1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/swap.h>
21 #include <linux/prefetch.h>
22 #include <linux/uio.h>
23 #include <linux/cleancache.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31
32 #define NUM_PREALLOC_POST_READ_CTXS 128
33
34 static struct kmem_cache *bio_post_read_ctx_cache;
35 static mempool_t *bio_post_read_ctx_pool;
36
__is_cp_guaranteed(struct page * page)37 static bool __is_cp_guaranteed(struct page *page)
38 {
39 struct address_space *mapping = page->mapping;
40 struct inode *inode;
41 struct f2fs_sb_info *sbi;
42
43 if (!mapping)
44 return false;
45
46 inode = mapping->host;
47 sbi = F2FS_I_SB(inode);
48
49 if (inode->i_ino == F2FS_META_INO(sbi) ||
50 inode->i_ino == F2FS_NODE_INO(sbi) ||
51 S_ISDIR(inode->i_mode) ||
52 (S_ISREG(inode->i_mode) &&
53 is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
54 is_cold_data(page))
55 return true;
56 return false;
57 }
58
59 /* postprocessing steps for read bios */
60 enum bio_post_read_step {
61 STEP_INITIAL = 0,
62 STEP_DECRYPT,
63 };
64
65 struct bio_post_read_ctx {
66 struct bio *bio;
67 struct work_struct work;
68 unsigned int cur_step;
69 unsigned int enabled_steps;
70 };
71
__read_end_io(struct bio * bio)72 static void __read_end_io(struct bio *bio)
73 {
74 struct page *page;
75 struct bio_vec *bv;
76 int i;
77
78 bio_for_each_segment_all(bv, bio, i) {
79 page = bv->bv_page;
80
81 /* PG_error was set if any post_read step failed */
82 if (bio->bi_status || PageError(page)) {
83 ClearPageUptodate(page);
84 /* will re-read again later */
85 ClearPageError(page);
86 } else {
87 SetPageUptodate(page);
88 }
89 unlock_page(page);
90 }
91 if (bio->bi_private)
92 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
93 bio_put(bio);
94 }
95
96 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
97
decrypt_work(struct work_struct * work)98 static void decrypt_work(struct work_struct *work)
99 {
100 struct bio_post_read_ctx *ctx =
101 container_of(work, struct bio_post_read_ctx, work);
102
103 fscrypt_decrypt_bio(ctx->bio);
104
105 bio_post_read_processing(ctx);
106 }
107
bio_post_read_processing(struct bio_post_read_ctx * ctx)108 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
109 {
110 switch (++ctx->cur_step) {
111 case STEP_DECRYPT:
112 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
113 INIT_WORK(&ctx->work, decrypt_work);
114 fscrypt_enqueue_decrypt_work(&ctx->work);
115 return;
116 }
117 ctx->cur_step++;
118 /* fall-through */
119 default:
120 __read_end_io(ctx->bio);
121 }
122 }
123
f2fs_bio_post_read_required(struct bio * bio)124 static bool f2fs_bio_post_read_required(struct bio *bio)
125 {
126 return bio->bi_private && !bio->bi_status;
127 }
128
f2fs_read_end_io(struct bio * bio)129 static void f2fs_read_end_io(struct bio *bio)
130 {
131 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
132 f2fs_show_injection_info(FAULT_IO);
133 bio->bi_status = BLK_STS_IOERR;
134 }
135
136 if (f2fs_bio_post_read_required(bio)) {
137 struct bio_post_read_ctx *ctx = bio->bi_private;
138
139 ctx->cur_step = STEP_INITIAL;
140 bio_post_read_processing(ctx);
141 return;
142 }
143
144 __read_end_io(bio);
145 }
146
f2fs_write_end_io(struct bio * bio)147 static void f2fs_write_end_io(struct bio *bio)
148 {
149 struct f2fs_sb_info *sbi = bio->bi_private;
150 struct bio_vec *bvec;
151 int i;
152
153 bio_for_each_segment_all(bvec, bio, i) {
154 struct page *page = bvec->bv_page;
155 enum count_type type = WB_DATA_TYPE(page);
156
157 if (IS_DUMMY_WRITTEN_PAGE(page)) {
158 set_page_private(page, (unsigned long)NULL);
159 ClearPagePrivate(page);
160 unlock_page(page);
161 mempool_free(page, sbi->write_io_dummy);
162
163 if (unlikely(bio->bi_status))
164 f2fs_stop_checkpoint(sbi, true);
165 continue;
166 }
167
168 fscrypt_pullback_bio_page(&page, true);
169
170 if (unlikely(bio->bi_status)) {
171 mapping_set_error(page->mapping, -EIO);
172 if (type == F2FS_WB_CP_DATA)
173 f2fs_stop_checkpoint(sbi, true);
174 }
175
176 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
177 page->index != nid_of_node(page));
178
179 dec_page_count(sbi, type);
180 if (f2fs_in_warm_node_list(sbi, page))
181 f2fs_del_fsync_node_entry(sbi, page);
182 clear_cold_data(page);
183 end_page_writeback(page);
184 }
185 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
186 wq_has_sleeper(&sbi->cp_wait))
187 wake_up(&sbi->cp_wait);
188
189 bio_put(bio);
190 }
191
192 /*
193 * Return true, if pre_bio's bdev is same as its target device.
194 */
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)195 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
196 block_t blk_addr, struct bio *bio)
197 {
198 struct block_device *bdev = sbi->sb->s_bdev;
199 int i;
200
201 if (f2fs_is_multi_device(sbi)) {
202 for (i = 0; i < sbi->s_ndevs; i++) {
203 if (FDEV(i).start_blk <= blk_addr &&
204 FDEV(i).end_blk >= blk_addr) {
205 blk_addr -= FDEV(i).start_blk;
206 bdev = FDEV(i).bdev;
207 break;
208 }
209 }
210 }
211 if (bio) {
212 bio_set_dev(bio, bdev);
213 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
214 }
215 return bdev;
216 }
217
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)218 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
219 {
220 int i;
221
222 if (!f2fs_is_multi_device(sbi))
223 return 0;
224
225 for (i = 0; i < sbi->s_ndevs; i++)
226 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
227 return i;
228 return 0;
229 }
230
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)231 static bool __same_bdev(struct f2fs_sb_info *sbi,
232 block_t blk_addr, struct bio *bio)
233 {
234 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
235 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
236 }
237
238 /*
239 * Low-level block read/write IO operations.
240 */
__bio_alloc(struct f2fs_sb_info * sbi,block_t blk_addr,struct writeback_control * wbc,int npages,bool is_read,enum page_type type,enum temp_type temp)241 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
242 struct writeback_control *wbc,
243 int npages, bool is_read,
244 enum page_type type, enum temp_type temp)
245 {
246 struct bio *bio;
247
248 bio = f2fs_bio_alloc(sbi, npages, true);
249
250 f2fs_target_device(sbi, blk_addr, bio);
251 if (is_read) {
252 bio->bi_end_io = f2fs_read_end_io;
253 bio->bi_private = NULL;
254 } else {
255 bio->bi_end_io = f2fs_write_end_io;
256 bio->bi_private = sbi;
257 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
258 }
259 if (wbc)
260 wbc_init_bio(wbc, bio);
261
262 return bio;
263 }
264
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)265 static inline void __submit_bio(struct f2fs_sb_info *sbi,
266 struct bio *bio, enum page_type type)
267 {
268 if (!is_read_io(bio_op(bio))) {
269 unsigned int start;
270
271 if (type != DATA && type != NODE)
272 goto submit_io;
273
274 if (test_opt(sbi, LFS) && current->plug)
275 blk_finish_plug(current->plug);
276
277 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
278 start %= F2FS_IO_SIZE(sbi);
279
280 if (start == 0)
281 goto submit_io;
282
283 /* fill dummy pages */
284 for (; start < F2FS_IO_SIZE(sbi); start++) {
285 struct page *page =
286 mempool_alloc(sbi->write_io_dummy,
287 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
288 f2fs_bug_on(sbi, !page);
289
290 SetPagePrivate(page);
291 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
292 lock_page(page);
293 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
294 f2fs_bug_on(sbi, 1);
295 }
296 /*
297 * In the NODE case, we lose next block address chain. So, we
298 * need to do checkpoint in f2fs_sync_file.
