• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include <linux/kernel.h>
40 #include "ecryptfs_kernel.h"
41 
42 #define DECRYPT		0
43 #define ENCRYPT		1
44 
45 /**
46  * ecryptfs_from_hex
47  * @dst: Buffer to take the bytes from src hex; must be at least of
48  *       size (src_size / 2)
49  * @src: Buffer to be converted from a hex string representation to raw value
50  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
51  */
ecryptfs_from_hex(char * dst,char * src,int dst_size)52 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
53 {
54 	int x;
55 	char tmp[3] = { 0, };
56 
57 	for (x = 0; x < dst_size; x++) {
58 		tmp[0] = src[x * 2];
59 		tmp[1] = src[x * 2 + 1];
60 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
61 	}
62 }
63 
ecryptfs_hash_digest(struct crypto_shash * tfm,char * src,int len,char * dst)64 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
65 				char *src, int len, char *dst)
66 {
67 	SHASH_DESC_ON_STACK(desc, tfm);
68 	int err;
69 
70 	desc->tfm = tfm;
71 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
72 	err = crypto_shash_digest(desc, src, len, dst);
73 	shash_desc_zero(desc);
74 	return err;
75 }
76 
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
ecryptfs_calculate_md5(char * dst,struct ecryptfs_crypt_stat * crypt_stat,char * src,int len)87 static int ecryptfs_calculate_md5(char *dst,
88 				  struct ecryptfs_crypt_stat *crypt_stat,
89 				  char *src, int len)
90 {
91 	struct crypto_shash *tfm;
92 	int rc = 0;
93 
94 	tfm = crypt_stat->hash_tfm;
95 	rc = ecryptfs_hash_digest(tfm, src, len, dst);
96 	if (rc) {
97 		printk(KERN_ERR
98 		       "%s: Error computing crypto hash; rc = [%d]\n",
99 		       __func__, rc);
100 		goto out;
101 	}
102 out:
103 	return rc;
104 }
105 
ecryptfs_crypto_api_algify_cipher_name(char ** algified_name,char * cipher_name,char * chaining_modifier)106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
107 						  char *cipher_name,
108 						  char *chaining_modifier)
109 {
110 	int cipher_name_len = strlen(cipher_name);
111 	int chaining_modifier_len = strlen(chaining_modifier);
112 	int algified_name_len;
113 	int rc;
114 
115 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
116 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
117 	if (!(*algified_name)) {
118 		rc = -ENOMEM;
119 		goto out;
120 	}
121 	snprintf((*algified_name), algified_name_len, "%s(%s)",
122 		 chaining_modifier, cipher_name);
123 	rc = 0;
124 out:
125 	return rc;
126 }
127 
128 /**
129  * ecryptfs_derive_iv
130  * @iv: destination for the derived iv vale
131  * @crypt_stat: Pointer to crypt_stat struct for the current inode
132  * @offset: Offset of the extent whose IV we are to derive
133  *
134  * Generate the initialization vector from the given root IV and page
135  * offset.
136  *
137  * Returns zero on success; non-zero on error.
138  */
ecryptfs_derive_iv(char * iv,struct ecryptfs_crypt_stat * crypt_stat,loff_t offset)139 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
140 		       loff_t offset)
141 {
142 	int rc = 0;
143 	char dst[MD5_DIGEST_SIZE];
144 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
145 
146 	if (unlikely(ecryptfs_verbosity > 0)) {
147 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
148 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
149 	}
150 	/* TODO: It is probably secure to just cast the least
151 	 * significant bits of the root IV into an unsigned long and
152 	 * add the offset to that rather than go through all this
153 	 * hashing business. -Halcrow */
154 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
155 	memset((src + crypt_stat->iv_bytes), 0, 16);
156 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
157 	if (unlikely(ecryptfs_verbosity > 0)) {
158 		ecryptfs_printk(KERN_DEBUG, "source:\n");
159 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
160 	}
161 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
162 				    (crypt_stat->iv_bytes + 16));
163 	if (rc) {
164 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
165 				"MD5 while generating IV for a page\n");
166 		goto out;
167 	}
168 	memcpy(iv, dst, crypt_stat->iv_bytes);
169 	if (unlikely(ecryptfs_verbosity > 0)) {
170 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
171 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
172 	}
173 out:
174 	return rc;
175 }
176 
177 /**
178  * ecryptfs_init_crypt_stat
179  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
180  *
181  * Initialize the crypt_stat structure.
182  */
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
184 {
185 	struct crypto_shash *tfm;
186 	int rc;
187 
188 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
189 	if (IS_ERR(tfm)) {
190 		rc = PTR_ERR(tfm);
191 		ecryptfs_printk(KERN_ERR, "Error attempting to "
192 				"allocate crypto context; rc = [%d]\n",
193 				rc);
194 		return rc;
195 	}
196 
197 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
198 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
199 	mutex_init(&crypt_stat->keysig_list_mutex);
200 	mutex_init(&crypt_stat->cs_mutex);
201 	mutex_init(&crypt_stat->cs_tfm_mutex);
202 	crypt_stat->hash_tfm = tfm;
203 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
204 
205 	return 0;
206 }
207 
208 /**
209  * ecryptfs_destroy_crypt_stat
210  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
211  *
212  * Releases all memory associated with a crypt_stat struct.
213  */
ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat * crypt_stat)214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
215 {
216 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
217 
218 	crypto_free_skcipher(crypt_stat->tfm);
219 	crypto_free_shash(crypt_stat->hash_tfm);
220 	list_for_each_entry_safe(key_sig, key_sig_tmp,
221 				 &crypt_stat->keysig_list, crypt_stat_list) {
222 		list_del(&key_sig->crypt_stat_list);
223 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
224 	}
225 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227 
ecryptfs_destroy_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)228 void ecryptfs_destroy_mount_crypt_stat(
229 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
232 
233 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
234 		return;
235 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
236 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
237 				 &mount_crypt_stat->global_auth_tok_list,
238 				 mount_crypt_stat_list) {
239 		list_del(&auth_tok->mount_crypt_stat_list);
240 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
241 			key_put(auth_tok->global_auth_tok_key);
242 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
243 	}
244 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
245 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
246 }
247 
248 /**
249  * virt_to_scatterlist
250  * @addr: Virtual address
251  * @size: Size of data; should be an even multiple of the block size
252  * @sg: Pointer to scatterlist array; set to NULL to obtain only
253  *      the number of scatterlist structs required in array
254  * @sg_size: Max array size
255  *
256  * Fills in a scatterlist array with page references for a passed
257  * virtual address.
