1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/buffer_head.h>
11 #include <linux/blkdev.h>
12 #include <linux/ratelimit.h>
13 #include <linux/kthread.h>
14 #include <linux/raid/pq.h>
15 #include <linux/semaphore.h>
16 #include <linux/uuid.h>
17 #include <linux/list_sort.h>
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "math.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31
32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
33 [BTRFS_RAID_RAID10] = {
34 .sub_stripes = 2,
35 .dev_stripes = 1,
36 .devs_max = 0, /* 0 == as many as possible */
37 .devs_min = 4,
38 .tolerated_failures = 1,
39 .devs_increment = 2,
40 .ncopies = 2,
41 .raid_name = "raid10",
42 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
43 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
44 },
45 [BTRFS_RAID_RAID1] = {
46 .sub_stripes = 1,
47 .dev_stripes = 1,
48 .devs_max = 2,
49 .devs_min = 2,
50 .tolerated_failures = 1,
51 .devs_increment = 2,
52 .ncopies = 2,
53 .raid_name = "raid1",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
55 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_DUP] = {
58 .sub_stripes = 1,
59 .dev_stripes = 2,
60 .devs_max = 1,
61 .devs_min = 1,
62 .tolerated_failures = 0,
63 .devs_increment = 1,
64 .ncopies = 2,
65 .raid_name = "dup",
66 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
67 .mindev_error = 0,
68 },
69 [BTRFS_RAID_RAID0] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 0,
73 .devs_min = 2,
74 .tolerated_failures = 0,
75 .devs_increment = 1,
76 .ncopies = 1,
77 .raid_name = "raid0",
78 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
79 .mindev_error = 0,
80 },
81 [BTRFS_RAID_SINGLE] = {
82 .sub_stripes = 1,
83 .dev_stripes = 1,
84 .devs_max = 1,
85 .devs_min = 1,
86 .tolerated_failures = 0,
87 .devs_increment = 1,
88 .ncopies = 1,
89 .raid_name = "single",
90 .bg_flag = 0,
91 .mindev_error = 0,
92 },
93 [BTRFS_RAID_RAID5] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 0,
97 .devs_min = 2,
98 .tolerated_failures = 1,
99 .devs_increment = 1,
100 .ncopies = 1,
101 .raid_name = "raid5",
102 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
103 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
104 },
105 [BTRFS_RAID_RAID6] = {
106 .sub_stripes = 1,
107 .dev_stripes = 1,
108 .devs_max = 0,
109 .devs_min = 3,
110 .tolerated_failures = 2,
111 .devs_increment = 1,
112 .ncopies = 1,
113 .raid_name = "raid6",
114 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
115 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
116 },
117 };
118
get_raid_name(enum btrfs_raid_types type)119 const char *get_raid_name(enum btrfs_raid_types type)
120 {
121 if (type >= BTRFS_NR_RAID_TYPES)
122 return NULL;
123
124 return btrfs_raid_array[type].raid_name;
125 }
126
127 static int init_first_rw_device(struct btrfs_trans_handle *trans,
128 struct btrfs_fs_info *fs_info);
129 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
130 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
132 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
133 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
134 enum btrfs_map_op op,
135 u64 logical, u64 *length,
136 struct btrfs_bio **bbio_ret,
137 int mirror_num, int need_raid_map);
138
139 /*
140 * Device locking
141 * ==============
142 *
143 * There are several mutexes that protect manipulation of devices and low-level
144 * structures like chunks but not block groups, extents or files
145 *
146 * uuid_mutex (global lock)
147 * ------------------------
148 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
149 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
150 * device) or requested by the device= mount option
151 *
152 * the mutex can be very coarse and can cover long-running operations
153 *
154 * protects: updates to fs_devices counters like missing devices, rw devices,
155 * seeding, structure cloning, openning/closing devices at mount/umount time
156 *
157 * global::fs_devs - add, remove, updates to the global list
158 *
159 * does not protect: manipulation of the fs_devices::devices list in general
160 * but in mount context it could be used to exclude list modifications by eg.
161 * scan ioctl
162 *
163 * btrfs_device::name - renames (write side), read is RCU
164 *
165 * fs_devices::device_list_mutex (per-fs, with RCU)
166 * ------------------------------------------------
167 * protects updates to fs_devices::devices, ie. adding and deleting
168 *
169 * simple list traversal with read-only actions can be done with RCU protection
170 *
171 * may be used to exclude some operations from running concurrently without any
172 * modifications to the list (see write_all_supers)
173 *
174 * Is not required at mount and close times, because our device list is
175 * protected by the uuid_mutex at that point.
176 *
177 * balance_mutex
178 * -------------
179 * protects balance structures (status, state) and context accessed from
180 * several places (internally, ioctl)
181 *
182 * chunk_mutex
183 * -----------
184 * protects chunks, adding or removing during allocation, trim or when a new
185 * device is added/removed
186 *
187 * cleaner_mutex
188 * -------------
189 * a big lock that is held by the cleaner thread and prevents running subvolume
190 * cleaning together with relocation or delayed iputs
191 *
192 *
193 * Lock nesting
194 * ============
195 *
196 * uuid_mutex
197 * volume_mutex
198 * device_list_mutex
199 * chunk_mutex
200 * balance_mutex
201 *
202 *
203 * Exclusive operations, BTRFS_FS_EXCL_OP
204 * ======================================
205 *
206 * Maintains the exclusivity of the following operations that apply to the
207 * whole filesystem and cannot run in parallel.
208 *
209 * - Balance (*)
210 * - Device add
211 * - Device remove
212 * - Device replace (*)
213 * - Resize
214 *
215 * The device operations (as above) can be in one of the following states:
216 *
217 * - Running state
218 * - Paused state
219 * - Completed state
220 *
221 * Only device operations marked with (*) can go into the Paused state for the
222 * following reasons:
223 *
224 * - ioctl (only Balance can be Paused through ioctl)
225 * - filesystem remounted as read-only
226 * - filesystem unmounted and mounted as read-only
227 * - system power-cycle and filesystem mounted as read-only
228 * - filesystem or device errors leading to forced read-only
229 *
230 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
231 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
232 * A device operation in Paused or Running state can be canceled or resumed
233 * either by ioctl (Balance only) or when remounted as read-write.
234 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
235 * completed.
236 */
237
238 DEFINE_MUTEX(uuid_mutex);
239 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)240 struct list_head *btrfs_get_fs_uuids(void)
241 {
242 return &fs_uuids;
243 }
244
245 /*
246 * alloc_fs_devices - allocate struct btrfs_fs_devices
247 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
248 *
249 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
250 * The returned struct is not linked onto any lists and can be destroyed with
251 * kfree() right away.
252 */
alloc_fs_devices(const u8 * fsid)253 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
254 {
255 struct btrfs_fs_devices *fs_devs;
256
257 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
258 if (!fs_devs)
259 return ERR_PTR(-ENOMEM);
260
261 mutex_init(&fs_devs->device_list_mutex);
262
263 INIT_LIST_HEAD(&fs_devs->devices);
264 INIT_LIST_HEAD(&fs_devs->resized_devices);
265 INIT_LIST_HEAD(&fs_devs->alloc_list);
266 INIT_LIST_HEAD(&fs_devs->fs_list);
267 if (fsid)
268 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
269
270 return fs_devs;
271 }
272
btrfs_free_device(struct btrfs_device * device)273 void btrfs_free_device(struct btrfs_device *device)
274 {
275 rcu_string_free(device->name);
276 bio_put(device->flush_bio);
277 kfree(device);
278 }
279
free_fs_devices(struct btrfs_fs_devices * fs_devices)280 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
281 {
282 struct btrfs_device *device;
283 WARN_ON(fs_devices->opened);
284 while (!list_empty(&fs_devices->devices)) {
285 device = list_entry(fs_devices->devices.next,
286 struct btrfs_device, dev_list);
287 list_del(&device->dev_list);
288 btrfs_free_device(device);
289 }
290 kfree(fs_devices);
291 }
292
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)293 static void btrfs_kobject_uevent(struct block_device *bdev,
294 enum kobject_action action)
295 {
296 int ret;
297
298 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
299 if (ret)
300 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
301 action,
302 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
303 &disk_to_dev(bdev->bd_disk)->kobj);
304 }
305
btrfs_cleanup_fs_uuids(void)306 void __exit btrfs_cleanup_fs_uuids(void)
307 {
308 struct btrfs_fs_devices *fs_devices;
309
310 while (!list_empty(&fs_uuids)) {
311 fs_devices = list_entry(fs_uuids.next,
312 struct btrfs_fs_devices, fs_list);
313 list_del(&fs_devices->fs_list);
314 free_fs_devices(fs_devices);
315 }
316 }
317
318 /*
319 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
320 * Returned struct is not linked onto any lists and must be destroyed using
321 * btrfs_free_device.
322 */
__alloc_device(void)323 static struct btrfs_device *__alloc_device(void)
324 {
325 struct btrfs_device *dev;
326
327 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
328 if (!dev)
329 return ERR_PTR(-ENOMEM);
330
331 /*
332 * Preallocate a bio that's always going to be used for flushing device
333 * barriers and matches the device lifespan
334 */
335 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
336 if (!dev->flush_bio) {
337 kfree(dev);
338 return ERR_PTR(-ENOMEM);
339 }
340
341 INIT_LIST_HEAD(&dev->dev_list);
342 INIT_LIST_HEAD(&dev->dev_alloc_list);
343 INIT_LIST_HEAD(&dev->resized_list);
344
345 spin_lock_init(&dev->io_lock);
346
347 atomic_set(&dev->reada_in_flight, 0);
348 atomic_set(&dev->dev_stats_ccnt, 0);
349 btrfs_device_data_ordered_init(dev);
350 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
351 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
352
353 return dev;
354 }
355
find_fsid(u8 * fsid)356 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
357 {
358 struct btrfs_fs_devices *fs_devices;
359
360 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
361 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
362 return fs_devices;
363 }
364 return NULL;
365 }
366
367 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)368 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
369 int flush, struct block_device **bdev,
370 struct buffer_head **bh)
371 {
372 int ret;
373
374 *bdev = blkdev_get_by_path(device_path, flags, holder);
375
376 if (IS_ERR(*bdev)) {
377 ret = PTR_ERR(*bdev);
378 goto error;
379 }
380
381 if (flush)
382 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
383 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
384 if (ret) {
385 blkdev_put(*bdev, flags);
386 goto error;
387 }
388 invalidate_bdev(*bdev);
389 *bh = btrfs_read_dev_super(*bdev);
390 if (IS_ERR(*bh)) {
391 ret = PTR_ERR(*bh);
392 blkdev_put(*bdev, flags);
393 goto error;
394 }
395
396 return 0;
397
398 error:
399 *bdev = NULL;
400 *bh = NULL;
401 return ret;
402 }
403
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)404 static void requeue_list(struct btrfs_pending_bios *pending_bios,
405 struct bio *head, struct bio *tail)
406 {
407
408 struct bio *old_head;
409
410 old_head = pending_bios->head;
411 pending_bios->head = head;
412 if (pending_bios->tail)
413 tail->bi_next = old_head;
414 else
415 pending_bios->tail = tail;
416 }
417
418 /*
419 * we try to collect pending bios for a device so we don't get a large
420 * number of procs sending bios down to the same device. This greatly
421 * improves the schedulers ability to collect and merge the bios.
422 *
423 * But, it also turns into a long list of bios to process and that is sure
424 * to eventually make the worker thread block. The solution here is to
425 * make some progress and then put this work struct back at the end of
426 * the list if the block device is congested. This way, multiple devices
427 * can make progress from a single worker thread.
428 */
run_scheduled_bios(struct btrfs_device * device)429 static noinline void run_scheduled_bios(struct btrfs_device *device)
430 {
431 struct btrfs_fs_info *fs_info = device->fs_info;
432 struct bio *pending;
433 struct backing_dev_info *bdi;
434 struct btrfs_pending_bios *pending_bios;
435 struct bio *tail;
436 struct bio *cur;
437 int again = 0;
438 unsigned long num_run;
439 unsigned long batch_run = 0;
440 unsigned long last_waited = 0;
441 int force_reg = 0;
442 int sync_pending = 0;
443 struct blk_plug plug;
444
445 /*
446 * this function runs all the bios we've collected for
447 * a particular device. We don't want to wander off to
448 * another device without first sending all of these down.
449 * So, setup a plug here and finish it off before we return
450 */
451 blk_start_plug(&plug);
452
453 bdi = device->bdev->bd_bdi;
454
455 loop:
456 spin_lock(&device->io_lock);
457
458 loop_lock:
459 num_run = 0;
460
461 /* take all the bios off the list at once and process them
462 * later on (without the lock held). But, remember the
463 * tail and other pointers so the bios can be properly reinserted
464 * into the list if we hit congestion
465 */
466 if (!force_reg && device->pending_sync_bios.head) {
467 pending_bios = &device->pending_sync_bios;
468 force_reg = 1;
469 } else {
470 pending_bios = &device->pending_bios;
471 force_reg = 0;
472 }
473
474 pending = pending_bios->head;
475 tail = pending_bios->tail;
476 WARN_ON(pending && !tail);
477
478 /*
479 * if pending was null this time around, no bios need processing
480 * at all and we can stop. Otherwise it'll loop back up again
481 * and do an additional check so no bios are missed.
482 *
483 * device->running_pending is used to synchronize with the
484 * schedule_bio code.
485 */
486 if (device->pending_sync_bios.head == NULL &&
487 device->pending_bios.head == NULL) {
488 again = 0;
489 device->running_pending = 0;
490 } else {
491 again = 1;
492 device->running_pending = 1;
493 }
494
495 pending_bios->head = NULL;
496 pending_bios->tail = NULL;
497
498 spin_unlock(&device->io_lock);
499
500 while (pending) {
501
502 rmb();
503 /* we want to work on both lists, but do more bios on the
504 * sync list than the regular list
505 */
506 if ((num_run > 32 &&
507 pending_bios != &device->pending_sync_bios &&
508 device->pending_sync_bios.head) ||
509 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
510 device->pending_bios.head)) {
511 spin_lock(&device->io_lock);
512 requeue_list(pending_bios, pending, tail);
513 goto loop_lock;
514 }
515
516 cur = pending;
517 pending = pending->bi_next;
518 cur->bi_next = NULL;
519
520 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
521
522 /*
523 * if we're doing the sync list, record that our
524 * plug has some sync requests on it
525 *
526 * If we're doing the regular list and there are
527 * sync requests sitting around, unplug before
528 * we add more
529 */
530 if (pending_bios == &device->pending_sync_bios) {
531 sync_pending = 1;
532 } else if (sync_pending) {
533 blk_finish_plug(&plug);
534 blk_start_plug(&plug);
535 sync_pending = 0;
536 }
537
538 btrfsic_submit_bio(cur);
539 num_run++;
540 batch_run++;
541
542 cond_resched();
543
544 /*
545 * we made progress, there is more work to do and the bdi
546 * is now congested. Back off and let other work structs
547 * run instead
548 */
549 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
550 fs_info->fs_devices->open_devices > 1) {
551 struct io_context *ioc;
552
553 ioc = current->io_context;
554
555 /*
556 * the main goal here is that we don't want to
557 * block if we're going to be able to submit
558 * more requests without blocking.
559 *
560 * This code does two great things, it pokes into
561 * the elevator code from a filesystem _and_
562 * it makes assumptions about how batching works.
563 */
564 if (ioc && ioc->nr_batch_requests > 0 &&
565 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
566 (last_waited == 0 ||
567 ioc->last_waited == last_waited)) {
568 /*
569 * we want to go through our batch of
570 * requests and stop. So, we copy out
571 * the ioc->last_waited time and test
572 * against it before looping
573 */
574 last_waited = ioc->last_waited;
575 cond_resched();
576 continue;
577 }
578 spin_lock(&device->io_lock);
579 requeue_list(pending_bios, pending, tail);
580 device->running_pending = 1;
581
582 spin_unlock(&device->io_lock);
583 btrfs_queue_work(fs_info->submit_workers,
584 &device->work);
585 goto done;
586 }
587 }
588
589 cond_resched();
590 if (again)
591 goto loop;
592
593 spin_lock(&device->io_lock);
594 if (device->pending_bios.head || device->pending_sync_bios.head)
595 goto loop_lock;
596 spin_unlock(&device->io_lock);
597
598 done:
599 blk_finish_plug(&plug);
600 }
601
pending_bios_fn(struct btrfs_work * work)602 static void pending_bios_fn(struct btrfs_work *work)
603 {
604 struct btrfs_device *device;
605
606 device = container_of(work, struct btrfs_device, work);
607 run_scheduled_bios(device);
608 }
609
610 /*
611 * Search and remove all stale (devices which are not mounted) devices.
612 * When both inputs are NULL, it will search and release all stale devices.
613 * path: Optional. When provided will it release all unmounted devices
614 * matching this path only.
615 * skip_dev: Optional. Will skip this device when searching for the stale
616 * devices.
617 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)618 static void btrfs_free_stale_devices(const char *path,
619 struct btrfs_device *skip_device)
620 {
621 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
622 struct btrfs_device *device, *tmp_device;
623
624 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
625 mutex_lock(&fs_devices->device_list_mutex);
626 if (fs_devices->opened) {
627 mutex_unlock(&fs_devices->device_list_mutex);
628 continue;
629 }
630
631 list_for_each_entry_safe(device, tmp_device,
632 &fs_devices->devices, dev_list) {
633 int not_found = 0;
634
635 if (skip_device && skip_device == device)
636 continue;
637 if (path && !device->name)
638 continue;
639
640 rcu_read_lock();
641 if (path)
642 not_found = strcmp(rcu_str_deref(device->name),
643 path);
644 rcu_read_unlock();
645 if (not_found)
646 continue;
647
648 /* delete the stale device */
649 fs_devices->num_devices--;
650 list_del(&device->dev_list);
651 btrfs_free_device(device);
652
653 if (fs_devices->num_devices == 0)
654 break;
655 }
656 mutex_unlock(&fs_devices->device_list_mutex);
657 if (fs_devices->num_devices == 0) {
658 btrfs_sysfs_remove_fsid(fs_devices);
659 list_del(&fs_devices->fs_list);
660 free_fs_devices(fs_devices);
661 }
662 }
663 }
664
665 /*
666 * This is only used on mount, and we are protected from competing things
667 * messing with our fs_devices by the uuid_mutex, thus we do not need the
668 * fs_devices->device_list_mutex here.
669 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)670 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
671 struct btrfs_device *device, fmode_t flags,
672 void *holder)
673 {
674 struct request_queue *q;
675 struct block_device *bdev;
676 struct buffer_head *bh;
677 struct btrfs_super_block *disk_super;
678 u64 devid;
679 int ret;
680
681 if (device->bdev)
682 return -EINVAL;
683 if (!device->name)
684 return -EINVAL;
685
686 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
687 &bdev, &bh);
688 if (ret)
689 return ret;
690
691 disk_super = (struct btrfs_super_block *)bh->b_data;
692 devid = btrfs_stack_device_id(&disk_super->dev_item);
693 if (devid != device->devid)
694 goto error_brelse;
695
696 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
697 goto error_brelse;
698
699 device->generation = btrfs_super_generation(disk_super);
700
701 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
702 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
703 fs_devices->seeding = 1;
704 } else {
705 if (bdev_read_only(bdev))
706 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
707 else
708 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
709 }
710
711 q = bdev_get_queue(bdev);
712 if (!blk_queue_nonrot(q))
713 fs_devices->rotating = 1;
714
715 device->bdev = bdev;
716 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
717 device->mode = flags;
718
719 fs_devices->open_devices++;
720 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
721 device->devid != BTRFS_DEV_REPLACE_DEVID) {
722 fs_devices->rw_devices++;
723 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
724 }
725 brelse(bh);
726
727 return 0;
728
729 error_brelse:
730 brelse(bh);
731 blkdev_put(bdev, flags);
732
733 return -EINVAL;
734 }
735
736 /*
737 * Add new device to list of registered devices
738 *
739 * Returns:
740 * device pointer which was just added or updated when successful
741 * error pointer when failed
742 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)743 static noinline struct btrfs_device *device_list_add(const char *path,
744 struct btrfs_super_block *disk_super,
745 bool *new_device_added)
746 {
747 struct btrfs_device *device;
748 struct btrfs_fs_devices *fs_devices;
749 struct rcu_string *name;
750 u64 found_transid = btrfs_super_generation(disk_super);
751 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
752
753 fs_devices = find_fsid(disk_super->fsid);
754 if (!fs_devices) {
755 fs_devices = alloc_fs_devices(disk_super->fsid);
756 if (IS_ERR(fs_devices))
757 return ERR_CAST(fs_devices);
758
759 mutex_lock(&fs_devices->device_list_mutex);
760 list_add(&fs_devices->fs_list, &fs_uuids);
761
762 device = NULL;
763 } else {
764 mutex_lock(&fs_devices->device_list_mutex);
765 device = btrfs_find_device(fs_devices, devid,
766 disk_super->dev_item.uuid, NULL, false);
767 }
768
769 if (!device) {
770 if (fs_devices->opened) {
771 mutex_unlock(&fs_devices->device_list_mutex);
772 return ERR_PTR(-EBUSY);
773 }
774
775 device = btrfs_alloc_device(NULL, &devid,
776 disk_super->dev_item.uuid);
777 if (IS_ERR(device)) {
778 mutex_unlock(&fs_devices->device_list_mutex);
779 /* we can safely leave the fs_devices entry around */
780 return device;
781 }
782
783 name = rcu_string_strdup(path, GFP_NOFS);
784 if (!name) {
785 btrfs_free_device(device);
786 mutex_unlock(&fs_devices->device_list_mutex);
787 return ERR_PTR(-ENOMEM);
788 }
789 rcu_assign_pointer(device->name, name);
790
791 list_add_rcu(&device->dev_list, &fs_devices->devices);
792 fs_devices->num_devices++;
793
794 device->fs_devices = fs_devices;
795 *new_device_added = true;
796
797 if (disk_super->label[0])
798 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
799 disk_super->label, devid, found_transid, path);
800 else
801 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
802 disk_super->fsid, devid, found_transid, path);
803
804 } else if (!device->name || strcmp(device->name->str, path)) {
805 /*
806 * When FS is already mounted.
807 * 1. If you are here and if the device->name is NULL that
808 * means this device was missing at time of FS mount.
809 * 2. If you are here and if the device->name is different
810 * from 'path' that means either
811 * a. The same device disappeared and reappeared with
812 * different name. or
813 * b. The missing-disk-which-was-replaced, has
814 * reappeared now.
815 *
816 * We must allow 1 and 2a above. But 2b would be a spurious
817 * and unintentional.
818 *
819 * Further in case of 1 and 2a above, the disk at 'path'
820 * would have missed some transaction when it was away and
821 * in case of 2a the stale bdev has to be updated as well.
822 * 2b must not be allowed at all time.
823 */
824
825 /*
826 * For now, we do allow update to btrfs_fs_device through the
827 * btrfs dev scan cli after FS has been mounted. We're still
828 * tracking a problem where systems fail mount by subvolume id
829 * when we reject replacement on a mounted FS.
830 */
831 if (!fs_devices->opened && found_transid < device->generation) {
832 /*
833 * That is if the FS is _not_ mounted and if you
834 * are here, that means there is more than one
835 * disk with same uuid and devid.We keep the one
836 * with larger generation number or the last-in if
837 * generation are equal.
838 */
839 mutex_unlock(&fs_devices->device_list_mutex);
840 return ERR_PTR(-EEXIST);
841 }
842
843 /*
844 * We are going to replace the device path for a given devid,
845 * make sure it's the same device if the device is mounted
846 */
847 if (device->bdev) {
848 struct block_device *path_bdev;
849
850 path_bdev = lookup_bdev(path);
851 if (IS_ERR(path_bdev)) {
852 mutex_unlock(&fs_devices->device_list_mutex);
853 return ERR_CAST(path_bdev);
854 }
855
856 if (device->bdev != path_bdev) {
857 bdput(path_bdev);
858 mutex_unlock(&fs_devices->device_list_mutex);
859 btrfs_warn_in_rcu(device->fs_info,
860 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
861 path, devid, found_transid,
862 current->comm,
863 task_pid_nr(current));
864 return ERR_PTR(-EEXIST);
865 }
866 bdput(path_bdev);
867 btrfs_info_in_rcu(device->fs_info,
868 "devid %llu device path %s changed to %s scanned by %s (%d)",
869 devid, rcu_str_deref(device->name),
870 path, current->comm,
871 task_pid_nr(current));
872 }
873
874 name = rcu_string_strdup(path, GFP_NOFS);
875 if (!name) {
876 mutex_unlock(&fs_devices->device_list_mutex);
877 return ERR_PTR(-ENOMEM);
878 }
879 rcu_string_free(device->name);
880 rcu_assign_pointer(device->name, name);
881 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
882 fs_devices->missing_devices--;
883 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
884 }
885 }
886
887 /*
888 * Unmount does not free the btrfs_device struct but would zero
889 * generation along with most of the other members. So just update
890 * it back. We need it to pick the disk with largest generation
891 * (as above).
892 */
893 if (!fs_devices->opened)
894 device->generation = found_transid;
895
896 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
897
898 mutex_unlock(&fs_devices->device_list_mutex);
899 return device;
900 }
901
clone_fs_devices(struct btrfs_fs_devices * orig)902 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
903 {
904 struct btrfs_fs_devices *fs_devices;
905 struct btrfs_device *device;
906 struct btrfs_device *orig_dev;
907
908 fs_devices = alloc_fs_devices(orig->fsid);
909 if (IS_ERR(fs_devices))
910 return fs_devices;
911
912 mutex_lock(&orig->device_list_mutex);
913 fs_devices->total_devices = orig->total_devices;
914
915 /* We have held the volume lock, it is safe to get the devices. */
916 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
917 struct rcu_string *name;
918
919 device = btrfs_alloc_device(NULL, &orig_dev->devid,
920 orig_dev->uuid);
921 if (IS_ERR(device))
922 goto error;
923
924 /*
925 * This is ok to do without rcu read locked because we hold the
926 * uuid mutex so nothing we touch in here is going to disappear.
927 */
928 if (orig_dev->name) {
929 name = rcu_string_strdup(orig_dev->name->str,
930 GFP_KERNEL);
931 if (!name) {
932 btrfs_free_device(device);
933 goto error;
934 }
935 rcu_assign_pointer(device->name, name);
936 }
937
938 list_add(&device->dev_list, &fs_devices->devices);
939 device->fs_devices = fs_devices;
940 fs_devices->num_devices++;
941 }
942 mutex_unlock(&orig->device_list_mutex);
943 return fs_devices;
944 error:
945 mutex_unlock(&orig->device_list_mutex);
946 free_fs_devices(fs_devices);
947 return ERR_PTR(-ENOMEM);
948 }
949
950 /*
951 * After we have read the system tree and know devids belonging to
952 * this filesystem, remove the device which does not belong there.
953 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)954 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
955 {
956 struct btrfs_device *device, *next;
957 struct btrfs_device *latest_dev = NULL;
958
959 mutex_lock(&uuid_mutex);
960 again:
961 /* This is the initialized path, it is safe to release the devices. */
962 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
963 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
964 &device->dev_state)) {
965 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
966 &device->dev_state) &&
967 !test_bit(BTRFS_DEV_STATE_MISSING,
968 &device->dev_state) &&
969 (!latest_dev ||
970 device->generation > latest_dev->generation)) {
971 latest_dev = device;
972 }
973 continue;
974 }
975
976 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
977 /*
978 * In the first step, keep the device which has
979 * the correct fsid and the devid that is used
980 * for the dev_replace procedure.
981 * In the second step, the dev_replace state is
982 * read from the device tree and it is known
983 * whether the procedure is really active or
984 * not, which means whether this device is
985 * used or whether it should be removed.
