf, &item->atime,
3836 inode->i_atime.tv_sec, &token);
3837 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3838 inode->i_atime.tv_nsec, &token);
3839
3840 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3841 inode->i_mtime.tv_sec, &token);
3842 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3843 inode->i_mtime.tv_nsec, &token);
3844
3845 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3846 inode->i_ctime.tv_sec, &token);
3847 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3848 inode->i_ctime.tv_nsec, &token);
3849
3850 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3851 &token);
3852
3853 btrfs_set_token_inode_sequence(leaf, item,
3854 inode_peek_iversion(inode), &token);
3855 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3856 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3857 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3858 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3859 }
3860
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3861 static int log_inode_item(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *log, struct btrfs_path *path,
3863 struct btrfs_inode *inode)
3864 {
3865 struct btrfs_inode_item *inode_item;
3866 int ret;
3867
3868 ret = btrfs_insert_empty_item(trans, log, path,
3869 &inode->location, sizeof(*inode_item));
3870 if (ret && ret != -EEXIST)
3871 return ret;
3872 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3873 struct btrfs_inode_item);
3874 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3875 0, 0);
3876 btrfs_release_path(path);
3877 return 0;
3878 }
3879
log_csums(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3880 static int log_csums(struct btrfs_trans_handle *trans,
3881 struct btrfs_root *log_root,
3882 struct btrfs_ordered_sum *sums)
3883 {
3884 int ret;
3885
3886 /*
3887 * Due to extent cloning, we might have logged a csum item that covers a
3888 * subrange of a cloned extent, and later we can end up logging a csum
3889 * item for a larger subrange of the same extent or the entire range.
3890 * This would leave csum items in the log tree that cover the same range
3891 * and break the searches for checksums in the log tree, resulting in
3892 * some checksums missing in the fs/subvolume tree. So just delete (or
3893 * trim and adjust) any existing csum items in the log for this range.
3894 */
3895 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3896 if (ret)
3897 return ret;
3898
3899 return btrfs_csum_file_blocks(trans, log_root, sums);
3900 }
3901
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3902 static noinline int copy_items(struct btrfs_trans_handle *trans,
3903 struct btrfs_inode *inode,
3904 struct btrfs_path *dst_path,
3905 struct btrfs_path *src_path,
3906 int start_slot, int nr, int inode_only,
3907 u64 logged_isize)
3908 {
3909 struct btrfs_fs_info *fs_info = trans->fs_info;
3910 unsigned long src_offset;
3911 unsigned long dst_offset;
3912 struct btrfs_root *log = inode->root->log_root;
3913 struct btrfs_file_extent_item *extent;
3914 struct btrfs_inode_item *inode_item;
3915 struct extent_buffer *src = src_path->nodes[0];
3916 int ret;
3917 struct btrfs_key *ins_keys;
3918 u32 *ins_sizes;
3919 char *ins_data;
3920 int i;
3921 struct list_head ordered_sums;
3922 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3923
3924 INIT_LIST_HEAD(&ordered_sums);
3925
3926 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3927 nr * sizeof(u32), GFP_NOFS);
3928 if (!ins_data)
3929 return -ENOMEM;
3930
3931 ins_sizes = (u32 *)ins_data;
3932 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3933
3934 for (i = 0; i < nr; i++) {
3935 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3936 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3937 }
3938 ret = btrfs_insert_empty_items(trans, log, dst_path,
3939 ins_keys, ins_sizes, nr);
3940 if (ret) {
3941 kfree(ins_data);
3942 return ret;
3943 }
3944
3945 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3946 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3947 dst_path->slots[0]);
3948
3949 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3950
3951 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3952 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3953 dst_path->slots[0],
3954 struct btrfs_inode_item);
3955 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3956 &inode->vfs_inode,
3957 inode_only == LOG_INODE_EXISTS,
3958 logged_isize);
3959 } else {
3960 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3961 src_offset, ins_sizes[i]);
3962 }
3963
3964 /* take a reference on file data extents so that truncates
3965 * or deletes of this inode don't have to relog the inode
3966 * again
3967 */
3968 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3969 !skip_csum) {
3970 int found_type;
3971 extent = btrfs_item_ptr(src, start_slot + i,
3972 struct btrfs_file_extent_item);
3973
3974 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3975 continue;
3976
3977 found_type = btrfs_file_extent_type(src, extent);
3978 if (found_type == BTRFS_FILE_EXTENT_REG) {
3979 u64 ds, dl, cs, cl;
3980 ds = btrfs_file_extent_disk_bytenr(src,
3981 extent);
3982 /* ds == 0 is a hole */
3983 if (ds == 0)
3984 continue;
3985
3986 dl = btrfs_file_extent_disk_num_bytes(src,
3987 extent);
3988 cs = btrfs_file_extent_offset(src, extent);
3989 cl = btrfs_file_extent_num_bytes(src,
3990 extent);
3991 if (btrfs_file_extent_compression(src,
3992 extent)) {
3993 cs = 0;
3994 cl = dl;
3995 }
3996
3997 ret = btrfs_lookup_csums_range(
3998 fs_info->csum_root,
3999 ds + cs, ds + cs + cl - 1,
4000 &ordered_sums, 0);
4001 if (ret)
4002 break;
4003 }
4004 }
4005 }
4006
4007 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4008 btrfs_release_path(dst_path);
4009 kfree(ins_data);
4010
4011 /*
4012 * we have to do this after the loop above to avoid changing the
4013 * log tree while trying to change the log tree.
4014 */
4015 while (!list_empty(&ordered_sums)) {
4016 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4017 struct btrfs_ordered_sum,
4018 list);
4019 if (!ret)
4020 ret = log_csums(trans, log, sums);
4021 list_del(&sums->list);
4022 kfree(sums);
4023 }
4024
4025 return ret;
4026 }
4027
extent_cmp(void * priv,struct list_head * a,struct list_head * b)4028 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4029 {
4030 struct extent_map *em1, *em2;
4031
4032 em1 = list_entry(a, struct extent_map, list);
4033 em2 = list_entry(b, struct extent_map, list);
4034
4035 if (em1->start < em2->start)
4036 return -1;
4037 else if (em1->start > em2->start)
4038 return 1;
4039 return 0;
4040 }
4041
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em)4042 static int log_extent_csums(struct btrfs_trans_handle *trans,
4043 struct btrfs_inode *inode,
4044 struct btrfs_root *log_root,
4045 const struct extent_map *em)
4046 {
4047 u64 csum_offset;
4048 u64 csum_len;
4049 LIST_HEAD(ordered_sums);
4050 int ret = 0;
4051
4052 if (inode->flags & BTRFS_INODE_NODATASUM ||
4053 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4054 em->block_start == EXTENT_MAP_HOLE)
4055 return 0;
4056
4057 /* If we're compressed we have to save the entire range of csums. */
4058 if (em->compress_type) {
4059 csum_offset = 0;
4060 csum_len = max(em->block_len, em->orig_block_len);
4061 } else {
4062 csum_offset = em->mod_start - em->start;
4063 csum_len = em->mod_len;
4064 }
4065
4066 /* block start is already adjusted for the file extent offset. */
4067 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4068 em->block_start + csum_offset,
4069 em->block_start + csum_offset +
4070 csum_len - 1, &ordered_sums, 0);
4071 if (ret)
4072 return ret;
4073
4074 while (!list_empty(&ordered_sums)) {
4075 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4076 struct btrfs_ordered_sum,
4077 list);
4078 if (!ret)
4079 ret = log_csums(trans, log_root, sums);
4080 list_del(&sums->list);
4081 kfree(sums);
4082 }
4083
4084 return ret;
4085 }
4086
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4087 static int log_one_extent(struct btrfs_trans_handle *trans,
4088 struct btrfs_inode *inode, struct btrfs_root *root,
4089 const struct extent_map *em,
4090 struct btrfs_path *path,
4091 struct btrfs_log_ctx *ctx)
4092 {
4093 struct btrfs_root *log = root->log_root;
4094 struct btrfs_file_extent_item *fi;
4095 struct extent_buffer *leaf;
4096 struct btrfs_map_token token;
4097 struct btrfs_key key;
4098 u64 extent_offset = em->start - em->orig_start;
4099 u64 block_len;
4100 int ret;
4101 int extent_inserted = 0;
4102
4103 ret = log_extent_csums(trans, inode, log, em);
4104 if (ret)
4105 return ret;
4106
4107 btrfs_init_map_token(&token);
4108
4109 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4110 em->start + em->len, NULL, 0, 1,
4111 sizeof(*fi), &extent_inserted);
4112 if (ret)
4113 return ret;
4114
4115 if (!extent_inserted) {
4116 key.objectid = btrfs_ino(inode);
4117 key.type = BTRFS_EXTENT_DATA_KEY;
4118 key.offset = em->start;
4119
4120 ret = btrfs_insert_empty_item(trans, log, path, &key,
4121 sizeof(*fi));
4122 if (ret)
4123 return ret;
4124 }
4125 leaf = path->nodes[0];
4126 fi = btrfs_item_ptr(leaf, path->slots[0],
4127 struct btrfs_file_extent_item);
4128
4129 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4130 &token);
4131 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4132 btrfs_set_token_file_extent_type(leaf, fi,
4133 BTRFS_FILE_EXTENT_PREALLOC,
4134 &token);
4135 else
4136 btrfs_set_token_file_extent_type(leaf, fi,
4137 BTRFS_FILE_EXTENT_REG,
4138 &token);
4139
4140 block_len = max(em->block_len, em->orig_block_len);
4141 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4142 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4143 em->block_start,
4144 &token);
4145 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4146 &token);
4147 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4148 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4149 em->block_start -
4150 extent_offset, &token);
4151 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4152 &token);
4153 } else {
4154 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4155 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4156 &token);
4157 }
4158
4159 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4160 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4161 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4162 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4163 &token);
4164 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4165 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4166 btrfs_mark_buffer_dirty(leaf);
4167
4168 btrfs_release_path(path);
4169
4170 return ret;
4171 }
4172
4173 /*
4174 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4175 * lose them after doing a fast fsync and replaying the log. We scan the
4176 * subvolume's root instead of iterating the inode's extent map tree because
4177 * otherwise we can log incorrect extent items based on extent map conversion.
