1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 f2fs_build_fault_attr(sbi, 0, 0);
32 set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
56 /*
57 * We guarantee no failure on the returned page.
58 */
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
61 {
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
72 .is_meta = is_meta,
73 };
74 int err;
75
76 if (unlikely(!is_meta))
77 fio.op_flags &= ~REQ_META;
78 repeat:
79 page = f2fs_grab_cache_page(mapping, index, false);
80 if (!page) {
81 cond_resched();
82 goto repeat;
83 }
84 if (PageUptodate(page))
85 goto out;
86
87 fio.page = page;
88
89 err = f2fs_submit_page_bio(&fio);
90 if (err) {
91 f2fs_put_page(page, 1);
92 return ERR_PTR(err);
93 }
94
95 lock_page(page);
96 if (unlikely(page->mapping != mapping)) {
97 f2fs_put_page(page, 1);
98 goto repeat;
99 }
100
101 if (unlikely(!PageUptodate(page))) {
102 f2fs_put_page(page, 1);
103 return ERR_PTR(-EIO);
104 }
105 out:
106 return page;
107 }
108
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 return __get_meta_page(sbi, index, true);
112 }
113
f2fs_get_meta_page_nofail(struct f2fs_sb_info * sbi,pgoff_t index)114 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 struct page *page;
117 int count = 0;
118
119 retry:
120 page = __get_meta_page(sbi, index, true);
121 if (IS_ERR(page)) {
122 if (PTR_ERR(page) == -EIO &&
123 ++count <= DEFAULT_RETRY_IO_COUNT)
124 goto retry;
125
126 f2fs_stop_checkpoint(sbi, false);
127 f2fs_bug_on(sbi, 1);
128 }
129
130 return page;
131 }
132
133 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
135 {
136 return __get_meta_page(sbi, index, false);
137 }
138
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)139 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
140 block_t blkaddr, int type)
141 {
142 switch (type) {
143 case META_NAT:
144 break;
145 case META_SIT:
146 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
147 return false;
148 break;
149 case META_SSA:
150 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
151 blkaddr < SM_I(sbi)->ssa_blkaddr))
152 return false;
153 break;
154 case META_CP:
155 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
156 blkaddr < __start_cp_addr(sbi)))
157 return false;
158 break;
159 case META_POR:
160 case DATA_GENERIC:
161 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
162 blkaddr < MAIN_BLKADDR(sbi))) {
163 if (type == DATA_GENERIC) {
164 f2fs_msg(sbi->sb, KERN_WARNING,
165 "access invalid blkaddr:%u", blkaddr);
166 WARN_ON(1);
167 }
168 return false;
169 }
170 break;
171 case META_GENERIC:
172 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
173 blkaddr >= MAIN_BLKADDR(sbi)))
174 return false;
175 break;
176 default:
177 BUG();
178 }
179
180 return true;
181 }
182
183 /*
184 * Readahead CP/NAT/SIT/SSA pages
185 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)186 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
187 int type, bool sync)
188 {
189 struct page *page;
190 block_t blkno = start;
191 struct f2fs_io_info fio = {
192 .sbi = sbi,
193 .type = META,
194 .op = REQ_OP_READ,
195 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
196 .encrypted_page = NULL,
197 .in_list = false,
198 .is_meta = (type != META_POR),
199 };
200 struct blk_plug plug;
201
202 if (unlikely(type == META_POR))
203 fio.op_flags &= ~REQ_META;
204
205 blk_start_plug(&plug);
206 for (; nrpages-- > 0; blkno++) {
207
208 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
209 goto out;
210
211 switch (type) {
212 case META_NAT:
213 if (unlikely(blkno >=
214 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
215 blkno = 0;
216 /* get nat block addr */
217 fio.new_blkaddr = current_nat_addr(sbi,
218 blkno * NAT_ENTRY_PER_BLOCK);
219 break;
220 case META_SIT:
221 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
222 goto out;
223 /* get sit block addr */
224 fio.new_blkaddr = current_sit_addr(sbi,
225 blkno * SIT_ENTRY_PER_BLOCK);
226 break;
227 case META_SSA:
228 case META_CP:
229 case META_POR:
230 fio.new_blkaddr = blkno;
231 break;
232 default:
233 BUG();
234 }
235
236 page = f2fs_grab_cache_page(META_MAPPING(sbi),
237 fio.new_blkaddr, false);
238 if (!page)
239 continue;
240 if (PageUptodate(page)) {
241 f2fs_put_page(page, 1);
242 continue;
243 }
244
245 fio.page = page;
246 f2fs_submit_page_bio(&fio);
247 f2fs_put_page(page, 0);
248 }
249 out:
250 blk_finish_plug(&plug);
251 return blkno - start;
252 }
253
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)254 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
255 {
256 struct page *page;
257 bool readahead = false;
258
259 page = find_get_page(META_MAPPING(sbi), index);
260 if (!page || !PageUptodate(page))
261 readahead = true;
262 f2fs_put_page(page, 0);
263
264 if (readahead)
265 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
266 }
267
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)268 static int __f2fs_write_meta_page(struct page *page,
269 struct writeback_control *wbc,
270 enum iostat_type io_type)
271 {
272 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
273
274 trace_f2fs_writepage(page, META);
275
276 if (unlikely(f2fs_cp_error(sbi)))
277 goto redirty_out;
278 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
279 goto redirty_out;
280 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
281 goto redirty_out;
282
283 f2fs_do_write_meta_page(sbi, page, io_type);
