1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/sched/task.h> 40 #include <linux/pagemap.h> 41 #include <linux/perf_event.h> 42 #include <linux/highmem.h> 43 #include <linux/spinlock.h> 44 #include <linux/key.h> 45 #include <linux/personality.h> 46 #include <linux/binfmts.h> 47 #include <linux/utsname.h> 48 #include <linux/pid_namespace.h> 49 #include <linux/module.h> 50 #include <linux/namei.h> 51 #include <linux/mount.h> 52 #include <linux/security.h> 53 #include <linux/syscalls.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/audit.h> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/pipe_fs_i.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 __register_binfmt(struct linux_binfmt * fmt,int insert)80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 unregister_binfmt(struct linux_binfmt * fmt)93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 put_binfmt(struct linux_binfmt * fmt)102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 path_noexec(const struct path * path)107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ SYSCALL_DEFINE1(uselib,const char __user *,library)120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ acct_arg_size(struct linux_binprm * bprm,unsigned long pages)182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) { 222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 223 unsigned long ptr_size, limit; 224 225 /* 226 * Since the stack will hold pointers to the strings, we 227 * must account for them as well. 228 * 229 * The size calculation is the entire vma while each arg page is 230 * built, so each time we get here it's calculating how far it 231 * is currently (rather than each call being just the newly 232 * added size from the arg page). As a result, we need to 233 * always add the entire size of the pointers, so that on the 234 * last call to get_arg_page() we'll actually have the entire 235 * correct size. 236 */ 237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 238 if (ptr_size > ULONG_MAX - size) 239 goto fail; 240 size += ptr_size; 241 242 acct_arg_size(bprm, size / PAGE_SIZE); 243 244 /* 245 * We've historically supported up to 32 pages (ARG_MAX) 246 * of argument strings even with small stacks 247 */ 248 if (size <= ARG_MAX) 249 return page; 250 251 /* 252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 253 * (whichever is smaller) for the argv+env strings. 254 * This ensures that: 255 * - the remaining binfmt code will not run out of stack space, 256 * - the program will have a reasonable amount of stack left 257 * to work from. 258 */ 259 limit = _STK_LIM / 4 * 3; 260 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 261 if (size > limit) 262 goto fail; 263 } 264 265 return page; 266 267 fail: 268 put_page(page); 269 return NULL; 270 } 271 put_arg_page(struct page * page)272 static void put_arg_page(struct page *page) 273 { 274 put_page(page); 275 } 276 free_arg_pages(struct linux_binprm * bprm)277 static void free_arg_pages(struct linux_binprm *bprm) 278 { 279 } 280 flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 282 struct page *page) 283 { 284 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 285 } 286 __bprm_mm_init(struct linux_binprm * bprm)287 static int __bprm_mm_init(struct linux_binprm *bprm) 288 { 289 int err; 290 struct vm_area_struct *vma = NULL; 291 struct mm_struct *mm = bprm->mm; 292 293 bprm->vma = vma = vm_area_alloc(mm); 294 if (!vma) 295 return -ENOMEM; 296 vma_set_anonymous(vma); 297 298 if (down_write_killable(&mm->mmap_sem)) { 299 err = -EINTR; 300 goto err_free; 301 } 302 303 /* 304 * Place the stack at the largest stack address the architecture 305 * supports. Later, we'll move this to an appropriate place. We don't 306 * use STACK_TOP because that can depend on attributes which aren't 307 * configured yet. 308 */ 309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 310 vma->vm_end = STACK_TOP_MAX; 311 vma->vm_start = vma->vm_end - PAGE_SIZE; 312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 314 315 err = insert_vm_struct(mm, vma); 316 if (err) 317 goto err; 318 319 mm->stack_vm = mm->total_vm = 1; 320 arch_bprm_mm_init(mm, vma); 321 up_write(&mm->mmap_sem); 322 bprm->p = vma->vm_end - sizeof(void *); 323 return 0; 324 err: 325 up_write(&mm->mmap_sem); 326 err_free: 327 bprm->vma = NULL; 328 vm_area_free(vma); 329 return err; 330 } 331 valid_arg_len(struct linux_binprm * bprm,long len)332 static bool valid_arg_len(struct linux_binprm *bprm, long len) 333 { 334 return len <= MAX_ARG_STRLEN; 335 } 336 337 #else 338 acct_arg_size(struct linux_binprm * bprm,unsigned long pages)339 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 340 { 341 } 342 get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)343 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 344 int write) 345 { 346 struct page *page; 347 348 page = bprm->page[pos / PAGE_SIZE]; 349 if (!page && write) { 350 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 351 if (!page) 352 return NULL; 353 bprm->page[pos / PAGE_SIZE] = page; 354 } 355 356 return page; 357 } 358 put_arg_page(struct page * page)359 static void put_arg_page(struct page *page) 360 { 361 } 362 free_arg_page(struct linux_binprm * bprm,int i)363 static void free_arg_page(struct linux_binprm *bprm, int i) 364 { 365 if (bprm->page[i]) { 366 __free_page(bprm->page[i]); 367 bprm->page[i] = NULL; 368 } 369 } 370 free_arg_pages(struct linux_binprm * bprm)371 static void free_arg_pages(struct linux_binprm *bprm) 372 { 373 int i; 374 375 for (i = 0; i < MAX_ARG_PAGES; i++) 376 free_arg_page(bprm, i); 377 } 378 flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)379 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 380 struct page *page) 381 { 382 } 383 __bprm_mm_init(struct linux_binprm * bprm)384 static int __bprm_mm_init(struct linux_binprm *bprm) 385 { 386 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 387 return 0; 388 } 389 valid_arg_len(struct linux_binprm * bprm,long len)390 static bool valid_arg_len(struct linux_binprm *bprm, long len) 391 { 392 return len <= bprm->p; 393 } 394 395 #endif /* CONFIG_MMU */ 396 397 /* 398 * Create a new mm_struct and populate it with a temporary stack 399 * vm_area_struct. We don't have enough context at this point to set the stack 400 * flags, permissions, and offset, so we use temporary values. We'll update 401 * them later in setup_arg_pages(). 