4178 * That can happen due to the fact that extent maps are merged when they
4179 * are not in the extent map tree's list of modified extents.
4180 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4181 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4182 struct btrfs_inode *inode,
4183 struct btrfs_path *path)
4184 {
4185 struct btrfs_root *root = inode->root;
4186 struct btrfs_key key;
4187 const u64 i_size = i_size_read(&inode->vfs_inode);
4188 const u64 ino = btrfs_ino(inode);
4189 struct btrfs_path *dst_path = NULL;
4190 bool dropped_extents = false;
4191 u64 truncate_offset = i_size;
4192 struct extent_buffer *leaf;
4193 int slot;
4194 int ins_nr = 0;
4195 int start_slot;
4196 int ret;
4197
4198 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4199 return 0;
4200
4201 key.objectid = ino;
4202 key.type = BTRFS_EXTENT_DATA_KEY;
4203 key.offset = i_size;
4204 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4205 if (ret < 0)
4206 goto out;
4207
4208 /*
4209 * We must check if there is a prealloc extent that starts before the
4210 * i_size and crosses the i_size boundary. This is to ensure later we
4211 * truncate down to the end of that extent and not to the i_size, as
4212 * otherwise we end up losing part of the prealloc extent after a log
4213 * replay and with an implicit hole if there is another prealloc extent
4214 * that starts at an offset beyond i_size.
4215 */
4216 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4217 if (ret < 0)
4218 goto out;
4219
4220 if (ret == 0) {
4221 struct btrfs_file_extent_item *ei;
4222
4223 leaf = path->nodes[0];
4224 slot = path->slots[0];
4225 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4226
4227 if (btrfs_file_extent_type(leaf, ei) ==
4228 BTRFS_FILE_EXTENT_PREALLOC) {
4229 u64 extent_end;
4230
4231 btrfs_item_key_to_cpu(leaf, &key, slot);
4232 extent_end = key.offset +
4233 btrfs_file_extent_num_bytes(leaf, ei);
4234
4235 if (extent_end > i_size)
4236 truncate_offset = extent_end;
4237 }
4238 } else {
4239 ret = 0;
4240 }
4241
4242 while (true) {
4243 leaf = path->nodes[0];
4244 slot = path->slots[0];
4245
4246 if (slot >= btrfs_header_nritems(leaf)) {
4247 if (ins_nr > 0) {
4248 ret = copy_items(trans, inode, dst_path, path,
4249 start_slot, ins_nr, 1, 0);
4250 if (ret < 0)
4251 goto out;
4252 ins_nr = 0;
4253 }
4254 ret = btrfs_next_leaf(root, path);
4255 if (ret < 0)
4256 goto out;
4257 if (ret > 0) {
4258 ret = 0;
4259 break;
4260 }
4261 continue;
4262 }
4263
4264 btrfs_item_key_to_cpu(leaf, &key, slot);
4265 if (key.objectid > ino)
4266 break;
4267 if (WARN_ON_ONCE(key.objectid < ino) ||
4268 key.type < BTRFS_EXTENT_DATA_KEY ||
4269 key.offset < i_size) {
4270 path->slots[0]++;
4271 continue;
4272 }
4273 if (!dropped_extents) {
4274 /*
4275 * Avoid logging extent items logged in past fsync calls
4276 * and leading to duplicate keys in the log tree.
4277 */
4278 do {
4279 ret = btrfs_truncate_inode_items(trans,
4280 root->log_root,
4281 &inode->vfs_inode,
4282 truncate_offset,
4283 BTRFS_EXTENT_DATA_KEY);
4284 } while (ret == -EAGAIN);
4285 if (ret)
4286 goto out;
4287 dropped_extents = true;
4288 }
4289 if (ins_nr == 0)
4290 start_slot = slot;
4291 ins_nr++;
4292 path->slots[0]++;
4293 if (!dst_path) {
4294 dst_path = btrfs_alloc_path();
4295 if (!dst_path) {
4296 ret = -ENOMEM;
4297 goto out;
4298 }
4299 }
4300 }
4301 if (ins_nr > 0) {
4302 ret = copy_items(trans, inode, dst_path, path,
4303 start_slot, ins_nr, 1, 0);
4304 if (ret > 0)
4305 ret = 0;
4306 }
4307 out:
4308 btrfs_release_path(path);
4309 btrfs_free_path(dst_path);
4310 return ret;
4311 }
4312
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const u64 start,const u64 end)4313 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4314 struct btrfs_root *root,
4315 struct btrfs_inode *inode,
4316 struct btrfs_path *path,
4317 struct btrfs_log_ctx *ctx,
4318 const u64 start,
4319 const u64 end)
4320 {
4321 struct extent_map *em, *n;
4322 struct list_head extents;
4323 struct extent_map_tree *tree = &inode->extent_tree;
4324 u64 logged_start, logged_end;
4325 u64 test_gen;
4326 int ret = 0;
4327 int num = 0;
4328
4329 INIT_LIST_HEAD(&extents);
4330
4331 write_lock(&tree->lock);
4332 test_gen = root->fs_info->last_trans_committed;
4333 logged_start = start;
4334 logged_end = end;
4335
4336 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4337 /*
4338 * Skip extents outside our logging range. It's important to do
4339 * it for correctness because if we don't ignore them, we may
4340 * log them before their ordered extent completes, and therefore
4341 * we could log them without logging their respective checksums
4342 * (the checksum items are added to the csum tree at the very
4343 * end of btrfs_finish_ordered_io()). Also leave such extents
4344 * outside of our range in the list, since we may have another
4345 * ranged fsync in the near future that needs them. If an extent
4346 * outside our range corresponds to a hole, log it to avoid
4347 * leaving gaps between extents (fsck will complain when we are
4348 * not using the NO_HOLES feature).
4349 */
4350 if ((em->start > end || em->start + em->len <= start) &&
4351 em->block_start != EXTENT_MAP_HOLE)
4352 continue;
4353
4354 list_del_init(&em->list);
4355 /*
4356 * Just an arbitrary number, this can be really CPU intensive
4357 * once we start getting a lot of extents, and really once we
4358 * have a bunch of extents we just want to commit since it will
4359 * be faster.
4360 */
4361 if (++num > 32768) {
4362 list_del_init(&tree->modified_extents);
4363 ret = -EFBIG;
4364 goto process;
4365 }
4366
4367 if (em->generation <= test_gen)
4368 continue;
4369
4370 /* We log prealloc extents beyond eof later. */
4371 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4372 em->start >= i_size_read(&inode->vfs_inode))
4373 continue;
4374
4375 if (em->start < logged_start)
4376 logged_start = em->start;
4377 if ((em->start + em->len - 1) > logged_end)
4378 logged_end = em->start + em->len - 1;
4379
4380 /* Need a ref to keep it from getting evicted from cache */
4381 refcount_inc(&em->refs);
4382 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4383 list_add_tail(&em->list, &extents);
4384 num++;
4385 }
4386
4387 list_sort(NULL, &extents, extent_cmp);
4388 process:
4389 while (!list_empty(&extents)) {
4390 em = list_entry(extents.next, struct extent_map, list);
4391
4392 list_del_init(&em->list);
4393
4394 /*
4395 * If we had an error we just need to delete everybody from our
4396 * private list.
4397 */
4398 if (ret) {
4399 clear_em_logging(tree, em);
4400 free_extent_map(em);
4401 continue;
4402 }
4403
4404 write_unlock(&tree->lock);
4405
4406 ret = log_one_extent(trans, inode, root, em, path, ctx);
4407 write_lock(&tree->lock);
4408 clear_em_logging(tree, em);
4409 free_extent_map(em);
4410 }
4411 WARN_ON(!list_empty(&extents));
4412 write_unlock(&tree->lock);
4413
4414 btrfs_release_path(path);
4415 if (!ret)
4416 ret = btrfs_log_prealloc_extents(trans, inode, path);
4417
4418 return ret;
4419 }
4420
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4421 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4422 struct btrfs_path *path, u64 *size_ret)
4423 {
4424 struct btrfs_key key;
4425 int ret;
4426
4427 key.objectid = btrfs_ino(inode);
4428 key.type = BTRFS_INODE_ITEM_KEY;
4429 key.offset = 0;
4430
4431 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4432 if (ret < 0) {
4433 return ret;
4434 } else if (ret > 0) {
4435 *size_ret = 0;
4436 } else {
4437 struct btrfs_inode_item *item;
4438
4439 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4440 struct btrfs_inode_item);
4441 *size_ret = btrfs_inode_size(path->nodes[0], item);
4442 /*
4443 * If the in-memory inode's i_size is smaller then the inode
4444 * size stored in the btree, return the inode's i_size, so
4445 * that we get a correct inode size after replaying the log
4446 * when before a power failure we had a shrinking truncate
4447 * followed by addition of a new name (rename / new hard link).