299 */
300 if (type == NODE)
301 set_sbi_flag(sbi, SBI_NEED_CP);
302 }
303 submit_io:
304 if (is_read_io(bio_op(bio)))
305 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
306 else
307 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
308 submit_bio(bio);
309 }
310
__submit_merged_bio(struct f2fs_bio_info * io)311 static void __submit_merged_bio(struct f2fs_bio_info *io)
312 {
313 struct f2fs_io_info *fio = &io->fio;
314
315 if (!io->bio)
316 return;
317
318 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
319
320 if (is_read_io(fio->op))
321 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
322 else
323 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
324
325 __submit_bio(io->sbi, io->bio, fio->type);
326 io->bio = NULL;
327 }
328
__has_merged_page(struct f2fs_bio_info * io,struct inode * inode,nid_t ino,pgoff_t idx)329 static bool __has_merged_page(struct f2fs_bio_info *io,
330 struct inode *inode, nid_t ino, pgoff_t idx)
331 {
332 struct bio_vec *bvec;
333 struct page *target;
334 int i;
335
336 if (!io->bio)
337 return false;
338
339 if (!inode && !ino)
340 return true;
341
342 bio_for_each_segment_all(bvec, io->bio, i) {
343
344 if (bvec->bv_page->mapping)
345 target = bvec->bv_page;
346 else
347 target = fscrypt_control_page(bvec->bv_page);
348
349 if (idx != target->index)
350 continue;
351
352 if (inode && inode == target->mapping->host)
353 return true;
354 if (ino && ino == ino_of_node(target))
355 return true;
356 }
357
358 return false;
359 }
360
has_merged_page(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type)361 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
362 nid_t ino, pgoff_t idx, enum page_type type)
363 {
364 enum page_type btype = PAGE_TYPE_OF_BIO(type);
365 enum temp_type temp;
366 struct f2fs_bio_info *io;
367 bool ret = false;
368
369 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
370 io = sbi->write_io[btype] + temp;
371
372 down_read(&io->io_rwsem);
373 ret = __has_merged_page(io, inode, ino, idx);
374 up_read(&io->io_rwsem);
375
376 /* TODO: use HOT temp only for meta pages now. */
377 if (ret || btype == META)
378 break;
379 }
380 return ret;
381 }
382
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)383 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
384 enum page_type type, enum temp_type temp)
385 {
386 enum page_type btype = PAGE_TYPE_OF_BIO(type);
387 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
388
389 down_write(&io->io_rwsem);
390
391 /* change META to META_FLUSH in the checkpoint procedure */
392 if (type >= META_FLUSH) {
393 io->fio.type = META_FLUSH;
394 io->fio.op = REQ_OP_WRITE;
395 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
396 if (!test_opt(sbi, NOBARRIER))
397 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
398 }
399 __submit_merged_bio(io);
400 up_write(&io->io_rwsem);
401 }
402
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type,bool force)403 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
404 struct inode *inode, nid_t ino, pgoff_t idx,
405 enum page_type type, bool force)
406 {
407 enum temp_type temp;
408
409 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
410 return;
411
412 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
413
414 __f2fs_submit_merged_write(sbi, type, temp);
415
416 /* TODO: use HOT temp only for meta pages now. */
417 if (type >= META)
418 break;
419 }
420 }
421
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)422 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
423 {
424 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
425 }
426
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type)427 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
428 struct inode *inode, nid_t ino, pgoff_t idx,
429 enum page_type type)
430 {
431 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
432 }
433
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)434 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
435 {
436 f2fs_submit_merged_write(sbi, DATA);
437 f2fs_submit_merged_write(sbi, NODE);
438 f2fs_submit_merged_write(sbi, META);
439 }
440
441 /*
442 * Fill the locked page with data located in the block address.
443 * A caller needs to unlock the page on failure.
444 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)445 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
446 {
447 struct bio *bio;
448 struct page *page = fio->encrypted_page ?
449 fio->encrypted_page : fio->page;
450
451 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
452 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
453 return -EFSCORRUPTED;
454
455 trace_f2fs_submit_page_bio(page, fio);
456 f2fs_trace_ios(fio, 0);
457
458 /* Allocate a new bio */
459 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
460 1, is_read_io(fio->op), fio->type, fio->temp);
461
462 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
463 bio_put(bio);
464 return -EFAULT;
465 }
466
467 if (fio->io_wbc && !is_read_io(fio->op))
468 wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
469
470 bio_set_op_attrs(bio, fio->op, fio->op_flags);
471
472 if (!is_read_io(fio->op))
473 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
474
475 __submit_bio(fio->sbi, bio, fio->type);
476 return 0;
477 }
478
f2fs_submit_page_write(struct f2fs_io_info * fio)479 void f2fs_submit_page_write(struct f2fs_io_info *fio)
480 {
481 struct f2fs_sb_info *sbi = fio->sbi;
482 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
483 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
484 struct page *bio_page;
485
486 f2fs_bug_on(sbi, is_read_io(fio->op));
487
488 down_write(&io->io_rwsem);
489 next:
490 if (fio->in_list) {
491 spin_lock(&io->io_lock);
492 if (list_empty(&io->io_list)) {
493 spin_unlock(&io->io_lock);
494 goto out;
495 }
496 fio = list_first_entry(&io->io_list,
497 struct f2fs_io_info, list);
498 list_del(&fio->list);
499 spin_unlock(&io->io_lock);
500 }
501
502 if (__is_valid_data_blkaddr(fio->old_blkaddr))
503 verify_block_addr(fio, fio->old_blkaddr);
504 verify_block_addr(fio, fio->new_blkaddr);
505
506 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
507
508 /* set submitted = true as a return value */
509 fio->submitted = true;
510
511 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
512
513 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
514 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
515 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
516 __submit_merged_bio(io);
517 alloc_new:
518 if (io->bio == NULL) {
519 if ((fio->type == DATA || fio->type == NODE) &&
520 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
521 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
522 fio->retry = true;
523 goto skip;
524 }
525 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
526 BIO_MAX_PAGES, false,
527 fio->type, fio->temp);
528 io->fio = *fio;
529 }
530
531 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
532 __submit_merged_bio(io);
533 goto alloc_new;
534 }
535
536 if (fio->io_wbc)
537 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
538
539 io->last_block_in_bio = fio->new_blkaddr;
540 f2fs_trace_ios(fio, 0);
541
542 trace_f2fs_submit_page_write(fio->page, fio);
543 skip:
544 if (fio->in_list)
545 goto next;
546 out:
547 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
548 __submit_merged_bio(io);
549 up_write(&io->io_rwsem);
550 }
551
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag)552 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
553 unsigned nr_pages, unsigned op_flag)
554 {
555 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
556 struct bio *bio;
557 struct bio_post_read_ctx *ctx;
558 unsigned int post_read_steps = 0;
559
560 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
561 return ERR_PTR(-EFAULT);
562
563 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
564 if (!bio)
565 return ERR_PTR(-ENOMEM);
566 f2fs_target_device(sbi, blkaddr, bio);
567 bio->bi_end_io = f2fs_read_end_io;
568 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
569
570 if (f2fs_encrypted_file(inode))
571 post_read_steps |= 1 << STEP_DECRYPT;
572 if (post_read_steps) {
573 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
574 if (!ctx) {
575 bio_put(bio);
576 return ERR_PTR(-ENOMEM);
577 }
578 ctx->bio = bio;
579 ctx->enabled_steps = post_read_steps;
580 bio->bi_private = ctx;
581 }
582
583 return bio;
584 }
585
586 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr)587 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
588 block_t blkaddr)
589 {
590 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
591
592 if (IS_ERR(bio))
593 return PTR_ERR(bio);
594
595 /* wait for GCed page writeback via META_MAPPING */
596 f2fs_wait_on_block_writeback(inode, blkaddr);
597
598 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
599 bio_put(bio);
600 return -EFAULT;
601 }
602 ClearPageError(page);
603 __submit_bio(F2FS_I_SB(inode), bio, DATA);
604 return 0;
605 }
606
__set_data_blkaddr(struct dnode_of_data * dn)607 static void __set_data_blkaddr(struct dnode_of_data *dn)
608 {
609 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
610 __le32 *addr_array;
611 int base = 0;
612
613 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
614 base = get_extra_isize(dn->inode);
615
616 /* Get physical address of data block */
617 addr_array = blkaddr_in_node(rn);
618 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
619 }
620
621 /*
622 * Lock ordering for the change of data block address:
623 * ->data_page
624 * ->node_page
625 * update block addresses in the node page
626 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)627 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
628 {
629 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
630 __set_data_blkaddr(dn);
631 if (set_page_dirty(dn->node_page))
632 dn->node_changed = true;
633 }
634
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)635 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
636 {
637 dn->data_blkaddr = blkaddr;
638 f2fs_set_data_blkaddr(dn);
639 f2fs_update_extent_cache(dn);
640 }
641
642 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)643 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
644 {
645 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
646 int err;
647
648 if (!count)
649 return 0;
650
651 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
652 return -EPERM;
653 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
654 return err;
655
656 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
657 dn->ofs_in_node, count);
658
659 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
660
661 for (; count > 0; dn->ofs_in_node++) {
662 block_t blkaddr = datablock_addr(dn->inode,
663 dn->node_page, dn->ofs_in_node);
664 if (blkaddr == NULL_ADDR) {
665 dn->data_blkaddr = NEW_ADDR;
666 __set_data_blkaddr(dn);
667 count--;
668 }
669 }
670
671 if (set_page_dirty(dn->node_page))
672 dn->node_changed = true;
673 return 0;
674 }
675
676 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)677 int f2fs_reserve_new_block(struct dnode_of_data *dn)
678 {
679 unsigned int ofs_in_node = dn->ofs_in_node;
680 int ret;
681
682 ret = f2fs_reserve_new_blocks(dn, 1);
683 dn->ofs_in_node = ofs_in_node;
684 return ret;
685 }
686
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)687 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
688 {
689 bool need_put = dn->inode_page ? false : true;
690 int err;
691
692 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
693 if (err)
694 return err;
695
696 if (dn->data_blkaddr == NULL_ADDR)
697 err = f2fs_reserve_new_block(dn);
698 if (err || need_put)
699 f2fs_put_dnode(dn);
700 return err;
701 }
702
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)703 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
704 {
705 struct extent_info ei = {0,0,0};
706 struct inode *inode = dn->inode;
707
708 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
709 dn->data_blkaddr = ei.blk + index - ei.fofs;
710 return 0;
711 }
712
713 return f2fs_reserve_block(dn, index);
714 }
715
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)716 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
717 int op_flags, bool for_write)
718 {
719 struct address_space *mapping = inode->i_mapping;
720 struct dnode_of_data dn;
721 struct page *page;
722 struct extent_info ei = {0,0,0};
723 int err;
724
725 page = f2fs_grab_cache_page(mapping, index, for_write);
726 if (!page)
727 return ERR_PTR(-ENOMEM);
728
729 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
730 dn.data_blkaddr = ei.blk + index - ei.fofs;
731 goto got_it;
732 }
733
734 set_new_dnode(&dn, inode, NULL, NULL, 0);
735 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
736 if (err)
737 goto put_err;
738 f2fs_put_dnode(&dn);
739
740 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
741 err = -ENOENT;
742 goto put_err;
743 }
744 got_it:
745 if (PageUptodate(page)) {
746 unlock_page(page);
747 return page;
748 }
749
750 /*
751 * A new dentry page is allocated but not able to be written, since its
752 * new inode page couldn't be allocated due to -ENOSPC.