402 */ bprm_mm_init(struct linux_binprm * bprm)403 static int bprm_mm_init(struct linux_binprm *bprm) 404 { 405 int err; 406 struct mm_struct *mm = NULL; 407 408 bprm->mm = mm = mm_alloc(); 409 err = -ENOMEM; 410 if (!mm) 411 goto err; 412 413 /* Save current stack limit for all calculations made during exec. */ 414 task_lock(current->group_leader); 415 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 416 task_unlock(current->group_leader); 417 418 err = __bprm_mm_init(bprm); 419 if (err) 420 goto err; 421 422 return 0; 423 424 err: 425 if (mm) { 426 bprm->mm = NULL; 427 mmdrop(mm); 428 } 429 430 return err; 431 } 432 433 struct user_arg_ptr { 434 #ifdef CONFIG_COMPAT 435 bool is_compat; 436 #endif 437 union { 438 const char __user *const __user *native; 439 #ifdef CONFIG_COMPAT 440 const compat_uptr_t __user *compat; 441 #endif 442 } ptr; 443 }; 444 get_user_arg_ptr(struct user_arg_ptr argv,int nr)445 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 446 { 447 const char __user *native; 448 449 #ifdef CONFIG_COMPAT 450 if (unlikely(argv.is_compat)) { 451 compat_uptr_t compat; 452 453 if (get_user(compat, argv.ptr.compat + nr)) 454 return ERR_PTR(-EFAULT); 455 456 return compat_ptr(compat); 457 } 458 #endif 459 460 if (get_user(native, argv.ptr.native + nr)) 461 return ERR_PTR(-EFAULT); 462 463 return native; 464 } 465 466 /* 467 * count() counts the number of strings in array ARGV. 468 */ count(struct user_arg_ptr argv,int max)469 static int count(struct user_arg_ptr argv, int max) 470 { 471 int i = 0; 472 473 if (argv.ptr.native != NULL) { 474 for (;;) { 475 const char __user *p = get_user_arg_ptr(argv, i); 476 477 if (!p) 478 break; 479 480 if (IS_ERR(p)) 481 return -EFAULT; 482 483 if (i >= max) 484 return -E2BIG; 485 ++i; 486 487 if (fatal_signal_pending(current)) 488 return -ERESTARTNOHAND; 489 cond_resched(); 490 } 491 } 492 return i; 493 } 494 495 /* 496 * 'copy_strings()' copies argument/environment strings from the old 497 * processes's memory to the new process's stack. The call to get_user_pages() 498 * ensures the destination page is created and not swapped out. 499 */ copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)500 static int copy_strings(int argc, struct user_arg_ptr argv, 501 struct linux_binprm *bprm) 502 { 503 struct page *kmapped_page = NULL; 504 char *kaddr = NULL; 505 unsigned long kpos = 0; 506 int ret; 507 508 while (argc-- > 0) { 509 const char __user *str; 510 int len; 511 unsigned long pos; 512 513 ret = -EFAULT; 514 str = get_user_arg_ptr(argv, argc); 515 if (IS_ERR(str)) 516 goto out; 517 518 len = strnlen_user(str, MAX_ARG_STRLEN); 519 if (!len) 520 goto out; 521 522 ret = -E2BIG; 523 if (!valid_arg_len(bprm, len)) 524 goto out; 525 526 /* We're going to work our way backwords. */ 527 pos = bprm->p; 528 str += len; 529 bprm->p -= len; 530 531 while (len > 0) { 532 int offset, bytes_to_copy; 533 534 if (fatal_signal_pending(current)) { 535 ret = -ERESTARTNOHAND; 536 goto out; 537 } 538 cond_resched(); 539 540 offset = pos % PAGE_SIZE; 541 if (offset == 0) 542 offset = PAGE_SIZE; 543 544 bytes_to_copy = offset; 545 if (bytes_to_copy > len) 546 bytes_to_copy = len; 547 548 offset -= bytes_to_copy; 549 pos -= bytes_to_copy; 550 str -= bytes_to_copy; 551 len -= bytes_to_copy; 552 553 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 554 struct page *page; 555 556 page = get_arg_page(bprm, pos, 1); 557 if (!page) { 558 ret = -E2BIG; 559 goto out; 560 } 561 562 if (kmapped_page) { 563 flush_kernel_dcache_page(kmapped_page); 564 kunmap(kmapped_page); 565 put_arg_page(kmapped_page); 566 } 567 kmapped_page = page; 568 kaddr = kmap(kmapped_page); 569 kpos = pos & PAGE_MASK; 570 flush_arg_page(bprm, kpos, kmapped_page); 571 } 572 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 573 ret = -EFAULT; 574 goto out; 575 } 576 } 577 } 578 ret = 0; 579 out: 580 if (kmapped_page) { 581 flush_kernel_dcache_page(kmapped_page); 582 kunmap(kmapped_page); 583 put_arg_page(kmapped_page); 584 } 585 return ret; 586 } 587 588 /* 589 * Like copy_strings, but get argv and its values from kernel memory. 590 */ copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)591 int copy_strings_kernel(int argc, const char *const *__argv, 592 struct linux_binprm *bprm) 593 { 594 int r; 595 mm_segment_t oldfs = get_fs(); 596 struct user_arg_ptr argv = { 597 .ptr.native = (const char __user *const __user *)__argv, 598 }; 599 600 set_fs(KERNEL_DS); 601 r = copy_strings(argc, argv, bprm); 602 set_fs(oldfs); 603 604 return r; 605 } 606 EXPORT_SYMBOL(copy_strings_kernel); 607 608 #ifdef CONFIG_MMU 609 610 /* 611 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 612 * the binfmt code determines where the new stack should reside, we shift it to 613 * its final location. The process proceeds as follows: 614 * 615 * 1) Use shift to calculate the new vma endpoints. 616 * 2) Extend vma to cover both the old and new ranges. This ensures the 617 * arguments passed to subsequent functions are consistent. 618 * 3) Move vma's page tables to the new range. 619 * 4) Free up any cleared pgd range. 620 * 5) Shrink the vma to cover only the new range. 621 */ shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)622 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 623 { 624 struct mm_struct *mm = vma->vm_mm; 625 unsigned long old_start = vma->vm_start; 626 unsigned long old_end = vma->vm_end; 627 unsigned long length = old_end - old_start; 628 unsigned long new_start = old_start - shift; 629 unsigned long new_end = old_end - shift; 630 struct mmu_gather tlb; 631 632 BUG_ON(new_start > new_end); 633 634 /* 635 * ensure there are no vmas between where we want to go 636 * and where we are 637 */ 638 if (vma != find_vma(mm, new_start)) 639 return -EFAULT; 640 641 /* 642 * cover the whole range: [new_start, old_end) 643 */ 644 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 645 return -ENOMEM; 646 647 /* 648 * move the page tables downwards, on failure we rely on 649 * process cleanup to remove whatever mess we made. 650 */ 651 if (length != move_page_tables(vma, old_start, 652 vma, new_start, length, false)) 653 return -ENOMEM; 654 655 lru_add_drain(); 656 tlb_gather_mmu(&tlb, mm, old_start, old_end); 657 if (new_end > old_start) { 658 /* 659 * when the old and new regions overlap clear from new_end. 660 */ 661 free_pgd_range(&tlb, new_end, old_end, new_end, 662 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 663 } else { 664 /* 665 * otherwise, clean from old_start; this is done to not touch 666 * the address space in [new_end, old_start) some architectures 667 * have constraints on va-space that make this illegal (IA64) - 668 * for the others its just a little faster. 