4448 * Otherwise return the inode size from the btree, to avoid
4449 * data loss when replaying a log due to previously doing a
4450 * write that expands the inode's size and logging a new name
4451 * immediately after.
4452 */
4453 if (*size_ret > inode->vfs_inode.i_size)
4454 *size_ret = inode->vfs_inode.i_size;
4455 }
4456
4457 btrfs_release_path(path);
4458 return 0;
4459 }
4460
4461 /*
4462 * At the moment we always log all xattrs. This is to figure out at log replay
4463 * time which xattrs must have their deletion replayed. If a xattr is missing
4464 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4465 * because if a xattr is deleted, the inode is fsynced and a power failure
4466 * happens, causing the log to be replayed the next time the fs is mounted,
4467 * we want the xattr to not exist anymore (same behaviour as other filesystems
4468 * with a journal, ext3/4, xfs, f2fs, etc).
4469 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4470 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4471 struct btrfs_root *root,
4472 struct btrfs_inode *inode,
4473 struct btrfs_path *path,
4474 struct btrfs_path *dst_path)
4475 {
4476 int ret;
4477 struct btrfs_key key;
4478 const u64 ino = btrfs_ino(inode);
4479 int ins_nr = 0;
4480 int start_slot = 0;
4481
4482 key.objectid = ino;
4483 key.type = BTRFS_XATTR_ITEM_KEY;
4484 key.offset = 0;
4485
4486 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4487 if (ret < 0)
4488 return ret;
4489
4490 while (true) {
4491 int slot = path->slots[0];
4492 struct extent_buffer *leaf = path->nodes[0];
4493 int nritems = btrfs_header_nritems(leaf);
4494
4495 if (slot >= nritems) {
4496 if (ins_nr > 0) {
4497 ret = copy_items(trans, inode, dst_path, path,
4498 start_slot, ins_nr, 1, 0);
4499 if (ret < 0)
4500 return ret;
4501 ins_nr = 0;
4502 }
4503 ret = btrfs_next_leaf(root, path);
4504 if (ret < 0)
4505 return ret;
4506 else if (ret > 0)
4507 break;
4508 continue;
4509 }
4510
4511 btrfs_item_key_to_cpu(leaf, &key, slot);
4512 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4513 break;
4514
4515 if (ins_nr == 0)
4516 start_slot = slot;
4517 ins_nr++;
4518 path->slots[0]++;
4519 cond_resched();
4520 }
4521 if (ins_nr > 0) {
4522 ret = copy_items(trans, inode, dst_path, path,
4523 start_slot, ins_nr, 1, 0);
4524 if (ret < 0)
4525 return ret;
4526 }
4527
4528 return 0;
4529 }
4530
4531 /*
4532 * When using the NO_HOLES feature if we punched a hole that causes the
4533 * deletion of entire leafs or all the extent items of the first leaf (the one
4534 * that contains the inode item and references) we may end up not processing
4535 * any extents, because there are no leafs with a generation matching the
4536 * current transaction that have extent items for our inode. So we need to find
4537 * if any holes exist and then log them. We also need to log holes after any
4538 * truncate operation that changes the inode's size.
4539 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4540 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4541 struct btrfs_root *root,
4542 struct btrfs_inode *inode,
4543 struct btrfs_path *path)
4544 {
4545 struct btrfs_fs_info *fs_info = root->fs_info;
4546 struct btrfs_key key;
4547 const u64 ino = btrfs_ino(inode);
4548 const u64 i_size = i_size_read(&inode->vfs_inode);
4549 u64 prev_extent_end = 0;
4550 int ret;
4551
4552 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4553 return 0;
4554
4555 key.objectid = ino;
4556 key.type = BTRFS_EXTENT_DATA_KEY;
4557 key.offset = 0;
4558
4559 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4560 if (ret < 0)
4561 return ret;
4562
4563 while (true) {
4564 struct btrfs_file_extent_item *extent;
4565 struct extent_buffer *leaf = path->nodes[0];
4566 u64 len;
4567
4568 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4569 ret = btrfs_next_leaf(root, path);
4570 if (ret < 0)
4571 return ret;
4572 if (ret > 0) {
4573 ret = 0;
4574 break;
4575 }
4576 leaf = path->nodes[0];
4577 }
4578
4579 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4580 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4581 break;
4582
4583 /* We have a hole, log it. */
4584 if (prev_extent_end < key.offset) {
4585 const u64 hole_len = key.offset - prev_extent_end;
4586
4587 /*
4588 * Release the path to avoid deadlocks with other code
4589 * paths that search the root while holding locks on
4590 * leafs from the log root.
4591 */
4592 btrfs_release_path(path);
4593 ret = btrfs_insert_file_extent(trans, root->log_root,
4594 ino, prev_extent_end, 0,
4595 0, hole_len, 0, hole_len,
4596 0, 0, 0);
4597 if (ret < 0)
4598 return ret;
4599
4600 /*
4601 * Search for the same key again in the root. Since it's
4602 * an extent item and we are holding the inode lock, the
4603 * key must still exist. If it doesn't just emit warning
4604 * and return an error to fall back to a transaction
4605 * commit.
4606 */
4607 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4608 if (ret < 0)
4609 return ret;
4610 if (WARN_ON(ret > 0))
4611 return -ENOENT;
4612 leaf = path->nodes[0];
4613 }
4614
4615 extent = btrfs_item_ptr(leaf, path->slots[0],
4616 struct btrfs_file_extent_item);
4617 if (btrfs_file_extent_type(leaf, extent) ==
4618 BTRFS_FILE_EXTENT_INLINE) {
4619 len = btrfs_file_extent_ram_bytes(leaf, extent);
4620 prev_extent_end = ALIGN(key.offset + len,
4621 fs_info->sectorsize);
4622 } else {
4623 len = btrfs_file_extent_num_bytes(leaf, extent);
4624 prev_extent_end = key.offset + len;
4625 }
4626
4627 path->slots[0]++;
4628 cond_resched();
4629 }
4630
4631 if (prev_extent_end < i_size) {
4632 u64 hole_len;
4633
4634 btrfs_release_path(path);
4635 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4636 ret = btrfs_insert_file_extent(trans, root->log_root,
4637 ino, prev_extent_end, 0, 0,
4638 hole_len, 0, hole_len,
4639 0, 0, 0);
4640 if (ret < 0)
4641 return ret;
4642 }
4643
4644 return 0;
4645 }
4646
4647 /*
4648 * When we are logging a new inode X, check if it doesn't have a reference that
4649 * matches the reference from some other inode Y created in a past transaction
4650 * and that was renamed in the current transaction. If we don't do this, then at
4651 * log replay time we can lose inode Y (and all its files if it's a directory):
4652 *
4653 * mkdir /mnt/x
4654 * echo "hello world" > /mnt/x/foobar
4655 * sync
4656 * mv /mnt/x /mnt/y
4657 * mkdir /mnt/x # or touch /mnt/x
4658 * xfs_io -c fsync /mnt/x
4659 * <power fail>
4660 * mount fs, trigger log replay
4661 *
4662 * After the log replay procedure, we would lose the first directory and all its
4663 * files (file foobar).
4664 * For the case where inode Y is not a directory we simply end up losing it:
4665 *
4666 * echo "123" > /mnt/foo
4667 * sync
4668 * mv /mnt/foo /mnt/bar
4669 * echo "abc" > /mnt/foo
4670 * xfs_io -c fsync /mnt/foo
4671 * <power fail>
4672 *
4673 * We also need this for cases where a snapshot entry is replaced by some other
4674 * entry (file or directory) otherwise we end up with an unreplayable log due to
4675 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4676 * if it were a regular entry:
4677 *
4678 * mkdir /mnt/x
4679 * btrfs subvolume snapshot /mnt /mnt/x/snap
4680 * btrfs subvolume delete /mnt/x/snap
4681 * rmdir /mnt/x
4682 * mkdir /mnt/x
4683 * fsync /mnt/x or fsync some new file inside it
4684 * <power fail>
4685 *
4686 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4687 * the same transaction.
