• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
8 
9 #include <linux/bio.h>
10 #include <linux/sort.h>
11 #include <linux/btrfs.h>
12 #include "async-thread.h"
13 
14 #define BTRFS_MAX_DATA_CHUNK_SIZE	(10ULL * SZ_1G)
15 
16 extern struct mutex uuid_mutex;
17 
18 #define BTRFS_STRIPE_LEN	SZ_64K
19 
20 struct buffer_head;
21 struct btrfs_pending_bios {
22 	struct bio *head;
23 	struct bio *tail;
24 };
25 
26 /*
27  * Use sequence counter to get consistent device stat data on
28  * 32-bit processors.
29  */
30 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
31 #include <linux/seqlock.h>
32 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
33 #define btrfs_device_data_ordered_init(device)	\
34 	seqcount_init(&device->data_seqcount)
35 #else
36 #define btrfs_device_data_ordered_init(device) do { } while (0)
37 #endif
38 
39 #define BTRFS_DEV_STATE_WRITEABLE	(0)
40 #define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
41 #define BTRFS_DEV_STATE_MISSING		(2)
42 #define BTRFS_DEV_STATE_REPLACE_TGT	(3)
43 #define BTRFS_DEV_STATE_FLUSH_SENT	(4)
44 
45 struct btrfs_device {
46 	struct list_head dev_list;
47 	struct list_head dev_alloc_list;
48 	struct btrfs_fs_devices *fs_devices;
49 	struct btrfs_fs_info *fs_info;
50 
51 	struct rcu_string *name;
52 
53 	u64 generation;
54 
55 	spinlock_t io_lock ____cacheline_aligned;
56 	int running_pending;
57 	/* When true means this device has pending chunk alloc in
58 	 * current transaction. Protected by chunk_mutex.
59 	 */
60 	bool has_pending_chunks;
61 
62 	/* regular prio bios */
63 	struct btrfs_pending_bios pending_bios;
64 	/* sync bios */
65 	struct btrfs_pending_bios pending_sync_bios;
66 
67 	struct block_device *bdev;
68 
69 	/* the mode sent to blkdev_get */
70 	fmode_t mode;
71 
72 	unsigned long dev_state;
73 	blk_status_t last_flush_error;
74 	int flush_bio_sent;
75 
76 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
77 	seqcount_t data_seqcount;
78 #endif
79 
80 	/* the internal btrfs device id */
81 	u64 devid;
82 
83 	/* size of the device in memory */
84 	u64 total_bytes;
85 
86 	/* size of the device on disk */
87 	u64 disk_total_bytes;
88 
89 	/* bytes used */
90 	u64 bytes_used;
91 
92 	/* optimal io alignment for this device */
93 	u32 io_align;
94 
95 	/* optimal io width for this device */
96 	u32 io_width;
97 	/* type and info about this device */
98 	u64 type;
99 
100 	/* minimal io size for this device */
101 	u32 sector_size;
102 
103 	/* physical drive uuid (or lvm uuid) */
104 	u8 uuid[BTRFS_UUID_SIZE];
105 
106 	/*
107 	 * size of the device on the current transaction
108 	 *
109 	 * This variant is update when committing the transaction,
110 	 * and protected by device_list_mutex
111 	 */
112 	u64 commit_total_bytes;
113 
114 	/* bytes used on the current transaction */
115 	u64 commit_bytes_used;
116 	/*
117 	 * used to manage the device which is resized
118 	 *
119 	 * It is protected by chunk_lock.
120 	 */
121 	struct list_head resized_list;
122 
123 	/* for sending down flush barriers */
124 	struct bio *flush_bio;
125 	struct completion flush_wait;
126 
127 	/* per-device scrub information */
128 	struct scrub_ctx *scrub_ctx;
129 
130 	struct btrfs_work work;
131 	struct rcu_head rcu;
132 
133 	/* readahead state */
134 	atomic_t reada_in_flight;
135 	u64 reada_next;
136 	struct reada_zone *reada_curr_zone;
137 	struct radix_tree_root reada_zones;
138 	struct radix_tree_root reada_extents;
139 
140 	/* disk I/O failure stats. For detailed description refer to
141 	 * enum btrfs_dev_stat_values in ioctl.h */
142 	int dev_stats_valid;
143 
144 	/* Counter to record the change of device stats */
145 	atomic_t dev_stats_ccnt;
146 	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
147 };
148 
149 /*
150  * If we read those variants at the context of their own lock, we needn't
151  * use the following helpers, reading them directly is safe.
