• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   *  linux/fs/exec.c
3   *
4   *  Copyright (C) 1991, 1992  Linus Torvalds
5   */
6  
7  /*
8   * #!-checking implemented by tytso.
9   */
10  /*
11   * Demand-loading implemented 01.12.91 - no need to read anything but
12   * the header into memory. The inode of the executable is put into
13   * "current->executable", and page faults do the actual loading. Clean.
14   *
15   * Once more I can proudly say that linux stood up to being changed: it
16   * was less than 2 hours work to get demand-loading completely implemented.
17   *
18   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19   * current->executable is only used by the procfs.  This allows a dispatch
20   * table to check for several different types  of binary formats.  We keep
21   * trying until we recognize the file or we run out of supported binary
22   * formats.
23   */
24  
25  #include <linux/slab.h>
26  #include <linux/file.h>
27  #include <linux/fdtable.h>
28  #include <linux/mm.h>
29  #include <linux/vmacache.h>
30  #include <linux/stat.h>
31  #include <linux/fcntl.h>
32  #include <linux/swap.h>
33  #include <linux/string.h>
34  #include <linux/init.h>
35  #include <linux/sched/mm.h>
36  #include <linux/sched/coredump.h>
37  #include <linux/sched/signal.h>
38  #include <linux/sched/numa_balancing.h>
39  #include <linux/sched/task.h>
40  #include <linux/pagemap.h>
41  #include <linux/perf_event.h>
42  #include <linux/highmem.h>
43  #include <linux/spinlock.h>
44  #include <linux/key.h>
45  #include <linux/personality.h>
46  #include <linux/binfmts.h>
47  #include <linux/utsname.h>
48  #include <linux/pid_namespace.h>
49  #include <linux/module.h>
50  #include <linux/namei.h>
51  #include <linux/mount.h>
52  #include <linux/security.h>
53  #include <linux/syscalls.h>
54  #include <linux/tsacct_kern.h>
55  #include <linux/cn_proc.h>
56  #include <linux/audit.h>
57  #include <linux/tracehook.h>
58  #include <linux/kmod.h>
59  #include <linux/fsnotify.h>
60  #include <linux/fs_struct.h>
61  #include <linux/pipe_fs_i.h>
62  #include <linux/oom.h>
63  #include <linux/compat.h>
64  #include <linux/vmalloc.h>
65  
66  #include <linux/uaccess.h>
67  #include <asm/mmu_context.h>
68  #include <asm/tlb.h>
69  
70  #include <trace/events/task.h>
71  #include "internal.h"
72  
73  #include <trace/events/sched.h>
74  
75  int suid_dumpable = 0;
76  
77  static LIST_HEAD(formats);
78  static DEFINE_RWLOCK(binfmt_lock);
79  
__register_binfmt(struct linux_binfmt * fmt,int insert)80  void __register_binfmt(struct linux_binfmt * fmt, int insert)
81  {
82  	BUG_ON(!fmt);
83  	if (WARN_ON(!fmt->load_binary))
84  		return;
85  	write_lock(&binfmt_lock);
86  	insert ? list_add(&fmt->lh, &formats) :
87  		 list_add_tail(&fmt->lh, &formats);
88  	write_unlock(&binfmt_lock);
89  }
90  
91  EXPORT_SYMBOL(__register_binfmt);
92  
unregister_binfmt(struct linux_binfmt * fmt)93  void unregister_binfmt(struct linux_binfmt * fmt)
94  {
95  	write_lock(&binfmt_lock);
96  	list_del(&fmt->lh);
97  	write_unlock(&binfmt_lock);
98  }
99  
100  EXPORT_SYMBOL(unregister_binfmt);
101  
put_binfmt(struct linux_binfmt * fmt)102  static inline void put_binfmt(struct linux_binfmt * fmt)
103  {
104  	module_put(fmt->module);
105  }
106  
path_noexec(const struct path * path)107  bool path_noexec(const struct path *path)
108  {
109  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111  }
112  
113  #ifdef CONFIG_USELIB
114  /*
115   * Note that a shared library must be both readable and executable due to
116   * security reasons.
117   *
118   * Also note that we take the address to load from from the file itself.
119   */
SYSCALL_DEFINE1(uselib,const char __user *,library)120  SYSCALL_DEFINE1(uselib, const char __user *, library)
121  {
122  	struct linux_binfmt *fmt;
123  	struct file *file;
124  	struct filename *tmp = getname(library);
125  	int error = PTR_ERR(tmp);
126  	static const struct open_flags uselib_flags = {
127  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128  		.acc_mode = MAY_READ | MAY_EXEC,
129  		.intent = LOOKUP_OPEN,
130  		.lookup_flags = LOOKUP_FOLLOW,
131  	};
132  
133  	if (IS_ERR(tmp))
134  		goto out;
135  
136  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137  	putname(tmp);
138  	error = PTR_ERR(file);
139  	if (IS_ERR(file))
140  		goto out;
141  
142  	error = -EINVAL;
143  	if (!S_ISREG(file_inode(file)->i_mode))
144  		goto exit;
145  
146  	error = -EACCES;
147  	if (path_noexec(&file->f_path))
148  		goto exit;
149  
150  	fsnotify_open(file);
151  
152  	error = -ENOEXEC;
153  
154  	read_lock(&binfmt_lock);
155  	list_for_each_entry(fmt, &formats, lh) {
156  		if (!fmt->load_shlib)
157  			continue;
158  		if (!try_module_get(fmt->module))
159  			continue;
160  		read_unlock(&binfmt_lock);
161  		error = fmt->load_shlib(file);
162  		read_lock(&binfmt_lock);
163  		put_binfmt(fmt);
164  		if (error != -ENOEXEC)
165  			break;
166  	}
167  	read_unlock(&binfmt_lock);
168  exit:
169  	fput(file);
170  out:
171    	return error;
172  }
173  #endif /* #ifdef CONFIG_USELIB */
174  
175  #ifdef CONFIG_MMU
176  /*
177   * The nascent bprm->mm is not visible until exec_mmap() but it can
178   * use a lot of memory, account these pages in current->mm temporary
179   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180   * change the counter back via acct_arg_size(0).
181   */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)182  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183  {
184  	struct mm_struct *mm = current->mm;
185  	long diff = (long)(pages - bprm->vma_pages);
186  
187  	if (!mm || !diff)
188  		return;
189  
190  	bprm->vma_pages = pages;
191  	add_mm_counter(mm, MM_ANONPAGES, diff);
192  }
193  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)194  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195  		int write)
196  {
197  	struct page *page;
198  	int ret;
199  	unsigned int gup_flags = FOLL_FORCE;
200  
201  #ifdef CONFIG_STACK_GROWSUP
202  	if (write) {
203  		ret = expand_downwards(bprm->vma, pos);
204  		if (ret < 0)
205  			return NULL;
206  	}
207  #endif
208  
209  	if (write)
210  		gup_flags |= FOLL_WRITE;
211  
212  	/*
213  	 * We are doing an exec().  'current' is the process
214  	 * doing the exec and bprm->mm is the new process's mm.
215  	 */
216  	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217  			&page, NULL, NULL);
218  	if (ret <= 0)
219  		return NULL;
220  
221  	if (write) {
222  		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223  		unsigned long ptr_size, limit;
224  
225  		/*
226  		 * Since the stack will hold pointers to the strings, we
227  		 * must account for them as well.
228  		 *
229  		 * The size calculation is the entire vma while each arg page is
230  		 * built, so each time we get here it's calculating how far it
231  		 * is currently (rather than each call being just the newly
232  		 * added size from the arg page).  As a result, we need to
233  		 * always add the entire size of the pointers, so that on the
234  		 * last call to get_arg_page() we'll actually have the entire
235  		 * correct size.
236  		 */
237  		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238  		if (ptr_size > ULONG_MAX - size)
239  			goto fail;
240  		size += ptr_size;
241  
242  		acct_arg_size(bprm, size / PAGE_SIZE);
243  
244  		/*
245  		 * We've historically supported up to 32 pages (ARG_MAX)
246  		 * of argument strings even with small stacks
247  		 */
248  		if (size <= ARG_MAX)
249  			return page;
250  
251  		/*
252  		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253  		 * (whichever is smaller) for the argv+env strings.
