1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
23
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
26 #endif
27
28 /*
29 * MUSTDO:
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
32 *
33 * TODO v4:
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
37 * - quota
38 * - reservation for superuser
39 *
40 * TODO v3:
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
45 * - error handling
46 */
47
48 /*
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
51 *
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
61 *
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
64 *
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
68 * represented as:
69 *
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> length for this prealloc space (in clusters)
73 * pa_free -> free space available in this prealloc space (in clusters)
74 *
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This makes sure that
78 * we have contiguous physical blocks representing the file blocks
79 *
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
82 * pa_free.
83 *
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list represented as
87 *
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
89 *
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
92 *
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) within the prealloc space.
95 *
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
104 * inode as:
105 *
106 * { page }
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
108 *
109 *
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
114 *
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
117 *
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
121 *
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
129 * dependent on the cluster size; for non-bigalloc file systems, it is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
136 *
137 * The regular allocator (using the buddy cache) supports a few tunables.
138 *
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
142 *
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
157 * checked.
158 *
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
163 */
164
165 /*
166 * mballoc operates on the following data:
167 * - on-disk bitmap
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
170 *
171 * there are two types of preallocations:
172 * - inode
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
181 * - locality group
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
186 *
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
189 *
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
193 *
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
197 *
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200 *
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
211 *
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * block
223 *
224 * so, now we're building a concurrency table:
225 * - init buddy vs.
226 * - new PA
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
229 * - use inode PA
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
232 * - discard inode PA
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
238 * - new PA vs.
239 * - use inode PA
240 * i_data_sem serializes them
241 * - discard inode PA
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
247 * - use inode PA
248 * - use inode PA
249 * i_data_sem or another mutex should serializes them
250 * - discard inode PA
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
256 *
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
264 *
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
267 *
268 */
269
270 /*
271 * Logic in few words:
272 *
273 * - allocation:
274 * load group
275 * find blocks
276 * mark bits in on-disk bitmap
277 * release group
278 *
279 * - use preallocation:
280 * find proper PA (per-inode or group)
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 * release PA
285 *
286 * - free:
287 * load group
288 * mark bits in on-disk bitmap
289 * release group
290 *
291 * - discard preallocations in group:
292 * mark PAs deleted
293 * move them onto local list
294 * load on-disk bitmap
295 * load group
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
298 *
299 * - discard inode's preallocations:
300 */
301
302 /*
303 * Locking rules
304 *
305 * Locks:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
308 * - per-pa lock (pa)
309 *
310 * Paths:
311 * - new pa
312 * object
313 * group
314 *
315 * - find and use pa:
316 * pa
317 *
318 * - release consumed pa:
319 * pa
320 * group
321 * object
322 *
323 * - generate in-core bitmap:
324 * group
325 * pa
326 *
327 * - discard all for given object (inode, locality group):
328 * object
329 * pa
330 * group
331 *
332 * - discard all for given group:
333 * group
334 * pa
335 * group
336 * object
337 *
338 */
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
342
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
348
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
353 };
354
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359
mb_correct_addr_and_bit(int * bit,void * addr)360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
361 {
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 return addr;
372 }
373
mb_test_bit(int bit,void * addr)374 static inline int mb_test_bit(int bit, void *addr)
375 {
376 /*
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
379 */
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
382 }
383
mb_set_bit(int bit,void * addr)384 static inline void mb_set_bit(int bit, void *addr)
385 {
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
388 }
389
mb_clear_bit(int bit,void * addr)390 static inline void mb_clear_bit(int bit, void *addr)
391 {
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
394 }
395
mb_test_and_clear_bit(int bit,void * addr)396 static inline int mb_test_and_clear_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 return ext4_test_and_clear_bit(bit, addr);
400 }
401
mb_find_next_zero_bit(void * addr,int max,int start)402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
403 {
404 int fix = 0, ret, tmpmax;
405 addr = mb_correct_addr_and_bit(&fix, addr);
406 tmpmax = max + fix;
407 start += fix;
408
409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
410 if (ret > max)
411 return max;
412 return ret;
413 }
414
mb_find_next_bit(void * addr,int max,int start)415 static inline int mb_find_next_bit(void *addr, int max, int start)
416 {
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
421
422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
426 }
427
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
429 {
430 char *bb;
431
432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
433 BUG_ON(max == NULL);
434
435 if (order > e4b->bd_blkbits + 1) {
436 *max = 0;
437 return NULL;
438 }
439
440 /* at order 0 we see each particular block */
441 if (order == 0) {
442 *max = 1 << (e4b->bd_blkbits + 3);
443 return e4b->bd_bitmap;
444 }
445
446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
448
449 return bb;
450 }
451
452 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 int first, int count)
455 {
456 int i;
457 struct super_block *sb = e4b->bd_sb;
458
459 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
460 return;
461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 for (i = 0; i < count; i++) {
463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 ext4_fsblk_t blocknr;
465
466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 ext4_grp_locked_error(sb, e4b->bd_group,
469 inode ? inode->i_ino : 0,
470 blocknr,
471 "freeing block already freed "
472 "(bit %u)",
473 first + i);
474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
476 }
477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
478 }
479 }
480
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
482 {
483 int i;
484
485 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
486 return;
487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 for (i = 0; i < count; i++) {
489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
491 }
492 }
493
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
495 {
496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 unsigned char *b1, *b2;
498 int i;
499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 b2 = (unsigned char *) bitmap;
501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 if (b1[i] != b2[i]) {
503 ext4_msg(e4b->bd_sb, KERN_ERR,
504 "corruption in group %u "
505 "at byte %u(%u): %x in copy != %x "
506 "on disk/prealloc",
507 e4b->bd_group, i, i * 8, b1[i], b2[i]);
508 BUG();
509 }
510 }
511 }
512 }
513
514 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)515 static inline void mb_free_blocks_double(struct inode *inode,
516 struct ext4_buddy *e4b, int first, int count)
517 {
518 return;
519 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 int first, int count)
522 {
523 return;
524 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
526 {
527 return;
528 }
529 #endif
530
531 #ifdef AGGRESSIVE_CHECK
532
533 #define MB_CHECK_ASSERT(assert) \
534 do { \
535 if (!(assert)) { \
536 printk(KERN_EMERG \
537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
538 function, file, line, # assert); \
539 BUG(); \
540 } \
541 } while (0)
542
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 const char *function, int line)
545 {
546 struct super_block *sb = e4b->bd_sb;
547 int order = e4b->bd_blkbits + 1;
548 int max;
549 int max2;
550 int i;
551 int j;
552 int k;
553 int count;
554 struct ext4_group_info *grp;
555 int fragments = 0;
556 int fstart;
557 struct list_head *cur;
558 void *buddy;
559 void *buddy2;
560
561 {
562 static int mb_check_counter;
563 if (mb_check_counter++ % 100 != 0)
564 return 0;
565 }
566
567 while (order > 1) {
568 buddy = mb_find_buddy(e4b, order, &max);
569 MB_CHECK_ASSERT(buddy);
570 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 MB_CHECK_ASSERT(buddy2);
572 MB_CHECK_ASSERT(buddy != buddy2);
573 MB_CHECK_ASSERT(max * 2 == max2);
574
575 count = 0;
576 for (i = 0; i < max; i++) {
577
578 if (mb_test_bit(i, buddy)) {
579 /* only single bit in buddy2 may be 1 */
580 if (!mb_test_bit(i << 1, buddy2)) {
581 MB_CHECK_ASSERT(
582 mb_test_bit((i<<1)+1, buddy2));
583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
584 MB_CHECK_ASSERT(
585 mb_test_bit(i << 1, buddy2));
586 }
587 continue;
588 }
589
590 /* both bits in buddy2 must be 1 */
591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
593
594 for (j = 0; j < (1 << order); j++) {
595 k = (i * (1 << order)) + j;
596 MB_CHECK_ASSERT(
597 !mb_test_bit(k, e4b->bd_bitmap));
598 }
599 count++;
600 }
601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
602 order--;
603 }
604
605 fstart = -1;
606 buddy = mb_find_buddy(e4b, 0, &max);
607 for (i = 0; i < max; i++) {
608 if (!mb_test_bit(i, buddy)) {
609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
610 if (fstart == -1) {
611 fragments++;
612 fstart = i;
613 }
614 continue;
615 }
616 fstart = -1;
617 /* check used bits only */
618 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 buddy2 = mb_find_buddy(e4b, j, &max2);
620 k = i >> j;
621 MB_CHECK_ASSERT(k < max2);
622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
623 }
624 }
625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
627
628 grp = ext4_get_group_info(sb, e4b->bd_group);
629 list_for_each(cur, &grp->bb_prealloc_list) {
630 ext4_group_t groupnr;
631 struct ext4_prealloc_space *pa;
632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 for (i = 0; i < pa->pa_len; i++)
636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
637 }
638 return 0;
639 }
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
642 __FILE__, __func__, __LINE__)
643 #else
644 #define mb_check_buddy(e4b)
645 #endif
646
647 /*
648 * Divide blocks started from @first with length @len into
649 * smaller chunks with power of 2 blocks.
650 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651 * then increase bb_counters[] for corresponded chunk size.
652 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 struct ext4_group_info *grp)
656 {
657 struct ext4_sb_info *sbi = EXT4_SB(sb);
658 ext4_grpblk_t min;
659 ext4_grpblk_t max;
660 ext4_grpblk_t chunk;
661 unsigned int border;
662
663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
664
665 border = 2 << sb->s_blocksize_bits;
666
667 while (len > 0) {
668 /* find how many blocks can be covered since this position */
669 max = ffs(first | border) - 1;
670
671 /* find how many blocks of power 2 we need to mark */
672 min = fls(len) - 1;
673
674 if (max < min)
675 min = max;
676 chunk = 1 << min;
677
678 /* mark multiblock chunks only */
679 grp->bb_counters[min]++;
680 if (min > 0)
681 mb_clear_bit(first >> min,
682 buddy + sbi->s_mb_offsets[min]);
683
684 len -= chunk;
685 first += chunk;
686 }
687 }
688
689 /*
690 * Cache the order of the largest free extent we have available in this block
691 * group.
692 */
693 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
695 {
696 int i;
697 int bits;
698
699 grp->bb_largest_free_order = -1; /* uninit */
700
701 bits = sb->s_blocksize_bits + 1;
702 for (i = bits; i >= 0; i--) {
703 if (grp->bb_counters[i] > 0) {
704 grp->bb_largest_free_order = i;
705 break;
706 }
707 }
708 }
709
710 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)711 void ext4_mb_generate_buddy(struct super_block *sb,
712 void *buddy, void *bitmap, ext4_group_t group)
713 {
714 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
717 ext4_grpblk_t i = 0;
718 ext4_grpblk_t first;
719 ext4_grpblk_t len;
720 unsigned free = 0;
721 unsigned fragments = 0;
722 unsigned long long period = get_cycles();
723
724 /* initialize buddy from bitmap which is aggregation
725 * of on-disk bitmap and preallocations */
726 i = mb_find_next_zero_bit(bitmap, max, 0);
727 grp->bb_first_free = i;
728 while (i < max) {
729 fragments++;
730 first = i;
731 i = mb_find_next_bit(bitmap, max, i);
732 len = i - first;
733 free += len;
734 if (len > 1)
735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
736 else
737 grp->bb_counters[0]++;
738 if (i < max)
739 i = mb_find_next_zero_bit(bitmap, max, i);
740 }
741 grp->bb_fragments = fragments;
742
743 if (free != grp->bb_free) {
744 ext4_grp_locked_error(sb, group, 0, 0,
745 "block bitmap and bg descriptor "
746 "inconsistent: %u vs %u free clusters",
747 free, grp->bb_free);
748 /*
749 * If we intend to continue, we consider group descriptor
750 * corrupt and update bb_free using bitmap value
751 */
752 grp->bb_free = free;
753 ext4_mark_group_bitmap_corrupted(sb, group,
754 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
755 }
756 mb_set_largest_free_order(sb, grp);
757
758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
759
760 period = get_cycles() - period;
761 spin_lock(&sbi->s_bal_lock);
762 sbi->s_mb_buddies_generated++;
763 sbi->s_mb_generation_time += period;
764 spin_unlock(&sbi->s_bal_lock);
765 }
766
mb_regenerate_buddy(struct ext4_buddy * e4b)767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
768 {
769 int count;
770 int order = 1;
771 void *buddy;
772
773 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 ext4_set_bits(buddy, 0, count);
775 }
776 e4b->bd_info->bb_fragments = 0;
777 memset(e4b->bd_info->bb_counters, 0,
778 sizeof(*e4b->bd_info->bb_counters) *
779 (e4b->bd_sb->s_blocksize_bits + 2));
780
781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 e4b->bd_bitmap, e4b->bd_group);
783 }
784
785 /* The buddy information is attached the buddy cache inode
786 * for convenience. The information regarding each group
787 * is loaded via ext4_mb_load_buddy. The information involve
788 * block bitmap and buddy information. The information are
789 * stored in the inode as
790 *
791 * { page }
792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
793 *
794 *
795 * one block each for bitmap and buddy information.
796 * So for each group we take up 2 blocks. A page can
797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
798 * So it can have information regarding groups_per_page which
799 * is blocks_per_page/2
800 *
801 * Locking note: This routine takes the block group lock of all groups
802 * for this page; do not hold this lock when calling this routine!
803 */
804
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
806 {
807 ext4_group_t ngroups;
808 int blocksize;
809 int blocks_per_page;
810 int groups_per_page;
811 int err = 0;
812 int i;
813 ext4_group_t first_group, group;
814 int first_block;
815 struct super_block *sb;
816 struct buffer_head *bhs;
817 struct buffer_head **bh = NULL;
818 struct inode *inode;
819 char *data;
820 char *bitmap;
821 struct ext4_group_info *grinfo;
822
823 mb_debug(1, "init page %lu\n", page->index);
824
825 inode = page->mapping->host;
826 sb = inode->i_sb;
827 ngroups = ext4_get_groups_count(sb);
828 blocksize = i_blocksize(inode);
829 blocks_per_page = PAGE_SIZE / blocksize;
830
831 groups_per_page = blocks_per_page >> 1;
832 if (groups_per_page == 0)
833 groups_per_page = 1;
834
835 /* allocate buffer_heads to read bitmaps */
836 if (groups_per_page > 1) {
837 i = sizeof(struct buffer_head *) * groups_per_page;
838 bh = kzalloc(i, gfp);
839 if (bh == NULL) {
840 err = -ENOMEM;
841 goto out;
842 }
843 } else
844 bh = &bhs;
845
846 first_group = page->index * blocks_per_page / 2;
847
848 /* read all groups the page covers into the cache */
849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 if (group >= ngroups)
851 break;
852
853 grinfo = ext4_get_group_info(sb, group);
854 /*
855 * If page is uptodate then we came here after online resize
856 * which added some new uninitialized group info structs, so
857 * we must skip all initialized uptodate buddies on the page,
858 * which may be currently in use by an allocating task.
859 */
860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
861 bh[i] = NULL;
862 continue;
863 }
864 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
865 if (IS_ERR(bh[i])) {
866 err = PTR_ERR(bh[i]);
867 bh[i] = NULL;
868 goto out;
869 }
870 mb_debug(1, "read bitmap for group %u\n", group);
871 }
872
873 /* wait for I/O completion */
874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
875 int err2;
876
877 if (!bh[i])
878 continue;
879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
880 if (!err)
881 err = err2;
882 }
883
884 first_block = page->index * blocks_per_page;
885 for (i = 0; i < blocks_per_page; i++) {
886 group = (first_block + i) >> 1;
887 if (group >= ngroups)
888 break;
889
890 if (!bh[group - first_group])
891 /* skip initialized uptodate buddy */
892 continue;
893
894 if (!buffer_verified(bh[group - first_group]))
895 /* Skip faulty bitmaps */
896 continue;
897 err = 0;
898
899 /*
900 * data carry information regarding this
901 * particular group in the format specified
902 * above
903 *
904 */
905 data = page_address(page) + (i * blocksize);
906 bitmap = bh[group - first_group]->b_data;
907
908 /*
909 * We place the buddy block and bitmap block
910 * close together
911 */
912 if ((first_block + i) & 1) {
913 /* this is block of buddy */
914 BUG_ON(incore == NULL);
915 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 group, page->index, i * blocksize);
917 trace_ext4_mb_buddy_bitmap_load(sb, group);
918 grinfo = ext4_get_group_info(sb, group);
919 grinfo->bb_fragments = 0;
920 memset(grinfo->bb_counters, 0,
921 sizeof(*grinfo->bb_counters) *
922 (sb->s_blocksize_bits+2));
923 /*
924 * incore got set to the group block bitmap below
925 */
926 ext4_lock_group(sb, group);
927 /* init the buddy */
928 memset(data, 0xff, blocksize);
929 ext4_mb_generate_buddy(sb, data, incore, group);
930 ext4_unlock_group(sb, group);
931 incore = NULL;
932 } else {
933 /* this is block of bitmap */
934 BUG_ON(incore != NULL);
935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 group, page->index, i * blocksize);
937 trace_ext4_mb_bitmap_load(sb, group);
938
939 /* see comments in ext4_mb_put_pa() */
940 ext4_lock_group(sb, group);
941 memcpy(data, bitmap, blocksize);
942
943 /* mark all preallocated blks used in in-core bitmap */
944 ext4_mb_generate_from_pa(sb, data, group);
945 ext4_mb_generate_from_freelist(sb, data, group);
946 ext4_unlock_group(sb, group);
947
948 /* set incore so that the buddy information can be
949 * generated using this
950 */
951 incore = data;
952 }
953 }
954 SetPageUptodate(page);
955
956 out:
957 if (bh) {
958 for (i = 0; i < groups_per_page; i++)
959 brelse(bh[i]);
960 if (bh != &bhs)
961 kfree(bh);
962 }
963 return err;
964 }
965
966 /*
967 * Lock the buddy and bitmap pages. This make sure other parallel init_group
968 * on the same buddy page doesn't happen whild holding the buddy page lock.
969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
971 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
974 {
975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 int block, pnum, poff;
977 int blocks_per_page;
978 struct page *page;
979
980 e4b->bd_buddy_page = NULL;
981 e4b->bd_bitmap_page = NULL;
982
983 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
984 /*
985 * the buddy cache inode stores the block bitmap
986 * and buddy information in consecutive blocks.
987 * So for each group we need two blocks.