986 */
987 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
988 &device->dev_state)) {
989 continue;
990 }
991 }
992 if (device->bdev) {
993 blkdev_put(device->bdev, device->mode);
994 device->bdev = NULL;
995 fs_devices->open_devices--;
996 }
997 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
998 list_del_init(&device->dev_alloc_list);
999 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 &device->dev_state))
1002 fs_devices->rw_devices--;
1003 }
1004 list_del_init(&device->dev_list);
1005 fs_devices->num_devices--;
1006 btrfs_free_device(device);
1007 }
1008
1009 if (fs_devices->seed) {
1010 fs_devices = fs_devices->seed;
1011 goto again;
1012 }
1013
1014 fs_devices->latest_bdev = latest_dev->bdev;
1015
1016 mutex_unlock(&uuid_mutex);
1017 }
1018
free_device_rcu(struct rcu_head * head)1019 static void free_device_rcu(struct rcu_head *head)
1020 {
1021 struct btrfs_device *device;
1022
1023 device = container_of(head, struct btrfs_device, rcu);
1024 btrfs_free_device(device);
1025 }
1026
btrfs_close_bdev(struct btrfs_device * device)1027 static void btrfs_close_bdev(struct btrfs_device *device)
1028 {
1029 if (!device->bdev)
1030 return;
1031
1032 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1033 sync_blockdev(device->bdev);
1034 invalidate_bdev(device->bdev);
1035 }
1036
1037 blkdev_put(device->bdev, device->mode);
1038 }
1039
btrfs_close_one_device(struct btrfs_device * device)1040 static void btrfs_close_one_device(struct btrfs_device *device)
1041 {
1042 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1043 struct btrfs_device *new_device;
1044 struct rcu_string *name;
1045
1046 if (device->bdev)
1047 fs_devices->open_devices--;
1048
1049 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1050 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1051 list_del_init(&device->dev_alloc_list);
1052 fs_devices->rw_devices--;
1053 }
1054
1055 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1056 fs_devices->missing_devices--;
1057
1058 btrfs_close_bdev(device);
1059
1060 new_device = btrfs_alloc_device(NULL, &device->devid,
1061 device->uuid);
1062 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1063
1064 /* Safe because we are under uuid_mutex */
1065 if (device->name) {
1066 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1067 BUG_ON(!name); /* -ENOMEM */
1068 rcu_assign_pointer(new_device->name, name);
1069 }
1070
1071 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1072 new_device->fs_devices = device->fs_devices;
1073
1074 call_rcu(&device->rcu, free_device_rcu);
1075 }
1076
close_fs_devices(struct btrfs_fs_devices * fs_devices)1077 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1078 {
1079 struct btrfs_device *device, *tmp;
1080
1081 if (--fs_devices->opened > 0)
1082 return 0;
1083
1084 mutex_lock(&fs_devices->device_list_mutex);
1085 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1086 btrfs_close_one_device(device);
1087 }
1088 mutex_unlock(&fs_devices->device_list_mutex);
1089
1090 WARN_ON(fs_devices->open_devices);
1091 WARN_ON(fs_devices->rw_devices);
1092 fs_devices->opened = 0;
1093 fs_devices->seeding = 0;
1094
1095 return 0;
1096 }
1097
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1098 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1099 {
1100 struct btrfs_fs_devices *seed_devices = NULL;
1101 int ret;
1102
1103 mutex_lock(&uuid_mutex);
1104 ret = close_fs_devices(fs_devices);
1105 if (!fs_devices->opened) {
1106 seed_devices = fs_devices->seed;
1107 fs_devices->seed = NULL;
1108 }
1109 mutex_unlock(&uuid_mutex);
1110
1111 while (seed_devices) {
1112 fs_devices = seed_devices;
1113 seed_devices = fs_devices->seed;
1114 close_fs_devices(fs_devices);
1115 free_fs_devices(fs_devices);
1116 }
1117 return ret;
1118 }
1119
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1120 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1121 fmode_t flags, void *holder)
1122 {
1123 struct btrfs_device *device;
1124 struct btrfs_device *latest_dev = NULL;
1125 int ret = 0;
1126
1127 flags |= FMODE_EXCL;
1128
1129 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1130 /* Just open everything we can; ignore failures here */
1131 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1132 continue;
1133
1134 if (!latest_dev ||
1135 device->generation > latest_dev->generation)
1136 latest_dev = device;
1137 }
1138 if (fs_devices->open_devices == 0) {
1139 ret = -EINVAL;
1140 goto out;
1141 }
1142 fs_devices->opened = 1;
1143 fs_devices->latest_bdev = latest_dev->bdev;
1144 fs_devices->total_rw_bytes = 0;
1145 out:
1146 return ret;
1147 }
1148
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1149 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1150 {
1151 struct btrfs_device *dev1, *dev2;
1152
1153 dev1 = list_entry(a, struct btrfs_device, dev_list);
1154 dev2 = list_entry(b, struct btrfs_device, dev_list);
1155
1156 if (dev1->devid < dev2->devid)
1157 return -1;
1158 else if (dev1->devid > dev2->devid)
1159 return 1;
1160 return 0;
1161 }
1162
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1163 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1164 fmode_t flags, void *holder)
1165 {
1166 int ret;
1167
1168 lockdep_assert_held(&uuid_mutex);
1169 /*
1170 * The device_list_mutex cannot be taken here in case opening the
1171 * underlying device takes further locks like bd_mutex.
1172 *
1173 * We also don't need the lock here as this is called during mount and
1174 * exclusion is provided by uuid_mutex
1175 */
1176
1177 if (fs_devices->opened) {
1178 fs_devices->opened++;
1179 ret = 0;
1180 } else {
1181 list_sort(NULL, &fs_devices->devices, devid_cmp);
1182 ret = open_fs_devices(fs_devices, flags, holder);
1183 }
1184
1185 return ret;
1186 }
1187
btrfs_release_disk_super(struct page * page)1188 static void btrfs_release_disk_super(struct page *page)
1189 {
1190 kunmap(page);
1191 put_page(page);
1192 }
1193
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1194 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1195 struct page **page,
1196 struct btrfs_super_block **disk_super)
1197 {
1198 void *p;
1199 pgoff_t index;
1200
1201 /* make sure our super fits in the device */
1202 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1203 return 1;
1204
1205 /* make sure our super fits in the page */
1206 if (sizeof(**disk_super) > PAGE_SIZE)
1207 return 1;
1208
1209 /* make sure our super doesn't straddle pages on disk */
1210 index = bytenr >> PAGE_SHIFT;
1211 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1212 return 1;
1213
1214 /* pull in the page with our super */
1215 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1216 index, GFP_KERNEL);
1217
1218 if (IS_ERR_OR_NULL(*page))
1219 return 1;
1220
1221 p = kmap(*page);
1222
1223 /* align our pointer to the offset of the super block */
1224 *disk_super = p + (bytenr & ~PAGE_MASK);
1225
1226 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1227 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1228 btrfs_release_disk_super(*page);
1229 return 1;
1230 }
1231
1232 if ((*disk_super)->label[0] &&
1233 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1234 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1235
1236 return 0;
1237 }
1238
1239 /*
1240 * Look for a btrfs signature on a device. This may be called out of the mount path
1241 * and we are not allowed to call set_blocksize during the scan. The superblock
1242 * is read via pagecache
1243 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1244 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1245 void *holder)
1246 {
1247 struct btrfs_super_block *disk_super;
1248 bool new_device_added = false;
1249 struct btrfs_device *device = NULL;
1250 struct block_device *bdev;
1251 struct page *page;
1252 u64 bytenr;
1253
1254 lockdep_assert_held(&uuid_mutex);
1255
1256 /*
1257 * we would like to check all the supers, but that would make
1258 * a btrfs mount succeed after a mkfs from a different FS.
1259 * So, we need to add a special mount option to scan for
1260 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1261 */
1262 bytenr = btrfs_sb_offset(0);
1263 flags |= FMODE_EXCL;
1264
1265 bdev = blkdev_get_by_path(path, flags, holder);
1266 if (IS_ERR(bdev))
1267 return ERR_CAST(bdev);
1268
1269 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1270 device = ERR_PTR(-EINVAL);
1271 goto error_bdev_put;
1272 }
1273
1274 device = device_list_add(path, disk_super, &new_device_added);
1275 if (!IS_ERR(device)) {
1276 if (new_device_added)
1277 btrfs_free_stale_devices(path, device);
1278 }
1279
1280 btrfs_release_disk_super(page);
1281
1282 error_bdev_put:
1283 blkdev_put(bdev, flags);
1284
1285 return device;
1286 }
1287
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1288 static int contains_pending_extent(struct btrfs_transaction *transaction,
1289 struct btrfs_device *device,
1290 u64 *start, u64 len)
1291 {
1292 struct btrfs_fs_info *fs_info = device->fs_info;
1293 struct extent_map *em;
1294 struct list_head *search_list = &fs_info->pinned_chunks;
1295 int ret = 0;
1296 u64 physical_start = *start;
1297
1298 if (transaction)
1299 search_list = &transaction->pending_chunks;
1300 again:
1301 list_for_each_entry(em, search_list, list) {
1302 struct map_lookup *map;
1303 int i;
1304
1305 map = em->map_lookup;
1306 for (i = 0; i < map->num_stripes; i++) {
1307 u64 end;
1308
1309 if (map->stripes[i].dev != device)
1310 continue;
1311 if (map->stripes[i].physical >= physical_start + len ||
1312 map->stripes[i].physical + em->orig_block_len <=
1313 physical_start)
1314 continue;
1315 /*
1316 * Make sure that while processing the pinned list we do
1317 * not override our *start with a lower value, because
1318 * we can have pinned chunks that fall within this
1319 * device hole and that have lower physical addresses
1320 * than the pending chunks we processed before. If we
1321 * do not take this special care we can end up getting
1322 * 2 pending chunks that start at the same physical
1323 * device offsets because the end offset of a pinned
1324 * chunk can be equal to the start offset of some
1325 * pending chunk.
1326 */
1327 end = map->stripes[i].physical + em->orig_block_len;
1328 if (end > *start) {
1329 *start = end;
1330 ret = 1;
1331 }
1332 }
1333 }
1334 if (search_list != &fs_info->pinned_chunks) {
1335 search_list = &fs_info->pinned_chunks;
1336 goto again;
1337 }
1338
1339 return ret;
1340 }
1341
1342
1343 /*
1344 * find_free_dev_extent_start - find free space in the specified device
1345 * @device: the device which we search the free space in
1346 * @num_bytes: the size of the free space that we need
1347 * @search_start: the position from which to begin the search
1348 * @start: store the start of the free space.
1349 * @len: the size of the free space. that we find, or the size
1350 * of the max free space if we don't find suitable free space
1351 *
1352 * this uses a pretty simple search, the expectation is that it is
1353 * called very infrequently and that a given device has a small number
1354 * of extents
1355 *
1356 * @start is used to store the start of the free space if we find. But if we
1357 * don't find suitable free space, it will be used to store the start position
1358 * of the max free space.
1359 *
1360 * @len is used to store the size of the free space that we find.
1361 * But if we don't find suitable free space, it is used to store the size of
1362 * the max free space.
1363 */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1364 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1365 struct btrfs_device *device, u64 num_bytes,
1366 u64 search_start, u64 *start, u64 *len)
1367 {
1368 struct btrfs_fs_info *fs_info = device->fs_info;
1369 struct btrfs_root *root = fs_info->dev_root;
1370 struct btrfs_key key;
1371 struct btrfs_dev_extent *dev_extent;
1372 struct btrfs_path *path;
1373 u64 hole_size;
1374 u64 max_hole_start;
1375 u64 max_hole_size;
1376 u64 extent_end;
1377 u64 search_end = device->total_bytes;
1378 int ret;
1379 int slot;
1380 struct extent_buffer *l;
1381
1382 /*
1383 * We don't want to overwrite the superblock on the drive nor any area
1384 * used by the boot loader (grub for example), so we make sure to start
1385 * at an offset of at least 1MB.
1386 */
1387 search_start = max_t(u64, search_start, SZ_1M);
1388
1389 path = btrfs_alloc_path();
1390 if (!path)
1391 return -ENOMEM;
1392
1393 max_hole_start = search_start;
1394 max_hole_size = 0;
1395
1396 again:
1397 if (search_start >= search_end ||
1398 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1399 ret = -ENOSPC;
1400 goto out;
1401 }
1402
1403 path->reada = READA_FORWARD;
1404 path->search_commit_root = 1;
1405 path->skip_locking = 1;
1406
1407 key.objectid = device->devid;
1408 key.offset = search_start;
1409 key.type = BTRFS_DEV_EXTENT_KEY;
1410
1411 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1412 if (ret < 0)
1413 goto out;
1414 if (ret > 0) {
1415 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1416 if (ret < 0)
1417 goto out;
1418 }
1419
1420 while (1) {
1421 l = path->nodes[0];
1422 slot = path->slots[0];
1423 if (slot >= btrfs_header_nritems(l)) {
1424 ret = btrfs_next_leaf(root, path);
1425 if (ret == 0)
1426 continue;
1427 if (ret < 0)
1428 goto out;
1429
1430 break;
1431 }
1432 btrfs_item_key_to_cpu(l, &key, slot);
1433
1434 if (key.objectid < device->devid)
1435 goto next;
1436
1437 if (key.objectid > device->devid)
1438 break;
1439
1440 if (key.type != BTRFS_DEV_EXTENT_KEY)
1441 goto next;
1442
1443 if (key.offset > search_start) {
1444 hole_size = key.offset - search_start;
1445
1446 /*
1447 * Have to check before we set max_hole_start, otherwise
1448 * we could end up sending back this offset anyway.
1449 */
1450 if (contains_pending_extent(transaction, device,
1451 &search_start,
1452 hole_size)) {
1453 if (key.offset >= search_start) {
1454 hole_size = key.offset - search_start;
1455 } else {
1456 WARN_ON_ONCE(1);
1457 hole_size = 0;
1458 }
1459 }
1460
1461 if (hole_size > max_hole_size) {
1462 max_hole_start = search_start;
1463 max_hole_size = hole_size;
1464 }
1465
1466 /*
1467 * If this free space is greater than which we need,
1468 * it must be the max free space that we have found
1469 * until now, so max_hole_start must point to the start
1470 * of this free space and the length of this free space
1471 * is stored in max_hole_size. Thus, we return
1472 * max_hole_start and max_hole_size and go back to the
1473 * caller.
1474 */
1475 if (hole_size >= num_bytes) {
1476 ret = 0;
1477 goto out;
1478 }
1479 }
1480
1481 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1482 extent_end = key.offset + btrfs_dev_extent_length(l,
1483 dev_extent);
1484 if (extent_end > search_start)
1485 search_start = extent_end;
1486 next:
1487 path->slots[0]++;
1488 cond_resched();
1489 }
1490
1491 /*
1492 * At this point, search_start should be the end of
1493 * allocated dev extents, and when shrinking the device,
1494 * search_end may be smaller than search_start.
1495 */
1496 if (search_end > search_start) {
1497 hole_size = search_end - search_start;
1498
1499 if (contains_pending_extent(transaction, device, &search_start,
1500 hole_size)) {
1501 btrfs_release_path(path);
1502 goto again;
1503 }
1504
1505 if (hole_size > max_hole_size) {
1506 max_hole_start = search_start;
1507 max_hole_size = hole_size;
1508 }
1509 }
1510
1511 /* See above. */
1512 if (max_hole_size < num_bytes)
1513 ret = -ENOSPC;
1514 else
1515 ret = 0;
1516
1517 out:
1518 btrfs_free_path(path);
1519 *start = max_hole_start;
1520 if (len)
1521 *len = max_hole_size;
1522 return ret;
1523 }
1524
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1525 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1526 struct btrfs_device *device, u64 num_bytes,
1527 u64 *start, u64 *len)
1528 {
1529 /* FIXME use last free of some kind */
1530 return find_free_dev_extent_start(trans->transaction, device,
1531 num_bytes, 0, start, len);
1532 }
1533
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1534 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1535 struct btrfs_device *device,
1536 u64 start, u64 *dev_extent_len)
1537 {
1538 struct btrfs_fs_info *fs_info = device->fs_info;
1539 struct btrfs_root *root = fs_info->dev_root;
1540 int ret;
1541 struct btrfs_path *path;
1542 struct btrfs_key key;
1543 struct btrfs_key found_key;
1544 struct extent_buffer *leaf = NULL;
1545 struct btrfs_dev_extent *extent = NULL;
1546
1547 path = btrfs_alloc_path();
1548 if (!path)
1549 return -ENOMEM;
1550
1551 key.objectid = device->devid;
1552 key.offset = start;
1553 key.type = BTRFS_DEV_EXTENT_KEY;
1554 again:
1555 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1556 if (ret > 0) {
1557 ret = btrfs_previous_item(root, path, key.objectid,
1558 BTRFS_DEV_EXTENT_KEY);
1559 if (ret)
1560 goto out;
1561 leaf = path->nodes[0];
1562 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1563 extent = btrfs_item_ptr(leaf, path->slots[0],
1564 struct btrfs_dev_extent);
1565 BUG_ON(found_key.offset > start || found_key.offset +
1566 btrfs_dev_extent_length(leaf, extent) < start);
1567 key = found_key;
1568 btrfs_release_path(path);
1569 goto again;
1570 } else if (ret == 0) {
1571 leaf = path->nodes[0];
1572 extent = btrfs_item_ptr(leaf, path->slots[0],
1573 struct btrfs_dev_extent);
1574 } else {
1575 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1576 goto out;
1577 }
1578
1579 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1580
1581 ret = btrfs_del_item(trans, root, path);
1582 if (ret) {
1583 btrfs_handle_fs_error(fs_info, ret,
1584 "Failed to remove dev extent item");
1585 } else {
1586 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1587 }
1588 out:
1589 btrfs_free_path(path);
1590 return ret;
1591 }
1592
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1593 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1594 struct btrfs_device *device,
1595 u64 chunk_offset, u64 start, u64 num_bytes)
1596 {
1597 int ret;
1598 struct btrfs_path *path;
1599 struct btrfs_fs_info *fs_info = device->fs_info;
1600 struct btrfs_root *root = fs_info->dev_root;
1601 struct btrfs_dev_extent *extent;
1602 struct extent_buffer *leaf;
1603 struct btrfs_key key;
1604
1605 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1606 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1607 path = btrfs_alloc_path();
1608 if (!path)
1609 return -ENOMEM;
1610
1611 key.objectid = device->devid;
1612 key.offset = start;
1613 key.type = BTRFS_DEV_EXTENT_KEY;
1614 ret = btrfs_insert_empty_item(trans, root, path, &key,
1615 sizeof(*extent));
1616 if (ret)
1617 goto out;
1618
1619 leaf = path->nodes[0];
1620 extent = btrfs_item_ptr(leaf, path->slots[0],
1621 struct btrfs_dev_extent);
1622 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1623 BTRFS_CHUNK_TREE_OBJECTID);
1624 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1625 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1626 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1627
1628 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1629 btrfs_mark_buffer_dirty(leaf);
1630 out:
1631 btrfs_free_path(path);
1632 return ret;
1633 }
1634
find_next_chunk(struct btrfs_fs_info * fs_info)1635 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1636 {
1637 struct extent_map_tree *em_tree;
1638 struct extent_map *em;
1639 struct rb_node *n;
1640 u64 ret = 0;
1641
1642 em_tree = &fs_info->mapping_tree.map_tree;
1643 read_lock(&em_tree->lock);
1644 n = rb_last(&em_tree->map);
1645 if (n) {
1646 em = rb_entry(n, struct extent_map, rb_node);
1647 ret = em->start + em->len;
1648 }
1649 read_unlock(&em_tree->lock);
1650
1651 return ret;
1652 }
1653
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1654 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1655 u64 *devid_ret)
1656 {
1657 int ret;
1658 struct btrfs_key key;
1659 struct btrfs_key found_key;
1660 struct btrfs_path *path;
1661
1662 path = btrfs_alloc_path();
1663 if (!path)
1664 return -ENOMEM;
1665
1666 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1667 key.type = BTRFS_DEV_ITEM_KEY;
1668 key.offset = (u64)-1;
1669
1670 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1671 if (ret < 0)
1672 goto error;
1673
1674 BUG_ON(ret == 0); /* Corruption */
1675
1676 ret = btrfs_previous_item(fs_info->chunk_root, path,
1677 BTRFS_DEV_ITEMS_OBJECTID,
1678 BTRFS_DEV_ITEM_KEY);
1679 if (ret) {
1680 *devid_ret = 1;
1681 } else {
1682 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1683 path->slots[0]);
1684 *devid_ret = found_key.offset + 1;
1685 }
1686 ret = 0;
1687 error:
1688 btrfs_free_path(path);
1689 return ret;
1690 }
1691
1692 /*
1693 * the device information is stored in the chunk root
1694 * the btrfs_device struct should be fully filled in
1695 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1696 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1697 struct btrfs_device *device)
1698 {
1699 int ret;
1700 struct btrfs_path *path;
1701 struct btrfs_dev_item *dev_item;
1702 struct extent_buffer *leaf;
1703 struct btrfs_key key;
1704 unsigned long ptr;
1705
1706 path = btrfs_alloc_path();
1707 if (!path)
1708 return -ENOMEM;
1709
1710 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1711 key.type = BTRFS_DEV_ITEM_KEY;
1712 key.offset = device->devid;
1713
1714 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1715 &key, sizeof(*dev_item));
1716 if (ret)
1717 goto out;
1718
1719 leaf = path->nodes[0];
1720 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1721
1722 btrfs_set_device_id(leaf, dev_item, device->devid);
1723 btrfs_set_device_generation(leaf, dev_item, 0);
1724 btrfs_set_device_type(leaf, dev_item, device->type);
1725 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1726 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1727 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1728 btrfs_set_device_total_bytes(leaf, dev_item,
1729 btrfs_device_get_disk_total_bytes(device));
1730 btrfs_set_device_bytes_used(leaf, dev_item,
1731 btrfs_device_get_bytes_used(device));
1732 btrfs_set_device_group(leaf, dev_item, 0);
1733 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1734 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1735 btrfs_set_device_start_offset(leaf, dev_item, 0);
1736
1737 ptr = btrfs_device_uuid(dev_item);
1738 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1739 ptr = btrfs_device_fsid(dev_item);
1740 write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1741 btrfs_mark_buffer_dirty(leaf);
1742
1743 ret = 0;
1744 out:
1745 btrfs_free_path(path);
1746 return ret;
1747 }
1748
1749 /*
1750 * Function to update ctime/mtime for a given device path.
1751 * Mainly used for ctime/mtime based probe like libblkid.
1752 */
update_dev_time(const char * path_name)1753 static void update_dev_time(const char *path_name)
1754 {
1755 struct file *filp;
1756
1757 filp = filp_open(path_name, O_RDWR, 0);
1758 if (IS_ERR(filp))
1759 return;
1760 file_update_time(filp);
1761 filp_close(filp, NULL);
1762 }
1763
btrfs_rm_dev_item(struct btrfs_fs_info * fs_info,struct btrfs_device * device)1764 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1765 struct btrfs_device *device)
1766 {
1767 struct btrfs_root *root = fs_info->chunk_root;
1768 int ret;
1769 struct btrfs_path *path;
1770 struct btrfs_key key;
1771 struct btrfs_trans_handle *trans;
1772
1773 path = btrfs_alloc_path();
1774 if (!path)
1775 return -ENOMEM;
1776
1777 trans = btrfs_start_transaction(root, 0);
1778 if (IS_ERR(trans)) {
1779 btrfs_free_path(path);
1780 return PTR_ERR(trans);
1781 }
1782 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1783 key.type = BTRFS_DEV_ITEM_KEY;
1784 key.offset = device->devid;
1785
1786 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1787 if (ret) {
1788 if (ret > 0)
1789 ret = -ENOENT;
1790 btrfs_abort_transaction(trans, ret);
1791 btrfs_end_transaction(trans);
1792 goto out;
1793 }
1794
1795 ret = btrfs_del_item(trans, root, path);
1796 if (ret) {
1797 btrfs_abort_transaction(trans, ret);
1798 btrfs_end_transaction(trans);
1799 }
1800
1801 out:
1802 btrfs_free_path(path);
1803 if (!ret)
1804 ret = btrfs_commit_transaction(trans);
1805 return ret;
1806 }
1807
1808 /*
1809 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1810 * filesystem. It's up to the caller to adjust that number regarding eg. device
1811 * replace.
1812 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1813 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1814 u64 num_devices)
1815 {
1816 u64 all_avail;
1817 unsigned seq;
1818 int i;
1819
1820 do {
1821 seq = read_seqbegin(&fs_info->profiles_lock);
1822
1823 all_avail = fs_info->avail_data_alloc_bits |
1824 fs_info->avail_system_alloc_bits |
1825 fs_info->avail_metadata_alloc_bits;
1826 } while (read_seqretry(&fs_info->profiles_lock, seq));
1827
1828 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1829 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1830 continue;
1831
1832 if (num_devices < btrfs_raid_array[i].devs_min) {
1833 int ret = btrfs_raid_array[i].mindev_error;
1834
1835 if (ret)
1836 return ret;
1837 }
1838 }
1839
1840 return 0;
1841 }
1842
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1843 static struct btrfs_device * btrfs_find_next_active_device(
1844 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1845 {
1846 struct btrfs_device *next_device;
1847
1848 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1849 if (next_device != device &&
1850 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1851 && next_device->bdev)
1852 return next_device;
1853 }
1854
1855 return NULL;
1856 }
1857
1858 /*
1859 * Helper function to check if the given device is part of s_bdev / latest_bdev
1860 * and replace it with the provided or the next active device, in the context
1861 * where this function called, there should be always be another device (or
1862 * this_dev) which is active.
1863 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * this_dev)1864 void btrfs_assign_next_active_device(struct btrfs_device *device,
1865 struct btrfs_device *this_dev)
1866 {
1867 struct btrfs_fs_info *fs_info = device->fs_info;
1868 struct btrfs_device *next_device;
1869
1870 if (this_dev)
1871 next_device = this_dev;
1872 else
1873 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1874 device);
1875 ASSERT(next_device);
1876
1877 if (fs_info->sb->s_bdev &&
1878 (fs_info->sb->s_bdev == device->bdev))
1879 fs_info->sb->s_bdev = next_device->bdev;
1880
1881 if (fs_info->fs_devices->latest_bdev == device->bdev)
1882 fs_info->fs_devices->latest_bdev = next_device->bdev;
1883 }
1884
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)1885 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1886 u64 devid)
1887 {
1888 struct btrfs_device *device;
1889 struct btrfs_fs_devices *cur_devices;
1890 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1891 u64 num_devices;
1892 int ret = 0;
1893
1894 mutex_lock(&uuid_mutex);
1895
1896 num_devices = fs_devices->num_devices;
1897 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1898 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1899 WARN_ON(num_devices < 1);
1900 num_devices--;
1901 }
1902 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1903
1904 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1905 if (ret)
1906 goto out;
1907
1908 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1909 &device);
1910 if (ret)
1911 goto out;
1912
1913 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1914 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1915 goto out;
1916 }
1917
1918 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1919 fs_info->fs_devices->rw_devices == 1) {
1920 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1921 goto out;
1922 }
1923
1924 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1925 mutex_lock(&fs_info->chunk_mutex);
1926 list_del_init(&device->dev_alloc_list);
1927 device->fs_devices->rw_devices--;
1928 mutex_unlock(&fs_info->chunk_mutex);
1929 }
1930
1931 mutex_unlock(&uuid_mutex);
1932 ret = btrfs_shrink_device(device, 0);
1933 mutex_lock(&uuid_mutex);
1934 if (ret)
1935 goto error_undo;
1936
1937 /*
1938 * TODO: the superblock still includes this device in its num_devices
1939 * counter although write_all_supers() is not locked out. This
1940 * could give a filesystem state which requires a degraded mount.
1941 */
1942 ret = btrfs_rm_dev_item(fs_info, device);
1943 if (ret)
1944 goto error_undo;
1945
1946 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1947 btrfs_scrub_cancel_dev(fs_info, device);
1948
1949 /*
1950 * the device list mutex makes sure that we don't change
1951 * the device list while someone else is writing out all
1952 * the device supers. Whoever is writing all supers, should
1953 * lock the device list mutex before getting the number of
1954 * devices in the super block (super_copy). Conversely,
1955 * whoever updates the number of devices in the super block
1956 * (super_copy) should hold the device list mutex.
1957 */
1958
1959 /*
1960 * In normal cases the cur_devices == fs_devices. But in case
1961 * of deleting a seed device, the cur_devices should point to
1962 * its own fs_devices listed under the fs_devices->seed.