254  		 * This ensures that:
255  		 *  - the remaining binfmt code will not run out of stack space,
256  		 *  - the program will have a reasonable amount of stack left
257  		 *    to work from.
258  		 */
259  		limit = _STK_LIM / 4 * 3;
260  		limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261  		if (size > limit)
262  			goto fail;
263  	}
264  
265  	return page;
266  
267  fail:
268  	put_page(page);
269  	return NULL;
270  }
271  
put_arg_page(struct page * page)272  static void put_arg_page(struct page *page)
273  {
274  	put_page(page);
275  }
276  
free_arg_pages(struct linux_binprm * bprm)277  static void free_arg_pages(struct linux_binprm *bprm)
278  {
279  }
280  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)281  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282  		struct page *page)
283  {
284  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285  }
286  
__bprm_mm_init(struct linux_binprm * bprm)287  static int __bprm_mm_init(struct linux_binprm *bprm)
288  {
289  	int err;
290  	struct vm_area_struct *vma = NULL;
291  	struct mm_struct *mm = bprm->mm;
292  
293  	bprm->vma = vma = vm_area_alloc(mm);
294  	if (!vma)
295  		return -ENOMEM;
296  	vma_set_anonymous(vma);
297  
298  	if (down_write_killable(&mm->mmap_sem)) {
299  		err = -EINTR;
300  		goto err_free;
301  	}
302  
303  	/*
304  	 * Place the stack at the largest stack address the architecture
305  	 * supports. Later, we'll move this to an appropriate place. We don't
306  	 * use STACK_TOP because that can depend on attributes which aren't
307  	 * configured yet.
308  	 */
309  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310  	vma->vm_end = STACK_TOP_MAX;
311  	vma->vm_start = vma->vm_end - PAGE_SIZE;
312  	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314  
315  	err = insert_vm_struct(mm, vma);
316  	if (err)
317  		goto err;
318  
319  	mm->stack_vm = mm->total_vm = 1;
320  	arch_bprm_mm_init(mm, vma);
321  	up_write(&mm->mmap_sem);
322  	bprm->p = vma->vm_end - sizeof(void *);
323  	return 0;
324  err:
325  	up_write(&mm->mmap_sem);
326  err_free:
327  	bprm->vma = NULL;
328  	vm_area_free(vma);
329  	return err;
330  }
331  
valid_arg_len(struct linux_binprm * bprm,long len)332  static bool valid_arg_len(struct linux_binprm *bprm, long len)
333  {
334  	return len <= MAX_ARG_STRLEN;
335  }
336  
337  #else
338  
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)339  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
340  {
341  }
342  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)343  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
344  		int write)
345  {
346  	struct page *page;
347  
348  	page = bprm->page[pos / PAGE_SIZE];
349  	if (!page && write) {
350  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
351  		if (!page)
352  			return NULL;
353  		bprm->page[pos / PAGE_SIZE] = page;
354  	}
355  
356  	return page;
357  }
358  
put_arg_page(struct page * page)359  static void put_arg_page(struct page *page)
360  {
361  }
362  
free_arg_page(struct linux_binprm * bprm,int i)363  static void free_arg_page(struct linux_binprm *bprm, int i)
364  {
365  	if (bprm->page[i]) {
366  		__free_page(bprm->page[i]);
367  		bprm->page[i] = NULL;
368  	}
369  }
370  
free_arg_pages(struct linux_binprm * bprm)371  static void free_arg_pages(struct linux_binprm *bprm)
372  {
373  	int i;
374  
375  	for (i = 0; i < MAX_ARG_PAGES; i++)
376  		free_arg_page(bprm, i);
377  }
378  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)379  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
380  		struct page *page)
381  {
382  }
383  
__bprm_mm_init(struct linux_binprm * bprm)384  static int __bprm_mm_init(struct linux_binprm *bprm)
385  {
386  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
387  	return 0;
388  }
389  
valid_arg_len(struct linux_binprm * bprm,long len)390  static bool valid_arg_len(struct linux_binprm *bprm, long len)
391  {
392  	return len <= bprm->p;
393  }
394  
395  #endif /* CONFIG_MMU */
396  
397  /*
398   * Create a new mm_struct and populate it with a temporary stack
399   * vm_area_struct.  We don't have enough context at this point to set the stack
400   * flags, permissions, and offset, so we use temporary values.  We'll update
401   * them later in setup_arg_pages().
402   */
bprm_mm_init(struct linux_binprm * bprm)403  static int bprm_mm_init(struct linux_binprm *bprm)
404  {
405  	int err;
406  	struct mm_struct *mm = NULL;
407  
408  	bprm->mm = mm = mm_alloc();
409  	err = -ENOMEM;
410  	if (!mm)
411  		goto err;
412  
413  	/* Save current stack limit for all calculations made during exec. */
414  	task_lock(current->group_leader);
415  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
416  	task_unlock(current->group_leader);
417  
418  	err = __bprm_mm_init(bprm);
419  	if (err)
420  		goto err;
421  
422  	return 0;
423  
424  err:
425  	if (mm) {
426  		bprm->mm = NULL;
427  		mmdrop(mm);
428  	}
429  
430  	return err;
431  }
432  
433  struct user_arg_ptr {
434  #ifdef CONFIG_COMPAT
435  	bool is_compat;
436  #endif
437  	union {
438  		const char __user *const __user *native;
439  #ifdef CONFIG_COMPAT
440  		const compat_uptr_t __user *compat;
441  #endif
442  	} ptr;
443  };
444  
get_user_arg_ptr(struct user_arg_ptr argv,int nr)445  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
446  {
447  	const char __user *native;
448  
449  #ifdef CONFIG_COMPAT
450  	if (unlikely(argv.is_compat)) {
451  		compat_uptr_t compat;
452  
453  		if (get_user(compat, argv.ptr.compat + nr))
454  			return ERR_PTR(-EFAULT);
455  
456  		return compat_ptr(compat);
457  	}
458  #endif
459  
460  	if (get_user(native, argv.ptr.native + nr))
461  		return ERR_PTR(-EFAULT);
462  
463  	return native;
464  }
465  
466  /*
467   * count() counts the number of strings in array ARGV.
468   */
count(struct user_arg_ptr argv,int max)469  static int count(struct user_arg_ptr argv, int max)
470  {
471  	int i = 0;
472  
473  	if (argv.ptr.native != NULL) {
474  		for (;;) {
475  			const char __user *p = get_user_arg_ptr(argv, i);
476  
477  			if (!p)
478  				break;
479  
480  			if (IS_ERR(p))
481  				return -EFAULT;
482  
483  			if (i >= max)
484  				return -E2BIG;
485  			++i;
486  
487  			if (fatal_signal_pending(current))
488  				return -ERESTARTNOHAND;
489  			cond_resched();
490  		}
491  	}
492  	return i;
493  }
494  
495  /*
496   * 'copy_strings()' copies argument/environment strings from the old
497   * processes's memory to the new process's stack.  The call to get_user_pages()
498   * ensures the destination page is created and not swapped out.