669 */ 670 free_pgd_range(&tlb, old_start, old_end, new_end, 671 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 672 } 673 tlb_finish_mmu(&tlb, old_start, old_end); 674 675 /* 676 * Shrink the vma to just the new range. Always succeeds. 677 */ 678 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 679 680 return 0; 681 } 682 683 /* 684 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 685 * the stack is optionally relocated, and some extra space is added. 686 */ setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)687 int setup_arg_pages(struct linux_binprm *bprm, 688 unsigned long stack_top, 689 int executable_stack) 690 { 691 unsigned long ret; 692 unsigned long stack_shift; 693 struct mm_struct *mm = current->mm; 694 struct vm_area_struct *vma = bprm->vma; 695 struct vm_area_struct *prev = NULL; 696 unsigned long vm_flags; 697 unsigned long stack_base; 698 unsigned long stack_size; 699 unsigned long stack_expand; 700 unsigned long rlim_stack; 701 702 #ifdef CONFIG_STACK_GROWSUP 703 /* Limit stack size */ 704 stack_base = bprm->rlim_stack.rlim_max; 705 if (stack_base > STACK_SIZE_MAX) 706 stack_base = STACK_SIZE_MAX; 707 708 /* Add space for stack randomization. */ 709 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 710 711 /* Make sure we didn't let the argument array grow too large. */ 712 if (vma->vm_end - vma->vm_start > stack_base) 713 return -ENOMEM; 714 715 stack_base = PAGE_ALIGN(stack_top - stack_base); 716 717 stack_shift = vma->vm_start - stack_base; 718 mm->arg_start = bprm->p - stack_shift; 719 bprm->p = vma->vm_end - stack_shift; 720 #else 721 stack_top = arch_align_stack(stack_top); 722 stack_top = PAGE_ALIGN(stack_top); 723 724 if (unlikely(stack_top < mmap_min_addr) || 725 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 726 return -ENOMEM; 727 728 stack_shift = vma->vm_end - stack_top; 729 730 bprm->p -= stack_shift; 731 mm->arg_start = bprm->p; 732 #endif 733 734 if (bprm->loader) 735 bprm->loader -= stack_shift; 736 bprm->exec -= stack_shift; 737 738 if (down_write_killable(&mm->mmap_sem)) 739 return -EINTR; 740 741 vm_flags = VM_STACK_FLAGS; 742 743 /* 744 * Adjust stack execute permissions; explicitly enable for 745 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 746 * (arch default) otherwise. 747 */ 748 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 749 vm_flags |= VM_EXEC; 750 else if (executable_stack == EXSTACK_DISABLE_X) 751 vm_flags &= ~VM_EXEC; 752 vm_flags |= mm->def_flags; 753 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 754 755 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 756 vm_flags); 757 if (ret) 758 goto out_unlock; 759 BUG_ON(prev != vma); 760 761 /* Move stack pages down in memory. */ 762 if (stack_shift) { 763 ret = shift_arg_pages(vma, stack_shift); 764 if (ret) 765 goto out_unlock; 766 } 767 768 /* mprotect_fixup is overkill to remove the temporary stack flags */ 769 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 770 771 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 772 stack_size = vma->vm_end - vma->vm_start; 773 /* 774 * Align this down to a page boundary as expand_stack 775 * will align it up. 776 */ 777 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 778 #ifdef CONFIG_STACK_GROWSUP 779 if (stack_size + stack_expand > rlim_stack) 780 stack_base = vma->vm_start + rlim_stack; 781 else 782 stack_base = vma->vm_end + stack_expand; 783 #else 784 if (stack_size + stack_expand > rlim_stack) 785 stack_base = vma->vm_end - rlim_stack; 786 else 787 stack_base = vma->vm_start - stack_expand; 788 #endif 789 current->mm->start_stack = bprm->p; 790 ret = expand_stack(vma, stack_base); 791 if (ret) 792 ret = -EFAULT; 793 794 out_unlock: 795 up_write(&mm->mmap_sem); 796 return ret; 797 } 798 EXPORT_SYMBOL(setup_arg_pages); 799 800 #else 801 802 /* 803 * Transfer the program arguments and environment from the holding pages 804 * onto the stack. The provided stack pointer is adjusted accordingly. 805 */ transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)806 int transfer_args_to_stack(struct linux_binprm *bprm, 807 unsigned long *sp_location) 808 { 809 unsigned long index, stop, sp; 810 int ret = 0; 811 812 stop = bprm->p >> PAGE_SHIFT; 813 sp = *sp_location; 814 815 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 816 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 817 char *src = kmap(bprm->page[index]) + offset; 818 sp -= PAGE_SIZE - offset; 819 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 820 ret = -EFAULT; 821 kunmap(bprm->page[index]); 822 if (ret) 823 goto out; 824 } 825 826 *sp_location = sp; 827 828 out: 829 return ret; 830 } 831 EXPORT_SYMBOL(transfer_args_to_stack); 832 833 #endif /* CONFIG_MMU */ 834 do_open_execat(int fd,struct filename * name,int flags)835 static struct file *do_open_execat(int fd, struct filename *name, int flags) 836 { 837 struct file *file; 838 int err; 839 struct open_flags open_exec_flags = { 840 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 841 .acc_mode = MAY_EXEC, 842 .intent = LOOKUP_OPEN, 843 .lookup_flags = LOOKUP_FOLLOW, 844 }; 845 846 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 847 return ERR_PTR(-EINVAL); 848 if (flags & AT_SYMLINK_NOFOLLOW) 849 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 850 if (flags & AT_EMPTY_PATH) 851 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 852 853 file = do_filp_open(fd, name, &open_exec_flags); 854 if (IS_ERR(file)) 855 goto out; 856 857 err = -EACCES; 858 if (!S_ISREG(file_inode(file)->i_mode)) 859 goto exit; 860 861 if (path_noexec(&file->f_path)) 862 goto exit; 863 864 err = deny_write_access(file); 865 if (err) 866 goto exit; 867 868 if (name->name[0] != '\0') 869 fsnotify_open(file); 870 871 out: 872 return file; 873 874 exit: 875 fput(file); 876 return ERR_PTR(err); 877 } 878 open_exec(const char * name)879 struct file *open_exec(const char *name) 880 { 881 struct filename *filename = getname_kernel(name); 882 struct file *f = ERR_CAST(filename); 883 884 if (!IS_ERR(filename)) { 885 f = do_open_execat(AT_FDCWD, filename, 0); 886 putname(filename); 887 } 888 return f; 889 } 890 EXPORT_SYMBOL(open_exec); 891 kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)892 int kernel_read_file(struct file *file, void **buf, loff_t *size, 893 loff_t max_size, enum kernel_read_file_id id) 894 { 895 loff_t i_size, pos; 896 ssize_t bytes = 0; 897 int ret; 898 899 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 900 return -EINVAL; 901 902 ret = deny_write_access(file); 903 if (ret) 904 return ret; 905 906 ret = security_kernel_read_file(file, id); 907 if (ret) 908 goto out; 909 910 i_size = i_size_read(file_inode(file)); 911 if (max_size > 0 && i_size > max_size) { 912 ret = -EFBIG; 913 goto out; 914 } 915 if (i_size <= 0) { 916 ret = -EINVAL; 917 goto out; 918 } 919 920 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 921 *buf = vmalloc(i_size); 922 if (!