1963 */
1964 cur_devices = device->fs_devices;
1965 mutex_lock(&fs_devices->device_list_mutex);
1966 list_del_rcu(&device->dev_list);
1967
1968 cur_devices->num_devices--;
1969 cur_devices->total_devices--;
1970 /* Update total_devices of the parent fs_devices if it's seed */
1971 if (cur_devices != fs_devices)
1972 fs_devices->total_devices--;
1973
1974 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1975 cur_devices->missing_devices--;
1976
1977 btrfs_assign_next_active_device(device, NULL);
1978
1979 if (device->bdev) {
1980 cur_devices->open_devices--;
1981 /* remove sysfs entry */
1982 btrfs_sysfs_rm_device_link(fs_devices, device);
1983 }
1984
1985 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1986 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1987 mutex_unlock(&fs_devices->device_list_mutex);
1988
1989 /*
1990 * at this point, the device is zero sized and detached from
1991 * the devices list. All that's left is to zero out the old
1992 * supers and free the device.
1993 */
1994 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1995 btrfs_scratch_superblocks(device->bdev, device->name->str);
1996
1997 btrfs_close_bdev(device);
1998 call_rcu(&device->rcu, free_device_rcu);
1999
2000 if (cur_devices->open_devices == 0) {
2001 while (fs_devices) {
2002 if (fs_devices->seed == cur_devices) {
2003 fs_devices->seed = cur_devices->seed;
2004 break;
2005 }
2006 fs_devices = fs_devices->seed;
2007 }
2008 cur_devices->seed = NULL;
2009 close_fs_devices(cur_devices);
2010 free_fs_devices(cur_devices);
2011 }
2012
2013 out:
2014 mutex_unlock(&uuid_mutex);
2015 return ret;
2016
2017 error_undo:
2018 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2019 mutex_lock(&fs_info->chunk_mutex);
2020 list_add(&device->dev_alloc_list,
2021 &fs_devices->alloc_list);
2022 device->fs_devices->rw_devices++;
2023 mutex_unlock(&fs_info->chunk_mutex);
2024 }
2025 goto out;
2026 }
2027
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2028 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2029 {
2030 struct btrfs_fs_devices *fs_devices;
2031
2032 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2033
2034 /*
2035 * in case of fs with no seed, srcdev->fs_devices will point
2036 * to fs_devices of fs_info. However when the dev being replaced is
2037 * a seed dev it will point to the seed's local fs_devices. In short
2038 * srcdev will have its correct fs_devices in both the cases.
2039 */
2040 fs_devices = srcdev->fs_devices;
2041
2042 list_del_rcu(&srcdev->dev_list);
2043 list_del(&srcdev->dev_alloc_list);
2044 fs_devices->num_devices--;
2045 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2046 fs_devices->missing_devices--;
2047
2048 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2049 fs_devices->rw_devices--;
2050
2051 if (srcdev->bdev)
2052 fs_devices->open_devices--;
2053 }
2054
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)2055 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2056 struct btrfs_device *srcdev)
2057 {
2058 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2059
2060 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2061 /* zero out the old super if it is writable */
2062 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2063 }
2064
2065 btrfs_close_bdev(srcdev);
2066 call_rcu(&srcdev->rcu, free_device_rcu);
2067
2068 /* if this is no devs we rather delete the fs_devices */
2069 if (!fs_devices->num_devices) {
2070 struct btrfs_fs_devices *tmp_fs_devices;
2071
2072 /*
2073 * On a mounted FS, num_devices can't be zero unless it's a
2074 * seed. In case of a seed device being replaced, the replace
2075 * target added to the sprout FS, so there will be no more
2076 * device left under the seed FS.
2077 */
2078 ASSERT(fs_devices->seeding);
2079
2080 tmp_fs_devices = fs_info->fs_devices;
2081 while (tmp_fs_devices) {
2082 if (tmp_fs_devices->seed == fs_devices) {
2083 tmp_fs_devices->seed = fs_devices->seed;
2084 break;
2085 }
2086 tmp_fs_devices = tmp_fs_devices->seed;
2087 }
2088 fs_devices->seed = NULL;
2089 close_fs_devices(fs_devices);
2090 free_fs_devices(fs_devices);
2091 }
2092 }
2093
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2094 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2095 {
2096 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2097
2098 WARN_ON(!tgtdev);
2099 mutex_lock(&fs_devices->device_list_mutex);
2100
2101 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2102
2103 if (tgtdev->bdev)
2104 fs_devices->open_devices--;
2105
2106 fs_devices->num_devices--;
2107
2108 btrfs_assign_next_active_device(tgtdev, NULL);
2109
2110 list_del_rcu(&tgtdev->dev_list);
2111
2112 mutex_unlock(&fs_devices->device_list_mutex);
2113
2114 /*
2115 * The update_dev_time() with in btrfs_scratch_superblocks()
2116 * may lead to a call to btrfs_show_devname() which will try
2117 * to hold device_list_mutex. And here this device
2118 * is already out of device list, so we don't have to hold
2119 * the device_list_mutex lock.
2120 */
2121 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2122
2123 btrfs_close_bdev(tgtdev);
2124 call_rcu(&tgtdev->rcu, free_device_rcu);
2125 }
2126
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2127 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2128 const char *device_path,
2129 struct btrfs_device **device)
2130 {
2131 int ret = 0;
2132 struct btrfs_super_block *disk_super;
2133 u64 devid;
2134 u8 *dev_uuid;
2135 struct block_device *bdev;
2136 struct buffer_head *bh;
2137
2138 *device = NULL;
2139 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2140 fs_info->bdev_holder, 0, &bdev, &bh);
2141 if (ret)
2142 return ret;
2143 disk_super = (struct btrfs_super_block *)bh->b_data;
2144 devid = btrfs_stack_device_id(&disk_super->dev_item);
2145 dev_uuid = disk_super->dev_item.uuid;
2146 *device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2147 disk_super->fsid, true);
2148 brelse(bh);
2149 if (!*device)
2150 ret = -ENOENT;
2151 blkdev_put(bdev, FMODE_READ);
2152 return ret;
2153 }
2154
btrfs_find_device_missing_or_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2155 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2156 const char *device_path,
2157 struct btrfs_device **device)
2158 {
2159 *device = NULL;
2160 if (strcmp(device_path, "missing") == 0) {
2161 struct list_head *devices;
2162 struct btrfs_device *tmp;
2163
2164 devices = &fs_info->fs_devices->devices;
2165 list_for_each_entry(tmp, devices, dev_list) {
2166 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2167 &tmp->dev_state) && !tmp->bdev) {
2168 *device = tmp;
2169 break;
2170 }
2171 }
2172
2173 if (!*device)
2174 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2175
2176 return 0;
2177 } else {
2178 return btrfs_find_device_by_path(fs_info, device_path, device);
2179 }
2180 }
2181
2182 /*
2183 * Lookup a device given by device id, or the path if the id is 0.
2184 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * devpath,struct btrfs_device ** device)2185 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2186 const char *devpath,
2187 struct btrfs_device **device)
2188 {
2189 int ret;
2190
2191 if (devid) {
2192 ret = 0;
2193 *device = btrfs_find_device(fs_info->fs_devices, devid,
2194 NULL, NULL, true);
2195 if (!*device)
2196 ret = -ENOENT;
2197 } else {
2198 if (!devpath || !devpath[0])
2199 return -EINVAL;
2200
2201 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2202 device);
2203 }
2204 return ret;
2205 }
2206
2207 /*
2208 * does all the dirty work required for changing file system's UUID.
2209 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2210 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2211 {
2212 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2213 struct btrfs_fs_devices *old_devices;
2214 struct btrfs_fs_devices *seed_devices;
2215 struct btrfs_super_block *disk_super = fs_info->super_copy;
2216 struct btrfs_device *device;
2217 u64 super_flags;
2218
2219 lockdep_assert_held(&uuid_mutex);
2220 if (!fs_devices->seeding)
2221 return -EINVAL;
2222
2223 seed_devices = alloc_fs_devices(NULL);
2224 if (IS_ERR(seed_devices))
2225 return PTR_ERR(seed_devices);
2226
2227 old_devices = clone_fs_devices(fs_devices);
2228 if (IS_ERR(old_devices)) {
2229 kfree(seed_devices);
2230 return PTR_ERR(old_devices);
2231 }
2232
2233 list_add(&old_devices->fs_list, &fs_uuids);
2234
2235 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2236 seed_devices->opened = 1;
2237 INIT_LIST_HEAD(&seed_devices->devices);
2238 INIT_LIST_HEAD(&seed_devices->alloc_list);
2239 mutex_init(&seed_devices->device_list_mutex);
2240
2241 mutex_lock(&fs_devices->device_list_mutex);
2242 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2243 synchronize_rcu);
2244 list_for_each_entry(device, &seed_devices->devices, dev_list)
2245 device->fs_devices = seed_devices;
2246
2247 mutex_lock(&fs_info->chunk_mutex);
2248 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2249 mutex_unlock(&fs_info->chunk_mutex);
2250
2251 fs_devices->seeding = 0;
2252 fs_devices->num_devices = 0;
2253 fs_devices->open_devices = 0;
2254 fs_devices->missing_devices = 0;
2255 fs_devices->rotating = 0;
2256 fs_devices->seed = seed_devices;
2257
2258 generate_random_uuid(fs_devices->fsid);
2259 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2260 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2261 mutex_unlock(&fs_devices->device_list_mutex);
2262
2263 super_flags = btrfs_super_flags(disk_super) &
2264 ~BTRFS_SUPER_FLAG_SEEDING;
2265 btrfs_set_super_flags(disk_super, super_flags);
2266
2267 return 0;
2268 }
2269
2270 /*
2271 * Store the expected generation for seed devices in device items.
2272 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2273 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2274 struct btrfs_fs_info *fs_info)
2275 {
2276 struct btrfs_root *root = fs_info->chunk_root;
2277 struct btrfs_path *path;
2278 struct extent_buffer *leaf;
2279 struct btrfs_dev_item *dev_item;
2280 struct btrfs_device *device;
2281 struct btrfs_key key;
2282 u8 fs_uuid[BTRFS_FSID_SIZE];
2283 u8 dev_uuid[BTRFS_UUID_SIZE];
2284 u64 devid;
2285 int ret;
2286
2287 path = btrfs_alloc_path();
2288 if (!path)
2289 return -ENOMEM;
2290
2291 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2292 key.offset = 0;
2293 key.type = BTRFS_DEV_ITEM_KEY;
2294
2295 while (1) {
2296 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2297 if (ret < 0)
2298 goto error;
2299
2300 leaf = path->nodes[0];
2301 next_slot:
2302 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2303 ret = btrfs_next_leaf(root, path);
2304 if (ret > 0)
2305 break;
2306 if (ret < 0)
2307 goto error;
2308 leaf = path->nodes[0];
2309 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2310 btrfs_release_path(path);
2311 continue;
2312 }
2313
2314 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2315 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2316 key.type != BTRFS_DEV_ITEM_KEY)
2317 break;
2318
2319 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2320 struct btrfs_dev_item);
2321 devid = btrfs_device_id(leaf, dev_item);
2322 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2323 BTRFS_UUID_SIZE);
2324 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2325 BTRFS_FSID_SIZE);
2326 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2327 fs_uuid, true);
2328 BUG_ON(!device); /* Logic error */
2329
2330 if (device->fs_devices->seeding) {
2331 btrfs_set_device_generation(leaf, dev_item,
2332 device->generation);
2333 btrfs_mark_buffer_dirty(leaf);
2334 }
2335
2336 path->slots[0]++;
2337 goto next_slot;
2338 }
2339 ret = 0;
2340 error:
2341 btrfs_free_path(path);
2342 return ret;
2343 }
2344
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2345 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2346 {
2347 struct btrfs_root *root = fs_info->dev_root;
2348 struct request_queue *q;
2349 struct btrfs_trans_handle *trans;
2350 struct btrfs_device *device;
2351 struct block_device *bdev;
2352 struct super_block *sb = fs_info->sb;
2353 struct rcu_string *name;
2354 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2355 u64 orig_super_total_bytes;
2356 u64 orig_super_num_devices;
2357 int seeding_dev = 0;
2358 int ret = 0;
2359 bool unlocked = false;
2360
2361 if (sb_rdonly(sb) && !fs_devices->seeding)
2362 return -EROFS;
2363
2364 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2365 fs_info->bdev_holder);
2366 if (IS_ERR(bdev))
2367 return PTR_ERR(bdev);
2368
2369 if (fs_devices->seeding) {
2370 seeding_dev = 1;
2371 down_write(&sb->s_umount);
2372 mutex_lock(&uuid_mutex);
2373 }
2374
2375 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2376
2377 mutex_lock(&fs_devices->device_list_mutex);
2378 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2379 if (device->bdev == bdev) {
2380 ret = -EEXIST;
2381 mutex_unlock(
2382 &fs_devices->device_list_mutex);
2383 goto error;
2384 }
2385 }
2386 mutex_unlock(&fs_devices->device_list_mutex);
2387
2388 device = btrfs_alloc_device(fs_info, NULL, NULL);
2389 if (IS_ERR(device)) {
2390 /* we can safely leave the fs_devices entry around */
2391 ret = PTR_ERR(device);
2392 goto error;
2393 }
2394
2395 name = rcu_string_strdup(device_path, GFP_KERNEL);
2396 if (!name) {
2397 ret = -ENOMEM;
2398 goto error_free_device;
2399 }
2400 rcu_assign_pointer(device->name, name);
2401
2402 trans = btrfs_start_transaction(root, 0);
2403 if (IS_ERR(trans)) {
2404 ret = PTR_ERR(trans);
2405 goto error_free_device;
2406 }
2407
2408 q = bdev_get_queue(bdev);
2409 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2410 device->generation = trans->transid;
2411 device->io_width = fs_info->sectorsize;
2412 device->io_align = fs_info->sectorsize;
2413 device->sector_size = fs_info->sectorsize;
2414 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2415 fs_info->sectorsize);
2416 device->disk_total_bytes = device->total_bytes;
2417 device->commit_total_bytes = device->total_bytes;
2418 device->fs_info = fs_info;
2419 device->bdev = bdev;
2420 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2421 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2422 device->mode = FMODE_EXCL;
2423 device->dev_stats_valid = 1;
2424 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2425
2426 if (seeding_dev) {
2427 sb->s_flags &= ~SB_RDONLY;
2428 ret = btrfs_prepare_sprout(fs_info);
2429 if (ret) {
2430 btrfs_abort_transaction(trans, ret);
2431 goto error_trans;
2432 }
2433 }
2434
2435 device->fs_devices = fs_devices;
2436
2437 mutex_lock(&fs_devices->device_list_mutex);
2438 mutex_lock(&fs_info->chunk_mutex);
2439 list_add_rcu(&device->dev_list, &fs_devices->devices);
2440 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2441 fs_devices->num_devices++;
2442 fs_devices->open_devices++;
2443 fs_devices->rw_devices++;
2444 fs_devices->total_devices++;
2445 fs_devices->total_rw_bytes += device->total_bytes;
2446
2447 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2448
2449 if (!blk_queue_nonrot(q))
2450 fs_devices->rotating = 1;
2451
2452 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2453 btrfs_set_super_total_bytes(fs_info->super_copy,
2454 round_down(orig_super_total_bytes + device->total_bytes,
2455 fs_info->sectorsize));
2456
2457 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2458 btrfs_set_super_num_devices(fs_info->super_copy,
2459 orig_super_num_devices + 1);
2460
2461 /* add sysfs device entry */
2462 btrfs_sysfs_add_device_link(fs_devices, device);
2463
2464 /*
2465 * we've got more storage, clear any full flags on the space
2466 * infos
2467 */
2468 btrfs_clear_space_info_full(fs_info);
2469
2470 mutex_unlock(&fs_info->chunk_mutex);
2471 mutex_unlock(&fs_devices->device_list_mutex);
2472
2473 if (seeding_dev) {
2474 mutex_lock(&fs_info->chunk_mutex);
2475 ret = init_first_rw_device(trans, fs_info);
2476 mutex_unlock(&fs_info->chunk_mutex);
2477 if (ret) {
2478 btrfs_abort_transaction(trans, ret);
2479 goto error_sysfs;
2480 }
2481 }
2482
2483 ret = btrfs_add_dev_item(trans, device);
2484 if (ret) {
2485 btrfs_abort_transaction(trans, ret);
2486 goto error_sysfs;
2487 }
2488
2489 if (seeding_dev) {
2490 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2491
2492 ret = btrfs_finish_sprout(trans, fs_info);
2493 if (ret) {
2494 btrfs_abort_transaction(trans, ret);
2495 goto error_sysfs;
2496 }
2497
2498 /* Sprouting would change fsid of the mounted root,
2499 * so rename the fsid on the sysfs
2500 */
2501 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2502 fs_info->fsid);
2503 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2504 btrfs_warn(fs_info,
2505 "sysfs: failed to create fsid for sprout");
2506 }
2507
2508 ret = btrfs_commit_transaction(trans);
2509
2510 if (seeding_dev) {
2511 mutex_unlock(&uuid_mutex);
2512 up_write(&sb->s_umount);
2513 unlocked = true;
2514
2515 if (ret) /* transaction commit */
2516 return ret;
2517
2518 ret = btrfs_relocate_sys_chunks(fs_info);
2519 if (ret < 0)
2520 btrfs_handle_fs_error(fs_info, ret,
2521 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2522 trans = btrfs_attach_transaction(root);
2523 if (IS_ERR(trans)) {
2524 if (PTR_ERR(trans) == -ENOENT)
2525 return 0;
2526 ret = PTR_ERR(trans);
2527 trans = NULL;
2528 goto error_sysfs;
2529 }
2530 ret = btrfs_commit_transaction(trans);
2531 }
2532
2533 /* Update ctime/mtime for libblkid */
2534 update_dev_time(device_path);
2535 return ret;
2536
2537 error_sysfs:
2538 btrfs_sysfs_rm_device_link(fs_devices, device);
2539 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2540 mutex_lock(&fs_info->chunk_mutex);
2541 list_del_rcu(&device->dev_list);
2542 list_del(&device->dev_alloc_list);
2543 fs_info->fs_devices->num_devices--;
2544 fs_info->fs_devices->open_devices--;
2545 fs_info->fs_devices->rw_devices--;
2546 fs_info->fs_devices->total_devices--;
2547 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2548 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2549 btrfs_set_super_total_bytes(fs_info->super_copy,
2550 orig_super_total_bytes);
2551 btrfs_set_super_num_devices(fs_info->super_copy,
2552 orig_super_num_devices);
2553 mutex_unlock(&fs_info->chunk_mutex);
2554 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2555 error_trans:
2556 if (seeding_dev)
2557 sb->s_flags |= SB_RDONLY;
2558 if (trans)
2559 btrfs_end_transaction(trans);
2560 error_free_device:
2561 btrfs_free_device(device);
2562 error:
2563 blkdev_put(bdev, FMODE_EXCL);
2564 if (seeding_dev && !unlocked) {
2565 mutex_unlock(&uuid_mutex);
2566 up_write(&sb->s_umount);
2567 }
2568 return ret;
2569 }
2570
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2571 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2572 struct btrfs_device *device)
2573 {
2574 int ret;
2575 struct btrfs_path *path;
2576 struct btrfs_root *root = device->fs_info->chunk_root;
2577 struct btrfs_dev_item *dev_item;
2578 struct extent_buffer *leaf;
2579 struct btrfs_key key;
2580
2581 path = btrfs_alloc_path();
2582 if (!path)
2583 return -ENOMEM;
2584
2585 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2586 key.type = BTRFS_DEV_ITEM_KEY;
2587 key.offset = device->devid;
2588
2589 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2590 if (ret < 0)
2591 goto out;
2592
2593 if (ret > 0) {
2594 ret = -ENOENT;
2595 goto out;
2596 }
2597
2598 leaf = path->nodes[0];
2599 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2600
2601 btrfs_set_device_id(leaf, dev_item, device->devid);
2602 btrfs_set_device_type(leaf, dev_item, device->type);
2603 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2604 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2605 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2606 btrfs_set_device_total_bytes(leaf, dev_item,
2607 btrfs_device_get_disk_total_bytes(device));
2608 btrfs_set_device_bytes_used(leaf, dev_item,
2609 btrfs_device_get_bytes_used(device));
2610 btrfs_mark_buffer_dirty(leaf);
2611
2612 out:
2613 btrfs_free_path(path);
2614 return ret;
2615 }
2616
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2617 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2618 struct btrfs_device *device, u64 new_size)
2619 {
2620 struct btrfs_fs_info *fs_info = device->fs_info;
2621 struct btrfs_super_block *super_copy = fs_info->super_copy;
2622 struct btrfs_fs_devices *fs_devices;
2623 u64 old_total;
2624 u64 diff;
2625
2626 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2627 return -EACCES;
2628
2629 new_size = round_down(new_size, fs_info->sectorsize);
2630
2631 mutex_lock(&fs_info->chunk_mutex);
2632 old_total = btrfs_super_total_bytes(super_copy);
2633 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2634
2635 if (new_size <= device->total_bytes ||
2636 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2637 mutex_unlock(&fs_info->chunk_mutex);
2638 return -EINVAL;
2639 }
2640
2641 fs_devices = fs_info->fs_devices;
2642
2643 btrfs_set_super_total_bytes(super_copy,
2644 round_down(old_total + diff, fs_info->sectorsize));
2645 device->fs_devices->total_rw_bytes += diff;
2646
2647 btrfs_device_set_total_bytes(device, new_size);
2648 btrfs_device_set_disk_total_bytes(device, new_size);
2649 btrfs_clear_space_info_full(device->fs_info);
2650 if (list_empty(&device->resized_list))
2651 list_add_tail(&device->resized_list,
2652 &fs_devices->resized_devices);
2653 mutex_unlock(&fs_info->chunk_mutex);
2654
2655 return btrfs_update_device(trans, device);
2656 }
2657
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2658 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2659 {
2660 struct btrfs_fs_info *fs_info = trans->fs_info;
2661 struct btrfs_root *root = fs_info->chunk_root;
2662 int ret;
2663 struct btrfs_path *path;
2664 struct btrfs_key key;
2665
2666 path = btrfs_alloc_path();
2667 if (!path)
2668 return -ENOMEM;
2669
2670 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2671 key.offset = chunk_offset;
2672 key.type = BTRFS_CHUNK_ITEM_KEY;
2673
2674 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2675 if (ret < 0)
2676 goto out;
2677 else if (ret > 0) { /* Logic error or corruption */
2678 btrfs_handle_fs_error(fs_info, -ENOENT,
2679 "Failed lookup while freeing chunk.");
2680 ret = -ENOENT;
2681 goto out;
2682 }
2683
2684 ret = btrfs_del_item(trans, root, path);
2685 if (ret < 0)
2686 btrfs_handle_fs_error(fs_info, ret,
2687 "Failed to delete chunk item.");
2688 out:
2689 btrfs_free_path(path);
2690 return ret;
2691 }
2692
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2693 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2694 {
2695 struct btrfs_super_block *super_copy = fs_info->super_copy;
2696 struct btrfs_disk_key *disk_key;
2697 struct btrfs_chunk *chunk;
2698 u8 *ptr;
2699 int ret = 0;
2700 u32 num_stripes;
2701 u32 array_size;
2702 u32 len = 0;
2703 u32 cur;
2704 struct btrfs_key key;
2705
2706 mutex_lock(&fs_info->chunk_mutex);
2707 array_size = btrfs_super_sys_array_size(super_copy);
2708
2709 ptr = super_copy->sys_chunk_array;
2710 cur = 0;
2711
2712 while (cur < array_size) {
2713 disk_key = (struct btrfs_disk_key *)ptr;
2714 btrfs_disk_key_to_cpu(&key, disk_key);
2715
2716 len = sizeof(*disk_key);
2717
2718 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2719 chunk = (struct btrfs_chunk *)(ptr + len);
2720 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2721 len += btrfs_chunk_item_size(num_stripes);
2722 } else {
2723 ret = -EIO;
2724 break;
2725 }
2726 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2727 key.offset == chunk_offset) {
2728 memmove(ptr, ptr + len, array_size - (cur + len));
2729 array_size -= len;
2730 btrfs_set_super_sys_array_size(super_copy, array_size);
2731 } else {
2732 ptr += len;
2733 cur += len;
2734 }
2735 }
2736 mutex_unlock(&fs_info->chunk_mutex);
2737 return ret;
2738 }
2739
get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2740 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2741 u64 logical, u64 length)
2742 {
2743 struct extent_map_tree *em_tree;
2744 struct extent_map *em;
2745
2746 em_tree = &fs_info->mapping_tree.map_tree;
2747 read_lock(&em_tree->lock);
2748 em = lookup_extent_mapping(em_tree, logical, length);
2749 read_unlock(&em_tree->lock);
2750
2751 if (!em) {
2752 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2753 logical, length);
2754 return ERR_PTR(-EINVAL);
2755 }
2756
2757 if (em->start > logical || em->start + em->len < logical) {
2758 btrfs_crit(fs_info,
2759 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2760 logical, length, em->start, em->start + em->len);
2761 free_extent_map(em);
2762 return ERR_PTR(-EINVAL);
2763 }
2764
2765 /* callers are responsible for dropping em's ref. */
2766 return em;
2767 }
2768
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2769 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2770 {
2771 struct btrfs_fs_info *fs_info = trans->fs_info;
2772 struct extent_map *em;
2773 struct map_lookup *map;
2774 u64 dev_extent_len = 0;
2775 int i, ret = 0;
2776 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2777
2778 em = get_chunk_map(fs_info, chunk_offset, 1);
2779 if (IS_ERR(em)) {
2780 /*
2781 * This is a logic error, but we don't want to just rely on the
2782 * user having built with ASSERT enabled, so if ASSERT doesn't
2783 * do anything we still error out.
2784 */
2785 ASSERT(0);
2786 return PTR_ERR(em);
2787 }
2788 map = em->map_lookup;
2789 mutex_lock(&fs_info->chunk_mutex);
2790 check_system_chunk(trans, map->type);
2791 mutex_unlock(&fs_info->chunk_mutex);
2792
2793 /*
2794 * Take the device list mutex to prevent races with the final phase of
2795 * a device replace operation that replaces the device object associated
2796 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2797 */
2798 mutex_lock(&fs_devices->device_list_mutex);
2799 for (i = 0; i < map->num_stripes; i++) {
2800 struct btrfs_device *device = map->stripes[i].dev;
2801 ret = btrfs_free_dev_extent(trans, device,
2802 map->stripes[i].physical,
2803 &dev_extent_len);
2804 if (ret) {
2805 mutex_unlock(&fs_devices->device_list_mutex);
2806 btrfs_abort_transaction(trans, ret);
2807 goto out;
2808 }
2809
2810 if (device->bytes_used > 0) {
2811 mutex_lock(&fs_info->chunk_mutex);
2812 btrfs_device_set_bytes_used(device,
2813 device->bytes_used - dev_extent_len);
2814 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2815 btrfs_clear_space_info_full(fs_info);
2816 mutex_unlock(&fs_info->chunk_mutex);
2817 }
2818
2819 if (map->stripes[i].dev) {
2820 ret = btrfs_update_device(trans, map->stripes[i].dev);
2821 if (ret) {
2822 mutex_unlock(&fs_devices->device_list_mutex);
2823 btrfs_abort_transaction(trans, ret);
2824 goto out;
2825 }
2826 }
2827 }
2828 mutex_unlock(&fs_devices->device_list_mutex);
2829
2830 ret = btrfs_free_chunk(trans, chunk_offset);
2831 if (ret) {
2832 btrfs_abort_transaction(trans, ret);
2833 goto out;
2834 }
2835
2836 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2837
2838 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2839 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2840 if (ret) {
2841 btrfs_abort_transaction(trans, ret);
2842 goto out;
2843 }
2844 }
2845
2846 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2847 if (ret) {
2848 btrfs_abort_transaction(trans, ret);
2849 goto out;
2850 }
2851
2852 out:
2853 /* once for us */
2854 free_extent_map(em);
2855 return ret;
2856 }
2857
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2858 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2859 {
2860 struct btrfs_root *root = fs_info->chunk_root;
2861 struct btrfs_trans_handle *trans;
2862 int ret;
2863
2864 /*
2865 * Prevent races with automatic removal of unused block groups.