284 dec_page_count(sbi, F2FS_DIRTY_META);
285
286 if (wbc->for_reclaim)
287 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
288 0, page->index, META);
289
290 unlock_page(page);
291
292 if (unlikely(f2fs_cp_error(sbi)))
293 f2fs_submit_merged_write(sbi, META);
294
295 return 0;
296
297 redirty_out:
298 redirty_page_for_writepage(wbc, page);
299 return AOP_WRITEPAGE_ACTIVATE;
300 }
301
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)302 static int f2fs_write_meta_page(struct page *page,
303 struct writeback_control *wbc)
304 {
305 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
306 }
307
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)308 static int f2fs_write_meta_pages(struct address_space *mapping,
309 struct writeback_control *wbc)
310 {
311 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
312 long diff, written;
313
314 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
315 goto skip_write;
316
317 /* collect a number of dirty meta pages and write together */
318 if (wbc->for_kupdate ||
319 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
320 goto skip_write;
321
322 /* if locked failed, cp will flush dirty pages instead */
323 if (!mutex_trylock(&sbi->cp_mutex))
324 goto skip_write;
325
326 trace_f2fs_writepages(mapping->host, wbc, META);
327 diff = nr_pages_to_write(sbi, META, wbc);
328 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
329 mutex_unlock(&sbi->cp_mutex);
330 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
331 return 0;
332
333 skip_write:
334 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
335 trace_f2fs_writepages(mapping->host, wbc, META);
336 return 0;
337 }
338
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)339 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
340 long nr_to_write, enum iostat_type io_type)
341 {
342 struct address_space *mapping = META_MAPPING(sbi);
343 pgoff_t index = 0, prev = ULONG_MAX;
344 struct pagevec pvec;
345 long nwritten = 0;
346 int nr_pages;
347 struct writeback_control wbc = {
348 .for_reclaim = 0,
349 };
350 struct blk_plug plug;
351
352 pagevec_init(&pvec);
353
354 blk_start_plug(&plug);
355
356 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
357 PAGECACHE_TAG_DIRTY))) {
358 int i;
359
360 for (i = 0; i < nr_pages; i++) {
361 struct page *page = pvec.pages[i];
362
363 if (prev == ULONG_MAX)
364 prev = page->index - 1;
365 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
366 pagevec_release(&pvec);
367 goto stop;
368 }
369
370 lock_page(page);
371
372 if (unlikely(page->mapping != mapping)) {
373 continue_unlock:
374 unlock_page(page);
375 continue;
376 }
377 if (!PageDirty(page)) {
378 /* someone wrote it for us */
379 goto continue_unlock;
380 }
381
382 f2fs_wait_on_page_writeback(page, META, true);
383
384 BUG_ON(PageWriteback(page));
385 if (!clear_page_dirty_for_io(page))
386 goto continue_unlock;
387
388 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
389 unlock_page(page);
390 break;
391 }
392 nwritten++;
393 prev = page->index;
394 if (unlikely(nwritten >= nr_to_write))
395 break;
396 }
397 pagevec_release(&pvec);
398 cond_resched();
399 }
400 stop:
401 if (nwritten)
402 f2fs_submit_merged_write(sbi, type);
403
404 blk_finish_plug(&plug);
405
406 return nwritten;
407 }
408
f2fs_set_meta_page_dirty(struct page * page)409 static int f2fs_set_meta_page_dirty(struct page *page)
410 {
411 trace_f2fs_set_page_dirty(page, META);
412
413 if (!PageUptodate(page))
414 SetPageUptodate(page);
415 if (!PageDirty(page)) {
416 __set_page_dirty_nobuffers(page);
417 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
418 SetPagePrivate(page);
419 f2fs_trace_pid(page);
420 return 1;
421 }
422 return 0;
423 }
424
425 const struct address_space_operations f2fs_meta_aops = {
426 .writepage = f2fs_write_meta_page,
427 .writepages = f2fs_write_meta_pages,
428 .set_page_dirty = f2fs_set_meta_page_dirty,
429 .invalidatepage = f2fs_invalidate_page,
430 .releasepage = f2fs_release_page,
431 #ifdef CONFIG_MIGRATION
432 .migratepage = f2fs_migrate_page,
433 #endif
434 };
435
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)436 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
437 unsigned int devidx, int type)
438 {
439 struct inode_management *im = &sbi->im[type];
440 struct ino_entry *e, *tmp;
441
442 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
443
444 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
445
446 spin_lock(&im->ino_lock);
447 e = radix_tree_lookup(&im->ino_root, ino);
448 if (!e) {
449 e = tmp;
450 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
451 f2fs_bug_on(sbi, 1);
452
453 memset(e, 0, sizeof(struct ino_entry));
454 e->ino = ino;
455
456 list_add_tail(&e->list, &im->ino_list);
457 if (type != ORPHAN_INO)
458 im->ino_num++;
459 }
460
461 if (type == FLUSH_INO)
462 f2fs_set_bit(devidx, (char *)&e->dirty_device);
463
464 spin_unlock(&im->ino_lock);
465 radix_tree_preload_end();
466
467 if (e != tmp)
468 kmem_cache_free(ino_entry_slab, tmp);
469 }
470
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)471 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
472 {
473 struct inode_management *im = &sbi->im[type];
474 struct ino_entry *e;
475
476 spin_lock(&im->ino_lock);
477 e = radix_tree_lookup(&im->ino_root, ino);
478 if (e) {
479 list_del(&e->list);