499   */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)500  static int copy_strings(int argc, struct user_arg_ptr argv,
501  			struct linux_binprm *bprm)
502  {
503  	struct page *kmapped_page = NULL;
504  	char *kaddr = NULL;
505  	unsigned long kpos = 0;
506  	int ret;
507  
508  	while (argc-- > 0) {
509  		const char __user *str;
510  		int len;
511  		unsigned long pos;
512  
513  		ret = -EFAULT;
514  		str = get_user_arg_ptr(argv, argc);
515  		if (IS_ERR(str))
516  			goto out;
517  
518  		len = strnlen_user(str, MAX_ARG_STRLEN);
519  		if (!len)
520  			goto out;
521  
522  		ret = -E2BIG;
523  		if (!valid_arg_len(bprm, len))
524  			goto out;
525  
526  		/* We're going to work our way backwords. */
527  		pos = bprm->p;
528  		str += len;
529  		bprm->p -= len;
530  
531  		while (len > 0) {
532  			int offset, bytes_to_copy;
533  
534  			if (fatal_signal_pending(current)) {
535  				ret = -ERESTARTNOHAND;
536  				goto out;
537  			}
538  			cond_resched();
539  
540  			offset = pos % PAGE_SIZE;
541  			if (offset == 0)
542  				offset = PAGE_SIZE;
543  
544  			bytes_to_copy = offset;
545  			if (bytes_to_copy > len)
546  				bytes_to_copy = len;
547  
548  			offset -= bytes_to_copy;
549  			pos -= bytes_to_copy;
550  			str -= bytes_to_copy;
551  			len -= bytes_to_copy;
552  
553  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
554  				struct page *page;
555  
556  				page = get_arg_page(bprm, pos, 1);
557  				if (!page) {
558  					ret = -E2BIG;
559  					goto out;
560  				}
561  
562  				if (kmapped_page) {
563  					flush_kernel_dcache_page(kmapped_page);
564  					kunmap(kmapped_page);
565  					put_arg_page(kmapped_page);
566  				}
567  				kmapped_page = page;
568  				kaddr = kmap(kmapped_page);
569  				kpos = pos & PAGE_MASK;
570  				flush_arg_page(bprm, kpos, kmapped_page);
571  			}
572  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
573  				ret = -EFAULT;
574  				goto out;
575  			}
576  		}
577  	}
578  	ret = 0;
579  out:
580  	if (kmapped_page) {
581  		flush_kernel_dcache_page(kmapped_page);
582  		kunmap(kmapped_page);
583  		put_arg_page(kmapped_page);
584  	}
585  	return ret;
586  }
587  
588  /*
589   * Like copy_strings, but get argv and its values from kernel memory.
590   */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)591  int copy_strings_kernel(int argc, const char *const *__argv,
592  			struct linux_binprm *bprm)
593  {
594  	int r;
595  	mm_segment_t oldfs = get_fs();
596  	struct user_arg_ptr argv = {
597  		.ptr.native = (const char __user *const  __user *)__argv,
598  	};
599  
600  	set_fs(KERNEL_DS);
601  	r = copy_strings(argc, argv, bprm);
602  	set_fs(oldfs);
603  
604  	return r;
605  }
606  EXPORT_SYMBOL(copy_strings_kernel);
607  
608  #ifdef CONFIG_MMU
609  
610  /*
611   * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
612   * the binfmt code determines where the new stack should reside, we shift it to
613   * its final location.  The process proceeds as follows:
614   *
615   * 1) Use shift to calculate the new vma endpoints.
616   * 2) Extend vma to cover both the old and new ranges.  This ensures the
617   *    arguments passed to subsequent functions are consistent.
618   * 3) Move vma's page tables to the new range.
619   * 4) Free up any cleared pgd range.
620   * 5) Shrink the vma to cover only the new range.
621   */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)622  static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
623  {
624  	struct mm_struct *mm = vma->vm_mm;
625  	unsigned long old_start = vma->vm_start;
626  	unsigned long old_end = vma->vm_end;
627  	unsigned long length = old_end - old_start;
628  	unsigned long new_start = old_start - shift;
629  	unsigned long new_end = old_end - shift;
630  	struct mmu_gather tlb;
631  
632  	BUG_ON(new_start > new_end);
633  
634  	/*
635  	 * ensure there are no vmas between where we want to go
636  	 * and where we are
637  	 */
638  	if (vma != find_vma(mm, new_start))
639  		return -EFAULT;
640  
641  	/*
642  	 * cover the whole range: [new_start, old_end)
643  	 */
644  	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
645  		return -ENOMEM;
646  
647  	/*
648  	 * move the page tables downwards, on failure we rely on
649  	 * process cleanup to remove whatever mess we made.
650  	 */
651  	if (length != move_page_tables(vma, old_start,
652  				       vma, new_start, length, false))
653  		return -ENOMEM;
654  
655  	lru_add_drain();
656  	tlb_gather_mmu(&tlb, mm, old_start, old_end);
657  	if (new_end > old_start) {
658  		/*
659  		 * when the old and new regions overlap clear from new_end.
660  		 */
661  		free_pgd_range(&tlb, new_end, old_end, new_end,
662  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663  	} else {
664  		/*
665  		 * otherwise, clean from old_start; this is done to not touch
666  		 * the address space in [new_end, old_start) some architectures
667  		 * have constraints on va-space that make this illegal (IA64) -
668  		 * for the others its just a little faster.
669  		 */
670  		free_pgd_range(&tlb, old_start, old_end, new_end,
671  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
672  	}
673  	tlb_finish_mmu(&tlb, old_start, old_end);
674  
675  	/*
676  	 * Shrink the vma to just the new range.  Always succeeds.
677  	 */
678  	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
679  
680  	return 0;
681  }
682  
683  /*
684   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
685   * the stack is optionally relocated, and some extra space is added.
686   */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)687  int setup_arg_pages(struct linux_binprm *bprm,
688  		    unsigned long stack_top,
689  		    int executable_stack)
690  {
691  	unsigned long ret;
692  	unsigned long stack_shift;
693  	struct mm_struct *mm = current->mm;
694  	struct vm_area_struct *vma = bprm->vma;
695  	struct vm_area_struct *prev = NULL;
696  	unsigned long vm_flags;
697  	unsigned long stack_base;
698  	unsigned long stack_size;
699  	unsigned long stack_expand;
700  	unsigned long rlim_stack;
701  
702  #ifdef CONFIG_STACK_GROWSUP
703  	/* Limit stack size */
704  	stack_base = bprm->rlim_stack.rlim_max;
705  	if (stack_base > STACK_SIZE_MAX)
706  		stack_base = STACK_SIZE_MAX;
707  
708  	/* Add space for stack randomization. */
709  	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
710  
711  	/* Make sure we didn't let the argument array grow too large. */
712  	if (vma->vm_end - vma->vm_start > stack_base)
713  		return -ENOMEM;
714  
715  	stack_base = PAGE_ALIGN(stack_top - stack_base);
716  
717  	stack_shift = vma->vm_start - stack_base;
718  	mm->arg_start = bprm->p - stack_shift;
719  	bprm->p = vma->vm_end - stack_shift;
720  #else
721  	stack_top = arch_align_stack(stack_top);
722  	stack_top = PAGE_ALIGN(stack_top);
723  
724  	if (unlikely(stack_top < mmap_min_addr) ||
725  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
726  		return -ENOMEM;
727  
728  	stack_shift = vma->vm_end - stack_top;
729  
730  	bprm->p -= stack_shift;
731  	mm->arg_start = bprm->p;
732  #endif
733  
734  	if (bprm->loader)
735  		bprm->loader -= stack_shift;
736  	bprm->exec -= stack_shift;
737  
738  	if (down_write_killable(&mm->mmap_sem))
739  		return -EINTR;
740  
741  	vm_flags = VM_STACK_FLAGS;
742  
743  	/*
744  	 * Adjust stack execute permissions; explicitly enable for
745  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
746  	 * (arch default) otherwise.
747  	 */
748  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
749  		vm_flags |= VM_EXEC;
750  	else if (executable_stack == EXSTACK_DISABLE_X)
751  		vm_flags &= ~VM_EXEC;
752  	vm_flags |= mm->def_flags;
753  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
754  
755  	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
756  			vm_flags);
757  	if (ret)
758  		goto out_unlock;
759  	BUG_ON(prev != vma);
760  
761  	/* Move stack pages down in memory. */
762  	if (stack_shift) {
763  		ret = shift_arg_pages(vma, stack_shift);
764  		if (ret)
765  			goto out_unlock;
766  	}
767  
768  	/* mprotect_fixup is overkill to remove the temporary stack flags */
769  	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
770  
771  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
772  	stack_size = vma->vm_end - vma->vm_start;
773  	/*
774  	 * Align this down to a page boundary as expand_stack
775  	 * will align it up.