2866 * After we relocate and before we remove the chunk with offset
2867 * chunk_offset, automatic removal of the block group can kick in,
2868 * resulting in a failure when calling btrfs_remove_chunk() below.
2869 *
2870 * Make sure to acquire this mutex before doing a tree search (dev
2871 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2872 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2873 * we release the path used to search the chunk/dev tree and before
2874 * the current task acquires this mutex and calls us.
2875 */
2876 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2877
2878 ret = btrfs_can_relocate(fs_info, chunk_offset);
2879 if (ret)
2880 return -ENOSPC;
2881
2882 /* step one, relocate all the extents inside this chunk */
2883 btrfs_scrub_pause(fs_info);
2884 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2885 btrfs_scrub_continue(fs_info);
2886 if (ret)
2887 return ret;
2888
2889 /*
2890 * We add the kobjects here (and after forcing data chunk creation)
2891 * since relocation is the only place we'll create chunks of a new
2892 * type at runtime. The only place where we'll remove the last
2893 * chunk of a type is the call immediately below this one. Even
2894 * so, we're protected against races with the cleaner thread since
2895 * we're covered by the delete_unused_bgs_mutex.
2896 */
2897 btrfs_add_raid_kobjects(fs_info);
2898
2899 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2900 chunk_offset);
2901 if (IS_ERR(trans)) {
2902 ret = PTR_ERR(trans);
2903 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2904 return ret;
2905 }
2906
2907 /*
2908 * step two, delete the device extents and the
2909 * chunk tree entries
2910 */
2911 ret = btrfs_remove_chunk(trans, chunk_offset);
2912 btrfs_end_transaction(trans);
2913 return ret;
2914 }
2915
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)2916 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2917 {
2918 struct btrfs_root *chunk_root = fs_info->chunk_root;
2919 struct btrfs_path *path;
2920 struct extent_buffer *leaf;
2921 struct btrfs_chunk *chunk;
2922 struct btrfs_key key;
2923 struct btrfs_key found_key;
2924 u64 chunk_type;
2925 bool retried = false;
2926 int failed = 0;
2927 int ret;
2928
2929 path = btrfs_alloc_path();
2930 if (!path)
2931 return -ENOMEM;
2932
2933 again:
2934 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2935 key.offset = (u64)-1;
2936 key.type = BTRFS_CHUNK_ITEM_KEY;
2937
2938 while (1) {
2939 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2940 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2941 if (ret < 0) {
2942 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2943 goto error;
2944 }
2945 BUG_ON(ret == 0); /* Corruption */
2946
2947 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2948 key.type);
2949 if (ret)
2950 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2951 if (ret < 0)
2952 goto error;
2953 if (ret > 0)
2954 break;
2955
2956 leaf = path->nodes[0];
2957 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2958
2959 chunk = btrfs_item_ptr(leaf, path->slots[0],
2960 struct btrfs_chunk);
2961 chunk_type = btrfs_chunk_type(leaf, chunk);
2962 btrfs_release_path(path);
2963
2964 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2965 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2966 if (ret == -ENOSPC)
2967 failed++;
2968 else
2969 BUG_ON(ret);
2970 }
2971 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2972
2973 if (found_key.offset == 0)
2974 break;
2975 key.offset = found_key.offset - 1;
2976 }
2977 ret = 0;
2978 if (failed && !retried) {
2979 failed = 0;
2980 retried = true;
2981 goto again;
2982 } else if (WARN_ON(failed && retried)) {
2983 ret = -ENOSPC;
2984 }
2985 error:
2986 btrfs_free_path(path);
2987 return ret;
2988 }
2989
2990 /*
2991 * return 1 : allocate a data chunk successfully,
2992 * return <0: errors during allocating a data chunk,
2993 * return 0 : no need to allocate a data chunk.
2994 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2995 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2996 u64 chunk_offset)
2997 {
2998 struct btrfs_block_group_cache *cache;
2999 u64 bytes_used;
3000 u64 chunk_type;
3001
3002 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3003 ASSERT(cache);
3004 chunk_type = cache->flags;
3005 btrfs_put_block_group(cache);
3006
3007 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3008 spin_lock(&fs_info->data_sinfo->lock);
3009 bytes_used = fs_info->data_sinfo->bytes_used;
3010 spin_unlock(&fs_info->data_sinfo->lock);
3011
3012 if (!bytes_used) {
3013 struct btrfs_trans_handle *trans;
3014 int ret;
3015
3016 trans = btrfs_join_transaction(fs_info->tree_root);
3017 if (IS_ERR(trans))
3018 return PTR_ERR(trans);
3019
3020 ret = btrfs_force_chunk_alloc(trans,
3021 BTRFS_BLOCK_GROUP_DATA);
3022 btrfs_end_transaction(trans);
3023 if (ret < 0)
3024 return ret;
3025
3026 btrfs_add_raid_kobjects(fs_info);
3027
3028 return 1;
3029 }
3030 }
3031 return 0;
3032 }
3033
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3034 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3035 struct btrfs_balance_control *bctl)
3036 {
3037 struct btrfs_root *root = fs_info->tree_root;
3038 struct btrfs_trans_handle *trans;
3039 struct btrfs_balance_item *item;
3040 struct btrfs_disk_balance_args disk_bargs;
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
3043 struct btrfs_key key;
3044 int ret, err;
3045
3046 path = btrfs_alloc_path();
3047 if (!path)
3048 return -ENOMEM;
3049
3050 trans = btrfs_start_transaction(root, 0);
3051 if (IS_ERR(trans)) {
3052 btrfs_free_path(path);
3053 return PTR_ERR(trans);
3054 }
3055
3056 key.objectid = BTRFS_BALANCE_OBJECTID;
3057 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058 key.offset = 0;
3059
3060 ret = btrfs_insert_empty_item(trans, root, path, &key,
3061 sizeof(*item));
3062 if (ret)
3063 goto out;
3064
3065 leaf = path->nodes[0];
3066 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067
3068 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3069
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071 btrfs_set_balance_data(leaf, item, &disk_bargs);
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076
3077 btrfs_set_balance_flags(leaf, item, bctl->flags);
3078
3079 btrfs_mark_buffer_dirty(leaf);
3080 out:
3081 btrfs_free_path(path);
3082 err = btrfs_commit_transaction(trans);
3083 if (err && !ret)
3084 ret = err;
3085 return ret;
3086 }
3087
del_balance_item(struct btrfs_fs_info * fs_info)3088 static int del_balance_item(struct btrfs_fs_info *fs_info)
3089 {
3090 struct btrfs_root *root = fs_info->tree_root;
3091 struct btrfs_trans_handle *trans;
3092 struct btrfs_path *path;
3093 struct btrfs_key key;
3094 int ret, err;
3095
3096 path = btrfs_alloc_path();
3097 if (!path)
3098 return -ENOMEM;
3099
3100 trans = btrfs_start_transaction(root, 0);
3101 if (IS_ERR(trans)) {
3102 btrfs_free_path(path);
3103 return PTR_ERR(trans);
3104 }
3105
3106 key.objectid = BTRFS_BALANCE_OBJECTID;
3107 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3108 key.offset = 0;
3109
3110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3111 if (ret < 0)
3112 goto out;
3113 if (ret > 0) {
3114 ret = -ENOENT;
3115 goto out;
3116 }
3117
3118 ret = btrfs_del_item(trans, root, path);
3119 out:
3120 btrfs_free_path(path);
3121 err = btrfs_commit_transaction(trans);
3122 if (err && !ret)
3123 ret = err;
3124 return ret;
3125 }
3126
3127 /*
3128 * This is a heuristic used to reduce the number of chunks balanced on
3129 * resume after balance was interrupted.
3130 */
update_balance_args(struct btrfs_balance_control * bctl)3131 static void update_balance_args(struct btrfs_balance_control *bctl)
3132 {
3133 /*
3134 * Turn on soft mode for chunk types that were being converted.
3135 */
3136 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142
3143 /*
3144 * Turn on usage filter if is not already used. The idea is
3145 * that chunks that we have already balanced should be
3146 * reasonably full. Don't do it for chunks that are being
3147 * converted - that will keep us from relocating unconverted
3148 * (albeit full) chunks.
3149 */
3150 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->data.usage = 90;
3155 }
3156 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->sys.usage = 90;
3161 }
3162 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->meta.usage = 90;
3167 }
3168 }
3169
3170 /*
3171 * Clear the balance status in fs_info and delete the balance item from disk.
3172 */
reset_balance_state(struct btrfs_fs_info * fs_info)3173 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3174 {
3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3176 int ret;
3177
3178 BUG_ON(!fs_info->balance_ctl);
3179
3180 spin_lock(&fs_info->balance_lock);
3181 fs_info->balance_ctl = NULL;
3182 spin_unlock(&fs_info->balance_lock);
3183
3184 kfree(bctl);
3185 ret = del_balance_item(fs_info);
3186 if (ret)
3187 btrfs_handle_fs_error(fs_info, ret, NULL);
3188 }
3189
3190 /*
3191 * Balance filters. Return 1 if chunk should be filtered out
3192 * (should not be balanced).
3193 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3194 static int chunk_profiles_filter(u64 chunk_type,
3195 struct btrfs_balance_args *bargs)
3196 {
3197 chunk_type = chunk_to_extended(chunk_type) &
3198 BTRFS_EXTENDED_PROFILE_MASK;
3199
3200 if (bargs->profiles & chunk_type)
3201 return 0;
3202
3203 return 1;
3204 }
3205
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3206 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3207 struct btrfs_balance_args *bargs)
3208 {
3209 struct btrfs_block_group_cache *cache;
3210 u64 chunk_used;
3211 u64 user_thresh_min;
3212 u64 user_thresh_max;
3213 int ret = 1;
3214
3215 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3216 chunk_used = btrfs_block_group_used(&cache->item);
3217
3218 if (bargs->usage_min == 0)
3219 user_thresh_min = 0;
3220 else
3221 user_thresh_min = div_factor_fine(cache->key.offset,
3222 bargs->usage_min);
3223
3224 if (bargs->usage_max == 0)
3225 user_thresh_max = 1;
3226 else if (bargs->usage_max > 100)
3227 user_thresh_max = cache->key.offset;
3228 else
3229 user_thresh_max = div_factor_fine(cache->key.offset,
3230 bargs->usage_max);
3231
3232 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3233 ret = 0;
3234
3235 btrfs_put_block_group(cache);
3236 return ret;
3237 }
3238
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3239 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3240 u64 chunk_offset, struct btrfs_balance_args *bargs)
3241 {
3242 struct btrfs_block_group_cache *cache;
3243 u64 chunk_used, user_thresh;
3244 int ret = 1;
3245
3246 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247 chunk_used = btrfs_block_group_used(&cache->item);
3248
3249 if (bargs->usage_min == 0)
3250 user_thresh = 1;
3251 else if (bargs->usage > 100)
3252 user_thresh = cache->key.offset;
3253 else
3254 user_thresh = div_factor_fine(cache->key.offset,
3255 bargs->usage);
3256
3257 if (chunk_used < user_thresh)
3258 ret = 0;
3259
3260 btrfs_put_block_group(cache);
3261 return ret;
3262 }
3263
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3264 static int chunk_devid_filter(struct extent_buffer *leaf,
3265 struct btrfs_chunk *chunk,
3266 struct btrfs_balance_args *bargs)
3267 {
3268 struct btrfs_stripe *stripe;
3269 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3270 int i;
3271
3272 for (i = 0; i < num_stripes; i++) {
3273 stripe = btrfs_stripe_nr(chunk, i);
3274 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3275 return 0;
3276 }
3277
3278 return 1;
3279 }
3280
3281 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3282 static int chunk_drange_filter(struct extent_buffer *leaf,
3283 struct btrfs_chunk *chunk,
3284 struct btrfs_balance_args *bargs)
3285 {
3286 struct btrfs_stripe *stripe;
3287 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3288 u64 stripe_offset;
3289 u64 stripe_length;
3290 int factor;
3291 int i;
3292
3293 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3294 return 0;
3295
3296 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3297 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3298 factor = num_stripes / 2;
3299 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3300 factor = num_stripes - 1;
3301 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3302 factor = num_stripes - 2;
3303 } else {
3304 factor = num_stripes;
3305 }
3306
3307 for (i = 0; i < num_stripes; i++) {
3308 stripe = btrfs_stripe_nr(chunk, i);
3309 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3310 continue;
3311
3312 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3313 stripe_length = btrfs_chunk_length(leaf, chunk);
3314 stripe_length = div_u64(stripe_length, factor);
3315
3316 if (stripe_offset < bargs->pend &&
3317 stripe_offset + stripe_length > bargs->pstart)
3318 return 0;
3319 }
3320
3321 return 1;
3322 }
3323
3324 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3325 static int chunk_vrange_filter(struct extent_buffer *leaf,
3326 struct btrfs_chunk *chunk,
3327 u64 chunk_offset,
3328 struct btrfs_balance_args *bargs)
3329 {
3330 if (chunk_offset < bargs->vend &&
3331 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3332 /* at least part of the chunk is inside this vrange */
3333 return 0;
3334
3335 return 1;
3336 }
3337
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3338 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3339 struct btrfs_chunk *chunk,
3340 struct btrfs_balance_args *bargs)
3341 {
3342 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3343
3344 if (bargs->stripes_min <= num_stripes
3345 && num_stripes <= bargs->stripes_max)
3346 return 0;
3347
3348 return 1;
3349 }
3350
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3351 static int chunk_soft_convert_filter(u64 chunk_type,
3352 struct btrfs_balance_args *bargs)
3353 {
3354 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3355 return 0;
3356
3357 chunk_type = chunk_to_extended(chunk_type) &
3358 BTRFS_EXTENDED_PROFILE_MASK;
3359
3360 if (bargs->target == chunk_type)
3361 return 1;
3362
3363 return 0;
3364 }
3365
should_balance_chunk(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3366 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3367 struct extent_buffer *leaf,
3368 struct btrfs_chunk *chunk, u64 chunk_offset)
3369 {
3370 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3371 struct btrfs_balance_args *bargs = NULL;
3372 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3373
3374 /* type filter */
3375 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3376 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3377 return 0;
3378 }
3379
3380 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3381 bargs = &bctl->data;
3382 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3383 bargs = &bctl->sys;
3384 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3385 bargs = &bctl->meta;
3386
3387 /* profiles filter */
3388 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3389 chunk_profiles_filter(chunk_type, bargs)) {
3390 return 0;
3391 }
3392
3393 /* usage filter */
3394 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3395 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3396 return 0;
3397 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3398 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3399 return 0;
3400 }
3401
3402 /* devid filter */
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3404 chunk_devid_filter(leaf, chunk, bargs)) {
3405 return 0;
3406 }
3407
3408 /* drange filter, makes sense only with devid filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3410 chunk_drange_filter(leaf, chunk, bargs)) {
3411 return 0;
3412 }
3413
3414 /* vrange filter */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3416 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3417 return 0;
3418 }
3419
3420 /* stripes filter */
3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3422 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3423 return 0;
3424 }
3425
3426 /* soft profile changing mode */
3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3428 chunk_soft_convert_filter(chunk_type, bargs)) {
3429 return 0;
3430 }
3431
3432 /*
3433 * limited by count, must be the last filter
3434 */
3435 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3436 if (bargs->limit == 0)
3437 return 0;
3438 else
3439 bargs->limit--;
3440 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3441 /*
3442 * Same logic as the 'limit' filter; the minimum cannot be
3443 * determined here because we do not have the global information
3444 * about the count of all chunks that satisfy the filters.
3445 */
3446 if (bargs->limit_max == 0)
3447 return 0;
3448 else
3449 bargs->limit_max--;
3450 }
3451
3452 return 1;
3453 }
3454
__btrfs_balance(struct btrfs_fs_info * fs_info)3455 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3456 {
3457 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3458 struct btrfs_root *chunk_root = fs_info->chunk_root;
3459 struct btrfs_root *dev_root = fs_info->dev_root;
3460 struct list_head *devices;
3461 struct btrfs_device *device;
3462 u64 old_size;
3463 u64 size_to_free;
3464 u64 chunk_type;
3465 struct btrfs_chunk *chunk;
3466 struct btrfs_path *path = NULL;
3467 struct btrfs_key key;
3468 struct btrfs_key found_key;
3469 struct btrfs_trans_handle *trans;
3470 struct extent_buffer *leaf;
3471 int slot;
3472 int ret;
3473 int enospc_errors = 0;
3474 bool counting = true;
3475 /* The single value limit and min/max limits use the same bytes in the */
3476 u64 limit_data = bctl->data.limit;
3477 u64 limit_meta = bctl->meta.limit;
3478 u64 limit_sys = bctl->sys.limit;
3479 u32 count_data = 0;
3480 u32 count_meta = 0;
3481 u32 count_sys = 0;
3482 int chunk_reserved = 0;
3483
3484 /* step one make some room on all the devices */
3485 devices = &fs_info->fs_devices->devices;
3486 list_for_each_entry(device, devices, dev_list) {
3487 old_size = btrfs_device_get_total_bytes(device);
3488 size_to_free = div_factor(old_size, 1);
3489 size_to_free = min_t(u64, size_to_free, SZ_1M);
3490 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3491 btrfs_device_get_total_bytes(device) -
3492 btrfs_device_get_bytes_used(device) > size_to_free ||
3493 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3494 continue;
3495
3496 ret = btrfs_shrink_device(device, old_size - size_to_free);
3497 if (ret == -ENOSPC)
3498 break;
3499 if (ret) {
3500 /* btrfs_shrink_device never returns ret > 0 */
3501 WARN_ON(ret > 0);
3502 goto error;
3503 }
3504
3505 trans = btrfs_start_transaction(dev_root, 0);
3506 if (IS_ERR(trans)) {
3507 ret = PTR_ERR(trans);
3508 btrfs_info_in_rcu(fs_info,
3509 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3510 rcu_str_deref(device->name), ret,
3511 old_size, old_size - size_to_free);
3512 goto error;
3513 }
3514
3515 ret = btrfs_grow_device(trans, device, old_size);
3516 if (ret) {
3517 btrfs_end_transaction(trans);
3518 /* btrfs_grow_device never returns ret > 0 */
3519 WARN_ON(ret > 0);
3520 btrfs_info_in_rcu(fs_info,
3521 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3522 rcu_str_deref(device->name), ret,
3523 old_size, old_size - size_to_free);
3524 goto error;
3525 }
3526
3527 btrfs_end_transaction(trans);
3528 }
3529
3530 /* step two, relocate all the chunks */
3531 path = btrfs_alloc_path();
3532 if (!path) {
3533 ret = -ENOMEM;
3534 goto error;
3535 }
3536
3537 /* zero out stat counters */
3538 spin_lock(&fs_info->balance_lock);
3539 memset(&bctl->stat, 0, sizeof(bctl->stat));
3540 spin_unlock(&fs_info->balance_lock);
3541 again:
3542 if (!counting) {
3543 /*
3544 * The single value limit and min/max limits use the same bytes
3545 * in the
3546 */
3547 bctl->data.limit = limit_data;
3548 bctl->meta.limit = limit_meta;
3549 bctl->sys.limit = limit_sys;
3550 }
3551 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3552 key.offset = (u64)-1;
3553 key.type = BTRFS_CHUNK_ITEM_KEY;
3554
3555 while (1) {
3556 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3557 atomic_read(&fs_info->balance_cancel_req)) {
3558 ret = -ECANCELED;
3559 goto error;
3560 }
3561
3562 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3563 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3564 if (ret < 0) {
3565 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3566 goto error;
3567 }
3568
3569 /*
3570 * this shouldn't happen, it means the last relocate
3571 * failed
3572 */
3573 if (ret == 0)
3574 BUG(); /* FIXME break ? */
3575
3576 ret = btrfs_previous_item(chunk_root, path, 0,
3577 BTRFS_CHUNK_ITEM_KEY);
3578 if (ret) {
3579 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3580 ret = 0;
3581 break;
3582 }
3583
3584 leaf = path->nodes[0];
3585 slot = path->slots[0];
3586 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3587
3588 if (found_key.objectid != key.objectid) {
3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590 break;
3591 }
3592
3593 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3594 chunk_type = btrfs_chunk_type(leaf, chunk);
3595
3596 if (!counting) {
3597 spin_lock(&fs_info->balance_lock);
3598 bctl->stat.considered++;
3599 spin_unlock(&fs_info->balance_lock);
3600 }
3601
3602 ret = should_balance_chunk(fs_info, leaf, chunk,
3603 found_key.offset);
3604
3605 btrfs_release_path(path);
3606 if (!ret) {
3607 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3608 goto loop;
3609 }
3610
3611 if (counting) {
3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613 spin_lock(&fs_info->balance_lock);
3614 bctl->stat.expected++;
3615 spin_unlock(&fs_info->balance_lock);
3616
3617 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3618 count_data++;
3619 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3620 count_sys++;
3621 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3622 count_meta++;
3623
3624 goto loop;
3625 }
3626
3627 /*
3628 * Apply limit_min filter, no need to check if the LIMITS
3629 * filter is used, limit_min is 0 by default
3630 */
3631 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3632 count_data < bctl->data.limit_min)
3633 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3634 count_meta < bctl->meta.limit_min)
3635 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3636 count_sys < bctl->sys.limit_min)) {
3637 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3638 goto loop;
3639 }
3640
3641 if (!chunk_reserved) {
3642 /*
3643 * We may be relocating the only data chunk we have,
3644 * which could potentially end up with losing data's
3645 * raid profile, so lets allocate an empty one in
3646 * advance.
3647 */
3648 ret = btrfs_may_alloc_data_chunk(fs_info,
3649 found_key.offset);
3650 if (ret < 0) {
3651 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3652 goto error;
3653 } else if (ret == 1) {
3654 chunk_reserved = 1;
3655 }
3656 }
3657
3658 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3659 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660 if (ret && ret != -ENOSPC)
3661 goto error;
3662 if (ret == -ENOSPC) {
3663 enospc_errors++;
3664 } else {
3665 spin_lock(&fs_info->balance_lock);
3666 bctl->stat.completed++;
3667 spin_unlock(&fs_info->balance_lock);
3668 }
3669 loop:
3670 if (found_key.offset == 0)
3671 break;
3672 key.offset = found_key.offset - 1;
3673 }
3674
3675 if (counting) {
3676 btrfs_release_path(path);
3677 counting = false;
3678 goto again;
3679 }
3680 error:
3681 btrfs_free_path(path);
3682 if (enospc_errors) {
3683 btrfs_info(fs_info, "%d enospc errors during balance",
3684 enospc_errors);
3685 if (!ret)
3686 ret = -ENOSPC;
3687 }
3688
3689 return ret;
3690 }
3691
3692 /**
3693 * alloc_profile_is_valid - see if a given profile is valid and reduced
3694 * @flags: profile to validate
3695 * @extended: if true @flags is treated as an extended profile
3696 */
alloc_profile_is_valid(u64 flags,int extended)3697 static int alloc_profile_is_valid(u64 flags, int extended)
3698 {
3699 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3700 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3701
3702 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3703
3704 /* 1) check that all other bits are zeroed */
3705 if (flags & ~mask)
3706 return 0;
3707
3708 /* 2) see if profile is reduced */
3709 if (flags == 0)
3710 return !extended; /* "0" is valid for usual profiles */
3711
3712 /* true if exactly one bit set */
3713 return (flags & (flags - 1)) == 0;
3714 }
3715
balance_need_close(struct btrfs_fs_info * fs_info)3716 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3717 {
3718 /* cancel requested || normal exit path */
3719 return atomic_read(&fs_info->balance_cancel_req) ||
3720 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3721 atomic_read(&fs_info->balance_cancel_req) == 0);
3722 }
3723
3724 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3725 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3726 u64 allowed)
3727 {
3728 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3729 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3730 (bctl_arg->target & ~allowed)));
3731 }
3732
3733 /*
3734 * Should be called with balance mutexe held
3735 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3736 int btrfs_balance(struct btrfs_fs_info *fs_info,
3737 struct btrfs_balance_control *bctl,
3738 struct btrfs_ioctl_balance_args *bargs)
3739 {
3740 u64 meta_target, data_target;
3741 u64 allowed;
3742 int mixed = 0;
3743 int ret;
3744 u64 num_devices;
3745 unsigned seq;
3746 bool reducing_integrity;
3747
3748 if (btrfs_fs_closing(fs_info) ||
3749 atomic_read(&fs_info->balance_pause_req) ||
3750 atomic_read(&fs_info->balance_cancel_req)) {
3751 ret = -EINVAL;
3752 goto out;
3753 }
3754
3755 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3756 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3757 mixed = 1;
3758
3759 /*
3760 * In case of mixed groups both data and meta should be picked,
3761 * and identical options should be given for both of them.
3762 */
3763 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3764 if (mixed && (bctl->flags & allowed)) {
3765 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3766 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3767 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3768 btrfs_err(fs_info,
3769 "balance: mixed groups data and metadata options must be the same");
3770 ret = -EINVAL;
3771 goto out;
3772 }
3773 }
3774
3775 num_devices = fs_info->fs_devices->num_devices;
3776 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3777 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3778 BUG_ON(num_devices < 1);
3779 num_devices--;
3780 }
3781 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3782 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3783 if (num_devices > 1)
3784 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3785 if (num_devices > 2)
3786 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3787 if (num_devices > 3)
3788 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3789 BTRFS_BLOCK_GROUP_RAID6);
3790 if (validate_convert_profile(&bctl->data, allowed)) {
3791 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3792
3793 btrfs_err(fs_info,
3794 "balance: invalid convert data profile %s",
3795 get_raid_name(index));
3796 ret = -EINVAL;
3797 goto out;
3798 }
3799 if (validate_convert_profile(&bctl->meta, allowed)) {
3800 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3801
3802 btrfs_err(fs_info,
3803 "balance: invalid convert metadata profile %s",
3804 get_raid_name(index));
3805 ret = -EINVAL;
3806 goto out;
3807 }
3808 if (validate_convert_profile(&bctl->sys, allowed)) {
3809 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3810
3811 btrfs_err(fs_info,
3812 "balance: invalid convert system profile %s",
3813 get_raid_name(index));
3814 ret = -EINVAL;
3815 goto out;
3816 }
3817
3818 /* allow to reduce meta or sys integrity only if force set */
3819 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3820 BTRFS_BLOCK_GROUP_RAID10 |
3821 BTRFS_BLOCK_GROUP_RAID5 |
3822 BTRFS_BLOCK_GROUP_RAID6;
3823 do {
3824 seq = read_seqbegin(&fs_info->profiles_lock);
3825
3826 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3827 (fs_info->avail_system_alloc_bits & allowed) &&
3828 !(bctl->sys.target & allowed)) ||
3829 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3830 (fs_info->avail_metadata_alloc_bits & allowed) &&
3831 !(bctl->meta.target & allowed)))
3832 reducing_integrity = true;
3833 else
3834 reducing_integrity = false;
3835
3836 /* if we're not converting, the target field is uninitialized */
3837 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3838 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3839 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3840 bctl->data.target : fs_info->avail_data_alloc_bits;
3841 } while (read_seqretry(&fs_info->profiles_lock, seq));
3842
3843 if (reducing_integrity) {
3844 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3845 btrfs_info(fs_info,
3846 "balance: force reducing metadata integrity");
3847 } else {
3848 btrfs_err(fs_info,
3849 "balance: reduces metadata integrity, use --force if you want this");
3850 ret = -EINVAL;
3851 goto out;
3852 }
3853 }
3854
3855 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3856 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3857 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3858 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3859
3860 btrfs_warn(fs_info,
3861 "balance: metadata profile %s has lower redundancy than data profile %s",
3862 get_raid_name(meta_index), get_raid_name(data_index));
3863 }
3864
3865 ret = insert_balance_item(fs_info, bctl);
3866 if (ret && ret != -EEXIST)
3867 goto out;
3868
3869 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3870 BUG_ON(ret == -EEXIST);
3871 BUG_ON(fs_info->balance_ctl);
3872 spin_lock(&fs_info->balance_lock);
3873 fs_info->balance_ctl = bctl;
3874 spin_unlock(&fs_info->balance_lock);
3875 } else {
3876 BUG_ON(ret != -EEXIST);
3877 spin_lock(&fs_info->balance_lock);
3878 update_balance_args(bctl);
3879 spin_unlock(&fs_info->balance_lock);
3880 }
3881
3882 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3883 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3884 mutex_unlock(&fs_info->balance_mutex);
3885
3886 ret = __btrfs_balance(fs_info);
3887
3888 mutex_lock(&fs_info->balance_mutex);
3889 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3890
3891 if (bargs) {
3892 memset(bargs, 0, sizeof(*bargs));
3893 btrfs_update_ioctl_balance_args(fs_info, bargs);
3894 }
3895
3896 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3897 balance_need_close(fs_info)) {
3898 reset_balance_state(fs_info);
3899 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3900 }
3901
3902 wake_up(&fs_info->balance_wait_q);
3903
3904 return ret;
3905 out:
3906 if (bctl->flags & BTRFS_BALANCE_RESUME)
3907 reset_balance_state(fs_info);
3908 else
3909 kfree(bctl);
3910 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3911
3912 return ret;
3913 }
3914
balance_kthread(void * data)3915 static int balance_kthread(void *data)
3916 {
3917 struct btrfs_fs_info *fs_info = data;
3918 int ret = 0;
3919
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (fs_info->balance_ctl) {
3922 btrfs_info(fs_info, "balance: resuming");
3923 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3924 }
3925 mutex_unlock(&fs_info->balance_mutex);
3926
3927 return ret;
3928 }
3929
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3930 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3931 {
3932 struct task_struct *tsk;
3933
3934 mutex_lock(&fs_info->balance_mutex);
3935 if (!fs_info->balance_ctl) {
3936 mutex_unlock(&fs_info->balance_mutex);
3937 return 0;
3938 }
3939 mutex_unlock(&fs_info->balance_mutex);
3940
3941 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3942 btrfs_info(fs_info, "balance: resume skipped");
3943 return 0;
3944 }
3945
3946 /*
3947 * A ro->rw remount sequence should continue with the paused balance
3948 * regardless of who pauses it, system or the user as of now, so set
3949 * the resume flag.