258  *
259  * Returns the number of scatterlist structs in array used
260  */
virt_to_scatterlist(const void * addr,int size,struct scatterlist * sg,int sg_size)261 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
262 			int sg_size)
263 {
264 	int i = 0;
265 	struct page *pg;
266 	int offset;
267 	int remainder_of_page;
268 
269 	sg_init_table(sg, sg_size);
270 
271 	while (size > 0 && i < sg_size) {
272 		pg = virt_to_page(addr);
273 		offset = offset_in_page(addr);
274 		sg_set_page(&sg[i], pg, 0, offset);
275 		remainder_of_page = PAGE_SIZE - offset;
276 		if (size >= remainder_of_page) {
277 			sg[i].length = remainder_of_page;
278 			addr += remainder_of_page;
279 			size -= remainder_of_page;
280 		} else {
281 			sg[i].length = size;
282 			addr += size;
283 			size = 0;
284 		}
285 		i++;
286 	}
287 	if (size > 0)
288 		return -ENOMEM;
289 	return i;
290 }
291 
292 struct extent_crypt_result {
293 	struct completion completion;
294 	int rc;
295 };
296 
extent_crypt_complete(struct crypto_async_request * req,int rc)297 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
298 {
299 	struct extent_crypt_result *ecr = req->data;
300 
301 	if (rc == -EINPROGRESS)
302 		return;
303 
304 	ecr->rc = rc;
305 	complete(&ecr->completion);
306 }
307 
308 /**
309  * crypt_scatterlist
310  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311  * @dst_sg: Destination of the data after performing the crypto operation
312  * @src_sg: Data to be encrypted or decrypted
313  * @size: Length of data
314  * @iv: IV to use
315  * @op: ENCRYPT or DECRYPT to indicate the desired operation
316  *
317  * Returns the number of bytes encrypted or decrypted; negative value on error
318  */
crypt_scatterlist(struct ecryptfs_crypt_stat * crypt_stat,struct scatterlist * dst_sg,struct scatterlist * src_sg,int size,unsigned char * iv,int op)319 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
320 			     struct scatterlist *dst_sg,
321 			     struct scatterlist *src_sg, int size,
322 			     unsigned char *iv, int op)
323 {
324 	struct skcipher_request *req = NULL;
325 	struct extent_crypt_result ecr;
326 	int rc = 0;
327 
328 	if (!crypt_stat || !crypt_stat->tfm
329 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
330 		return -EINVAL;
331 
332 	if (unlikely(ecryptfs_verbosity > 0)) {
333 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
334 				crypt_stat->key_size);
335 		ecryptfs_dump_hex(crypt_stat->key,
336 				  crypt_stat->key_size);
337 	}
338 
339 	init_completion(&ecr.completion);
340 
341 	mutex_lock(&crypt_stat->cs_tfm_mutex);
342 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
343 	if (!req) {
344 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
345 		rc = -ENOMEM;
346 		goto out;
347 	}
348 
349 	skcipher_request_set_callback(req,
350 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
351 			extent_crypt_complete, &ecr);
352 	/* Consider doing this once, when the file is opened */
353 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
354 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
355 					    crypt_stat->key_size);
356 		if (rc) {
357 			ecryptfs_printk(KERN_ERR,
358 					"Error setting key; rc = [%d]\n",
359 					rc);
360 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
361 			rc = -EINVAL;
362 			goto out;
363 		}
364 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
365 	}
366 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
367 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
368 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
369 			     crypto_skcipher_decrypt(req);
370 	if (rc == -EINPROGRESS || rc == -EBUSY) {
371 		struct extent_crypt_result *ecr = req->base.data;
372 
373 		wait_for_completion(&ecr->completion);
374 		rc = ecr->rc;
375 		reinit_completion(&ecr->completion);
376 	}
377 out:
378 	skcipher_request_free(req);
379 	return rc;
380 }
381 
382 /**
383  * lower_offset_for_page
384  *
385  * Convert an eCryptfs page index into a lower byte offset
386  */
lower_offset_for_page(struct ecryptfs_crypt_stat * crypt_stat,struct page * page)387 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
388 				    struct page *page)
389 {
390 	return ecryptfs_lower_header_size(crypt_stat) +
391 	       ((loff_t)page->index << PAGE_SHIFT);
392 }
393 
394 /**
395  * crypt_extent
396  * @crypt_stat: crypt_stat containing cryptographic context for the
397  *              encryption operation
398  * @dst_page: The page to write the result into
399  * @src_page: The page to read from
400  * @extent_offset: Page extent offset for use in generating IV
401  * @op: ENCRYPT or DECRYPT to indicate the desired operation
402  *
403  * Encrypts or decrypts one extent of data.
404  *
405  * Return zero on success; non-zero otherwise
406  */
crypt_extent(struct ecryptfs_crypt_stat * crypt_stat,struct page * dst_page,struct page * src_page,unsigned long extent_offset,int op)407 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
408 			struct page *dst_page,
409 			struct page *src_page,
410 			unsigned long extent_offset, int op)
411 {
412 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
413 	loff_t extent_base;
414 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
415 	struct scatterlist src_sg, dst_sg;
416 	size_t extent_size = crypt_stat->extent_size;
417 	int rc;
418 
419 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
420 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
421 				(extent_base + extent_offset));
422 	if (rc) {
423 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
424 			"extent [0x%.16llx]; rc = [%d]\n",
425 			(unsigned long long)(extent_base + extent_offset), rc);
426 		goto out;
427 	}
428 
429 	sg_init_table(&src_sg, 1);
430 	sg_init_table(&dst_sg, 1);
431 
432 	sg_set_page(&src_sg, src_page, extent_size,
433 		    extent_offset * extent_size);
434 	sg_set_page(&dst_sg, dst_page, extent_size,
435 		    extent_offset * extent_size);
436 
437 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
438 			       extent_iv, op);
439 	if (rc < 0) {
440 		printk(KERN_ERR "%s: Error attempting to crypt page with "
441 		       "page_index = [%ld], extent_offset = [%ld]; "
442 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
443 		goto out;
444 	}
445 	rc = 0;
446 out:
447 	return rc;
448 }
449 
450 /**
451  * ecryptfs_encrypt_page
452  * @page: Page mapped from the eCryptfs inode for the file; contains
453  *        decrypted content that needs to be encrypted (to a temporary
454  *        page; not in place) and written out to the lower file
455  *
456  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
457  * that eCryptfs pages may straddle the lower pages -- for instance,
458  * if the file was created on a machine with an 8K page size
459  * (resulting in an 8K header), and then the file is copied onto a
460  * host with a 32K page size, then when reading page 0 of the eCryptfs
461  * file, 24K of page 0 of the lower file will be read and decrypted,
462  * and then 8K of page 1 of the lower file will be read and decrypted.
463  *
464  * Returns zero on success; negative on error
465  */
ecryptfs_encrypt_page(struct page * page)466 int ecryptfs_encrypt_page(struct page *page)
467 {
468 	struct inode *ecryptfs_inode;
469 	struct ecryptfs_crypt_stat *crypt_stat;
470 	char *enc_extent_virt;
471 	struct page *enc_extent_page = NULL;
472 	loff_t extent_offset;
473 	loff_t lower_offset;
474 	int rc = 0;
475 
476 	ecryptfs_inode = page->mapping->host;
477 	crypt_stat =
478 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
479 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
480 	enc_extent_page = alloc_page(GFP_USER);
481 	if (!enc_extent_page) {
482 		rc = -ENOMEM;
483 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
484 				"encrypted extent\n");
485 		goto out;
486 	}
487 
488 	for (extent_offset = 0;
489 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
490 	     extent_offset++) {
491 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
492 				  extent_offset, ENCRYPT);
493 		if (rc) {
494 			printk(KERN_ERR "%s: Error encrypting extent; "
495 			       "rc = [%d]\n", __func__, rc);
496 			goto out;
497 		}
498 	}
499 
500 	lower_offset = lower_offset_for_page(crypt_stat, page);
501 	enc_extent_virt = kmap(enc_extent_page);
502 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
503 				  PAGE_SIZE);
504 	kunmap(enc_extent_page);
505 	if (rc < 0) {
506 		ecryptfs_printk(KERN_ERR,
507 			"Error attempting to write lower page; rc = [%d]\n",
508 			rc);
509 		goto out;
510 	}
511 	rc = 0;
512 out:
513 	if (enc_extent_page) {
514 		__free_page(enc_extent_page);
515 	}
516 	return rc;
517 }
518 
519 /**
520  * ecryptfs_decrypt_page
521  * @page: Page mapped from the eCryptfs inode for the file; data read
522  *        and decrypted from the lower file will be written into this
523  *        page
524  *
525  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
526  * that eCryptfs pages may straddle the lower pages -- for instance,
527  * if the file was created on a machine with an 8K page size
528  * (resulting in an 8K header), and then the file is copied onto a
529  * host with a 32K page size, then when reading page 0 of the eCryptfs
530  * file, 24K of page 0 of the lower file will be read and decrypted,
531  * and then 8K of page 1 of the lower file will be read and decrypted.
532  *
533  * Returns zero on success; negative on error
534  */
ecryptfs_decrypt_page(struct page * page)535 int ecryptfs_decrypt_page(struct page *page)
536 {
537 	struct inode *ecryptfs_inode;
538 	struct ecryptfs_crypt_stat *crypt_stat;
539 	char *page_virt;
540 	unsigned long extent_offset;
541 	loff_t lower_offset;
542 	int rc = 0;
543 
544 	ecryptfs_inode = page->mapping->host;
545 	crypt_stat =
546 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
547 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
548 
549 	lower_offset = lower_offset_for_page(crypt_stat, page);
550 	page_virt = kmap(page);
551 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
552 				 ecryptfs_inode);
553 	kunmap(page);
554 	if (rc < 0) {
555 		ecryptfs_printk(KERN_ERR,
556 			"Error attempting to read lower page; rc = [%d]\n",
557 			rc);
558 		goto out;
559 	}
560 
561 	for (extent_offset = 0;
562 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
563 	     extent_offset++) {
564 		rc = crypt_extent(crypt_stat, page, page,
565 				  extent_offset, DECRYPT);
566 		if (rc) {
567 			printk(KERN_ERR "%s: Error encrypting extent; "
568 			       "rc = [%d]\n", __func__, rc);
569 			goto out;
570 		}
571 	}
572 out:
573 	return rc;
574 }
575 
576 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
577 
578 /**
579  * ecryptfs_init_crypt_ctx
580  * @crypt_stat: Uninitialized crypt stats structure
581  *
582  * Initialize the crypto context.