776  	 */
777  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
778  #ifdef CONFIG_STACK_GROWSUP
779  	if (stack_size + stack_expand > rlim_stack)
780  		stack_base = vma->vm_start + rlim_stack;
781  	else
782  		stack_base = vma->vm_end + stack_expand;
783  #else
784  	if (stack_size + stack_expand > rlim_stack)
785  		stack_base = vma->vm_end - rlim_stack;
786  	else
787  		stack_base = vma->vm_start - stack_expand;
788  #endif
789  	current->mm->start_stack = bprm->p;
790  	ret = expand_stack(vma, stack_base);
791  	if (ret)
792  		ret = -EFAULT;
793  
794  out_unlock:
795  	up_write(&mm->mmap_sem);
796  	return ret;
797  }
798  EXPORT_SYMBOL(setup_arg_pages);
799  
800  #else
801  
802  /*
803   * Transfer the program arguments and environment from the holding pages
804   * onto the stack. The provided stack pointer is adjusted accordingly.
805   */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)806  int transfer_args_to_stack(struct linux_binprm *bprm,
807  			   unsigned long *sp_location)
808  {
809  	unsigned long index, stop, sp;
810  	int ret = 0;
811  
812  	stop = bprm->p >> PAGE_SHIFT;
813  	sp = *sp_location;
814  
815  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
816  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
817  		char *src = kmap(bprm->page[index]) + offset;
818  		sp -= PAGE_SIZE - offset;
819  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
820  			ret = -EFAULT;
821  		kunmap(bprm->page[index]);
822  		if (ret)
823  			goto out;
824  	}
825  
826  	*sp_location = sp;
827  
828  out:
829  	return ret;
830  }
831  EXPORT_SYMBOL(transfer_args_to_stack);
832  
833  #endif /* CONFIG_MMU */
834  
do_open_execat(int fd,struct filename * name,int flags)835  static struct file *do_open_execat(int fd, struct filename *name, int flags)
836  {
837  	struct file *file;
838  	int err;
839  	struct open_flags open_exec_flags = {
840  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
841  		.acc_mode = MAY_EXEC,
842  		.intent = LOOKUP_OPEN,
843  		.lookup_flags = LOOKUP_FOLLOW,
844  	};
845  
846  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
847  		return ERR_PTR(-EINVAL);
848  	if (flags & AT_SYMLINK_NOFOLLOW)
849  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
850  	if (flags & AT_EMPTY_PATH)
851  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
852  
853  	file = do_filp_open(fd, name, &open_exec_flags);
854  	if (IS_ERR(file))
855  		goto out;
856  
857  	err = -EACCES;
858  	if (!S_ISREG(file_inode(file)->i_mode))
859  		goto exit;
860  
861  	if (path_noexec(&file->f_path))
862  		goto exit;
863  
864  	err = deny_write_access(file);
865  	if (err)
866  		goto exit;
867  
868  	if (name->name[0] != '\0')
869  		fsnotify_open(file);
870  
871  out:
872  	return file;
873  
874  exit:
875  	fput(file);
876  	return ERR_PTR(err);
877  }
878  
open_exec(const char * name)879  struct file *open_exec(const char *name)
880  {
881  	struct filename *filename = getname_kernel(name);
882  	struct file *f = ERR_CAST(filename);
883  
884  	if (!IS_ERR(filename)) {
885  		f = do_open_execat(AT_FDCWD, filename, 0);
886  		putname(filename);
887  	}
888  	return f;
889  }
890  EXPORT_SYMBOL(open_exec);
891  
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)892  int kernel_read_file(struct file *file, void **buf, loff_t *size,
893  		     loff_t max_size, enum kernel_read_file_id id)
894  {
895  	loff_t i_size, pos;
896  	ssize_t bytes = 0;
897  	int ret;
898  
899  	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
900  		return -EINVAL;
901  
902  	ret = deny_write_access(file);
903  	if (ret)
904  		return ret;
905  
906  	ret = security_kernel_read_file(file, id);
907  	if (ret)
908  		goto out;
909  
910  	i_size = i_size_read(file_inode(file));
911  	if (max_size > 0 && i_size > max_size) {
912  		ret = -EFBIG;
913  		goto out;
914  	}
915  	if (i_size <= 0) {
916  		ret = -EINVAL;
917  		goto out;
918  	}
919  
920  	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
921  		*buf = vmalloc(i_size);
922  	if (!*buf) {
923  		ret = -ENOMEM;
924  		goto out;
925  	}
926  
927  	pos = 0;
928  	while (pos < i_size) {
929  		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
930  		if (bytes < 0) {
931  			ret = bytes;
932  			goto out_free;
933  		}
934  
935  		if (bytes == 0)
936  			break;
937  	}
938  
939  	if (pos != i_size) {
940  		ret = -EIO;
941  		goto out_free;
942  	}
943  
944  	ret = security_kernel_post_read_file(file, *buf, i_size, id);
945  	if (!ret)
946  		*size = pos;
947  
948  out_free:
949  	if (ret < 0) {
950  		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
951  			vfree(*buf);
952  			*buf = NULL;
953  		}
954  	}
955  
956  out:
957  	allow_write_access(file);
958  	return ret;
959  }
960  EXPORT_SYMBOL_GPL(kernel_read_file);
961  
kernel_read_file_from_path(const char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)962  int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
963  			       loff_t max_size, enum kernel_read_file_id id)
964  {
965  	struct file *file;
966  	int ret;
967  
968  	if (!path || !*path)
969  		return -EINVAL;
970  
971  	file = filp_open(path, O_RDONLY, 0);
972  	if (IS_ERR(file))
973  		return PTR_ERR(file);
974  
975  	ret = kernel_read_file(file, buf, size, max_size, id);
976  	fput(file);
977  	return ret;
978  }
979  EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
980  
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)981  int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
982  			     enum kernel_read_file_id id)
983  {
984  	struct fd f = fdget(fd);
985  	int ret = -EBADF;
986  
987  	if (!f.file)
988  		goto out;
989  
990  	ret = kernel_read_file(f.file, buf, size, max_size, id);
991  out:
992  	fdput(f);
993  	return ret;
994  }
995  EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
996  
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)997  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
998  {
999  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1000  	if (res > 0)
1001  		flush_icache_range(addr, addr + len);
1002  	return res;
1003  }
1004  EXPORT_SYMBOL(read_code);
1005  
exec_mmap(struct mm_struct * mm)1006  static int exec_mmap(struct mm_struct *mm)
1007  {
1008  	struct task_struct *tsk;
1009  	struct mm_struct *old_mm, *active_mm;
1010  
1011  	/* Notify parent that we're no longer interested in the old VM */
1012  	tsk = current;
1013  	old_mm = current->mm;
1014  	mm_release(tsk, old_mm);
1015  
1016  	if (old_mm) {
1017  		sync_mm_rss(old_mm);
1018  		/*
1019  		 * Make sure that if there is a core dump in progress
1020  		 * for the old mm, we get out and die instead of going
1021  		 * through with the exec.  We must hold mmap_sem around
1022  		 * checking core_state and changing tsk->mm.
1023  		 */
1024  		down_read(&old_mm->mmap_sem);
1025  		if (unlikely(old_mm->core_state)) {
1026  			up_read(&old_mm->mmap_sem);
1027  			return -EINTR;
1028  		}
1029  	}
1030  	task_lock(tsk);
1031  
1032  	local_irq_disable();
1033  	active_mm = tsk->active_mm;
1034  	tsk->active_mm = mm;
1035  	tsk->mm = mm;
1036  	/*
1037  	 * This prevents preemption while active_mm is being loaded and
1038  	 * it and mm are being updated, which could cause problems for
1039  	 * lazy tlb mm refcounting when these are updated by context
1040  	 * switches. Not all architectures can handle irqs off over
1041  	 * activate_mm yet.
1042  	 */
1043  	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1044  		local_irq_enable();
1045  	activate_mm(active_mm, mm);
1046  	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1047  		local_irq_enable();
1048  	tsk->mm->vmacache_seqnum = 0;
1049  	vmacache_flush(tsk);
1050  	task_unlock(tsk);
1051  	if (old_mm) {
1052  		up_read(&old_mm->mmap_sem);
1053  		BUG_ON(active_mm != old_mm);
1054  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1055  		mm_update_next_owner(old_mm);
1056  		mmput(old_mm);
1057  		return 0;
1058  	}
1059  	mmdrop(active_mm);
1060  	return 0;
1061  }
1062  
1063  /*
1064   * This function makes sure the current process has its own signal table,
1065   * so that flush_signal_handlers can later reset the handlers without
1066   * disturbing other processes.  (Other processes might share the signal
1067   * table via the CLONE_SIGHAND option to clone().)