4688 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino)4689 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4690 const int slot,
4691 const struct btrfs_key *key,
4692 struct btrfs_inode *inode,
4693 u64 *other_ino)
4694 {
4695 int ret;
4696 struct btrfs_path *search_path;
4697 char *name = NULL;
4698 u32 name_len = 0;
4699 u32 item_size = btrfs_item_size_nr(eb, slot);
4700 u32 cur_offset = 0;
4701 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4702
4703 search_path = btrfs_alloc_path();
4704 if (!search_path)
4705 return -ENOMEM;
4706 search_path->search_commit_root = 1;
4707 search_path->skip_locking = 1;
4708
4709 while (cur_offset < item_size) {
4710 u64 parent;
4711 u32 this_name_len;
4712 u32 this_len;
4713 unsigned long name_ptr;
4714 struct btrfs_dir_item *di;
4715
4716 if (key->type == BTRFS_INODE_REF_KEY) {
4717 struct btrfs_inode_ref *iref;
4718
4719 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4720 parent = key->offset;
4721 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4722 name_ptr = (unsigned long)(iref + 1);
4723 this_len = sizeof(*iref) + this_name_len;
4724 } else {
4725 struct btrfs_inode_extref *extref;
4726
4727 extref = (struct btrfs_inode_extref *)(ptr +
4728 cur_offset);
4729 parent = btrfs_inode_extref_parent(eb, extref);
4730 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4731 name_ptr = (unsigned long)&extref->name;
4732 this_len = sizeof(*extref) + this_name_len;
4733 }
4734
4735 if (this_name_len > name_len) {
4736 char *new_name;
4737
4738 new_name = krealloc(name, this_name_len, GFP_NOFS);
4739 if (!new_name) {
4740 ret = -ENOMEM;
4741 goto out;
4742 }
4743 name_len = this_name_len;
4744 name = new_name;
4745 }
4746
4747 read_extent_buffer(eb, name, name_ptr, this_name_len);
4748 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4749 parent, name, this_name_len, 0);
4750 if (di && !IS_ERR(di)) {
4751 struct btrfs_key di_key;
4752
4753 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4754 di, &di_key);
4755 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4756 ret = 1;
4757 *other_ino = di_key.objectid;
4758 } else {
4759 ret = -EAGAIN;
4760 }
4761 goto out;
4762 } else if (IS_ERR(di)) {
4763 ret = PTR_ERR(di);
4764 goto out;
4765 }
4766 btrfs_release_path(search_path);
4767
4768 cur_offset += this_len;
4769 }
4770 ret = 0;
4771 out:
4772 btrfs_free_path(search_path);
4773 kfree(name);
4774 return ret;
4775 }
4776
4777 /* log a single inode in the tree log.
4778 * At least one parent directory for this inode must exist in the tree
4779 * or be logged already.
4780 *
4781 * Any items from this inode changed by the current transaction are copied
4782 * to the log tree. An extra reference is taken on any extents in this
4783 * file, allowing us to avoid a whole pile of corner cases around logging
4784 * blocks that have been removed from the tree.
4785 *
4786 * See LOG_INODE_ALL and related defines for a description of what inode_only
4787 * does.
4788 *
4789 * This handles both files and directories.
4790 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)4791 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4792 struct btrfs_root *root, struct btrfs_inode *inode,
4793 int inode_only,
4794 const loff_t start,
4795 const loff_t end,
4796 struct btrfs_log_ctx *ctx)
4797 {
4798 struct btrfs_fs_info *fs_info = root->fs_info;
4799 struct btrfs_path *path;
4800 struct btrfs_path *dst_path;
4801 struct btrfs_key min_key;
4802 struct btrfs_key max_key;
4803 struct btrfs_root *log = root->log_root;
4804 int err = 0;
4805 int ret;
4806 int nritems;
4807 int ins_start_slot = 0;
4808 int ins_nr;
4809 bool fast_search = false;
4810 u64 ino = btrfs_ino(inode);
4811 struct extent_map_tree *em_tree = &inode->extent_tree;
4812 u64 logged_isize = 0;
4813 bool need_log_inode_item = true;
4814 bool xattrs_logged = false;
4815
4816 path = btrfs_alloc_path();
4817 if (!path)
4818 return -ENOMEM;
4819 dst_path = btrfs_alloc_path();
4820 if (!dst_path) {
4821 btrfs_free_path(path);
4822 return -ENOMEM;
4823 }
4824
4825 min_key.objectid = ino;
4826 min_key.type = BTRFS_INODE_ITEM_KEY;
4827 min_key.offset = 0;
4828
4829 max_key.objectid = ino;
4830
4831
4832 /* today the code can only do partial logging of directories */
4833 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4834 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4835 &inode->runtime_flags) &&
4836 inode_only >= LOG_INODE_EXISTS))
4837 max_key.type = BTRFS_XATTR_ITEM_KEY;
4838 else
4839 max_key.type = (u8)-1;
4840 max_key.offset = (u64)-1;
4841
4842 /*
4843 * Only run delayed items if we are a dir or a new file.
4844 * Otherwise commit the delayed inode only, which is needed in
4845 * order for the log replay code to mark inodes for link count
4846 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4847 */
4848 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4849 inode->generation > fs_info->last_trans_committed)
4850 ret = btrfs_commit_inode_delayed_items(trans, inode);
4851 else
4852 ret = btrfs_commit_inode_delayed_inode(inode);
4853
4854 if (ret) {
4855 btrfs_free_path(path);
4856 btrfs_free_path(dst_path);
4857 return ret;
4858 }
4859
4860 if (inode_only == LOG_OTHER_INODE) {
4861 inode_only = LOG_INODE_EXISTS;
4862 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4863 } else {
4864 mutex_lock(&inode->log_mutex);
4865 }
4866
4867 /*
4868 * a brute force approach to making sure we get the most uptodate
4869 * copies of everything.
4870 */
4871 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4872 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4873
4874 if (inode_only == LOG_INODE_EXISTS)
4875 max_key_type = BTRFS_XATTR_ITEM_KEY;
4876 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4877 } else {
4878 if (inode_only == LOG_INODE_EXISTS) {
4879 /*
4880 * Make sure the new inode item we write to the log has
4881 * the same isize as the current one (if it exists).
4882 * This is necessary to prevent data loss after log
4883 * replay, and also to prevent doing a wrong expanding
4884 * truncate - for e.g. create file, write 4K into offset
4885 * 0, fsync, write 4K into offset 4096, add hard link,
4886 * fsync some other file (to sync log), power fail - if
4887 * we use the inode's current i_size, after log replay
4888 * we get a 8Kb file, with the last 4Kb extent as a hole
4889 * (zeroes), as if an expanding truncate happened,
4890 * instead of getting a file of 4Kb only.
4891 */
4892 err = logged_inode_size(log, inode, path, &logged_isize);
4893 if (err)
4894 goto out_unlock;
4895 }
4896 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4897 &inode->runtime_flags)) {
4898 if (inode_only == LOG_INODE_EXISTS) {
4899 max_key.type = BTRFS_XATTR_ITEM_KEY;
4900 ret = drop_objectid_items(trans, log, path, ino,
4901 max_key.type);
4902 } else {
4903 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4904 &inode->runtime_flags);
4905 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4906 &inode->runtime_flags);
4907 while(1) {
4908 ret = btrfs_truncate_inode_items(trans,
4909 log, &inode->vfs_inode, 0, 0);
4910 if (ret != -EAGAIN)
4911 break;
4912 }
4913 }
4914 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4915 &inode->runtime_flags) ||
4916 inode_only == LOG_INODE_EXISTS) {
4917 if (inode_only == LOG_INODE_ALL)
4918 fast_search = true;
4919 max_key.type = BTRFS_XATTR_ITEM_KEY;
4920 ret = drop_objectid_items(trans, log, path, ino,
4921 max_key.type);
4922 } else {
4923 if (inode_only == LOG_INODE_ALL)
4924 fast_search = true;
4925 goto log_extents;
4926 }
4927
4928 }
4929 if (ret) {
4930 err = ret;
4931 goto out_unlock;
4932 }
4933
4934 while (1) {
4935 ins_nr = 0;
4936 ret = btrfs_search_forward(root, &min_key,
4937 path, trans->transid);
4938 if (ret < 0) {
4939 err = ret;
4940 goto out_unlock;
4941 }
4942 if (ret != 0)
4943 break;
4944 again:
4945 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4946 if (min_key.objectid != ino)
4947 break;
4948 if (min_key.type > max_key.type)
4949 break;
4950
4951 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4952 need_log_inode_item = false;
4953
4954 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4955 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4956 inode->generation == trans->transid) {
4957 u64 other_ino = 0;
4958
4959 ret = btrfs_check_ref_name_override(path->nodes[0],
4960 path->slots[0], &min_key, inode,
4961 &other_ino);
4962 if (ret < 0) {
4963 err = ret;
4964 goto out_unlock;
4965 } else if (ret > 0 && ctx &&
4966 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4967 struct btrfs_key inode_key;
4968 struct inode *other_inode;
4969
4970 if (ins_nr > 0) {
4971 ins_nr++;
4972 } else {
4973 ins_nr = 1;
4974 ins_start_slot = path->slots[0];
4975 }
4976 ret = copy_items(trans, inode, dst_path, path,
4977 ins_start_slot,
4978 ins_nr, inode_only,
4979 logged_isize);
4980 if (ret < 0) {
4981 err = ret;
4982 goto out_unlock;
4983 }
4984 ins_nr = 0;
4985 btrfs_release_path(path);
4986 inode_key.objectid = other_ino;
4987 inode_key.type = BTRFS_INODE_ITEM_KEY;
4988 inode_key.offset = 0;
4989 other_inode = btrfs_iget(fs_info->sb,
4990 &inode_key, root,
4991 NULL);
4992 /*
4993 * If the other inode that had a conflicting dir
4994 * entry was deleted in the current transaction,
4995 * we don't need to do more work nor fallback to
4996 * a transaction commit.