583  *
584  * TODO: Performance: Keep a cache of initialized cipher contexts;
585  * only init if needed
586  */
ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat * crypt_stat)587 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
588 {
589 	char *full_alg_name;
590 	int rc = -EINVAL;
591 
592 	ecryptfs_printk(KERN_DEBUG,
593 			"Initializing cipher [%s]; strlen = [%d]; "
594 			"key_size_bits = [%zd]\n",
595 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
596 			crypt_stat->key_size << 3);
597 	mutex_lock(&crypt_stat->cs_tfm_mutex);
598 	if (crypt_stat->tfm) {
599 		rc = 0;
600 		goto out_unlock;
601 	}
602 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
603 						    crypt_stat->cipher, "cbc");
604 	if (rc)
605 		goto out_unlock;
606 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
607 	if (IS_ERR(crypt_stat->tfm)) {
608 		rc = PTR_ERR(crypt_stat->tfm);
609 		crypt_stat->tfm = NULL;
610 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
611 				"Error initializing cipher [%s]\n",
612 				full_alg_name);
613 		goto out_free;
614 	}
615 	crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
616 	rc = 0;
617 out_free:
618 	kfree(full_alg_name);
619 out_unlock:
620 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
621 	return rc;
622 }
623 
set_extent_mask_and_shift(struct ecryptfs_crypt_stat * crypt_stat)624 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
625 {
626 	int extent_size_tmp;
627 
628 	crypt_stat->extent_mask = 0xFFFFFFFF;
629 	crypt_stat->extent_shift = 0;
630 	if (crypt_stat->extent_size == 0)
631 		return;
632 	extent_size_tmp = crypt_stat->extent_size;
633 	while ((extent_size_tmp & 0x01) == 0) {
634 		extent_size_tmp >>= 1;
635 		crypt_stat->extent_mask <<= 1;
636 		crypt_stat->extent_shift++;
637 	}
638 }
639 
ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat * crypt_stat)640 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
641 {
642 	/* Default values; may be overwritten as we are parsing the
643 	 * packets. */
644 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
645 	set_extent_mask_and_shift(crypt_stat);
646 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
647 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
648 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
649 	else {
650 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
651 			crypt_stat->metadata_size =
652 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
653 		else
654 			crypt_stat->metadata_size = PAGE_SIZE;
655 	}
656 }
657 
658 /**
659  * ecryptfs_compute_root_iv
660  * @crypt_stats
661  *
662  * On error, sets the root IV to all 0's.
663  */
ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat * crypt_stat)664 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
665 {
666 	int rc = 0;
667 	char dst[MD5_DIGEST_SIZE];
668 
669 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
670 	BUG_ON(crypt_stat->iv_bytes <= 0);
671 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
672 		rc = -EINVAL;
673 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
674 				"cannot generate root IV\n");
675 		goto out;
676 	}
677 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
678 				    crypt_stat->key_size);
679 	if (rc) {
680 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
681 				"MD5 while generating root IV\n");
682 		goto out;
683 	}
684 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
685 out:
686 	if (rc) {
687 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
688 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
689 	}
690 	return rc;
691 }
692 
ecryptfs_generate_new_key(struct ecryptfs_crypt_stat * crypt_stat)693 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
694 {
695 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
696 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
697 	ecryptfs_compute_root_iv(crypt_stat);
698 	if (unlikely(ecryptfs_verbosity > 0)) {
699 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
700 		ecryptfs_dump_hex(crypt_stat->key,
701 				  crypt_stat->key_size);
702 	}
703 }
704 
705 /**
706  * ecryptfs_copy_mount_wide_flags_to_inode_flags
707  * @crypt_stat: The inode's cryptographic context
708  * @mount_crypt_stat: The mount point's cryptographic context
709  *
710  * This function propagates the mount-wide flags to individual inode
711  * flags.
712  */
ecryptfs_copy_mount_wide_flags_to_inode_flags(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)713 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
714 	struct ecryptfs_crypt_stat *crypt_stat,
715 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
716 {
717 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
718 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
719 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
720 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
721 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
722 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
723 		if (mount_crypt_stat->flags
724 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
725 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
726 		else if (mount_crypt_stat->flags
727 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
728 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
729 	}
730 }
731 
ecryptfs_copy_mount_wide_sigs_to_inode_sigs(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)732 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
733 	struct ecryptfs_crypt_stat *crypt_stat,
734 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
735 {
736 	struct ecryptfs_global_auth_tok *global_auth_tok;
737 	int rc = 0;
738 
739 	mutex_lock(&crypt_stat->keysig_list_mutex);
740 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
741 
742 	list_for_each_entry(global_auth_tok,
743 			    &mount_crypt_stat->global_auth_tok_list,
744 			    mount_crypt_stat_list) {
745 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
746 			continue;
747 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
748 		if (rc) {
749 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
750 			goto out;
751 		}
752 	}
753 
754 out:
755 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
756 	mutex_unlock(&crypt_stat->keysig_list_mutex);
757 	return rc;
758 }
759 
760 /**
761  * ecryptfs_set_default_crypt_stat_vals
762  * @crypt_stat: The inode's cryptographic context
763  * @mount_crypt_stat: The mount point's cryptographic context
764  *
765  * Default values in the event that policy does not override them.
766  */
ecryptfs_set_default_crypt_stat_vals(struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)767 static void ecryptfs_set_default_crypt_stat_vals(
768 	struct ecryptfs_crypt_stat *crypt_stat,
769 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
770 {
771 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
772 						      mount_crypt_stat);
773 	ecryptfs_set_default_sizes(crypt_stat);
774 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
775 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
776 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
777 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
778 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
779 }
780 
781 /**
782  * ecryptfs_new_file_context
783  * @ecryptfs_inode: The eCryptfs inode
784  *
785  * If the crypto context for the file has not yet been established,
786  * this is where we do that.  Establishing a new crypto context
787  * involves the following decisions:
788  *  - What cipher to use?
789  *  - What set of authentication tokens to use?
790  * Here we just worry about getting enough information into the
791  * authentication tokens so that we know that they are available.
792  * We associate the available authentication tokens with the new file
793  * via the set of signatures in the crypt_stat struct.  Later, when
794  * the headers are actually written out, we may again defer to
795  * userspace to perform the encryption of the session key; for the
796  * foreseeable future, this will be the case with public key packets.