480 radix_tree_delete(&im->ino_root, ino);
481 im->ino_num--;
482 spin_unlock(&im->ino_lock);
483 kmem_cache_free(ino_entry_slab, e);
484 return;
485 }
486 spin_unlock(&im->ino_lock);
487 }
488
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)489 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
490 {
491 /* add new dirty ino entry into list */
492 __add_ino_entry(sbi, ino, 0, type);
493 }
494
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)495 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
496 {
497 /* remove dirty ino entry from list */
498 __remove_ino_entry(sbi, ino, type);
499 }
500
501 /* mode should be APPEND_INO or UPDATE_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)502 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
503 {
504 struct inode_management *im = &sbi->im[mode];
505 struct ino_entry *e;
506
507 spin_lock(&im->ino_lock);
508 e = radix_tree_lookup(&im->ino_root, ino);
509 spin_unlock(&im->ino_lock);
510 return e ? true : false;
511 }
512
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)513 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
514 {
515 struct ino_entry *e, *tmp;
516 int i;
517
518 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
519 struct inode_management *im = &sbi->im[i];
520
521 spin_lock(&im->ino_lock);
522 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
523 list_del(&e->list);
524 radix_tree_delete(&im->ino_root, e->ino);
525 kmem_cache_free(ino_entry_slab, e);
526 im->ino_num--;
527 }
528 spin_unlock(&im->ino_lock);
529 }
530 }
531
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)532 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
533 unsigned int devidx, int type)
534 {
535 __add_ino_entry(sbi, ino, devidx, type);
536 }
537
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)538 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
539 unsigned int devidx, int type)
540 {
541 struct inode_management *im = &sbi->im[type];
542 struct ino_entry *e;
543 bool is_dirty = false;
544
545 spin_lock(&im->ino_lock);
546 e = radix_tree_lookup(&im->ino_root, ino);
547 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
548 is_dirty = true;
549 spin_unlock(&im->ino_lock);
550 return is_dirty;
551 }
552
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)553 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
554 {
555 struct inode_management *im = &sbi->im[ORPHAN_INO];
556 int err = 0;
557
558 spin_lock(&im->ino_lock);
559
560 if (time_to_inject(sbi, FAULT_ORPHAN)) {
561 spin_unlock(&im->ino_lock);
562 f2fs_show_injection_info(FAULT_ORPHAN);
563 return -ENOSPC;
564 }
565
566 if (unlikely(im->ino_num >= sbi->max_orphans))
567 err = -ENOSPC;
568 else
569 im->ino_num++;
570 spin_unlock(&im->ino_lock);
571
572 return err;
573 }
574
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)575 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
576 {
577 struct inode_management *im = &sbi->im[ORPHAN_INO];
578
579 spin_lock(&im->ino_lock);
580 f2fs_bug_on(sbi, im->ino_num == 0);
581 im->ino_num--;
582 spin_unlock(&im->ino_lock);
583 }
584
f2fs_add_orphan_inode(struct inode * inode)585 void f2fs_add_orphan_inode(struct inode *inode)
586 {
587 /* add new orphan ino entry into list */
588 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
589 f2fs_update_inode_page(inode);
590 }
591
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)592 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
593 {
594 /* remove orphan entry from orphan list */
595 __remove_ino_entry(sbi, ino, ORPHAN_INO);
596 }
597
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)598 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
599 {
600 struct inode *inode;
601 struct node_info ni;
602 int err;
603
604 inode = f2fs_iget_retry(sbi->sb, ino);
605 if (IS_ERR(inode)) {
606 /*
607 * there should be a bug that we can't find the entry
608 * to orphan inode.
609 */
610 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
611 return PTR_ERR(inode);
612 }
613
614 err = dquot_initialize(inode);
615 if (err) {
616 iput(inode);
617 goto err_out;
618 }
619
620 clear_nlink(inode);
621
622 /* truncate all the data during iput */
623 iput(inode);
624
625 err = f2fs_get_node_info(sbi, ino, &ni);
626 if (err)
627 goto err_out;
628
629 /* ENOMEM was fully retried in f2fs_evict_inode. */
630 if (ni.blk_addr != NULL_ADDR) {
631 err = -EIO;
632 goto err_out;
633 }
634 return 0;
635
636 err_out:
637 set_sbi_flag(sbi, SBI_NEED_FSCK);
638 f2fs_msg(sbi->sb, KERN_WARNING,
639 "%s: orphan failed (ino=%x), run fsck to fix.",
640 __func__, ino);
641 return err;
642 }
643
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)644 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
645 {
646 block_t start_blk, orphan_blocks, i, j;
647 unsigned int s_flags = sbi->sb->s_flags;
648 int err = 0;
649 #ifdef CONFIG_QUOTA
650 int quota_enabled;
651 #endif
652
653 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
654 return 0;
655
656 if (s_flags & SB_RDONLY) {
657 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
658 sbi->sb->s_flags &= ~SB_RDONLY;
659 }
660
661 #ifdef CONFIG_QUOTA
662 /* Needed for iput() to work correctly and not trash data */
663 sbi->sb->s_flags |= SB_ACTIVE;
664
665 /*
666 * Turn on quotas which were not enabled for read-only mounts if
667 * filesystem has quota feature, so that they are updated correctly.