753 * In such the case, its blkaddr can be remained as NEW_ADDR.
754 * see, f2fs_add_link -> f2fs_get_new_data_page ->
755 * f2fs_init_inode_metadata.
756 */
757 if (dn.data_blkaddr == NEW_ADDR) {
758 zero_user_segment(page, 0, PAGE_SIZE);
759 if (!PageUptodate(page))
760 SetPageUptodate(page);
761 unlock_page(page);
762 return page;
763 }
764
765 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
766 if (err)
767 goto put_err;
768 return page;
769
770 put_err:
771 f2fs_put_page(page, 1);
772 return ERR_PTR(err);
773 }
774
f2fs_find_data_page(struct inode * inode,pgoff_t index)775 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
776 {
777 struct address_space *mapping = inode->i_mapping;
778 struct page *page;
779
780 page = find_get_page(mapping, index);
781 if (page && PageUptodate(page))
782 return page;
783 f2fs_put_page(page, 0);
784
785 page = f2fs_get_read_data_page(inode, index, 0, false);
786 if (IS_ERR(page))
787 return page;
788
789 if (PageUptodate(page))
790 return page;
791
792 wait_on_page_locked(page);
793 if (unlikely(!PageUptodate(page))) {
794 f2fs_put_page(page, 0);
795 return ERR_PTR(-EIO);
796 }
797 return page;
798 }
799
800 /*
801 * If it tries to access a hole, return an error.
802 * Because, the callers, functions in dir.c and GC, should be able to know
803 * whether this page exists or not.
804 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)805 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
806 bool for_write)
807 {
808 struct address_space *mapping = inode->i_mapping;
809 struct page *page;
810 repeat:
811 page = f2fs_get_read_data_page(inode, index, 0, for_write);
812 if (IS_ERR(page))
813 return page;
814
815 /* wait for read completion */
816 lock_page(page);
817 if (unlikely(page->mapping != mapping)) {
818 f2fs_put_page(page, 1);
819 goto repeat;
820 }
821 if (unlikely(!PageUptodate(page))) {
822 f2fs_put_page(page, 1);
823 return ERR_PTR(-EIO);
824 }
825 return page;
826 }
827
828 /*
829 * Caller ensures that this data page is never allocated.
830 * A new zero-filled data page is allocated in the page cache.
831 *
832 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
833 * f2fs_unlock_op().
834 * Note that, ipage is set only by make_empty_dir, and if any error occur,
835 * ipage should be released by this function.
836 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)837 struct page *f2fs_get_new_data_page(struct inode *inode,
838 struct page *ipage, pgoff_t index, bool new_i_size)
839 {
840 struct address_space *mapping = inode->i_mapping;
841 struct page *page;
842 struct dnode_of_data dn;
843 int err;
844
845 page = f2fs_grab_cache_page(mapping, index, true);
846 if (!page) {
847 /*
848 * before exiting, we should make sure ipage will be released
849 * if any error occur.
850 */
851 f2fs_put_page(ipage, 1);
852 return ERR_PTR(-ENOMEM);
853 }
854
855 set_new_dnode(&dn, inode, ipage, NULL, 0);
856 err = f2fs_reserve_block(&dn, index);
857 if (err) {
858 f2fs_put_page(page, 1);
859 return ERR_PTR(err);
860 }
861 if (!ipage)
862 f2fs_put_dnode(&dn);
863
864 if (PageUptodate(page))
865 goto got_it;
866
867 if (dn.data_blkaddr == NEW_ADDR) {
868 zero_user_segment(page, 0, PAGE_SIZE);
869 if (!PageUptodate(page))
870 SetPageUptodate(page);
871 } else {
872 f2fs_put_page(page, 1);
873
874 /* if ipage exists, blkaddr should be NEW_ADDR */
875 f2fs_bug_on(F2FS_I_SB(inode), ipage);
876 page = f2fs_get_lock_data_page(inode, index, true);
877 if (IS_ERR(page))
878 return page;
879 }
880 got_it:
881 if (new_i_size && i_size_read(inode) <
882 ((loff_t)(index + 1) << PAGE_SHIFT))
883 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
884 return page;
885 }
886
__allocate_data_block(struct dnode_of_data * dn,int seg_type)887 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
888 {
889 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
890 struct f2fs_summary sum;
891 struct node_info ni;
892 block_t old_blkaddr;
893 blkcnt_t count = 1;
894 int err;
895
896 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
897 return -EPERM;
898
899 err = f2fs_get_node_info(sbi, dn->nid, &ni);
900 if (err)
901 return err;
902
903 dn->data_blkaddr = datablock_addr(dn->inode,
904 dn->node_page, dn->ofs_in_node);
905 if (dn->data_blkaddr == NEW_ADDR)
906 goto alloc;
907
908 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
909 return err;
910
911 alloc:
912 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
913 old_blkaddr = dn->data_blkaddr;
914 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
915 &sum, seg_type, NULL, false);
916 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
917 invalidate_mapping_pages(META_MAPPING(sbi),
918 old_blkaddr, old_blkaddr);
919 f2fs_set_data_blkaddr(dn);
920
921 /*
922 * i_size will be updated by direct_IO. Otherwise, we'll get stale
923 * data from unwritten block via dio_read.
924 */
925 return 0;
926 }
927
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)928 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
929 {
930 struct inode *inode = file_inode(iocb->ki_filp);
931 struct f2fs_map_blocks map;
932 int flag;
933 int err = 0;
934 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
935
936 /* convert inline data for Direct I/O*/
937 if (direct_io) {
938 err = f2fs_convert_inline_inode(inode);
939 if (err)
940 return err;
941 }
942
943 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
944 return 0;
945
946 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
947 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
948 if (map.m_len > map.m_lblk)
949 map.m_len -= map.m_lblk;
950 else
951 map.m_len = 0;
952
953 map.m_next_pgofs = NULL;
954 map.m_next_extent = NULL;
955 map.m_seg_type = NO_CHECK_TYPE;
956
957 if (direct_io) {
958 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
959 flag = f2fs_force_buffered_io(inode, WRITE) ?
960 F2FS_GET_BLOCK_PRE_AIO :
961 F2FS_GET_BLOCK_PRE_DIO;
962 goto map_blocks;
963 }
964 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
965 err = f2fs_convert_inline_inode(inode);
966 if (err)
967 return err;
968 }
969 if (f2fs_has_inline_data(inode))
970 return err;
971
972 flag = F2FS_GET_BLOCK_PRE_AIO;
973
974 map_blocks:
975 err = f2fs_map_blocks(inode, &map, 1, flag);
976 if (map.m_len > 0 && err == -ENOSPC) {
977 if (!direct_io)
978 set_inode_flag(inode, FI_NO_PREALLOC);
979 err = 0;
980 }
981 return err;
982 }
983
__do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)984 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
985 {
986 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
987 if (lock)
988 down_read(&sbi->node_change);
989 else
990 up_read(&sbi->node_change);
991 } else {
992 if (lock)
993 f2fs_lock_op(sbi);
994 else
995 f2fs_unlock_op(sbi);
996 }
997 }
998
999 /*
1000 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1001 * f2fs_map_blocks structure.
1002 * If original data blocks are allocated, then give them to blockdev.