4997 */
4998 if (other_inode == ERR_PTR(-ENOENT)) {
4999 goto next_key;
5000 } else if (IS_ERR(other_inode)) {
5001 err = PTR_ERR(other_inode);
5002 goto out_unlock;
5003 }
5004 /*
5005 * We are safe logging the other inode without
5006 * acquiring its i_mutex as long as we log with
5007 * the LOG_INODE_EXISTS mode. We're safe against
5008 * concurrent renames of the other inode as well
5009 * because during a rename we pin the log and
5010 * update the log with the new name before we
5011 * unpin it.
5012 */
5013 err = btrfs_log_inode(trans, root,
5014 BTRFS_I(other_inode),
5015 LOG_OTHER_INODE, 0, LLONG_MAX,
5016 ctx);
5017 btrfs_add_delayed_iput(other_inode);
5018 if (err)
5019 goto out_unlock;
5020 else
5021 goto next_key;
5022 }
5023 }
5024
5025 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5026 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5027 if (ins_nr == 0)
5028 goto next_slot;
5029 ret = copy_items(trans, inode, dst_path, path,
5030 ins_start_slot,
5031 ins_nr, inode_only, logged_isize);
5032 if (ret < 0) {
5033 err = ret;
5034 goto out_unlock;
5035 }
5036 ins_nr = 0;
5037 goto next_slot;
5038 }
5039
5040 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5041 ins_nr++;
5042 goto next_slot;
5043 } else if (!ins_nr) {
5044 ins_start_slot = path->slots[0];
5045 ins_nr = 1;
5046 goto next_slot;
5047 }
5048
5049 ret = copy_items(trans, inode, dst_path, path,
5050 ins_start_slot, ins_nr, inode_only,
5051 logged_isize);
5052 if (ret < 0) {
5053 err = ret;
5054 goto out_unlock;
5055 }
5056 ins_nr = 1;
5057 ins_start_slot = path->slots[0];
5058 next_slot:
5059
5060 nritems = btrfs_header_nritems(path->nodes[0]);
5061 path->slots[0]++;
5062 if (path->slots[0] < nritems) {
5063 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5064 path->slots[0]);
5065 goto again;
5066 }
5067 if (ins_nr) {
5068 ret = copy_items(trans, inode, dst_path, path,
5069 ins_start_slot,
5070 ins_nr, inode_only, logged_isize);
5071 if (ret < 0) {
5072 err = ret;
5073 goto out_unlock;
5074 }
5075 ins_nr = 0;
5076 }
5077 btrfs_release_path(path);
5078 next_key:
5079 if (min_key.offset < (u64)-1) {
5080 min_key.offset++;
5081 } else if (min_key.type < max_key.type) {
5082 min_key.type++;
5083 min_key.offset = 0;
5084 } else {
5085 break;
5086 }
5087 }
5088 if (ins_nr) {
5089 ret = copy_items(trans, inode, dst_path, path,
5090 ins_start_slot, ins_nr, inode_only,
5091 logged_isize);
5092 if (ret < 0) {
5093 err = ret;
5094 goto out_unlock;
5095 }
5096 ins_nr = 0;
5097 }
5098
5099 btrfs_release_path(path);
5100 btrfs_release_path(dst_path);
5101 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5102 if (err)
5103 goto out_unlock;
5104 xattrs_logged = true;
5105 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5106 btrfs_release_path(path);
5107 btrfs_release_path(dst_path);
5108 err = btrfs_log_holes(trans, root, inode, path);
5109 if (err)
5110 goto out_unlock;
5111 }
5112 log_extents:
5113 btrfs_release_path(path);
5114 btrfs_release_path(dst_path);
5115 if (need_log_inode_item) {
5116 err = log_inode_item(trans, log, dst_path, inode);
5117 if (!err && !xattrs_logged) {
5118 err = btrfs_log_all_xattrs(trans, root, inode, path,
5119 dst_path);
5120 btrfs_release_path(path);
5121 }
5122 if (err)
5123 goto out_unlock;
5124 }
5125 if (fast_search) {
5126 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5127 ctx, start, end);
5128 if (ret) {
5129 err = ret;
5130 goto out_unlock;
5131 }
5132 } else if (inode_only == LOG_INODE_ALL) {
5133 struct extent_map *em, *n;
5134
5135 write_lock(&em_tree->lock);
5136 /*
5137 * We can't just remove every em if we're called for a ranged
5138 * fsync - that is, one that doesn't cover the whole possible
5139 * file range (0 to LLONG_MAX). This is because we can have
5140 * em's that fall outside the range we're logging and therefore
5141 * their ordered operations haven't completed yet
5142 * (btrfs_finish_ordered_io() not invoked yet). This means we
5143 * didn't get their respective file extent item in the fs/subvol
5144 * tree yet, and need to let the next fast fsync (one which
5145 * consults the list of modified extent maps) find the em so
5146 * that it logs a matching file extent item and waits for the
5147 * respective ordered operation to complete (if it's still
5148 * running).
5149 *
5150 * Removing every em outside the range we're logging would make
5151 * the next fast fsync not log their matching file extent items,
5152 * therefore making us lose data after a log replay.
5153 */
5154 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5155 list) {
5156 const u64 mod_end = em->mod_start + em->mod_len - 1;
5157
5158 if (em->mod_start >= start && mod_end <= end)
5159 list_del_init(&em->list);
5160 }
5161 write_unlock(&em_tree->lock);
5162 }
5163
5164 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5165 ret = log_directory_changes(trans, root, inode, path, dst_path,
5166 ctx);
5167 if (ret) {
5168 err = ret;
5169 goto out_unlock;
5170 }
5171 }
5172
5173 /*
5174 * Don't update last_log_commit if we logged that an inode exists after
5175 * it was loaded to memory (full_sync bit set).
5176 * This is to prevent data loss when we do a write to the inode, then
5177 * the inode gets evicted after all delalloc was flushed, then we log
5178 * it exists (due to a rename for example) and then fsync it. This last
5179 * fsync would do nothing (not logging the extents previously written).
5180 */
5181 spin_lock(&inode->lock);
5182 inode->logged_trans = trans->transid;
5183 if (inode_only != LOG_INODE_EXISTS ||
5184 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5185 inode->last_log_commit = inode->last_sub_trans;
5186 spin_unlock(&inode->lock);
5187 out_unlock:
5188 mutex_unlock(&inode->log_mutex);
5189
5190 btrfs_free_path(path);
5191 btrfs_free_path(dst_path);
5192 return err;
5193 }
5194
5195 /*
5196 * Check if we must fallback to a transaction commit when logging an inode.
5197 * This must be called after logging the inode and is used only in the context
5198 * when fsyncing an inode requires the need to log some other inode - in which
5199 * case we can't lock the i_mutex of each other inode we need to log as that
5200 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5201 * log inodes up or down in the hierarchy) or rename operations for example. So
5202 * we take the log_mutex of the inode after we have logged it and then check for
5203 * its last_unlink_trans value - this is safe because any task setting
5204 * last_unlink_trans must take the log_mutex and it must do this before it does
5205 * the actual unlink operation, so if we do this check before a concurrent task
5206 * sets last_unlink_trans it means we've logged a consistent version/state of
5207 * all the inode items, otherwise we are not sure and must do a transaction
5208 * commit (the concurrent task might have only updated last_unlink_trans before
5209 * we logged the inode or it might have also done the unlink).
5210 */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5211 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5212 struct btrfs_inode *inode)
5213 {
5214 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5215 bool ret = false;
5216
5217 mutex_lock(&inode->log_mutex);
5218 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5219 /*
5220 * Make sure any commits to the log are forced to be full
5221 * commits.
5222 */
5223 btrfs_set_log_full_commit(fs_info, trans);
5224 ret = true;
5225 }
5226 mutex_unlock(&inode->log_mutex);
5227
5228 return ret;
5229 }
5230
5231 /*
5232 * follow the dentry parent pointers up the chain and see if any
5233 * of the directories in it require a full commit before they can
5234 * be logged. Returns zero if nothing special needs to be done or 1 if
5235 * a full commit is required.
5236 */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5237 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5238 struct btrfs_inode *inode,
5239 struct dentry *parent,
5240 struct super_block *sb,
5241 u64 last_committed)
5242 {
5243 int ret = 0;
5244 struct dentry *old_parent = NULL;
5245
5246 /*
5247 * for regular files, if its inode is already on disk, we don't
5248 * have to worry about the parents at all. This is because
5249 * we can use the last_unlink_trans field to record renames
5250 * and other fun in this file.