668 */
669 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
670 #endif
671
672 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
673 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
674
675 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
676
677 for (i = 0; i < orphan_blocks; i++) {
678 struct page *page;
679 struct f2fs_orphan_block *orphan_blk;
680
681 page = f2fs_get_meta_page(sbi, start_blk + i);
682 if (IS_ERR(page)) {
683 err = PTR_ERR(page);
684 goto out;
685 }
686
687 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
688 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
689 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
690 err = recover_orphan_inode(sbi, ino);
691 if (err) {
692 f2fs_put_page(page, 1);
693 goto out;
694 }
695 }
696 f2fs_put_page(page, 1);
697 }
698 /* clear Orphan Flag */
699 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
700 out:
701 set_sbi_flag(sbi, SBI_IS_RECOVERED);
702
703 #ifdef CONFIG_QUOTA
704 /* Turn quotas off */
705 if (quota_enabled)
706 f2fs_quota_off_umount(sbi->sb);
707 #endif
708 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
709
710 return err;
711 }
712
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)713 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
714 {
715 struct list_head *head;
716 struct f2fs_orphan_block *orphan_blk = NULL;
717 unsigned int nentries = 0;
718 unsigned short index = 1;
719 unsigned short orphan_blocks;
720 struct page *page = NULL;
721 struct ino_entry *orphan = NULL;
722 struct inode_management *im = &sbi->im[ORPHAN_INO];
723
724 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
725
726 /*
727 * we don't need to do spin_lock(&im->ino_lock) here, since all the
728 * orphan inode operations are covered under f2fs_lock_op().
729 * And, spin_lock should be avoided due to page operations below.
730 */
731 head = &im->ino_list;
732
733 /* loop for each orphan inode entry and write them in Jornal block */
734 list_for_each_entry(orphan, head, list) {
735 if (!page) {
736 page = f2fs_grab_meta_page(sbi, start_blk++);
737 orphan_blk =
738 (struct f2fs_orphan_block *)page_address(page);
739 memset(orphan_blk, 0, sizeof(*orphan_blk));
740 }
741
742 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
743
744 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
745 /*
746 * an orphan block is full of 1020 entries,
747 * then we need to flush current orphan blocks
748 * and bring another one in memory
749 */
750 orphan_blk->blk_addr = cpu_to_le16(index);
751 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
752 orphan_blk->entry_count = cpu_to_le32(nentries);
753 set_page_dirty(page);
754 f2fs_put_page(page, 1);
755 index++;
756 nentries = 0;
757 page = NULL;
758 }
759 }
760
761 if (page) {
762 orphan_blk->blk_addr = cpu_to_le16(index);
763 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
764 orphan_blk->entry_count = cpu_to_le32(nentries);
765 set_page_dirty(page);
766 f2fs_put_page(page, 1);
767 }
768 }
769
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)770 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
771 struct f2fs_checkpoint **cp_block, struct page **cp_page,
772 unsigned long long *version)
773 {
774 unsigned long blk_size = sbi->blocksize;
775 size_t crc_offset = 0;
776 __u32 crc = 0;
777
778 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
779 if (IS_ERR(*cp_page))
780 return PTR_ERR(*cp_page);
781
782 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
783
784 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
785 if (crc_offset > (blk_size - sizeof(__le32))) {
786 f2fs_put_page(*cp_page, 1);
787 f2fs_msg(sbi->sb, KERN_WARNING,
788 "invalid crc_offset: %zu", crc_offset);
789 return -EINVAL;
790 }
791
792 crc = cur_cp_crc(*cp_block);
793 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
794 f2fs_put_page(*cp_page, 1);
795 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
796 return -EINVAL;
797 }
798
799 *version = cur_cp_version(*cp_block);
800 return 0;
801 }
802
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)803 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
804 block_t cp_addr, unsigned long long *version)
805 {
806 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
807 struct f2fs_checkpoint *cp_block = NULL;
808 unsigned long long cur_version = 0, pre_version = 0;
809 int err;
810
811 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
812 &cp_page_1, version);
813 if (err)
814 return NULL;
815
816 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
817 sbi->blocks_per_seg) {
818 f2fs_msg(sbi->sb, KERN_WARNING,
819 "invalid cp_pack_total_block_count:%u",
820 le32_to_cpu(cp_block->cp_pack_total_block_count));
821 goto invalid_cp;
822 }
823 pre_version = *version;
824
825 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
826 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
827 &cp_page_2, version);
828 if (err)
829 goto invalid_cp;
830 cur_version = *version;
831
832 if (cur_version == pre_version) {
833 *version = cur_version;
834 f2fs_put_page(cp_page_2, 1);
835 return cp_page_1;
836 }
837 f2fs_put_page(cp_page_2, 1);
838 invalid_cp:
839 f2fs_put_page(cp_page_1, 1);
840 return NULL;
841 }
842
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)843 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
844 {
845 struct f2fs_checkpoint *cp_block;
846 struct f2fs_super_block *fsb = sbi->raw_super;
847 struct page *cp1, *cp2, *cur_page;
848 unsigned long blk_size = sbi->blocksize;
849 unsigned long long cp1_version = 0, cp2_version = 0;
850 unsigned long long cp_start_blk_no;
851 unsigned int cp_blks = 1 + __cp_payload(sbi);