988 */
989 block = group * 2;
990 pnum = block / blocks_per_page;
991 poff = block % blocks_per_page;
992 page = find_or_create_page(inode->i_mapping, pnum, gfp);
993 if (!page)
994 return -ENOMEM;
995 BUG_ON(page->mapping != inode->i_mapping);
996 e4b->bd_bitmap_page = page;
997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
998
999 if (blocks_per_page >= 2) {
1000 /* buddy and bitmap are on the same page */
1001 return 0;
1002 }
1003
1004 block++;
1005 pnum = block / blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 if (!page)
1008 return -ENOMEM;
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_buddy_page = page;
1011 return 0;
1012 }
1013
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1015 {
1016 if (e4b->bd_bitmap_page) {
1017 unlock_page(e4b->bd_bitmap_page);
1018 put_page(e4b->bd_bitmap_page);
1019 }
1020 if (e4b->bd_buddy_page) {
1021 unlock_page(e4b->bd_buddy_page);
1022 put_page(e4b->bd_buddy_page);
1023 }
1024 }
1025
1026 /*
1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1028 * block group lock of all groups for this page; do not hold the BG lock when
1029 * calling this routine!
1030 */
1031 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1033 {
1034
1035 struct ext4_group_info *this_grp;
1036 struct ext4_buddy e4b;
1037 struct page *page;
1038 int ret = 0;
1039
1040 might_sleep();
1041 mb_debug(1, "init group %u\n", group);
1042 this_grp = ext4_get_group_info(sb, group);
1043 /*
1044 * This ensures that we don't reinit the buddy cache
1045 * page which map to the group from which we are already
1046 * allocating. If we are looking at the buddy cache we would
1047 * have taken a reference using ext4_mb_load_buddy and that
1048 * would have pinned buddy page to page cache.
1049 * The call to ext4_mb_get_buddy_page_lock will mark the
1050 * page accessed.
1051 */
1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1054 /*
1055 * somebody initialized the group
1056 * return without doing anything
1057 */
1058 goto err;
1059 }
1060
1061 page = e4b.bd_bitmap_page;
1062 ret = ext4_mb_init_cache(page, NULL, gfp);
1063 if (ret)
1064 goto err;
1065 if (!PageUptodate(page)) {
1066 ret = -EIO;
1067 goto err;
1068 }
1069
1070 if (e4b.bd_buddy_page == NULL) {
1071 /*
1072 * If both the bitmap and buddy are in
1073 * the same page we don't need to force
1074 * init the buddy
1075 */
1076 ret = 0;
1077 goto err;
1078 }
1079 /* init buddy cache */
1080 page = e4b.bd_buddy_page;
1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1082 if (ret)
1083 goto err;
1084 if (!PageUptodate(page)) {
1085 ret = -EIO;
1086 goto err;
1087 }
1088 err:
1089 ext4_mb_put_buddy_page_lock(&e4b);
1090 return ret;
1091 }
1092
1093 /*
1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1095 * block group lock of all groups for this page; do not hold the BG lock when
1096 * calling this routine!
1097 */
1098 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 struct ext4_buddy *e4b, gfp_t gfp)
1101 {
1102 int blocks_per_page;
1103 int block;
1104 int pnum;
1105 int poff;
1106 struct page *page;
1107 int ret;
1108 struct ext4_group_info *grp;
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct inode *inode = sbi->s_buddy_cache;
1111
1112 might_sleep();
1113 mb_debug(1, "load group %u\n", group);
1114
1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 grp = ext4_get_group_info(sb, group);
1117
1118 e4b->bd_blkbits = sb->s_blocksize_bits;
1119 e4b->bd_info = grp;
1120 e4b->bd_sb = sb;
1121 e4b->bd_group = group;
1122 e4b->bd_buddy_page = NULL;
1123 e4b->bd_bitmap_page = NULL;
1124
1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1126 /*
1127 * we need full data about the group
1128 * to make a good selection
1129 */
1130 ret = ext4_mb_init_group(sb, group, gfp);
1131 if (ret)
1132 return ret;
1133 }
1134
1135 /*
1136 * the buddy cache inode stores the block bitmap
1137 * and buddy information in consecutive blocks.
1138 * So for each group we need two blocks.
1139 */
1140 block = group * 2;
1141 pnum = block / blocks_per_page;
1142 poff = block % blocks_per_page;
1143
1144 /* we could use find_or_create_page(), but it locks page
1145 * what we'd like to avoid in fast path ... */
1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 if (page == NULL || !PageUptodate(page)) {
1148 if (page)
1149 /*
1150 * drop the page reference and try
1151 * to get the page with lock. If we
1152 * are not uptodate that implies
1153 * somebody just created the page but
1154 * is yet to initialize the same. So
1155 * wait for it to initialize.
1156 */
1157 put_page(page);
1158 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1159 if (page) {
1160 BUG_ON(page->mapping != inode->i_mapping);
1161 if (!PageUptodate(page)) {
1162 ret = ext4_mb_init_cache(page, NULL, gfp);
1163 if (ret) {
1164 unlock_page(page);
1165 goto err;
1166 }
1167 mb_cmp_bitmaps(e4b, page_address(page) +
1168 (poff * sb->s_blocksize));
1169 }
1170 unlock_page(page);
1171 }
1172 }
1173 if (page == NULL) {
1174 ret = -ENOMEM;
1175 goto err;
1176 }
1177 if (!PageUptodate(page)) {
1178 ret = -EIO;
1179 goto err;
1180 }
1181
1182 /* Pages marked accessed already */
1183 e4b->bd_bitmap_page = page;
1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1185
1186 block++;
1187 pnum = block / blocks_per_page;
1188 poff = block % blocks_per_page;
1189
1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 if (page == NULL || !PageUptodate(page)) {
1192 if (page)
1193 put_page(page);
1194 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1195 if (page) {
1196 BUG_ON(page->mapping != inode->i_mapping);
1197 if (!PageUptodate(page)) {
1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1199 gfp);
1200 if (ret) {
1201 unlock_page(page);
1202 goto err;
1203 }
1204 }
1205 unlock_page(page);
1206 }
1207 }
1208 if (page == NULL) {
1209 ret = -ENOMEM;
1210 goto err;
1211 }
1212 if (!PageUptodate(page)) {
1213 ret = -EIO;
1214 goto err;
1215 }
1216
1217 /* Pages marked accessed already */
1218 e4b->bd_buddy_page = page;
1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1220
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1223
1224 return 0;
1225
1226 err:
1227 if (page)
1228 put_page(page);
1229 if (e4b->bd_bitmap_page)
1230 put_page(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 put_page(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1235 return ret;
1236 }
1237
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 struct ext4_buddy *e4b)
1240 {
1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1242 }
1243
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1245 {
1246 if (e4b->bd_bitmap_page)
1247 put_page(e4b->bd_bitmap_page);
1248 if (e4b->bd_buddy_page)
1249 put_page(e4b->bd_buddy_page);
1250 }
1251
1252
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1254 {
1255 int order = 1;
1256 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1257 void *bb;
1258
1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1261
1262 bb = e4b->bd_buddy;
1263 while (order <= e4b->bd_blkbits + 1) {
1264 block = block >> 1;
1265 if (!mb_test_bit(block, bb)) {
1266 /* this block is part of buddy of order 'order' */
1267 return order;
1268 }
1269 bb += bb_incr;
1270 bb_incr >>= 1;
1271 order++;
1272 }
1273 return 0;
1274 }
1275
mb_clear_bits(void * bm,int cur,int len)1276 static void mb_clear_bits(void *bm, int cur, int len)
1277 {
1278 __u32 *addr;
1279
1280 len = cur + len;
1281 while (cur < len) {
1282 if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 /* fast path: clear whole word at once */
1284 addr = bm + (cur >> 3);
1285 *addr = 0;
1286 cur += 32;
1287 continue;
1288 }
1289 mb_clear_bit(cur, bm);
1290 cur++;
1291 }
1292 }
1293
1294 /* clear bits in given range
1295 * will return first found zero bit if any, -1 otherwise
1296 */
mb_test_and_clear_bits(void * bm,int cur,int len)1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1298 {
1299 __u32 *addr;
1300 int zero_bit = -1;
1301
1302 len = cur + len;
1303 while (cur < len) {
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: clear whole word at once */
1306 addr = bm + (cur >> 3);
1307 if (*addr != (__u32)(-1) && zero_bit == -1)
1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1309 *addr = 0;
1310 cur += 32;
1311 continue;
1312 }
1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1314 zero_bit = cur;
1315 cur++;
1316 }
1317
1318 return zero_bit;
1319 }
1320
ext4_set_bits(void * bm,int cur,int len)1321 void ext4_set_bits(void *bm, int cur, int len)
1322 {
1323 __u32 *addr;
1324
1325 len = cur + len;
1326 while (cur < len) {
1327 if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 /* fast path: set whole word at once */
1329 addr = bm + (cur >> 3);
1330 *addr = 0xffffffff;
1331 cur += 32;
1332 continue;
1333 }
1334 mb_set_bit(cur, bm);
1335 cur++;
1336 }
1337 }
1338
1339 /*
1340 * _________________________________________________________________ */
1341
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1343 {
1344 if (mb_test_bit(*bit + side, bitmap)) {
1345 mb_clear_bit(*bit, bitmap);
1346 (*bit) -= side;
1347 return 1;
1348 }
1349 else {
1350 (*bit) += side;
1351 mb_set_bit(*bit, bitmap);
1352 return -1;
1353 }
1354 }
1355
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1357 {
1358 int max;
1359 int order = 1;
1360 void *buddy = mb_find_buddy(e4b, order, &max);
1361
1362 while (buddy) {
1363 void *buddy2;
1364
1365 /* Bits in range [first; last] are known to be set since
1366 * corresponding blocks were allocated. Bits in range
1367 * (first; last) will stay set because they form buddies on
1368 * upper layer. We just deal with borders if they don't
1369 * align with upper layer and then go up.
1370 * Releasing entire group is all about clearing
1371 * single bit of highest order buddy.
1372 */
1373
1374 /* Example:
1375 * ---------------------------------
1376 * | 1 | 1 | 1 | 1 |
1377 * ---------------------------------
1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 * ---------------------------------
1380 * 0 1 2 3 4 5 6 7
1381 * \_____________________/
1382 *
1383 * Neither [1] nor [6] is aligned to above layer.
1384 * Left neighbour [0] is free, so mark it busy,
1385 * decrease bb_counters and extend range to
1386 * [0; 6]
1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 * mark [6] free, increase bb_counters and shrink range to
1389 * [0; 5].
1390 * Then shift range to [0; 2], go up and do the same.
1391 */
1392
1393
1394 if (first & 1)
1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1396 if (!(last & 1))
1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1398 if (first > last)
1399 break;
1400 order++;
1401
1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 mb_clear_bits(buddy, first, last - first + 1);
1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1405 break;
1406 }
1407 first >>= 1;
1408 last >>= 1;
1409 buddy = buddy2;
1410 }
1411 }
1412
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 int first, int count)
1415 {
1416 int left_is_free = 0;
1417 int right_is_free = 0;
1418 int block;
1419 int last = first + count - 1;
1420 struct super_block *sb = e4b->bd_sb;
1421
1422 if (WARN_ON(count == 0))
1423 return;
1424 BUG_ON(last >= (sb->s_blocksize << 3));
1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 /* Don't bother if the block group is corrupt. */
1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1428 return;
1429
1430 mb_check_buddy(e4b);
1431 mb_free_blocks_double(inode, e4b, first, count);
1432
1433 e4b->bd_info->bb_free += count;
1434 if (first < e4b->bd_info->bb_first_free)
1435 e4b->bd_info->bb_first_free = first;
1436
1437 /* access memory sequentially: check left neighbour,
1438 * clear range and then check right neighbour
1439 */
1440 if (first != 0)
1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1445
1446 if (unlikely(block != -1)) {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 ext4_fsblk_t blocknr;
1449
1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 blocknr += EXT4_C2B(sbi, block);
1452 ext4_grp_locked_error(sb, e4b->bd_group,
1453 inode ? inode->i_ino : 0,
1454 blocknr,
1455 "freeing already freed block "
1456 "(bit %u); block bitmap corrupt.",
1457 block);
1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 mb_regenerate_buddy(e4b);
1461 goto done;
1462 }
1463
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1469
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1475 */
1476 if (first & 1) {
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479 }
1480 if (!(last & 1)) {
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1483 }
1484
1485 if (first <= last)
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487
1488 done:
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1491 }
1492
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1495 {
1496 int next = block;
1497 int max, order;
1498 void *buddy;
1499
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 BUG_ON(ex == NULL);
1502
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1507 ex->fe_len = 0;
1508 ex->fe_start = 0;
1509 ex->fe_group = 0;
1510 return 0;
1511 }
1512
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1516
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1520
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1523 ex->fe_len -= next;
1524 ex->fe_start += next;
1525
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1528
1529 if (block + 1 >= max)
1530 break;
1531
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1534 break;
1535
1536 order = mb_find_order_for_block(e4b, next);
1537
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1540 }
1541
1542 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1543 /* Should never happen! (but apparently sometimes does?!?) */
1544 WARN_ON(1);
1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547 block, order, needed, ex->fe_group, ex->fe_start,
1548 ex->fe_len, ex->fe_logical);
1549 ex->fe_len = 0;
1550 ex->fe_start = 0;
1551 ex->fe_group = 0;
1552 }
1553 return ex->fe_len;
1554 }
1555
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1557 {
1558 int ord;
1559 int mlen = 0;
1560 int max = 0;
1561 int cur;
1562 int start = ex->fe_start;
1563 int len = ex->fe_len;
1564 unsigned ret = 0;
1565 int len0 = len;
1566 void *buddy;
1567
1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 BUG_ON(e4b->bd_group != ex->fe_group);
1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 mb_check_buddy(e4b);
1572 mb_mark_used_double(e4b, start, len);
1573
1574 e4b->bd_info->bb_free -= len;
1575 if (e4b->bd_info->bb_first_free == start)
1576 e4b->bd_info->bb_first_free += len;
1577
1578 /* let's maintain fragments counter */
1579 if (start != 0)
1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583 if (mlen && max)
1584 e4b->bd_info->bb_fragments++;
1585 else if (!mlen && !max)
1586 e4b->bd_info->bb_fragments--;
1587
1588 /* let's maintain buddy itself */
1589 while (len) {
1590 ord = mb_find_order_for_block(e4b, start);
1591
1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 /* the whole chunk may be allocated at once! */
1594 mlen = 1 << ord;
1595 buddy = mb_find_buddy(e4b, ord, &max);
1596 BUG_ON((start >> ord) >= max);
1597 mb_set_bit(start >> ord, buddy);
1598 e4b->bd_info->bb_counters[ord]--;
1599 start += mlen;
1600 len -= mlen;
1601 BUG_ON(len < 0);
1602 continue;
1603 }
1604
1605 /* store for history */
1606 if (ret == 0)
1607 ret = len | (ord << 16);
1608
1609 /* we have to split large buddy */
1610 BUG_ON(ord <= 0);
1611 buddy = mb_find_buddy(e4b, ord, &max);
1612 mb_set_bit(start >> ord, buddy);
1613 e4b->bd_info->bb_counters[ord]--;
1614
1615 ord--;
1616 cur = (start >> ord) & ~1U;
1617 buddy = mb_find_buddy(e4b, ord, &max);
1618 mb_clear_bit(cur, buddy);
1619 mb_clear_bit(cur + 1, buddy);
1620 e4b->bd_info->bb_counters[ord]++;
1621 e4b->bd_info->bb_counters[ord]++;
1622 }
1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1624
1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 mb_check_buddy(e4b);
1627
1628 return ret;
1629 }
1630
1631 /*
1632 * Must be called under group lock!
1633 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 struct ext4_buddy *e4b)
1636 {
1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638 int ret;
1639
1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1642
1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1646
1647 /* preallocation can change ac_b_ex, thus we store actually
1648 * allocated blocks for history */
1649 ac->ac_f_ex = ac->ac_b_ex;
1650
1651 ac->ac_status = AC_STATUS_FOUND;
1652 ac->ac_tail = ret & 0xffff;
1653 ac->ac_buddy = ret >> 16;
1654
1655 /*
1656 * take the page reference. We want the page to be pinned
1657 * so that we don't get a ext4_mb_init_cache_call for this
1658 * group until we update the bitmap. That would mean we
1659 * double allocate blocks. The reference is dropped
1660 * in ext4_mb_release_context
1661 */
1662 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 get_page(ac->ac_bitmap_page);
1664 ac->ac_buddy_page = e4b->bd_buddy_page;
1665 get_page(ac->ac_buddy_page);
1666 /* store last allocated for subsequent stream allocation */
1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 spin_lock(&sbi->s_md_lock);
1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 spin_unlock(&sbi->s_md_lock);
1672 }
1673 }
1674
1675 /*
1676 * regular allocator, for general purposes allocation
1677 */
1678
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 struct ext4_buddy *e4b,
1681 int finish_group)
1682 {
1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 struct ext4_free_extent ex;
1687 int max;
1688
1689 if (ac->ac_status == AC_STATUS_FOUND)
1690 return;
1691 /*
1692 * We don't want to scan for a whole year
1693 */
1694 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 ac->ac_status = AC_STATUS_BREAK;
1697 return;
1698 }
1699
1700 /*
1701 * Haven't found good chunk so far, let's continue
1702 */
1703 if (bex->fe_len < gex->fe_len)
1704 return;
1705
1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 && bex->fe_group == e4b->bd_group) {
1708 /* recheck chunk's availability - we don't know
1709 * when it was found (within this lock-unlock
1710 * period or not) */
1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 if (max >= gex->fe_len) {
1713 ext4_mb_use_best_found(ac, e4b);
1714 return;
1715 }
1716 }
1717 }
1718
1719 /*
1720 * The routine checks whether found extent is good enough. If it is,
1721 * then the extent gets marked used and flag is set to the context
1722 * to stop scanning. Otherwise, the extent is compared with the
1723 * previous found extent and if new one is better, then it's stored
1724 * in the context. Later, the best found extent will be used, if
1725 * mballoc can't find good enough extent.
1726 *
1727 * FIXME: real allocation policy is to be designed yet!