152  */
153 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
154 #define BTRFS_DEVICE_GETSET_FUNCS(name)					\
155 static inline u64							\
156 btrfs_device_get_##name(const struct btrfs_device *dev)			\
157 {									\
158 	u64 size;							\
159 	unsigned int seq;						\
160 									\
161 	do {								\
162 		seq = read_seqcount_begin(&dev->data_seqcount);		\
163 		size = dev->name;					\
164 	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
165 	return size;							\
166 }									\
167 									\
168 static inline void							\
169 btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
170 {									\
171 	preempt_disable();						\
172 	write_seqcount_begin(&dev->data_seqcount);			\
173 	dev->name = size;						\
174 	write_seqcount_end(&dev->data_seqcount);			\
175 	preempt_enable();						\
176 }
177 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
178 #define BTRFS_DEVICE_GETSET_FUNCS(name)					\
179 static inline u64							\
180 btrfs_device_get_##name(const struct btrfs_device *dev)			\
181 {									\
182 	u64 size;							\
183 									\
184 	preempt_disable();						\
185 	size = dev->name;						\
186 	preempt_enable();						\
187 	return size;							\
188 }									\
189 									\
190 static inline void							\
191 btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
192 {									\
193 	preempt_disable();						\
194 	dev->name = size;						\
195 	preempt_enable();						\
196 }
197 #else
198 #define BTRFS_DEVICE_GETSET_FUNCS(name)					\
199 static inline u64							\
200 btrfs_device_get_##name(const struct btrfs_device *dev)			\
201 {									\
202 	return dev->name;						\
203 }									\
204 									\
205 static inline void							\
206 btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
207 {									\
208 	dev->name = size;						\
209 }
210 #endif
211 
212 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
213 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
214 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
215 
216 struct btrfs_fs_devices {
217 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
218 	struct list_head fs_list;
219 
220 	u64 num_devices;
221 	u64 open_devices;
222 	u64 rw_devices;
223 	u64 missing_devices;
224 	u64 total_rw_bytes;
225 	u64 total_devices;
226 	struct block_device *latest_bdev;
227 
228 	/* all of the devices in the FS, protected by a mutex
229 	 * so we can safely walk it to write out the supers without
230 	 * worrying about add/remove by the multi-device code.
231 	 * Scrubbing super can kick off supers writing by holding
232 	 * this mutex lock.
233 	 */
234 	struct mutex device_list_mutex;
235 	struct list_head devices;
236 
237 	struct list_head resized_devices;
238 	/* devices not currently being allocated */
239 	struct list_head alloc_list;
240 
241 	struct btrfs_fs_devices *seed;
242 	int seeding;
243 
244 	int opened;
245 
246 	/* set when we find or add a device that doesn't have the
247 	 * nonrot flag set
248 	 */
249 	int rotating;
250 
251 	struct btrfs_fs_info *fs_info;
252 	/* sysfs kobjects */
253 	struct kobject fsid_kobj;
254 	struct kobject *device_dir_kobj;
255 	struct completion kobj_unregister;
256 };
257 
258 #define BTRFS_BIO_INLINE_CSUM_SIZE	64
259 
260 /*
261  * we need the mirror number and stripe index to be passed around
262  * the call chain while we are processing end_io (especially errors).
263  * Really, what we need is a btrfs_bio structure that has this info
264  * and is properly sized with its stripe array, but we're not there
265  * quite yet.  We have our own btrfs bioset, and all of the bios
266  * we allocate are actually btrfs_io_bios.  We'll cram as much of
267  * struct btrfs_bio as we can into this over time.
268  */
269 typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err);
270 struct btrfs_io_bio {
271 	unsigned int mirror_num;
272 	unsigned int stripe_index;
273 	u64 logical;
274 	u8 *csum;
275 	u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
276 	u8 *csum_allocated;
277 	btrfs_io_bio_end_io_t *end_io;
278 	struct bvec_iter iter;
279 	/*
280 	 * This member must come last, bio_alloc_bioset will allocate enough
281 	 * bytes for entire btrfs_io_bio but relies on bio being last.