3950 */
3951 spin_lock(&fs_info->balance_lock);
3952 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3953 spin_unlock(&fs_info->balance_lock);
3954
3955 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3956 return PTR_ERR_OR_ZERO(tsk);
3957 }
3958
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3959 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3960 {
3961 struct btrfs_balance_control *bctl;
3962 struct btrfs_balance_item *item;
3963 struct btrfs_disk_balance_args disk_bargs;
3964 struct btrfs_path *path;
3965 struct extent_buffer *leaf;
3966 struct btrfs_key key;
3967 int ret;
3968
3969 path = btrfs_alloc_path();
3970 if (!path)
3971 return -ENOMEM;
3972
3973 key.objectid = BTRFS_BALANCE_OBJECTID;
3974 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3975 key.offset = 0;
3976
3977 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3978 if (ret < 0)
3979 goto out;
3980 if (ret > 0) { /* ret = -ENOENT; */
3981 ret = 0;
3982 goto out;
3983 }
3984
3985 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3986 if (!bctl) {
3987 ret = -ENOMEM;
3988 goto out;
3989 }
3990
3991 leaf = path->nodes[0];
3992 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3993
3994 bctl->flags = btrfs_balance_flags(leaf, item);
3995 bctl->flags |= BTRFS_BALANCE_RESUME;
3996
3997 btrfs_balance_data(leaf, item, &disk_bargs);
3998 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3999 btrfs_balance_meta(leaf, item, &disk_bargs);
4000 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4001 btrfs_balance_sys(leaf, item, &disk_bargs);
4002 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4003
4004 /*
4005 * This should never happen, as the paused balance state is recovered
4006 * during mount without any chance of other exclusive ops to collide.
4007 *
4008 * This gives the exclusive op status to balance and keeps in paused
4009 * state until user intervention (cancel or umount). If the ownership
4010 * cannot be assigned, show a message but do not fail. The balance
4011 * is in a paused state and must have fs_info::balance_ctl properly
4012 * set up.
4013 */
4014 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4015 btrfs_warn(fs_info,
4016 "balance: cannot set exclusive op status, resume manually");
4017
4018 mutex_lock(&fs_info->balance_mutex);
4019 BUG_ON(fs_info->balance_ctl);
4020 spin_lock(&fs_info->balance_lock);
4021 fs_info->balance_ctl = bctl;
4022 spin_unlock(&fs_info->balance_lock);
4023 mutex_unlock(&fs_info->balance_mutex);
4024 out:
4025 btrfs_free_path(path);
4026 return ret;
4027 }
4028
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4029 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4030 {
4031 int ret = 0;
4032
4033 mutex_lock(&fs_info->balance_mutex);
4034 if (!fs_info->balance_ctl) {
4035 mutex_unlock(&fs_info->balance_mutex);
4036 return -ENOTCONN;
4037 }
4038
4039 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4040 atomic_inc(&fs_info->balance_pause_req);
4041 mutex_unlock(&fs_info->balance_mutex);
4042
4043 wait_event(fs_info->balance_wait_q,
4044 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4045
4046 mutex_lock(&fs_info->balance_mutex);
4047 /* we are good with balance_ctl ripped off from under us */
4048 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4049 atomic_dec(&fs_info->balance_pause_req);
4050 } else {
4051 ret = -ENOTCONN;
4052 }
4053
4054 mutex_unlock(&fs_info->balance_mutex);
4055 return ret;
4056 }
4057
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4058 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4059 {
4060 mutex_lock(&fs_info->balance_mutex);
4061 if (!fs_info->balance_ctl) {
4062 mutex_unlock(&fs_info->balance_mutex);
4063 return -ENOTCONN;
4064 }
4065
4066 /*
4067 * A paused balance with the item stored on disk can be resumed at
4068 * mount time if the mount is read-write. Otherwise it's still paused
4069 * and we must not allow cancelling as it deletes the item.
4070 */
4071 if (sb_rdonly(fs_info->sb)) {
4072 mutex_unlock(&fs_info->balance_mutex);
4073 return -EROFS;
4074 }
4075
4076 atomic_inc(&fs_info->balance_cancel_req);
4077 /*
4078 * if we are running just wait and return, balance item is
4079 * deleted in btrfs_balance in this case
4080 */
4081 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4082 mutex_unlock(&fs_info->balance_mutex);
4083 wait_event(fs_info->balance_wait_q,
4084 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4085 mutex_lock(&fs_info->balance_mutex);
4086 } else {
4087 mutex_unlock(&fs_info->balance_mutex);
4088 /*
4089 * Lock released to allow other waiters to continue, we'll
4090 * reexamine the status again.
4091 */
4092 mutex_lock(&fs_info->balance_mutex);
4093
4094 if (fs_info->balance_ctl) {
4095 reset_balance_state(fs_info);
4096 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4097 btrfs_info(fs_info, "balance: canceled");
4098 }
4099 }
4100
4101 BUG_ON(fs_info->balance_ctl ||
4102 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4103 atomic_dec(&fs_info->balance_cancel_req);
4104 mutex_unlock(&fs_info->balance_mutex);
4105 return 0;
4106 }
4107
btrfs_uuid_scan_kthread(void * data)4108 static int btrfs_uuid_scan_kthread(void *data)
4109 {
4110 struct btrfs_fs_info *fs_info = data;
4111 struct btrfs_root *root = fs_info->tree_root;
4112 struct btrfs_key key;
4113 struct btrfs_path *path = NULL;
4114 int ret = 0;
4115 struct extent_buffer *eb;
4116 int slot;
4117 struct btrfs_root_item root_item;
4118 u32 item_size;
4119 struct btrfs_trans_handle *trans = NULL;
4120
4121 path = btrfs_alloc_path();
4122 if (!path) {
4123 ret = -ENOMEM;
4124 goto out;
4125 }
4126
4127 key.objectid = 0;
4128 key.type = BTRFS_ROOT_ITEM_KEY;
4129 key.offset = 0;
4130
4131 while (1) {
4132 ret = btrfs_search_forward(root, &key, path,
4133 BTRFS_OLDEST_GENERATION);
4134 if (ret) {
4135 if (ret > 0)
4136 ret = 0;
4137 break;
4138 }
4139
4140 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4141 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4142 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4143 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4144 goto skip;
4145
4146 eb = path->nodes[0];
4147 slot = path->slots[0];
4148 item_size = btrfs_item_size_nr(eb, slot);
4149 if (item_size < sizeof(root_item))
4150 goto skip;
4151
4152 read_extent_buffer(eb, &root_item,
4153 btrfs_item_ptr_offset(eb, slot),
4154 (int)sizeof(root_item));
4155 if (btrfs_root_refs(&root_item) == 0)
4156 goto skip;
4157
4158 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4159 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4160 if (trans)
4161 goto update_tree;
4162
4163 btrfs_release_path(path);
4164 /*
4165 * 1 - subvol uuid item
4166 * 1 - received_subvol uuid item
4167 */
4168 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4169 if (IS_ERR(trans)) {
4170 ret = PTR_ERR(trans);
4171 break;
4172 }
4173 continue;
4174 } else {
4175 goto skip;
4176 }
4177 update_tree:
4178 btrfs_release_path(path);
4179 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4180 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4181 BTRFS_UUID_KEY_SUBVOL,
4182 key.objectid);
4183 if (ret < 0) {
4184 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4185 ret);
4186 break;
4187 }
4188 }
4189
4190 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4191 ret = btrfs_uuid_tree_add(trans,
4192 root_item.received_uuid,
4193 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4194 key.objectid);
4195 if (ret < 0) {
4196 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4197 ret);
4198 break;
4199 }
4200 }
4201
4202 skip:
4203 btrfs_release_path(path);
4204 if (trans) {
4205 ret = btrfs_end_transaction(trans);
4206 trans = NULL;
4207 if (ret)
4208 break;
4209 }
4210
4211 if (key.offset < (u64)-1) {
4212 key.offset++;
4213 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4214 key.offset = 0;
4215 key.type = BTRFS_ROOT_ITEM_KEY;
4216 } else if (key.objectid < (u64)-1) {
4217 key.offset = 0;
4218 key.type = BTRFS_ROOT_ITEM_KEY;
4219 key.objectid++;
4220 } else {
4221 break;
4222 }
4223 cond_resched();
4224 }
4225
4226 out:
4227 btrfs_free_path(path);
4228 if (trans && !IS_ERR(trans))
4229 btrfs_end_transaction(trans);
4230 if (ret)
4231 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4232 else
4233 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4234 up(&fs_info->uuid_tree_rescan_sem);
4235 return 0;
4236 }
4237
4238 /*
4239 * Callback for btrfs_uuid_tree_iterate().
4240 * returns:
4241 * 0 check succeeded, the entry is not outdated.
4242 * < 0 if an error occurred.
4243 * > 0 if the check failed, which means the caller shall remove the entry.
4244 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4245 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4246 u8 *uuid, u8 type, u64 subid)
4247 {
4248 struct btrfs_key key;
4249 int ret = 0;
4250 struct btrfs_root *subvol_root;
4251
4252 if (type != BTRFS_UUID_KEY_SUBVOL &&
4253 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4254 goto out;
4255
4256 key.objectid = subid;
4257 key.type = BTRFS_ROOT_ITEM_KEY;
4258 key.offset = (u64)-1;
4259 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4260 if (IS_ERR(subvol_root)) {
4261 ret = PTR_ERR(subvol_root);
4262 if (ret == -ENOENT)
4263 ret = 1;
4264 goto out;
4265 }
4266
4267 switch (type) {
4268 case BTRFS_UUID_KEY_SUBVOL:
4269 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4270 ret = 1;
4271 break;
4272 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4273 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4274 BTRFS_UUID_SIZE))
4275 ret = 1;
4276 break;
4277 }
4278
4279 out:
4280 return ret;
4281 }
4282
btrfs_uuid_rescan_kthread(void * data)4283 static int btrfs_uuid_rescan_kthread(void *data)
4284 {
4285 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4286 int ret;
4287
4288 /*
4289 * 1st step is to iterate through the existing UUID tree and
4290 * to delete all entries that contain outdated data.
4291 * 2nd step is to add all missing entries to the UUID tree.
4292 */
4293 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4294 if (ret < 0) {
4295 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4296 up(&fs_info->uuid_tree_rescan_sem);
4297 return ret;
4298 }
4299 return btrfs_uuid_scan_kthread(data);
4300 }
4301
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4302 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4303 {
4304 struct btrfs_trans_handle *trans;
4305 struct btrfs_root *tree_root = fs_info->tree_root;
4306 struct btrfs_root *uuid_root;
4307 struct task_struct *task;
4308 int ret;
4309
4310 /*
4311 * 1 - root node
4312 * 1 - root item
4313 */
4314 trans = btrfs_start_transaction(tree_root, 2);
4315 if (IS_ERR(trans))
4316 return PTR_ERR(trans);
4317
4318 uuid_root = btrfs_create_tree(trans, fs_info,
4319 BTRFS_UUID_TREE_OBJECTID);
4320 if (IS_ERR(uuid_root)) {
4321 ret = PTR_ERR(uuid_root);
4322 btrfs_abort_transaction(trans, ret);
4323 btrfs_end_transaction(trans);
4324 return ret;
4325 }
4326
4327 fs_info->uuid_root = uuid_root;
4328
4329 ret = btrfs_commit_transaction(trans);
4330 if (ret)
4331 return ret;
4332
4333 down(&fs_info->uuid_tree_rescan_sem);
4334 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4335 if (IS_ERR(task)) {
4336 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4337 btrfs_warn(fs_info, "failed to start uuid_scan task");
4338 up(&fs_info->uuid_tree_rescan_sem);
4339 return PTR_ERR(task);
4340 }
4341
4342 return 0;
4343 }
4344
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4345 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4346 {
4347 struct task_struct *task;
4348
4349 down(&fs_info->uuid_tree_rescan_sem);
4350 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4351 if (IS_ERR(task)) {
4352 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4353 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4354 up(&fs_info->uuid_tree_rescan_sem);
4355 return PTR_ERR(task);
4356 }
4357
4358 return 0;
4359 }
4360
4361 /*
4362 * shrinking a device means finding all of the device extents past
4363 * the new size, and then following the back refs to the chunks.
4364 * The chunk relocation code actually frees the device extent
4365 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4366 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4367 {
4368 struct btrfs_fs_info *fs_info = device->fs_info;
4369 struct btrfs_root *root = fs_info->dev_root;
4370 struct btrfs_trans_handle *trans;
4371 struct btrfs_dev_extent *dev_extent = NULL;
4372 struct btrfs_path *path;
4373 u64 length;
4374 u64 chunk_offset;
4375 int ret;
4376 int slot;
4377 int failed = 0;
4378 bool retried = false;
4379 bool checked_pending_chunks = false;
4380 struct extent_buffer *l;
4381 struct btrfs_key key;
4382 struct btrfs_super_block *super_copy = fs_info->super_copy;
4383 u64 old_total = btrfs_super_total_bytes(super_copy);
4384 u64 old_size = btrfs_device_get_total_bytes(device);
4385 u64 diff;
4386
4387 new_size = round_down(new_size, fs_info->sectorsize);
4388 diff = round_down(old_size - new_size, fs_info->sectorsize);
4389
4390 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4391 return -EINVAL;
4392
4393 path = btrfs_alloc_path();
4394 if (!path)
4395 return -ENOMEM;
4396
4397 path->reada = READA_BACK;
4398
4399 mutex_lock(&fs_info->chunk_mutex);
4400
4401 btrfs_device_set_total_bytes(device, new_size);
4402 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4403 device->fs_devices->total_rw_bytes -= diff;
4404 atomic64_sub(diff, &fs_info->free_chunk_space);
4405 }
4406 mutex_unlock(&fs_info->chunk_mutex);
4407
4408 again:
4409 key.objectid = device->devid;
4410 key.offset = (u64)-1;
4411 key.type = BTRFS_DEV_EXTENT_KEY;
4412
4413 do {
4414 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4416 if (ret < 0) {
4417 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4418 goto done;
4419 }
4420
4421 ret = btrfs_previous_item(root, path, 0, key.type);
4422 if (ret)
4423 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4424 if (ret < 0)
4425 goto done;
4426 if (ret) {
4427 ret = 0;
4428 btrfs_release_path(path);
4429 break;
4430 }
4431
4432 l = path->nodes[0];
4433 slot = path->slots[0];
4434 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4435
4436 if (key.objectid != device->devid) {
4437 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4438 btrfs_release_path(path);
4439 break;
4440 }
4441
4442 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4443 length = btrfs_dev_extent_length(l, dev_extent);
4444
4445 if (key.offset + length <= new_size) {
4446 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4447 btrfs_release_path(path);
4448 break;
4449 }
4450
4451 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4452 btrfs_release_path(path);
4453
4454 /*
4455 * We may be relocating the only data chunk we have,
4456 * which could potentially end up with losing data's
4457 * raid profile, so lets allocate an empty one in
4458 * advance.
4459 */
4460 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4461 if (ret < 0) {
4462 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4463 goto done;
4464 }
4465
4466 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4468 if (ret && ret != -ENOSPC)
4469 goto done;
4470 if (ret == -ENOSPC)
4471 failed++;
4472 } while (key.offset-- > 0);
4473
4474 if (failed && !retried) {
4475 failed = 0;
4476 retried = true;
4477 goto again;
4478 } else if (failed && retried) {
4479 ret = -ENOSPC;
4480 goto done;
4481 }
4482
4483 /* Shrinking succeeded, else we would be at "done". */
4484 trans = btrfs_start_transaction(root, 0);
4485 if (IS_ERR(trans)) {
4486 ret = PTR_ERR(trans);
4487 goto done;
4488 }
4489
4490 mutex_lock(&fs_info->chunk_mutex);
4491
4492 /*
4493 * We checked in the above loop all device extents that were already in
4494 * the device tree. However before we have updated the device's
4495 * total_bytes to the new size, we might have had chunk allocations that
4496 * have not complete yet (new block groups attached to transaction
4497 * handles), and therefore their device extents were not yet in the
4498 * device tree and we missed them in the loop above. So if we have any
4499 * pending chunk using a device extent that overlaps the device range
4500 * that we can not use anymore, commit the current transaction and
4501 * repeat the search on the device tree - this way we guarantee we will
4502 * not have chunks using device extents that end beyond 'new_size'.
4503 */
4504 if (!checked_pending_chunks) {
4505 u64 start = new_size;
4506 u64 len = old_size - new_size;
4507
4508 if (contains_pending_extent(trans->transaction, device,
4509 &start, len)) {
4510 mutex_unlock(&fs_info->chunk_mutex);
4511 checked_pending_chunks = true;
4512 failed = 0;
4513 retried = false;
4514 ret = btrfs_commit_transaction(trans);
4515 if (ret)
4516 goto done;
4517 goto again;
4518 }
4519 }
4520
4521 btrfs_device_set_disk_total_bytes(device, new_size);
4522 if (list_empty(&device->resized_list))
4523 list_add_tail(&device->resized_list,
4524 &fs_info->fs_devices->resized_devices);
4525
4526 WARN_ON(diff > old_total);
4527 btrfs_set_super_total_bytes(super_copy,
4528 round_down(old_total - diff, fs_info->sectorsize));
4529 mutex_unlock(&fs_info->chunk_mutex);
4530
4531 /* Now btrfs_update_device() will change the on-disk size. */
4532 ret = btrfs_update_device(trans, device);
4533 if (ret < 0) {
4534 btrfs_abort_transaction(trans, ret);
4535 btrfs_end_transaction(trans);
4536 } else {
4537 ret = btrfs_commit_transaction(trans);
4538 }
4539 done:
4540 btrfs_free_path(path);
4541 if (ret) {
4542 mutex_lock(&fs_info->chunk_mutex);
4543 btrfs_device_set_total_bytes(device, old_size);
4544 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4545 device->fs_devices->total_rw_bytes += diff;
4546 atomic64_add(diff, &fs_info->free_chunk_space);
4547 mutex_unlock(&fs_info->chunk_mutex);
4548 }
4549 return ret;
4550 }
4551
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4552 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4553 struct btrfs_key *key,
4554 struct btrfs_chunk *chunk, int item_size)
4555 {
4556 struct btrfs_super_block *super_copy = fs_info->super_copy;
4557 struct btrfs_disk_key disk_key;
4558 u32 array_size;
4559 u8 *ptr;
4560
4561 mutex_lock(&fs_info->chunk_mutex);
4562 array_size = btrfs_super_sys_array_size(super_copy);
4563 if (array_size + item_size + sizeof(disk_key)
4564 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4565 mutex_unlock(&fs_info->chunk_mutex);
4566 return -EFBIG;
4567 }
4568
4569 ptr = super_copy->sys_chunk_array + array_size;
4570 btrfs_cpu_key_to_disk(&disk_key, key);
4571 memcpy(ptr, &disk_key, sizeof(disk_key));
4572 ptr += sizeof(disk_key);
4573 memcpy(ptr, chunk, item_size);
4574 item_size += sizeof(disk_key);
4575 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4576 mutex_unlock(&fs_info->chunk_mutex);
4577
4578 return 0;
4579 }
4580
4581 /*
4582 * sort the devices in descending order by max_avail, total_avail
4583 */
btrfs_cmp_device_info(const void * a,const void * b)4584 static int btrfs_cmp_device_info(const void *a, const void *b)
4585 {
4586 const struct btrfs_device_info *di_a = a;
4587 const struct btrfs_device_info *di_b = b;
4588
4589 if (di_a->max_avail > di_b->max_avail)
4590 return -1;
4591 if (di_a->max_avail < di_b->max_avail)
4592 return 1;
4593 if (di_a->total_avail > di_b->total_avail)
4594 return -1;
4595 if (di_a->total_avail < di_b->total_avail)
4596 return 1;
4597 return 0;
4598 }
4599
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4600 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4601 {
4602 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4603 return;
4604
4605 btrfs_set_fs_incompat(info, RAID56);
4606 }
4607
4608 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4609 - sizeof(struct btrfs_chunk)) \
4610 / sizeof(struct btrfs_stripe) + 1)
4611
4612 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4613 - 2 * sizeof(struct btrfs_disk_key) \
4614 - 2 * sizeof(struct btrfs_chunk)) \
4615 / sizeof(struct btrfs_stripe) + 1)
4616
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)4617 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4618 u64 start, u64 type)
4619 {
4620 struct btrfs_fs_info *info = trans->fs_info;
4621 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4622 struct btrfs_device *device;
4623 struct map_lookup *map = NULL;
4624 struct extent_map_tree *em_tree;
4625 struct extent_map *em;
4626 struct btrfs_device_info *devices_info = NULL;
4627 u64 total_avail;
4628 int num_stripes; /* total number of stripes to allocate */
4629 int data_stripes; /* number of stripes that count for
4630 block group size */
4631 int sub_stripes; /* sub_stripes info for map */
4632 int dev_stripes; /* stripes per dev */
4633 int devs_max; /* max devs to use */
4634 int devs_min; /* min devs needed */
4635 int devs_increment; /* ndevs has to be a multiple of this */
4636 int ncopies; /* how many copies to data has */
4637 int ret;
4638 u64 max_stripe_size;
4639 u64 max_chunk_size;
4640 u64 stripe_size;
4641 u64 num_bytes;
4642 int ndevs;
4643 int i;
4644 int j;
4645 int index;
4646
4647 BUG_ON(!alloc_profile_is_valid(type, 0));
4648
4649 if (list_empty(&fs_devices->alloc_list)) {
4650 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4651 btrfs_debug(info, "%s: no writable device", __func__);
4652 return -ENOSPC;
4653 }
4654
4655 index = btrfs_bg_flags_to_raid_index(type);
4656
4657 sub_stripes = btrfs_raid_array[index].sub_stripes;
4658 dev_stripes = btrfs_raid_array[index].dev_stripes;
4659 devs_max = btrfs_raid_array[index].devs_max;
4660 devs_min = btrfs_raid_array[index].devs_min;
4661 devs_increment = btrfs_raid_array[index].devs_increment;
4662 ncopies = btrfs_raid_array[index].ncopies;
4663
4664 if (type & BTRFS_BLOCK_GROUP_DATA) {
4665 max_stripe_size = SZ_1G;
4666 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4667 if (!devs_max)
4668 devs_max = BTRFS_MAX_DEVS(info);
4669 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4670 /* for larger filesystems, use larger metadata chunks */
4671 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4672 max_stripe_size = SZ_1G;
4673 else
4674 max_stripe_size = SZ_256M;
4675 max_chunk_size = max_stripe_size;
4676 if (!devs_max)
4677 devs_max = BTRFS_MAX_DEVS(info);
4678 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4679 max_stripe_size = SZ_32M;
4680 max_chunk_size = 2 * max_stripe_size;
4681 if (!devs_max)
4682 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4683 } else {
4684 btrfs_err(info, "invalid chunk type 0x%llx requested",
4685 type);
4686 BUG_ON(1);
4687 }
4688
4689 /* we don't want a chunk larger than 10% of writeable space */
4690 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4691 max_chunk_size);
4692
4693 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4694 GFP_NOFS);
4695 if (!devices_info)
4696 return -ENOMEM;
4697
4698 /*
4699 * in the first pass through the devices list, we gather information
4700 * about the available holes on each device.
4701 */
4702 ndevs = 0;
4703 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4704 u64 max_avail;
4705 u64 dev_offset;
4706
4707 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4708 WARN(1, KERN_ERR
4709 "BTRFS: read-only device in alloc_list\n");
4710 continue;
4711 }
4712
4713 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4714 &device->dev_state) ||
4715 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4716 continue;
4717
4718 if (device->total_bytes > device->bytes_used)
4719 total_avail = device->total_bytes - device->bytes_used;
4720 else
4721 total_avail = 0;
4722
4723 /* If there is no space on this device, skip it. */
4724 if (total_avail == 0)
4725 continue;
4726
4727 ret = find_free_dev_extent(trans, device,
4728 max_stripe_size * dev_stripes,
4729 &dev_offset, &max_avail);
4730 if (ret && ret != -ENOSPC)
4731 goto error;
4732
4733 if (ret == 0)
4734 max_avail = max_stripe_size * dev_stripes;
4735
4736 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4737 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4738 btrfs_debug(info,
4739 "%s: devid %llu has no free space, have=%llu want=%u",
4740 __func__, device->devid, max_avail,
4741 BTRFS_STRIPE_LEN * dev_stripes);
4742 continue;
4743 }
4744
4745 if (ndevs == fs_devices->rw_devices) {
4746 WARN(1, "%s: found more than %llu devices\n",
4747 __func__, fs_devices->rw_devices);
4748 break;
4749 }
4750 devices_info[ndevs].dev_offset = dev_offset;
4751 devices_info[ndevs].max_avail = max_avail;
4752 devices_info[ndevs].total_avail = total_avail;
4753 devices_info[ndevs].dev = device;
4754 ++ndevs;
4755 }
4756
4757 /*
4758 * now sort the devices by hole size / available space
4759 */
4760 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4761 btrfs_cmp_device_info, NULL);
4762
4763 /* round down to number of usable stripes */
4764 ndevs = round_down(ndevs, devs_increment);
4765
4766 if (ndevs < devs_min) {
4767 ret = -ENOSPC;
4768 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4769 btrfs_debug(info,
4770 "%s: not enough devices with free space: have=%d minimum required=%d",
4771 __func__, ndevs, devs_min);
4772 }
4773 goto error;
4774 }
4775
4776 ndevs = min(ndevs, devs_max);
4777
4778 /*
4779 * The primary goal is to maximize the number of stripes, so use as
4780 * many devices as possible, even if the stripes are not maximum sized.
4781 *
4782 * The DUP profile stores more than one stripe per device, the
4783 * max_avail is the total size so we have to adjust.
4784 */
4785 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4786 num_stripes = ndevs * dev_stripes;
4787
4788 /*
4789 * this will have to be fixed for RAID1 and RAID10 over
4790 * more drives
4791 */
4792 data_stripes = num_stripes / ncopies;
4793
4794 if (type & BTRFS_BLOCK_GROUP_RAID5)
4795 data_stripes = num_stripes - 1;
4796
4797 if (type & BTRFS_BLOCK_GROUP_RAID6)
4798 data_stripes = num_stripes - 2;
4799
4800 /*
4801 * Use the number of data stripes to figure out how big this chunk
4802 * is really going to be in terms of logical address space,
4803 * and compare that answer with the max chunk size. If it's higher,
4804 * we try to reduce stripe_size.