1728 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 struct ext4_free_extent *ex,
1731 struct ext4_buddy *e4b)
1732 {
1733 struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 struct ext4_free_extent *gex = &ac->ac_g_ex;
1735
1736 BUG_ON(ex->fe_len <= 0);
1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1740
1741 ac->ac_found++;
1742
1743 /*
1744 * The special case - take what you catch first
1745 */
1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747 *bex = *ex;
1748 ext4_mb_use_best_found(ac, e4b);
1749 return;
1750 }
1751
1752 /*
1753 * Let's check whether the chuck is good enough
1754 */
1755 if (ex->fe_len == gex->fe_len) {
1756 *bex = *ex;
1757 ext4_mb_use_best_found(ac, e4b);
1758 return;
1759 }
1760
1761 /*
1762 * If this is first found extent, just store it in the context
1763 */
1764 if (bex->fe_len == 0) {
1765 *bex = *ex;
1766 return;
1767 }
1768
1769 /*
1770 * If new found extent is better, store it in the context
1771 */
1772 if (bex->fe_len < gex->fe_len) {
1773 /* if the request isn't satisfied, any found extent
1774 * larger than previous best one is better */
1775 if (ex->fe_len > bex->fe_len)
1776 *bex = *ex;
1777 } else if (ex->fe_len > gex->fe_len) {
1778 /* if the request is satisfied, then we try to find
1779 * an extent that still satisfy the request, but is
1780 * smaller than previous one */
1781 if (ex->fe_len < bex->fe_len)
1782 *bex = *ex;
1783 }
1784
1785 ext4_mb_check_limits(ac, e4b, 0);
1786 }
1787
1788 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 struct ext4_buddy *e4b)
1791 {
1792 struct ext4_free_extent ex = ac->ac_b_ex;
1793 ext4_group_t group = ex.fe_group;
1794 int max;
1795 int err;
1796
1797 BUG_ON(ex.fe_len <= 0);
1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799 if (err)
1800 return err;
1801
1802 ext4_lock_group(ac->ac_sb, group);
1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1804
1805 if (max > 0) {
1806 ac->ac_b_ex = ex;
1807 ext4_mb_use_best_found(ac, e4b);
1808 }
1809
1810 ext4_unlock_group(ac->ac_sb, group);
1811 ext4_mb_unload_buddy(e4b);
1812
1813 return 0;
1814 }
1815
1816 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 struct ext4_buddy *e4b)
1819 {
1820 ext4_group_t group = ac->ac_g_ex.fe_group;
1821 int max;
1822 int err;
1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 struct ext4_free_extent ex;
1826
1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828 return 0;
1829 if (grp->bb_free == 0)
1830 return 0;
1831
1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833 if (err)
1834 return err;
1835
1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 ext4_mb_unload_buddy(e4b);
1838 return 0;
1839 }
1840
1841 ext4_lock_group(ac->ac_sb, group);
1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 ac->ac_g_ex.fe_len, &ex);
1844 ex.fe_logical = 0xDEADFA11; /* debug value */
1845
1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847 ext4_fsblk_t start;
1848
1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850 ex.fe_start;
1851 /* use do_div to get remainder (would be 64-bit modulo) */
1852 if (do_div(start, sbi->s_stripe) == 0) {
1853 ac->ac_found++;
1854 ac->ac_b_ex = ex;
1855 ext4_mb_use_best_found(ac, e4b);
1856 }
1857 } else if (max >= ac->ac_g_ex.fe_len) {
1858 BUG_ON(ex.fe_len <= 0);
1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 ac->ac_found++;
1862 ac->ac_b_ex = ex;
1863 ext4_mb_use_best_found(ac, e4b);
1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 /* Sometimes, caller may want to merge even small
1866 * number of blocks to an existing extent */
1867 BUG_ON(ex.fe_len <= 0);
1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870 ac->ac_found++;
1871 ac->ac_b_ex = ex;
1872 ext4_mb_use_best_found(ac, e4b);
1873 }
1874 ext4_unlock_group(ac->ac_sb, group);
1875 ext4_mb_unload_buddy(e4b);
1876
1877 return 0;
1878 }
1879
1880 /*
1881 * The routine scans buddy structures (not bitmap!) from given order
1882 * to max order and tries to find big enough chunk to satisfy the req
1883 */
1884 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 struct ext4_buddy *e4b)
1887 {
1888 struct super_block *sb = ac->ac_sb;
1889 struct ext4_group_info *grp = e4b->bd_info;
1890 void *buddy;
1891 int i;
1892 int k;
1893 int max;
1894
1895 BUG_ON(ac->ac_2order <= 0);
1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 if (grp->bb_counters[i] == 0)
1898 continue;
1899
1900 buddy = mb_find_buddy(e4b, i, &max);
1901 BUG_ON(buddy == NULL);
1902
1903 k = mb_find_next_zero_bit(buddy, max, 0);
1904 if (k >= max) {
1905 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1906 "%d free clusters of order %d. But found 0",
1907 grp->bb_counters[i], i);
1908 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1909 e4b->bd_group,
1910 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1911 break;
1912 }
1913 ac->ac_found++;
1914
1915 ac->ac_b_ex.fe_len = 1 << i;
1916 ac->ac_b_ex.fe_start = k << i;
1917 ac->ac_b_ex.fe_group = e4b->bd_group;
1918
1919 ext4_mb_use_best_found(ac, e4b);
1920
1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922
1923 if (EXT4_SB(sb)->s_mb_stats)
1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925
1926 break;
1927 }
1928 }
1929
1930 /*
1931 * The routine scans the group and measures all found extents.
1932 * In order to optimize scanning, caller must pass number of
1933 * free blocks in the group, so the routine can know upper limit.
1934 */
1935 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 struct ext4_buddy *e4b)
1938 {
1939 struct super_block *sb = ac->ac_sb;
1940 void *bitmap = e4b->bd_bitmap;
1941 struct ext4_free_extent ex;
1942 int i;
1943 int free;
1944
1945 free = e4b->bd_info->bb_free;
1946 if (WARN_ON(free <= 0))
1947 return;
1948
1949 i = e4b->bd_info->bb_first_free;
1950
1951 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1952 i = mb_find_next_zero_bit(bitmap,
1953 EXT4_CLUSTERS_PER_GROUP(sb), i);
1954 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1955 /*
1956 * IF we have corrupt bitmap, we won't find any
1957 * free blocks even though group info says we
1958 * we have free blocks
1959 */
1960 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1961 "%d free clusters as per "
1962 "group info. But bitmap says 0",
1963 free);
1964 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1965 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1966 break;
1967 }
1968
1969 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1970 if (WARN_ON(ex.fe_len <= 0))
1971 break;
1972 if (free < ex.fe_len) {
1973 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1974 "%d free clusters as per "
1975 "group info. But got %d blocks",
1976 free, ex.fe_len);
1977 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1978 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1979 /*
1980 * The number of free blocks differs. This mostly
1981 * indicate that the bitmap is corrupt. So exit
1982 * without claiming the space.
1983 */
1984 break;
1985 }
1986 ex.fe_logical = 0xDEADC0DE; /* debug value */
1987 ext4_mb_measure_extent(ac, &ex, e4b);
1988
1989 i += ex.fe_len;
1990 free -= ex.fe_len;
1991 }
1992
1993 ext4_mb_check_limits(ac, e4b, 1);
1994 }
1995
1996 /*
1997 * This is a special case for storages like raid5
1998 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1999 */
2000 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2001 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2002 struct ext4_buddy *e4b)
2003 {
2004 struct super_block *sb = ac->ac_sb;
2005 struct ext4_sb_info *sbi = EXT4_SB(sb);
2006 void *bitmap = e4b->bd_bitmap;
2007 struct ext4_free_extent ex;
2008 ext4_fsblk_t first_group_block;
2009 ext4_fsblk_t a;
2010 ext4_grpblk_t i;
2011 int max;
2012
2013 BUG_ON(sbi->s_stripe == 0);
2014
2015 /* find first stripe-aligned block in group */
2016 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2017
2018 a = first_group_block + sbi->s_stripe - 1;
2019 do_div(a, sbi->s_stripe);
2020 i = (a * sbi->s_stripe) - first_group_block;
2021
2022 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2023 if (!mb_test_bit(i, bitmap)) {
2024 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2025 if (max >= sbi->s_stripe) {
2026 ac->ac_found++;
2027 ex.fe_logical = 0xDEADF00D; /* debug value */
2028 ac->ac_b_ex = ex;
2029 ext4_mb_use_best_found(ac, e4b);
2030 break;
2031 }
2032 }
2033 i += sbi->s_stripe;
2034 }
2035 }
2036
2037 /*
2038 * This is now called BEFORE we load the buddy bitmap.
2039 * Returns either 1 or 0 indicating that the group is either suitable
2040 * for the allocation or not. In addition it can also return negative
2041 * error code when something goes wrong.
2042 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2043 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2044 ext4_group_t group, int cr)
2045 {
2046 unsigned free, fragments;
2047 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2048 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2049
2050 BUG_ON(cr < 0 || cr >= 4);
2051
2052 free = grp->bb_free;
2053 if (free == 0)
2054 return 0;
2055 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2056 return 0;
2057
2058 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2059 return 0;
2060
2061 /* We only do this if the grp has never been initialized */
2062 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2063 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2064 if (ret)
2065 return ret;
2066 }
2067
2068 fragments = grp->bb_fragments;
2069 if (fragments == 0)
2070 return 0;
2071
2072 switch (cr) {
2073 case 0:
2074 BUG_ON(ac->ac_2order == 0);
2075
2076 /* Avoid using the first bg of a flexgroup for data files */
2077 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2078 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2079 ((group % flex_size) == 0))
2080 return 0;
2081
2082 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2083 (free / fragments) >= ac->ac_g_ex.fe_len)
2084 return 1;
2085
2086 if (grp->bb_largest_free_order < ac->ac_2order)
2087 return 0;
2088
2089 return 1;
2090 case 1:
2091 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2092 return 1;
2093 break;
2094 case 2:
2095 if (free >= ac->ac_g_ex.fe_len)
2096 return 1;
2097 break;
2098 case 3:
2099 return 1;
2100 default:
2101 BUG();
2102 }
2103
2104 return 0;
2105 }
2106
2107 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2108 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2109 {
2110 ext4_group_t ngroups, group, i;
2111 int cr;
2112 int err = 0, first_err = 0;
2113 struct ext4_sb_info *sbi;
2114 struct super_block *sb;
2115 struct ext4_buddy e4b;
2116
2117 sb = ac->ac_sb;
2118 sbi = EXT4_SB(sb);
2119 ngroups = ext4_get_groups_count(sb);
2120 /* non-extent files are limited to low blocks/groups */
2121 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2122 ngroups = sbi->s_blockfile_groups;
2123
2124 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2125
2126 /* first, try the goal */
2127 err = ext4_mb_find_by_goal(ac, &e4b);
2128 if (err || ac->ac_status == AC_STATUS_FOUND)
2129 goto out;
2130
2131 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2132 goto out;
2133
2134 /*
2135 * ac->ac2_order is set only if the fe_len is a power of 2
2136 * if ac2_order is set we also set criteria to 0 so that we
2137 * try exact allocation using buddy.
2138 */
2139 i = fls(ac->ac_g_ex.fe_len);
2140 ac->ac_2order = 0;
2141 /*
2142 * We search using buddy data only if the order of the request
2143 * is greater than equal to the sbi_s_mb_order2_reqs
2144 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2145 * We also support searching for power-of-two requests only for
2146 * requests upto maximum buddy size we have constructed.
2147 */
2148 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2149 /*
2150 * This should tell if fe_len is exactly power of 2
2151 */
2152 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2153 ac->ac_2order = array_index_nospec(i - 1,
2154 sb->s_blocksize_bits + 2);
2155 }
2156
2157 /* if stream allocation is enabled, use global goal */
2158 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2159 /* TBD: may be hot point */
2160 spin_lock(&sbi->s_md_lock);
2161 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2162 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2163 spin_unlock(&sbi->s_md_lock);
2164 }
2165
2166 /* Let's just scan groups to find more-less suitable blocks */
2167 cr = ac->ac_2order ? 0 : 1;
2168 /*
2169 * cr == 0 try to get exact allocation,
2170 * cr == 3 try to get anything
2171 */
2172 repeat:
2173 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2174 ac->ac_criteria = cr;
2175 /*
2176 * searching for the right group start
2177 * from the goal value specified
2178 */
2179 group = ac->ac_g_ex.fe_group;
2180
2181 for (i = 0; i < ngroups; group++, i++) {
2182 int ret = 0;
2183 cond_resched();
2184 /*
2185 * Artificially restricted ngroups for non-extent
2186 * files makes group > ngroups possible on first loop.
2187 */
2188 if (group >= ngroups)
2189 group = 0;
2190
2191 /* This now checks without needing the buddy page */
2192 ret = ext4_mb_good_group(ac, group, cr);
2193 if (ret <= 0) {
2194 if (!first_err)
2195 first_err = ret;
2196 continue;
2197 }
2198
2199 err = ext4_mb_load_buddy(sb, group, &e4b);
2200 if (err)
2201 goto out;
2202
2203 ext4_lock_group(sb, group);
2204
2205 /*
2206 * We need to check again after locking the
2207 * block group
2208 */
2209 ret = ext4_mb_good_group(ac, group, cr);
2210 if (ret <= 0) {
2211 ext4_unlock_group(sb, group);
2212 ext4_mb_unload_buddy(&e4b);
2213 if (!first_err)
2214 first_err = ret;
2215 continue;
2216 }
2217
2218 ac->ac_groups_scanned++;
2219 if (cr == 0)
2220 ext4_mb_simple_scan_group(ac, &e4b);
2221 else if (cr == 1 && sbi->s_stripe &&
2222 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2223 ext4_mb_scan_aligned(ac, &e4b);
2224 else
2225 ext4_mb_complex_scan_group(ac, &e4b);
2226
2227 ext4_unlock_group(sb, group);
2228 ext4_mb_unload_buddy(&e4b);
2229
2230 if (ac->ac_status != AC_STATUS_CONTINUE)
2231 break;
2232 }
2233 }
2234
2235 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2236 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2237 /*
2238 * We've been searching too long. Let's try to allocate
2239 * the best chunk we've found so far
2240 */
2241
2242 ext4_mb_try_best_found(ac, &e4b);
2243 if (ac->ac_status != AC_STATUS_FOUND) {
2244 /*
2245 * Someone more lucky has already allocated it.
2246 * The only thing we can do is just take first
2247 * found block(s)
2248 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2249 */
2250 ac->ac_b_ex.fe_group = 0;
2251 ac->ac_b_ex.fe_start = 0;
2252 ac->ac_b_ex.fe_len = 0;
2253 ac->ac_status = AC_STATUS_CONTINUE;
2254 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2255 cr = 3;
2256 atomic_inc(&sbi->s_mb_lost_chunks);
2257 goto repeat;
2258 }
2259 }
2260 out:
2261 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2262 err = first_err;
2263 return err;
2264 }
2265
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2266 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2267 {
2268 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2269 ext4_group_t group;
2270
2271 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2272 return NULL;
2273 group = *pos + 1;
2274 return (void *) ((unsigned long) group);
2275 }
2276
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2277 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2278 {
2279 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2280 ext4_group_t group;
2281
2282 ++*pos;
2283 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2284 return NULL;
2285 group = *pos + 1;
2286 return (void *) ((unsigned long) group);
2287 }
2288
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2289 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2290 {
2291 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2292 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2293 int i;
2294 int err, buddy_loaded = 0;
2295 struct ext4_buddy e4b;
2296 struct ext4_group_info *grinfo;
2297 unsigned char blocksize_bits = min_t(unsigned char,
2298 sb->s_blocksize_bits,
2299 EXT4_MAX_BLOCK_LOG_SIZE);
2300 struct sg {
2301 struct ext4_group_info info;
2302 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2303 } sg;
2304
2305 group--;
2306 if (group == 0)
2307 seq_puts(seq, "#group: free frags first ["
2308 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2309 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2310
2311 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2312 sizeof(struct ext4_group_info);
2313
2314 grinfo = ext4_get_group_info(sb, group);
2315 /* Load the group info in memory only if not already loaded. */
2316 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2317 err = ext4_mb_load_buddy(sb, group, &e4b);
2318 if (err) {
2319 seq_printf(seq, "#%-5u: I/O error\n", group);
2320 return 0;
2321 }
2322 buddy_loaded = 1;
2323 }
2324
2325 memcpy(&sg, ext4_get_group_info(sb, group), i);
2326
2327 if (buddy_loaded)
2328 ext4_mb_unload_buddy(&e4b);
2329
2330 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2331 sg.info.bb_fragments, sg.info.bb_first_free);
2332 for (i = 0; i <= 13; i++)
2333 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2334 sg.info.bb_counters[i] : 0);
2335 seq_printf(seq, " ]\n");
2336
2337 return 0;
2338 }
2339
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2340 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2341 {
2342 }
2343
2344 const struct seq_operations ext4_mb_seq_groups_ops = {
2345 .start = ext4_mb_seq_groups_start,
2346 .next = ext4_mb_seq_groups_next,
2347 .stop = ext4_mb_seq_groups_stop,
2348 .show = ext4_mb_seq_groups_show,
2349 };
2350
get_groupinfo_cache(int blocksize_bits)2351 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2352 {
2353 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2354 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2355
2356 BUG_ON(!cachep);
2357 return cachep;
2358 }
2359
2360 /*
2361 * Allocate the top-level s_group_info array for the specified number
2362 * of groups
2363 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2364 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2365 {
2366 struct ext4_sb_info *sbi = EXT4_SB(sb);
2367 unsigned size;
2368 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2369
2370 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2371 EXT4_DESC_PER_BLOCK_BITS(sb);
2372 if (size <= sbi->s_group_info_size)
2373 return 0;
2374
2375 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2376 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2377 if (!new_groupinfo) {
2378 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2379 return -ENOMEM;
2380 }
2381 rcu_read_lock();
2382 old_groupinfo = rcu_dereference(sbi->s_group_info);
2383 if (old_groupinfo)
2384 memcpy(new_groupinfo, old_groupinfo,
2385 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2386 rcu_read_unlock();
2387 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2388 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2389 if (old_groupinfo)
2390 ext4_kvfree_array_rcu(old_groupinfo);
2391 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2392 sbi->s_group_info_size);
2393 return 0;
2394 }
2395
2396 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2397 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2398 struct ext4_group_desc *desc)
2399 {
2400 int i;
2401 int metalen = 0;
2402 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2403 struct ext4_sb_info *sbi = EXT4_SB(sb);
2404 struct ext4_group_info **meta_group_info;
2405 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2406
2407 /*
2408 * First check if this group is the first of a reserved block.