797  *
798  * Returns zero on success; non-zero otherwise
799  */
ecryptfs_new_file_context(struct inode * ecryptfs_inode)800 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
801 {
802 	struct ecryptfs_crypt_stat *crypt_stat =
803 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
804 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
805 	    &ecryptfs_superblock_to_private(
806 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
807 	int cipher_name_len;
808 	int rc = 0;
809 
810 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
811 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
812 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
813 						      mount_crypt_stat);
814 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
815 							 mount_crypt_stat);
816 	if (rc) {
817 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
818 		       "to the inode key sigs; rc = [%d]\n", rc);
819 		goto out;
820 	}
821 	cipher_name_len =
822 		strlen(mount_crypt_stat->global_default_cipher_name);
823 	memcpy(crypt_stat->cipher,
824 	       mount_crypt_stat->global_default_cipher_name,
825 	       cipher_name_len);
826 	crypt_stat->cipher[cipher_name_len] = '\0';
827 	crypt_stat->key_size =
828 		mount_crypt_stat->global_default_cipher_key_size;
829 	ecryptfs_generate_new_key(crypt_stat);
830 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
831 	if (rc)
832 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
833 				"context for cipher [%s]: rc = [%d]\n",
834 				crypt_stat->cipher, rc);
835 out:
836 	return rc;
837 }
838 
839 /**
840  * ecryptfs_validate_marker - check for the ecryptfs marker
841  * @data: The data block in which to check
842  *
843  * Returns zero if marker found; -EINVAL if not found
844  */
ecryptfs_validate_marker(char * data)845 static int ecryptfs_validate_marker(char *data)
846 {
847 	u32 m_1, m_2;
848 
849 	m_1 = get_unaligned_be32(data);
850 	m_2 = get_unaligned_be32(data + 4);
851 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
852 		return 0;
853 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
854 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
855 			MAGIC_ECRYPTFS_MARKER);
856 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
857 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
858 	return -EINVAL;
859 }
860 
861 struct ecryptfs_flag_map_elem {
862 	u32 file_flag;
863 	u32 local_flag;
864 };
865 
866 /* Add support for additional flags by adding elements here. */
867 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
868 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
869 	{0x00000002, ECRYPTFS_ENCRYPTED},
870 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
871 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
872 };
873 
874 /**
875  * ecryptfs_process_flags
876  * @crypt_stat: The cryptographic context
877  * @page_virt: Source data to be parsed
878  * @bytes_read: Updated with the number of bytes read
879  *
880  * Returns zero on success; non-zero if the flag set is invalid
881  */
ecryptfs_process_flags(struct ecryptfs_crypt_stat * crypt_stat,char * page_virt,int * bytes_read)882 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
883 				  char *page_virt, int *bytes_read)
884 {
885 	int rc = 0;
886 	int i;
887 	u32 flags;
888 
889 	flags = get_unaligned_be32(page_virt);
890 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
891 		if (flags & ecryptfs_flag_map[i].file_flag) {
892 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
893 		} else
894 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
895 	/* Version is in top 8 bits of the 32-bit flag vector */
896 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
897 	(*bytes_read) = 4;
898 	return rc;
899 }
900 
901 /**
902  * write_ecryptfs_marker
903  * @page_virt: The pointer to in a page to begin writing the marker
904  * @written: Number of bytes written
905  *
906  * Marker = 0x3c81b7f5
907  */
write_ecryptfs_marker(char * page_virt,size_t * written)908 static void write_ecryptfs_marker(char *page_virt, size_t *written)
909 {
910 	u32 m_1, m_2;
911 
912 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
913 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
914 	put_unaligned_be32(m_1, page_virt);
915 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
916 	put_unaligned_be32(m_2, page_virt);
917 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
918 }
919 
ecryptfs_write_crypt_stat_flags(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)920 void ecryptfs_write_crypt_stat_flags(char *page_virt,
921 				     struct ecryptfs_crypt_stat *crypt_stat,
922 				     size_t *written)
923 {
924 	u32 flags = 0;
925 	int i;
926 
927 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
928 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
929 			flags |= ecryptfs_flag_map[i].file_flag;
930 	/* Version is in top 8 bits of the 32-bit flag vector */
931 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
932 	put_unaligned_be32(flags, page_virt);
933 	(*written) = 4;
934 }
935 
936 struct ecryptfs_cipher_code_str_map_elem {
937 	char cipher_str[16];
938 	u8 cipher_code;
939 };
940 
941 /* Add support for additional ciphers by adding elements here. The
942  * cipher_code is whatever OpenPGP applications use to identify the
943  * ciphers. List in order of probability. */
944 static struct ecryptfs_cipher_code_str_map_elem
945 ecryptfs_cipher_code_str_map[] = {
946 	{"aes",RFC2440_CIPHER_AES_128 },
947 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
948 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
949 	{"cast5", RFC2440_CIPHER_CAST_5},
950 	{"twofish", RFC2440_CIPHER_TWOFISH},
951 	{"cast6", RFC2440_CIPHER_CAST_6},
952 	{"aes", RFC2440_CIPHER_AES_192},
953 	{"aes", RFC2440_CIPHER_AES_256}
954 };
955 
956 /**
957  * ecryptfs_code_for_cipher_string
958  * @cipher_name: The string alias for the cipher
959  * @key_bytes: Length of key in bytes; used for AES code selection
960  *
961  * Returns zero on no match, or the cipher code on match
962  */
ecryptfs_code_for_cipher_string(char * cipher_name,size_t key_bytes)963 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
964 {
965 	int i;
966 	u8 code = 0;
967 	struct ecryptfs_cipher_code_str_map_elem *map =
968 		ecryptfs_cipher_code_str_map;
969 
970 	if (strcmp(cipher_name, "aes") == 0) {
971 		switch (key_bytes) {
972 		case 16:
973 			code = RFC2440_CIPHER_AES_128;
974 			break;
975 		case 24:
976 			code = RFC2440_CIPHER_AES_192;
977 			break;
978 		case 32:
979 			code = RFC2440_CIPHER_AES_256;
980 		}
981 	} else {
982 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
983 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
984 				code = map[i].cipher_code;
985 				break;
986 			}
987 	}
988 	return code;
989 }
990 
991 /**
992  * ecryptfs_cipher_code_to_string
993  * @str: Destination to write out the cipher name
994  * @cipher_code: The code to convert to cipher name string
995  *
996  * Returns zero on success
997  */
ecryptfs_cipher_code_to_string(char * str,u8 cipher_code)998 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
999 {
1000 	int rc = 0;
1001 	int i;
1002 
1003 	str[0] = '\0';
1004 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1005 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1006 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1007 	if (str[0] == '\0') {
1008 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1009 				"[%d]\n", cipher_code);
1010 		rc = -EINVAL;
1011 	}
1012 	return rc;
1013 }
1014 
ecryptfs_read_and_validate_header_region(struct inode * inode)1015 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1016 {
1017 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1018 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1019 	int rc;
1020 
1021 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1022 				 inode);
1023 	if (rc < 0)
1024 		return rc;
1025 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1026 		return -EINVAL;
1027 	rc = ecryptfs_validate_marker(marker);
1028 	if (!rc)
1029 		ecryptfs_i_size_init(file_size, inode);
1030 	return rc;
1031 }
1032 
1033 void
ecryptfs_write_header_metadata(char * virt,struct ecryptfs_crypt_stat * crypt_stat,size_t * written)1034 ecryptfs_write_header_metadata(char *virt,
1035 			       struct ecryptfs_crypt_stat *crypt_stat,
1036 			       size_t *written)
1037 {
1038 	u32 header_extent_size;
1039 	u16 num_header_extents_at_front;
1040 
1041 	header_extent_size = (u32)crypt_stat->extent_size;
1042 	num_header_extents_at_front =
1043 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1044 	put_unaligned_be32(header_extent_size, virt);
1045 	virt += 4;
1046 	put_unaligned_be16(num_header_extents_at_front, virt);
1047 	(*written) = 6;
1048 }
1049 
1050 struct kmem_cache *ecryptfs_header_cache;
1051 
1052 /**
1053  * ecryptfs_write_headers_virt
1054  * @page_virt: The virtual address to write the headers to
1055  * @max: The size of memory allocated at page_virt
1056  * @size: Set to the number of bytes written by this function
1057  * @crypt_stat: The cryptographic context
1058  * @ecryptfs_dentry: The eCryptfs dentry
1059  *
1060  * Format version: 1
1061  *
1062  *   Header Extent:
1063  *     Octets 0-7:        Unencrypted file size (big-endian)
1064  *     Octets 8-15:       eCryptfs special marker
1065  *     Octets 16-19:      Flags
1066  *      Octet 16:         File format version number (between 0 and 255)
1067  *      Octets 17-18:     Reserved
1068  *      Octet 19:         Bit 1 (lsb): Reserved
1069  *                        Bit 2: Encrypted?
1070  *                        Bits 3-8: Reserved
1071  *     Octets 20-23:      Header extent size (big-endian)
1072  *     Octets 24-25:      Number of header extents at front of file
1073  *                        (big-endian)
1074  *     Octet  26:         Begin RFC 2440 authentication token packet set
1075  *   Data Extent 0:
1076  *     Lower data (CBC encrypted)
1077  *   Data Extent 1:
1078  *     Lower data (CBC encrypted)
1079  *   ...