282 	 */
283 	struct bio bio;
284 };
285 
btrfs_io_bio(struct bio * bio)286 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
287 {
288 	return container_of(bio, struct btrfs_io_bio, bio);
289 }
290 
291 struct btrfs_bio_stripe {
292 	struct btrfs_device *dev;
293 	u64 physical;
294 	u64 length; /* only used for discard mappings */
295 };
296 
297 struct btrfs_bio;
298 typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
299 
300 struct btrfs_bio {
301 	refcount_t refs;
302 	atomic_t stripes_pending;
303 	struct btrfs_fs_info *fs_info;
304 	u64 map_type; /* get from map_lookup->type */
305 	bio_end_io_t *end_io;
306 	struct bio *orig_bio;
307 	void *private;
308 	atomic_t error;
309 	int max_errors;
310 	int num_stripes;
311 	int mirror_num;
312 	int num_tgtdevs;
313 	int *tgtdev_map;
314 	/*
315 	 * logical block numbers for the start of each stripe
316 	 * The last one or two are p/q.  These are sorted,
317 	 * so raid_map[0] is the start of our full stripe
318 	 */
319 	u64 *raid_map;
320 	struct btrfs_bio_stripe stripes[];
321 };
322 
323 struct btrfs_device_info {
324 	struct btrfs_device *dev;
325 	u64 dev_offset;
326 	u64 max_avail;
327 	u64 total_avail;
328 };
329 
330 struct btrfs_raid_attr {
331 	int sub_stripes;	/* sub_stripes info for map */
332 	int dev_stripes;	/* stripes per dev */
333 	int devs_max;		/* max devs to use */
334 	int devs_min;		/* min devs needed */
335 	int tolerated_failures; /* max tolerated fail devs */
336 	int devs_increment;	/* ndevs has to be a multiple of this */
337 	int ncopies;		/* how many copies to data has */
338 	int mindev_error;	/* error code if min devs requisite is unmet */
339 	const char raid_name[8]; /* name of the raid */
340 	u64 bg_flag;		/* block group flag of the raid */
341 };
342 
343 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
344 
345 struct map_lookup {
346 	u64 type;
347 	int io_align;
348 	int io_width;
349 	u64 stripe_len;
350 	int num_stripes;
351 	int sub_stripes;
352 	int verified_stripes; /* For mount time dev extent verification */
353 	struct btrfs_bio_stripe stripes[];
354 };
355 
356 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
357 			    (sizeof(struct btrfs_bio_stripe) * (n)))
358 
359 struct btrfs_balance_args;
360 struct btrfs_balance_progress;
361 struct btrfs_balance_control {
362 	struct btrfs_balance_args data;
363 	struct btrfs_balance_args meta;
364 	struct btrfs_balance_args sys;
365 
366 	u64 flags;
367 
368 	struct btrfs_balance_progress stat;
369 };
370 
371 enum btrfs_map_op {
372 	BTRFS_MAP_READ,
373 	BTRFS_MAP_WRITE,
374 	BTRFS_MAP_DISCARD,
375 	BTRFS_MAP_GET_READ_MIRRORS,
376 };
377 
btrfs_op(struct bio * bio)378 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
379 {
380 	switch (bio_op(bio)) {
381 	case REQ_OP_DISCARD:
382 		return BTRFS_MAP_DISCARD;
383 	case REQ_OP_WRITE:
384 		return BTRFS_MAP_WRITE;
385 	default:
386 		WARN_ON_ONCE(1);
387 	case REQ_OP_READ:
388 		return BTRFS_MAP_READ;
389 	}
390 }
391 
392 void btrfs_get_bbio(struct btrfs_bio *bbio);
393 void btrfs_put_bbio(struct btrfs_bio *bbio);
394 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
395 		    u64 logical, u64 *length,
396 		    struct btrfs_bio **bbio_ret, int mirror_num);
397 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
398 		     u64 logical, u64 *length,
399 		     struct btrfs_bio **bbio_ret);
400 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
401 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len);
402 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
403 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
404 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
405 void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
406 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
407 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
408 			   int mirror_num, int async_submit);
409 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
410 		       fmode_t flags, void *holder);
411 struct btrfs_device *btrfs_scan_one_device(const char *path,
412 					   fmode_t flags, void *holder);
413 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
414 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
415 void btrfs_assign_next_active_device(struct btrfs_device *device,
416 				     struct btrfs_device *this_dev);
417 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
418 					 const char *device_path,
419 					 struct btrfs_device **device);
420 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
421 					 const char *devpath,
422 					 struct btrfs_device **device);
423 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
424 					const u64 *devid,
425 					const u8 *uuid);
426 void btrfs_free_device(struct btrfs_device *device);
427 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
428 		    const char *device_path, u64 devid);
429 void __exit btrfs_cleanup_fs_uuids(void);
430 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
431 int btrfs_grow_device(struct btrfs_trans_handle *trans,
432 		      struct btrfs_device *device, u64 new_size);
433 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
434 				       u64 devid, u8 *uuid, u8 *fsid, bool seed);
435 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