1003 * Otherwise,
1004 * a. preallocate requested block addresses
1005 * b. do not use extent cache for better performance
1006 * c. give the block addresses to blockdev
1007 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1008 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1009 int create, int flag)
1010 {
1011 unsigned int maxblocks = map->m_len;
1012 struct dnode_of_data dn;
1013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
1015 pgoff_t pgofs, end_offset, end;
1016 int err = 0, ofs = 1;
1017 unsigned int ofs_in_node, last_ofs_in_node;
1018 blkcnt_t prealloc;
1019 struct extent_info ei = {0,0,0};
1020 block_t blkaddr;
1021 unsigned int start_pgofs;
1022
1023 if (!maxblocks)
1024 return 0;
1025
1026 map->m_len = 0;
1027 map->m_flags = 0;
1028
1029 /* it only supports block size == page size */
1030 pgofs = (pgoff_t)map->m_lblk;
1031 end = pgofs + maxblocks;
1032
1033 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1034 map->m_pblk = ei.blk + pgofs - ei.fofs;
1035 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1036 map->m_flags = F2FS_MAP_MAPPED;
1037 if (map->m_next_extent)
1038 *map->m_next_extent = pgofs + map->m_len;
1039 goto out;
1040 }
1041
1042 next_dnode:
1043 if (create)
1044 __do_map_lock(sbi, flag, true);
1045
1046 /* When reading holes, we need its node page */
1047 set_new_dnode(&dn, inode, NULL, NULL, 0);
1048 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1049 if (err) {
1050 if (flag == F2FS_GET_BLOCK_BMAP)
1051 map->m_pblk = 0;
1052 if (err == -ENOENT) {
1053 err = 0;
1054 if (map->m_next_pgofs)
1055 *map->m_next_pgofs =
1056 f2fs_get_next_page_offset(&dn, pgofs);
1057 if (map->m_next_extent)
1058 *map->m_next_extent =
1059 f2fs_get_next_page_offset(&dn, pgofs);
1060 }
1061 goto unlock_out;
1062 }
1063
1064 start_pgofs = pgofs;
1065 prealloc = 0;
1066 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1067 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1068
1069 next_block:
1070 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1071
1072 if (__is_valid_data_blkaddr(blkaddr) &&
1073 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1074 err = -EFSCORRUPTED;
1075 goto sync_out;
1076 }
1077
1078 if (!is_valid_data_blkaddr(sbi, blkaddr)) {
1079 if (create) {
1080 if (unlikely(f2fs_cp_error(sbi))) {
1081 err = -EIO;
1082 goto sync_out;
1083 }
1084 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1085 if (blkaddr == NULL_ADDR) {
1086 prealloc++;
1087 last_ofs_in_node = dn.ofs_in_node;
1088 }
1089 } else {
1090 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1091 flag != F2FS_GET_BLOCK_DIO);
1092 err = __allocate_data_block(&dn,
1093 map->m_seg_type);
1094 if (!err)
1095 set_inode_flag(inode, FI_APPEND_WRITE);
1096 }
1097 if (err)
1098 goto sync_out;
1099 map->m_flags |= F2FS_MAP_NEW;
1100 blkaddr = dn.data_blkaddr;
1101 } else {
1102 if (flag == F2FS_GET_BLOCK_BMAP) {
1103 map->m_pblk = 0;
1104 goto sync_out;
1105 }
1106 if (flag == F2FS_GET_BLOCK_PRECACHE)
1107 goto sync_out;
1108 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1109 blkaddr == NULL_ADDR) {
1110 if (map->m_next_pgofs)
1111 *map->m_next_pgofs = pgofs + 1;
1112 goto sync_out;
1113 }
1114 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1115 /* for defragment case */
1116 if (map->m_next_pgofs)
1117 *map->m_next_pgofs = pgofs + 1;
1118 goto sync_out;
1119 }
1120 }
1121 }
1122
1123 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1124 goto skip;
1125
1126 if (map->m_len == 0) {
1127 /* preallocated unwritten block should be mapped for fiemap. */
1128 if (blkaddr == NEW_ADDR)
1129 map->m_flags |= F2FS_MAP_UNWRITTEN;
1130 map->m_flags |= F2FS_MAP_MAPPED;
1131
1132 map->m_pblk = blkaddr;
1133 map->m_len = 1;
1134 } else if ((map->m_pblk != NEW_ADDR &&
1135 blkaddr == (map->m_pblk + ofs)) ||
1136 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1137 flag == F2FS_GET_BLOCK_PRE_DIO) {
1138 ofs++;
1139 map->m_len++;
1140 } else {
1141 goto sync_out;
1142 }
1143
1144 skip:
1145 dn.ofs_in_node++;
1146 pgofs++;
1147
1148 /* preallocate blocks in batch for one dnode page */
1149 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1150 (pgofs == end || dn.ofs_in_node == end_offset)) {
1151
1152 dn.ofs_in_node = ofs_in_node;
1153 err = f2fs_reserve_new_blocks(&dn, prealloc);
1154 if (err)
1155 goto sync_out;
1156
1157 map->m_len += dn.ofs_in_node - ofs_in_node;
1158 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1159 err = -ENOSPC;
1160 goto sync_out;
1161 }
1162 dn.ofs_in_node = end_offset;
1163 }
1164
1165 if (pgofs >= end)
1166 goto sync_out;
1167 else if (dn.ofs_in_node < end_offset)
1168 goto next_block;
1169
1170 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1171 if (map->m_flags & F2FS_MAP_MAPPED) {
1172 unsigned int ofs = start_pgofs - map->m_lblk;
1173
1174 f2fs_update_extent_cache_range(&dn,
1175 start_pgofs, map->m_pblk + ofs,
1176 map->m_len - ofs);
1177 }
1178 }
1179
1180 f2fs_put_dnode(&dn);
1181
1182 if (create) {
1183 __do_map_lock(sbi, flag, false);
1184 f2fs_balance_fs(sbi, dn.node_changed);
1185 }
1186 goto next_dnode;
1187
1188 sync_out:
1189 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1190 if (map->m_flags & F2FS_MAP_MAPPED) {
1191 unsigned int ofs = start_pgofs - map->m_lblk;
1192
1193 f2fs_update_extent_cache_range(&dn,
1194 start_pgofs, map->m_pblk + ofs,
1195 map->m_len - ofs);
1196 }
1197 if (map->m_next_extent)
1198 *map->m_next_extent = pgofs + 1;
1199 }
1200 f2fs_put_dnode(&dn);
1201 unlock_out:
1202 if (create) {
1203 __do_map_lock(sbi, flag, false);
1204 f2fs_balance_fs(sbi, dn.node_changed);
1205 }
1206 out:
1207 trace_f2fs_map_blocks(inode, map, err);
1208 return err;
1209 }
1210
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1211 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1212 {
1213 struct f2fs_map_blocks map;
1214 block_t last_lblk;
1215 int err;
1216
1217 if (pos + len > i_size_read(inode))
1218 return false;
1219
1220 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1221 map.m_next_pgofs = NULL;
1222 map.m_next_extent = NULL;
1223 map.m_seg_type = NO_CHECK_TYPE;
1224 last_lblk = F2FS_BLK_ALIGN(pos + len);
1225
1226 while (map.m_lblk < last_lblk) {
1227 map.m_len = last_lblk - map.m_lblk;
1228 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1229 if (err || map.m_len == 0)
1230 return false;
1231 map.m_lblk += map.m_len;
1232 }
1233 return true;
1234 }
1235
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type)1236 static int __get_data_block(struct inode *inode, sector_t iblock,
1237 struct buffer_head *bh, int create, int flag,
1238 pgoff_t *next_pgofs, int seg_type)
1239 {
1240 struct f2fs_map_blocks map;
1241 int err;
1242
1243 map.m_lblk = iblock;
1244 map.m_len = bh->b_size >> inode->i_blkbits;
1245 map.m_next_pgofs = next_pgofs;
1246 map.m_next_extent = NULL;
1247 map.m_seg_type = seg_type;
1248
1249 err = f2fs_map_blocks(inode, &map, create, flag);
1250 if (!err) {
1251 map_bh(bh, inode->i_sb, map.m_pblk);
1252 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1253 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1254 }
1255 return err;
1256 }
1257
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1258 static int get_data_block(struct inode *inode, sector_t iblock,
1259 struct buffer_head *bh_result, int create, int flag,
1260 pgoff_t *next_pgofs)
1261 {
1262 return __get_data_block(inode, iblock, bh_result, create,
1263 flag, next_pgofs,
1264 NO_CHECK_TYPE);
1265 }
1266
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1267 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1268 struct buffer_head *bh_result, int create)
1269 {
1270 return __get_data_block(inode, iblock, bh_result, create,
1271 F2FS_GET_BLOCK_DIO, NULL,
1272 f2fs_rw_hint_to_seg_type(
1273 inode->i_write_hint));
1274 }
1275
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1276 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1277 struct buffer_head *bh_result, int create)
1278 {
1279 /* Block number less than F2FS MAX BLOCKS */
1280 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1281 return -EFBIG;
1282
1283 return __get_data_block(inode, iblock, bh_result, create,