5251 */
5252 if (S_ISREG(inode->vfs_inode.i_mode) &&
5253 inode->generation <= last_committed &&
5254 inode->last_unlink_trans <= last_committed)
5255 goto out;
5256
5257 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5258 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5259 goto out;
5260 inode = BTRFS_I(d_inode(parent));
5261 }
5262
5263 while (1) {
5264 if (btrfs_must_commit_transaction(trans, inode)) {
5265 ret = 1;
5266 break;
5267 }
5268
5269 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5270 break;
5271
5272 if (IS_ROOT(parent)) {
5273 inode = BTRFS_I(d_inode(parent));
5274 if (btrfs_must_commit_transaction(trans, inode))
5275 ret = 1;
5276 break;
5277 }
5278
5279 parent = dget_parent(parent);
5280 dput(old_parent);
5281 old_parent = parent;
5282 inode = BTRFS_I(d_inode(parent));
5283
5284 }
5285 dput(old_parent);
5286 out:
5287 return ret;
5288 }
5289
5290 struct btrfs_dir_list {
5291 u64 ino;
5292 struct list_head list;
5293 };
5294
5295 /*
5296 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5297 * details about the why it is needed.
5298 * This is a recursive operation - if an existing dentry corresponds to a
5299 * directory, that directory's new entries are logged too (same behaviour as
5300 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5301 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5302 * complains about the following circular lock dependency / possible deadlock:
5303 *
5304 * CPU0 CPU1
5305 * ---- ----
5306 * lock(&type->i_mutex_dir_key#3/2);
5307 * lock(sb_internal#2);
5308 * lock(&type->i_mutex_dir_key#3/2);
5309 * lock(&sb->s_type->i_mutex_key#14);
5310 *
5311 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5312 * sb_start_intwrite() in btrfs_start_transaction().
5313 * Not locking i_mutex of the inodes is still safe because:
5314 *
5315 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5316 * that while logging the inode new references (names) are added or removed
5317 * from the inode, leaving the logged inode item with a link count that does
5318 * not match the number of logged inode reference items. This is fine because
5319 * at log replay time we compute the real number of links and correct the
5320 * link count in the inode item (see replay_one_buffer() and
5321 * link_to_fixup_dir());
5322 *
5323 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5324 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5325 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5326 * has a size that doesn't match the sum of the lengths of all the logged
5327 * names. This does not result in a problem because if a dir_item key is
5328 * logged but its matching dir_index key is not logged, at log replay time we
5329 * don't use it to replay the respective name (see replay_one_name()). On the
5330 * other hand if only the dir_index key ends up being logged, the respective
5331 * name is added to the fs/subvol tree with both the dir_item and dir_index
5332 * keys created (see replay_one_name()).
5333 * The directory's inode item with a wrong i_size is not a problem as well,
5334 * since we don't use it at log replay time to set the i_size in the inode
5335 * item of the fs/subvol tree (see overwrite_item()).
5336 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5337 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5338 struct btrfs_root *root,
5339 struct btrfs_inode *start_inode,
5340 struct btrfs_log_ctx *ctx)
5341 {
5342 struct btrfs_fs_info *fs_info = root->fs_info;
5343 struct btrfs_root *log = root->log_root;
5344 struct btrfs_path *path;
5345 LIST_HEAD(dir_list);
5346 struct btrfs_dir_list *dir_elem;
5347 int ret = 0;
5348
5349 path = btrfs_alloc_path();
5350 if (!path)
5351 return -ENOMEM;
5352
5353 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5354 if (!dir_elem) {
5355 btrfs_free_path(path);
5356 return -ENOMEM;
5357 }
5358 dir_elem->ino = btrfs_ino(start_inode);
5359 list_add_tail(&dir_elem->list, &dir_list);
5360
5361 while (!list_empty(&dir_list)) {
5362 struct extent_buffer *leaf;
5363 struct btrfs_key min_key;
5364 int nritems;
5365 int i;
5366
5367 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5368 list);
5369 if (ret)
5370 goto next_dir_inode;
5371
5372 min_key.objectid = dir_elem->ino;
5373 min_key.type = BTRFS_DIR_ITEM_KEY;
5374 min_key.offset = 0;
5375 again:
5376 btrfs_release_path(path);
5377 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5378 if (ret < 0) {
5379 goto next_dir_inode;
5380 } else if (ret > 0) {
5381 ret = 0;
5382 goto next_dir_inode;
5383 }
5384
5385 process_leaf:
5386 leaf = path->nodes[0];
5387 nritems = btrfs_header_nritems(leaf);
5388 for (i = path->slots[0]; i < nritems; i++) {
5389 struct btrfs_dir_item *di;
5390 struct btrfs_key di_key;
5391 struct inode *di_inode;
5392 struct btrfs_dir_list *new_dir_elem;
5393 int log_mode = LOG_INODE_EXISTS;
5394 int type;
5395
5396 btrfs_item_key_to_cpu(leaf, &min_key, i);
5397 if (min_key.objectid != dir_elem->ino ||
5398 min_key.type != BTRFS_DIR_ITEM_KEY)
5399 goto next_dir_inode;
5400
5401 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5402 type = btrfs_dir_type(leaf, di);
5403 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5404 type != BTRFS_FT_DIR)
5405 continue;
5406 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5407 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5408 continue;
5409
5410 btrfs_release_path(path);
5411 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5412 if (IS_ERR(di_inode)) {
5413 ret = PTR_ERR(di_inode);
5414 goto next_dir_inode;
5415 }
5416
5417 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5418 btrfs_add_delayed_iput(di_inode);
5419 break;
5420 }
5421
5422 ctx->log_new_dentries = false;
5423 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5424 log_mode = LOG_INODE_ALL;
5425 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5426 log_mode, 0, LLONG_MAX, ctx);
5427 if (!ret &&
5428 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5429 ret = 1;
5430 btrfs_add_delayed_iput(di_inode);
5431 if (ret)
5432 goto next_dir_inode;
5433 if (ctx->log_new_dentries) {
5434 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5435 GFP_NOFS);
5436 if (!new_dir_elem) {
5437 ret = -ENOMEM;
5438 goto next_dir_inode;
5439 }
5440 new_dir_elem->ino = di_key.objectid;
5441 list_add_tail(&new_dir_elem->list, &dir_list);
5442 }
5443 break;
5444 }
5445 if (i == nritems) {
5446 ret = btrfs_next_leaf(log, path);
5447 if (ret < 0) {
5448 goto next_dir_inode;
5449 } else if (ret > 0) {
5450 ret = 0;
5451 goto next_dir_inode;
5452 }
5453 goto process_leaf;
5454 }
5455 if (min_key.offset < (u64)-1) {
5456 min_key.offset++;
5457 goto again;
5458 }
5459 next_dir_inode:
5460 list_del(&dir_elem->list);
5461 kfree(dir_elem);
5462 }
5463
5464 btrfs_free_path(path);
5465 return ret;
5466 }
5467
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5468 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5469 struct btrfs_inode *inode,
5470 struct btrfs_log_ctx *ctx)
5471 {
5472 struct btrfs_fs_info *fs_info = trans->fs_info;
5473 int ret;
5474 struct btrfs_path *path;
5475 struct btrfs_key key;
5476 struct btrfs_root *root = inode->root;
5477 const u64 ino = btrfs_ino(inode);
5478
5479 path = btrfs_alloc_path();
5480 if (!path)
5481 return -ENOMEM;
5482 path->skip_locking = 1;
5483 path->search_commit_root = 1;
5484
5485 key.objectid = ino;
5486 key.type = BTRFS_INODE_REF_KEY;
5487 key.offset = 0;
5488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5489 if (ret < 0)
5490 goto out;
5491
5492 while (true) {
5493 struct extent_buffer *leaf = path->nodes[0];
5494 int slot = path->slots[0];
5495 u32 cur_offset = 0;
5496 u32 item_size;
5497 unsigned long ptr;
5498
5499 if (slot >= btrfs_header_nritems(leaf)) {
5500 ret = btrfs_next_leaf(root, path);
5501 if (ret < 0)
5502 goto out;
5503 else if (ret > 0)
5504 break;
5505 continue;
5506 }
5507
5508 btrfs_item_key_to_cpu(leaf, &key, slot);
5509 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5510 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5511 break;
5512
5513 item_size = btrfs_item_size_nr(leaf, slot);
5514 ptr = btrfs_item_ptr_offset(leaf, slot);
5515 while (cur_offset < item_size) {
5516 struct btrfs_key inode_key;
5517 struct inode *dir_inode;
5518
5519 inode_key.type = BTRFS_INODE_ITEM_KEY;
5520 inode_key.offset = 0;
5521
5522 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5523 struct btrfs_inode_extref *extref;
5524
5525 extref = (struct btrfs_inode_extref *)
5526 (ptr + cur_offset);
5527 inode_key.objectid = btrfs_inode_extref_parent(
5528 leaf, extref);
5529 cur_offset += sizeof(*extref);
5530 cur_offset += btrfs_inode_extref_name_len(leaf,
5531 extref);
5532 } else {
5533 inode_key.objectid = key.offset;
5534 cur_offset = item_size;
5535 }
5536
5537 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5538 root, NULL);
5539 /*
5540 * If the parent inode was deleted, return an error to
5541 * fallback to a transaction commit. This is to prevent
5542 * getting an inode that was moved from one parent A to
5543 * a parent B, got its former parent A deleted and then
5544 * it got fsync'ed, from existing at both parents after
5545 * a log replay (and the old parent still existing).