2409 * If it's true, we have to allocate a new table of pointers
2410 * to ext4_group_info structures
2411 */
2412 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2413 metalen = sizeof(*meta_group_info) <<
2414 EXT4_DESC_PER_BLOCK_BITS(sb);
2415 meta_group_info = kmalloc(metalen, GFP_NOFS);
2416 if (meta_group_info == NULL) {
2417 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2418 "for a buddy group");
2419 goto exit_meta_group_info;
2420 }
2421 rcu_read_lock();
2422 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2423 rcu_read_unlock();
2424 }
2425
2426 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2427 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2428
2429 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2430 if (meta_group_info[i] == NULL) {
2431 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2432 goto exit_group_info;
2433 }
2434 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2435 &(meta_group_info[i]->bb_state));
2436
2437 /*
2438 * initialize bb_free to be able to skip
2439 * empty groups without initialization
2440 */
2441 if (ext4_has_group_desc_csum(sb) &&
2442 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2443 meta_group_info[i]->bb_free =
2444 ext4_free_clusters_after_init(sb, group, desc);
2445 } else {
2446 meta_group_info[i]->bb_free =
2447 ext4_free_group_clusters(sb, desc);
2448 }
2449
2450 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2451 init_rwsem(&meta_group_info[i]->alloc_sem);
2452 meta_group_info[i]->bb_free_root = RB_ROOT;
2453 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2454
2455 #ifdef DOUBLE_CHECK
2456 {
2457 struct buffer_head *bh;
2458 meta_group_info[i]->bb_bitmap =
2459 kmalloc(sb->s_blocksize, GFP_NOFS);
2460 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2461 bh = ext4_read_block_bitmap(sb, group);
2462 BUG_ON(IS_ERR_OR_NULL(bh));
2463 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2464 sb->s_blocksize);
2465 put_bh(bh);
2466 }
2467 #endif
2468
2469 return 0;
2470
2471 exit_group_info:
2472 /* If a meta_group_info table has been allocated, release it now */
2473 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2474 struct ext4_group_info ***group_info;
2475
2476 rcu_read_lock();
2477 group_info = rcu_dereference(sbi->s_group_info);
2478 kfree(group_info[idx]);
2479 group_info[idx] = NULL;
2480 rcu_read_unlock();
2481 }
2482 exit_meta_group_info:
2483 return -ENOMEM;
2484 } /* ext4_mb_add_groupinfo */
2485
ext4_mb_init_backend(struct super_block * sb)2486 static int ext4_mb_init_backend(struct super_block *sb)
2487 {
2488 ext4_group_t ngroups = ext4_get_groups_count(sb);
2489 ext4_group_t i;
2490 struct ext4_sb_info *sbi = EXT4_SB(sb);
2491 int err;
2492 struct ext4_group_desc *desc;
2493 struct ext4_group_info ***group_info;
2494 struct kmem_cache *cachep;
2495
2496 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2497 if (err)
2498 return err;
2499
2500 sbi->s_buddy_cache = new_inode(sb);
2501 if (sbi->s_buddy_cache == NULL) {
2502 ext4_msg(sb, KERN_ERR, "can't get new inode");
2503 goto err_freesgi;
2504 }
2505 /* To avoid potentially colliding with an valid on-disk inode number,
2506 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2507 * not in the inode hash, so it should never be found by iget(), but
2508 * this will avoid confusion if it ever shows up during debugging. */
2509 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2510 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2511 for (i = 0; i < ngroups; i++) {
2512 desc = ext4_get_group_desc(sb, i, NULL);
2513 if (desc == NULL) {
2514 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2515 goto err_freebuddy;
2516 }
2517 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2518 goto err_freebuddy;
2519 }
2520
2521 return 0;
2522
2523 err_freebuddy:
2524 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2525 while (i-- > 0)
2526 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2527 i = sbi->s_group_info_size;
2528 rcu_read_lock();
2529 group_info = rcu_dereference(sbi->s_group_info);
2530 while (i-- > 0)
2531 kfree(group_info[i]);
2532 rcu_read_unlock();
2533 iput(sbi->s_buddy_cache);
2534 err_freesgi:
2535 rcu_read_lock();
2536 kvfree(rcu_dereference(sbi->s_group_info));
2537 rcu_read_unlock();
2538 return -ENOMEM;
2539 }
2540
ext4_groupinfo_destroy_slabs(void)2541 static void ext4_groupinfo_destroy_slabs(void)
2542 {
2543 int i;
2544
2545 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2546 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2547 ext4_groupinfo_caches[i] = NULL;
2548 }
2549 }
2550
ext4_groupinfo_create_slab(size_t size)2551 static int ext4_groupinfo_create_slab(size_t size)
2552 {
2553 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2554 int slab_size;
2555 int blocksize_bits = order_base_2(size);
2556 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2557 struct kmem_cache *cachep;
2558
2559 if (cache_index >= NR_GRPINFO_CACHES)
2560 return -EINVAL;
2561
2562 if (unlikely(cache_index < 0))
2563 cache_index = 0;
2564
2565 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2566 if (ext4_groupinfo_caches[cache_index]) {
2567 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2568 return 0; /* Already created */
2569 }
2570
2571 slab_size = offsetof(struct ext4_group_info,
2572 bb_counters[blocksize_bits + 2]);
2573
2574 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2575 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2576 NULL);
2577
2578 ext4_groupinfo_caches[cache_index] = cachep;
2579
2580 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2581 if (!cachep) {
2582 printk(KERN_EMERG
2583 "EXT4-fs: no memory for groupinfo slab cache\n");
2584 return -ENOMEM;
2585 }
2586
2587 return 0;
2588 }
2589
ext4_mb_init(struct super_block * sb)2590 int ext4_mb_init(struct super_block *sb)
2591 {
2592 struct ext4_sb_info *sbi = EXT4_SB(sb);
2593 unsigned i, j;
2594 unsigned offset, offset_incr;
2595 unsigned max;
2596 int ret;
2597
2598 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2599
2600 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2601 if (sbi->s_mb_offsets == NULL) {
2602 ret = -ENOMEM;
2603 goto out;
2604 }
2605
2606 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2607 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2608 if (sbi->s_mb_maxs == NULL) {
2609 ret = -ENOMEM;
2610 goto out;
2611 }
2612
2613 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2614 if (ret < 0)
2615 goto out;
2616
2617 /* order 0 is regular bitmap */
2618 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2619 sbi->s_mb_offsets[0] = 0;
2620
2621 i = 1;
2622 offset = 0;
2623 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2624 max = sb->s_blocksize << 2;
2625 do {
2626 sbi->s_mb_offsets[i] = offset;
2627 sbi->s_mb_maxs[i] = max;
2628 offset += offset_incr;
2629 offset_incr = offset_incr >> 1;
2630 max = max >> 1;
2631 i++;
2632 } while (i <= sb->s_blocksize_bits + 1);
2633
2634 spin_lock_init(&sbi->s_md_lock);
2635 spin_lock_init(&sbi->s_bal_lock);
2636 sbi->s_mb_free_pending = 0;
2637 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2638
2639 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2640 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2641 sbi->s_mb_stats = MB_DEFAULT_STATS;
2642 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2643 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2644 /*
2645 * The default group preallocation is 512, which for 4k block
2646 * sizes translates to 2 megabytes. However for bigalloc file
2647 * systems, this is probably too big (i.e, if the cluster size
2648 * is 1 megabyte, then group preallocation size becomes half a
2649 * gigabyte!). As a default, we will keep a two megabyte
2650 * group pralloc size for cluster sizes up to 64k, and after
2651 * that, we will force a minimum group preallocation size of
2652 * 32 clusters. This translates to 8 megs when the cluster
2653 * size is 256k, and 32 megs when the cluster size is 1 meg,
2654 * which seems reasonable as a default.
2655 */
2656 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2657 sbi->s_cluster_bits, 32);
2658 /*
2659 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2660 * to the lowest multiple of s_stripe which is bigger than
2661 * the s_mb_group_prealloc as determined above. We want
2662 * the preallocation size to be an exact multiple of the
2663 * RAID stripe size so that preallocations don't fragment
2664 * the stripes.
2665 */
2666 if (sbi->s_stripe > 1) {
2667 sbi->s_mb_group_prealloc = roundup(
2668 sbi->s_mb_group_prealloc, sbi->s_stripe);
2669 }
2670
2671 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2672 if (sbi->s_locality_groups == NULL) {
2673 ret = -ENOMEM;
2674 goto out;
2675 }
2676 for_each_possible_cpu(i) {
2677 struct ext4_locality_group *lg;
2678 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2679 mutex_init(&lg->lg_mutex);
2680 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2681 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2682 spin_lock_init(&lg->lg_prealloc_lock);
2683 }
2684
2685 /* init file for buddy data */
2686 ret = ext4_mb_init_backend(sb);
2687 if (ret != 0)
2688 goto out_free_locality_groups;
2689
2690 return 0;
2691
2692 out_free_locality_groups:
2693 free_percpu(sbi->s_locality_groups);
2694 sbi->s_locality_groups = NULL;
2695 out:
2696 kfree(sbi->s_mb_offsets);
2697 sbi->s_mb_offsets = NULL;
2698 kfree(sbi->s_mb_maxs);
2699 sbi->s_mb_maxs = NULL;
2700 return ret;
2701 }
2702
2703 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2704 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2705 {
2706 struct ext4_prealloc_space *pa;
2707 struct list_head *cur, *tmp;
2708 int count = 0;
2709
2710 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2711 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2712 list_del(&pa->pa_group_list);
2713 count++;
2714 kmem_cache_free(ext4_pspace_cachep, pa);
2715 }
2716 if (count)
2717 mb_debug(1, "mballoc: %u PAs left\n", count);
2718
2719 }
2720
ext4_mb_release(struct super_block * sb)2721 int ext4_mb_release(struct super_block *sb)
2722 {
2723 ext4_group_t ngroups = ext4_get_groups_count(sb);
2724 ext4_group_t i;
2725 int num_meta_group_infos;
2726 struct ext4_group_info *grinfo, ***group_info;
2727 struct ext4_sb_info *sbi = EXT4_SB(sb);
2728 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2729
2730 if (sbi->s_group_info) {
2731 for (i = 0; i < ngroups; i++) {
2732 grinfo = ext4_get_group_info(sb, i);
2733 #ifdef DOUBLE_CHECK
2734 kfree(grinfo->bb_bitmap);
2735 #endif
2736 ext4_lock_group(sb, i);
2737 ext4_mb_cleanup_pa(grinfo);
2738 ext4_unlock_group(sb, i);
2739 kmem_cache_free(cachep, grinfo);
2740 }
2741 num_meta_group_infos = (ngroups +
2742 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2743 EXT4_DESC_PER_BLOCK_BITS(sb);
2744 rcu_read_lock();
2745 group_info = rcu_dereference(sbi->s_group_info);
2746 for (i = 0; i < num_meta_group_infos; i++)
2747 kfree(group_info[i]);
2748 kvfree(group_info);
2749 rcu_read_unlock();
2750 }
2751 kfree(sbi->s_mb_offsets);
2752 kfree(sbi->s_mb_maxs);
2753 iput(sbi->s_buddy_cache);
2754 if (sbi->s_mb_stats) {
2755 ext4_msg(sb, KERN_INFO,
2756 "mballoc: %u blocks %u reqs (%u success)",
2757 atomic_read(&sbi->s_bal_allocated),
2758 atomic_read(&sbi->s_bal_reqs),
2759 atomic_read(&sbi->s_bal_success));
2760 ext4_msg(sb, KERN_INFO,
2761 "mballoc: %u extents scanned, %u goal hits, "
2762 "%u 2^N hits, %u breaks, %u lost",
2763 atomic_read(&sbi->s_bal_ex_scanned),
2764 atomic_read(&sbi->s_bal_goals),
2765 atomic_read(&sbi->s_bal_2orders),
2766 atomic_read(&sbi->s_bal_breaks),
2767 atomic_read(&sbi->s_mb_lost_chunks));
2768 ext4_msg(sb, KERN_INFO,
2769 "mballoc: %lu generated and it took %Lu",
2770 sbi->s_mb_buddies_generated,
2771 sbi->s_mb_generation_time);
2772 ext4_msg(sb, KERN_INFO,
2773 "mballoc: %u preallocated, %u discarded",
2774 atomic_read(&sbi->s_mb_preallocated),
2775 atomic_read(&sbi->s_mb_discarded));
2776 }
2777
2778 free_percpu(sbi->s_locality_groups);
2779
2780 return 0;
2781 }
2782
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)2783 static inline int ext4_issue_discard(struct super_block *sb,
2784 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2785 struct bio **biop)
2786 {
2787 ext4_fsblk_t discard_block;
2788
2789 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2790 ext4_group_first_block_no(sb, block_group));
2791 count = EXT4_C2B(EXT4_SB(sb), count);
2792 trace_ext4_discard_blocks(sb,
2793 (unsigned long long) discard_block, count);
2794 if (biop) {
2795 return __blkdev_issue_discard(sb->s_bdev,
2796 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2797 (sector_t)count << (sb->s_blocksize_bits - 9),
2798 GFP_NOFS, 0, biop);
2799 } else
2800 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2801 }
2802
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)2803 static void ext4_free_data_in_buddy(struct super_block *sb,
2804 struct ext4_free_data *entry)
2805 {
2806 struct ext4_buddy e4b;
2807 struct ext4_group_info *db;
2808 int err, count = 0, count2 = 0;
2809
2810 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2811 entry->efd_count, entry->efd_group, entry);
2812
2813 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2814 /* we expect to find existing buddy because it's pinned */
2815 BUG_ON(err != 0);
2816
2817 spin_lock(&EXT4_SB(sb)->s_md_lock);
2818 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2819 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2820
2821 db = e4b.bd_info;
2822 /* there are blocks to put in buddy to make them really free */
2823 count += entry->efd_count;
2824 count2++;
2825 ext4_lock_group(sb, entry->efd_group);
2826 /* Take it out of per group rb tree */
2827 rb_erase(&entry->efd_node, &(db->bb_free_root));
2828 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2829
2830 /*
2831 * Clear the trimmed flag for the group so that the next
2832 * ext4_trim_fs can trim it.
2833 * If the volume is mounted with -o discard, online discard
2834 * is supported and the free blocks will be trimmed online.
2835 */
2836 if (!test_opt(sb, DISCARD))
2837 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2838
2839 if (!db->bb_free_root.rb_node) {
2840 /* No more items in the per group rb tree
2841 * balance refcounts from ext4_mb_free_metadata()
2842 */
2843 put_page(e4b.bd_buddy_page);
2844 put_page(e4b.bd_bitmap_page);
2845 }
2846 ext4_unlock_group(sb, entry->efd_group);
2847 kmem_cache_free(ext4_free_data_cachep, entry);
2848 ext4_mb_unload_buddy(&e4b);
2849
2850 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2851 }
2852
2853 /*
2854 * This function is called by the jbd2 layer once the commit has finished,
2855 * so we know we can free the blocks that were released with that commit.
2856 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)2857 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2858 {
2859 struct ext4_sb_info *sbi = EXT4_SB(sb);
2860 struct ext4_free_data *entry, *tmp;
2861 struct bio *discard_bio = NULL;
2862 struct list_head freed_data_list;
2863 struct list_head *cut_pos = NULL;
2864 int err;
2865
2866 INIT_LIST_HEAD(&freed_data_list);
2867
2868 spin_lock(&sbi->s_md_lock);
2869 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2870 if (entry->efd_tid != commit_tid)
2871 break;
2872 cut_pos = &entry->efd_list;
2873 }
2874 if (cut_pos)
2875 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2876 cut_pos);
2877 spin_unlock(&sbi->s_md_lock);
2878
2879 if (test_opt(sb, DISCARD)) {
2880 list_for_each_entry(entry, &freed_data_list, efd_list) {
2881 err = ext4_issue_discard(sb, entry->efd_group,
2882 entry->efd_start_cluster,
2883 entry->efd_count,
2884 &discard_bio);
2885 if (err && err != -EOPNOTSUPP) {
2886 ext4_msg(sb, KERN_WARNING, "discard request in"
2887 " group:%d block:%d count:%d failed"
2888 " with %d", entry->efd_group,
2889 entry->efd_start_cluster,
2890 entry->efd_count, err);
2891 } else if (err == -EOPNOTSUPP)
2892 break;
2893 }
2894
2895 if (discard_bio) {
2896 submit_bio_wait(discard_bio);
2897 bio_put(discard_bio);
2898 }
2899 }
2900
2901 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2902 ext4_free_data_in_buddy(sb, entry);
2903 }
2904
ext4_init_mballoc(void)2905 int __init ext4_init_mballoc(void)
2906 {
2907 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2908 SLAB_RECLAIM_ACCOUNT);
2909 if (ext4_pspace_cachep == NULL)
2910 return -ENOMEM;
2911
2912 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2913 SLAB_RECLAIM_ACCOUNT);
2914 if (ext4_ac_cachep == NULL) {
2915 kmem_cache_destroy(ext4_pspace_cachep);
2916 return -ENOMEM;
2917 }
2918
2919 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2920 SLAB_RECLAIM_ACCOUNT);
2921 if (ext4_free_data_cachep == NULL) {
2922 kmem_cache_destroy(ext4_pspace_cachep);
2923 kmem_cache_destroy(ext4_ac_cachep);
2924 return -ENOMEM;
2925 }
2926 return 0;
2927 }
2928
ext4_exit_mballoc(void)2929 void ext4_exit_mballoc(void)
2930 {
2931 /*
2932 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2933 * before destroying the slab cache.