*buf) { 923 ret = -ENOMEM; 924 goto out; 925 } 926 927 pos = 0; 928 while (pos < i_size) { 929 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 930 if (bytes < 0) { 931 ret = bytes; 932 goto out_free; 933 } 934 935 if (bytes == 0) 936 break; 937 } 938 939 if (pos != i_size) { 940 ret = -EIO; 941 goto out_free; 942 } 943 944 ret = security_kernel_post_read_file(file, *buf, i_size, id); 945 if (!ret) 946 *size = pos; 947 948 out_free: 949 if (ret < 0) { 950 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 951 vfree(*buf); 952 *buf = NULL; 953 } 954 } 955 956 out: 957 allow_write_access(file); 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(kernel_read_file); 961 kernel_read_file_from_path(const char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)962 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 963 loff_t max_size, enum kernel_read_file_id id) 964 { 965 struct file *file; 966 int ret; 967 968 if (!path || !*path) 969 return -EINVAL; 970 971 file = filp_open(path, O_RDONLY, 0); 972 if (IS_ERR(file)) 973 return PTR_ERR(file); 974 975 ret = kernel_read_file(file, buf, size, max_size, id); 976 fput(file); 977 return ret; 978 } 979 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 980 kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)981 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 982 enum kernel_read_file_id id) 983 { 984 struct fd f = fdget(fd); 985 int ret = -EBADF; 986 987 if (!f.file) 988 goto out; 989 990 ret = kernel_read_file(f.file, buf, size, max_size, id); 991 out: 992 fdput(f); 993 return ret; 994 } 995 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 996 read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)997 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 998 { 999 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1000 if (res > 0) 1001 flush_icache_range(addr, addr + len); 1002 return res; 1003 } 1004 EXPORT_SYMBOL(read_code); 1005 exec_mmap(struct mm_struct * mm)1006 static int exec_mmap(struct mm_struct *mm) 1007 { 1008 struct task_struct *tsk; 1009 struct mm_struct *old_mm, *active_mm; 1010 1011 /* Notify parent that we're no longer interested in the old VM */ 1012 tsk = current; 1013 old_mm = current->mm; 1014 mm_release(tsk, old_mm); 1015 1016 if (old_mm) { 1017 sync_mm_rss(old_mm); 1018 /* 1019 * Make sure that if there is a core dump in progress 1020 * for the old mm, we get out and die instead of going 1021 * through with the exec. We must hold mmap_sem around 1022 * checking core_state and changing tsk->mm. 1023 */ 1024 down_read(&old_mm->mmap_sem); 1025 if (unlikely(old_mm->core_state)) { 1026 up_read(&old_mm->mmap_sem); 1027 return -EINTR; 1028 } 1029 } 1030 task_lock(tsk); 1031 1032 local_irq_disable(); 1033 active_mm = tsk->active_mm; 1034 tsk->active_mm = mm; 1035 tsk->mm = mm; 1036 /* 1037 * This prevents preemption while active_mm is being loaded and 1038 * it and mm are being updated, which could cause problems for 1039 * lazy tlb mm refcounting when these are updated by context 1040 * switches. Not all architectures can handle irqs off over 1041 * activate_mm yet. 1042 */ 1043 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1044 local_irq_enable(); 1045 activate_mm(active_mm, mm); 1046 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1047 local_irq_enable(); 1048 tsk->mm->vmacache_seqnum = 0; 1049 vmacache_flush(tsk); 1050 task_unlock(tsk); 1051 if (old_mm) { 1052 up_read(&old_mm->mmap_sem); 1053 BUG_ON(active_mm != old_mm); 1054 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1055 mm_update_next_owner(old_mm); 1056 mmput(old_mm); 1057 return 0; 1058 } 1059 mmdrop(active_mm); 1060 return 0; 1061 } 1062 1063 /* 1064 * This function makes sure the current process has its own signal table, 1065 * so that flush_signal_handlers can later reset the handlers without 1066 * disturbing other processes. (Other processes might share the signal 1067 * table via the CLONE_SIGHAND option to clone().) 1068 */ de_thread(struct task_struct * tsk)1069 static int de_thread(struct task_struct *tsk) 1070 { 1071 struct signal_struct *sig = tsk->signal; 1072 struct sighand_struct *oldsighand = tsk->sighand; 1073 spinlock_t *lock = &oldsighand->siglock; 1074 1075 if (thread_group_empty(tsk)) 1076 goto no_thread_group; 1077 1078 /* 1079 * Kill all other threads in the thread group. 1080 */ 1081 spin_lock_irq(lock); 1082 if (signal_group_exit(sig)) { 1083 /* 1084 * Another group action in progress, just 1085 * return so that the signal is processed. 1086 */ 1087 spin_unlock_irq(lock); 1088 return -EAGAIN; 1089 } 1090 1091 sig->group_exit_task = tsk; 1092 sig->notify_count = zap_other_threads(tsk); 1093 if (!thread_group_leader(tsk)) 1094 sig->notify_count--; 1095 1096 while (sig->notify_count) { 1097 __set_current_state(TASK_KILLABLE); 1098 spin_unlock_irq(lock); 1099 schedule(); 1100 if (unlikely(__fatal_signal_pending(tsk))) 1101 goto killed; 1102 spin_lock_irq(lock); 1103 } 1104 spin_unlock_irq(lock); 1105 1106 /* 1107 * At this point all other threads have exited, all we have to 1108 * do is to wait for the thread group leader to become inactive, 1109 * and to assume its PID: 1110 */ 1111 if (!thread_group_leader(tsk)) { 1112 struct task_struct *leader = tsk->group_leader; 1113 1114 for (;;) { 1115 cgroup_threadgroup_change_begin(tsk); 1116 write_lock_irq(&tasklist_lock); 1117 /* 1118 * Do this under tasklist_lock to ensure that 1119 * exit_notify() can't miss ->group_exit_task 1120 */ 1121 sig->notify_count = -1; 1122 if (likely(leader->exit_state)) 1123 break; 1124 __set_current_state(TASK_KILLABLE); 1125 write_unlock_irq(&tasklist_lock); 1126 cgroup_threadgroup_change_end(tsk); 1127 schedule(); 1128 if (unlikely(__fatal_signal_pending(tsk))) 1129 goto killed; 1130 } 1131 1132 /* 1133 * The only record we have of the real-time age of a 1134 * process, regardless of execs it's done, is start_time. 1135 * All the past CPU time is accumulated in signal_struct 1136 * from sister threads now dead. But in this non-leader 1137 * exec, nothing survives from the original leader thread, 1138 * whose birth marks the true age of this process now. 1139 * When we take on its identity by switching to its PID, we 1140 * also take its birthdate (always earlier than our own). 