5546 * Example:
5547 *
5548 * mkdir /mnt/A
5549 * mkdir /mnt/B
5550 * touch /mnt/B/bar
5551 * sync
5552 * mv /mnt/B/bar /mnt/A/bar
5553 * mv -T /mnt/A /mnt/B
5554 * fsync /mnt/B/bar
5555 * <power fail>
5556 *
5557 * If we ignore the old parent B which got deleted,
5558 * after a log replay we would have file bar linked
5559 * at both parents and the old parent B would still
5560 * exist.
5561 */
5562 if (IS_ERR(dir_inode)) {
5563 ret = PTR_ERR(dir_inode);
5564 goto out;
5565 }
5566
5567 if (ctx)
5568 ctx->log_new_dentries = false;
5569 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5570 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5571 if (!ret &&
5572 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5573 ret = 1;
5574 if (!ret && ctx && ctx->log_new_dentries)
5575 ret = log_new_dir_dentries(trans, root,
5576 BTRFS_I(dir_inode), ctx);
5577 btrfs_add_delayed_iput(dir_inode);
5578 if (ret)
5579 goto out;
5580 }
5581 path->slots[0]++;
5582 }
5583 ret = 0;
5584 out:
5585 btrfs_free_path(path);
5586 return ret;
5587 }
5588
5589 /*
5590 * helper function around btrfs_log_inode to make sure newly created
5591 * parent directories also end up in the log. A minimal inode and backref
5592 * only logging is done of any parent directories that are older than
5593 * the last committed transaction
5594 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,const loff_t start,const loff_t end,int inode_only,struct btrfs_log_ctx * ctx)5595 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5596 struct btrfs_inode *inode,
5597 struct dentry *parent,
5598 const loff_t start,
5599 const loff_t end,
5600 int inode_only,
5601 struct btrfs_log_ctx *ctx)
5602 {
5603 struct btrfs_root *root = inode->root;
5604 struct btrfs_fs_info *fs_info = root->fs_info;
5605 struct super_block *sb;
5606 struct dentry *old_parent = NULL;
5607 int ret = 0;
5608 u64 last_committed = fs_info->last_trans_committed;
5609 bool log_dentries = false;
5610 struct btrfs_inode *orig_inode = inode;
5611
5612 sb = inode->vfs_inode.i_sb;
5613
5614 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5615 ret = 1;
5616 goto end_no_trans;
5617 }
5618
5619 /*
5620 * The prev transaction commit doesn't complete, we need do
5621 * full commit by ourselves.
5622 */
5623 if (fs_info->last_trans_log_full_commit >
5624 fs_info->last_trans_committed) {
5625 ret = 1;
5626 goto end_no_trans;
5627 }
5628
5629 if (btrfs_root_refs(&root->root_item) == 0) {
5630 ret = 1;
5631 goto end_no_trans;
5632 }
5633
5634 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5635 last_committed);
5636 if (ret)
5637 goto end_no_trans;
5638
5639 /*
5640 * Skip already logged inodes or inodes corresponding to tmpfiles
5641 * (since logging them is pointless, a link count of 0 means they
5642 * will never be accessible).
5643 */
5644 if (btrfs_inode_in_log(inode, trans->transid) ||
5645 inode->vfs_inode.i_nlink == 0) {
5646 ret = BTRFS_NO_LOG_SYNC;
5647 goto end_no_trans;
5648 }
5649
5650 ret = start_log_trans(trans, root, ctx);
5651 if (ret)
5652 goto end_no_trans;
5653
5654 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5655 if (ret)
5656 goto end_trans;
5657
5658 /*
5659 * for regular files, if its inode is already on disk, we don't
5660 * have to worry about the parents at all. This is because
5661 * we can use the last_unlink_trans field to record renames
5662 * and other fun in this file.
5663 */
5664 if (S_ISREG(inode->vfs_inode.i_mode) &&
5665 inode->generation <= last_committed &&
5666 inode->last_unlink_trans <= last_committed) {
5667 ret = 0;
5668 goto end_trans;
5669 }
5670
5671 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5672 log_dentries = true;
5673
5674 /*
5675 * On unlink we must make sure all our current and old parent directory
5676 * inodes are fully logged. This is to prevent leaving dangling
5677 * directory index entries in directories that were our parents but are
5678 * not anymore. Not doing this results in old parent directory being
5679 * impossible to delete after log replay (rmdir will always fail with
5680 * error -ENOTEMPTY).
5681 *
5682 * Example 1:
5683 *
5684 * mkdir testdir
5685 * touch testdir/foo
5686 * ln testdir/foo testdir/bar
5687 * sync
5688 * unlink testdir/bar
5689 * xfs_io -c fsync testdir/foo
5690 * <power failure>
5691 * mount fs, triggers log replay
5692 *
5693 * If we don't log the parent directory (testdir), after log replay the
5694 * directory still has an entry pointing to the file inode using the bar
5695 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5696 * the file inode has a link count of 1.
5697 *
5698 * Example 2:
5699 *
5700 * mkdir testdir
5701 * touch foo
5702 * ln foo testdir/foo2
5703 * ln foo testdir/foo3
5704 * sync
5705 * unlink testdir/foo3
5706 * xfs_io -c fsync foo
5707 * <power failure>
5708 * mount fs, triggers log replay
5709 *
5710 * Similar as the first example, after log replay the parent directory
5711 * testdir still has an entry pointing to the inode file with name foo3
5712 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5713 * and has a link count of 2.
5714 */
5715 if (inode->last_unlink_trans > last_committed) {
5716 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5717 if (ret)
5718 goto end_trans;
5719 }
5720
5721 /*
5722 * If a new hard link was added to the inode in the current transaction
5723 * and its link count is now greater than 1, we need to fallback to a
5724 * transaction commit, otherwise we can end up not logging all its new
5725 * parents for all the hard links. Here just from the dentry used to
5726 * fsync, we can not visit the ancestor inodes for all the other hard
5727 * links to figure out if any is new, so we fallback to a transaction
5728 * commit (instead of adding a lot of complexity of scanning a btree,
5729 * since this scenario is not a common use case).
5730 */
5731 if (inode->vfs_inode.i_nlink > 1 &&
5732 inode->last_link_trans > last_committed) {
5733 ret = -EMLINK;
5734 goto end_trans;
5735 }
5736
5737 while (1) {
5738 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5739 break;
5740
5741 inode = BTRFS_I(d_inode(parent));
5742 if (root != inode->root)
5743 break;
5744
5745 if (inode->generation > last_committed) {
5746 ret = btrfs_log_inode(trans, root, inode,
5747 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5748 if (ret)
5749 goto end_trans;
5750 }
5751 if (IS_ROOT(parent))
5752 break;
5753
5754 parent = dget_parent(parent);
5755 dput(old_parent);
5756 old_parent = parent;
5757 }
5758 if (log_dentries)
5759 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5760 else
5761 ret = 0;
5762 end_trans:
5763 dput(old_parent);
5764 if (ret < 0) {
5765 btrfs_set_log_full_commit(fs_info, trans);
5766 ret = 1;
5767 }
5768
5769 if (ret)
5770 btrfs_remove_log_ctx(root, ctx);
5771 btrfs_end_log_trans(root);
5772 end_no_trans:
5773 return ret;
5774 }
5775
5776 /*
5777 * it is not safe to log dentry if the chunk root has added new
5778 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5779 * If this returns 1, you must commit the transaction to safely get your
5780 * data on disk.
5781 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)5782 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5783 struct dentry *dentry,
5784 const loff_t start,
5785 const loff_t end,
5786 struct btrfs_log_ctx *ctx)
5787 {
5788 struct dentry *parent = dget_parent(dentry);
5789 int ret;
5790
5791 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5792 start, end, LOG_INODE_ALL, ctx);
5793 dput(parent);
5794
5795 return ret;
5796 }
5797
5798 /*
5799 * should be called during mount to recover any replay any log trees
5800 * from the FS
5801 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)5802 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5803 {
5804 int ret;
5805 struct btrfs_path *path;
5806 struct btrfs_trans_handle *trans;
5807 struct btrfs_key key;
5808 struct btrfs_key found_key;
5809 struct btrfs_key tmp_key;
5810 struct btrfs_root *log;
5811 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5812 struct walk_control wc = {
5813 .process_func = process_one_buffer,
5814 .stage = 0,
5815 };
5816
5817 path = btrfs_alloc_path();
5818 if (!path)
5819 return -ENOMEM;
5820
5821 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5822
5823 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5824 if (IS_ERR(trans)) {
5825 ret = PTR_ERR(trans);
5826 goto error;
5827 }
5828
5829 wc.trans = trans;
5830 wc.pin = 1;
5831
5832 ret = walk_log_tree(trans, log_root_tree, &wc);
5833 if (ret) {
5834 btrfs_handle_fs_error(fs_info, ret,
5835 "Failed to pin buffers while recovering log root tree.");
5836 goto error;
5837 }
5838
5839 again:
5840 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5841 key.offset = (u64)-1;
5842 key.type = BTRFS_ROOT_ITEM_KEY;
5843
5844 while (1) {
5845 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5846
5847 if (ret < 0) {
5848 btrfs_handle_fs_error(fs_info, ret,
5849 "Couldn't find tree log root.");
5850 goto error;
5851 }
5852 if (ret > 0) {
5853 if (path->slots[0] == 0)
5854 break;
5855 path->slots[0]--;
5856 }
5857 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5858 path->slots[0]);
5859 btrfs_release_path(path);
5860 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5861 break;
5862
5863 log = btrfs_read_fs_root(log_root_tree, &found_key);
5864 if (IS_ERR(log)) {
5865 ret = PTR_ERR(log);
5866 btrfs_handle_fs_error(fs_info, ret,
5867 "Couldn't read tree log root.");
5868 goto error;
5869 }
5870
5871 tmp_key.objectid = found_key.offset;
5872 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5873 tmp_key.offset = (u64)-1;
5874
5875 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5876 if (IS_ERR(wc.replay_dest)) {
5877 ret = PTR_ERR(wc.replay_dest);
5878
5879 /*
5880 * We didn't find the subvol, likely because it was
5881 * deleted. This is ok, simply skip this log and go to
5882 * the next one.