4805 */
4806 if (stripe_size * data_stripes > max_chunk_size) {
4807 /*
4808 * Reduce stripe_size, round it up to a 16MB boundary again and
4809 * then use it, unless it ends up being even bigger than the
4810 * previous value we had already.
4811 */
4812 stripe_size = min(round_up(div_u64(max_chunk_size,
4813 data_stripes), SZ_16M),
4814 stripe_size);
4815 }
4816
4817 /* align to BTRFS_STRIPE_LEN */
4818 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4819
4820 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4821 if (!map) {
4822 ret = -ENOMEM;
4823 goto error;
4824 }
4825 map->num_stripes = num_stripes;
4826
4827 for (i = 0; i < ndevs; ++i) {
4828 for (j = 0; j < dev_stripes; ++j) {
4829 int s = i * dev_stripes + j;
4830 map->stripes[s].dev = devices_info[i].dev;
4831 map->stripes[s].physical = devices_info[i].dev_offset +
4832 j * stripe_size;
4833 }
4834 }
4835 map->stripe_len = BTRFS_STRIPE_LEN;
4836 map->io_align = BTRFS_STRIPE_LEN;
4837 map->io_width = BTRFS_STRIPE_LEN;
4838 map->type = type;
4839 map->sub_stripes = sub_stripes;
4840
4841 num_bytes = stripe_size * data_stripes;
4842
4843 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4844
4845 em = alloc_extent_map();
4846 if (!em) {
4847 kfree(map);
4848 ret = -ENOMEM;
4849 goto error;
4850 }
4851 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4852 em->map_lookup = map;
4853 em->start = start;
4854 em->len = num_bytes;
4855 em->block_start = 0;
4856 em->block_len = em->len;
4857 em->orig_block_len = stripe_size;
4858
4859 em_tree = &info->mapping_tree.map_tree;
4860 write_lock(&em_tree->lock);
4861 ret = add_extent_mapping(em_tree, em, 0);
4862 if (ret) {
4863 write_unlock(&em_tree->lock);
4864 free_extent_map(em);
4865 goto error;
4866 }
4867
4868 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4869 refcount_inc(&em->refs);
4870 write_unlock(&em_tree->lock);
4871
4872 ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4873 if (ret)
4874 goto error_del_extent;
4875
4876 for (i = 0; i < map->num_stripes; i++) {
4877 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4878 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4879 map->stripes[i].dev->has_pending_chunks = true;
4880 }
4881
4882 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4883
4884 free_extent_map(em);
4885 check_raid56_incompat_flag(info, type);
4886
4887 kfree(devices_info);
4888 return 0;
4889
4890 error_del_extent:
4891 write_lock(&em_tree->lock);
4892 remove_extent_mapping(em_tree, em);
4893 write_unlock(&em_tree->lock);
4894
4895 /* One for our allocation */
4896 free_extent_map(em);
4897 /* One for the tree reference */
4898 free_extent_map(em);
4899 /* One for the pending_chunks list reference */
4900 free_extent_map(em);
4901 error:
4902 kfree(devices_info);
4903 return ret;
4904 }
4905
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)4906 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4907 u64 chunk_offset, u64 chunk_size)
4908 {
4909 struct btrfs_fs_info *fs_info = trans->fs_info;
4910 struct btrfs_root *extent_root = fs_info->extent_root;
4911 struct btrfs_root *chunk_root = fs_info->chunk_root;
4912 struct btrfs_key key;
4913 struct btrfs_device *device;
4914 struct btrfs_chunk *chunk;
4915 struct btrfs_stripe *stripe;
4916 struct extent_map *em;
4917 struct map_lookup *map;
4918 size_t item_size;
4919 u64 dev_offset;
4920 u64 stripe_size;
4921 int i = 0;
4922 int ret = 0;
4923
4924 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4925 if (IS_ERR(em))
4926 return PTR_ERR(em);
4927
4928 map = em->map_lookup;
4929 item_size = btrfs_chunk_item_size(map->num_stripes);
4930 stripe_size = em->orig_block_len;
4931
4932 chunk = kzalloc(item_size, GFP_NOFS);
4933 if (!chunk) {
4934 ret = -ENOMEM;
4935 goto out;
4936 }
4937
4938 /*
4939 * Take the device list mutex to prevent races with the final phase of
4940 * a device replace operation that replaces the device object associated
4941 * with the map's stripes, because the device object's id can change
4942 * at any time during that final phase of the device replace operation
4943 * (dev-replace.c:btrfs_dev_replace_finishing()).
4944 */
4945 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4946 for (i = 0; i < map->num_stripes; i++) {
4947 device = map->stripes[i].dev;
4948 dev_offset = map->stripes[i].physical;
4949
4950 ret = btrfs_update_device(trans, device);
4951 if (ret)
4952 break;
4953 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4954 dev_offset, stripe_size);
4955 if (ret)
4956 break;
4957 }
4958 if (ret) {
4959 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4960 goto out;
4961 }
4962
4963 stripe = &chunk->stripe;
4964 for (i = 0; i < map->num_stripes; i++) {
4965 device = map->stripes[i].dev;
4966 dev_offset = map->stripes[i].physical;
4967
4968 btrfs_set_stack_stripe_devid(stripe, device->devid);
4969 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4970 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4971 stripe++;
4972 }
4973 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4974
4975 btrfs_set_stack_chunk_length(chunk, chunk_size);
4976 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4977 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4978 btrfs_set_stack_chunk_type(chunk, map->type);
4979 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4980 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4981 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4982 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4983 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4984
4985 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4986 key.type = BTRFS_CHUNK_ITEM_KEY;
4987 key.offset = chunk_offset;
4988
4989 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4990 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4991 /*
4992 * TODO: Cleanup of inserted chunk root in case of
4993 * failure.
4994 */
4995 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4996 }
4997
4998 out:
4999 kfree(chunk);
5000 free_extent_map(em);
5001 return ret;
5002 }
5003
5004 /*
5005 * Chunk allocation falls into two parts. The first part does works
5006 * that make the new allocated chunk useable, but not do any operation
5007 * that modifies the chunk tree. The second part does the works that
5008 * require modifying the chunk tree. This division is important for the
5009 * bootstrap process of adding storage to a seed btrfs.
5010 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5011 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5012 {
5013 u64 chunk_offset;
5014
5015 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5016 chunk_offset = find_next_chunk(trans->fs_info);
5017 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5018 }
5019
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)5020 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5021 struct btrfs_fs_info *fs_info)
5022 {
5023 u64 chunk_offset;
5024 u64 sys_chunk_offset;
5025 u64 alloc_profile;
5026 int ret;
5027
5028 chunk_offset = find_next_chunk(fs_info);
5029 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5030 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5031 if (ret)
5032 return ret;
5033
5034 sys_chunk_offset = find_next_chunk(fs_info);
5035 alloc_profile = btrfs_system_alloc_profile(fs_info);
5036 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5037 return ret;
5038 }
5039
btrfs_chunk_max_errors(struct map_lookup * map)5040 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5041 {
5042 int max_errors;
5043
5044 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5045 BTRFS_BLOCK_GROUP_RAID10 |
5046 BTRFS_BLOCK_GROUP_RAID5)) {
5047 max_errors = 1;
5048 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5049 max_errors = 2;
5050 } else {
5051 max_errors = 0;
5052 }
5053
5054 return max_errors;
5055 }
5056
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5057 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5058 {
5059 struct extent_map *em;
5060 struct map_lookup *map;
5061 int readonly = 0;
5062 int miss_ndevs = 0;
5063 int i;
5064
5065 em = get_chunk_map(fs_info, chunk_offset, 1);
5066 if (IS_ERR(em))
5067 return 1;
5068
5069 map = em->map_lookup;
5070 for (i = 0; i < map->num_stripes; i++) {
5071 if (test_bit(BTRFS_DEV_STATE_MISSING,
5072 &map->stripes[i].dev->dev_state)) {
5073 miss_ndevs++;
5074 continue;
5075 }
5076 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5077 &map->stripes[i].dev->dev_state)) {
5078 readonly = 1;
5079 goto end;
5080 }
5081 }
5082
5083 /*
5084 * If the number of missing devices is larger than max errors,
5085 * we can not write the data into that chunk successfully, so
5086 * set it readonly.
5087 */
5088 if (miss_ndevs > btrfs_chunk_max_errors(map))
5089 readonly = 1;
5090 end:
5091 free_extent_map(em);
5092 return readonly;
5093 }
5094
btrfs_mapping_init(struct btrfs_mapping_tree * tree)5095 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5096 {
5097 extent_map_tree_init(&tree->map_tree);
5098 }
5099
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5100 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5101 {
5102 struct extent_map *em;
5103
5104 while (1) {
5105 write_lock(&tree->map_tree.lock);
5106 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5107 if (em)
5108 remove_extent_mapping(&tree->map_tree, em);
5109 write_unlock(&tree->map_tree.lock);
5110 if (!em)
5111 break;
5112 /* once for us */
5113 free_extent_map(em);
5114 /* once for the tree */
5115 free_extent_map(em);
5116 }
5117 }
5118
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5119 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5120 {
5121 struct extent_map *em;
5122 struct map_lookup *map;
5123 int ret;
5124
5125 em = get_chunk_map(fs_info, logical, len);
5126 if (IS_ERR(em))
5127 /*
5128 * We could return errors for these cases, but that could get
5129 * ugly and we'd probably do the same thing which is just not do
5130 * anything else and exit, so return 1 so the callers don't try
5131 * to use other copies.
5132 */
5133 return 1;
5134
5135 map = em->map_lookup;
5136 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5137 ret = map->num_stripes;
5138 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5139 ret = map->sub_stripes;
5140 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5141 ret = 2;
5142 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5143 /*
5144 * There could be two corrupted data stripes, we need
5145 * to loop retry in order to rebuild the correct data.
5146 *
5147 * Fail a stripe at a time on every retry except the
5148 * stripe under reconstruction.
5149 */
5150 ret = map->num_stripes;
5151 else
5152 ret = 1;
5153 free_extent_map(em);
5154
5155 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5156 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5157 fs_info->dev_replace.tgtdev)
5158 ret++;
5159 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5160
5161 return ret;
5162 }
5163
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5164 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5165 u64 logical)
5166 {
5167 struct extent_map *em;
5168 struct map_lookup *map;
5169 unsigned long len = fs_info->sectorsize;
5170
5171 em = get_chunk_map(fs_info, logical, len);
5172
5173 if (!WARN_ON(IS_ERR(em))) {
5174 map = em->map_lookup;
5175 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5176 len = map->stripe_len * nr_data_stripes(map);
5177 free_extent_map(em);
5178 }
5179 return len;
5180 }
5181
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5182 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5183 {
5184 struct extent_map *em;
5185 struct map_lookup *map;
5186 int ret = 0;
5187
5188 em = get_chunk_map(fs_info, logical, len);
5189
5190 if(!WARN_ON(IS_ERR(em))) {
5191 map = em->map_lookup;
5192 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5193 ret = 1;
5194 free_extent_map(em);
5195 }
5196 return ret;
5197 }
5198
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5199 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5200 struct map_lookup *map, int first,
5201 int dev_replace_is_ongoing)
5202 {
5203 int i;
5204 int num_stripes;
5205 int preferred_mirror;
5206 int tolerance;
5207 struct btrfs_device *srcdev;
5208
5209 ASSERT((map->type &
5210 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5211
5212 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5213 num_stripes = map->sub_stripes;
5214 else
5215 num_stripes = map->num_stripes;
5216
5217 preferred_mirror = first + current->pid % num_stripes;
5218
5219 if (dev_replace_is_ongoing &&
5220 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5221 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5222 srcdev = fs_info->dev_replace.srcdev;
5223 else
5224 srcdev = NULL;
5225
5226 /*
5227 * try to avoid the drive that is the source drive for a
5228 * dev-replace procedure, only choose it if no other non-missing
5229 * mirror is available
5230 */
5231 for (tolerance = 0; tolerance < 2; tolerance++) {
5232 if (map->stripes[preferred_mirror].dev->bdev &&
5233 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5234 return preferred_mirror;
5235 for (i = first; i < first + num_stripes; i++) {
5236 if (map->stripes[i].dev->bdev &&
5237 (tolerance || map->stripes[i].dev != srcdev))
5238 return i;
5239 }
5240 }
5241
5242 /* we couldn't find one that doesn't fail. Just return something
5243 * and the io error handling code will clean up eventually
5244 */
5245 return preferred_mirror;
5246 }
5247
parity_smaller(u64 a,u64 b)5248 static inline int parity_smaller(u64 a, u64 b)
5249 {
5250 return a > b;
5251 }
5252
5253 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5254 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5255 {
5256 struct btrfs_bio_stripe s;
5257 int i;
5258 u64 l;
5259 int again = 1;
5260
5261 while (again) {
5262 again = 0;
5263 for (i = 0; i < num_stripes - 1; i++) {
5264 if (parity_smaller(bbio->raid_map[i],
5265 bbio->raid_map[i+1])) {
5266 s = bbio->stripes[i];
5267 l = bbio->raid_map[i];
5268 bbio->stripes[i] = bbio->stripes[i+1];
5269 bbio->raid_map[i] = bbio->raid_map[i+1];
5270 bbio->stripes[i+1] = s;
5271 bbio->raid_map[i+1] = l;
5272
5273 again = 1;
5274 }
5275 }
5276 }
5277 }
5278
alloc_btrfs_bio(int total_stripes,int real_stripes)5279 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5280 {
5281 struct btrfs_bio *bbio = kzalloc(
5282 /* the size of the btrfs_bio */
5283 sizeof(struct btrfs_bio) +
5284 /* plus the variable array for the stripes */
5285 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5286 /* plus the variable array for the tgt dev */
5287 sizeof(int) * (real_stripes) +
5288 /*
5289 * plus the raid_map, which includes both the tgt dev
5290 * and the stripes
5291 */
5292 sizeof(u64) * (total_stripes),
5293 GFP_NOFS|__GFP_NOFAIL);
5294
5295 atomic_set(&bbio->error, 0);
5296 refcount_set(&bbio->refs, 1);
5297
5298 return bbio;
5299 }
5300
btrfs_get_bbio(struct btrfs_bio * bbio)5301 void btrfs_get_bbio(struct btrfs_bio *bbio)
5302 {
5303 WARN_ON(!refcount_read(&bbio->refs));
5304 refcount_inc(&bbio->refs);
5305 }
5306
btrfs_put_bbio(struct btrfs_bio * bbio)5307 void btrfs_put_bbio(struct btrfs_bio *bbio)
5308 {
5309 if (!bbio)
5310 return;
5311 if (refcount_dec_and_test(&bbio->refs))
5312 kfree(bbio);
5313 }
5314
5315 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5316 /*
5317 * Please note that, discard won't be sent to target device of device
5318 * replace.
5319 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 length,struct btrfs_bio ** bbio_ret)5320 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5321 u64 logical, u64 length,
5322 struct btrfs_bio **bbio_ret)
5323 {
5324 struct extent_map *em;
5325 struct map_lookup *map;
5326 struct btrfs_bio *bbio;
5327 u64 offset;
5328 u64 stripe_nr;
5329 u64 stripe_nr_end;
5330 u64 stripe_end_offset;
5331 u64 stripe_cnt;
5332 u64 stripe_len;
5333 u64 stripe_offset;
5334 u64 num_stripes;
5335 u32 stripe_index;
5336 u32 factor = 0;
5337 u32 sub_stripes = 0;
5338 u64 stripes_per_dev = 0;
5339 u32 remaining_stripes = 0;
5340 u32 last_stripe = 0;
5341 int ret = 0;
5342 int i;
5343
5344 /* discard always return a bbio */
5345 ASSERT(bbio_ret);
5346
5347 em = get_chunk_map(fs_info, logical, length);
5348 if (IS_ERR(em))
5349 return PTR_ERR(em);
5350
5351 map = em->map_lookup;
5352 /* we don't discard raid56 yet */
5353 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5354 ret = -EOPNOTSUPP;
5355 goto out;
5356 }
5357
5358 offset = logical - em->start;
5359 length = min_t(u64, em->len - offset, length);
5360
5361 stripe_len = map->stripe_len;
5362 /*
5363 * stripe_nr counts the total number of stripes we have to stride
5364 * to get to this block
5365 */
5366 stripe_nr = div64_u64(offset, stripe_len);
5367
5368 /* stripe_offset is the offset of this block in its stripe */
5369 stripe_offset = offset - stripe_nr * stripe_len;
5370
5371 stripe_nr_end = round_up(offset + length, map->stripe_len);
5372 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5373 stripe_cnt = stripe_nr_end - stripe_nr;
5374 stripe_end_offset = stripe_nr_end * map->stripe_len -
5375 (offset + length);
5376 /*
5377 * after this, stripe_nr is the number of stripes on this
5378 * device we have to walk to find the data, and stripe_index is
5379 * the number of our device in the stripe array
5380 */
5381 num_stripes = 1;
5382 stripe_index = 0;
5383 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5384 BTRFS_BLOCK_GROUP_RAID10)) {
5385 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5386 sub_stripes = 1;
5387 else
5388 sub_stripes = map->sub_stripes;
5389
5390 factor = map->num_stripes / sub_stripes;
5391 num_stripes = min_t(u64, map->num_stripes,
5392 sub_stripes * stripe_cnt);
5393 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5394 stripe_index *= sub_stripes;
5395 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5396 &remaining_stripes);
5397 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5398 last_stripe *= sub_stripes;
5399 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5400 BTRFS_BLOCK_GROUP_DUP)) {
5401 num_stripes = map->num_stripes;
5402 } else {
5403 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5404 &stripe_index);
5405 }
5406
5407 bbio = alloc_btrfs_bio(num_stripes, 0);
5408 if (!bbio) {
5409 ret = -ENOMEM;
5410 goto out;
5411 }
5412
5413 for (i = 0; i < num_stripes; i++) {
5414 bbio->stripes[i].physical =
5415 map->stripes[stripe_index].physical +
5416 stripe_offset + stripe_nr * map->stripe_len;
5417 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5418
5419 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5420 BTRFS_BLOCK_GROUP_RAID10)) {
5421 bbio->stripes[i].length = stripes_per_dev *
5422 map->stripe_len;
5423
5424 if (i / sub_stripes < remaining_stripes)
5425 bbio->stripes[i].length +=
5426 map->stripe_len;
5427
5428 /*
5429 * Special for the first stripe and
5430 * the last stripe:
5431 *
5432 * |-------|...|-------|
5433 * |----------|
5434 * off end_off
5435 */
5436 if (i < sub_stripes)
5437 bbio->stripes[i].length -=
5438 stripe_offset;
5439
5440 if (stripe_index >= last_stripe &&
5441 stripe_index <= (last_stripe +
5442 sub_stripes - 1))
5443 bbio->stripes[i].length -=
5444 stripe_end_offset;
5445
5446 if (i == sub_stripes - 1)
5447 stripe_offset = 0;
5448 } else {
5449 bbio->stripes[i].length = length;
5450 }
5451
5452 stripe_index++;
5453 if (stripe_index == map->num_stripes) {
5454 stripe_index = 0;
5455 stripe_nr++;
5456 }
5457 }
5458
5459 *bbio_ret = bbio;
5460 bbio->map_type = map->type;
5461 bbio->num_stripes = num_stripes;
5462 out:
5463 free_extent_map(em);
5464 return ret;
5465 }
5466
5467 /*
5468 * In dev-replace case, for repair case (that's the only case where the mirror
5469 * is selected explicitly when calling btrfs_map_block), blocks left of the
5470 * left cursor can also be read from the target drive.
5471 *
5472 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5473 * array of stripes.
5474 * For READ, it also needs to be supported using the same mirror number.
5475 *
5476 * If the requested block is not left of the left cursor, EIO is returned. This
5477 * can happen because btrfs_num_copies() returns one more in the dev-replace
5478 * case.
5479 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5480 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5481 u64 logical, u64 length,
5482 u64 srcdev_devid, int *mirror_num,
5483 u64 *physical)
5484 {
5485 struct btrfs_bio *bbio = NULL;
5486 int num_stripes;
5487 int index_srcdev = 0;
5488 int found = 0;
5489 u64 physical_of_found = 0;
5490 int i;
5491 int ret = 0;
5492
5493 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5494 logical, &length, &bbio, 0, 0);
5495 if (ret) {
5496 ASSERT(bbio == NULL);
5497 return ret;
5498 }
5499
5500 num_stripes = bbio->num_stripes;
5501 if (*mirror_num > num_stripes) {
5502 /*
5503 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5504 * that means that the requested area is not left of the left
5505 * cursor
5506 */
5507 btrfs_put_bbio(bbio);
5508 return -EIO;
5509 }
5510
5511 /*
5512 * process the rest of the function using the mirror_num of the source
5513 * drive. Therefore look it up first. At the end, patch the device
5514 * pointer to the one of the target drive.
5515 */
5516 for (i = 0; i < num_stripes; i++) {
5517 if (bbio->stripes[i].dev->devid != srcdev_devid)
5518 continue;
5519
5520 /*
5521 * In case of DUP, in order to keep it simple, only add the
5522 * mirror with the lowest physical address
5523 */
5524 if (found &&
5525 physical_of_found <= bbio->stripes[i].physical)
5526 continue;
5527
5528 index_srcdev = i;
5529 found = 1;
5530 physical_of_found = bbio->stripes[i].physical;
5531 }
5532
5533 btrfs_put_bbio(bbio);
5534
5535 ASSERT(found);
5536 if (!found)
5537 return -EIO;
5538
5539 *mirror_num = index_srcdev + 1;
5540 *physical = physical_of_found;
5541 return ret;
5542 }
5543
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5544 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5545 struct btrfs_bio **bbio_ret,
5546 struct btrfs_dev_replace *dev_replace,
5547 int *num_stripes_ret, int *max_errors_ret)
5548 {
5549 struct btrfs_bio *bbio = *bbio_ret;
5550 u64 srcdev_devid = dev_replace->srcdev->devid;
5551 int tgtdev_indexes = 0;
5552 int num_stripes = *num_stripes_ret;
5553 int max_errors = *max_errors_ret;
5554 int i;
5555
5556 if (op == BTRFS_MAP_WRITE) {
5557 int index_where_to_add;
5558
5559 /*
5560 * duplicate the write operations while the dev replace
5561 * procedure is running. Since the copying of the old disk to
5562 * the new disk takes place at run time while the filesystem is
5563 * mounted writable, the regular write operations to the old
5564 * disk have to be duplicated to go to the new disk as well.
5565 *
5566 * Note that device->missing is handled by the caller, and that
5567 * the write to the old disk is already set up in the stripes
5568 * array.
5569 */
5570 index_where_to_add = num_stripes;
5571 for (i = 0; i < num_stripes; i++) {
5572 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5573 /* write to new disk, too */
5574 struct btrfs_bio_stripe *new =
5575 bbio->stripes + index_where_to_add;
5576 struct btrfs_bio_stripe *old =
5577 bbio->stripes + i;
5578
5579 new->physical = old->physical;
5580 new->length = old->length;
5581 new->dev = dev_replace->tgtdev;
5582 bbio->tgtdev_map[i] = index_where_to_add;
5583 index_where_to_add++;
5584 max_errors++;
5585 tgtdev_indexes++;
5586 }
5587 }
5588 num_stripes = index_where_to_add;
5589 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5590 int index_srcdev = 0;
5591 int found = 0;
5592 u64 physical_of_found = 0;
5593
5594 /*
5595 * During the dev-replace procedure, the target drive can also
5596 * be used to read data in case it is needed to repair a corrupt
5597 * block elsewhere. This is possible if the requested area is
5598 * left of the left cursor. In this area, the target drive is a
5599 * full copy of the source drive.
5600 */
5601 for (i = 0; i < num_stripes; i++) {
5602 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5603 /*
5604 * In case of DUP, in order to keep it simple,
5605 * only add the mirror with the lowest physical
5606 * address
5607 */
5608 if (found &&
5609 physical_of_found <=
5610 bbio->stripes[i].physical)
5611 continue;
5612 index_srcdev = i;
5613 found = 1;
5614 physical_of_found = bbio->stripes[i].physical;
5615 }
5616 }
5617 if (found) {
5618 struct btrfs_bio_stripe *tgtdev_stripe =
5619 bbio->stripes + num_stripes;
5620
5621 tgtdev_stripe->physical = physical_of_found;
5622 tgtdev_stripe->length =
5623 bbio->stripes[index_srcdev].length;
5624 tgtdev_stripe->dev = dev_replace->tgtdev;
5625 bbio->tgtdev_map[index_srcdev] = num_stripes;
5626
5627 tgtdev_indexes++;
5628 num_stripes++;
5629 }
5630 }
5631
5632 *num_stripes_ret = num_stripes;
5633 *max_errors_ret = max_errors;
5634 bbio->num_tgtdevs = tgtdev_indexes;
5635 *bbio_ret = bbio;
5636 }
5637
need_full_stripe(enum btrfs_map_op op)5638 static bool need_full_stripe(enum btrfs_map_op op)
5639 {
5640 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5641 }
5642
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5643 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5644 enum btrfs_map_op op,
5645 u64 logical, u64 *length,
5646 struct btrfs_bio **bbio_ret,
5647 int mirror_num, int need_raid_map)
5648 {
5649 struct extent_map *em;
5650 struct map_lookup *map;
5651 u64 offset;
5652 u64 stripe_offset;
5653 u64 stripe_nr;
5654 u64 stripe_len;
5655 u32 stripe_index;
5656 int i;
5657 int ret = 0;
5658 int num_stripes;
5659 int max_errors = 0;
5660 int tgtdev_indexes = 0;
5661 struct btrfs_bio *bbio = NULL;
5662 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5663 int dev_replace_is_ongoing = 0;
5664 int num_alloc_stripes;
5665 int patch_the_first_stripe_for_dev_replace = 0;
5666 u64 physical_to_patch_in_first_stripe = 0;
5667 u64 raid56_full_stripe_start = (u64)-1;
5668
5669 if (op == BTRFS_MAP_DISCARD)
5670 return __btrfs_map_block_for_discard(fs_info, logical,
5671 *length, bbio_ret);
5672
5673 em = get_chunk_map(fs_info, logical, *length);
5674 if (IS_ERR(em))
5675 return PTR_ERR(em);
5676
5677 map = em->map_lookup;
5678 offset = logical - em->start;
5679
5680 stripe_len = map->stripe_len;
5681 stripe_nr = offset;
5682 /*
5683 * stripe_nr counts the total number of stripes we have to stride
5684 * to get to this block
5685 */
5686 stripe_nr = div64_u64(stripe_nr, stripe_len);
5687
5688 stripe_offset = stripe_nr * stripe_len;
5689 if (offset < stripe_offset) {
5690 btrfs_crit(fs_info,
5691 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5692 stripe_offset, offset, em->start, logical,
5693 stripe_len);
5694 free_extent_map(em);
5695 return -EINVAL;
5696 }
5697
5698 /* stripe_offset is the offset of this block in its stripe*/
5699 stripe_offset = offset - stripe_offset;
5700
5701 /* if we're here for raid56, we need to know the stripe aligned start */
5702 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5703 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5704 raid56_full_stripe_start = offset;
5705
5706 /* allow a write of a full stripe, but make sure we don't
5707 * allow straddling of stripes
5708 */
5709 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5710 full_stripe_len);
5711 raid56_full_stripe_start *= full_stripe_len;
5712 }
5713
5714 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5715 u64 max_len;
5716 /* For writes to RAID[56], allow a full stripeset across all disks.