1068   */
de_thread(struct task_struct * tsk)1069  static int de_thread(struct task_struct *tsk)
1070  {
1071  	struct signal_struct *sig = tsk->signal;
1072  	struct sighand_struct *oldsighand = tsk->sighand;
1073  	spinlock_t *lock = &oldsighand->siglock;
1074  
1075  	if (thread_group_empty(tsk))
1076  		goto no_thread_group;
1077  
1078  	/*
1079  	 * Kill all other threads in the thread group.
1080  	 */
1081  	spin_lock_irq(lock);
1082  	if (signal_group_exit(sig)) {
1083  		/*
1084  		 * Another group action in progress, just
1085  		 * return so that the signal is processed.
1086  		 */
1087  		spin_unlock_irq(lock);
1088  		return -EAGAIN;
1089  	}
1090  
1091  	sig->group_exit_task = tsk;
1092  	sig->notify_count = zap_other_threads(tsk);
1093  	if (!thread_group_leader(tsk))
1094  		sig->notify_count--;
1095  
1096  	while (sig->notify_count) {
1097  		__set_current_state(TASK_KILLABLE);
1098  		spin_unlock_irq(lock);
1099  		schedule();
1100  		if (unlikely(__fatal_signal_pending(tsk)))
1101  			goto killed;
1102  		spin_lock_irq(lock);
1103  	}
1104  	spin_unlock_irq(lock);
1105  
1106  	/*
1107  	 * At this point all other threads have exited, all we have to
1108  	 * do is to wait for the thread group leader to become inactive,
1109  	 * and to assume its PID:
1110  	 */
1111  	if (!thread_group_leader(tsk)) {
1112  		struct task_struct *leader = tsk->group_leader;
1113  
1114  		for (;;) {
1115  			cgroup_threadgroup_change_begin(tsk);
1116  			write_lock_irq(&tasklist_lock);
1117  			/*
1118  			 * Do this under tasklist_lock to ensure that
1119  			 * exit_notify() can't miss ->group_exit_task
1120  			 */
1121  			sig->notify_count = -1;
1122  			if (likely(leader->exit_state))
1123  				break;
1124  			__set_current_state(TASK_KILLABLE);
1125  			write_unlock_irq(&tasklist_lock);
1126  			cgroup_threadgroup_change_end(tsk);
1127  			schedule();
1128  			if (unlikely(__fatal_signal_pending(tsk)))
1129  				goto killed;
1130  		}
1131  
1132  		/*
1133  		 * The only record we have of the real-time age of a
1134  		 * process, regardless of execs it's done, is start_time.
1135  		 * All the past CPU time is accumulated in signal_struct
1136  		 * from sister threads now dead.  But in this non-leader
1137  		 * exec, nothing survives from the original leader thread,
1138  		 * whose birth marks the true age of this process now.
1139  		 * When we take on its identity by switching to its PID, we
1140  		 * also take its birthdate (always earlier than our own).
1141  		 */
1142  		tsk->start_time = leader->start_time;
1143  		tsk->real_start_time = leader->real_start_time;
1144  
1145  		BUG_ON(!same_thread_group(leader, tsk));
1146  		BUG_ON(has_group_leader_pid(tsk));
1147  		/*
1148  		 * An exec() starts a new thread group with the
1149  		 * TGID of the previous thread group. Rehash the
1150  		 * two threads with a switched PID, and release
1151  		 * the former thread group leader:
1152  		 */
1153  
1154  		/* Become a process group leader with the old leader's pid.
1155  		 * The old leader becomes a thread of the this thread group.
1156  		 * Note: The old leader also uses this pid until release_task
1157  		 *       is called.  Odd but simple and correct.
1158  		 */
1159  		tsk->pid = leader->pid;
1160  		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1161  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1162  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1163  		transfer_pid(leader, tsk, PIDTYPE_SID);
1164  
1165  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1166  		list_replace_init(&leader->sibling, &tsk->sibling);
1167  
1168  		tsk->group_leader = tsk;
1169  		leader->group_leader = tsk;
1170  
1171  		tsk->exit_signal = SIGCHLD;
1172  		leader->exit_signal = -1;
1173  
1174  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1175  		leader->exit_state = EXIT_DEAD;
1176  
1177  		/*
1178  		 * We are going to release_task()->ptrace_unlink() silently,
1179  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1180  		 * the tracer wont't block again waiting for this thread.
1181  		 */
1182  		if (unlikely(leader->ptrace))
1183  			__wake_up_parent(leader, leader->parent);
1184  		write_unlock_irq(&tasklist_lock);
1185  		cgroup_threadgroup_change_end(tsk);
1186  
1187  		release_task(leader);
1188  	}
1189  
1190  	sig->group_exit_task = NULL;
1191  	sig->notify_count = 0;
1192  
1193  no_thread_group:
1194  	/* we have changed execution domain */
1195  	tsk->exit_signal = SIGCHLD;
1196  
1197  #ifdef CONFIG_POSIX_TIMERS
1198  	exit_itimers(sig);
1199  	flush_itimer_signals();
1200  #endif
1201  
1202  	if (atomic_read(&oldsighand->count) != 1) {
1203  		struct sighand_struct *newsighand;
1204  		/*
1205  		 * This ->sighand is shared with the CLONE_SIGHAND
1206  		 * but not CLONE_THREAD task, switch to the new one.
1207  		 */
1208  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1209  		if (!newsighand)
1210  			return -ENOMEM;
1211  
1212  		atomic_set(&newsighand->count, 1);
1213  		memcpy(newsighand->action, oldsighand->action,
1214  		       sizeof(newsighand->action));
1215  
1216  		write_lock_irq(&tasklist_lock);
1217  		spin_lock(&oldsighand->siglock);
1218  		rcu_assign_pointer(tsk->sighand, newsighand);
1219  		spin_unlock(&oldsighand->siglock);
1220  		write_unlock_irq(&tasklist_lock);
1221  
1222  		__cleanup_sighand(oldsighand);
1223  	}
1224  
1225  	BUG_ON(!thread_group_leader(tsk));
1226  	return 0;
1227  
1228  killed:
1229  	/* protects against exit_notify() and __exit_signal() */
1230  	read_lock(&tasklist_lock);
1231  	sig->group_exit_task = NULL;
1232  	sig->notify_count = 0;
1233  	read_unlock(&tasklist_lock);
1234  	return -EAGAIN;
1235  }
1236  
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1237  char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1238  {
1239  	task_lock(tsk);
1240  	strncpy(buf, tsk->comm, buf_size);
1241  	task_unlock(tsk);
1242  	return buf;
1243  }
1244  EXPORT_SYMBOL_GPL(__get_task_comm);
1245  
1246  /*
1247   * These functions flushes out all traces of the currently running executable
1248   * so that a new one can be started
1249   */
1250  
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1251  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1252  {
1253  	task_lock(tsk);
1254  	trace_task_rename(tsk, buf);
1255  	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1256  	task_unlock(tsk);
1257  	perf_event_comm(tsk, exec);
1258  }
1259  
1260  /*
1261   * Calling this is the point of no return. None of the failures will be
1262   * seen by userspace since either the process is already taking a fatal
1263   * signal (via de_thread() or coredump), or will have SEGV raised
1264   * (after exec_mmap()) by search_binary_handlers (see below).
1265   */
flush_old_exec(struct linux_binprm * bprm)1266  int flush_old_exec(struct linux_binprm * bprm)
1267  {
1268  	int retval;
1269  
1270  	/*
1271  	 * Make sure we have a private signal table and that
1272  	 * we are unassociated from the previous thread group.
1273  	 */
1274  	retval = de_thread(current);
1275  	if (retval)
1276  		goto out;
1277  
1278  	/*
1279  	 * Must be called _before_ exec_mmap() as bprm->mm is
1280  	 * not visibile until then. This also enables the update
1281  	 * to be lockless.