2934 */
2935 rcu_barrier();
2936 kmem_cache_destroy(ext4_pspace_cachep);
2937 kmem_cache_destroy(ext4_ac_cachep);
2938 kmem_cache_destroy(ext4_free_data_cachep);
2939 ext4_groupinfo_destroy_slabs();
2940 }
2941
2942
2943 /*
2944 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2945 * Returns 0 if success or error code
2946 */
2947 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2948 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2949 handle_t *handle, unsigned int reserv_clstrs)
2950 {
2951 struct buffer_head *bitmap_bh = NULL;
2952 struct ext4_group_desc *gdp;
2953 struct buffer_head *gdp_bh;
2954 struct ext4_sb_info *sbi;
2955 struct super_block *sb;
2956 ext4_fsblk_t block;
2957 int err, len;
2958
2959 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2960 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2961
2962 sb = ac->ac_sb;
2963 sbi = EXT4_SB(sb);
2964
2965 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2966 if (IS_ERR(bitmap_bh)) {
2967 err = PTR_ERR(bitmap_bh);
2968 bitmap_bh = NULL;
2969 goto out_err;
2970 }
2971
2972 BUFFER_TRACE(bitmap_bh, "getting write access");
2973 err = ext4_journal_get_write_access(handle, bitmap_bh);
2974 if (err)
2975 goto out_err;
2976
2977 err = -EIO;
2978 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2979 if (!gdp)
2980 goto out_err;
2981
2982 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2983 ext4_free_group_clusters(sb, gdp));
2984
2985 BUFFER_TRACE(gdp_bh, "get_write_access");
2986 err = ext4_journal_get_write_access(handle, gdp_bh);
2987 if (err)
2988 goto out_err;
2989
2990 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2991
2992 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2993 if (!ext4_data_block_valid(sbi, block, len)) {
2994 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2995 "fs metadata", block, block+len);
2996 /* File system mounted not to panic on error
2997 * Fix the bitmap and return EFSCORRUPTED
2998 * We leak some of the blocks here.
2999 */
3000 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3001 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3002 ac->ac_b_ex.fe_len);
3003 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3004 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3005 if (!err)
3006 err = -EFSCORRUPTED;
3007 goto out_err;
3008 }
3009
3010 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3011 #ifdef AGGRESSIVE_CHECK
3012 {
3013 int i;
3014 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3015 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3016 bitmap_bh->b_data));
3017 }
3018 }
3019 #endif
3020 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3021 ac->ac_b_ex.fe_len);
3022 if (ext4_has_group_desc_csum(sb) &&
3023 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3024 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3025 ext4_free_group_clusters_set(sb, gdp,
3026 ext4_free_clusters_after_init(sb,
3027 ac->ac_b_ex.fe_group, gdp));
3028 }
3029 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3030 ext4_free_group_clusters_set(sb, gdp, len);
3031 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3032 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3033
3034 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3035 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3036 /*
3037 * Now reduce the dirty block count also. Should not go negative
3038 */
3039 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3040 /* release all the reserved blocks if non delalloc */
3041 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3042 reserv_clstrs);
3043
3044 if (sbi->s_log_groups_per_flex) {
3045 ext4_group_t flex_group = ext4_flex_group(sbi,
3046 ac->ac_b_ex.fe_group);
3047 atomic64_sub(ac->ac_b_ex.fe_len,
3048 &sbi_array_rcu_deref(sbi, s_flex_groups,
3049 flex_group)->free_clusters);
3050 }
3051
3052 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3053 if (err)
3054 goto out_err;
3055 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3056
3057 out_err:
3058 brelse(bitmap_bh);
3059 return err;
3060 }
3061
3062 /*
3063 * here we normalize request for locality group
3064 * Group request are normalized to s_mb_group_prealloc, which goes to
3065 * s_strip if we set the same via mount option.
3066 * s_mb_group_prealloc can be configured via
3067 * /sys/fs/ext4/<partition>/mb_group_prealloc
3068 *
3069 * XXX: should we try to preallocate more than the group has now?
3070 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3071 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3072 {
3073 struct super_block *sb = ac->ac_sb;
3074 struct ext4_locality_group *lg = ac->ac_lg;
3075
3076 BUG_ON(lg == NULL);
3077 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3078 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3079 current->pid, ac->ac_g_ex.fe_len);
3080 }
3081
3082 /*
3083 * Normalization means making request better in terms of
3084 * size and alignment
3085 */
3086 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3087 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3088 struct ext4_allocation_request *ar)
3089 {
3090 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3091 int bsbits, max;
3092 ext4_lblk_t end;
3093 loff_t size, start_off;
3094 loff_t orig_size __maybe_unused;
3095 ext4_lblk_t start;
3096 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3097 struct ext4_prealloc_space *pa;
3098
3099 /* do normalize only data requests, metadata requests
3100 do not need preallocation */
3101 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3102 return;
3103
3104 /* sometime caller may want exact blocks */
3105 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3106 return;
3107
3108 /* caller may indicate that preallocation isn't
3109 * required (it's a tail, for example) */
3110 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3111 return;
3112
3113 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3114 ext4_mb_normalize_group_request(ac);
3115 return ;
3116 }
3117
3118 bsbits = ac->ac_sb->s_blocksize_bits;
3119
3120 /* first, let's learn actual file size
3121 * given current request is allocated */
3122 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3123 size = size << bsbits;
3124 if (size < i_size_read(ac->ac_inode))
3125 size = i_size_read(ac->ac_inode);
3126 orig_size = size;
3127
3128 /* max size of free chunks */
3129 max = 2 << bsbits;
3130
3131 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3132 (req <= (size) || max <= (chunk_size))
3133
3134 /* first, try to predict filesize */
3135 /* XXX: should this table be tunable? */
3136 start_off = 0;
3137 if (size <= 16 * 1024) {
3138 size = 16 * 1024;
3139 } else if (size <= 32 * 1024) {
3140 size = 32 * 1024;
3141 } else if (size <= 64 * 1024) {
3142 size = 64 * 1024;
3143 } else if (size <= 128 * 1024) {
3144 size = 128 * 1024;
3145 } else if (size <= 256 * 1024) {
3146 size = 256 * 1024;
3147 } else if (size <= 512 * 1024) {
3148 size = 512 * 1024;
3149 } else if (size <= 1024 * 1024) {
3150 size = 1024 * 1024;
3151 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3152 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3153 (21 - bsbits)) << 21;
3154 size = 2 * 1024 * 1024;
3155 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3156 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3157 (22 - bsbits)) << 22;
3158 size = 4 * 1024 * 1024;
3159 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3160 (8<<20)>>bsbits, max, 8 * 1024)) {
3161 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3162 (23 - bsbits)) << 23;
3163 size = 8 * 1024 * 1024;
3164 } else {
3165 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3166 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3167 ac->ac_o_ex.fe_len) << bsbits;
3168 }
3169 size = size >> bsbits;
3170 start = start_off >> bsbits;
3171
3172 /* don't cover already allocated blocks in selected range */
3173 if (ar->pleft && start <= ar->lleft) {
3174 size -= ar->lleft + 1 - start;
3175 start = ar->lleft + 1;
3176 }
3177 if (ar->pright && start + size - 1 >= ar->lright)
3178 size -= start + size - ar->lright;
3179
3180 /*
3181 * Trim allocation request for filesystems with artificially small
3182 * groups.
3183 */
3184 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3185 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3186
3187 end = start + size;
3188
3189 /* check we don't cross already preallocated blocks */
3190 rcu_read_lock();
3191 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3192 ext4_lblk_t pa_end;
3193
3194 if (pa->pa_deleted)
3195 continue;
3196 spin_lock(&pa->pa_lock);
3197 if (pa->pa_deleted) {
3198 spin_unlock(&pa->pa_lock);
3199 continue;
3200 }
3201
3202 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3203 pa->pa_len);
3204
3205 /* PA must not overlap original request */
3206 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3207 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3208
3209 /* skip PAs this normalized request doesn't overlap with */
3210 if (pa->pa_lstart >= end || pa_end <= start) {
3211 spin_unlock(&pa->pa_lock);
3212 continue;
3213 }
3214 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3215
3216 /* adjust start or end to be adjacent to this pa */
3217 if (pa_end <= ac->ac_o_ex.fe_logical) {
3218 BUG_ON(pa_end < start);
3219 start = pa_end;
3220 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3221 BUG_ON(pa->pa_lstart > end);
3222 end = pa->pa_lstart;
3223 }
3224 spin_unlock(&pa->pa_lock);
3225 }
3226 rcu_read_unlock();
3227 size = end - start;
3228
3229 /* XXX: extra loop to check we really don't overlap preallocations */
3230 rcu_read_lock();
3231 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3232 ext4_lblk_t pa_end;
3233
3234 spin_lock(&pa->pa_lock);
3235 if (pa->pa_deleted == 0) {
3236 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3237 pa->pa_len);
3238 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3239 }
3240 spin_unlock(&pa->pa_lock);
3241 }
3242 rcu_read_unlock();
3243
3244 if (start + size <= ac->ac_o_ex.fe_logical &&
3245 start > ac->ac_o_ex.fe_logical) {
3246 ext4_msg(ac->ac_sb, KERN_ERR,
3247 "start %lu, size %lu, fe_logical %lu",
3248 (unsigned long) start, (unsigned long) size,
3249 (unsigned long) ac->ac_o_ex.fe_logical);
3250 BUG();
3251 }
3252 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3253
3254 /* now prepare goal request */
3255
3256 /* XXX: is it better to align blocks WRT to logical
3257 * placement or satisfy big request as is */
3258 ac->ac_g_ex.fe_logical = start;
3259 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3260
3261 /* define goal start in order to merge */
3262 if (ar->pright && (ar->lright == (start + size))) {
3263 /* merge to the right */
3264 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3265 &ac->ac_f_ex.fe_group,
3266 &ac->ac_f_ex.fe_start);
3267 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3268 }
3269 if (ar->pleft && (ar->lleft + 1 == start)) {
3270 /* merge to the left */
3271 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3272 &ac->ac_f_ex.fe_group,
3273 &ac->ac_f_ex.fe_start);
3274 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3275 }
3276
3277 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3278 (unsigned) orig_size, (unsigned) start);
3279 }
3280
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3281 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3282 {
3283 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3284
3285 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3286 atomic_inc(&sbi->s_bal_reqs);
3287 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3288 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3289 atomic_inc(&sbi->s_bal_success);
3290 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3291 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3292 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3293 atomic_inc(&sbi->s_bal_goals);
3294 if (ac->ac_found > sbi->s_mb_max_to_scan)
3295 atomic_inc(&sbi->s_bal_breaks);
3296 }
3297
3298 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3299 trace_ext4_mballoc_alloc(ac);
3300 else
3301 trace_ext4_mballoc_prealloc(ac);
3302 }
3303
3304 /*
3305 * Called on failure; free up any blocks from the inode PA for this
3306 * context. We don't need this for MB_GROUP_PA because we only change
3307 * pa_free in ext4_mb_release_context(), but on failure, we've already
3308 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3309 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3310 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3311 {
3312 struct ext4_prealloc_space *pa = ac->ac_pa;
3313 struct ext4_buddy e4b;
3314 int err;
3315
3316 if (pa == NULL) {
3317 if (ac->ac_f_ex.fe_len == 0)
3318 return;
3319 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3320 if (err) {
3321 /*
3322 * This should never happen since we pin the
3323 * pages in the ext4_allocation_context so
3324 * ext4_mb_load_buddy() should never fail.
3325 */
3326 WARN(1, "mb_load_buddy failed (%d)", err);
3327 return;
3328 }
3329 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3330 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3331 ac->ac_f_ex.fe_len);
3332 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3333 ext4_mb_unload_buddy(&e4b);
3334 return;
3335 }
3336 if (pa->pa_type == MB_INODE_PA)
3337 pa->pa_free += ac->ac_b_ex.fe_len;
3338 }
3339
3340 /*
3341 * use blocks preallocated to inode
3342 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3343 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3344 struct ext4_prealloc_space *pa)
3345 {
3346 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3347 ext4_fsblk_t start;
3348 ext4_fsblk_t end;
3349 int len;
3350
3351 /* found preallocated blocks, use them */
3352 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3353 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3354 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3355 len = EXT4_NUM_B2C(sbi, end - start);
3356 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3357 &ac->ac_b_ex.fe_start);
3358 ac->ac_b_ex.fe_len = len;
3359 ac->ac_status = AC_STATUS_FOUND;
3360 ac->ac_pa = pa;
3361
3362 BUG_ON(start < pa->pa_pstart);
3363 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3364 BUG_ON(pa->pa_free < len);
3365 pa->pa_free -= len;
3366
3367 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3368 }
3369
3370 /*
3371 * use blocks preallocated to locality group
3372 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3373 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3374 struct ext4_prealloc_space *pa)
3375 {
3376 unsigned int len = ac->ac_o_ex.fe_len;
3377
3378 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3379 &ac->ac_b_ex.fe_group,
3380 &ac->ac_b_ex.fe_start);
3381 ac->ac_b_ex.fe_len = len;
3382 ac->ac_status = AC_STATUS_FOUND;
3383 ac->ac_pa = pa;
3384
3385 /* we don't correct pa_pstart or pa_plen here to avoid
3386 * possible race when the group is being loaded concurrently
3387 * instead we correct pa later, after blocks are marked
3388 * in on-disk bitmap -- see ext4_mb_release_context()
3389 * Other CPUs are prevented from allocating from this pa by lg_mutex
3390 */
3391 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3392 }
3393
3394 /*
3395 * Return the prealloc space that have minimal distance
3396 * from the goal block. @cpa is the prealloc
3397 * space that is having currently known minimal distance
3398 * from the goal block.
3399 */
3400 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3401 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3402 struct ext4_prealloc_space *pa,
3403 struct ext4_prealloc_space *cpa)
3404 {
3405 ext4_fsblk_t cur_distance, new_distance;
3406
3407 if (cpa == NULL) {
3408 atomic_inc(&pa->pa_count);
3409 return pa;
3410 }
3411 cur_distance = abs(goal_block - cpa->pa_pstart);
3412 new_distance = abs(goal_block - pa->pa_pstart);
3413
3414 if (cur_distance <= new_distance)
3415 return cpa;
3416
3417 /* drop the previous reference */
3418 atomic_dec(&cpa->pa_count);
3419 atomic_inc(&pa->pa_count);
3420 return pa;
3421 }
3422
3423 /*
3424 * search goal blocks in preallocated space
3425 */
3426 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3427 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3428 {
3429 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3430 int order, i;
3431 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3432 struct ext4_locality_group *lg;
3433 struct ext4_prealloc_space *pa, *cpa = NULL;
3434 ext4_fsblk_t goal_block;
3435
3436 /* only data can be preallocated */
3437 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3438 return 0;
3439
3440 /* first, try per-file preallocation */
3441 rcu_read_lock();
3442 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3443
3444 /* all fields in this condition don't change,
3445 * so we can skip locking for them */
3446 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3447 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3448 EXT4_C2B(sbi, pa->pa_len)))
3449 continue;
3450
3451 /* non-extent files can't have physical blocks past 2^32 */
3452 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3453 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3454 EXT4_MAX_BLOCK_FILE_PHYS))
3455 continue;
3456
3457 /* found preallocated blocks, use them */
3458 spin_lock(&pa->pa_lock);
3459 if (pa->pa_deleted == 0 && pa->pa_free) {
3460 atomic_inc(&pa->pa_count);
3461 ext4_mb_use_inode_pa(ac, pa);
3462 spin_unlock(&pa->pa_lock);
3463 ac->ac_criteria = 10;
3464 rcu_read_unlock();
3465 return 1;
3466 }
3467 spin_unlock(&pa->pa_lock);
3468 }
3469 rcu_read_unlock();
3470
3471 /* can we use group allocation? */
3472 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3473 return 0;
3474
3475 /* inode may have no locality group for some reason */
3476 lg = ac->ac_lg;
3477 if (lg == NULL)
3478 return 0;
3479 order = fls(ac->ac_o_ex.fe_len) - 1;
3480 if (order > PREALLOC_TB_SIZE - 1)
3481 /* The max size of hash table is PREALLOC_TB_SIZE */
3482 order = PREALLOC_TB_SIZE - 1;
3483
3484 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3485 /*
3486 * search for the prealloc space that is having
3487 * minimal distance from the goal block.
3488 */
3489 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3490 rcu_read_lock();
3491 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3492 pa_inode_list) {
3493 spin_lock(&pa->pa_lock);
3494 if (pa->pa_deleted == 0 &&
3495 pa->pa_free >= ac->ac_o_ex.fe_len) {
3496
3497 cpa = ext4_mb_check_group_pa(goal_block,
3498 pa, cpa);
3499 }
3500 spin_unlock(&pa->pa_lock);
3501 }
3502 rcu_read_unlock();
3503 }
3504 if (cpa) {
3505 ext4_mb_use_group_pa(ac, cpa);
3506 ac->ac_criteria = 20;
3507 return 1;
3508 }
3509 return 0;
3510 }
3511
3512 /*
3513 * the function goes through all block freed in the group
3514 * but not yet committed and marks them used in in-core bitmap.
3515 * buddy must be generated from this bitmap
3516 * Need to be called with the ext4 group lock held
3517 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3518 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3519 ext4_group_t group)
3520 {
3521 struct rb_node *n;
3522 struct ext4_group_info *grp;
3523 struct ext4_free_data *entry;
3524
3525 grp = ext4_get_group_info(sb, group);
3526 n = rb_first(&(grp->bb_free_root));
3527
3528 while (n) {
3529 entry = rb_entry(n, struct ext4_free_data, efd_node);
3530 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3531 n = rb_next(n);
3532 }
3533 return;
3534 }
3535
3536 /*
3537 * the function goes through all preallocation in this group and marks them
3538 * used in in-core bitmap. buddy must be generated from this bitmap
3539 * Need to be called with ext4 group lock held
3540 */
3541 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3542 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3543 ext4_group_t group)
3544 {
3545 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3546 struct ext4_prealloc_space *pa;
3547 struct list_head *cur;
3548 ext4_group_t groupnr;
3549 ext4_grpblk_t start;
3550 int preallocated = 0;
3551 int len;
3552
3553 /* all form of preallocation discards first load group,
3554 * so the only competing code is preallocation use.