1080  *
1081  * Returns zero on success
1082  */
ecryptfs_write_headers_virt(char * page_virt,size_t max,size_t * size,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry)1083 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1084 				       size_t *size,
1085 				       struct ecryptfs_crypt_stat *crypt_stat,
1086 				       struct dentry *ecryptfs_dentry)
1087 {
1088 	int rc;
1089 	size_t written;
1090 	size_t offset;
1091 
1092 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1093 	write_ecryptfs_marker((page_virt + offset), &written);
1094 	offset += written;
1095 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1096 					&written);
1097 	offset += written;
1098 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1099 				       &written);
1100 	offset += written;
1101 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1102 					      ecryptfs_dentry, &written,
1103 					      max - offset);
1104 	if (rc)
1105 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1106 				"set; rc = [%d]\n", rc);
1107 	if (size) {
1108 		offset += written;
1109 		*size = offset;
1110 	}
1111 	return rc;
1112 }
1113 
1114 static int
ecryptfs_write_metadata_to_contents(struct inode * ecryptfs_inode,char * virt,size_t virt_len)1115 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1116 				    char *virt, size_t virt_len)
1117 {
1118 	int rc;
1119 
1120 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1121 				  0, virt_len);
1122 	if (rc < 0)
1123 		printk(KERN_ERR "%s: Error attempting to write header "
1124 		       "information to lower file; rc = [%d]\n", __func__, rc);
1125 	else
1126 		rc = 0;
1127 	return rc;
1128 }
1129 
1130 static int
ecryptfs_write_metadata_to_xattr(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode,char * page_virt,size_t size)1131 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1132 				 struct inode *ecryptfs_inode,
1133 				 char *page_virt, size_t size)
1134 {
1135 	int rc;
1136 
1137 	rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1138 			       ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1139 	return rc;
1140 }
1141 
ecryptfs_get_zeroed_pages(gfp_t gfp_mask,unsigned int order)1142 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1143 					       unsigned int order)
1144 {
1145 	struct page *page;
1146 
1147 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1148 	if (page)
1149 		return (unsigned long) page_address(page);
1150 	return 0;
1151 }
1152 
1153 /**
1154  * ecryptfs_write_metadata
1155  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1156  * @ecryptfs_inode: The newly created eCryptfs inode
1157  *
1158  * Write the file headers out.  This will likely involve a userspace
1159  * callout, in which the session key is encrypted with one or more
1160  * public keys and/or the passphrase necessary to do the encryption is
1161  * retrieved via a prompt.  Exactly what happens at this point should
1162  * be policy-dependent.
1163  *
1164  * Returns zero on success; non-zero on error
1165  */
ecryptfs_write_metadata(struct dentry * ecryptfs_dentry,struct inode * ecryptfs_inode)1166 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1167 			    struct inode *ecryptfs_inode)
1168 {
1169 	struct ecryptfs_crypt_stat *crypt_stat =
1170 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1171 	unsigned int order;
1172 	char *virt;
1173 	size_t virt_len;
1174 	size_t size = 0;
1175 	int rc = 0;
1176 
1177 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1178 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1179 			printk(KERN_ERR "Key is invalid; bailing out\n");
1180 			rc = -EINVAL;
1181 			goto out;
1182 		}
1183 	} else {
1184 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1185 		       __func__);
1186 		rc = -EINVAL;
1187 		goto out;
1188 	}
1189 	virt_len = crypt_stat->metadata_size;
1190 	order = get_order(virt_len);
1191 	/* Released in this function */
1192 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1193 	if (!virt) {
1194 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1195 		rc = -ENOMEM;
1196 		goto out;
1197 	}
1198 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1199 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1200 					 ecryptfs_dentry);
1201 	if (unlikely(rc)) {
1202 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1203 		       __func__, rc);
1204 		goto out_free;
1205 	}
1206 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1207 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1208 						      virt, size);
1209 	else
1210 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1211 							 virt_len);
1212 	if (rc) {
1213 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1214 		       "rc = [%d]\n", __func__, rc);
1215 		goto out_free;
1216 	}
1217 out_free:
1218 	free_pages((unsigned long)virt, order);
1219 out:
1220 	return rc;
1221 }
1222 
1223 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1224 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
parse_header_metadata(struct ecryptfs_crypt_stat * crypt_stat,char * virt,int * bytes_read,int validate_header_size)1225 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1226 				 char *virt, int *bytes_read,
1227 				 int validate_header_size)
1228 {
1229 	int rc = 0;
1230 	u32 header_extent_size;
1231 	u16 num_header_extents_at_front;
1232 
1233 	header_extent_size = get_unaligned_be32(virt);
1234 	virt += sizeof(__be32);
1235 	num_header_extents_at_front = get_unaligned_be16(virt);
1236 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1237 				     * (size_t)header_extent_size));
1238 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1239 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1240 	    && (crypt_stat->metadata_size
1241 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1242 		rc = -EINVAL;
1243 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1244 		       crypt_stat->metadata_size);
1245 	}
1246 	return rc;
1247 }
1248 
1249 /**
1250  * set_default_header_data
1251  * @crypt_stat: The cryptographic context
1252  *
1253  * For version 0 file format; this function is only for backwards
1254  * compatibility for files created with the prior versions of
1255  * eCryptfs.
1256  */
set_default_header_data(struct ecryptfs_crypt_stat * crypt_stat)1257 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1258 {
1259 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1260 }
1261 
ecryptfs_i_size_init(const char * page_virt,struct inode * inode)1262 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1263 {
1264 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1265 	struct ecryptfs_crypt_stat *crypt_stat;
1266 	u64 file_size;
1267 
1268 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1269 	mount_crypt_stat =
1270 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1271 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1272 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1273 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1274 			file_size += crypt_stat->metadata_size;
1275 	} else
1276 		file_size = get_unaligned_be64(page_virt);
1277 	i_size_write(inode, (loff_t)file_size);
1278 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1279 }
1280 
1281 /**
1282  * ecryptfs_read_headers_virt
1283  * @page_virt: The virtual address into which to read the headers
1284  * @crypt_stat: The cryptographic context
1285  * @ecryptfs_dentry: The eCryptfs dentry
1286  * @validate_header_size: Whether to validate the header size while reading
1287  *
1288  * Read/parse the header data. The header format is detailed in the
1289  * comment block for the ecryptfs_write_headers_virt() function.
1290  *
1291  * Returns zero on success
1292  */
ecryptfs_read_headers_virt(char * page_virt,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,int validate_header_size)1293 static int ecryptfs_read_headers_virt(char *page_virt,
1294 				      struct ecryptfs_crypt_stat *crypt_stat,
1295 				      struct dentry *ecryptfs_dentry,
1296 				      int validate_header_size)
1297 {
1298 	int rc = 0;
1299 	int offset;
1300 	int bytes_read;
1301 
1302 	ecryptfs_set_default_sizes(crypt_stat);
1303 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1304 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1305 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1306 	rc = ecryptfs_validate_marker(page_virt + offset);
1307 	if (rc)
1308 		goto out;
1309 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1310 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1311 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1312 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1313 				    &bytes_read);
1314 	if (rc) {
1315 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1316 		goto out;
1317 	}
1318 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1319 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1320 				"file version [%d] is supported by this "
1321 				"version of eCryptfs\n",
1322 				crypt_stat->file_version,
1323 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1324 		rc = -EINVAL;
1325 		goto out;
1326 	}
1327 	offset += bytes_read;
1328 	if (crypt_stat->file_version >= 1) {
1329 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1330 					   &bytes_read, validate_header_size);
1331 		if (rc) {
1332 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1333 					"metadata; rc = [%d]\n", rc);
1334 		}
1335 		offset += bytes_read;
1336 	} else
1337 		set_default_header_data(crypt_stat);
1338 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1339 				       ecryptfs_dentry);
1340 out:
1341 	return rc;
1342 }
1343 
1344 /**
1345  * ecryptfs_read_xattr_region
1346  * @page_virt: The vitual address into which to read the xattr data
1347  * @ecryptfs_inode: The eCryptfs inode
1348  *
1349  * Attempts to read the crypto metadata from the extended attribute
1350  * region of the lower file.