1282  	 */
1283  	set_mm_exe_file(bprm->mm, bprm->file);
1284  
1285  	would_dump(bprm, bprm->file);
1286  
1287  	/*
1288  	 * Release all of the old mmap stuff
1289  	 */
1290  	acct_arg_size(bprm, 0);
1291  	retval = exec_mmap(bprm->mm);
1292  	if (retval)
1293  		goto out;
1294  
1295  	/*
1296  	 * After clearing bprm->mm (to mark that current is using the
1297  	 * prepared mm now), we have nothing left of the original
1298  	 * process. If anything from here on returns an error, the check
1299  	 * in search_binary_handler() will SEGV current.
1300  	 */
1301  	bprm->mm = NULL;
1302  
1303  	set_fs(USER_DS);
1304  	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1305  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1306  	flush_thread();
1307  	current->personality &= ~bprm->per_clear;
1308  
1309  	/*
1310  	 * We have to apply CLOEXEC before we change whether the process is
1311  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1312  	 * trying to access the should-be-closed file descriptors of a process
1313  	 * undergoing exec(2).
1314  	 */
1315  	do_close_on_exec(current->files);
1316  	return 0;
1317  
1318  out:
1319  	return retval;
1320  }
1321  EXPORT_SYMBOL(flush_old_exec);
1322  
would_dump(struct linux_binprm * bprm,struct file * file)1323  void would_dump(struct linux_binprm *bprm, struct file *file)
1324  {
1325  	struct inode *inode = file_inode(file);
1326  	if (inode_permission(inode, MAY_READ) < 0) {
1327  		struct user_namespace *old, *user_ns;
1328  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1329  
1330  		/* Ensure mm->user_ns contains the executable */
1331  		user_ns = old = bprm->mm->user_ns;
1332  		while ((user_ns != &init_user_ns) &&
1333  		       !privileged_wrt_inode_uidgid(user_ns, inode))
1334  			user_ns = user_ns->parent;
1335  
1336  		if (old != user_ns) {
1337  			bprm->mm->user_ns = get_user_ns(user_ns);
1338  			put_user_ns(old);
1339  		}
1340  	}
1341  }
1342  EXPORT_SYMBOL(would_dump);
1343  
setup_new_exec(struct linux_binprm * bprm)1344  void setup_new_exec(struct linux_binprm * bprm)
1345  {
1346  	/*
1347  	 * Once here, prepare_binrpm() will not be called any more, so
1348  	 * the final state of setuid/setgid/fscaps can be merged into the
1349  	 * secureexec flag.
1350  	 */
1351  	bprm->secureexec |= bprm->cap_elevated;
1352  
1353  	if (bprm->secureexec) {
1354  		/* Make sure parent cannot signal privileged process. */
1355  		current->pdeath_signal = 0;
1356  
1357  		/*
1358  		 * For secureexec, reset the stack limit to sane default to
1359  		 * avoid bad behavior from the prior rlimits. This has to
1360  		 * happen before arch_pick_mmap_layout(), which examines
1361  		 * RLIMIT_STACK, but after the point of no return to avoid
1362  		 * needing to clean up the change on failure.
1363  		 */
1364  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1365  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1366  	}
1367  
1368  	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1369  
1370  	current->sas_ss_sp = current->sas_ss_size = 0;
1371  
1372  	/*
1373  	 * Figure out dumpability. Note that this checking only of current
1374  	 * is wrong, but userspace depends on it. This should be testing
1375  	 * bprm->secureexec instead.
1376  	 */
1377  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1378  	    !(uid_eq(current_euid(), current_uid()) &&
1379  	      gid_eq(current_egid(), current_gid())))
1380  		set_dumpable(current->mm, suid_dumpable);
1381  	else
1382  		set_dumpable(current->mm, SUID_DUMP_USER);
1383  
1384  	arch_setup_new_exec();
1385  	perf_event_exec();
1386  	__set_task_comm(current, kbasename(bprm->filename), true);
1387  
1388  	/* Set the new mm task size. We have to do that late because it may
1389  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1390  	 * some architectures like powerpc
1391  	 */
1392  	current->mm->task_size = TASK_SIZE;
1393  
1394  	/* An exec changes our domain. We are no longer part of the thread
1395  	   group */
1396  	WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1397  	flush_signal_handlers(current, 0);
1398  }
1399  EXPORT_SYMBOL(setup_new_exec);
1400  
1401  /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1402  void finalize_exec(struct linux_binprm *bprm)
1403  {
1404  	/* Store any stack rlimit changes before starting thread. */
1405  	task_lock(current->group_leader);
1406  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1407  	task_unlock(current->group_leader);
1408  }
1409  EXPORT_SYMBOL(finalize_exec);
1410  
1411  /*
1412   * Prepare credentials and lock ->cred_guard_mutex.
1413   * install_exec_creds() commits the new creds and drops the lock.
1414   * Or, if exec fails before, free_bprm() should release ->cred and
1415   * and unlock.
1416   */
prepare_bprm_creds(struct linux_binprm * bprm)1417  int prepare_bprm_creds(struct linux_binprm *bprm)
1418  {
1419  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1420  		return -ERESTARTNOINTR;
1421  
1422  	bprm->cred = prepare_exec_creds();
1423  	if (likely(bprm->cred))
1424  		return 0;
1425  
1426  	mutex_unlock(&current->signal->cred_guard_mutex);
1427  	return -ENOMEM;
1428  }
1429  
free_bprm(struct linux_binprm * bprm)1430  static void free_bprm(struct linux_binprm *bprm)
1431  {
1432  	free_arg_pages(bprm);
1433  	if (bprm->cred) {
1434  		mutex_unlock(&current->signal->cred_guard_mutex);
1435  		abort_creds(bprm->cred);
1436  	}
1437  	if (bprm->file) {
1438  		allow_write_access(bprm->file);
1439  		fput(bprm->file);
1440  	}
1441  	/* If a binfmt changed the interp, free it. */
1442  	if (bprm->interp != bprm->filename)
1443  		kfree(bprm->interp);
1444  	kfree(bprm);
1445  }
1446  
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1447  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1448  {
1449  	/* If a binfmt changed the interp, free it first. */
1450  	if (bprm->interp != bprm->filename)
1451  		kfree(bprm->interp);
1452  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1453  	if (!bprm->interp)
1454  		return -ENOMEM;
1455  	return 0;
1456  }
1457  EXPORT_SYMBOL(bprm_change_interp);
1458  
1459  /*
1460   * install the new credentials for this executable
1461   */
install_exec_creds(struct linux_binprm * bprm)1462  void install_exec_creds(struct linux_binprm *bprm)
1463  {
1464  	security_bprm_committing_creds(bprm);
1465  
1466  	commit_creds(bprm->cred);
1467  	bprm->cred = NULL;
1468  
1469  	/*
1470  	 * Disable monitoring for regular users
1471  	 * when executing setuid binaries. Must
1472  	 * wait until new credentials are committed
1473  	 * by commit_creds() above
1474  	 */
1475  	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1476  		perf_event_exit_task(current);
1477  	/*
1478  	 * cred_guard_mutex must be held at least to this point to prevent
1479  	 * ptrace_attach() from altering our determination of the task's
1480  	 * credentials; any time after this it may be unlocked.
1481  	 */
1482  	security_bprm_committed_creds(bprm);
1483  	mutex_unlock(&current->signal->cred_guard_mutex);
1484  }
1485  EXPORT_SYMBOL(install_exec_creds);
1486  
1487  /*
1488   * determine how safe it is to execute the proposed program
1489   * - the caller must hold ->cred_guard_mutex to protect against
1490   *   PTRACE_ATTACH or seccomp thread-sync
1491   */
check_unsafe_exec(struct linux_binprm * bprm)1492  static void check_unsafe_exec(struct linux_binprm *bprm)
1493  {
1494  	struct task_struct *p = current, *t;
1495  	unsigned n_fs;
1496  
1497  	if (p->ptrace)
1498  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1499  
1500  	/*
1501  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1502  	 * mess up.