3555 * we don't need any locking here
3556 * notice we do NOT ignore preallocations with pa_deleted
3557 * otherwise we could leave used blocks available for
3558 * allocation in buddy when concurrent ext4_mb_put_pa()
3559 * is dropping preallocation
3560 */
3561 list_for_each(cur, &grp->bb_prealloc_list) {
3562 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3563 spin_lock(&pa->pa_lock);
3564 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3565 &groupnr, &start);
3566 len = pa->pa_len;
3567 spin_unlock(&pa->pa_lock);
3568 if (unlikely(len == 0))
3569 continue;
3570 BUG_ON(groupnr != group);
3571 ext4_set_bits(bitmap, start, len);
3572 preallocated += len;
3573 }
3574 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3575 }
3576
ext4_mb_pa_callback(struct rcu_head * head)3577 static void ext4_mb_pa_callback(struct rcu_head *head)
3578 {
3579 struct ext4_prealloc_space *pa;
3580 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3581
3582 BUG_ON(atomic_read(&pa->pa_count));
3583 BUG_ON(pa->pa_deleted == 0);
3584 kmem_cache_free(ext4_pspace_cachep, pa);
3585 }
3586
3587 /*
3588 * drops a reference to preallocated space descriptor
3589 * if this was the last reference and the space is consumed
3590 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3591 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3592 struct super_block *sb, struct ext4_prealloc_space *pa)
3593 {
3594 ext4_group_t grp;
3595 ext4_fsblk_t grp_blk;
3596
3597 /* in this short window concurrent discard can set pa_deleted */
3598 spin_lock(&pa->pa_lock);
3599 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3600 spin_unlock(&pa->pa_lock);
3601 return;
3602 }
3603
3604 if (pa->pa_deleted == 1) {
3605 spin_unlock(&pa->pa_lock);
3606 return;
3607 }
3608
3609 pa->pa_deleted = 1;
3610 spin_unlock(&pa->pa_lock);
3611
3612 grp_blk = pa->pa_pstart;
3613 /*
3614 * If doing group-based preallocation, pa_pstart may be in the
3615 * next group when pa is used up
3616 */
3617 if (pa->pa_type == MB_GROUP_PA)
3618 grp_blk--;
3619
3620 grp = ext4_get_group_number(sb, grp_blk);
3621
3622 /*
3623 * possible race:
3624 *
3625 * P1 (buddy init) P2 (regular allocation)
3626 * find block B in PA
3627 * copy on-disk bitmap to buddy
3628 * mark B in on-disk bitmap
3629 * drop PA from group
3630 * mark all PAs in buddy
3631 *
3632 * thus, P1 initializes buddy with B available. to prevent this
3633 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3634 * against that pair
3635 */
3636 ext4_lock_group(sb, grp);
3637 list_del(&pa->pa_group_list);
3638 ext4_unlock_group(sb, grp);
3639
3640 spin_lock(pa->pa_obj_lock);
3641 list_del_rcu(&pa->pa_inode_list);
3642 spin_unlock(pa->pa_obj_lock);
3643
3644 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3645 }
3646
3647 /*
3648 * creates new preallocated space for given inode
3649 */
3650 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3651 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3652 {
3653 struct super_block *sb = ac->ac_sb;
3654 struct ext4_sb_info *sbi = EXT4_SB(sb);
3655 struct ext4_prealloc_space *pa;
3656 struct ext4_group_info *grp;
3657 struct ext4_inode_info *ei;
3658
3659 /* preallocate only when found space is larger then requested */
3660 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3661 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3662 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3663
3664 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3665 if (pa == NULL)
3666 return -ENOMEM;
3667
3668 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3669 int winl;
3670 int wins;
3671 int win;
3672 int offs;
3673
3674 /* we can't allocate as much as normalizer wants.
3675 * so, found space must get proper lstart
3676 * to cover original request */
3677 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3678 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3679
3680 /* we're limited by original request in that
3681 * logical block must be covered any way
3682 * winl is window we can move our chunk within */
3683 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3684
3685 /* also, we should cover whole original request */
3686 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3687
3688 /* the smallest one defines real window */
3689 win = min(winl, wins);
3690
3691 offs = ac->ac_o_ex.fe_logical %
3692 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3693 if (offs && offs < win)
3694 win = offs;
3695
3696 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3697 EXT4_NUM_B2C(sbi, win);
3698 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3699 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3700 }
3701
3702 /* preallocation can change ac_b_ex, thus we store actually
3703 * allocated blocks for history */
3704 ac->ac_f_ex = ac->ac_b_ex;
3705
3706 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3707 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3708 pa->pa_len = ac->ac_b_ex.fe_len;
3709 pa->pa_free = pa->pa_len;
3710 atomic_set(&pa->pa_count, 1);
3711 spin_lock_init(&pa->pa_lock);
3712 INIT_LIST_HEAD(&pa->pa_inode_list);
3713 INIT_LIST_HEAD(&pa->pa_group_list);
3714 pa->pa_deleted = 0;
3715 pa->pa_type = MB_INODE_PA;
3716
3717 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3718 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3719 trace_ext4_mb_new_inode_pa(ac, pa);
3720
3721 ext4_mb_use_inode_pa(ac, pa);
3722 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3723
3724 ei = EXT4_I(ac->ac_inode);
3725 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3726
3727 pa->pa_obj_lock = &ei->i_prealloc_lock;
3728 pa->pa_inode = ac->ac_inode;
3729
3730 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3731 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3732 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3733
3734 spin_lock(pa->pa_obj_lock);
3735 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3736 spin_unlock(pa->pa_obj_lock);
3737
3738 return 0;
3739 }
3740
3741 /*
3742 * creates new preallocated space for locality group inodes belongs to
3743 */
3744 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3745 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3746 {
3747 struct super_block *sb = ac->ac_sb;
3748 struct ext4_locality_group *lg;
3749 struct ext4_prealloc_space *pa;
3750 struct ext4_group_info *grp;
3751
3752 /* preallocate only when found space is larger then requested */
3753 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3754 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3755 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3756
3757 BUG_ON(ext4_pspace_cachep == NULL);
3758 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3759 if (pa == NULL)
3760 return -ENOMEM;
3761
3762 /* preallocation can change ac_b_ex, thus we store actually
3763 * allocated blocks for history */
3764 ac->ac_f_ex = ac->ac_b_ex;
3765
3766 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3767 pa->pa_lstart = pa->pa_pstart;
3768 pa->pa_len = ac->ac_b_ex.fe_len;
3769 pa->pa_free = pa->pa_len;
3770 atomic_set(&pa->pa_count, 1);
3771 spin_lock_init(&pa->pa_lock);
3772 INIT_LIST_HEAD(&pa->pa_inode_list);
3773 INIT_LIST_HEAD(&pa->pa_group_list);
3774 pa->pa_deleted = 0;
3775 pa->pa_type = MB_GROUP_PA;
3776
3777 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3778 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3779 trace_ext4_mb_new_group_pa(ac, pa);
3780
3781 ext4_mb_use_group_pa(ac, pa);
3782 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3783
3784 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3785 lg = ac->ac_lg;
3786 BUG_ON(lg == NULL);
3787
3788 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3789 pa->pa_inode = NULL;
3790
3791 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3792 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3793 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3794
3795 /*
3796 * We will later add the new pa to the right bucket
3797 * after updating the pa_free in ext4_mb_release_context
3798 */
3799 return 0;
3800 }
3801
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3802 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3803 {
3804 int err;
3805
3806 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3807 err = ext4_mb_new_group_pa(ac);
3808 else
3809 err = ext4_mb_new_inode_pa(ac);
3810 return err;
3811 }
3812
3813 /*
3814 * finds all unused blocks in on-disk bitmap, frees them in
3815 * in-core bitmap and buddy.
3816 * @pa must be unlinked from inode and group lists, so that
3817 * nobody else can find/use it.
3818 * the caller MUST hold group/inode locks.
3819 * TODO: optimize the case when there are no in-core structures yet
3820 */
3821 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3822 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3823 struct ext4_prealloc_space *pa)
3824 {
3825 struct super_block *sb = e4b->bd_sb;
3826 struct ext4_sb_info *sbi = EXT4_SB(sb);
3827 unsigned int end;
3828 unsigned int next;
3829 ext4_group_t group;
3830 ext4_grpblk_t bit;
3831 unsigned long long grp_blk_start;
3832 int free = 0;
3833
3834 BUG_ON(pa->pa_deleted == 0);
3835 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3836 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3837 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3838 end = bit + pa->pa_len;
3839
3840 while (bit < end) {
3841 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3842 if (bit >= end)
3843 break;
3844 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3845 mb_debug(1, " free preallocated %u/%u in group %u\n",
3846 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3847 (unsigned) next - bit, (unsigned) group);
3848 free += next - bit;
3849
3850 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3851 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3852 EXT4_C2B(sbi, bit)),
3853 next - bit);
3854 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3855 bit = next + 1;
3856 }
3857 if (free != pa->pa_free) {
3858 ext4_msg(e4b->bd_sb, KERN_CRIT,
3859 "pa %p: logic %lu, phys. %lu, len %lu",
3860 pa, (unsigned long) pa->pa_lstart,
3861 (unsigned long) pa->pa_pstart,
3862 (unsigned long) pa->pa_len);
3863 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3864 free, pa->pa_free);
3865 /*
3866 * pa is already deleted so we use the value obtained
3867 * from the bitmap and continue.
3868 */
3869 }
3870 atomic_add(free, &sbi->s_mb_discarded);
3871
3872 return 0;
3873 }
3874
3875 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3876 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3877 struct ext4_prealloc_space *pa)
3878 {
3879 struct super_block *sb = e4b->bd_sb;
3880 ext4_group_t group;
3881 ext4_grpblk_t bit;
3882
3883 trace_ext4_mb_release_group_pa(sb, pa);
3884 BUG_ON(pa->pa_deleted == 0);
3885 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3886 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3887 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3888 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3889 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3890
3891 return 0;
3892 }
3893
3894 /*
3895 * releases all preallocations in given group
3896 *
3897 * first, we need to decide discard policy:
3898 * - when do we discard
3899 * 1) ENOSPC
3900 * - how many do we discard
3901 * 1) how many requested
3902 */
3903 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3904 ext4_mb_discard_group_preallocations(struct super_block *sb,
3905 ext4_group_t group, int needed)
3906 {
3907 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3908 struct buffer_head *bitmap_bh = NULL;
3909 struct ext4_prealloc_space *pa, *tmp;
3910 struct list_head list;
3911 struct ext4_buddy e4b;
3912 int err;
3913 int busy = 0;
3914 int free = 0;
3915
3916 mb_debug(1, "discard preallocation for group %u\n", group);
3917
3918 if (list_empty(&grp->bb_prealloc_list))
3919 return 0;
3920
3921 bitmap_bh = ext4_read_block_bitmap(sb, group);
3922 if (IS_ERR(bitmap_bh)) {
3923 err = PTR_ERR(bitmap_bh);
3924 ext4_error(sb, "Error %d reading block bitmap for %u",
3925 err, group);
3926 return 0;
3927 }
3928
3929 err = ext4_mb_load_buddy(sb, group, &e4b);
3930 if (err) {
3931 ext4_warning(sb, "Error %d loading buddy information for %u",
3932 err, group);
3933 put_bh(bitmap_bh);
3934 return 0;
3935 }
3936
3937 if (needed == 0)
3938 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3939
3940 INIT_LIST_HEAD(&list);
3941 repeat:
3942 ext4_lock_group(sb, group);
3943 list_for_each_entry_safe(pa, tmp,
3944 &grp->bb_prealloc_list, pa_group_list) {
3945 spin_lock(&pa->pa_lock);
3946 if (atomic_read(&pa->pa_count)) {
3947 spin_unlock(&pa->pa_lock);
3948 busy = 1;
3949 continue;
3950 }
3951 if (pa->pa_deleted) {
3952 spin_unlock(&pa->pa_lock);
3953 continue;
3954 }
3955
3956 /* seems this one can be freed ... */
3957 pa->pa_deleted = 1;
3958
3959 /* we can trust pa_free ... */
3960 free += pa->pa_free;
3961
3962 spin_unlock(&pa->pa_lock);
3963
3964 list_del(&pa->pa_group_list);
3965 list_add(&pa->u.pa_tmp_list, &list);
3966 }
3967
3968 /* if we still need more blocks and some PAs were used, try again */
3969 if (free < needed && busy) {
3970 busy = 0;
3971 ext4_unlock_group(sb, group);
3972 cond_resched();
3973 goto repeat;
3974 }
3975
3976 /* found anything to free? */
3977 if (list_empty(&list)) {
3978 BUG_ON(free != 0);
3979 goto out;
3980 }
3981
3982 /* now free all selected PAs */
3983 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3984
3985 /* remove from object (inode or locality group) */
3986 spin_lock(pa->pa_obj_lock);
3987 list_del_rcu(&pa->pa_inode_list);
3988 spin_unlock(pa->pa_obj_lock);
3989
3990 if (pa->pa_type == MB_GROUP_PA)
3991 ext4_mb_release_group_pa(&e4b, pa);
3992 else
3993 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3994
3995 list_del(&pa->u.pa_tmp_list);
3996 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3997 }
3998
3999 out:
4000 ext4_unlock_group(sb, group);
4001 ext4_mb_unload_buddy(&e4b);
4002 put_bh(bitmap_bh);
4003 return free;
4004 }
4005
4006 /*
4007 * releases all non-used preallocated blocks for given inode
4008 *
4009 * It's important to discard preallocations under i_data_sem
4010 * We don't want another block to be served from the prealloc
4011 * space when we are discarding the inode prealloc space.
4012 *
4013 * FIXME!! Make sure it is valid at all the call sites
4014 */
ext4_discard_preallocations(struct inode * inode)4015 void ext4_discard_preallocations(struct inode *inode)
4016 {
4017 struct ext4_inode_info *ei = EXT4_I(inode);
4018 struct super_block *sb = inode->i_sb;
4019 struct buffer_head *bitmap_bh = NULL;
4020 struct ext4_prealloc_space *pa, *tmp;
4021 ext4_group_t group = 0;
4022 struct list_head list;
4023 struct ext4_buddy e4b;
4024 int err;
4025
4026 if (!S_ISREG(inode->i_mode)) {
4027 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4028 return;
4029 }
4030
4031 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4032 trace_ext4_discard_preallocations(inode);
4033
4034 INIT_LIST_HEAD(&list);
4035
4036 repeat:
4037 /* first, collect all pa's in the inode */
4038 spin_lock(&ei->i_prealloc_lock);
4039 while (!list_empty(&ei->i_prealloc_list)) {
4040 pa = list_entry(ei->i_prealloc_list.next,
4041 struct ext4_prealloc_space, pa_inode_list);
4042 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4043 spin_lock(&pa->pa_lock);
4044 if (atomic_read(&pa->pa_count)) {
4045 /* this shouldn't happen often - nobody should
4046 * use preallocation while we're discarding it */
4047 spin_unlock(&pa->pa_lock);
4048 spin_unlock(&ei->i_prealloc_lock);
4049 ext4_msg(sb, KERN_ERR,
4050 "uh-oh! used pa while discarding");
4051 WARN_ON(1);
4052 schedule_timeout_uninterruptible(HZ);
4053 goto repeat;
4054
4055 }
4056 if (pa->pa_deleted == 0) {
4057 pa->pa_deleted = 1;
4058 spin_unlock(&pa->pa_lock);
4059 list_del_rcu(&pa->pa_inode_list);
4060 list_add(&pa->u.pa_tmp_list, &list);
4061 continue;
4062 }
4063
4064 /* someone is deleting pa right now */
4065 spin_unlock(&pa->pa_lock);
4066 spin_unlock(&ei->i_prealloc_lock);
4067
4068 /* we have to wait here because pa_deleted
4069 * doesn't mean pa is already unlinked from
4070 * the list. as we might be called from
4071 * ->clear_inode() the inode will get freed
4072 * and concurrent thread which is unlinking
4073 * pa from inode's list may access already
4074 * freed memory, bad-bad-bad */
4075
4076 /* XXX: if this happens too often, we can
4077 * add a flag to force wait only in case
4078 * of ->clear_inode(), but not in case of
4079 * regular truncate */
4080 schedule_timeout_uninterruptible(HZ);
4081 goto repeat;
4082 }
4083 spin_unlock(&ei->i_prealloc_lock);
4084
4085 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4086 BUG_ON(pa->pa_type != MB_INODE_PA);
4087 group = ext4_get_group_number(sb, pa->pa_pstart);
4088
4089 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4090 GFP_NOFS|__GFP_NOFAIL);
4091 if (err) {
4092 ext4_error(sb, "Error %d loading buddy information for %u",
4093 err, group);
4094 continue;
4095 }
4096
4097 bitmap_bh = ext4_read_block_bitmap(sb, group);
4098 if (IS_ERR(bitmap_bh)) {
4099 err = PTR_ERR(bitmap_bh);
4100 ext4_error(sb, "Error %d reading block bitmap for %u",
4101 err, group);
4102 ext4_mb_unload_buddy(&e4b);
4103 continue;
4104 }
4105
4106 ext4_lock_group(sb, group);
4107 list_del(&pa->pa_group_list);
4108 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4109 ext4_unlock_group(sb, group);
4110
4111 ext4_mb_unload_buddy(&e4b);
4112 put_bh(bitmap_bh);
4113
4114 list_del(&pa->u.pa_tmp_list);
4115 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4116 }
4117 }
4118
4119 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4120 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4121 {
4122 struct super_block *sb = ac->ac_sb;
4123 ext4_group_t ngroups, i;
4124
4125 if (!ext4_mballoc_debug ||
4126 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4127 return;
4128
4129 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4130 " Allocation context details:");
4131 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4132 ac->ac_status, ac->ac_flags);
4133 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4134 "goal %lu/%lu/%lu@%lu, "
4135 "best %lu/%lu/%lu@%lu cr %d",
4136 (unsigned long)ac->ac_o_ex.fe_group,
4137 (unsigned long)ac->ac_o_ex.fe_start,
4138 (unsigned long)ac->ac_o_ex.fe_len,
4139 (unsigned long)ac->ac_o_ex.fe_logical,
4140 (unsigned long)ac->ac_g_ex.fe_group,
4141 (unsigned long)ac->ac_g_ex.fe_start,
4142 (unsigned long)ac->ac_g_ex.fe_len,
4143 (unsigned long)ac->ac_g_ex.fe_logical,
4144 (unsigned long)ac->ac_b_ex.fe_group,
4145 (unsigned long)ac->ac_b_ex.fe_start,
4146 (unsigned long)ac->ac_b_ex.fe_len,
4147 (unsigned long)ac->ac_b_ex.fe_logical,
4148 (int)ac->ac_criteria);
4149 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4150 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4151 ngroups = ext4_get_groups_count(sb);
4152 for (i = 0; i < ngroups; i++) {
4153 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4154 struct ext4_prealloc_space *pa;
4155 ext4_grpblk_t start;
4156 struct list_head *cur;
4157 ext4_lock_group(sb, i);
4158 list_for_each(cur, &grp->bb_prealloc_list) {
4159 pa = list_entry(cur, struct ext4_prealloc_space,
4160 pa_group_list);
4161 spin_lock(&pa->pa_lock);
4162 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4163 NULL, &start);
4164 spin_unlock(&pa->pa_lock);
4165 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4166 start, pa->pa_len);
4167 }
4168 ext4_unlock_group(sb, i);
4169
4170 if (grp->bb_free == 0)
4171 continue;
4172 printk(KERN_ERR "%u: %d/%d \n",
4173 i, grp->bb_free, grp->bb_fragments);
4174 }
4175 printk(KERN_ERR "\n");
4176 }
4177 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4178 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4179 {
4180 return;
4181 }
4182 #endif
4183
4184 /*
4185 * We use locality group preallocation for small size file. The size of the
4186 * file is determined by the current size or the resulting size after
4187 * allocation which ever is larger
4188 *
4189 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4190 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4191 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4192 {
4193 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4194 int bsbits = ac->ac_sb->s_blocksize_bits;
4195 loff_t size, isize;
4196
4197 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4198 return;
4199
4200 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4201 return;
4202
4203 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4204 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4205 >> bsbits;
4206
4207 if ((size == isize) &&
4208 !ext4_fs_is_busy(sbi) &&
4209 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4210 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4211 return;
4212 }
4213
4214 if (sbi->s_mb_group_prealloc <= 0) {
4215 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4216 return;
4217 }
4218
4219 /* don't use group allocation for large files */
4220 size = max(size, isize);
4221 if (size > sbi->s_mb_stream_request) {
4222 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4223 return;
4224 }
4225
4226 BUG_ON(ac->ac_lg != NULL);
4227 /*
4228 * locality group prealloc space are per cpu. The reason for having
4229 * per cpu locality group is to reduce the contention between block
4230 * request from multiple CPUs.