1351  *
1352  * Returns zero on success; non-zero on error
1353  */
ecryptfs_read_xattr_region(char * page_virt,struct inode * ecryptfs_inode)1354 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1355 {
1356 	struct dentry *lower_dentry =
1357 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1358 	ssize_t size;
1359 	int rc = 0;
1360 
1361 	size = ecryptfs_getxattr_lower(lower_dentry,
1362 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1363 				       ECRYPTFS_XATTR_NAME,
1364 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1365 	if (size < 0) {
1366 		if (unlikely(ecryptfs_verbosity > 0))
1367 			printk(KERN_INFO "Error attempting to read the [%s] "
1368 			       "xattr from the lower file; return value = "
1369 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1370 		rc = -EINVAL;
1371 		goto out;
1372 	}
1373 out:
1374 	return rc;
1375 }
1376 
ecryptfs_read_and_validate_xattr_region(struct dentry * dentry,struct inode * inode)1377 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1378 					    struct inode *inode)
1379 {
1380 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1381 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1382 	int rc;
1383 
1384 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1385 				     ecryptfs_inode_to_lower(inode),
1386 				     ECRYPTFS_XATTR_NAME, file_size,
1387 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1388 	if (rc < 0)
1389 		return rc;
1390 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1391 		return -EINVAL;
1392 	rc = ecryptfs_validate_marker(marker);
1393 	if (!rc)
1394 		ecryptfs_i_size_init(file_size, inode);
1395 	return rc;
1396 }
1397 
1398 /**
1399  * ecryptfs_read_metadata
1400  *
1401  * Common entry point for reading file metadata. From here, we could
1402  * retrieve the header information from the header region of the file,
1403  * the xattr region of the file, or some other repository that is
1404  * stored separately from the file itself. The current implementation
1405  * supports retrieving the metadata information from the file contents
1406  * and from the xattr region.
1407  *
1408  * Returns zero if valid headers found and parsed; non-zero otherwise
1409  */
ecryptfs_read_metadata(struct dentry * ecryptfs_dentry)1410 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1411 {
1412 	int rc;
1413 	char *page_virt;
1414 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1415 	struct ecryptfs_crypt_stat *crypt_stat =
1416 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1417 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1418 		&ecryptfs_superblock_to_private(
1419 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1420 
1421 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1422 						      mount_crypt_stat);
1423 	/* Read the first page from the underlying file */
1424 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1425 	if (!page_virt) {
1426 		rc = -ENOMEM;
1427 		goto out;
1428 	}
1429 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1430 				 ecryptfs_inode);
1431 	if (rc >= 0)
1432 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1433 						ecryptfs_dentry,
1434 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1435 	if (rc) {
1436 		/* metadata is not in the file header, so try xattrs */
1437 		memset(page_virt, 0, PAGE_SIZE);
1438 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1439 		if (rc) {
1440 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1441 			       "file header region or xattr region, inode %lu\n",
1442 				ecryptfs_inode->i_ino);
1443 			rc = -EINVAL;
1444 			goto out;
1445 		}
1446 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1447 						ecryptfs_dentry,
1448 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1449 		if (rc) {
1450 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1451 			       "file xattr region either, inode %lu\n",
1452 				ecryptfs_inode->i_ino);
1453 			rc = -EINVAL;
1454 		}
1455 		if (crypt_stat->mount_crypt_stat->flags
1456 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1457 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1458 		} else {
1459 			printk(KERN_WARNING "Attempt to access file with "
1460 			       "crypto metadata only in the extended attribute "
1461 			       "region, but eCryptfs was mounted without "
1462 			       "xattr support enabled. eCryptfs will not treat "
1463 			       "this like an encrypted file, inode %lu\n",
1464 				ecryptfs_inode->i_ino);
1465 			rc = -EINVAL;
1466 		}
1467 	}
1468 out:
1469 	if (page_virt) {
1470 		memset(page_virt, 0, PAGE_SIZE);
1471 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1472 	}
1473 	return rc;
1474 }
1475 
1476 /**
1477  * ecryptfs_encrypt_filename - encrypt filename
1478  *
1479  * CBC-encrypts the filename. We do not want to encrypt the same
1480  * filename with the same key and IV, which may happen with hard
1481  * links, so we prepend random bits to each filename.
1482  *
1483  * Returns zero on success; non-zero otherwise
1484  */
1485 static int
ecryptfs_encrypt_filename(struct ecryptfs_filename * filename,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)1486 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1487 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1488 {
1489 	int rc = 0;
1490 
1491 	filename->encrypted_filename = NULL;
1492 	filename->encrypted_filename_size = 0;
1493 	if (mount_crypt_stat && (mount_crypt_stat->flags
1494 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1495 		size_t packet_size;
1496 		size_t remaining_bytes;
1497 
1498 		rc = ecryptfs_write_tag_70_packet(
1499 			NULL, NULL,
1500 			&filename->encrypted_filename_size,
1501 			mount_crypt_stat, NULL,
1502 			filename->filename_size);
1503 		if (rc) {
1504 			printk(KERN_ERR "%s: Error attempting to get packet "
1505 			       "size for tag 72; rc = [%d]\n", __func__,
1506 			       rc);
1507 			filename->encrypted_filename_size = 0;
1508 			goto out;
1509 		}
1510 		filename->encrypted_filename =
1511 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1512 		if (!filename->encrypted_filename) {
1513 			rc = -ENOMEM;
1514 			goto out;
1515 		}
1516 		remaining_bytes = filename->encrypted_filename_size;
1517 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1518 						  &remaining_bytes,
1519 						  &packet_size,
1520 						  mount_crypt_stat,
1521 						  filename->filename,
1522 						  filename->filename_size);
1523 		if (rc) {
1524 			printk(KERN_ERR "%s: Error attempting to generate "
1525 			       "tag 70 packet; rc = [%d]\n", __func__,
1526 			       rc);
1527 			kfree(filename->encrypted_filename);
1528 			filename->encrypted_filename = NULL;
1529 			filename->encrypted_filename_size = 0;
1530 			goto out;
1531 		}
1532 		filename->encrypted_filename_size = packet_size;
1533 	} else {
1534 		printk(KERN_ERR "%s: No support for requested filename "
1535 		       "encryption method in this release\n", __func__);
1536 		rc = -EOPNOTSUPP;
1537 		goto out;
1538 	}
1539 out:
1540 	return rc;
1541 }
1542 
ecryptfs_copy_filename(char ** copied_name,size_t * copied_name_size,const char * name,size_t name_size)1543 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1544 				  const char *name, size_t name_size)
1545 {
1546 	int rc = 0;
1547 
1548 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1549 	if (!(*copied_name)) {
1550 		rc = -ENOMEM;
1551 		goto out;
1552 	}
1553 	memcpy((void *)(*copied_name), (void *)name, name_size);
1554 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1555 						 * in printing out the
1556 						 * string in debug
1557 						 * messages */
1558 	(*copied_name_size) = name_size;
1559 out:
1560 	return rc;
1561 }
1562 
1563 /**
1564  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1565  * @key_tfm: Crypto context for key material, set by this function
1566  * @cipher_name: Name of the cipher
1567  * @key_size: Size of the key in bytes
1568  *
1569  * Returns zero on success. Any crypto_tfm structs allocated here
1570  * should be released by other functions, such as on a superblock put
1571  * event, regardless of whether this function succeeds for fails.