1503  	 */
1504  	if (task_no_new_privs(current))
1505  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1506  
1507  	t = p;
1508  	n_fs = 1;
1509  	spin_lock(&p->fs->lock);
1510  	rcu_read_lock();
1511  	while_each_thread(p, t) {
1512  		if (t->fs == p->fs)
1513  			n_fs++;
1514  	}
1515  	rcu_read_unlock();
1516  
1517  	if (p->fs->users > n_fs)
1518  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1519  	else
1520  		p->fs->in_exec = 1;
1521  	spin_unlock(&p->fs->lock);
1522  }
1523  
bprm_fill_uid(struct linux_binprm * bprm)1524  static void bprm_fill_uid(struct linux_binprm *bprm)
1525  {
1526  	struct inode *inode;
1527  	unsigned int mode;
1528  	kuid_t uid;
1529  	kgid_t gid;
1530  
1531  	/*
1532  	 * Since this can be called multiple times (via prepare_binprm),
1533  	 * we must clear any previous work done when setting set[ug]id
1534  	 * bits from any earlier bprm->file uses (for example when run
1535  	 * first for a setuid script then again for its interpreter).
1536  	 */
1537  	bprm->cred->euid = current_euid();
1538  	bprm->cred->egid = current_egid();
1539  
1540  	if (!mnt_may_suid(bprm->file->f_path.mnt))
1541  		return;
1542  
1543  	if (task_no_new_privs(current))
1544  		return;
1545  
1546  	inode = bprm->file->f_path.dentry->d_inode;
1547  	mode = READ_ONCE(inode->i_mode);
1548  	if (!(mode & (S_ISUID|S_ISGID)))
1549  		return;
1550  
1551  	/* Be careful if suid/sgid is set */
1552  	inode_lock(inode);
1553  
1554  	/* reload atomically mode/uid/gid now that lock held */
1555  	mode = inode->i_mode;
1556  	uid = inode->i_uid;
1557  	gid = inode->i_gid;
1558  	inode_unlock(inode);
1559  
1560  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1561  	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1562  		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1563  		return;
1564  
1565  	if (mode & S_ISUID) {
1566  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1567  		bprm->cred->euid = uid;
1568  	}
1569  
1570  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1571  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1572  		bprm->cred->egid = gid;
1573  	}
1574  }
1575  
1576  /*
1577   * Fill the binprm structure from the inode.
1578   * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1579   *
1580   * This may be called multiple times for binary chains (scripts for example).
1581   */
prepare_binprm(struct linux_binprm * bprm)1582  int prepare_binprm(struct linux_binprm *bprm)
1583  {
1584  	int retval;
1585  	loff_t pos = 0;
1586  
1587  	bprm_fill_uid(bprm);
1588  
1589  	/* fill in binprm security blob */
1590  	retval = security_bprm_set_creds(bprm);
1591  	if (retval)
1592  		return retval;
1593  	bprm->called_set_creds = 1;
1594  
1595  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1596  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1597  }
1598  
1599  EXPORT_SYMBOL(prepare_binprm);
1600  
1601  /*
1602   * Arguments are '\0' separated strings found at the location bprm->p
1603   * points to; chop off the first by relocating brpm->p to right after
1604   * the first '\0' encountered.
1605   */
remove_arg_zero(struct linux_binprm * bprm)1606  int remove_arg_zero(struct linux_binprm *bprm)
1607  {
1608  	int ret = 0;
1609  	unsigned long offset;
1610  	char *kaddr;
1611  	struct page *page;
1612  
1613  	if (!bprm->argc)
1614  		return 0;
1615  
1616  	do {
1617  		offset = bprm->p & ~PAGE_MASK;
1618  		page = get_arg_page(bprm, bprm->p, 0);
1619  		if (!page) {
1620  			ret = -EFAULT;
1621  			goto out;
1622  		}
1623  		kaddr = kmap_atomic(page);
1624  
1625  		for (; offset < PAGE_SIZE && kaddr[offset];
1626  				offset++, bprm->p++)
1627  			;
1628  
1629  		kunmap_atomic(kaddr);
1630  		put_arg_page(page);
1631  	} while (offset == PAGE_SIZE);
1632  
1633  	bprm->p++;
1634  	bprm->argc--;
1635  	ret = 0;
1636  
1637  out:
1638  	return ret;
1639  }
1640  EXPORT_SYMBOL(remove_arg_zero);
1641  
1642  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1643  /*
1644   * cycle the list of binary formats handler, until one recognizes the image
1645   */
search_binary_handler(struct linux_binprm * bprm)1646  int search_binary_handler(struct linux_binprm *bprm)
1647  {
1648  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1649  	struct linux_binfmt *fmt;
1650  	int retval;
1651  
1652  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1653  	if (bprm->recursion_depth > 5)
1654  		return -ELOOP;
1655  
1656  	retval = security_bprm_check(bprm);
1657  	if (retval)
1658  		return retval;
1659  
1660  	retval = -ENOENT;
1661   retry:
1662  	read_lock(&binfmt_lock);
1663  	list_for_each_entry(fmt, &formats, lh) {
1664  		if (!try_module_get(fmt->module))
1665  			continue;
1666  		read_unlock(&binfmt_lock);
1667  		bprm->recursion_depth++;
1668  		retval = fmt->load_binary(bprm);
1669  		read_lock(&binfmt_lock);
1670  		put_binfmt(fmt);
1671  		bprm->recursion_depth--;
1672  		if (retval < 0 && !bprm->mm) {
1673  			/* we got to flush_old_exec() and failed after it */
1674  			read_unlock(&binfmt_lock);
1675  			force_sigsegv(SIGSEGV, current);
1676  			return retval;
1677  		}
1678  		if (retval != -ENOEXEC || !bprm->file) {
1679  			read_unlock(&binfmt_lock);
1680  			return retval;
1681  		}
1682  	}
1683  	read_unlock(&binfmt_lock);
1684  
1685  	if (need_retry) {
1686  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1687  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1688  			return retval;
1689  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1690  			return retval;
1691  		need_retry = false;
1692  		goto retry;
1693  	}
1694  
1695  	return retval;
1696  }
1697  EXPORT_SYMBOL(search_binary_handler);
1698  
exec_binprm(struct linux_binprm * bprm)1699  static int exec_binprm(struct linux_binprm *bprm)
1700  {
1701  	pid_t old_pid, old_vpid;
1702  	int ret;
1703  
1704  	/* Need to fetch pid before load_binary changes it */
1705  	old_pid = current->pid;
1706  	rcu_read_lock();
1707  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1708  	rcu_read_unlock();
1709  
1710  	ret = search_binary_handler(bprm);
1711  	if (ret >= 0) {
1712  		audit_bprm(bprm);
1713  		trace_sched_process_exec(current, old_pid, bprm);
1714  		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1715  		proc_exec_connector(current);
1716  	}
1717  
1718  	return ret;
1719  }
1720  
1721  /*
1722   * sys_execve() executes a new program.
1723   */
__do_execve_file(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags,struct file * file)1724  static int __do_execve_file(int fd, struct filename *filename,
1725  			    struct user_arg_ptr argv,
1726  			    struct user_arg_ptr envp,
1727  			    int flags, struct file *file)
1728  {
1729  	char *pathbuf = NULL;
1730  	struct linux_binprm *bprm;
1731  	struct files_struct *displaced;
1732  	int retval;
1733  
1734  	if (IS_ERR(filename))
1735  		return PTR_ERR(filename);
1736  
1737  	/*
1738  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1739  	 * set*uid() to execve() because too many poorly written programs
1740  	 * don't check setuid() return code.  Here we additionally recheck
1741  	 * whether NPROC limit is still exceeded.