5883 *
5884 * We need to exclude the root because we can't have
5885 * other log replays overwriting this log as we'll read
5886 * it back in a few more times. This will keep our
5887 * block from being modified, and we'll just bail for
5888 * each subsequent pass.
5889 */
5890 if (ret == -ENOENT)
5891 ret = btrfs_pin_extent_for_log_replay(fs_info,
5892 log->node->start,
5893 log->node->len);
5894 free_extent_buffer(log->node);
5895 free_extent_buffer(log->commit_root);
5896 kfree(log);
5897
5898 if (!ret)
5899 goto next;
5900 btrfs_handle_fs_error(fs_info, ret,
5901 "Couldn't read target root for tree log recovery.");
5902 goto error;
5903 }
5904
5905 wc.replay_dest->log_root = log;
5906 btrfs_record_root_in_trans(trans, wc.replay_dest);
5907 ret = walk_log_tree(trans, log, &wc);
5908
5909 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5910 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5911 path);
5912 }
5913
5914 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5915 struct btrfs_root *root = wc.replay_dest;
5916
5917 btrfs_release_path(path);
5918
5919 /*
5920 * We have just replayed everything, and the highest
5921 * objectid of fs roots probably has changed in case
5922 * some inode_item's got replayed.
5923 *
5924 * root->objectid_mutex is not acquired as log replay
5925 * could only happen during mount.
5926 */
5927 ret = btrfs_find_highest_objectid(root,
5928 &root->highest_objectid);
5929 }
5930
5931 wc.replay_dest->log_root = NULL;
5932 free_extent_buffer(log->node);
5933 free_extent_buffer(log->commit_root);
5934 kfree(log);
5935
5936 if (ret)
5937 goto error;
5938 next:
5939 if (found_key.offset == 0)
5940 break;
5941 key.offset = found_key.offset - 1;
5942 }
5943 btrfs_release_path(path);
5944
5945 /* step one is to pin it all, step two is to replay just inodes */
5946 if (wc.pin) {
5947 wc.pin = 0;
5948 wc.process_func = replay_one_buffer;
5949 wc.stage = LOG_WALK_REPLAY_INODES;
5950 goto again;
5951 }
5952 /* step three is to replay everything */
5953 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5954 wc.stage++;
5955 goto again;
5956 }
5957
5958 btrfs_free_path(path);
5959
5960 /* step 4: commit the transaction, which also unpins the blocks */
5961 ret = btrfs_commit_transaction(trans);
5962 if (ret)
5963 return ret;
5964
5965 free_extent_buffer(log_root_tree->node);
5966 log_root_tree->log_root = NULL;
5967 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5968 kfree(log_root_tree);
5969
5970 return 0;
5971 error:
5972 if (wc.trans)
5973 btrfs_end_transaction(wc.trans);
5974 btrfs_free_path(path);
5975 return ret;
5976 }
5977
5978 /*
5979 * there are some corner cases where we want to force a full
5980 * commit instead of allowing a directory to be logged.
5981 *
5982 * They revolve around files there were unlinked from the directory, and
5983 * this function updates the parent directory so that a full commit is
5984 * properly done if it is fsync'd later after the unlinks are done.
5985 *
5986 * Must be called before the unlink operations (updates to the subvolume tree,
5987 * inodes, etc) are done.
5988 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)5989 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5990 struct btrfs_inode *dir, struct btrfs_inode *inode,
5991 int for_rename)
5992 {
5993 /*
5994 * when we're logging a file, if it hasn't been renamed
5995 * or unlinked, and its inode is fully committed on disk,
5996 * we don't have to worry about walking up the directory chain
5997 * to log its parents.
5998 *
5999 * So, we use the last_unlink_trans field to put this transid
6000 * into the file. When the file is logged we check it and
6001 * don't log the parents if the file is fully on disk.
6002 */
6003 mutex_lock(&inode->log_mutex);
6004 inode->last_unlink_trans = trans->transid;
6005 mutex_unlock(&inode->log_mutex);
6006
6007 /*
6008 * if this directory was already logged any new
6009 * names for this file/dir will get recorded
6010 */
6011 if (dir->logged_trans == trans->transid)
6012 return;
6013
6014 /*
6015 * if the inode we're about to unlink was logged,
6016 * the log will be properly updated for any new names
6017 */
6018 if (inode->logged_trans == trans->transid)
6019 return;
6020
6021 /*
6022 * when renaming files across directories, if the directory
6023 * there we're unlinking from gets fsync'd later on, there's
6024 * no way to find the destination directory later and fsync it
6025 * properly. So, we have to be conservative and force commits
6026 * so the new name gets discovered.
6027 */
6028 if (for_rename)
6029 goto record;
6030
6031 /* we can safely do the unlink without any special recording */
6032 return;
6033
6034 record:
6035 mutex_lock(&dir->log_mutex);
6036 dir->last_unlink_trans = trans->transid;
6037 mutex_unlock(&dir->log_mutex);
6038 }
6039
6040 /*
6041 * Make sure that if someone attempts to fsync the parent directory of a deleted
6042 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6043 * that after replaying the log tree of the parent directory's root we will not
6044 * see the snapshot anymore and at log replay time we will not see any log tree
6045 * corresponding to the deleted snapshot's root, which could lead to replaying
6046 * it after replaying the log tree of the parent directory (which would replay
6047 * the snapshot delete operation).
6048 *
6049 * Must be called before the actual snapshot destroy operation (updates to the
6050 * parent root and tree of tree roots trees, etc) are done.
6051 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6052 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6053 struct btrfs_inode *dir)
6054 {
6055 mutex_lock(&dir->log_mutex);
6056 dir->last_unlink_trans = trans->transid;
6057 mutex_unlock(&dir->log_mutex);
6058 }
6059
6060 /*
6061 * Call this after adding a new name for a file and it will properly
6062 * update the log to reflect the new name.
6063 *
6064 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6065 * true (because it's not used).
6066 *
6067 * Return value depends on whether @sync_log is true or false.
6068 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6069 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6070 * otherwise.
6071 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6072 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6073 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6074 * committed (without attempting to sync the log).
6075 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent,bool sync_log,struct btrfs_log_ctx * ctx)6076 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6077 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6078 struct dentry *parent,
6079 bool sync_log, struct btrfs_log_ctx *ctx)
6080 {
6081 struct btrfs_fs_info *fs_info = trans->fs_info;
6082 int ret;
6083
6084 /*
6085 * this will force the logging code to walk the dentry chain
6086 * up for the file
6087 */
6088 if (!S_ISDIR(inode->vfs_inode.i_mode))
6089 inode->last_unlink_trans = trans->transid;
6090
6091 /*
6092 * if this inode hasn't been logged and directory we're renaming it
6093 * from hasn't been logged, we don't need to log it
6094 */
6095 if (inode->logged_trans <= fs_info->last_trans_committed &&
6096 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6097 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6098 BTRFS_DONT_NEED_LOG_SYNC;
6099
6100 if (sync_log) {
6101 struct btrfs_log_ctx ctx2;
6102
6103 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6104 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6105 LOG_INODE_EXISTS, &ctx2);
6106 if (ret == BTRFS_NO_LOG_SYNC)
6107 return BTRFS_DONT_NEED_TRANS_COMMIT;
6108 else if (ret)
6109 return BTRFS_NEED_TRANS_COMMIT;
6110
6111 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6112 if (ret)
6113 return BTRFS_NEED_TRANS_COMMIT;
6114 return BTRFS_DONT_NEED_TRANS_COMMIT;
6115 }
6116
6117 ASSERT(ctx);
6118 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6119 LOG_INODE_EXISTS, ctx);
6120 if (ret == BTRFS_NO_LOG_SYNC)
6121 return BTRFS_DONT_NEED_LOG_SYNC;
6122 else if (ret)
6123 return BTRFS_NEED_TRANS_COMMIT;
6124
6125 return BTRFS_NEED_LOG_SYNC;
6126 }
6127
6128