1572  */
1573 static int
ecryptfs_process_key_cipher(struct crypto_skcipher ** key_tfm,char * cipher_name,size_t * key_size)1574 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1575 			    char *cipher_name, size_t *key_size)
1576 {
1577 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1578 	char *full_alg_name = NULL;
1579 	int rc;
1580 
1581 	*key_tfm = NULL;
1582 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1583 		rc = -EINVAL;
1584 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1585 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1586 		goto out;
1587 	}
1588 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1589 						    "ecb");
1590 	if (rc)
1591 		goto out;
1592 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1593 	if (IS_ERR(*key_tfm)) {
1594 		rc = PTR_ERR(*key_tfm);
1595 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1596 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1597 		goto out;
1598 	}
1599 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1600 	if (*key_size == 0)
1601 		*key_size = crypto_skcipher_default_keysize(*key_tfm);
1602 	get_random_bytes(dummy_key, *key_size);
1603 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1604 	if (rc) {
1605 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1606 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1607 		       rc);
1608 		rc = -EINVAL;
1609 		goto out;
1610 	}
1611 out:
1612 	kfree(full_alg_name);
1613 	return rc;
1614 }
1615 
1616 struct kmem_cache *ecryptfs_key_tfm_cache;
1617 static struct list_head key_tfm_list;
1618 struct mutex key_tfm_list_mutex;
1619 
ecryptfs_init_crypto(void)1620 int __init ecryptfs_init_crypto(void)
1621 {
1622 	mutex_init(&key_tfm_list_mutex);
1623 	INIT_LIST_HEAD(&key_tfm_list);
1624 	return 0;
1625 }
1626 
1627 /**
1628  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1629  *
1630  * Called only at module unload time
1631  */
ecryptfs_destroy_crypto(void)1632 int ecryptfs_destroy_crypto(void)
1633 {
1634 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1635 
1636 	mutex_lock(&key_tfm_list_mutex);
1637 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1638 				 key_tfm_list) {
1639 		list_del(&key_tfm->key_tfm_list);
1640 		crypto_free_skcipher(key_tfm->key_tfm);
1641 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1642 	}
1643 	mutex_unlock(&key_tfm_list_mutex);
1644 	return 0;
1645 }
1646 
1647 int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm ** key_tfm,char * cipher_name,size_t key_size)1648 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1649 			 size_t key_size)
1650 {
1651 	struct ecryptfs_key_tfm *tmp_tfm;
1652 	int rc = 0;
1653 
1654 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1655 
1656 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1657 	if (key_tfm)
1658 		(*key_tfm) = tmp_tfm;
1659 	if (!tmp_tfm) {
1660 		rc = -ENOMEM;
1661 		goto out;
1662 	}
1663 	mutex_init(&tmp_tfm->key_tfm_mutex);
1664 	strncpy(tmp_tfm->cipher_name, cipher_name,
1665 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1666 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1667 	tmp_tfm->key_size = key_size;
1668 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1669 					 tmp_tfm->cipher_name,
1670 					 &tmp_tfm->key_size);
1671 	if (rc) {
1672 		printk(KERN_ERR "Error attempting to initialize key TFM "
1673 		       "cipher with name = [%s]; rc = [%d]\n",
1674 		       tmp_tfm->cipher_name, rc);
1675 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1676 		if (key_tfm)
1677 			(*key_tfm) = NULL;
1678 		goto out;
1679 	}
1680 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1681 out:
1682 	return rc;
1683 }
1684 
1685 /**
1686  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1687  * @cipher_name: the name of the cipher to search for
1688  * @key_tfm: set to corresponding tfm if found
1689  *
1690  * Searches for cached key_tfm matching @cipher_name
1691  * Must be called with &key_tfm_list_mutex held
1692  * Returns 1 if found, with @key_tfm set
1693  * Returns 0 if not found, with @key_tfm set to NULL
1694  */
ecryptfs_tfm_exists(char * cipher_name,struct ecryptfs_key_tfm ** key_tfm)1695 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1696 {
1697 	struct ecryptfs_key_tfm *tmp_key_tfm;
1698 
1699 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1700 
1701 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1702 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1703 			if (key_tfm)
1704 				(*key_tfm) = tmp_key_tfm;
1705 			return 1;
1706 		}
1707 	}
1708 	if (key_tfm)
1709 		(*key_tfm) = NULL;
1710 	return 0;
1711 }
1712 
1713 /**
1714  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1715  *
1716  * @tfm: set to cached tfm found, or new tfm created
1717  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1718  * @cipher_name: the name of the cipher to search for and/or add
1719  *
1720  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1721  * Searches for cached item first, and creates new if not found.
1722  * Returns 0 on success, non-zero if adding new cipher failed
1723  */
ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher ** tfm,struct mutex ** tfm_mutex,char * cipher_name)1724 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1725 					       struct mutex **tfm_mutex,
1726 					       char *cipher_name)
1727 {
1728 	struct ecryptfs_key_tfm *key_tfm;
1729 	int rc = 0;
1730 
1731 	(*tfm) = NULL;
1732 	(*tfm_mutex) = NULL;
1733 
1734 	mutex_lock(&key_tfm_list_mutex);
1735 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1736 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1737 		if (rc) {
1738 			printk(KERN_ERR "Error adding new key_tfm to list; "
1739 					"rc = [%d]\n", rc);
1740 			goto out;
1741 		}
1742 	}
1743 	(*tfm) = key_tfm->key_tfm;
1744 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1745 out:
1746 	mutex_unlock(&key_tfm_list_mutex);
1747 	return rc;
1748 }
1749 
1750 /* 64 characters forming a 6-bit target field */
1751 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1752 						 "EFGHIJKLMNOPQRST"
1753 						 "UVWXYZabcdefghij"
1754 						 "klmnopqrstuvwxyz");
1755 
1756 /* We could either offset on every reverse map or just pad some 0x00's
1757  * at the front here */
1758 static const unsigned char filename_rev_map[256] = {
1759 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1760 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1761 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1762 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1763 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1764 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1765 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1766 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1767 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1768 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1769 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1770 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1771 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1772 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1773 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1774 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1775 };
1776 
1777 /**
1778  * ecryptfs_encode_for_filename
1779  * @dst: Destination location for encoded filename
1780  * @dst_size: Size of the encoded filename in bytes
1781  * @src: Source location for the filename to encode
1782  * @src_size: Size of the source in bytes
1783  */
ecryptfs_encode_for_filename(unsigned char * dst,size_t * dst_size,unsigned char * src,size_t src_size)1784 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1785 				  unsigned char *src, size_t src_size)
1786 {
1787 	size_t num_blocks;
1788 	size_t block_num = 0;
1789 	size_t dst_offset = 0;
1790 	unsigned char last_block[3];
1791 
1792 	if (src_size == 0) {
1793 		(*dst_size) = 0;
1794 		goto out;
1795 	}
1796 	num_blocks = (src_size / 3);
1797 	if ((src_size % 3) == 0) {
1798 		memcpy(last_block, (&src[src_size - 3]), 3);
1799 	} else {
1800 		num_blocks++;
1801 		last_block[2] = 0x00;
1802 		switch (src_size % 3) {
1803 		case 1:
1804 			last_block[0] = src[src_size - 1];
1805 			last_block[1] = 0x00;
1806 			break;
1807 		case 2:
1808 			last_block[0] = src[src_size - 2];
1809 			last_block[1] = src[src_size - 1];
1810 		}
1811 	}
1812 	(*dst_size) = (num_blocks * 4);
1813 	if (!dst)
1814 		goto out;
1815 	while (block_num < num_blocks) {
1816 		unsigned char *src_block;
1817 		unsigned char dst_block[4];
1818 
1819 		if (block_num == (num_blocks - 1))
1820 			src_block = last_block;
1821 		else
1822 			src_block = &src[block_num * 3];
1823 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1824 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1825 				| ((src_block[1] >> 4) & 0x0F));
1826 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1827 				| ((src_block[2] >> 6) & 0x03));
1828 		dst_block[3] = (src_block[2] & 0x3F);
1829 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1830 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1831 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1832 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1833 		block_num++;
1834 	}
1835 out:
1836 	return;
1837 }
1838 
ecryptfs_max_decoded_size(size_t encoded_size)1839 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1840 {
1841 	/* Not exact; conservatively long. Every block of 4
1842 	 * encoded characters decodes into a block of 3
1843 	 * decoded characters. This segment of code provides
1844 	 * the caller with the maximum amount of allocated
1845 	 * space that @dst will need to point to in a
1846 	 * subsequent call. */
1847 	return ((encoded_size + 1) * 3) / 4;
1848 }
1849 
1850 /**
1851  * ecryptfs_decode_from_filename
1852  * @dst: If NULL, this function only sets @dst_size and returns. If
1853  *       non-NULL, this function decodes the encoded octets in @src
1854  *       into the memory that @dst points to.
1855  * @dst_size: Set to the size of the decoded string.
1856  * @src: The encoded set of octets to decode.
1857  * @src_size: The size of the encoded set of octets to decode.