1742  	 */
1743  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1744  	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1745  		retval = -EAGAIN;
1746  		goto out_ret;
1747  	}
1748  
1749  	/* We're below the limit (still or again), so we don't want to make
1750  	 * further execve() calls fail. */
1751  	current->flags &= ~PF_NPROC_EXCEEDED;
1752  
1753  	retval = unshare_files(&displaced);
1754  	if (retval)
1755  		goto out_ret;
1756  
1757  	retval = -ENOMEM;
1758  	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1759  	if (!bprm)
1760  		goto out_files;
1761  
1762  	retval = prepare_bprm_creds(bprm);
1763  	if (retval)
1764  		goto out_free;
1765  
1766  	check_unsafe_exec(bprm);
1767  	current->in_execve = 1;
1768  
1769  	if (!file)
1770  		file = do_open_execat(fd, filename, flags);
1771  	retval = PTR_ERR(file);
1772  	if (IS_ERR(file))
1773  		goto out_unmark;
1774  
1775  	sched_exec();
1776  
1777  	bprm->file = file;
1778  	if (!filename) {
1779  		bprm->filename = "none";
1780  	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1781  		bprm->filename = filename->name;
1782  	} else {
1783  		if (filename->name[0] == '\0')
1784  			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1785  		else
1786  			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1787  					    fd, filename->name);
1788  		if (!pathbuf) {
1789  			retval = -ENOMEM;
1790  			goto out_unmark;
1791  		}
1792  		/*
1793  		 * Record that a name derived from an O_CLOEXEC fd will be
1794  		 * inaccessible after exec. Relies on having exclusive access to
1795  		 * current->files (due to unshare_files above).
1796  		 */
1797  		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1798  			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1799  		bprm->filename = pathbuf;
1800  	}
1801  	bprm->interp = bprm->filename;
1802  
1803  	retval = bprm_mm_init(bprm);
1804  	if (retval)
1805  		goto out_unmark;
1806  
1807  	bprm->argc = count(argv, MAX_ARG_STRINGS);
1808  	if ((retval = bprm->argc) < 0)
1809  		goto out;
1810  
1811  	bprm->envc = count(envp, MAX_ARG_STRINGS);
1812  	if ((retval = bprm->envc) < 0)
1813  		goto out;
1814  
1815  	retval = prepare_binprm(bprm);
1816  	if (retval < 0)
1817  		goto out;
1818  
1819  	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1820  	if (retval < 0)
1821  		goto out;
1822  
1823  	bprm->exec = bprm->p;
1824  	retval = copy_strings(bprm->envc, envp, bprm);
1825  	if (retval < 0)
1826  		goto out;
1827  
1828  	retval = copy_strings(bprm->argc, argv, bprm);
1829  	if (retval < 0)
1830  		goto out;
1831  
1832  	retval = exec_binprm(bprm);
1833  	if (retval < 0)
1834  		goto out;
1835  
1836  	/* execve succeeded */
1837  	current->fs->in_exec = 0;
1838  	current->in_execve = 0;
1839  	membarrier_execve(current);
1840  	rseq_execve(current);
1841  	acct_update_integrals(current);
1842  	task_numa_free(current, false);
1843  	free_bprm(bprm);
1844  	kfree(pathbuf);
1845  	if (filename)
1846  		putname(filename);
1847  	if (displaced)
1848  		put_files_struct(displaced);
1849  	return retval;
1850  
1851  out:
1852  	if (bprm->mm) {
1853  		acct_arg_size(bprm, 0);
1854  		mmput(bprm->mm);
1855  	}
1856  
1857  out_unmark:
1858  	current->fs->in_exec = 0;
1859  	current->in_execve = 0;
1860  
1861  out_free:
1862  	free_bprm(bprm);
1863  	kfree(pathbuf);
1864  
1865  out_files:
1866  	if (displaced)
1867  		reset_files_struct(displaced);
1868  out_ret:
1869  	if (filename)
1870  		putname(filename);
1871  	return retval;
1872  }
1873  
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1874  static int do_execveat_common(int fd, struct filename *filename,
1875  			      struct user_arg_ptr argv,
1876  			      struct user_arg_ptr envp,
1877  			      int flags)
1878  {
1879  	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1880  }
1881  
do_execve_file(struct file * file,void * __argv,void * __envp)1882  int do_execve_file(struct file *file, void *__argv, void *__envp)
1883  {
1884  	struct user_arg_ptr argv = { .ptr.native = __argv };
1885  	struct user_arg_ptr envp = { .ptr.native = __envp };
1886  
1887  	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1888  }
1889  
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1890  int do_execve(struct filename *filename,
1891  	const char __user *const __user *__argv,
1892  	const char __user *const __user *__envp)
1893  {
1894  	struct user_arg_ptr argv = { .ptr.native = __argv };
1895  	struct user_arg_ptr envp = { .ptr.native = __envp };
1896  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1897  }
1898  
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1899  int do_execveat(int fd, struct filename *filename,
1900  		const char __user *const __user *__argv,
1901  		const char __user *const __user *__envp,
1902  		int flags)
1903  {
1904  	struct user_arg_ptr argv = { .ptr.native = __argv };
1905  	struct user_arg_ptr envp = { .ptr.native = __envp };
1906  
1907  	return do_execveat_common(fd, filename, argv, envp, flags);
1908  }
1909  
1910  #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1911  static int compat_do_execve(struct filename *filename,
1912  	const compat_uptr_t __user *__argv,
1913  	const compat_uptr_t __user *__envp)
1914  {
1915  	struct user_arg_ptr argv = {
1916  		.is_compat = true,
1917  		.ptr.compat = __argv,
1918  	};
1919  	struct user_arg_ptr envp = {
1920  		.is_compat = true,
1921  		.ptr.compat = __envp,
1922  	};
1923  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1924  }
1925  
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1926  static int compat_do_execveat(int fd, struct filename *filename,
1927  			      const compat_uptr_t __user *__argv,
1928  			      const compat_uptr_t __user *__envp,
1929  			      int flags)
1930  {
1931  	struct user_arg_ptr argv = {
1932  		.is_compat = true,
1933  		.ptr.compat = __argv,
1934  	};
1935  	struct user_arg_ptr envp = {
1936  		.is_compat = true,
1937  		.ptr.compat = __envp,
1938  	};
1939  	return do_execveat_common(fd, filename, argv, envp, flags);
1940  }
1941  #endif
1942  
set_binfmt(struct linux_binfmt * new)1943  void set_binfmt(struct linux_binfmt *new)
1944  {
1945  	struct mm_struct *mm = current->mm;
1946  
1947  	if (mm->binfmt)
1948  		module_put(mm->binfmt->module);
1949  
1950  	mm->binfmt = new;
1951  	if (new)
1952  		__module_get(new->module);
1953  }
1954  EXPORT_SYMBOL(set_binfmt);
1955  
1956  /*
1957   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1958   */
set_dumpable(struct mm_struct * mm,int value)1959  void set_dumpable(struct mm_struct *mm, int value)
1960  {
1961  	unsigned long old, new;
1962  
1963  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1964  		return;
1965  
1966  	do {
1967  		old = READ_ONCE(mm->flags);
1968  		new = (old & ~MMF_DUMPABLE_MASK) | value;
1969  	} while (cmpxchg(&mm->flags, old, new) != old);
1970  }
1971  
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1972  SYSCALL_DEFINE3(execve,
1973  		const char __user *, filename,
1974  		const char __user *const __user *, argv,
1975  		const char __user *const __user *, envp)
1976  {
1977  	return do_execve(getname(filename), argv, envp);
1978  }
1979  
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1980  SYSCALL_DEFINE5(execveat,
1981  		int, fd, const char __user *, filename,
1982  		const char __user *const __user *, argv,
1983  		const char __user *const __user *, envp,
1984  		int, flags)
1985  {
1986  	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1987  
1988  	return do_execveat(fd,
1989  			   getname_flags(filename, lookup_flags, NULL),
1990  			   argv, envp, flags);
1991  }
1992  
1993  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1994  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1995  	const compat_uptr_t __user *, argv,
1996  	const compat_uptr_t __user *, envp)
1997  {
1998  	return compat_do_execve(getname(filename), argv, envp);
1999  }
2000  
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2001  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2002  		       const char __user *, filename,
2003  		       const compat_uptr_t __user *, argv,
2004  		       const compat_uptr_t __user *, envp,
2005  		       int,  flags)
2006  {
2007  	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2008  
2009  	return compat_do_execveat(fd,
2010  				  getname_flags(filename, lookup_flags, NULL),
2011  				  argv, envp, flags);
2012  }
2013  #endif
2014