4231 */
4232 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4233
4234 /* we're going to use group allocation */
4235 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4236
4237 /* serialize all allocations in the group */
4238 mutex_lock(&ac->ac_lg->lg_mutex);
4239 }
4240
4241 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4242 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4243 struct ext4_allocation_request *ar)
4244 {
4245 struct super_block *sb = ar->inode->i_sb;
4246 struct ext4_sb_info *sbi = EXT4_SB(sb);
4247 struct ext4_super_block *es = sbi->s_es;
4248 ext4_group_t group;
4249 unsigned int len;
4250 ext4_fsblk_t goal;
4251 ext4_grpblk_t block;
4252
4253 /* we can't allocate > group size */
4254 len = ar->len;
4255
4256 /* just a dirty hack to filter too big requests */
4257 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4258 len = EXT4_CLUSTERS_PER_GROUP(sb);
4259
4260 /* start searching from the goal */
4261 goal = ar->goal;
4262 if (goal < le32_to_cpu(es->s_first_data_block) ||
4263 goal >= ext4_blocks_count(es))
4264 goal = le32_to_cpu(es->s_first_data_block);
4265 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4266
4267 /* set up allocation goals */
4268 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4269 ac->ac_status = AC_STATUS_CONTINUE;
4270 ac->ac_sb = sb;
4271 ac->ac_inode = ar->inode;
4272 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4273 ac->ac_o_ex.fe_group = group;
4274 ac->ac_o_ex.fe_start = block;
4275 ac->ac_o_ex.fe_len = len;
4276 ac->ac_g_ex = ac->ac_o_ex;
4277 ac->ac_flags = ar->flags;
4278
4279 /* we have to define context: we'll we work with a file or
4280 * locality group. this is a policy, actually */
4281 ext4_mb_group_or_file(ac);
4282
4283 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4284 "left: %u/%u, right %u/%u to %swritable\n",
4285 (unsigned) ar->len, (unsigned) ar->logical,
4286 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4287 (unsigned) ar->lleft, (unsigned) ar->pleft,
4288 (unsigned) ar->lright, (unsigned) ar->pright,
4289 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4290 return 0;
4291
4292 }
4293
4294 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4295 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4296 struct ext4_locality_group *lg,
4297 int order, int total_entries)
4298 {
4299 ext4_group_t group = 0;
4300 struct ext4_buddy e4b;
4301 struct list_head discard_list;
4302 struct ext4_prealloc_space *pa, *tmp;
4303
4304 mb_debug(1, "discard locality group preallocation\n");
4305
4306 INIT_LIST_HEAD(&discard_list);
4307
4308 spin_lock(&lg->lg_prealloc_lock);
4309 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4310 pa_inode_list) {
4311 spin_lock(&pa->pa_lock);
4312 if (atomic_read(&pa->pa_count)) {
4313 /*
4314 * This is the pa that we just used
4315 * for block allocation. So don't
4316 * free that
4317 */
4318 spin_unlock(&pa->pa_lock);
4319 continue;
4320 }
4321 if (pa->pa_deleted) {
4322 spin_unlock(&pa->pa_lock);
4323 continue;
4324 }
4325 /* only lg prealloc space */
4326 BUG_ON(pa->pa_type != MB_GROUP_PA);
4327
4328 /* seems this one can be freed ... */
4329 pa->pa_deleted = 1;
4330 spin_unlock(&pa->pa_lock);
4331
4332 list_del_rcu(&pa->pa_inode_list);
4333 list_add(&pa->u.pa_tmp_list, &discard_list);
4334
4335 total_entries--;
4336 if (total_entries <= 5) {
4337 /*
4338 * we want to keep only 5 entries
4339 * allowing it to grow to 8. This
4340 * mak sure we don't call discard
4341 * soon for this list.
4342 */
4343 break;
4344 }
4345 }
4346 spin_unlock(&lg->lg_prealloc_lock);
4347
4348 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4349 int err;
4350
4351 group = ext4_get_group_number(sb, pa->pa_pstart);
4352 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4353 GFP_NOFS|__GFP_NOFAIL);
4354 if (err) {
4355 ext4_error(sb, "Error %d loading buddy information for %u",
4356 err, group);
4357 continue;
4358 }
4359 ext4_lock_group(sb, group);
4360 list_del(&pa->pa_group_list);
4361 ext4_mb_release_group_pa(&e4b, pa);
4362 ext4_unlock_group(sb, group);
4363
4364 ext4_mb_unload_buddy(&e4b);
4365 list_del(&pa->u.pa_tmp_list);
4366 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4367 }
4368 }
4369
4370 /*
4371 * We have incremented pa_count. So it cannot be freed at this
4372 * point. Also we hold lg_mutex. So no parallel allocation is
4373 * possible from this lg. That means pa_free cannot be updated.
4374 *
4375 * A parallel ext4_mb_discard_group_preallocations is possible.
4376 * which can cause the lg_prealloc_list to be updated.
4377 */
4378
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4379 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4380 {
4381 int order, added = 0, lg_prealloc_count = 1;
4382 struct super_block *sb = ac->ac_sb;
4383 struct ext4_locality_group *lg = ac->ac_lg;
4384 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4385
4386 order = fls(pa->pa_free) - 1;
4387 if (order > PREALLOC_TB_SIZE - 1)
4388 /* The max size of hash table is PREALLOC_TB_SIZE */
4389 order = PREALLOC_TB_SIZE - 1;
4390 /* Add the prealloc space to lg */
4391 spin_lock(&lg->lg_prealloc_lock);
4392 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4393 pa_inode_list) {
4394 spin_lock(&tmp_pa->pa_lock);
4395 if (tmp_pa->pa_deleted) {
4396 spin_unlock(&tmp_pa->pa_lock);
4397 continue;
4398 }
4399 if (!added && pa->pa_free < tmp_pa->pa_free) {
4400 /* Add to the tail of the previous entry */
4401 list_add_tail_rcu(&pa->pa_inode_list,
4402 &tmp_pa->pa_inode_list);
4403 added = 1;
4404 /*
4405 * we want to count the total
4406 * number of entries in the list
4407 */
4408 }
4409 spin_unlock(&tmp_pa->pa_lock);
4410 lg_prealloc_count++;
4411 }
4412 if (!added)
4413 list_add_tail_rcu(&pa->pa_inode_list,
4414 &lg->lg_prealloc_list[order]);
4415 spin_unlock(&lg->lg_prealloc_lock);
4416
4417 /* Now trim the list to be not more than 8 elements */
4418 if (lg_prealloc_count > 8) {
4419 ext4_mb_discard_lg_preallocations(sb, lg,
4420 order, lg_prealloc_count);
4421 return;
4422 }
4423 return ;
4424 }
4425
4426 /*
4427 * release all resource we used in allocation
4428 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4429 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4430 {
4431 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4432 struct ext4_prealloc_space *pa = ac->ac_pa;
4433 if (pa) {
4434 if (pa->pa_type == MB_GROUP_PA) {
4435 /* see comment in ext4_mb_use_group_pa() */
4436 spin_lock(&pa->pa_lock);
4437 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4438 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4439 pa->pa_free -= ac->ac_b_ex.fe_len;
4440 pa->pa_len -= ac->ac_b_ex.fe_len;
4441 spin_unlock(&pa->pa_lock);
4442 }
4443 }
4444 if (pa) {
4445 /*
4446 * We want to add the pa to the right bucket.
4447 * Remove it from the list and while adding
4448 * make sure the list to which we are adding
4449 * doesn't grow big.
4450 */
4451 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4452 spin_lock(pa->pa_obj_lock);
4453 list_del_rcu(&pa->pa_inode_list);
4454 spin_unlock(pa->pa_obj_lock);
4455 ext4_mb_add_n_trim(ac);
4456 }
4457 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4458 }
4459 if (ac->ac_bitmap_page)
4460 put_page(ac->ac_bitmap_page);
4461 if (ac->ac_buddy_page)
4462 put_page(ac->ac_buddy_page);
4463 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4464 mutex_unlock(&ac->ac_lg->lg_mutex);
4465 ext4_mb_collect_stats(ac);
4466 return 0;
4467 }
4468
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4469 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4470 {
4471 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4472 int ret;
4473 int freed = 0;
4474
4475 trace_ext4_mb_discard_preallocations(sb, needed);
4476 for (i = 0; i < ngroups && needed > 0; i++) {
4477 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4478 freed += ret;
4479 needed -= ret;
4480 }
4481
4482 return freed;
4483 }
4484
4485 /*
4486 * Main entry point into mballoc to allocate blocks
4487 * it tries to use preallocation first, then falls back
4488 * to usual allocation
4489 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4490 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4491 struct ext4_allocation_request *ar, int *errp)
4492 {
4493 int freed;
4494 struct ext4_allocation_context *ac = NULL;
4495 struct ext4_sb_info *sbi;
4496 struct super_block *sb;
4497 ext4_fsblk_t block = 0;
4498 unsigned int inquota = 0;
4499 unsigned int reserv_clstrs = 0;
4500
4501 might_sleep();
4502 sb = ar->inode->i_sb;
4503 sbi = EXT4_SB(sb);
4504
4505 trace_ext4_request_blocks(ar);
4506
4507 /* Allow to use superuser reservation for quota file */
4508 if (ext4_is_quota_file(ar->inode))
4509 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4510
4511 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4512 /* Without delayed allocation we need to verify
4513 * there is enough free blocks to do block allocation
4514 * and verify allocation doesn't exceed the quota limits.
4515 */
4516 while (ar->len &&
4517 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4518
4519 /* let others to free the space */
4520 cond_resched();
4521 ar->len = ar->len >> 1;
4522 }
4523 if (!ar->len) {
4524 *errp = -ENOSPC;
4525 return 0;
4526 }
4527 reserv_clstrs = ar->len;
4528 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4529 dquot_alloc_block_nofail(ar->inode,
4530 EXT4_C2B(sbi, ar->len));
4531 } else {
4532 while (ar->len &&
4533 dquot_alloc_block(ar->inode,
4534 EXT4_C2B(sbi, ar->len))) {
4535
4536 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4537 ar->len--;
4538 }
4539 }
4540 inquota = ar->len;
4541 if (ar->len == 0) {
4542 *errp = -EDQUOT;
4543 goto out;
4544 }
4545 }
4546
4547 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4548 if (!ac) {
4549 ar->len = 0;
4550 *errp = -ENOMEM;
4551 goto out;
4552 }
4553
4554 *errp = ext4_mb_initialize_context(ac, ar);
4555 if (*errp) {
4556 ar->len = 0;
4557 goto out;
4558 }
4559
4560 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4561 if (!ext4_mb_use_preallocated(ac)) {
4562 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4563 ext4_mb_normalize_request(ac, ar);
4564 repeat:
4565 /* allocate space in core */
4566 *errp = ext4_mb_regular_allocator(ac);
4567 if (*errp)
4568 goto discard_and_exit;
4569
4570 /* as we've just preallocated more space than
4571 * user requested originally, we store allocated
4572 * space in a special descriptor */
4573 if (ac->ac_status == AC_STATUS_FOUND &&
4574 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4575 *errp = ext4_mb_new_preallocation(ac);
4576 if (*errp) {
4577 discard_and_exit:
4578 ext4_discard_allocated_blocks(ac);
4579 goto errout;
4580 }
4581 }
4582 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4583 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4584 if (*errp) {
4585 ext4_discard_allocated_blocks(ac);
4586 goto errout;
4587 } else {
4588 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4589 ar->len = ac->ac_b_ex.fe_len;
4590 }
4591 } else {
4592 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4593 if (freed)
4594 goto repeat;
4595 *errp = -ENOSPC;
4596 }
4597
4598 errout:
4599 if (*errp) {
4600 ac->ac_b_ex.fe_len = 0;
4601 ar->len = 0;
4602 ext4_mb_show_ac(ac);
4603 }
4604 ext4_mb_release_context(ac);
4605 out:
4606 if (ac)
4607 kmem_cache_free(ext4_ac_cachep, ac);
4608 if (inquota && ar->len < inquota)
4609 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4610 if (!ar->len) {
4611 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4612 /* release all the reserved blocks if non delalloc */
4613 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4614 reserv_clstrs);
4615 }
4616
4617 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4618
4619 return block;
4620 }
4621
4622 /*
4623 * We can merge two free data extents only if the physical blocks
4624 * are contiguous, AND the extents were freed by the same transaction,
4625 * AND the blocks are associated with the same group.
4626 */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)4627 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4628 struct ext4_free_data *entry,
4629 struct ext4_free_data *new_entry,
4630 struct rb_root *entry_rb_root)
4631 {
4632 if ((entry->efd_tid != new_entry->efd_tid) ||
4633 (entry->efd_group != new_entry->efd_group))
4634 return;
4635 if (entry->efd_start_cluster + entry->efd_count ==
4636 new_entry->efd_start_cluster) {
4637 new_entry->efd_start_cluster = entry->efd_start_cluster;
4638 new_entry->efd_count += entry->efd_count;
4639 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4640 entry->efd_start_cluster) {
4641 new_entry->efd_count += entry->efd_count;
4642 } else
4643 return;
4644 spin_lock(&sbi->s_md_lock);
4645 list_del(&entry->efd_list);
4646 spin_unlock(&sbi->s_md_lock);
4647 rb_erase(&entry->efd_node, entry_rb_root);
4648 kmem_cache_free(ext4_free_data_cachep, entry);
4649 }
4650
4651 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4652 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4653 struct ext4_free_data *new_entry)
4654 {
4655 ext4_group_t group = e4b->bd_group;
4656 ext4_grpblk_t cluster;
4657 ext4_grpblk_t clusters = new_entry->efd_count;
4658 struct ext4_free_data *entry;
4659 struct ext4_group_info *db = e4b->bd_info;
4660 struct super_block *sb = e4b->bd_sb;
4661 struct ext4_sb_info *sbi = EXT4_SB(sb);
4662 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4663 struct rb_node *parent = NULL, *new_node;
4664
4665 BUG_ON(!ext4_handle_valid(handle));
4666 BUG_ON(e4b->bd_bitmap_page == NULL);
4667 BUG_ON(e4b->bd_buddy_page == NULL);
4668
4669 new_node = &new_entry->efd_node;
4670 cluster = new_entry->efd_start_cluster;
4671
4672 if (!*n) {
4673 /* first free block exent. We need to
4674 protect buddy cache from being freed,
4675 * otherwise we'll refresh it from
4676 * on-disk bitmap and lose not-yet-available
4677 * blocks */
4678 get_page(e4b->bd_buddy_page);
4679 get_page(e4b->bd_bitmap_page);
4680 }
4681 while (*n) {
4682 parent = *n;
4683 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4684 if (cluster < entry->efd_start_cluster)
4685 n = &(*n)->rb_left;
4686 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4687 n = &(*n)->rb_right;
4688 else {
4689 ext4_grp_locked_error(sb, group, 0,
4690 ext4_group_first_block_no(sb, group) +
4691 EXT4_C2B(sbi, cluster),
4692 "Block already on to-be-freed list");
4693 return 0;
4694 }
4695 }
4696
4697 rb_link_node(new_node, parent, n);
4698 rb_insert_color(new_node, &db->bb_free_root);
4699
4700 /* Now try to see the extent can be merged to left and right */
4701 node = rb_prev(new_node);
4702 if (node) {
4703 entry = rb_entry(node, struct ext4_free_data, efd_node);
4704 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4705 &(db->bb_free_root));
4706 }
4707
4708 node = rb_next(new_node);
4709 if (node) {
4710 entry = rb_entry(node, struct ext4_free_data, efd_node);
4711 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4712 &(db->bb_free_root));
4713 }
4714
4715 spin_lock(&sbi->s_md_lock);
4716 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4717 sbi->s_mb_free_pending += clusters;
4718 spin_unlock(&sbi->s_md_lock);
4719 return 0;
4720 }
4721
4722 /**
4723 * ext4_free_blocks() -- Free given blocks and update quota
4724 * @handle: handle for this transaction
4725 * @inode: inode
4726 * @block: start physical block to free
4727 * @count: number of blocks to count
4728 * @flags: flags used by ext4_free_blocks
4729 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4730 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4731 struct buffer_head *bh, ext4_fsblk_t block,
4732 unsigned long count, int flags)
4733 {
4734 struct buffer_head *bitmap_bh = NULL;
4735 struct super_block *sb = inode->i_sb;
4736 struct ext4_group_desc *gdp;
4737 unsigned int overflow;
4738 ext4_grpblk_t bit;
4739 struct buffer_head *gd_bh;
4740 ext4_group_t block_group;
4741 struct ext4_sb_info *sbi;
4742 struct ext4_buddy e4b;
4743 unsigned int count_clusters;
4744 int err = 0;
4745 int ret;
4746
4747 might_sleep();
4748 if (bh) {
4749 if (block)
4750 BUG_ON(block != bh->b_blocknr);
4751 else
4752 block = bh->b_blocknr;
4753 }
4754
4755 sbi = EXT4_SB(sb);
4756 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4757 !ext4_data_block_valid(sbi, block, count)) {
4758 ext4_error(sb, "Freeing blocks not in datazone - "
4759 "block = %llu, count = %lu", block, count);
4760 goto error_return;
4761 }
4762
4763 ext4_debug("freeing block %llu\n", block);
4764 trace_ext4_free_blocks(inode, block, count, flags);
4765
4766 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4767 BUG_ON(count > 1);
4768
4769 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4770 inode, bh, block);
4771 }
4772
4773 /*
4774 * If the extent to be freed does not begin on a cluster
4775 * boundary, we need to deal with partial clusters at the
4776 * beginning and end of the extent. Normally we will free
4777 * blocks at the beginning or the end unless we are explicitly
4778 * requested to avoid doing so.