852 block_t cp_blk_no;
853 int i;
854 int err;
855
856 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
857 GFP_KERNEL);
858 if (!sbi->ckpt)
859 return -ENOMEM;
860 /*
861 * Finding out valid cp block involves read both
862 * sets( cp pack1 and cp pack 2)
863 */
864 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
865 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
866
867 /* The second checkpoint pack should start at the next segment */
868 cp_start_blk_no += ((unsigned long long)1) <<
869 le32_to_cpu(fsb->log_blocks_per_seg);
870 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
871
872 if (cp1 && cp2) {
873 if (ver_after(cp2_version, cp1_version))
874 cur_page = cp2;
875 else
876 cur_page = cp1;
877 } else if (cp1) {
878 cur_page = cp1;
879 } else if (cp2) {
880 cur_page = cp2;
881 } else {
882 err = -EFSCORRUPTED;
883 goto fail_no_cp;
884 }
885
886 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
887 memcpy(sbi->ckpt, cp_block, blk_size);
888
889 if (cur_page == cp1)
890 sbi->cur_cp_pack = 1;
891 else
892 sbi->cur_cp_pack = 2;
893
894 /* Sanity checking of checkpoint */
895 if (f2fs_sanity_check_ckpt(sbi)) {
896 err = -EFSCORRUPTED;
897 goto free_fail_no_cp;
898 }
899
900 if (cp_blks <= 1)
901 goto done;
902
903 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
904 if (cur_page == cp2)
905 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
906
907 for (i = 1; i < cp_blks; i++) {
908 void *sit_bitmap_ptr;
909 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
910
911 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
912 if (IS_ERR(cur_page)) {
913 err = PTR_ERR(cur_page);
914 goto free_fail_no_cp;
915 }
916 sit_bitmap_ptr = page_address(cur_page);
917 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
918 f2fs_put_page(cur_page, 1);
919 }
920 done:
921 f2fs_put_page(cp1, 1);
922 f2fs_put_page(cp2, 1);
923 return 0;
924
925 free_fail_no_cp:
926 f2fs_put_page(cp1, 1);
927 f2fs_put_page(cp2, 1);
928 fail_no_cp:
929 kfree(sbi->ckpt);
930 return err;
931 }
932
__add_dirty_inode(struct inode * inode,enum inode_type type)933 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
934 {
935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
936 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
937
938 if (is_inode_flag_set(inode, flag))
939 return;
940
941 set_inode_flag(inode, flag);
942 if (!f2fs_is_volatile_file(inode))
943 list_add_tail(&F2FS_I(inode)->dirty_list,
944 &sbi->inode_list[type]);
945 stat_inc_dirty_inode(sbi, type);
946 }
947
__remove_dirty_inode(struct inode * inode,enum inode_type type)948 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
949 {
950 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
951
952 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
953 return;
954
955 list_del_init(&F2FS_I(inode)->dirty_list);
956 clear_inode_flag(inode, flag);
957 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
958 }
959
f2fs_update_dirty_page(struct inode * inode,struct page * page)960 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
961 {
962 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
963 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
964
965 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
966 !S_ISLNK(inode->i_mode))
967 return;
968
969 spin_lock(&sbi->inode_lock[type]);
970 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
971 __add_dirty_inode(inode, type);
972 inode_inc_dirty_pages(inode);
973 spin_unlock(&sbi->inode_lock[type]);
974
975 SetPagePrivate(page);
976 f2fs_trace_pid(page);
977 }
978
f2fs_remove_dirty_inode(struct inode * inode)979 void f2fs_remove_dirty_inode(struct inode *inode)
980 {
981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
983
984 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
985 !S_ISLNK(inode->i_mode))
986 return;
987
988 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
989 return;
990
991 spin_lock(&sbi->inode_lock[type]);
992 __remove_dirty_inode(inode, type);
993 spin_unlock(&sbi->inode_lock[type]);
994 }
995
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)996 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
997 {
998 struct list_head *head;
999 struct inode *inode;
1000 struct f2fs_inode_info *fi;
1001 bool is_dir = (type == DIR_INODE);
1002 unsigned long ino = 0;
1003
1004 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1005 get_pages(sbi, is_dir ?
1006 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1007 retry:
1008 if (unlikely(f2fs_cp_error(sbi))) {
1009 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1010 get_pages(sbi, is_dir ?
1011 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1012 return -EIO;
1013 }
1014
1015 spin_lock(&sbi->inode_lock[type]);
1016
1017 head = &sbi->inode_list[type];
1018 if (list_empty(head)) {
1019 spin_unlock(&sbi->inode_lock[type]);
1020 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1021 get_pages(sbi, is_dir ?
1022 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1023 return 0;
1024 }
1025 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1026 inode = igrab(&fi->vfs_inode);
1027 spin_unlock(&sbi->inode_lock[type]);
1028 if (inode) {
1029 unsigned long cur_ino = inode->i_ino;
1030
1031 if (is_dir)
1032 F2FS_I(inode)->cp_task = current;
1033
1034 filemap_fdatawrite(inode->i_mapping);
1035
1036 if (is_dir)
1037 F2FS_I(inode)->cp_task = NULL;
1038
1039 iput(inode);
1040 /* We need to give cpu to another writers. */
1041 if (ino == cur_ino)
1042 cond_resched();
1043 else
1044 ino = cur_ino;
1045 } else {
1046 /*
1047 * We should submit bio, since it exists several
1048 * wribacking dentry pages in the freeing inode.