1141 */ 1142 tsk->start_time = leader->start_time; 1143 tsk->real_start_time = leader->real_start_time; 1144 1145 BUG_ON(!same_thread_group(leader, tsk)); 1146 BUG_ON(has_group_leader_pid(tsk)); 1147 /* 1148 * An exec() starts a new thread group with the 1149 * TGID of the previous thread group. Rehash the 1150 * two threads with a switched PID, and release 1151 * the former thread group leader: 1152 */ 1153 1154 /* Become a process group leader with the old leader's pid. 1155 * The old leader becomes a thread of the this thread group. 1156 * Note: The old leader also uses this pid until release_task 1157 * is called. Odd but simple and correct. 1158 */ 1159 tsk->pid = leader->pid; 1160 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1161 transfer_pid(leader, tsk, PIDTYPE_TGID); 1162 transfer_pid(leader, tsk, PIDTYPE_PGID); 1163 transfer_pid(leader, tsk, PIDTYPE_SID); 1164 1165 list_replace_rcu(&leader->tasks, &tsk->tasks); 1166 list_replace_init(&leader->sibling, &tsk->sibling); 1167 1168 tsk->group_leader = tsk; 1169 leader->group_leader = tsk; 1170 1171 tsk->exit_signal = SIGCHLD; 1172 leader->exit_signal = -1; 1173 1174 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1175 leader->exit_state = EXIT_DEAD; 1176 1177 /* 1178 * We are going to release_task()->ptrace_unlink() silently, 1179 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1180 * the tracer wont't block again waiting for this thread. 1181 */ 1182 if (unlikely(leader->ptrace)) 1183 __wake_up_parent(leader, leader->parent); 1184 write_unlock_irq(&tasklist_lock); 1185 cgroup_threadgroup_change_end(tsk); 1186 1187 release_task(leader); 1188 } 1189 1190 sig->group_exit_task = NULL; 1191 sig->notify_count = 0; 1192 1193 no_thread_group: 1194 /* we have changed execution domain */ 1195 tsk->exit_signal = SIGCHLD; 1196 1197 #ifdef CONFIG_POSIX_TIMERS 1198 exit_itimers(sig); 1199 flush_itimer_signals(); 1200 #endif 1201 1202 if (atomic_read(&oldsighand->count) != 1) { 1203 struct sighand_struct *newsighand; 1204 /* 1205 * This ->sighand is shared with the CLONE_SIGHAND 1206 * but not CLONE_THREAD task, switch to the new one. 1207 */ 1208 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1209 if (!newsighand) 1210 return -ENOMEM; 1211 1212 atomic_set(&newsighand->count, 1); 1213 memcpy(newsighand->action, oldsighand->action, 1214 sizeof(newsighand->action)); 1215 1216 write_lock_irq(&tasklist_lock); 1217 spin_lock(&oldsighand->siglock); 1218 rcu_assign_pointer(tsk->sighand, newsighand); 1219 spin_unlock(&oldsighand->siglock); 1220 write_unlock_irq(&tasklist_lock); 1221 1222 __cleanup_sighand(oldsighand); 1223 } 1224 1225 BUG_ON(!thread_group_leader(tsk)); 1226 return 0; 1227 1228 killed: 1229 /* protects against exit_notify() and __exit_signal() */ 1230 read_lock(&tasklist_lock); 1231 sig->group_exit_task = NULL; 1232 sig->notify_count = 0; 1233 read_unlock(&tasklist_lock); 1234 return -EAGAIN; 1235 } 1236 __get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1237 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1238 { 1239 task_lock(tsk); 1240 strncpy(buf, tsk->comm, buf_size); 1241 task_unlock(tsk); 1242 return buf; 1243 } 1244 EXPORT_SYMBOL_GPL(__get_task_comm); 1245 1246 /* 1247 * These functions flushes out all traces of the currently running executable 1248 * so that a new one can be started 1249 */ 1250 __set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1251 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1252 { 1253 task_lock(tsk); 1254 trace_task_rename(tsk, buf); 1255 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1256 task_unlock(tsk); 1257 perf_event_comm(tsk, exec); 1258 } 1259 1260 /* 1261 * Calling this is the point of no return. None of the failures will be 1262 * seen by userspace since either the process is already taking a fatal 1263 * signal (via de_thread() or coredump), or will have SEGV raised 1264 * (after exec_mmap()) by search_binary_handlers (see below). 1265 */ flush_old_exec(struct linux_binprm * bprm)1266 int flush_old_exec(struct linux_binprm * bprm) 1267 { 1268 int retval; 1269 1270 /* 1271 * Make sure we have a private signal table and that 1272 * we are unassociated from the previous thread group. 1273 */ 1274 retval = de_thread(current); 1275 if (retval) 1276 goto out; 1277 1278 /* 1279 * Must be called _before_ exec_mmap() as bprm->mm is 1280 * not visibile until then. This also enables the update 1281 * to be lockless. 1282 */ 1283 set_mm_exe_file(bprm->mm, bprm->file); 1284 1285 would_dump(bprm, bprm->file); 1286 1287 /* 1288 * Release all of the old mmap stuff 1289 */ 1290 acct_arg_size(bprm, 0); 1291 retval = exec_mmap(bprm->mm); 1292 if (retval) 1293 goto out; 1294 1295 /* 1296 * After clearing bprm->mm (to mark that current is using the 1297 * prepared mm now), we have nothing left of the original 1298 * process. If anything from here on returns an error, the check 1299 * in search_binary_handler() will SEGV current. 1300 */ 1301 bprm->mm = NULL; 1302 1303 set_fs(USER_DS); 1304 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1305 PF_NOFREEZE | PF_NO_SETAFFINITY); 1306 flush_thread(); 1307 current->personality &= ~bprm->per_clear; 1308 1309 /* 1310 * We have to apply CLOEXEC before we change whether the process is 1311 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1312 * trying to access the should-be-closed file descriptors of a process 1313 * undergoing exec(2). 1314 */ 1315 do_close_on_exec(current->files); 1316 return 0; 1317 1318 out: 1319 return retval; 1320 } 1321 EXPORT_SYMBOL(flush_old_exec); 1322 would_dump(struct linux_binprm * bprm,struct file * file)1323 void would_dump(struct linux_binprm *bprm, struct file *file) 1324 { 1325 struct inode *inode = file_inode(file); 1326 if (inode_permission(inode, MAY_READ) < 0) { 1327 struct user_namespace *old, *user_ns; 1328 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1329 1330 /* Ensure mm->user_ns contains the executable */ 1331 user_ns = old = bprm->mm->user_ns; 1332 while ((user_ns != &init_user_ns) && 1333 !privileged_wrt_inode_uidgid(user_ns, inode)) 1334 user_ns = user_ns->parent; 1335 1336 if (old != user_ns) { 1337 bprm->mm->user_ns = get_user_ns(user_ns); 1338 put_user_ns(old); 1339 } 1340 } 1341 } 1342 EXPORT_SYMBOL(would_dump); 1343 setup_new_exec(struct linux_binprm * bprm)1344 void setup_new_exec(struct linux_binprm * bprm) 1345 { 1346 /* 1347 * Once here, prepare_binrpm() will not be called any more, so 1348 * the final state of setuid/setgid/fscaps can be merged into the 1349 * secureexec flag. 1350 */ 1351 bprm->secureexec |= bprm->cap_elevated; 1352 1353 if (bprm->secureexec) { 1354 /* Make sure parent cannot signal privileged process. */ 1355 current->pdeath_signal = 0; 1356 1357 /* 1358 * For secureexec, reset the stack limit to sane default to 1359 * avoid bad behavior from the prior rlimits. This has to 1360 * happen before arch_pick_mmap_layout(), which examines 1361 * RLIMIT_STACK, but after the point of no return to avoid 1362 * needing to clean up the change on failure. 