4779 */
4780 overflow = EXT4_PBLK_COFF(sbi, block);
4781 if (overflow) {
4782 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4783 overflow = sbi->s_cluster_ratio - overflow;
4784 block += overflow;
4785 if (count > overflow)
4786 count -= overflow;
4787 else
4788 return;
4789 } else {
4790 block -= overflow;
4791 count += overflow;
4792 }
4793 }
4794 overflow = EXT4_LBLK_COFF(sbi, count);
4795 if (overflow) {
4796 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4797 if (count > overflow)
4798 count -= overflow;
4799 else
4800 return;
4801 } else
4802 count += sbi->s_cluster_ratio - overflow;
4803 }
4804
4805 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4806 int i;
4807 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4808
4809 for (i = 0; i < count; i++) {
4810 cond_resched();
4811 if (is_metadata)
4812 bh = sb_find_get_block(inode->i_sb, block + i);
4813 ext4_forget(handle, is_metadata, inode, bh, block + i);
4814 }
4815 }
4816
4817 do_more:
4818 overflow = 0;
4819 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4820
4821 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4822 ext4_get_group_info(sb, block_group))))
4823 return;
4824
4825 /*
4826 * Check to see if we are freeing blocks across a group
4827 * boundary.
4828 */
4829 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4830 overflow = EXT4_C2B(sbi, bit) + count -
4831 EXT4_BLOCKS_PER_GROUP(sb);
4832 count -= overflow;
4833 }
4834 count_clusters = EXT4_NUM_B2C(sbi, count);
4835 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4836 if (IS_ERR(bitmap_bh)) {
4837 err = PTR_ERR(bitmap_bh);
4838 bitmap_bh = NULL;
4839 goto error_return;
4840 }
4841 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4842 if (!gdp) {
4843 err = -EIO;
4844 goto error_return;
4845 }
4846
4847 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4848 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4849 in_range(block, ext4_inode_table(sb, gdp),
4850 sbi->s_itb_per_group) ||
4851 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4852 sbi->s_itb_per_group)) {
4853
4854 ext4_error(sb, "Freeing blocks in system zone - "
4855 "Block = %llu, count = %lu", block, count);
4856 /* err = 0. ext4_std_error should be a no op */
4857 goto error_return;
4858 }
4859
4860 BUFFER_TRACE(bitmap_bh, "getting write access");
4861 err = ext4_journal_get_write_access(handle, bitmap_bh);
4862 if (err)
4863 goto error_return;
4864
4865 /*
4866 * We are about to modify some metadata. Call the journal APIs
4867 * to unshare ->b_data if a currently-committing transaction is
4868 * using it
4869 */
4870 BUFFER_TRACE(gd_bh, "get_write_access");
4871 err = ext4_journal_get_write_access(handle, gd_bh);
4872 if (err)
4873 goto error_return;
4874 #ifdef AGGRESSIVE_CHECK
4875 {
4876 int i;
4877 for (i = 0; i < count_clusters; i++)
4878 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4879 }
4880 #endif
4881 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4882
4883 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4884 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4885 GFP_NOFS|__GFP_NOFAIL);
4886 if (err)
4887 goto error_return;
4888
4889 /*
4890 * We need to make sure we don't reuse the freed block until after the
4891 * transaction is committed. We make an exception if the inode is to be
4892 * written in writeback mode since writeback mode has weak data
4893 * consistency guarantees.
4894 */
4895 if (ext4_handle_valid(handle) &&
4896 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4897 !ext4_should_writeback_data(inode))) {
4898 struct ext4_free_data *new_entry;
4899 /*
4900 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4901 * to fail.
4902 */
4903 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4904 GFP_NOFS|__GFP_NOFAIL);
4905 new_entry->efd_start_cluster = bit;
4906 new_entry->efd_group = block_group;
4907 new_entry->efd_count = count_clusters;
4908 new_entry->efd_tid = handle->h_transaction->t_tid;
4909
4910 ext4_lock_group(sb, block_group);
4911 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4912 ext4_mb_free_metadata(handle, &e4b, new_entry);
4913 } else {
4914 /* need to update group_info->bb_free and bitmap
4915 * with group lock held. generate_buddy look at
4916 * them with group lock_held
4917 */
4918 if (test_opt(sb, DISCARD)) {
4919 err = ext4_issue_discard(sb, block_group, bit, count,
4920 NULL);
4921 if (err && err != -EOPNOTSUPP)
4922 ext4_msg(sb, KERN_WARNING, "discard request in"
4923 " group:%d block:%d count:%lu failed"
4924 " with %d", block_group, bit, count,
4925 err);
4926 } else
4927 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4928
4929 ext4_lock_group(sb, block_group);
4930 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4931 mb_free_blocks(inode, &e4b, bit, count_clusters);
4932 }
4933
4934 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4935 ext4_free_group_clusters_set(sb, gdp, ret);
4936 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4937 ext4_group_desc_csum_set(sb, block_group, gdp);
4938 ext4_unlock_group(sb, block_group);
4939
4940 if (sbi->s_log_groups_per_flex) {
4941 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4942 atomic64_add(count_clusters,
4943 &sbi_array_rcu_deref(sbi, s_flex_groups,
4944 flex_group)->free_clusters);
4945 }
4946
4947 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4948 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4949 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4950
4951 ext4_mb_unload_buddy(&e4b);
4952
4953 /* We dirtied the bitmap block */
4954 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4955 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4956
4957 /* And the group descriptor block */
4958 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4959 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4960 if (!err)
4961 err = ret;
4962
4963 if (overflow && !err) {
4964 block += count;
4965 count = overflow;
4966 put_bh(bitmap_bh);
4967 goto do_more;
4968 }
4969 error_return:
4970 brelse(bitmap_bh);
4971 ext4_std_error(sb, err);
4972 return;
4973 }
4974
4975 /**
4976 * ext4_group_add_blocks() -- Add given blocks to an existing group
4977 * @handle: handle to this transaction
4978 * @sb: super block
4979 * @block: start physical block to add to the block group
4980 * @count: number of blocks to free
4981 *
4982 * This marks the blocks as free in the bitmap and buddy.
4983 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4984 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4985 ext4_fsblk_t block, unsigned long count)
4986 {
4987 struct buffer_head *bitmap_bh = NULL;
4988 struct buffer_head *gd_bh;
4989 ext4_group_t block_group;
4990 ext4_grpblk_t bit;
4991 unsigned int i;
4992 struct ext4_group_desc *desc;
4993 struct ext4_sb_info *sbi = EXT4_SB(sb);
4994 struct ext4_buddy e4b;
4995 int err = 0, ret, free_clusters_count;
4996 ext4_grpblk_t clusters_freed;
4997 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4998 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4999 unsigned long cluster_count = last_cluster - first_cluster + 1;
5000
5001 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5002
5003 if (count == 0)
5004 return 0;
5005
5006 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5007 /*
5008 * Check to see if we are freeing blocks across a group
5009 * boundary.
5010 */
5011 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5012 ext4_warning(sb, "too many blocks added to group %u",
5013 block_group);
5014 err = -EINVAL;
5015 goto error_return;
5016 }
5017
5018 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5019 if (IS_ERR(bitmap_bh)) {
5020 err = PTR_ERR(bitmap_bh);
5021 bitmap_bh = NULL;
5022 goto error_return;
5023 }
5024
5025 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5026 if (!desc) {
5027 err = -EIO;
5028 goto error_return;
5029 }
5030
5031 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5032 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5033 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5034 in_range(block + count - 1, ext4_inode_table(sb, desc),
5035 sbi->s_itb_per_group)) {
5036 ext4_error(sb, "Adding blocks in system zones - "
5037 "Block = %llu, count = %lu",
5038 block, count);
5039 err = -EINVAL;
5040 goto error_return;
5041 }
5042
5043 BUFFER_TRACE(bitmap_bh, "getting write access");
5044 err = ext4_journal_get_write_access(handle, bitmap_bh);
5045 if (err)
5046 goto error_return;
5047
5048 /*
5049 * We are about to modify some metadata. Call the journal APIs
5050 * to unshare ->b_data if a currently-committing transaction is
5051 * using it
5052 */
5053 BUFFER_TRACE(gd_bh, "get_write_access");
5054 err = ext4_journal_get_write_access(handle, gd_bh);
5055 if (err)
5056 goto error_return;
5057
5058 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5059 BUFFER_TRACE(bitmap_bh, "clear bit");
5060 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5061 ext4_error(sb, "bit already cleared for block %llu",
5062 (ext4_fsblk_t)(block + i));
5063 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5064 } else {
5065 clusters_freed++;
5066 }
5067 }
5068
5069 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5070 if (err)
5071 goto error_return;
5072
5073 /*
5074 * need to update group_info->bb_free and bitmap
5075 * with group lock held. generate_buddy look at
5076 * them with group lock_held
5077 */
5078 ext4_lock_group(sb, block_group);
5079 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5080 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5081 free_clusters_count = clusters_freed +
5082 ext4_free_group_clusters(sb, desc);
5083 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5084 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5085 ext4_group_desc_csum_set(sb, block_group, desc);
5086 ext4_unlock_group(sb, block_group);
5087 percpu_counter_add(&sbi->s_freeclusters_counter,
5088 clusters_freed);
5089
5090 if (sbi->s_log_groups_per_flex) {
5091 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5092 atomic64_add(clusters_freed,
5093 &sbi_array_rcu_deref(sbi, s_flex_groups,
5094 flex_group)->free_clusters);
5095 }
5096
5097 ext4_mb_unload_buddy(&e4b);
5098
5099 /* We dirtied the bitmap block */
5100 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5101 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5102
5103 /* And the group descriptor block */
5104 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5105 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5106 if (!err)
5107 err = ret;
5108
5109 error_return:
5110 brelse(bitmap_bh);
5111 ext4_std_error(sb, err);
5112 return err;
5113 }
5114
5115 /**
5116 * ext4_trim_extent -- function to TRIM one single free extent in the group
5117 * @sb: super block for the file system
5118 * @start: starting block of the free extent in the alloc. group
5119 * @count: number of blocks to TRIM
5120 * @group: alloc. group we are working with
5121 * @e4b: ext4 buddy for the group
5122 *
5123 * Trim "count" blocks starting at "start" in the "group". To assure that no
5124 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5125 * be called with under the group lock.
5126 */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b)5127 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5128 ext4_group_t group, struct ext4_buddy *e4b)
5129 __releases(bitlock)
5130 __acquires(bitlock)
5131 {
5132 struct ext4_free_extent ex;
5133 int ret = 0;
5134
5135 trace_ext4_trim_extent(sb, group, start, count);
5136
5137 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5138
5139 ex.fe_start = start;
5140 ex.fe_group = group;
5141 ex.fe_len = count;
5142
5143 /*
5144 * Mark blocks used, so no one can reuse them while
5145 * being trimmed.
5146 */
5147 mb_mark_used(e4b, &ex);
5148 ext4_unlock_group(sb, group);
5149 ret = ext4_issue_discard(sb, group, start, count, NULL);
5150 ext4_lock_group(sb, group);
5151 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5152 return ret;
5153 }
5154
5155 /**
5156 * ext4_trim_all_free -- function to trim all free space in alloc. group
5157 * @sb: super block for file system
5158 * @group: group to be trimmed
5159 * @start: first group block to examine
5160 * @max: last group block to examine
5161 * @minblocks: minimum extent block count
5162 *
5163 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5164 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5165 * the extent.
5166 *
5167 *
5168 * ext4_trim_all_free walks through group's block bitmap searching for free
5169 * extents. When the free extent is found, mark it as used in group buddy
5170 * bitmap. Then issue a TRIM command on this extent and free the extent in
5171 * the group buddy bitmap. This is done until whole group is scanned.
5172 */
5173 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5174 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5175 ext4_grpblk_t start, ext4_grpblk_t max,
5176 ext4_grpblk_t minblocks)
5177 {
5178 void *bitmap;
5179 ext4_grpblk_t next, count = 0, free_count = 0;
5180 struct ext4_buddy e4b;
5181 int ret = 0;
5182
5183 trace_ext4_trim_all_free(sb, group, start, max);
5184
5185 ret = ext4_mb_load_buddy(sb, group, &e4b);
5186 if (ret) {
5187 ext4_warning(sb, "Error %d loading buddy information for %u",
5188 ret, group);
5189 return ret;
5190 }
5191 bitmap = e4b.bd_bitmap;
5192
5193 ext4_lock_group(sb, group);
5194 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5195 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5196 goto out;
5197
5198 start = (e4b.bd_info->bb_first_free > start) ?
5199 e4b.bd_info->bb_first_free : start;
5200
5201 while (start <= max) {
5202 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5203 if (start > max)
5204 break;
5205 next = mb_find_next_bit(bitmap, max + 1, start);
5206
5207 if ((next - start) >= minblocks) {
5208 ret = ext4_trim_extent(sb, start,
5209 next - start, group, &e4b);
5210 if (ret && ret != -EOPNOTSUPP)
5211 break;
5212 ret = 0;
5213 count += next - start;
5214 }
5215 free_count += next - start;
5216 start = next + 1;
5217
5218 if (fatal_signal_pending(current)) {
5219 count = -ERESTARTSYS;
5220 break;
5221 }
5222
5223 if (need_resched()) {
5224 ext4_unlock_group(sb, group);
5225 cond_resched();
5226 ext4_lock_group(sb, group);
5227 }
5228
5229 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5230 break;
5231 }
5232
5233 if (!ret) {
5234 ret = count;
5235 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5236 }
5237 out:
5238 ext4_unlock_group(sb, group);
5239 ext4_mb_unload_buddy(&e4b);
5240
5241 ext4_debug("trimmed %d blocks in the group %d\n",
5242 count, group);
5243
5244 return ret;
5245 }
5246
5247 /**
5248 * ext4_trim_fs() -- trim ioctl handle function
5249 * @sb: superblock for filesystem
5250 * @range: fstrim_range structure
5251 *
5252 * start: First Byte to trim
5253 * len: number of Bytes to trim from start
5254 * minlen: minimum extent length in Bytes
5255 * ext4_trim_fs goes through all allocation groups containing Bytes from
5256 * start to start+len. For each such a group ext4_trim_all_free function
5257 * is invoked to trim all free space.
5258 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5259 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5260 {
5261 struct ext4_group_info *grp;
5262 ext4_group_t group, first_group, last_group;
5263 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5264 uint64_t start, end, minlen, trimmed = 0;
5265 ext4_fsblk_t first_data_blk =
5266 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5267 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5268 int ret = 0;
5269
5270 start = range->start >> sb->s_blocksize_bits;
5271 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5272 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5273 range->minlen >> sb->s_blocksize_bits);
5274
5275 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5276 start >= max_blks ||
5277 range->len < sb->s_blocksize)
5278 return -EINVAL;
5279 if (end >= max_blks)
5280 end = max_blks - 1;
5281 if (end <= first_data_blk)
5282 goto out;
5283 if (start < first_data_blk)
5284 start = first_data_blk;
5285
5286 /* Determine first and last group to examine based on start and end */
5287 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5288 &first_group, &first_cluster);
5289 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5290 &last_group, &last_cluster);
5291
5292 /* end now represents the last cluster to discard in this group */
5293 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5294
5295 for (group = first_group; group <= last_group; group++) {
5296 grp = ext4_get_group_info(sb, group);
5297 /* We only do this if the grp has never been initialized */
5298 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5299 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5300 if (ret)
5301 break;
5302 }
5303
5304 /*
5305 * For all the groups except the last one, last cluster will
5306 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5307 * change it for the last group, note that last_cluster is
5308 * already computed earlier by ext4_get_group_no_and_offset()
5309 */
5310 if (group == last_group)
5311 end = last_cluster;
5312
5313 if (grp->bb_free >= minlen) {
5314 cnt = ext4_trim_all_free(sb, group, first_cluster,
5315 end, minlen);
5316 if (cnt < 0) {
5317 ret = cnt;
5318 break;
5319 }
5320 trimmed += cnt;
5321 }
5322
5323 /*
5324 * For every group except the first one, we are sure
5325 * that the first cluster to discard will be cluster #0.
5326 */
5327 first_cluster = 0;
5328 }
5329
5330 if (!ret)
5331 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5332
5333 out:
5334 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5335 return ret;
5336 }
5337
5338 /* Iterate all the free extents in the group. */
5339 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)5340 ext4_mballoc_query_range(
5341 struct super_block *sb,
5342 ext4_group_t group,
5343 ext4_grpblk_t start,
5344 ext4_grpblk_t end,
5345 ext4_mballoc_query_range_fn formatter,
5346 void *priv)
5347 {
5348 void *bitmap;
5349 ext4_grpblk_t next;
5350 struct ext4_buddy e4b;
5351 int error;
5352
5353 error = ext4_mb_load_buddy(sb, group, &e4b);
5354 if (error)
5355 return error;
5356 bitmap = e4b.bd_bitmap;
5357
5358 ext4_lock_group(sb, group);
5359
5360 start = (e4b.bd_info->bb_first_free > start) ?
5361 e4b.bd_info->bb_first_free : start;
5362 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5363 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5364
5365 while (start <= end) {
5366 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5367 if (start > end)
5368 break;
5369 next = mb_find_next_bit(bitmap, end + 1, start);
5370
5371 ext4_unlock_group(sb, group);
5372 error = formatter(sb, group, start, next - start, priv);
5373 if (error)
5374 goto out_unload;
5375 ext4_lock_group(sb, group);
5376
5377 start = next + 1;
5378 }
5379
5380 ext4_unlock_group(sb, group);
5381 out_unload:
5382 ext4_mb_unload_buddy(&e4b);
5383
5384 return error;
5385 }
5386