1049 */
1050 f2fs_submit_merged_write(sbi, DATA);
1051 cond_resched();
1052 }
1053 goto retry;
1054 }
1055
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1056 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1057 {
1058 struct list_head *head = &sbi->inode_list[DIRTY_META];
1059 struct inode *inode;
1060 struct f2fs_inode_info *fi;
1061 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1062
1063 while (total--) {
1064 if (unlikely(f2fs_cp_error(sbi)))
1065 return -EIO;
1066
1067 spin_lock(&sbi->inode_lock[DIRTY_META]);
1068 if (list_empty(head)) {
1069 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1070 return 0;
1071 }
1072 fi = list_first_entry(head, struct f2fs_inode_info,
1073 gdirty_list);
1074 inode = igrab(&fi->vfs_inode);
1075 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1076 if (inode) {
1077 sync_inode_metadata(inode, 0);
1078
1079 /* it's on eviction */
1080 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1081 f2fs_update_inode_page(inode);
1082 iput(inode);
1083 }
1084 }
1085 return 0;
1086 }
1087
__prepare_cp_block(struct f2fs_sb_info * sbi)1088 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1089 {
1090 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1091 struct f2fs_nm_info *nm_i = NM_I(sbi);
1092 nid_t last_nid = nm_i->next_scan_nid;
1093
1094 next_free_nid(sbi, &last_nid);
1095 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1096 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1097 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1098 ckpt->next_free_nid = cpu_to_le32(last_nid);
1099 }
1100
1101 /*
1102 * Freeze all the FS-operations for checkpoint.
1103 */
block_operations(struct f2fs_sb_info * sbi)1104 static int block_operations(struct f2fs_sb_info *sbi)
1105 {
1106 struct writeback_control wbc = {
1107 .sync_mode = WB_SYNC_ALL,
1108 .nr_to_write = LONG_MAX,
1109 .for_reclaim = 0,
1110 };
1111 struct blk_plug plug;
1112 int err = 0;
1113
1114 blk_start_plug(&plug);
1115
1116 retry_flush_dents:
1117 f2fs_lock_all(sbi);
1118 /* write all the dirty dentry pages */
1119 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1120 f2fs_unlock_all(sbi);
1121 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1122 if (err)
1123 goto out;
1124 cond_resched();
1125 goto retry_flush_dents;
1126 }
1127
1128 /*
1129 * POR: we should ensure that there are no dirty node pages
1130 * until finishing nat/sit flush. inode->i_blocks can be updated.
1131 */
1132 down_write(&sbi->node_change);
1133
1134 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1135 up_write(&sbi->node_change);
1136 f2fs_unlock_all(sbi);
1137 err = f2fs_sync_inode_meta(sbi);
1138 if (err)
1139 goto out;
1140 cond_resched();
1141 goto retry_flush_dents;
1142 }
1143
1144 retry_flush_nodes:
1145 down_write(&sbi->node_write);
1146
1147 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1148 up_write(&sbi->node_write);
1149 atomic_inc(&sbi->wb_sync_req[NODE]);
1150 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1151 atomic_dec(&sbi->wb_sync_req[NODE]);
1152 if (err) {
1153 up_write(&sbi->node_change);
1154 f2fs_unlock_all(sbi);
1155 goto out;
1156 }
1157 cond_resched();
1158 goto retry_flush_nodes;
1159 }
1160
1161 /*
1162 * sbi->node_change is used only for AIO write_begin path which produces
1163 * dirty node blocks and some checkpoint values by block allocation.
1164 */
1165 __prepare_cp_block(sbi);
1166 up_write(&sbi->node_change);
1167 out:
1168 blk_finish_plug(&plug);
1169 return err;
1170 }
1171
unblock_operations(struct f2fs_sb_info * sbi)1172 static void unblock_operations(struct f2fs_sb_info *sbi)
1173 {
1174 up_write(&sbi->node_write);
1175 f2fs_unlock_all(sbi);
1176 }
1177
f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1178 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1179 {
1180 DEFINE_WAIT(wait);
1181
1182 for (;;) {
1183 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1184
1185 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1186 break;
1187
1188 if (unlikely(f2fs_cp_error(sbi)))
1189 break;
1190
1191 io_schedule_timeout(5*HZ);
1192 }
1193 finish_wait(&sbi->cp_wait, &wait);
1194 }
1195
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1196 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1197 {
1198 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1199 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1200 unsigned long flags;
1201
1202 spin_lock_irqsave(&sbi->cp_lock, flags);
1203
1204 if ((cpc->reason & CP_UMOUNT) &&
1205 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1206 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1207 disable_nat_bits(sbi, false);
1208
1209 if (cpc->reason & CP_TRIMMED)
1210 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1211 else
1212 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1213
1214 if (cpc->reason & CP_UMOUNT)
1215 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1216 else
1217 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1218
1219 if (cpc->reason & CP_FASTBOOT)
1220 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1221 else
1222 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1223
1224 if (orphan_num)
1225 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1226 else
1227 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1228
1229 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1230 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1231
1232 /* set this flag to activate crc|cp_ver for recovery */
1233 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1234 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1235
1236 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1237 }
1238
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1239 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1240 void *src, block_t blk_addr)
1241 {
1242 struct writeback_control wbc = {
1243 .for_reclaim = 0,
1244 };
1245
1246 /*
1247 * pagevec_lookup_tag and lock_page again will take
1248 * some extra time. Therefore, f2fs_update_meta_pages and
1249 * f2fs_sync_meta_pages are combined in this function.