1858  */
1859 static void
ecryptfs_decode_from_filename(unsigned char * dst,size_t * dst_size,const unsigned char * src,size_t src_size)1860 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1861 			      const unsigned char *src, size_t src_size)
1862 {
1863 	u8 current_bit_offset = 0;
1864 	size_t src_byte_offset = 0;
1865 	size_t dst_byte_offset = 0;
1866 
1867 	if (!dst) {
1868 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1869 		goto out;
1870 	}
1871 	while (src_byte_offset < src_size) {
1872 		unsigned char src_byte =
1873 				filename_rev_map[(int)src[src_byte_offset]];
1874 
1875 		switch (current_bit_offset) {
1876 		case 0:
1877 			dst[dst_byte_offset] = (src_byte << 2);
1878 			current_bit_offset = 6;
1879 			break;
1880 		case 6:
1881 			dst[dst_byte_offset++] |= (src_byte >> 4);
1882 			dst[dst_byte_offset] = ((src_byte & 0xF)
1883 						 << 4);
1884 			current_bit_offset = 4;
1885 			break;
1886 		case 4:
1887 			dst[dst_byte_offset++] |= (src_byte >> 2);
1888 			dst[dst_byte_offset] = (src_byte << 6);
1889 			current_bit_offset = 2;
1890 			break;
1891 		case 2:
1892 			dst[dst_byte_offset++] |= (src_byte);
1893 			current_bit_offset = 0;
1894 			break;
1895 		}
1896 		src_byte_offset++;
1897 	}
1898 	(*dst_size) = dst_byte_offset;
1899 out:
1900 	return;
1901 }
1902 
1903 /**
1904  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1905  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1906  * @name: The plaintext name
1907  * @length: The length of the plaintext
1908  * @encoded_name: The encypted name
1909  *
1910  * Encrypts and encodes a filename into something that constitutes a
1911  * valid filename for a filesystem, with printable characters.
1912  *
1913  * We assume that we have a properly initialized crypto context,
1914  * pointed to by crypt_stat->tfm.
1915  *
1916  * Returns zero on success; non-zero on otherwise
1917  */
ecryptfs_encrypt_and_encode_filename(char ** encoded_name,size_t * encoded_name_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,const char * name,size_t name_size)1918 int ecryptfs_encrypt_and_encode_filename(
1919 	char **encoded_name,
1920 	size_t *encoded_name_size,
1921 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1922 	const char *name, size_t name_size)
1923 {
1924 	size_t encoded_name_no_prefix_size;
1925 	int rc = 0;
1926 
1927 	(*encoded_name) = NULL;
1928 	(*encoded_name_size) = 0;
1929 	if (mount_crypt_stat && (mount_crypt_stat->flags
1930 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1931 		struct ecryptfs_filename *filename;
1932 
1933 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1934 		if (!filename) {
1935 			rc = -ENOMEM;
1936 			goto out;
1937 		}
1938 		filename->filename = (char *)name;
1939 		filename->filename_size = name_size;
1940 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1941 		if (rc) {
1942 			printk(KERN_ERR "%s: Error attempting to encrypt "
1943 			       "filename; rc = [%d]\n", __func__, rc);
1944 			kfree(filename);
1945 			goto out;
1946 		}
1947 		ecryptfs_encode_for_filename(
1948 			NULL, &encoded_name_no_prefix_size,
1949 			filename->encrypted_filename,
1950 			filename->encrypted_filename_size);
1951 		if (mount_crypt_stat
1952 			&& (mount_crypt_stat->flags
1953 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1954 			(*encoded_name_size) =
1955 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1956 				 + encoded_name_no_prefix_size);
1957 		else
1958 			(*encoded_name_size) =
1959 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1960 				 + encoded_name_no_prefix_size);
1961 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1962 		if (!(*encoded_name)) {
1963 			rc = -ENOMEM;
1964 			kfree(filename->encrypted_filename);
1965 			kfree(filename);
1966 			goto out;
1967 		}
1968 		if (mount_crypt_stat
1969 			&& (mount_crypt_stat->flags
1970 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1971 			memcpy((*encoded_name),
1972 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1973 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1974 			ecryptfs_encode_for_filename(
1975 			    ((*encoded_name)
1976 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1977 			    &encoded_name_no_prefix_size,
1978 			    filename->encrypted_filename,
1979 			    filename->encrypted_filename_size);
1980 			(*encoded_name_size) =
1981 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1982 				 + encoded_name_no_prefix_size);
1983 			(*encoded_name)[(*encoded_name_size)] = '\0';
1984 		} else {
1985 			rc = -EOPNOTSUPP;
1986 		}
1987 		if (rc) {
1988 			printk(KERN_ERR "%s: Error attempting to encode "
1989 			       "encrypted filename; rc = [%d]\n", __func__,
1990 			       rc);
1991 			kfree((*encoded_name));
1992 			(*encoded_name) = NULL;
1993 			(*encoded_name_size) = 0;
1994 		}
1995 		kfree(filename->encrypted_filename);
1996 		kfree(filename);
1997 	} else {
1998 		rc = ecryptfs_copy_filename(encoded_name,
1999 					    encoded_name_size,
2000 					    name, name_size);
2001 	}
2002 out:
2003 	return rc;
2004 }
2005 
is_dot_dotdot(const char * name,size_t name_size)2006 static bool is_dot_dotdot(const char *name, size_t name_size)
2007 {
2008 	if (name_size == 1 && name[0] == '.')
2009 		return true;
2010 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2011 		return true;
2012 
2013 	return false;
2014 }
2015 
2016 /**
2017  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2018  * @plaintext_name: The plaintext name
2019  * @plaintext_name_size: The plaintext name size
2020  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2021  * @name: The filename in cipher text
2022  * @name_size: The cipher text name size
2023  *
2024  * Decrypts and decodes the filename.
2025  *
2026  * Returns zero on error; non-zero otherwise
2027  */
ecryptfs_decode_and_decrypt_filename(char ** plaintext_name,size_t * plaintext_name_size,struct super_block * sb,const char * name,size_t name_size)2028 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2029 					 size_t *plaintext_name_size,
2030 					 struct super_block *sb,
2031 					 const char *name, size_t name_size)
2032 {
2033 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2034 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2035 	char *decoded_name;
2036 	size_t decoded_name_size;
2037 	size_t packet_size;
2038 	int rc = 0;
2039 
2040 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2041 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2042 		if (is_dot_dotdot(name, name_size)) {
2043 			rc = ecryptfs_copy_filename(plaintext_name,
2044 						    plaintext_name_size,
2045 						    name, name_size);
2046 			goto out;
2047 		}
2048 
2049 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2050 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2051 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2052 			rc = -EINVAL;
2053 			goto out;
2054 		}
2055 
2056 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2057 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2058 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2059 					      name, name_size);
2060 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2061 		if (!decoded_name) {
2062 			rc = -ENOMEM;
2063 			goto out;
2064 		}
2065 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2066 					      name, name_size);
2067 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2068 						  plaintext_name_size,
2069 						  &packet_size,
2070 						  mount_crypt_stat,
2071 						  decoded_name,
2072 						  decoded_name_size);
2073 		if (rc) {
2074 			ecryptfs_printk(KERN_DEBUG,
2075 					"%s: Could not parse tag 70 packet from filename\n",
2076 					__func__);
2077 			goto out_free;
2078 		}
2079 	} else {
2080 		rc = ecryptfs_copy_filename(plaintext_name,
2081 					    plaintext_name_size,
2082 					    name, name_size);
2083 		goto out;
2084 	}
2085 out_free:
2086 	kfree(decoded_name);
2087 out:
2088 	return rc;
2089 }
2090 
2091 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2092 
ecryptfs_set_f_namelen(long * namelen,long lower_namelen,struct ecryptfs_mount_crypt_stat * mount_crypt_stat)2093 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2094 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2095 {
2096 	struct crypto_skcipher *tfm;
2097 	struct mutex *tfm_mutex;
2098 	size_t cipher_blocksize;
2099 	int rc;
2100 
2101 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2102 		(*namelen) = lower_namelen;
2103 		return 0;
2104 	}
2105 
2106 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2107 			mount_crypt_stat->global_default_fn_cipher_name);
2108 	if (unlikely(rc)) {
2109 		(*namelen) = 0;
2110 		return rc;
2111 	}
2112 
2113 	mutex_lock(tfm_mutex);
2114 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2115 	mutex_unlock(tfm_mutex);
2116 
2117 	/* Return an exact amount for the common cases */
2118 	if (lower_namelen == NAME_MAX
2119 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2120 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2121 		return 0;
2122 	}
2123 
2124 	/* Return a safe estimate for the uncommon cases */
2125 	(*namelen) = lower_namelen;
2126 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2127 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2128 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2129 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2130 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2131 	/* Worst case is that the filename is padded nearly a full block size */
2132 	(*namelen) -= cipher_blocksize - 1;
2133 
2134 	if ((*namelen) < 0)
2135 		(*namelen) = 0;
2136 
2137 	return 0;
2138 }
2139