1363 */ 1364 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1365 bprm->rlim_stack.rlim_cur = _STK_LIM; 1366 } 1367 1368 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1369 1370 current->sas_ss_sp = current->sas_ss_size = 0; 1371 1372 /* 1373 * Figure out dumpability. Note that this checking only of current 1374 * is wrong, but userspace depends on it. This should be testing 1375 * bprm->secureexec instead. 1376 */ 1377 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1378 !(uid_eq(current_euid(), current_uid()) && 1379 gid_eq(current_egid(), current_gid()))) 1380 set_dumpable(current->mm, suid_dumpable); 1381 else 1382 set_dumpable(current->mm, SUID_DUMP_USER); 1383 1384 arch_setup_new_exec(); 1385 perf_event_exec(); 1386 __set_task_comm(current, kbasename(bprm->filename), true); 1387 1388 /* Set the new mm task size. We have to do that late because it may 1389 * depend on TIF_32BIT which is only updated in flush_thread() on 1390 * some architectures like powerpc 1391 */ 1392 current->mm->task_size = TASK_SIZE; 1393 1394 /* An exec changes our domain. We are no longer part of the thread 1395 group */ 1396 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1); 1397 flush_signal_handlers(current, 0); 1398 } 1399 EXPORT_SYMBOL(setup_new_exec); 1400 1401 /* Runs immediately before start_thread() takes over. */ finalize_exec(struct linux_binprm * bprm)1402 void finalize_exec(struct linux_binprm *bprm) 1403 { 1404 /* Store any stack rlimit changes before starting thread. */ 1405 task_lock(current->group_leader); 1406 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1407 task_unlock(current->group_leader); 1408 } 1409 EXPORT_SYMBOL(finalize_exec); 1410 1411 /* 1412 * Prepare credentials and lock ->cred_guard_mutex. 1413 * install_exec_creds() commits the new creds and drops the lock. 1414 * Or, if exec fails before, free_bprm() should release ->cred and 1415 * and unlock. 1416 */ prepare_bprm_creds(struct linux_binprm * bprm)1417 int prepare_bprm_creds(struct linux_binprm *bprm) 1418 { 1419 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1420 return -ERESTARTNOINTR; 1421 1422 bprm->cred = prepare_exec_creds(); 1423 if (likely(bprm->cred)) 1424 return 0; 1425 1426 mutex_unlock(¤t->signal->cred_guard_mutex); 1427 return -ENOMEM; 1428 } 1429 free_bprm(struct linux_binprm * bprm)1430 static void free_bprm(struct linux_binprm *bprm) 1431 { 1432 free_arg_pages(bprm); 1433 if (bprm->cred) { 1434 mutex_unlock(¤t->signal->cred_guard_mutex); 1435 abort_creds(bprm->cred); 1436 } 1437 if (bprm->file) { 1438 allow_write_access(bprm->file); 1439 fput(bprm->file); 1440 } 1441 /* If a binfmt changed the interp, free it. */ 1442 if (bprm->interp != bprm->filename) 1443 kfree(bprm->interp); 1444 kfree(bprm); 1445 } 1446 bprm_change_interp(const char * interp,struct linux_binprm * bprm)1447 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1448 { 1449 /* If a binfmt changed the interp, free it first. */ 1450 if (bprm->interp != bprm->filename) 1451 kfree(bprm->interp); 1452 bprm->interp = kstrdup(interp, GFP_KERNEL); 1453 if (!bprm->interp) 1454 return -ENOMEM; 1455 return 0; 1456 } 1457 EXPORT_SYMBOL(bprm_change_interp); 1458 1459 /* 1460 * install the new credentials for this executable 1461 */ install_exec_creds(struct linux_binprm * bprm)1462 void install_exec_creds(struct linux_binprm *bprm) 1463 { 1464 security_bprm_committing_creds(bprm); 1465 1466 commit_creds(bprm->cred); 1467 bprm->cred = NULL; 1468 1469 /* 1470 * Disable monitoring for regular users 1471 * when executing setuid binaries. Must 1472 * wait until new credentials are committed 1473 * by commit_creds() above 1474 */ 1475 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1476 perf_event_exit_task(current); 1477 /* 1478 * cred_guard_mutex must be held at least to this point to prevent 1479 * ptrace_attach() from altering our determination of the task's 1480 * credentials; any time after this it may be unlocked. 1481 */ 1482 security_bprm_committed_creds(bprm); 1483 mutex_unlock(¤t->signal->cred_guard_mutex); 1484 } 1485 EXPORT_SYMBOL(install_exec_creds); 1486 1487 /* 1488 * determine how safe it is to execute the proposed program 1489 * - the caller must hold ->cred_guard_mutex to protect against 1490 * PTRACE_ATTACH or seccomp thread-sync 1491 */ check_unsafe_exec(struct linux_binprm * bprm)1492 static void check_unsafe_exec(struct linux_binprm *bprm) 1493 { 1494 struct task_struct *p = current, *t; 1495 unsigned n_fs; 1496 1497 if (p->ptrace) 1498 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1499 1500 /* 1501 * This isn't strictly necessary, but it makes it harder for LSMs to 1502 * mess up. 1503 */ 1504 if (task_no_new_privs(current)) 1505 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1506 1507 t = p; 1508 n_fs = 1; 1509 spin_lock(&p->fs->lock); 1510 rcu_read_lock(); 1511 while_each_thread(p, t) { 1512 if (t->fs == p->fs) 1513 n_fs++; 1514 } 1515 rcu_read_unlock(); 1516 1517 if (p->fs->users > n_fs) 1518 bprm->unsafe |= LSM_UNSAFE_SHARE; 1519 else 1520 p->fs->in_exec = 1; 1521 spin_unlock(&p->fs->lock); 1522 } 1523 bprm_fill_uid(struct linux_binprm * bprm)1524 static void bprm_fill_uid(struct linux_binprm *bprm) 1525 { 1526 struct inode *inode; 1527 unsigned int mode; 1528 kuid_t uid; 1529 kgid_t gid; 1530 1531 /* 1532 * Since this can be called multiple times (via prepare_binprm), 1533 * we must clear any previous work done when setting set[ug]id 1534 * bits from any earlier bprm->file uses (for example when run 1535 * first for a setuid script then again for its interpreter). 1536 */ 1537 bprm->cred->euid = current_euid(); 1538 bprm->cred->egid = current_egid(); 1539 1540 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1541 return; 1542 1543 if (task_no_new_privs(current)) 1544 return; 1545 1546 inode = bprm->file->f_path.dentry->d_inode; 1547 mode = READ_ONCE(inode->i_mode); 1548 if (!