1284 F2FS_GET_BLOCK_BMAP, NULL,
1285 NO_CHECK_TYPE);
1286 }
1287
logical_to_blk(struct inode * inode,loff_t offset)1288 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1289 {
1290 return (offset >> inode->i_blkbits);
1291 }
1292
blk_to_logical(struct inode * inode,sector_t blk)1293 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1294 {
1295 return (blk << inode->i_blkbits);
1296 }
1297
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1298 static int f2fs_xattr_fiemap(struct inode *inode,
1299 struct fiemap_extent_info *fieinfo)
1300 {
1301 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1302 struct page *page;
1303 struct node_info ni;
1304 __u64 phys = 0, len;
1305 __u32 flags;
1306 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1307 int err = 0;
1308
1309 if (f2fs_has_inline_xattr(inode)) {
1310 int offset;
1311
1312 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1313 inode->i_ino, false);
1314 if (!page)
1315 return -ENOMEM;
1316
1317 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1318 if (err) {
1319 f2fs_put_page(page, 1);
1320 return err;
1321 }
1322
1323 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1324 offset = offsetof(struct f2fs_inode, i_addr) +
1325 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1326 get_inline_xattr_addrs(inode));
1327
1328 phys += offset;
1329 len = inline_xattr_size(inode);
1330
1331 f2fs_put_page(page, 1);
1332
1333 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1334
1335 if (!xnid)
1336 flags |= FIEMAP_EXTENT_LAST;
1337
1338 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1339 if (err || err == 1)
1340 return err;
1341 }
1342
1343 if (xnid) {
1344 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1345 if (!page)
1346 return -ENOMEM;
1347
1348 err = f2fs_get_node_info(sbi, xnid, &ni);
1349 if (err) {
1350 f2fs_put_page(page, 1);
1351 return err;
1352 }
1353
1354 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1355 len = inode->i_sb->s_blocksize;
1356
1357 f2fs_put_page(page, 1);
1358
1359 flags = FIEMAP_EXTENT_LAST;
1360 }
1361
1362 if (phys)
1363 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1364
1365 return (err < 0 ? err : 0);
1366 }
1367
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1368 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1369 u64 start, u64 len)
1370 {
1371 struct buffer_head map_bh;
1372 sector_t start_blk, last_blk;
1373 pgoff_t next_pgofs;
1374 u64 logical = 0, phys = 0, size = 0;
1375 u32 flags = 0;
1376 int ret = 0;
1377
1378 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1379 ret = f2fs_precache_extents(inode);
1380 if (ret)
1381 return ret;
1382 }
1383
1384 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1385 if (ret)
1386 return ret;
1387
1388 inode_lock(inode);
1389
1390 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1391 ret = f2fs_xattr_fiemap(inode, fieinfo);
1392 goto out;
1393 }
1394
1395 if (f2fs_has_inline_data(inode)) {
1396 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1397 if (ret != -EAGAIN)
1398 goto out;
1399 }
1400
1401 if (logical_to_blk(inode, len) == 0)
1402 len = blk_to_logical(inode, 1);
1403
1404 start_blk = logical_to_blk(inode, start);
1405 last_blk = logical_to_blk(inode, start + len - 1);
1406
1407 next:
1408 memset(&map_bh, 0, sizeof(struct buffer_head));
1409 map_bh.b_size = len;
1410
1411 ret = get_data_block(inode, start_blk, &map_bh, 0,
1412 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1413 if (ret)
1414 goto out;
1415
1416 /* HOLE */
1417 if (!buffer_mapped(&map_bh)) {
1418 start_blk = next_pgofs;
1419
1420 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1421 F2FS_I_SB(inode)->max_file_blocks))
1422 goto prep_next;
1423
1424 flags |= FIEMAP_EXTENT_LAST;
1425 }
1426
1427 if (size) {
1428 if (f2fs_encrypted_inode(inode))
1429 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1430
1431 ret = fiemap_fill_next_extent(fieinfo, logical,
1432 phys, size, flags);
1433 }
1434
1435 if (start_blk > last_blk || ret)
1436 goto out;
1437
1438 logical = blk_to_logical(inode, start_blk);
1439 phys = blk_to_logical(inode, map_bh.b_blocknr);
1440 size = map_bh.b_size;
1441 flags = 0;
1442 if (buffer_unwritten(&map_bh))
1443 flags = FIEMAP_EXTENT_UNWRITTEN;
1444
1445 start_blk += logical_to_blk(inode, size);
1446
1447 prep_next:
1448 cond_resched();
1449 if (fatal_signal_pending(current))
1450 ret = -EINTR;
1451 else
1452 goto next;
1453 out:
1454 if (ret == 1)
1455 ret = 0;
1456
1457 inode_unlock(inode);
1458 return ret;
1459 }
1460
1461 /*
1462 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1463 * Major change was from block_size == page_size in f2fs by default.
1464 *
1465 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1466 * this function ever deviates from doing just read-ahead, it should either
1467 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1468 * from read-ahead.
1469 */
f2fs_mpage_readpages(struct address_space * mapping,struct list_head * pages,struct page * page,unsigned nr_pages,bool is_readahead)1470 static int f2fs_mpage_readpages(struct address_space *mapping,
1471 struct list_head *pages, struct page *page,
1472 unsigned nr_pages, bool is_readahead)
1473 {
1474 struct bio *bio = NULL;
1475 sector_t last_block_in_bio = 0;
1476 struct inode *inode = mapping->host;
1477 const unsigned blkbits = inode->i_blkbits;
1478 const unsigned blocksize = 1 << blkbits;
1479 sector_t block_in_file;
1480 sector_t last_block;
1481 sector_t last_block_in_file;
1482 sector_t block_nr;
1483 struct f2fs_map_blocks map;
1484
1485 map.m_pblk = 0;
1486 map.m_lblk = 0;
1487 map.m_len = 0;
1488 map.m_flags = 0;
1489 map.m_next_pgofs = NULL;
1490 map.m_next_extent = NULL;
1491 map.m_seg_type = NO_CHECK_TYPE;
1492
1493 for (; nr_pages; nr_pages--) {
1494 if (pages) {
1495 page = list_last_entry(pages, struct page, lru);
1496
1497 prefetchw(&page->flags);
1498 list_del(&page->lru);
1499 if (add_to_page_cache_lru(page, mapping,
1500 page_index(page),
1501 readahead_gfp_mask(mapping)))
1502 goto next_page;
1503 }
1504
1505 block_in_file = (sector_t)page_index(page);
1506 last_block = block_in_file + nr_pages;
1507 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1508 blkbits;
1509 if (last_block > last_block_in_file)
1510 last_block = last_block_in_file;
1511
1512 /*
1513 * Map blocks using the previous result first.
1514 */
1515 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1516 block_in_file > map.m_lblk &&
1517 block_in_file < (map.m_lblk + map.m_len))
1518 goto got_it;
1519
1520 /*
1521 * Then do more f2fs_map_blocks() calls until we are
1522 * done with this page.
1523 */
1524 map.m_flags = 0;
1525
1526 if (block_in_file < last_block) {
1527 map.m_lblk = block_in_file;
1528 map.m_len = last_block - block_in_file;
1529
1530 if (f2fs_map_blocks(inode, &map, 0,
1531 F2FS_GET_BLOCK_DEFAULT))
1532 goto set_error_page;
1533 }
1534 got_it:
1535 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1536 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1537 SetPageMappedToDisk(page);
1538
1539 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1540 !cleancache_get_page(page))) {
1541 SetPageUptodate(page);
1542 goto confused;
1543 }
1544
1545 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1546 DATA_GENERIC))
1547 goto set_error_page;
1548 } else {
1549 zero_user_segment(page, 0, PAGE_SIZE);
1550 if (!PageUptodate(page))
1551 SetPageUptodate(page);
1552 unlock_page(page);
1553 goto next_page;
1554 }
1555
1556 /*
1557 * This page will go to BIO. Do we need to send this
1558 * BIO off first?
1559 */
1560 if (bio && (last_block_in_bio != block_nr - 1 ||
1561 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1562 submit_and_realloc:
1563 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1564 bio = NULL;
1565 }
1566 if (bio == NULL) {
1567 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1568 is_readahead ? REQ_RAHEAD : 0);
1569 if (IS_ERR(bio)) {
1570 bio = NULL;
1571 goto set_error_page;
1572 }
1573 }
1574
1575 /*
1576 * If the page is under writeback, we need to wait for
1577 * its completion to see the correct decrypted data.