1250 */
1251 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1252 int err;
1253
1254 memcpy(page_address(page), src, PAGE_SIZE);
1255 set_page_dirty(page);
1256
1257 f2fs_wait_on_page_writeback(page, META, true);
1258 f2fs_bug_on(sbi, PageWriteback(page));
1259 if (unlikely(!clear_page_dirty_for_io(page)))
1260 f2fs_bug_on(sbi, 1);
1261
1262 /* writeout cp pack 2 page */
1263 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1264 if (unlikely(err && f2fs_cp_error(sbi))) {
1265 f2fs_put_page(page, 1);
1266 return;
1267 }
1268
1269 f2fs_bug_on(sbi, err);
1270 f2fs_put_page(page, 0);
1271
1272 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1273 f2fs_submit_merged_write(sbi, META_FLUSH);
1274 }
1275
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1276 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1277 {
1278 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1279 struct f2fs_nm_info *nm_i = NM_I(sbi);
1280 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1281 block_t start_blk;
1282 unsigned int data_sum_blocks, orphan_blocks;
1283 __u32 crc32 = 0;
1284 int i;
1285 int cp_payload_blks = __cp_payload(sbi);
1286 struct super_block *sb = sbi->sb;
1287 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1288 u64 kbytes_written;
1289 int err;
1290
1291 /* Flush all the NAT/SIT pages */
1292 while (get_pages(sbi, F2FS_DIRTY_META)) {
1293 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1294 if (unlikely(f2fs_cp_error(sbi)))
1295 break;
1296 }
1297
1298 /*
1299 * modify checkpoint
1300 * version number is already updated
1301 */
1302 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1303 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1304 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1305 ckpt->cur_node_segno[i] =
1306 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1307 ckpt->cur_node_blkoff[i] =
1308 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1309 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1310 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1311 }
1312 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1313 ckpt->cur_data_segno[i] =
1314 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1315 ckpt->cur_data_blkoff[i] =
1316 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1317 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1318 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1319 }
1320
1321 /* 2 cp + n data seg summary + orphan inode blocks */
1322 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1323 spin_lock_irqsave(&sbi->cp_lock, flags);
1324 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1325 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1326 else
1327 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1328 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1329
1330 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1331 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1332 orphan_blocks);
1333
1334 if (__remain_node_summaries(cpc->reason))
1335 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1336 cp_payload_blks + data_sum_blocks +
1337 orphan_blocks + NR_CURSEG_NODE_TYPE);
1338 else
1339 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1340 cp_payload_blks + data_sum_blocks +
1341 orphan_blocks);
1342
1343 /* update ckpt flag for checkpoint */
1344 update_ckpt_flags(sbi, cpc);
1345
1346 /* update SIT/NAT bitmap */
1347 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1348 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1349
1350 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1351 *((__le32 *)((unsigned char *)ckpt +
1352 le32_to_cpu(ckpt->checksum_offset)))
1353 = cpu_to_le32(crc32);
1354
1355 start_blk = __start_cp_next_addr(sbi);
1356
1357 /* write nat bits */
1358 if (enabled_nat_bits(sbi, cpc)) {
1359 __u64 cp_ver = cur_cp_version(ckpt);
1360 block_t blk;
1361
1362 cp_ver |= ((__u64)crc32 << 32);
1363 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1364
1365 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1366 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1367 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1368 (i << F2FS_BLKSIZE_BITS), blk + i);
1369
1370 /* Flush all the NAT BITS pages */
1371 while (get_pages(sbi, F2FS_DIRTY_META)) {
1372 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1373 FS_CP_META_IO);
1374 if (unlikely(f2fs_cp_error(sbi)))
1375 break;
1376 }
1377 }
1378
1379 /* write out checkpoint buffer at block 0 */
1380 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1381
1382 for (i = 1; i < 1 + cp_payload_blks; i++)
1383 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1384 start_blk++);
1385
1386 if (orphan_num) {
1387 write_orphan_inodes(sbi, start_blk);
1388 start_blk += orphan_blocks;
1389 }
1390
1391 f2fs_write_data_summaries(sbi, start_blk);
1392 start_blk += data_sum_blocks;
1393
1394 /* Record write statistics in the hot node summary */
1395 kbytes_written = sbi->kbytes_written;
1396 if (sb->s_bdev->bd_part)
1397 kbytes_written += BD_PART_WRITTEN(sbi);
1398
1399 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1400
1401 if (__remain_node_summaries(cpc->reason)) {
1402 f2fs_write_node_summaries(sbi, start_blk);
1403 start_blk += NR_CURSEG_NODE_TYPE;
1404 }
1405
1406 /* update user_block_counts */
1407 sbi->last_valid_block_count = sbi->total_valid_block_count;
1408 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1409
1410 /* Here, we have one bio having CP pack except cp pack 2 page */
1411 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1412
1413 /* wait for previous submitted meta pages writeback */
1414 f2fs_wait_on_all_pages_writeback(sbi);
1415
1416 /* flush all device cache */
1417 err = f2fs_flush_device_cache(sbi);
1418 if (err)
1419 return err;
1420
1421 /* barrier and flush checkpoint cp pack 2 page if it can */
1422 commit_checkpoint(sbi, ckpt, start_blk);
1423 f2fs_wait_on_all_pages_writeback(sbi);
1424
1425 /*
1426 * invalidate intermediate page cache borrowed from meta inode
1427 * which are used for migration of encrypted inode's blocks.