436 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
437 int btrfs_balance(struct btrfs_fs_info *fs_info,
438 		  struct btrfs_balance_control *bctl,
439 		  struct btrfs_ioctl_balance_args *bargs);
440 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
441 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
442 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
443 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
444 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
445 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
446 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
447 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
448 			 struct btrfs_device *device, u64 num_bytes,
449 			 u64 search_start, u64 *start, u64 *max_avail);
450 int find_free_dev_extent(struct btrfs_trans_handle *trans,
451 			 struct btrfs_device *device, u64 num_bytes,
452 			 u64 *start, u64 *max_avail);
453 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
454 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
455 			struct btrfs_ioctl_get_dev_stats *stats);
456 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
457 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
458 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
459 			struct btrfs_fs_info *fs_info);
460 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
461 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
462 				      struct btrfs_device *srcdev);
463 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
464 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
465 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
466 			   u64 logical, u64 len);
467 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
468 				    u64 logical);
469 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
470 			     u64 chunk_offset, u64 chunk_size);
471 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
472 
btrfs_dev_stat_inc(struct btrfs_device * dev,int index)473 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
474 				      int index)
475 {
476 	atomic_inc(dev->dev_stat_values + index);
477 	/*
478 	 * This memory barrier orders stores updating statistics before stores
479 	 * updating dev_stats_ccnt.
480 	 *
481 	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
482 	 */
483 	smp_mb__before_atomic();
484 	atomic_inc(&dev->dev_stats_ccnt);
485 }
486 
btrfs_dev_stat_read(struct btrfs_device * dev,int index)487 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
488 				      int index)
489 {
490 	return atomic_read(dev->dev_stat_values + index);
491 }
492 
btrfs_dev_stat_read_and_reset(struct btrfs_device * dev,int index)493 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
494 						int index)
495 {
496 	int ret;
497 
498 	ret = atomic_xchg(dev->dev_stat_values + index, 0);
499 	/*
500 	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
501 	 * - RMW operations that have a return value are fully ordered;
502 	 *
503 	 * This implicit memory barriers is paired with the smp_rmb in
504 	 * btrfs_run_dev_stats
505 	 */
506 	atomic_inc(&dev->dev_stats_ccnt);
507 	return ret;
508 }
509 
btrfs_dev_stat_set(struct btrfs_device * dev,int index,unsigned long val)510 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
511 				      int index, unsigned long val)
512 {
513 	atomic_set(dev->dev_stat_values + index, val);
514 	/*
515 	 * This memory barrier orders stores updating statistics before stores
516 	 * updating dev_stats_ccnt.
517 	 *
518 	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
519 	 */
520 	smp_mb__before_atomic();
521 	atomic_inc(&dev->dev_stats_ccnt);
522 }
523 
btrfs_dev_stat_reset(struct btrfs_device * dev,int index)524 static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
525 					int index)
526 {
527 	btrfs_dev_stat_set(dev, index, 0);
528 }
529 
530 /*
531  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
532  * can be used as index to access btrfs_raid_array[].
533  */
btrfs_bg_flags_to_raid_index(u64 flags)534 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
535 {
536 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
537 		return BTRFS_RAID_RAID10;
538 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
539 		return BTRFS_RAID_RAID1;
540 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
541 		return BTRFS_RAID_DUP;
542 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
543 		return BTRFS_RAID_RAID0;
544 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
545 		return BTRFS_RAID_RAID5;
546 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
547 		return BTRFS_RAID_RAID6;
548 
549 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
550 }
551 
552 const char *get_raid_name(enum btrfs_raid_types type);
553 
554 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info);
555 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans);
556 
557 struct list_head *btrfs_get_fs_uuids(void);
558 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
559 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
560 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
561 					struct btrfs_device *failing_dev);
562 
563 int btrfs_bg_type_to_factor(u64 flags);
564 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
565 
566 #endif
567