5717 For other RAID types and for RAID[56] reads, just allow a single
5718 stripe (on a single disk). */
5719 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5720 (op == BTRFS_MAP_WRITE)) {
5721 max_len = stripe_len * nr_data_stripes(map) -
5722 (offset - raid56_full_stripe_start);
5723 } else {
5724 /* we limit the length of each bio to what fits in a stripe */
5725 max_len = stripe_len - stripe_offset;
5726 }
5727 *length = min_t(u64, em->len - offset, max_len);
5728 } else {
5729 *length = em->len - offset;
5730 }
5731
5732 /* This is for when we're called from btrfs_merge_bio_hook() and all
5733 it cares about is the length */
5734 if (!bbio_ret)
5735 goto out;
5736
5737 btrfs_dev_replace_read_lock(dev_replace);
5738 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5739 if (!dev_replace_is_ongoing)
5740 btrfs_dev_replace_read_unlock(dev_replace);
5741 else
5742 btrfs_dev_replace_set_lock_blocking(dev_replace);
5743
5744 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5745 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5746 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5747 dev_replace->srcdev->devid,
5748 &mirror_num,
5749 &physical_to_patch_in_first_stripe);
5750 if (ret)
5751 goto out;
5752 else
5753 patch_the_first_stripe_for_dev_replace = 1;
5754 } else if (mirror_num > map->num_stripes) {
5755 mirror_num = 0;
5756 }
5757
5758 num_stripes = 1;
5759 stripe_index = 0;
5760 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5761 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5762 &stripe_index);
5763 if (!need_full_stripe(op))
5764 mirror_num = 1;
5765 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5766 if (need_full_stripe(op))
5767 num_stripes = map->num_stripes;
5768 else if (mirror_num)
5769 stripe_index = mirror_num - 1;
5770 else {
5771 stripe_index = find_live_mirror(fs_info, map, 0,
5772 dev_replace_is_ongoing);
5773 mirror_num = stripe_index + 1;
5774 }
5775
5776 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5777 if (need_full_stripe(op)) {
5778 num_stripes = map->num_stripes;
5779 } else if (mirror_num) {
5780 stripe_index = mirror_num - 1;
5781 } else {
5782 mirror_num = 1;
5783 }
5784
5785 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5786 u32 factor = map->num_stripes / map->sub_stripes;
5787
5788 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5789 stripe_index *= map->sub_stripes;
5790
5791 if (need_full_stripe(op))
5792 num_stripes = map->sub_stripes;
5793 else if (mirror_num)
5794 stripe_index += mirror_num - 1;
5795 else {
5796 int old_stripe_index = stripe_index;
5797 stripe_index = find_live_mirror(fs_info, map,
5798 stripe_index,
5799 dev_replace_is_ongoing);
5800 mirror_num = stripe_index - old_stripe_index + 1;
5801 }
5802
5803 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5804 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5805 /* push stripe_nr back to the start of the full stripe */
5806 stripe_nr = div64_u64(raid56_full_stripe_start,
5807 stripe_len * nr_data_stripes(map));
5808
5809 /* RAID[56] write or recovery. Return all stripes */
5810 num_stripes = map->num_stripes;
5811 max_errors = nr_parity_stripes(map);
5812
5813 *length = map->stripe_len;
5814 stripe_index = 0;
5815 stripe_offset = 0;
5816 } else {
5817 /*
5818 * Mirror #0 or #1 means the original data block.
5819 * Mirror #2 is RAID5 parity block.
5820 * Mirror #3 is RAID6 Q block.
5821 */
5822 stripe_nr = div_u64_rem(stripe_nr,
5823 nr_data_stripes(map), &stripe_index);
5824 if (mirror_num > 1)
5825 stripe_index = nr_data_stripes(map) +
5826 mirror_num - 2;
5827
5828 /* We distribute the parity blocks across stripes */
5829 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5830 &stripe_index);
5831 if (!need_full_stripe(op) && mirror_num <= 1)
5832 mirror_num = 1;
5833 }
5834 } else {
5835 /*
5836 * after this, stripe_nr is the number of stripes on this
5837 * device we have to walk to find the data, and stripe_index is
5838 * the number of our device in the stripe array
5839 */
5840 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5841 &stripe_index);
5842 mirror_num = stripe_index + 1;
5843 }
5844 if (stripe_index >= map->num_stripes) {
5845 btrfs_crit(fs_info,
5846 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5847 stripe_index, map->num_stripes);
5848 ret = -EINVAL;
5849 goto out;
5850 }
5851
5852 num_alloc_stripes = num_stripes;
5853 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5854 if (op == BTRFS_MAP_WRITE)
5855 num_alloc_stripes <<= 1;
5856 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5857 num_alloc_stripes++;
5858 tgtdev_indexes = num_stripes;
5859 }
5860
5861 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5862 if (!bbio) {
5863 ret = -ENOMEM;
5864 goto out;
5865 }
5866 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5867 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5868
5869 /* build raid_map */
5870 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5871 (need_full_stripe(op) || mirror_num > 1)) {
5872 u64 tmp;
5873 unsigned rot;
5874
5875 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5876 sizeof(struct btrfs_bio_stripe) *
5877 num_alloc_stripes +
5878 sizeof(int) * tgtdev_indexes);
5879
5880 /* Work out the disk rotation on this stripe-set */
5881 div_u64_rem(stripe_nr, num_stripes, &rot);
5882
5883 /* Fill in the logical address of each stripe */
5884 tmp = stripe_nr * nr_data_stripes(map);
5885 for (i = 0; i < nr_data_stripes(map); i++)
5886 bbio->raid_map[(i+rot) % num_stripes] =
5887 em->start + (tmp + i) * map->stripe_len;
5888
5889 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5890 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5891 bbio->raid_map[(i+rot+1) % num_stripes] =
5892 RAID6_Q_STRIPE;
5893 }
5894
5895
5896 for (i = 0; i < num_stripes; i++) {
5897 bbio->stripes[i].physical =
5898 map->stripes[stripe_index].physical +
5899 stripe_offset +
5900 stripe_nr * map->stripe_len;
5901 bbio->stripes[i].dev =
5902 map->stripes[stripe_index].dev;
5903 stripe_index++;
5904 }
5905
5906 if (need_full_stripe(op))
5907 max_errors = btrfs_chunk_max_errors(map);
5908
5909 if (bbio->raid_map)
5910 sort_parity_stripes(bbio, num_stripes);
5911
5912 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5913 need_full_stripe(op)) {
5914 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5915 &max_errors);
5916 }
5917
5918 *bbio_ret = bbio;
5919 bbio->map_type = map->type;
5920 bbio->num_stripes = num_stripes;
5921 bbio->max_errors = max_errors;
5922 bbio->mirror_num = mirror_num;
5923
5924 /*
5925 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5926 * mirror_num == num_stripes + 1 && dev_replace target drive is
5927 * available as a mirror
5928 */
5929 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5930 WARN_ON(num_stripes > 1);
5931 bbio->stripes[0].dev = dev_replace->tgtdev;
5932 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5933 bbio->mirror_num = map->num_stripes + 1;
5934 }
5935 out:
5936 if (dev_replace_is_ongoing) {
5937 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5938 btrfs_dev_replace_read_unlock(dev_replace);
5939 }
5940 free_extent_map(em);
5941 return ret;
5942 }
5943
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5944 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5945 u64 logical, u64 *length,
5946 struct btrfs_bio **bbio_ret, int mirror_num)
5947 {
5948 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5949 mirror_num, 0);
5950 }
5951
5952 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)5953 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5954 u64 logical, u64 *length,
5955 struct btrfs_bio **bbio_ret)
5956 {
5957 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5958 }
5959
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)5960 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5961 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5962 {
5963 struct extent_map *em;
5964 struct map_lookup *map;
5965 u64 *buf;
5966 u64 bytenr;
5967 u64 length;
5968 u64 stripe_nr;
5969 u64 rmap_len;
5970 int i, j, nr = 0;
5971
5972 em = get_chunk_map(fs_info, chunk_start, 1);
5973 if (IS_ERR(em))
5974 return -EIO;
5975
5976 map = em->map_lookup;
5977 length = em->len;
5978 rmap_len = map->stripe_len;
5979
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5981 length = div_u64(length, map->num_stripes / map->sub_stripes);
5982 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5983 length = div_u64(length, map->num_stripes);
5984 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5985 length = div_u64(length, nr_data_stripes(map));
5986 rmap_len = map->stripe_len * nr_data_stripes(map);
5987 }
5988
5989 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5990 BUG_ON(!buf); /* -ENOMEM */
5991
5992 for (i = 0; i < map->num_stripes; i++) {
5993 if (map->stripes[i].physical > physical ||
5994 map->stripes[i].physical + length <= physical)
5995 continue;
5996
5997 stripe_nr = physical - map->stripes[i].physical;
5998 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5999
6000 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6001 stripe_nr = stripe_nr * map->num_stripes + i;
6002 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6003 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6004 stripe_nr = stripe_nr * map->num_stripes + i;
6005 } /* else if RAID[56], multiply by nr_data_stripes().
6006 * Alternatively, just use rmap_len below instead of
6007 * map->stripe_len */
6008
6009 bytenr = chunk_start + stripe_nr * rmap_len;
6010 WARN_ON(nr >= map->num_stripes);
6011 for (j = 0; j < nr; j++) {
6012 if (buf[j] == bytenr)
6013 break;
6014 }
6015 if (j == nr) {
6016 WARN_ON(nr >= map->num_stripes);
6017 buf[nr++] = bytenr;
6018 }
6019 }
6020
6021 *logical = buf;
6022 *naddrs = nr;
6023 *stripe_len = rmap_len;
6024
6025 free_extent_map(em);
6026 return 0;
6027 }
6028
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6029 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6030 {
6031 bio->bi_private = bbio->private;
6032 bio->bi_end_io = bbio->end_io;
6033 bio_endio(bio);
6034
6035 btrfs_put_bbio(bbio);
6036 }
6037
btrfs_end_bio(struct bio * bio)6038 static void btrfs_end_bio(struct bio *bio)
6039 {
6040 struct btrfs_bio *bbio = bio->bi_private;
6041 int is_orig_bio = 0;
6042
6043 if (bio->bi_status) {
6044 atomic_inc(&bbio->error);
6045 if (bio->bi_status == BLK_STS_IOERR ||
6046 bio->bi_status == BLK_STS_TARGET) {
6047 unsigned int stripe_index =
6048 btrfs_io_bio(bio)->stripe_index;
6049 struct btrfs_device *dev;
6050
6051 BUG_ON(stripe_index >= bbio->num_stripes);
6052 dev = bbio->stripes[stripe_index].dev;
6053 if (dev->bdev) {
6054 if (bio_op(bio) == REQ_OP_WRITE)
6055 btrfs_dev_stat_inc_and_print(dev,
6056 BTRFS_DEV_STAT_WRITE_ERRS);
6057 else if (!(bio->bi_opf & REQ_RAHEAD))
6058 btrfs_dev_stat_inc_and_print(dev,
6059 BTRFS_DEV_STAT_READ_ERRS);
6060 if (bio->bi_opf & REQ_PREFLUSH)
6061 btrfs_dev_stat_inc_and_print(dev,
6062 BTRFS_DEV_STAT_FLUSH_ERRS);
6063 }
6064 }
6065 }
6066
6067 if (bio == bbio->orig_bio)
6068 is_orig_bio = 1;
6069
6070 btrfs_bio_counter_dec(bbio->fs_info);
6071
6072 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6073 if (!is_orig_bio) {
6074 bio_put(bio);
6075 bio = bbio->orig_bio;
6076 }
6077
6078 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6079 /* only send an error to the higher layers if it is
6080 * beyond the tolerance of the btrfs bio
6081 */
6082 if (atomic_read(&bbio->error) > bbio->max_errors) {
6083 bio->bi_status = BLK_STS_IOERR;
6084 } else {
6085 /*
6086 * this bio is actually up to date, we didn't
6087 * go over the max number of errors
6088 */
6089 bio->bi_status = BLK_STS_OK;
6090 }
6091
6092 btrfs_end_bbio(bbio, bio);
6093 } else if (!is_orig_bio) {
6094 bio_put(bio);
6095 }
6096 }
6097
6098 /*
6099 * see run_scheduled_bios for a description of why bios are collected for
6100 * async submit.
6101 *
6102 * This will add one bio to the pending list for a device and make sure
6103 * the work struct is scheduled.
6104 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6105 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6106 struct bio *bio)
6107 {
6108 struct btrfs_fs_info *fs_info = device->fs_info;
6109 int should_queue = 1;
6110 struct btrfs_pending_bios *pending_bios;
6111
6112 /* don't bother with additional async steps for reads, right now */
6113 if (bio_op(bio) == REQ_OP_READ) {
6114 btrfsic_submit_bio(bio);
6115 return;
6116 }
6117
6118 WARN_ON(bio->bi_next);
6119 bio->bi_next = NULL;
6120
6121 spin_lock(&device->io_lock);
6122 if (op_is_sync(bio->bi_opf))
6123 pending_bios = &device->pending_sync_bios;
6124 else
6125 pending_bios = &device->pending_bios;
6126
6127 if (pending_bios->tail)
6128 pending_bios->tail->bi_next = bio;
6129
6130 pending_bios->tail = bio;
6131 if (!pending_bios->head)
6132 pending_bios->head = bio;
6133 if (device->running_pending)
6134 should_queue = 0;
6135
6136 spin_unlock(&device->io_lock);
6137
6138 if (should_queue)
6139 btrfs_queue_work(fs_info->submit_workers, &device->work);
6140 }
6141
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6142 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6143 u64 physical, int dev_nr, int async)
6144 {
6145 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6146 struct btrfs_fs_info *fs_info = bbio->fs_info;
6147
6148 bio->bi_private = bbio;
6149 btrfs_io_bio(bio)->stripe_index = dev_nr;
6150 bio->bi_end_io = btrfs_end_bio;
6151 bio->bi_iter.bi_sector = physical >> 9;
6152 btrfs_debug_in_rcu(fs_info,
6153 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6154 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6155 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6156 bio->bi_iter.bi_size);
6157 bio_set_dev(bio, dev->bdev);
6158
6159 btrfs_bio_counter_inc_noblocked(fs_info);
6160
6161 if (async)
6162 btrfs_schedule_bio(dev, bio);
6163 else
6164 btrfsic_submit_bio(bio);
6165 }
6166
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6167 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6168 {
6169 atomic_inc(&bbio->error);
6170 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6171 /* Should be the original bio. */
6172 WARN_ON(bio != bbio->orig_bio);
6173
6174 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6175 bio->bi_iter.bi_sector = logical >> 9;
6176 if (atomic_read(&bbio->error) > bbio->max_errors)
6177 bio->bi_status = BLK_STS_IOERR;
6178 else
6179 bio->bi_status = BLK_STS_OK;
6180 btrfs_end_bbio(bbio, bio);
6181 }
6182 }
6183
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6184 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6185 int mirror_num, int async_submit)
6186 {
6187 struct btrfs_device *dev;
6188 struct bio *first_bio = bio;
6189 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6190 u64 length = 0;
6191 u64 map_length;
6192 int ret;
6193 int dev_nr;
6194 int total_devs;
6195 struct btrfs_bio *bbio = NULL;
6196
6197 length = bio->bi_iter.bi_size;
6198 map_length = length;
6199
6200 btrfs_bio_counter_inc_blocked(fs_info);
6201 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6202 &map_length, &bbio, mirror_num, 1);
6203 if (ret) {
6204 btrfs_bio_counter_dec(fs_info);
6205 return errno_to_blk_status(ret);
6206 }
6207
6208 total_devs = bbio->num_stripes;
6209 bbio->orig_bio = first_bio;
6210 bbio->private = first_bio->bi_private;
6211 bbio->end_io = first_bio->bi_end_io;
6212 bbio->fs_info = fs_info;
6213 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6214
6215 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6216 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6217 /* In this case, map_length has been set to the length of
6218 a single stripe; not the whole write */
6219 if (bio_op(bio) == REQ_OP_WRITE) {
6220 ret = raid56_parity_write(fs_info, bio, bbio,
6221 map_length);
6222 } else {
6223 ret = raid56_parity_recover(fs_info, bio, bbio,
6224 map_length, mirror_num, 1);
6225 }
6226
6227 btrfs_bio_counter_dec(fs_info);
6228 return errno_to_blk_status(ret);
6229 }
6230
6231 if (map_length < length) {
6232 btrfs_crit(fs_info,
6233 "mapping failed logical %llu bio len %llu len %llu",
6234 logical, length, map_length);
6235 BUG();
6236 }
6237
6238 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6239 dev = bbio->stripes[dev_nr].dev;
6240 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6241 &dev->dev_state) ||
6242 (bio_op(first_bio) == REQ_OP_WRITE &&
6243 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6244 bbio_error(bbio, first_bio, logical);
6245 continue;
6246 }
6247
6248 if (dev_nr < total_devs - 1)
6249 bio = btrfs_bio_clone(first_bio);
6250 else
6251 bio = first_bio;
6252
6253 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6254 dev_nr, async_submit);
6255 }
6256 btrfs_bio_counter_dec(fs_info);
6257 return BLK_STS_OK;
6258 }
6259
6260 /*
6261 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6262 * return NULL.
6263 *
6264 * If devid and uuid are both specified, the match must be exact, otherwise
6265 * only devid is used.
6266 *
6267 * If @seed is true, traverse through the seed devices.
6268 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6269 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6270 u64 devid, u8 *uuid, u8 *fsid,
6271 bool seed)
6272 {
6273 struct btrfs_device *device;
6274
6275 while (fs_devices) {
6276 if (!fsid ||
6277 !memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6278 list_for_each_entry(device, &fs_devices->devices,
6279 dev_list) {
6280 if (device->devid == devid &&
6281 (!uuid || memcmp(device->uuid, uuid,
6282 BTRFS_UUID_SIZE) == 0))
6283 return device;
6284 }
6285 }
6286 if (seed)
6287 fs_devices = fs_devices->seed;
6288 else
6289 return NULL;
6290 }
6291 return NULL;
6292 }
6293
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6294 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6295 u64 devid, u8 *dev_uuid)
6296 {
6297 struct btrfs_device *device;
6298 unsigned int nofs_flag;
6299
6300 /*
6301 * We call this under the chunk_mutex, so we want to use NOFS for this
6302 * allocation, however we don't want to change btrfs_alloc_device() to
6303 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6304 * places.
6305 */
6306 nofs_flag = memalloc_nofs_save();
6307 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6308 memalloc_nofs_restore(nofs_flag);
6309 if (IS_ERR(device))
6310 return device;
6311
6312 list_add(&device->dev_list, &fs_devices->devices);
6313 device->fs_devices = fs_devices;
6314 fs_devices->num_devices++;
6315
6316 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6317 fs_devices->missing_devices++;
6318
6319 return device;
6320 }
6321
6322 /**
6323 * btrfs_alloc_device - allocate struct btrfs_device
6324 * @fs_info: used only for generating a new devid, can be NULL if
6325 * devid is provided (i.e. @devid != NULL).
6326 * @devid: a pointer to devid for this device. If NULL a new devid
6327 * is generated.
6328 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6329 * is generated.
6330 *
6331 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6332 * on error. Returned struct is not linked onto any lists and must be
6333 * destroyed with btrfs_free_device.
6334 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6335 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6336 const u64 *devid,
6337 const u8 *uuid)
6338 {
6339 struct btrfs_device *dev;
6340 u64 tmp;
6341
6342 if (WARN_ON(!devid && !fs_info))
6343 return ERR_PTR(-EINVAL);
6344
6345 dev = __alloc_device();
6346 if (IS_ERR(dev))
6347 return dev;
6348
6349 if (devid)
6350 tmp = *devid;
6351 else {
6352 int ret;
6353
6354 ret = find_next_devid(fs_info, &tmp);
6355 if (ret) {
6356 btrfs_free_device(dev);
6357 return ERR_PTR(ret);
6358 }
6359 }
6360 dev->devid = tmp;
6361
6362 if (uuid)
6363 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6364 else
6365 generate_random_uuid(dev->uuid);
6366
6367 btrfs_init_work(&dev->work, btrfs_submit_helper,
6368 pending_bios_fn, NULL, NULL);
6369
6370 return dev;
6371 }
6372
6373 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6374 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6375 struct extent_buffer *leaf,
6376 struct btrfs_chunk *chunk, u64 logical)
6377 {
6378 u64 length;
6379 u64 stripe_len;
6380 u16 num_stripes;
6381 u16 sub_stripes;
6382 u64 type;
6383 u64 features;
6384 bool mixed = false;
6385
6386 length = btrfs_chunk_length(leaf, chunk);
6387 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6388 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6389 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6390 type = btrfs_chunk_type(leaf, chunk);
6391
6392 if (!num_stripes) {
6393 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6394 num_stripes);
6395 return -EIO;
6396 }
6397 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6398 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6399 return -EIO;
6400 }
6401 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6402 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6403 btrfs_chunk_sector_size(leaf, chunk));
6404 return -EIO;
6405 }
6406 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6407 btrfs_err(fs_info, "invalid chunk length %llu", length);
6408 return -EIO;
6409 }
6410 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6411 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6412 stripe_len);
6413 return -EIO;
6414 }
6415 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6416 type) {
6417 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6418 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6419 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6420 btrfs_chunk_type(leaf, chunk));
6421 return -EIO;
6422 }
6423
6424 if (!is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
6425 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) {
6426 btrfs_err(fs_info,
6427 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
6428 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6429 return -EIO;
6430 }
6431
6432 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6433 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6434 return -EIO;
6435 }
6436
6437 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6438 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6439 btrfs_err(fs_info,
6440 "system chunk with data or metadata type: 0x%llx", type);
6441 return -EIO;
6442 }
6443
6444 features = btrfs_super_incompat_flags(fs_info->super_copy);
6445 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6446 mixed = true;
6447
6448 if (!mixed) {
6449 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6450 (type & BTRFS_BLOCK_GROUP_DATA)) {
6451 btrfs_err(fs_info,
6452 "mixed chunk type in non-mixed mode: 0x%llx", type);
6453 return -EIO;
6454 }
6455 }
6456
6457 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6458 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6459 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6460 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6461 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6462 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6463 num_stripes != 1)) {
6464 btrfs_err(fs_info,
6465 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6466 num_stripes, sub_stripes,
6467 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6468 return -EIO;
6469 }
6470
6471 return 0;
6472 }
6473
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6474 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6475 u64 devid, u8 *uuid, bool error)
6476 {
6477 if (error)
6478 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6479 devid, uuid);
6480 else
6481 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6482 devid, uuid);
6483 }
6484
read_one_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6485 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6486 struct extent_buffer *leaf,
6487 struct btrfs_chunk *chunk)
6488 {
6489 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6490 struct map_lookup *map;
6491 struct extent_map *em;
6492 u64 logical;
6493 u64 length;
6494 u64 devid;
6495 u8 uuid[BTRFS_UUID_SIZE];
6496 int num_stripes;
6497 int ret;
6498 int i;
6499
6500 logical = key->offset;
6501 length = btrfs_chunk_length(leaf, chunk);
6502 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6503
6504 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6505 if (ret)
6506 return ret;
6507
6508 read_lock(&map_tree->map_tree.lock);
6509 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6510 read_unlock(&map_tree->map_tree.lock);
6511
6512 /* already mapped? */
6513 if (em && em->start <= logical && em->start + em->len > logical) {
6514 free_extent_map(em);
6515 return 0;
6516 } else if (em) {
6517 free_extent_map(em);
6518 }
6519
6520 em = alloc_extent_map();
6521 if (!em)
6522 return -ENOMEM;
6523 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6524 if (!map) {
6525 free_extent_map(em);
6526 return -ENOMEM;
6527 }
6528
6529 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6530 em->map_lookup = map;
6531 em->start = logical;
6532 em->len = length;
6533 em->orig_start = 0;
6534 em->block_start = 0;
6535 em->block_len = em->len;
6536
6537 map->num_stripes = num_stripes;
6538 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6539 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6540 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6541 map->type = btrfs_chunk_type(leaf, chunk);
6542 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6543 map->verified_stripes = 0;
6544 for (i = 0; i < num_stripes; i++) {
6545 map->stripes[i].physical =
6546 btrfs_stripe_offset_nr(leaf, chunk, i);
6547 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6548 read_extent_buffer(leaf, uuid, (unsigned long)
6549 btrfs_stripe_dev_uuid_nr(chunk, i),
6550 BTRFS_UUID_SIZE);
6551 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6552 devid, uuid, NULL, true);
6553 if (!map->stripes[i].dev &&
6554 !btrfs_test_opt(fs_info, DEGRADED)) {
6555 free_extent_map(em);
6556 btrfs_report_missing_device(fs_info, devid, uuid, true);
6557 return -ENOENT;
6558 }
6559 if (!map->stripes[i].dev) {
6560 map->stripes[i].dev =
6561 add_missing_dev(fs_info->fs_devices, devid,
6562 uuid);
6563 if (IS_ERR(map->stripes[i].dev)) {
6564 free_extent_map(em);
6565 btrfs_err(fs_info,
6566 "failed to init missing dev %llu: %ld",
6567 devid, PTR_ERR(map->stripes[i].dev));
6568 return PTR_ERR(map->stripes[i].dev);
6569 }
6570 btrfs_report_missing_device(fs_info, devid, uuid, false);
6571 }
6572 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6573 &(map->stripes[i].dev->dev_state));
6574
6575 }
6576
6577 write_lock(&map_tree->map_tree.lock);
6578 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6579 write_unlock(&map_tree->map_tree.lock);
6580 if (ret < 0) {
6581 btrfs_err(fs_info,
6582 "failed to add chunk map, start=%llu len=%llu: %d",
6583 em->start, em->len, ret);
6584 }
6585 free_extent_map(em);
6586
6587 return ret;
6588 }
6589
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6590 static void fill_device_from_item(struct extent_buffer *leaf,
6591 struct btrfs_dev_item *dev_item,
6592 struct btrfs_device *device)
6593 {
6594 unsigned long ptr;
6595
6596 device->devid = btrfs_device_id(leaf, dev_item);
6597 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6598 device->total_bytes = device->disk_total_bytes;
6599 device->commit_total_bytes = device->disk_total_bytes;
6600 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6601 device->commit_bytes_used = device->bytes_used;
6602 device->type = btrfs_device_type(leaf, dev_item);
6603 device->io_align = btrfs_device_io_align(leaf, dev_item);
6604 device->io_width = btrfs_device_io_width(leaf, dev_item);
6605 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6606 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6607 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6608
6609 ptr = btrfs_device_uuid(dev_item);
6610 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6611 }
6612
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6613 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6614 u8 *fsid)
6615 {
6616 struct btrfs_fs_devices *fs_devices;
6617 int ret;
6618
6619 lockdep_assert_held(&uuid_mutex);
6620 ASSERT(fsid);
6621
6622 fs_devices = fs_info->fs_devices->seed;
6623 while (fs_devices) {
6624 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6625 return fs_devices;
6626
6627 fs_devices = fs_devices->seed;
6628 }
6629
6630 fs_devices = find_fsid(fsid);
6631 if (!fs_devices) {
6632 if (!btrfs_test_opt(fs_info, DEGRADED))
6633 return ERR_PTR(-ENOENT);
6634
6635 fs_devices = alloc_fs_devices(fsid);
6636 if (IS_ERR(fs_devices))
6637 return fs_devices;
6638
6639 fs_devices->seeding = 1;
6640 fs_devices->opened = 1;
6641 return fs_devices;
6642 }
6643
6644 fs_devices = clone_fs_devices(fs_devices);
6645 if (IS_ERR(fs_devices))
6646 return fs_devices;
6647
6648 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6649 if (ret) {
6650 free_fs_devices(fs_devices);
6651 fs_devices = ERR_PTR(ret);
6652 goto out;
6653 }
6654
6655 if (!fs_devices->seeding) {
6656 close_fs_devices(fs_devices);
6657 free_fs_devices(fs_devices);
6658 fs_devices = ERR_PTR(-EINVAL);
6659 goto out;
6660 }
6661
6662 fs_devices->seed = fs_info->fs_devices->seed;
6663 fs_info->fs_devices->seed = fs_devices;
6664 out:
6665 return fs_devices;
6666 }
6667
read_one_dev(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6668 static int read_one_dev(struct btrfs_fs_info *fs_info,
6669 struct extent_buffer *leaf,
6670 struct btrfs_dev_item *dev_item)
6671 {
6672 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6673 struct btrfs_device *device;
6674 u64 devid;
6675 int ret;
6676 u8 fs_uuid[BTRFS_FSID_SIZE];
6677 u8 dev_uuid[BTRFS_UUID_SIZE];
6678
6679 devid = btrfs_device_id(leaf, dev_item);
6680 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6681 BTRFS_UUID_SIZE);
6682 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6683 BTRFS_FSID_SIZE);
6684
6685 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6686 fs_devices = open_seed_devices(fs_info, fs_uuid);
6687 if (IS_ERR(fs_devices))
6688 return PTR_ERR(fs_devices);
6689 }
6690
6691 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6692 fs_uuid, true);
6693 if (!device) {
6694 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6695 btrfs_report_missing_device(fs_info, devid,
6696 dev_uuid, true);
6697 return -ENOENT;
6698 }
6699
6700 device = add_missing_dev(fs_devices, devid, dev_uuid);
6701 if (IS_ERR(device)) {
6702 btrfs_err(fs_info,
6703 "failed to add missing dev %llu: %ld",
6704 devid, PTR_ERR(device));
6705 return PTR_ERR(device);
6706 }
6707 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6708 } else {
6709 if (!device->bdev) {
6710 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6711 btrfs_report_missing_device(fs_info,
6712 devid, dev_uuid, true);
6713 return -ENOENT;
6714 }
6715 btrfs_report_missing_device(fs_info, devid,
6716 dev_uuid, false);
6717 }
6718
6719 if (!device->bdev &&
6720 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6721 /*
6722 * this happens when a device that was properly setup
6723 * in the device info lists suddenly goes bad.