(mode & (S_ISUID|S_ISGID))) 1549 return; 1550 1551 /* Be careful if suid/sgid is set */ 1552 inode_lock(inode); 1553 1554 /* reload atomically mode/uid/gid now that lock held */ 1555 mode = inode->i_mode; 1556 uid = inode->i_uid; 1557 gid = inode->i_gid; 1558 inode_unlock(inode); 1559 1560 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1561 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1562 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1563 return; 1564 1565 if (mode & S_ISUID) { 1566 bprm->per_clear |= PER_CLEAR_ON_SETID; 1567 bprm->cred->euid = uid; 1568 } 1569 1570 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1571 bprm->per_clear |= PER_CLEAR_ON_SETID; 1572 bprm->cred->egid = gid; 1573 } 1574 } 1575 1576 /* 1577 * Fill the binprm structure from the inode. 1578 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1579 * 1580 * This may be called multiple times for binary chains (scripts for example). 1581 */ prepare_binprm(struct linux_binprm * bprm)1582 int prepare_binprm(struct linux_binprm *bprm) 1583 { 1584 int retval; 1585 loff_t pos = 0; 1586 1587 bprm_fill_uid(bprm); 1588 1589 /* fill in binprm security blob */ 1590 retval = security_bprm_set_creds(bprm); 1591 if (retval) 1592 return retval; 1593 bprm->called_set_creds = 1; 1594 1595 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1596 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1597 } 1598 1599 EXPORT_SYMBOL(prepare_binprm); 1600 1601 /* 1602 * Arguments are '\0' separated strings found at the location bprm->p 1603 * points to; chop off the first by relocating brpm->p to right after 1604 * the first '\0' encountered. 1605 */ remove_arg_zero(struct linux_binprm * bprm)1606 int remove_arg_zero(struct linux_binprm *bprm) 1607 { 1608 int ret = 0; 1609 unsigned long offset; 1610 char *kaddr; 1611 struct page *page; 1612 1613 if (!bprm->argc) 1614 return 0; 1615 1616 do { 1617 offset = bprm->p & ~PAGE_MASK; 1618 page = get_arg_page(bprm, bprm->p, 0); 1619 if (!page) { 1620 ret = -EFAULT; 1621 goto out; 1622 } 1623 kaddr = kmap_atomic(page); 1624 1625 for (; offset < PAGE_SIZE && kaddr[offset]; 1626 offset++, bprm->p++) 1627 ; 1628 1629 kunmap_atomic(kaddr); 1630 put_arg_page(page); 1631 } while (offset == PAGE_SIZE); 1632 1633 bprm->p++; 1634 bprm->argc--; 1635 ret = 0; 1636 1637 out: 1638 return ret; 1639 } 1640 EXPORT_SYMBOL(remove_arg_zero); 1641 1642 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1643 /* 1644 * cycle the list of binary formats handler, until one recognizes the image 1645 */ search_binary_handler(struct linux_binprm * bprm)1646 int search_binary_handler(struct linux_binprm *bprm) 1647 { 1648 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1649 struct linux_binfmt *fmt; 1650 int retval; 1651 1652 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1653 if (bprm->recursion_depth > 5) 1654 return -ELOOP; 1655 1656 retval = security_bprm_check(bprm); 1657 if (retval) 1658 return retval; 1659 1660 retval = -ENOENT; 1661 retry: 1662 read_lock(&binfmt_lock); 1663 list_for_each_entry(fmt, &formats, lh) { 1664 if (!try_module_get(fmt->module)) 1665 continue; 1666 read_unlock(&binfmt_lock); 1667 bprm->recursion_depth++; 1668 retval = fmt->load_binary(bprm); 1669 read_lock(&binfmt_lock); 1670 put_binfmt(fmt); 1671 bprm->recursion_depth--; 1672 if (retval < 0 && !bprm->mm) { 1673 /* we got to flush_old_exec() and failed after it */ 1674 read_unlock(&binfmt_lock); 1675 force_sigsegv(SIGSEGV, current); 1676 return retval; 1677 } 1678 if (retval != -ENOEXEC || !bprm->file) { 1679 read_unlock(&binfmt_lock); 1680 return retval; 1681 } 1682 } 1683 read_unlock(&binfmt_lock); 1684 1685 if (need_retry) { 1686 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1687 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1688 return retval; 1689 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1690 return retval; 1691 need_retry = false; 1692 goto retry; 1693 } 1694 1695 return retval; 1696 } 1697 EXPORT_SYMBOL(search_binary_handler); 1698 exec_binprm(struct linux_binprm * bprm)1699 static int exec_binprm(struct linux_binprm *bprm) 1700 { 1701 pid_t old_pid, old_vpid; 1702 int ret; 1703 1704 /* Need to fetch pid before load_binary changes it */ 1705 old_pid = current->pid; 1706 rcu_read_lock(); 1707 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1708 rcu_read_unlock(); 1709 1710 ret = search_binary_handler(bprm); 1711 if (ret >= 0) { 1712 audit_bprm(bprm); 1713 trace_sched_process_exec(current, old_pid, bprm); 1714 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1715 proc_exec_connector(current); 1716 } 1717 1718 return ret; 1719 } 1720 1721 /* 1722 * sys_execve() executes a new program. 1723 */ __do_execve_file(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags,struct file * file)1724 static int __do_execve_file(int fd, struct filename *filename, 1725 struct user_arg_ptr argv, 1726 struct user_arg_ptr envp, 1727 int flags, struct file *file) 1728 { 1729 char *pathbuf = NULL; 1730 struct linux_binprm *bprm; 1731 struct files_struct *displaced; 1732 int retval; 1733 1734 if (IS_ERR(filename)) 1735 return PTR_ERR(filename); 1736 1737 /* 1738 * We move the actual failure in case of RLIMIT_NPROC excess from 1739 * set*uid() to execve() because too many poorly written programs 1740 * don't check setuid() return code. Here we additionally recheck 1741 * whether NPROC limit is still exceeded. 1742 */ 1743 if ((current->flags & PF_NPROC_EXCEEDED) && 1744 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1745 retval = -EAGAIN; 1746 goto out_ret; 1747 } 1748 1749 /* We're below the limit (still or again), so we don't want to make 1750 * further execve() calls fail. */ 1751 current->flags &= ~PF_NPROC_EXCEEDED; 1752 1753 retval = unshare_files(&displaced); 1754 if (retval) 1755 goto out_ret; 1756 1757 retval = -ENOMEM; 1758 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1759 if (!bprm) 1760 goto out_files; 1761 1762 retval = prepare_bprm_creds(bprm); 1763 if (retval) 1764 goto out_free; 1765 1766 check_unsafe_exec(bprm); 1767 current->in_execve = 1; 1768 1769 if (!file) 1770 file = do_open_execat(fd, filename, flags); 1771 retval = PTR_ERR(file); 1772 if (IS_ERR(file)) 1773 goto out_unmark; 1774 1775 sched_exec(); 1776 1777 bprm->file = file; 1778 if (!filename) { 1779 bprm->filename = "none"; 1780 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1781 bprm->filename = filename->name; 1782 } else { 1783 if (filename->name[0] == '\0') 1784 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1785 else 1786 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1787 fd, filename->name); 1788 if (!pathbuf) { 1789 retval = -ENOMEM; 1790 goto out_unmark; 1791 } 1792 /* 1793 * Record that a name derived from an O_CLOEXEC fd will be 1794 * inaccessible after exec. Relies on having exclusive access to 1795 * current->files (due to unshare_files above). 