1428 */
1429 if (f2fs_sb_has_encrypt(sbi->sb))
1430 invalidate_mapping_pages(META_MAPPING(sbi),
1431 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1432
1433 f2fs_release_ino_entry(sbi, false);
1434
1435 f2fs_reset_fsync_node_info(sbi);
1436
1437 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1438 clear_sbi_flag(sbi, SBI_NEED_CP);
1439 __set_cp_next_pack(sbi);
1440
1441 /*
1442 * redirty superblock if metadata like node page or inode cache is
1443 * updated during writing checkpoint.
1444 */
1445 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1446 get_pages(sbi, F2FS_DIRTY_IMETA))
1447 set_sbi_flag(sbi, SBI_IS_DIRTY);
1448
1449 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1450
1451 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1452 }
1453
1454 /*
1455 * We guarantee that this checkpoint procedure will not fail.
1456 */
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1457 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1458 {
1459 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1460 unsigned long long ckpt_ver;
1461 int err = 0;
1462
1463 mutex_lock(&sbi->cp_mutex);
1464
1465 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1466 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1467 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1468 goto out;
1469 if (unlikely(f2fs_cp_error(sbi))) {
1470 err = -EIO;
1471 goto out;
1472 }
1473 if (f2fs_readonly(sbi->sb)) {
1474 err = -EROFS;
1475 goto out;
1476 }
1477
1478 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1479
1480 err = block_operations(sbi);
1481 if (err)
1482 goto out;
1483
1484 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1485
1486 f2fs_flush_merged_writes(sbi);
1487
1488 /* this is the case of multiple fstrims without any changes */
1489 if (cpc->reason & CP_DISCARD) {
1490 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1491 unblock_operations(sbi);
1492 goto out;
1493 }
1494
1495 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1496 SIT_I(sbi)->dirty_sentries == 0 &&
1497 prefree_segments(sbi) == 0) {
1498 f2fs_flush_sit_entries(sbi, cpc);
1499 f2fs_clear_prefree_segments(sbi, cpc);
1500 unblock_operations(sbi);
1501 goto out;
1502 }
1503 }
1504
1505 /*
1506 * update checkpoint pack index
1507 * Increase the version number so that
1508 * SIT entries and seg summaries are written at correct place
1509 */
1510 ckpt_ver = cur_cp_version(ckpt);
1511 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1512
1513 /* write cached NAT/SIT entries to NAT/SIT area */
1514 f2fs_flush_nat_entries(sbi, cpc);
1515 f2fs_flush_sit_entries(sbi, cpc);
1516
1517 /* unlock all the fs_lock[] in do_checkpoint() */
1518 err = do_checkpoint(sbi, cpc);
1519 if (err)
1520 f2fs_release_discard_addrs(sbi);
1521 else
1522 f2fs_clear_prefree_segments(sbi, cpc);
1523
1524 unblock_operations(sbi);
1525 stat_inc_cp_count(sbi->stat_info);
1526
1527 if (cpc->reason & CP_RECOVERY)
1528 f2fs_msg(sbi->sb, KERN_NOTICE,
1529 "checkpoint: version = %llx", ckpt_ver);
1530
1531 /* do checkpoint periodically */
1532 f2fs_update_time(sbi, CP_TIME);
1533 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1534 out:
1535 mutex_unlock(&sbi->cp_mutex);
1536 return err;
1537 }
1538
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1539 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1540 {
1541 int i;
1542
1543 for (i = 0; i < MAX_INO_ENTRY; i++) {
1544 struct inode_management *im = &sbi->im[i];
1545
1546 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1547 spin_lock_init(&im->ino_lock);
1548 INIT_LIST_HEAD(&im->ino_list);
1549 im->ino_num = 0;
1550 }
1551
1552 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1553 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1554 F2FS_ORPHANS_PER_BLOCK;
1555 }
1556
f2fs_create_checkpoint_caches(void)1557 int __init f2fs_create_checkpoint_caches(void)
1558 {
1559 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1560 sizeof(struct ino_entry));
1561 if (!ino_entry_slab)
1562 return -ENOMEM;
1563 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1564 sizeof(struct inode_entry));
1565 if (!f2fs_inode_entry_slab) {
1566 kmem_cache_destroy(ino_entry_slab);
1567 return -ENOMEM;
1568 }
1569 return 0;
1570 }
1571
f2fs_destroy_checkpoint_caches(void)1572 void f2fs_destroy_checkpoint_caches(void)
1573 {
1574 kmem_cache_destroy(ino_entry_slab);
1575 kmem_cache_destroy(f2fs_inode_entry_slab);
1576 }
1577