6724 * device->bdev is NULL, and so we have to set
6725 * device->missing to one here
6726 */
6727 device->fs_devices->missing_devices++;
6728 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6729 }
6730
6731 /* Move the device to its own fs_devices */
6732 if (device->fs_devices != fs_devices) {
6733 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6734 &device->dev_state));
6735
6736 list_move(&device->dev_list, &fs_devices->devices);
6737 device->fs_devices->num_devices--;
6738 fs_devices->num_devices++;
6739
6740 device->fs_devices->missing_devices--;
6741 fs_devices->missing_devices++;
6742
6743 device->fs_devices = fs_devices;
6744 }
6745 }
6746
6747 if (device->fs_devices != fs_info->fs_devices) {
6748 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6749 if (device->generation !=
6750 btrfs_device_generation(leaf, dev_item))
6751 return -EINVAL;
6752 }
6753
6754 fill_device_from_item(leaf, dev_item, device);
6755 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6756 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6757 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6758 device->fs_devices->total_rw_bytes += device->total_bytes;
6759 atomic64_add(device->total_bytes - device->bytes_used,
6760 &fs_info->free_chunk_space);
6761 }
6762 ret = 0;
6763 return ret;
6764 }
6765
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6766 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6767 {
6768 struct btrfs_root *root = fs_info->tree_root;
6769 struct btrfs_super_block *super_copy = fs_info->super_copy;
6770 struct extent_buffer *sb;
6771 struct btrfs_disk_key *disk_key;
6772 struct btrfs_chunk *chunk;
6773 u8 *array_ptr;
6774 unsigned long sb_array_offset;
6775 int ret = 0;
6776 u32 num_stripes;
6777 u32 array_size;
6778 u32 len = 0;
6779 u32 cur_offset;
6780 u64 type;
6781 struct btrfs_key key;
6782
6783 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6784 /*
6785 * This will create extent buffer of nodesize, superblock size is
6786 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6787 * overallocate but we can keep it as-is, only the first page is used.
6788 */
6789 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6790 if (IS_ERR(sb))
6791 return PTR_ERR(sb);
6792 set_extent_buffer_uptodate(sb);
6793 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6794 /*
6795 * The sb extent buffer is artificial and just used to read the system array.
6796 * set_extent_buffer_uptodate() call does not properly mark all it's
6797 * pages up-to-date when the page is larger: extent does not cover the
6798 * whole page and consequently check_page_uptodate does not find all
6799 * the page's extents up-to-date (the hole beyond sb),
6800 * write_extent_buffer then triggers a WARN_ON.
6801 *
6802 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6803 * but sb spans only this function. Add an explicit SetPageUptodate call
6804 * to silence the warning eg. on PowerPC 64.
6805 */
6806 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6807 SetPageUptodate(sb->pages[0]);
6808
6809 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6810 array_size = btrfs_super_sys_array_size(super_copy);
6811
6812 array_ptr = super_copy->sys_chunk_array;
6813 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6814 cur_offset = 0;
6815
6816 while (cur_offset < array_size) {
6817 disk_key = (struct btrfs_disk_key *)array_ptr;
6818 len = sizeof(*disk_key);
6819 if (cur_offset + len > array_size)
6820 goto out_short_read;
6821
6822 btrfs_disk_key_to_cpu(&key, disk_key);
6823
6824 array_ptr += len;
6825 sb_array_offset += len;
6826 cur_offset += len;
6827
6828 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6829 chunk = (struct btrfs_chunk *)sb_array_offset;
6830 /*
6831 * At least one btrfs_chunk with one stripe must be
6832 * present, exact stripe count check comes afterwards
6833 */
6834 len = btrfs_chunk_item_size(1);
6835 if (cur_offset + len > array_size)
6836 goto out_short_read;
6837
6838 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6839 if (!num_stripes) {
6840 btrfs_err(fs_info,
6841 "invalid number of stripes %u in sys_array at offset %u",
6842 num_stripes, cur_offset);
6843 ret = -EIO;
6844 break;
6845 }
6846
6847 type = btrfs_chunk_type(sb, chunk);
6848 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6849 btrfs_err(fs_info,
6850 "invalid chunk type %llu in sys_array at offset %u",
6851 type, cur_offset);
6852 ret = -EIO;
6853 break;
6854 }
6855
6856 len = btrfs_chunk_item_size(num_stripes);
6857 if (cur_offset + len > array_size)
6858 goto out_short_read;
6859
6860 ret = read_one_chunk(fs_info, &key, sb, chunk);
6861 if (ret)
6862 break;
6863 } else {
6864 btrfs_err(fs_info,
6865 "unexpected item type %u in sys_array at offset %u",
6866 (u32)key.type, cur_offset);
6867 ret = -EIO;
6868 break;
6869 }
6870 array_ptr += len;
6871 sb_array_offset += len;
6872 cur_offset += len;
6873 }
6874 clear_extent_buffer_uptodate(sb);
6875 free_extent_buffer_stale(sb);
6876 return ret;
6877
6878 out_short_read:
6879 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6880 len, cur_offset);
6881 clear_extent_buffer_uptodate(sb);
6882 free_extent_buffer_stale(sb);
6883 return -EIO;
6884 }
6885
6886 /*
6887 * Check if all chunks in the fs are OK for read-write degraded mount
6888 *
6889 * If the @failing_dev is specified, it's accounted as missing.
6890 *
6891 * Return true if all chunks meet the minimal RW mount requirements.
6892 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6893 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)6894 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6895 struct btrfs_device *failing_dev)
6896 {
6897 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6898 struct extent_map *em;
6899 u64 next_start = 0;
6900 bool ret = true;
6901
6902 read_lock(&map_tree->map_tree.lock);
6903 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6904 read_unlock(&map_tree->map_tree.lock);
6905 /* No chunk at all? Return false anyway */
6906 if (!em) {
6907 ret = false;
6908 goto out;
6909 }
6910 while (em) {
6911 struct map_lookup *map;
6912 int missing = 0;
6913 int max_tolerated;
6914 int i;
6915
6916 map = em->map_lookup;
6917 max_tolerated =
6918 btrfs_get_num_tolerated_disk_barrier_failures(
6919 map->type);
6920 for (i = 0; i < map->num_stripes; i++) {
6921 struct btrfs_device *dev = map->stripes[i].dev;
6922
6923 if (!dev || !dev->bdev ||
6924 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6925 dev->last_flush_error)
6926 missing++;
6927 else if (failing_dev && failing_dev == dev)
6928 missing++;
6929 }
6930 if (missing > max_tolerated) {
6931 if (!failing_dev)
6932 btrfs_warn(fs_info,
6933 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6934 em->start, missing, max_tolerated);
6935 free_extent_map(em);
6936 ret = false;
6937 goto out;
6938 }
6939 next_start = extent_map_end(em);
6940 free_extent_map(em);
6941
6942 read_lock(&map_tree->map_tree.lock);
6943 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6944 (u64)(-1) - next_start);
6945 read_unlock(&map_tree->map_tree.lock);
6946 }
6947 out:
6948 return ret;
6949 }
6950
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)6951 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6952 {
6953 struct btrfs_root *root = fs_info->chunk_root;
6954 struct btrfs_path *path;
6955 struct extent_buffer *leaf;
6956 struct btrfs_key key;
6957 struct btrfs_key found_key;
6958 int ret;
6959 int slot;
6960 u64 total_dev = 0;
6961
6962 path = btrfs_alloc_path();
6963 if (!path)
6964 return -ENOMEM;
6965
6966 /*
6967 * uuid_mutex is needed only if we are mounting a sprout FS
6968 * otherwise we don't need it.
6969 */
6970 mutex_lock(&uuid_mutex);
6971 mutex_lock(&fs_info->chunk_mutex);
6972
6973 /*
6974 * It is possible for mount and umount to race in such a way that
6975 * we execute this code path, but open_fs_devices failed to clear
6976 * total_rw_bytes. We certainly want it cleared before reading the
6977 * device items, so clear it here.
6978 */
6979 fs_info->fs_devices->total_rw_bytes = 0;
6980
6981 /*
6982 * Read all device items, and then all the chunk items. All
6983 * device items are found before any chunk item (their object id
6984 * is smaller than the lowest possible object id for a chunk
6985 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6986 */
6987 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6988 key.offset = 0;
6989 key.type = 0;
6990 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6991 if (ret < 0)
6992 goto error;
6993 while (1) {
6994 leaf = path->nodes[0];
6995 slot = path->slots[0];
6996 if (slot >= btrfs_header_nritems(leaf)) {
6997 ret = btrfs_next_leaf(root, path);
6998 if (ret == 0)
6999 continue;
7000 if (ret < 0)
7001 goto error;
7002 break;
7003 }
7004 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7005 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7006 struct btrfs_dev_item *dev_item;
7007 dev_item = btrfs_item_ptr(leaf, slot,
7008 struct btrfs_dev_item);
7009 ret = read_one_dev(fs_info, leaf, dev_item);
7010 if (ret)
7011 goto error;
7012 total_dev++;
7013 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7014 struct btrfs_chunk *chunk;
7015 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7016 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7017 if (ret)
7018 goto error;
7019 }
7020 path->slots[0]++;
7021 }
7022
7023 /*
7024 * After loading chunk tree, we've got all device information,
7025 * do another round of validation checks.
7026 */
7027 if (total_dev != fs_info->fs_devices->total_devices) {
7028 btrfs_err(fs_info,
7029 "super_num_devices %llu mismatch with num_devices %llu found here",
7030 btrfs_super_num_devices(fs_info->super_copy),
7031 total_dev);
7032 ret = -EINVAL;
7033 goto error;
7034 }
7035 if (btrfs_super_total_bytes(fs_info->super_copy) <
7036 fs_info->fs_devices->total_rw_bytes) {
7037 btrfs_err(fs_info,
7038 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7039 btrfs_super_total_bytes(fs_info->super_copy),
7040 fs_info->fs_devices->total_rw_bytes);
7041 ret = -EINVAL;
7042 goto error;
7043 }
7044 ret = 0;
7045 error:
7046 mutex_unlock(&fs_info->chunk_mutex);
7047 mutex_unlock(&uuid_mutex);
7048
7049 btrfs_free_path(path);
7050 return ret;
7051 }
7052
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7053 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7054 {
7055 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7056 struct btrfs_device *device;
7057
7058 while (fs_devices) {
7059 mutex_lock(&fs_devices->device_list_mutex);
7060 list_for_each_entry(device, &fs_devices->devices, dev_list)
7061 device->fs_info = fs_info;
7062 mutex_unlock(&fs_devices->device_list_mutex);
7063
7064 fs_devices = fs_devices->seed;
7065 }
7066 }
7067
__btrfs_reset_dev_stats(struct btrfs_device * dev)7068 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7069 {
7070 int i;
7071
7072 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7073 btrfs_dev_stat_reset(dev, i);
7074 }
7075
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7076 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7077 {
7078 struct btrfs_key key;
7079 struct btrfs_key found_key;
7080 struct btrfs_root *dev_root = fs_info->dev_root;
7081 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7082 struct extent_buffer *eb;
7083 int slot;
7084 int ret = 0;
7085 struct btrfs_device *device;
7086 struct btrfs_path *path = NULL;
7087 int i;
7088
7089 path = btrfs_alloc_path();
7090 if (!path) {
7091 ret = -ENOMEM;
7092 goto out;
7093 }
7094
7095 mutex_lock(&fs_devices->device_list_mutex);
7096 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7097 int item_size;
7098 struct btrfs_dev_stats_item *ptr;
7099
7100 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7101 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7102 key.offset = device->devid;
7103 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7104 if (ret) {
7105 __btrfs_reset_dev_stats(device);
7106 device->dev_stats_valid = 1;
7107 btrfs_release_path(path);
7108 continue;
7109 }
7110 slot = path->slots[0];
7111 eb = path->nodes[0];
7112 btrfs_item_key_to_cpu(eb, &found_key, slot);
7113 item_size = btrfs_item_size_nr(eb, slot);
7114
7115 ptr = btrfs_item_ptr(eb, slot,
7116 struct btrfs_dev_stats_item);
7117
7118 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7119 if (item_size >= (1 + i) * sizeof(__le64))
7120 btrfs_dev_stat_set(device, i,
7121 btrfs_dev_stats_value(eb, ptr, i));
7122 else
7123 btrfs_dev_stat_reset(device, i);
7124 }
7125
7126 device->dev_stats_valid = 1;
7127 btrfs_dev_stat_print_on_load(device);
7128 btrfs_release_path(path);
7129 }
7130 mutex_unlock(&fs_devices->device_list_mutex);
7131
7132 out:
7133 btrfs_free_path(path);
7134 return ret < 0 ? ret : 0;
7135 }
7136
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7137 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7138 struct btrfs_device *device)
7139 {
7140 struct btrfs_fs_info *fs_info = trans->fs_info;
7141 struct btrfs_root *dev_root = fs_info->dev_root;
7142 struct btrfs_path *path;
7143 struct btrfs_key key;
7144 struct extent_buffer *eb;
7145 struct btrfs_dev_stats_item *ptr;
7146 int ret;
7147 int i;
7148
7149 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7150 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7151 key.offset = device->devid;
7152
7153 path = btrfs_alloc_path();
7154 if (!path)
7155 return -ENOMEM;
7156 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7157 if (ret < 0) {
7158 btrfs_warn_in_rcu(fs_info,
7159 "error %d while searching for dev_stats item for device %s",
7160 ret, rcu_str_deref(device->name));
7161 goto out;
7162 }
7163
7164 if (ret == 0 &&
7165 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7166 /* need to delete old one and insert a new one */
7167 ret = btrfs_del_item(trans, dev_root, path);
7168 if (ret != 0) {
7169 btrfs_warn_in_rcu(fs_info,
7170 "delete too small dev_stats item for device %s failed %d",
7171 rcu_str_deref(device->name), ret);
7172 goto out;
7173 }
7174 ret = 1;
7175 }
7176
7177 if (ret == 1) {
7178 /* need to insert a new item */
7179 btrfs_release_path(path);
7180 ret = btrfs_insert_empty_item(trans, dev_root, path,
7181 &key, sizeof(*ptr));
7182 if (ret < 0) {
7183 btrfs_warn_in_rcu(fs_info,
7184 "insert dev_stats item for device %s failed %d",
7185 rcu_str_deref(device->name), ret);
7186 goto out;
7187 }
7188 }
7189
7190 eb = path->nodes[0];
7191 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7192 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7193 btrfs_set_dev_stats_value(eb, ptr, i,
7194 btrfs_dev_stat_read(device, i));
7195 btrfs_mark_buffer_dirty(eb);
7196
7197 out:
7198 btrfs_free_path(path);
7199 return ret;
7200 }
7201
7202 /*
7203 * called from commit_transaction. Writes all changed device stats to disk.
7204 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)7205 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7206 struct btrfs_fs_info *fs_info)
7207 {
7208 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209 struct btrfs_device *device;
7210 int stats_cnt;
7211 int ret = 0;
7212
7213 mutex_lock(&fs_devices->device_list_mutex);
7214 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7215 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7216 if (!device->dev_stats_valid || stats_cnt == 0)
7217 continue;
7218
7219
7220 /*
7221 * There is a LOAD-LOAD control dependency between the value of
7222 * dev_stats_ccnt and updating the on-disk values which requires
7223 * reading the in-memory counters. Such control dependencies
7224 * require explicit read memory barriers.
7225 *
7226 * This memory barriers pairs with smp_mb__before_atomic in
7227 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7228 * barrier implied by atomic_xchg in
7229 * btrfs_dev_stats_read_and_reset
7230 */
7231 smp_rmb();
7232
7233 ret = update_dev_stat_item(trans, device);
7234 if (!ret)
7235 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7236 }
7237 mutex_unlock(&fs_devices->device_list_mutex);
7238
7239 return ret;
7240 }
7241
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7242 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7243 {
7244 btrfs_dev_stat_inc(dev, index);
7245 btrfs_dev_stat_print_on_error(dev);
7246 }
7247
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7249 {
7250 if (!dev->dev_stats_valid)
7251 return;
7252 btrfs_err_rl_in_rcu(dev->fs_info,
7253 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7254 rcu_str_deref(dev->name),
7255 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7256 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7257 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7258 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7260 }
7261
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7263 {
7264 int i;
7265
7266 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7267 if (btrfs_dev_stat_read(dev, i) != 0)
7268 break;
7269 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7270 return; /* all values == 0, suppress message */
7271
7272 btrfs_info_in_rcu(dev->fs_info,
7273 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7274 rcu_str_deref(dev->name),
7275 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7276 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7277 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7278 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7279 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7280 }
7281
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7282 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7283 struct btrfs_ioctl_get_dev_stats *stats)
7284 {
7285 struct btrfs_device *dev;
7286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287 int i;
7288
7289 mutex_lock(&fs_devices->device_list_mutex);
7290 dev = btrfs_find_device(fs_info->fs_devices, stats->devid,
7291 NULL, NULL, true);
7292 mutex_unlock(&fs_devices->device_list_mutex);
7293
7294 if (!dev) {
7295 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7296 return -ENODEV;
7297 } else if (!dev->dev_stats_valid) {
7298 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7299 return -ENODEV;
7300 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7301 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7302 if (stats->nr_items > i)
7303 stats->values[i] =
7304 btrfs_dev_stat_read_and_reset(dev, i);
7305 else
7306 btrfs_dev_stat_reset(dev, i);
7307 }
7308 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7309 current->comm, task_pid_nr(current));
7310 } else {
7311 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7312 if (stats->nr_items > i)
7313 stats->values[i] = btrfs_dev_stat_read(dev, i);
7314 }
7315 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7316 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7317 return 0;
7318 }
7319
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7320 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7321 {
7322 struct buffer_head *bh;
7323 struct btrfs_super_block *disk_super;
7324 int copy_num;
7325
7326 if (!bdev)
7327 return;
7328
7329 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7330 copy_num++) {
7331
7332 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7333 continue;
7334
7335 disk_super = (struct btrfs_super_block *)bh->b_data;
7336
7337 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7338 set_buffer_dirty(bh);
7339 sync_dirty_buffer(bh);
7340 brelse(bh);
7341 }
7342
7343 /* Notify udev that device has changed */
7344 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7345
7346 /* Update ctime/mtime for device path for libblkid */
7347 update_dev_time(device_path);
7348 }
7349
7350 /*
7351 * Update the size of all devices, which is used for writing out the
7352 * super blocks.
7353 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7354 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7355 {
7356 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7357 struct btrfs_device *curr, *next;
7358
7359 if (list_empty(&fs_devices->resized_devices))
7360 return;
7361
7362 mutex_lock(&fs_devices->device_list_mutex);
7363 mutex_lock(&fs_info->chunk_mutex);
7364 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7365 resized_list) {
7366 list_del_init(&curr->resized_list);
7367 curr->commit_total_bytes = curr->disk_total_bytes;
7368 }
7369 mutex_unlock(&fs_info->chunk_mutex);
7370 mutex_unlock(&fs_devices->device_list_mutex);
7371 }
7372
7373 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_transaction * trans)7374 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7375 {
7376 struct btrfs_fs_info *fs_info = trans->fs_info;
7377 struct extent_map *em;
7378 struct map_lookup *map;
7379 struct btrfs_device *dev;
7380 int i;
7381
7382 if (list_empty(&trans->pending_chunks))
7383 return;
7384
7385 /* In order to kick the device replace finish process */
7386 mutex_lock(&fs_info->chunk_mutex);
7387 list_for_each_entry(em, &trans->pending_chunks, list) {
7388 map = em->map_lookup;
7389
7390 for (i = 0; i < map->num_stripes; i++) {
7391 dev = map->stripes[i].dev;
7392 dev->commit_bytes_used = dev->bytes_used;
7393 dev->has_pending_chunks = false;
7394 }
7395 }
7396 mutex_unlock(&fs_info->chunk_mutex);
7397 }
7398
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7399 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7400 {
7401 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7402 while (fs_devices) {
7403 fs_devices->fs_info = fs_info;
7404 fs_devices = fs_devices->seed;
7405 }
7406 }
7407
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7408 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7409 {
7410 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7411 while (fs_devices) {
7412 fs_devices->fs_info = NULL;
7413 fs_devices = fs_devices->seed;
7414 }
7415 }
7416
7417 /*
7418 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7419 */
btrfs_bg_type_to_factor(u64 flags)7420 int btrfs_bg_type_to_factor(u64 flags)
7421 {
7422 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7423 BTRFS_BLOCK_GROUP_RAID10))
7424 return 2;
7425 return 1;
7426 }
7427
7428
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)7429 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7430 {
7431 int index = btrfs_bg_flags_to_raid_index(type);
7432 int ncopies = btrfs_raid_array[index].ncopies;
7433 int data_stripes;
7434
7435 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7436 case BTRFS_BLOCK_GROUP_RAID5:
7437 data_stripes = num_stripes - 1;
7438 break;
7439 case BTRFS_BLOCK_GROUP_RAID6:
7440 data_stripes = num_stripes - 2;
7441 break;
7442 default:
7443 data_stripes = num_stripes / ncopies;
7444 break;
7445 }
7446 return div_u64(chunk_len, data_stripes);
7447 }
7448
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7449 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7450 u64 chunk_offset, u64 devid,
7451 u64 physical_offset, u64 physical_len)
7452 {
7453 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7454 struct extent_map *em;
7455 struct map_lookup *map;
7456 struct btrfs_device *dev;
7457 u64 stripe_len;
7458 bool found = false;
7459 int ret = 0;
7460 int i;
7461
7462 read_lock(&em_tree->lock);
7463 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7464 read_unlock(&em_tree->lock);
7465
7466 if (!em) {
7467 btrfs_err(fs_info,
7468 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7469 physical_offset, devid);
7470 ret = -EUCLEAN;
7471 goto out;
7472 }
7473
7474 map = em->map_lookup;
7475 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7476 if (physical_len != stripe_len) {
7477 btrfs_err(fs_info,
7478 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7479 physical_offset, devid, em->start, physical_len,
7480 stripe_len);
7481 ret = -EUCLEAN;
7482 goto out;
7483 }
7484
7485 for (i = 0; i < map->num_stripes; i++) {
7486 if (map->stripes[i].dev->devid == devid &&
7487 map->stripes[i].physical == physical_offset) {
7488 found = true;
7489 if (map->verified_stripes >= map->num_stripes) {
7490 btrfs_err(fs_info,
7491 "too many dev extents for chunk %llu found",
7492 em->start);
7493 ret = -EUCLEAN;
7494 goto out;
7495 }
7496 map->verified_stripes++;
7497 break;
7498 }
7499 }
7500 if (!found) {
7501 btrfs_err(fs_info,
7502 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7503 physical_offset, devid);
7504 ret = -EUCLEAN;
7505 }
7506
7507 /* Make sure no dev extent is beyond device bondary */
7508 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7509 if (!dev) {
7510 btrfs_err(fs_info, "failed to find devid %llu", devid);
7511 ret = -EUCLEAN;
7512 goto out;
7513 }
7514
7515 /* It's possible this device is a dummy for seed device */
7516 if (dev->disk_total_bytes == 0) {
7517 dev = btrfs_find_device(fs_info->fs_devices->seed, devid,
7518 NULL, NULL, false);
7519 if (!dev) {
7520 btrfs_err(fs_info, "failed to find seed devid %llu",
7521 devid);
7522 ret = -EUCLEAN;
7523 goto out;
7524 }
7525 }
7526
7527 if (physical_offset + physical_len > dev->disk_total_bytes) {
7528 btrfs_err(fs_info,
7529 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7530 devid, physical_offset, physical_len,
7531 dev->disk_total_bytes);
7532 ret = -EUCLEAN;
7533 goto out;
7534 }
7535 out:
7536 free_extent_map(em);
7537 return ret;
7538 }
7539
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7540 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7541 {
7542 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7543 struct extent_map *em;
7544 struct rb_node *node;
7545 int ret = 0;
7546
7547 read_lock(&em_tree->lock);
7548 for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7549 em = rb_entry(node, struct extent_map, rb_node);
7550 if (em->map_lookup->num_stripes !=
7551 em->map_lookup->verified_stripes) {
7552 btrfs_err(fs_info,
7553 "chunk %llu has missing dev extent, have %d expect %d",
7554 em->start, em->map_lookup->verified_stripes,
7555 em->map_lookup->num_stripes);
7556 ret = -EUCLEAN;
7557 goto out;
7558 }
7559 }
7560 out:
7561 read_unlock(&em_tree->lock);
7562 return ret;
7563 }
7564
7565 /*
7566 * Ensure that all dev extents are mapped to correct chunk, otherwise
7567 * later chunk allocation/free would cause unexpected behavior.
7568 *
7569 * NOTE: This will iterate through the whole device tree, which should be of
7570 * the same size level as the chunk tree. This slightly increases mount time.
7571 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7572 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7573 {
7574 struct btrfs_path *path;
7575 struct btrfs_root *root = fs_info->dev_root;
7576 struct btrfs_key key;
7577 u64 prev_devid = 0;
7578 u64 prev_dev_ext_end = 0;
7579 int ret = 0;
7580
7581 key.objectid = 1;
7582 key.type = BTRFS_DEV_EXTENT_KEY;
7583 key.offset = 0;
7584
7585 path = btrfs_alloc_path();
7586 if (!path)
7587 return -ENOMEM;
7588
7589 path->reada = READA_FORWARD;
7590 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7591 if (ret < 0)
7592 goto out;
7593
7594 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7595 ret = btrfs_next_item(root, path);
7596 if (ret < 0)
7597 goto out;
7598 /* No dev extents at all? Not good */
7599 if (ret > 0) {
7600 ret = -EUCLEAN;
7601 goto out;
7602 }
7603 }
7604 while (1) {
7605 struct extent_buffer *leaf = path->nodes[0];
7606 struct btrfs_dev_extent *dext;
7607 int slot = path->slots[0];
7608 u64 chunk_offset;
7609 u64 physical_offset;
7610 u64 physical_len;
7611 u64 devid;
7612
7613 btrfs_item_key_to_cpu(leaf, &key, slot);
7614 if (key.type != BTRFS_DEV_EXTENT_KEY)
7615 break;
7616 devid = key.objectid;
7617 physical_offset = key.offset;
7618
7619 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7620 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7621 physical_len = btrfs_dev_extent_length(leaf, dext);
7622
7623 /* Check if this dev extent overlaps with the previous one */
7624 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7625 btrfs_err(fs_info,
7626 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7627 devid, physical_offset, prev_dev_ext_end);
7628 ret = -EUCLEAN;
7629 goto out;
7630 }
7631
7632 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7633 physical_offset, physical_len);
7634 if (ret < 0)
7635 goto out;
7636 prev_devid = devid;
7637 prev_dev_ext_end = physical_offset + physical_len;
7638
7639 ret = btrfs_next_item(root, path);
7640 if (ret < 0)
7641 goto out;
7642 if (ret > 0) {
7643 ret = 0;
7644 break;
7645 }
7646 }
7647
7648 /* Ensure all chunks have corresponding dev extents */
7649 ret = verify_chunk_dev_extent_mapping(fs_info);
7650 out:
7651 btrfs_free_path(path);
7652 return ret;
7653 }
7654