1578 */
1579 f2fs_wait_on_block_writeback(inode, block_nr);
1580
1581 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1582 goto submit_and_realloc;
1583
1584 ClearPageError(page);
1585 last_block_in_bio = block_nr;
1586 goto next_page;
1587 set_error_page:
1588 SetPageError(page);
1589 zero_user_segment(page, 0, PAGE_SIZE);
1590 unlock_page(page);
1591 goto next_page;
1592 confused:
1593 if (bio) {
1594 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1595 bio = NULL;
1596 }
1597 unlock_page(page);
1598 next_page:
1599 if (pages)
1600 put_page(page);
1601 }
1602 BUG_ON(pages && !list_empty(pages));
1603 if (bio)
1604 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1605 return 0;
1606 }
1607
f2fs_read_data_page(struct file * file,struct page * page)1608 static int f2fs_read_data_page(struct file *file, struct page *page)
1609 {
1610 struct inode *inode = page_file_mapping(page)->host;
1611 int ret = -EAGAIN;
1612
1613 trace_f2fs_readpage(page, DATA);
1614
1615 /* If the file has inline data, try to read it directly */
1616 if (f2fs_has_inline_data(inode))
1617 ret = f2fs_read_inline_data(inode, page);
1618 if (ret == -EAGAIN)
1619 ret = f2fs_mpage_readpages(page_file_mapping(page),
1620 NULL, page, 1, false);
1621 return ret;
1622 }
1623
f2fs_read_data_pages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1624 static int f2fs_read_data_pages(struct file *file,
1625 struct address_space *mapping,
1626 struct list_head *pages, unsigned nr_pages)
1627 {
1628 struct inode *inode = mapping->host;
1629 struct page *page = list_last_entry(pages, struct page, lru);
1630
1631 trace_f2fs_readpages(inode, page, nr_pages);
1632
1633 /* If the file has inline data, skip readpages */
1634 if (f2fs_has_inline_data(inode))
1635 return 0;
1636
1637 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1638 }
1639
encrypt_one_page(struct f2fs_io_info * fio)1640 static int encrypt_one_page(struct f2fs_io_info *fio)
1641 {
1642 struct inode *inode = fio->page->mapping->host;
1643 struct page *mpage;
1644 gfp_t gfp_flags = GFP_NOFS;
1645
1646 if (!f2fs_encrypted_file(inode))
1647 return 0;
1648
1649 /* wait for GCed page writeback via META_MAPPING */
1650 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1651
1652 retry_encrypt:
1653 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1654 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1655 if (IS_ERR(fio->encrypted_page)) {
1656 /* flush pending IOs and wait for a while in the ENOMEM case */
1657 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1658 f2fs_flush_merged_writes(fio->sbi);
1659 congestion_wait(BLK_RW_ASYNC, HZ/50);
1660 gfp_flags |= __GFP_NOFAIL;
1661 goto retry_encrypt;
1662 }
1663 return PTR_ERR(fio->encrypted_page);
1664 }
1665
1666 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1667 if (mpage) {
1668 if (PageUptodate(mpage))
1669 memcpy(page_address(mpage),
1670 page_address(fio->encrypted_page), PAGE_SIZE);
1671 f2fs_put_page(mpage, 1);
1672 }
1673 return 0;
1674 }
1675
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)1676 static inline bool check_inplace_update_policy(struct inode *inode,
1677 struct f2fs_io_info *fio)
1678 {
1679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1680 unsigned int policy = SM_I(sbi)->ipu_policy;
1681
1682 if (policy & (0x1 << F2FS_IPU_FORCE))
1683 return true;
1684 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1685 return true;
1686 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1687 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1688 return true;
1689 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1690 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1691 return true;
1692
1693 /*
1694 * IPU for rewrite async pages
1695 */
1696 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1697 fio && fio->op == REQ_OP_WRITE &&
1698 !(fio->op_flags & REQ_SYNC) &&
1699 !f2fs_encrypted_inode(inode))
1700 return true;
1701
1702 /* this is only set during fdatasync */
1703 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1704 is_inode_flag_set(inode, FI_NEED_IPU))
1705 return true;
1706
1707 return false;
1708 }
1709
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)1710 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1711 {
1712 if (f2fs_is_pinned_file(inode))
1713 return true;
1714
1715 /* if this is cold file, we should overwrite to avoid fragmentation */
1716 if (file_is_cold(inode))
1717 return true;
1718
1719 return check_inplace_update_policy(inode, fio);
1720 }
1721
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)1722 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1723 {
1724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1725
1726 if (test_opt(sbi, LFS))
1727 return true;
1728 if (S_ISDIR(inode->i_mode))
1729 return true;
1730 if (f2fs_is_atomic_file(inode))
1731 return true;
1732 if (fio) {
1733 if (is_cold_data(fio->page))
1734 return true;
1735 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1736 return true;
1737 }
1738 return false;
1739 }
1740
need_inplace_update(struct f2fs_io_info * fio)1741 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1742 {
1743 struct inode *inode = fio->page->mapping->host;
1744
1745 if (f2fs_should_update_outplace(inode, fio))
1746 return false;
1747
1748 return f2fs_should_update_inplace(inode, fio);
1749 }
1750
f2fs_do_write_data_page(struct f2fs_io_info * fio)1751 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1752 {
1753 struct page *page = fio->page;
1754 struct inode *inode = page->mapping->host;
1755 struct dnode_of_data dn;
1756 struct extent_info ei = {0,0,0};
1757 struct node_info ni;
1758 bool ipu_force = false;
1759 int err = 0;
1760
1761 set_new_dnode(&dn, inode, NULL, NULL, 0);
1762 if (need_inplace_update(fio) &&
1763 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1764 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1765
1766 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1767 DATA_GENERIC))
1768 return -EFSCORRUPTED;
1769
1770 ipu_force = true;
1771 fio->need_lock = LOCK_DONE;
1772 goto got_it;
1773 }
1774
1775 /* Deadlock due to between page->lock and f2fs_lock_op */
1776 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1777 return -EAGAIN;
1778
1779 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1780 if (err)
1781 goto out;
1782
1783 fio->old_blkaddr = dn.data_blkaddr;
1784
1785 /* This page is already truncated */
1786 if (fio->old_blkaddr == NULL_ADDR) {
1787 ClearPageUptodate(page);
1788 clear_cold_data(page);
1789 goto out_writepage;
1790 }
1791 got_it:
1792 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1793 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1794 DATA_GENERIC)) {
1795 err = -EFSCORRUPTED;
1796 goto out_writepage;
1797 }
1798 /*
1799 * If current allocation needs SSR,
1800 * it had better in-place writes for updated data.
1801 */
1802 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1803 need_inplace_update(fio))) {
1804 err = encrypt_one_page(fio);
1805 if (err)
1806 goto out_writepage;
1807
1808 set_page_writeback(page);
1809 ClearPageError(page);
1810 f2fs_put_dnode(&dn);
1811 if (fio->need_lock == LOCK_REQ)
1812 f2fs_unlock_op(fio->sbi);
1813 err = f2fs_inplace_write_data(fio);
1814 trace_f2fs_do_write_data_page(fio->page, IPU);
1815 set_inode_flag(inode, FI_UPDATE_WRITE);
1816 return err;
1817 }
1818
1819 if (fio->need_lock == LOCK_RETRY) {
1820 if (!f2fs_trylock_op(fio->sbi)) {
1821 err = -EAGAIN;
1822 goto out_writepage;
1823 }
1824 fio->need_lock = LOCK_REQ;
1825 }
1826
1827 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1828 if (err)
1829 goto out_writepage;
1830
1831 fio->version = ni.version;
1832
1833 err = encrypt_one_page(fio);
1834 if (err)
1835 goto out_writepage;
1836
1837 set_page_writeback(page);
1838 ClearPageError(page);
1839
1840 /* LFS mode write path */
1841 f2fs_outplace_write_data(&dn, fio);
1842 trace_f2fs_do_write_data_page(page, OPU);
1843 set_inode_flag(inode, FI_APPEND_WRITE);
1844 if (page->index == 0)
1845 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1846 out_writepage:
1847 f2fs_put_dnode(&dn);
1848 out:
1849 if (fio->need_lock == LOCK_REQ)
1850 f2fs_unlock_op(fio->sbi);
1851 return err;
1852 }
1853
__write_data_page(struct page * page,bool * submitted,struct writeback_control * wbc,enum iostat_type io_type)1854 static int __write_data_page(struct page *page, bool *submitted,
1855 struct writeback_control *wbc,
1856 enum iostat_type io_type)
1857 {
1858 struct inode *inode = page->mapping->host;
1859 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1860 loff_t i_size = i_size_read(inode);
1861 const pgoff_t end_index = ((unsigned long long) i_size)
1862 >> PAGE_SHIFT;
1863 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1864 unsigned offset = 0;
1865 bool need_balance_fs = false;
1866 int err = 0;
1867 struct f2fs_io_info fio = {
1868 .sbi = sbi,
1869 .ino = inode->i_ino,
1870 .type = DATA,
1871 .op = REQ_OP_WRITE,
1872 .op_flags = wbc_to_write_flags(wbc),
1873 .old_blkaddr = NULL_ADDR,
1874 .page = page,
1875 .encrypted_page = NULL,
1876 .submitted = false,
1877 .need_lock = LOCK_RETRY,
1878 .io_type = io_type,
1879 .io_wbc = wbc,
1880 };
1881
1882 trace_f2fs_writepage(page, DATA);
1883
1884 /* we should bypass data pages to proceed the kworkder jobs */
1885 if (unlikely(f2fs_cp_error(sbi))) {
1886 mapping_set_error(page->mapping, -EIO);
1887 /*
1888 * don't drop any dirty dentry pages for keeping lastest
1889 * directory structure.
1890 */
1891 if (S_ISDIR(inode->i_mode))
1892 goto redirty_out;
1893 goto out;
1894 }
1895
1896 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1897 goto redirty_out;
1898
1899 if (page->index < end_index)
1900 goto write;
1901
1902 /*
1903 * If the offset is out-of-range of file size,
1904 * this page does not have to be written to disk.
1905 */
1906 offset = i_size & (PAGE_SIZE - 1);
1907 if ((page->index >= end_index + 1) || !offset)
1908 goto out;
1909
1910 zero_user_segment(page, offset, PAGE_SIZE);
1911 write:
1912 if (f2fs_is_drop_cache(inode))
1913 goto out;
1914 /* we should not write 0'th page having journal header */
1915 if (f2fs_is_volatile_file(inode) && (!page->index ||
1916 (!wbc->for_reclaim &&
1917 f2fs_available_free_memory(sbi, BASE_CHECK))))
1918 goto redirty_out;
1919
1920 /* Dentry blocks are controlled by checkpoint */
1921 if (S_ISDIR(inode->i_mode)) {
1922 fio.need_lock = LOCK_DONE;
1923 err = f2fs_do_write_data_page(&fio);
1924 goto done;
1925 }
1926
1927 if (!wbc->for_reclaim)
1928 need_balance_fs = true;
1929 else if (has_not_enough_free_secs(sbi, 0, 0))
1930 goto redirty_out;
1931 else
1932 set_inode_flag(inode, FI_HOT_DATA);
1933
1934 err = -EAGAIN;
1935 if (f2fs_has_inline_data(inode)) {
1936 err = f2fs_write_inline_data(inode, page);
1937 if (!err)
1938 goto out;
1939 }
1940
1941 if (err == -EAGAIN) {
1942 err = f2fs_do_write_data_page(&fio);
1943 if (err == -EAGAIN) {
1944 fio.need_lock = LOCK_REQ;
1945 err = f2fs_do_write_data_page(&fio);
1946 }
1947 }
1948
1949 if (err) {
1950 file_set_keep_isize(inode);
1951 } else {
1952 down_write(&F2FS_I(inode)->i_sem);
1953 if (F2FS_I(inode)->last_disk_size < psize)
1954 F2FS_I(inode)->last_disk_size = psize;
1955 up_write(&F2FS_I(inode)->i_sem);
1956 }
1957
1958 done:
1959 if (err && err != -ENOENT)
1960 goto redirty_out;
1961
1962 out:
1963 inode_dec_dirty_pages(inode);
1964 if (err) {
1965 ClearPageUptodate(page);
1966 clear_cold_data(page);
1967 }
1968
1969 if (wbc->for_reclaim) {
1970 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1971 clear_inode_flag(inode, FI_HOT_DATA);
1972 f2fs_remove_dirty_inode(inode);
1973 submitted = NULL;
1974 }
1975
1976 unlock_page(page);
1977 if (!S_ISDIR(inode->i_mode))
1978 f2fs_balance_fs(sbi, need_balance_fs);
1979
1980 if (unlikely(f2fs_cp_error(sbi))) {
1981 f2fs_submit_merged_write(sbi, DATA);
1982 submitted = NULL;
1983 }
1984
1985 if (submitted)
1986 *submitted = fio.submitted;
1987
1988 return 0;
1989
1990 redirty_out:
1991 redirty_page_for_writepage(wbc, page);
1992 /*
1993 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1994 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1995 * file_write_and_wait_range() will see EIO error, which is critical
1996 * to return value of fsync() followed by atomic_write failure to user.