1796 */ 1797 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1798 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1799 bprm->filename = pathbuf; 1800 } 1801 bprm->interp = bprm->filename; 1802 1803 retval = bprm_mm_init(bprm); 1804 if (retval) 1805 goto out_unmark; 1806 1807 bprm->argc = count(argv, MAX_ARG_STRINGS); 1808 if ((retval = bprm->argc) < 0) 1809 goto out; 1810 1811 bprm->envc = count(envp, MAX_ARG_STRINGS); 1812 if ((retval = bprm->envc) < 0) 1813 goto out; 1814 1815 retval = prepare_binprm(bprm); 1816 if (retval < 0) 1817 goto out; 1818 1819 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1820 if (retval < 0) 1821 goto out; 1822 1823 bprm->exec = bprm->p; 1824 retval = copy_strings(bprm->envc, envp, bprm); 1825 if (retval < 0) 1826 goto out; 1827 1828 retval = copy_strings(bprm->argc, argv, bprm); 1829 if (retval < 0) 1830 goto out; 1831 1832 retval = exec_binprm(bprm); 1833 if (retval < 0) 1834 goto out; 1835 1836 /* execve succeeded */ 1837 current->fs->in_exec = 0; 1838 current->in_execve = 0; 1839 membarrier_execve(current); 1840 rseq_execve(current); 1841 acct_update_integrals(current); 1842 task_numa_free(current, false); 1843 free_bprm(bprm); 1844 kfree(pathbuf); 1845 if (filename) 1846 putname(filename); 1847 if (displaced) 1848 put_files_struct(displaced); 1849 return retval; 1850 1851 out: 1852 if (bprm->mm) { 1853 acct_arg_size(bprm, 0); 1854 mmput(bprm->mm); 1855 } 1856 1857 out_unmark: 1858 current->fs->in_exec = 0; 1859 current->in_execve = 0; 1860 1861 out_free: 1862 free_bprm(bprm); 1863 kfree(pathbuf); 1864 1865 out_files: 1866 if (displaced) 1867 reset_files_struct(displaced); 1868 out_ret: 1869 if (filename) 1870 putname(filename); 1871 return retval; 1872 } 1873 do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1874 static int do_execveat_common(int fd, struct filename *filename, 1875 struct user_arg_ptr argv, 1876 struct user_arg_ptr envp, 1877 int flags) 1878 { 1879 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1880 } 1881 do_execve_file(struct file * file,void * __argv,void * __envp)1882 int do_execve_file(struct file *file, void *__argv, void *__envp) 1883 { 1884 struct user_arg_ptr argv = { .ptr.native = __argv }; 1885 struct user_arg_ptr envp = { .ptr.native = __envp }; 1886 1887 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1888 } 1889 do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1890 int do_execve(struct filename *filename, 1891 const char __user *const __user *__argv, 1892 const char __user *const __user *__envp) 1893 { 1894 struct user_arg_ptr argv = { .ptr.native = __argv }; 1895 struct user_arg_ptr envp = { .ptr.native = __envp }; 1896 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1897 } 1898 do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1899 int do_execveat(int fd, struct filename *filename, 1900 const char __user *const __user *__argv, 1901 const char __user *const __user *__envp, 1902 int flags) 1903 { 1904 struct user_arg_ptr argv = { .ptr.native = __argv }; 1905 struct user_arg_ptr envp = { .ptr.native = __envp }; 1906 1907 return do_execveat_common(fd, filename, argv, envp, flags); 1908 } 1909 1910 #ifdef CONFIG_COMPAT compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1911 static int compat_do_execve(struct filename *filename, 1912 const compat_uptr_t __user *__argv, 1913 const compat_uptr_t __user *__envp) 1914 { 1915 struct user_arg_ptr argv = { 1916 .is_compat = true, 1917 .ptr.compat = __argv, 1918 }; 1919 struct user_arg_ptr envp = { 1920 .is_compat = true, 1921 .ptr.compat = __envp, 1922 }; 1923 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1924 } 1925 compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1926 static int compat_do_execveat(int fd, struct filename *filename, 1927 const compat_uptr_t __user *__argv, 1928 const compat_uptr_t __user *__envp, 1929 int flags) 1930 { 1931 struct user_arg_ptr argv = { 1932 .is_compat = true, 1933 .ptr.compat = __argv, 1934 }; 1935 struct user_arg_ptr envp = { 1936 .is_compat = true, 1937 .ptr.compat = __envp, 1938 }; 1939 return do_execveat_common(fd, filename, argv, envp, flags); 1940 } 1941 #endif 1942 set_binfmt(struct linux_binfmt * new)1943 void set_binfmt(struct linux_binfmt *new) 1944 { 1945 struct mm_struct *mm = current->mm; 1946 1947 if (mm->binfmt) 1948 module_put(mm->binfmt->module); 1949 1950 mm->binfmt = new; 1951 if (new) 1952 __module_get(new->module); 1953 } 1954 EXPORT_SYMBOL(set_binfmt); 1955 1956 /* 1957 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1958 */ set_dumpable(struct mm_struct * mm,int value)1959 void set_dumpable(struct mm_struct *mm, int value) 1960 { 1961 unsigned long old, new; 1962 1963 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1964 return; 1965 1966 do { 1967 old = READ_ONCE(mm->flags); 1968 new = (old & ~MMF_DUMPABLE_MASK) | value; 1969 } while (cmpxchg(&mm->flags, old, new) != old); 1970 } 1971 SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1972 SYSCALL_DEFINE3(execve, 1973 const char __user *, filename, 1974 const char __user *const __user *, argv, 1975 const char __user *const __user *, envp) 1976 { 1977 return do_execve(getname(filename), argv, envp); 1978 } 1979 SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1980 SYSCALL_DEFINE5(execveat, 1981 int, fd, const char __user *, filename, 1982 const char __user *const __user *, argv, 1983 const char __user *const __user *, envp, 1984 int, flags) 1985 { 1986 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1987 1988 return do_execveat(fd, 1989 getname_flags(filename, lookup_flags, NULL), 1990 argv, envp, flags); 1991 } 1992 1993 #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1994 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1995 const compat_uptr_t __user *, argv, 1996 const compat_uptr_t __user *, envp) 1997 { 1998 return compat_do_execve(getname(filename), argv, envp); 1999 } 2000 COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2001 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2002 const char __user *, filename, 2003 const compat_uptr_t __user *, argv, 2004 const compat_uptr_t __user *, envp, 2005 int, flags) 2006 { 2007 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2008 2009 return compat_do_execveat(fd, 2010 getname_flags(filename, lookup_flags, NULL), 2011 argv, envp, flags); 2012 } 2013 #endif 2014