1997 */
1998 if (!err || wbc->for_reclaim)
1999 return AOP_WRITEPAGE_ACTIVATE;
2000 unlock_page(page);
2001 return err;
2002 }
2003
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2004 static int f2fs_write_data_page(struct page *page,
2005 struct writeback_control *wbc)
2006 {
2007 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2008 }
2009
2010 /*
2011 * This function was copied from write_cche_pages from mm/page-writeback.c.
2012 * The major change is making write step of cold data page separately from
2013 * warm/hot data page.
2014 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2015 static int f2fs_write_cache_pages(struct address_space *mapping,
2016 struct writeback_control *wbc,
2017 enum iostat_type io_type)
2018 {
2019 int ret = 0;
2020 int done = 0;
2021 struct pagevec pvec;
2022 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2023 int nr_pages;
2024 pgoff_t uninitialized_var(writeback_index);
2025 pgoff_t index;
2026 pgoff_t end; /* Inclusive */
2027 pgoff_t done_index;
2028 pgoff_t last_idx = ULONG_MAX;
2029 int cycled;
2030 int range_whole = 0;
2031 int tag;
2032
2033 pagevec_init(&pvec);
2034
2035 if (get_dirty_pages(mapping->host) <=
2036 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2037 set_inode_flag(mapping->host, FI_HOT_DATA);
2038 else
2039 clear_inode_flag(mapping->host, FI_HOT_DATA);
2040
2041 if (wbc->range_cyclic) {
2042 writeback_index = mapping->writeback_index; /* prev offset */
2043 index = writeback_index;
2044 if (index == 0)
2045 cycled = 1;
2046 else
2047 cycled = 0;
2048 end = -1;
2049 } else {
2050 index = wbc->range_start >> PAGE_SHIFT;
2051 end = wbc->range_end >> PAGE_SHIFT;
2052 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2053 range_whole = 1;
2054 cycled = 1; /* ignore range_cyclic tests */
2055 }
2056 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2057 tag = PAGECACHE_TAG_TOWRITE;
2058 else
2059 tag = PAGECACHE_TAG_DIRTY;
2060 retry:
2061 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2062 tag_pages_for_writeback(mapping, index, end);
2063 done_index = index;
2064 while (!done && (index <= end)) {
2065 int i;
2066
2067 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2068 tag);
2069 if (nr_pages == 0)
2070 break;
2071
2072 for (i = 0; i < nr_pages; i++) {
2073 struct page *page = pvec.pages[i];
2074 bool submitted = false;
2075
2076 /* give a priority to WB_SYNC threads */
2077 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2078 wbc->sync_mode == WB_SYNC_NONE) {
2079 done = 1;
2080 break;
2081 }
2082
2083 done_index = page->index;
2084 retry_write:
2085 lock_page(page);
2086
2087 if (unlikely(page->mapping != mapping)) {
2088 continue_unlock:
2089 unlock_page(page);
2090 continue;
2091 }
2092
2093 if (!PageDirty(page)) {
2094 /* someone wrote it for us */
2095 goto continue_unlock;
2096 }
2097
2098 if (PageWriteback(page)) {
2099 if (wbc->sync_mode != WB_SYNC_NONE)
2100 f2fs_wait_on_page_writeback(page,
2101 DATA, true);
2102 else
2103 goto continue_unlock;
2104 }
2105
2106 BUG_ON(PageWriteback(page));
2107 if (!clear_page_dirty_for_io(page))
2108 goto continue_unlock;
2109
2110 ret = __write_data_page(page, &submitted, wbc, io_type);
2111 if (unlikely(ret)) {
2112 /*
2113 * keep nr_to_write, since vfs uses this to
2114 * get # of written pages.
2115 */
2116 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2117 unlock_page(page);
2118 ret = 0;
2119 continue;
2120 } else if (ret == -EAGAIN) {
2121 ret = 0;
2122 if (wbc->sync_mode == WB_SYNC_ALL) {
2123 cond_resched();
2124 congestion_wait(BLK_RW_ASYNC,
2125 HZ/50);
2126 goto retry_write;
2127 }
2128 continue;
2129 }
2130 done_index = page->index + 1;
2131 done = 1;
2132 break;
2133 } else if (submitted) {
2134 last_idx = page->index;
2135 }
2136
2137 if (--wbc->nr_to_write <= 0 &&
2138 wbc->sync_mode == WB_SYNC_NONE) {
2139 done = 1;
2140 break;
2141 }
2142 }
2143 pagevec_release(&pvec);
2144 cond_resched();
2145 }
2146
2147 if (!cycled && !done) {
2148 cycled = 1;
2149 index = 0;
2150 end = writeback_index - 1;
2151 goto retry;
2152 }
2153 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2154 mapping->writeback_index = done_index;
2155
2156 if (last_idx != ULONG_MAX)
2157 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2158 0, last_idx, DATA);
2159
2160 return ret;
2161 }
2162
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)2163 static inline bool __should_serialize_io(struct inode *inode,
2164 struct writeback_control *wbc)
2165 {
2166 if (!S_ISREG(inode->i_mode))
2167 return false;
2168 if (wbc->sync_mode != WB_SYNC_ALL)
2169 return true;
2170 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2171 return true;
2172 return false;
2173 }
2174
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2175 static int __f2fs_write_data_pages(struct address_space *mapping,
2176 struct writeback_control *wbc,
2177 enum iostat_type io_type)
2178 {
2179 struct inode *inode = mapping->host;
2180 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2181 struct blk_plug plug;
2182 int ret;
2183 bool locked = false;
2184
2185 /* deal with chardevs and other special file */
2186 if (!mapping->a_ops->writepage)
2187 return 0;
2188
2189 /* skip writing if there is no dirty page in this inode */
2190 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2191 return 0;
2192
2193 /* during POR, we don't need to trigger writepage at all. */
2194 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2195 goto skip_write;
2196
2197 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2198 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2199 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2200 goto skip_write;
2201
2202 /* skip writing during file defragment */
2203 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2204 goto skip_write;
2205
2206 trace_f2fs_writepages(mapping->host, wbc, DATA);
2207
2208 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2209 if (wbc->sync_mode == WB_SYNC_ALL)
2210 atomic_inc(&sbi->wb_sync_req[DATA]);
2211 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2212 goto skip_write;
2213
2214 if (__should_serialize_io(inode, wbc)) {
2215 mutex_lock(&sbi->writepages);
2216 locked = true;
2217 }
2218
2219 blk_start_plug(&plug);
2220 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2221 blk_finish_plug(&plug);
2222
2223 if (locked)
2224 mutex_unlock(&sbi->writepages);
2225
2226 if (wbc->sync_mode == WB_SYNC_ALL)
2227 atomic_dec(&sbi->wb_sync_req[DATA]);
2228 /*
2229 * if some pages were truncated, we cannot guarantee its mapping->host
2230 * to detect pending bios.
2231 */
2232
2233 f2fs_remove_dirty_inode(inode);
2234 return ret;
2235
2236 skip_write:
2237 wbc->pages_skipped += get_dirty_pages(inode);
2238 trace_f2fs_writepages(mapping->host, wbc, DATA);
2239 return 0;
2240 }
2241
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)2242 static int f2fs_write_data_pages(struct address_space *mapping,
2243 struct writeback_control *wbc)
2244 {
2245 struct inode *inode = mapping->host;
2246
2247 return __f2fs_write_data_pages(mapping, wbc,
2248 F2FS_I(inode)->cp_task == current ?
2249 FS_CP_DATA_IO : FS_DATA_IO);
2250 }
2251
f2fs_write_failed(struct address_space * mapping,loff_t to)2252 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2253 {
2254 struct inode *inode = mapping->host;
2255 loff_t i_size = i_size_read(inode);
2256
2257 if (to > i_size) {
2258 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2259 down_write(&F2FS_I(inode)->i_mmap_sem);
2260
2261 truncate_pagecache(inode, i_size);
2262 f2fs_truncate_blocks(inode, i_size, true);
2263
2264 up_write(&F2FS_I(inode)->i_mmap_sem);
2265 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2266 }
2267 }
2268
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)2269 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2270 struct page *page, loff_t pos, unsigned len,
2271 block_t *blk_addr, bool *node_changed)
2272 {
2273 struct inode *inode = page->mapping->host;
2274 pgoff_t index = page->index;
2275 struct dnode_of_data dn;
2276 struct page *ipage;
2277 bool locked = false;
2278 struct extent_info ei = {0,0,0};
2279 int err = 0;
2280 int flag;
2281
2282 /*
2283 * we already allocated all the blocks, so we don't need to get
2284 * the block addresses when there is no need to fill the page.
2285 */
2286 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2287 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2288 return 0;
2289
2290 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2291 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2292 flag = F2FS_GET_BLOCK_DEFAULT;
2293 else
2294 flag = F2FS_GET_BLOCK_PRE_AIO;
2295
2296 if (f2fs_has_inline_data(inode) ||
2297 (pos & PAGE_MASK) >= i_size_read(inode)) {
2298 __do_map_lock(sbi, flag, true);
2299 locked = true;
2300 }
2301 restart:
2302 /* check inline_data */
2303 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2304 if (IS_ERR(ipage)) {
2305 err = PTR_ERR(ipage);
2306 goto unlock_out;
2307 }
2308
2309 set_new_dnode(&dn, inode, ipage, ipage, 0);
2310
2311 if (f2fs_has_inline_data(inode)) {
2312 if (pos + len <= MAX_INLINE_DATA(inode)) {
2313 f2fs_do_read_inline_data(page, ipage);
2314 set_inode_flag(inode, FI_DATA_EXIST);
2315 if (inode->i_nlink)
2316 set_inline_node(ipage);
2317 } else {
2318 err = f2fs_convert_inline_page(&dn, page);
2319 if (err)
2320 goto out;
2321 if (dn.data_blkaddr == NULL_ADDR)
2322 err = f2fs_get_block(&dn, index);
2323 }
2324 } else if (locked) {
2325 err = f2fs_get_block(&dn, index);
2326 } else {
2327 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2328 dn.data_blkaddr = ei.blk + index - ei.fofs;
2329 } else {
2330 /* hole case */
2331 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2332 if (err || dn.data_blkaddr == NULL_ADDR) {
2333 f2fs_put_dnode(&dn);
2334 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2335 true);
2336 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2337 locked = true;
2338 goto restart;
2339 }
2340 }
2341 }
2342
2343 /* convert_inline_page can make node_changed */
2344 *blk_addr = dn.data_blkaddr;
2345 *node_changed = dn.node_changed;
2346 out:
2347 f2fs_put_dnode(&dn);
2348 unlock_out:
2349 if (locked)
2350 __do_map_lock(sbi, flag, false);
2351 return err;
2352 }
2353
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2354 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2355 loff_t pos, unsigned len, unsigned flags,
2356 struct page **pagep, void **fsdata)
2357 {
2358 struct inode *inode = mapping->host;
2359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2360 struct page *page = NULL;
2361 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2362 bool need_balance = false, drop_atomic = false;
2363 block_t blkaddr = NULL_ADDR;
2364 int err = 0;
2365
2366 trace_f2fs_write_begin(inode, pos, len, flags);
2367
2368 if ((f2fs_is_atomic_file(inode) &&
2369 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2370 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2371 err = -ENOMEM;
2372 drop_atomic = true;
2373 goto fail;
2374 }
2375
2376 /*
2377 * We should check this at this moment to avoid deadlock on inode page
2378 * and #0 page. The locking rule for inline_data conversion should be:
2379 * lock_page(page #0) -> lock_page(inode_page)
2380 */
2381 if (index != 0) {
2382 err = f2fs_convert_inline_inode(inode);
2383 if (err)
2384 goto fail;
2385 }
2386 repeat:
2387 /*
2388 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2389 * wait_for_stable_page. Will wait that below with our IO control.
2390 */
2391 page = f2fs_pagecache_get_page(mapping, index,
2392 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2393 if (!page) {
2394 err = -ENOMEM;
2395 goto fail;
2396 }
2397
2398 *pagep = page;
2399
2400 err = prepare_write_begin(sbi, page, pos, len,
2401 &blkaddr, &need_balance);
2402 if (err)
2403 goto fail;
2404
2405 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2406 unlock_page(page);
2407 f2fs_balance_fs(sbi, true);
2408 lock_page(page);
2409 if (page->mapping != mapping) {
2410 /* The page got truncated from under us */
2411 f2fs_put_page(page, 1);
2412 goto repeat;
2413 }
2414 }
2415
2416 f2fs_wait_on_page_writeback(page, DATA, false);
2417
2418 if (len == PAGE_SIZE || PageUptodate(page))
2419 return 0;
2420
2421 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2422 zero_user_segment(page, len, PAGE_SIZE);
2423 return 0;
2424 }
2425
2426 if (blkaddr == NEW_ADDR) {
2427 zero_user_segment(page, 0, PAGE_SIZE);
2428 SetPageUptodate(page);
2429 } else {
2430 err = f2fs_submit_page_read(inode, page, blkaddr);
2431 if (err)
2432 goto fail;
2433
2434 lock_page(page);
2435 if (unlikely(page->mapping != mapping)) {
2436 f2fs_put_page(page, 1);
2437 goto repeat;
2438 }
2439 if (unlikely(!PageUptodate(page))) {
2440 err = -EIO;
2441 goto fail;
2442 }
2443 }
2444 return 0;
2445
2446 fail:
2447 f2fs_put_page(page, 1);
2448 f2fs_write_failed(mapping, pos + len);
2449 if (drop_atomic)
2450 f2fs_drop_inmem_pages_all(sbi, false);
2451 return err;
2452 }
2453
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2454 static int f2fs_write_end(struct file *file,
2455 struct address_space *mapping,
2456 loff_t pos, unsigned len, unsigned copied,
2457 struct page *page, void *fsdata)
2458 {
2459 struct inode *inode = page->mapping->host;
2460
2461 trace_f2fs_write_end(inode, pos, len, copied);
2462
2463 /*
2464 * This should be come from len == PAGE_SIZE, and we expect copied
2465 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2466 * let generic_perform_write() try to copy data again through copied=0.
2467 */
2468 if (!PageUptodate(page)) {
2469 if (unlikely(copied != len))
2470 copied = 0;
2471 else
2472 SetPageUptodate(page);
2473 }
2474 if (!copied)
2475 goto unlock_out;
2476
2477 set_page_dirty(page);
2478
2479 if (pos + copied > i_size_read(inode))
2480 f2fs_i_size_write(inode, pos + copied);
2481 unlock_out:
2482 f2fs_put_page(page, 1);
2483 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2484 return copied;
2485 }
2486
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)2487 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2488 loff_t offset)
2489 {
2490 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2491 unsigned blkbits = i_blkbits;
2492 unsigned blocksize_mask = (1 << blkbits) - 1;
2493 unsigned long align = offset | iov_iter_alignment(iter);
2494 struct block_device *bdev = inode->i_sb->s_bdev;
2495
2496 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
2497 return 1;
2498
2499 if (align & blocksize_mask) {
2500 if (bdev)
2501 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2502 blocksize_mask = (1 << blkbits) - 1;
2503 if (align & blocksize_mask)
2504 return -EINVAL;
2505 return 1;
2506 }
2507 return 0;
2508 }
2509
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2510 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2511 {
2512 struct address_space *mapping = iocb->ki_filp->f_mapping;
2513 struct inode *inode = mapping->host;
2514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2515 size_t count = iov_iter_count(iter);
2516 loff_t offset = iocb->ki_pos;
2517 int rw = iov_iter_rw(iter);
2518 int err;
2519 enum rw_hint hint = iocb->ki_hint;
2520 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2521
2522 err = check_direct_IO(inode, iter, offset);
2523 if (err)
2524 return err < 0 ? err : 0;
2525
2526 if (f2fs_force_buffered_io(inode, rw))
2527 return 0;
2528
2529 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2530
2531 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2532 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2533
2534 if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2535 if (iocb->ki_flags & IOCB_NOWAIT) {
2536 iocb->ki_hint = hint;
2537 err = -EAGAIN;
2538 goto out;
2539 }
2540 down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2541 }
2542
2543 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2544 up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2545
2546 if (rw == WRITE) {
2547 if (whint_mode == WHINT_MODE_OFF)
2548 iocb->ki_hint = hint;
2549 if (err > 0) {
2550 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2551 err);
2552 set_inode_flag(inode, FI_UPDATE_WRITE);
2553 } else if (err < 0) {
2554 f2fs_write_failed(mapping, offset + count);
2555 }
2556 }
2557
2558 out:
2559 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2560
2561 return err;
2562 }
2563
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)2564 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2565 unsigned int length)
2566 {
2567 struct inode *inode = page->mapping->host;
2568 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2569
2570 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2571 (offset % PAGE_SIZE || length != PAGE_SIZE))
2572 return;
2573
2574 if (PageDirty(page)) {
2575 if (inode->i_ino == F2FS_META_INO(sbi)) {
2576 dec_page_count(sbi, F2FS_DIRTY_META);
2577 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2578 dec_page_count(sbi, F2FS_DIRTY_NODES);
2579 } else {
2580 inode_dec_dirty_pages(inode);
2581 f2fs_remove_dirty_inode(inode);
2582 }
2583 }
2584
2585 clear_cold_data(page);
2586
2587 /* This is atomic written page, keep Private */
2588 if (IS_ATOMIC_WRITTEN_PAGE(page))
2589 return f2fs_drop_inmem_page(inode, page);
2590
2591 set_page_private(page, 0);
2592 ClearPagePrivate(page);
2593 }
2594
f2fs_release_page(struct page * page,gfp_t wait)2595 int f2fs_release_page(struct page *page, gfp_t wait)
2596 {
2597 /* If this is dirty page, keep PagePrivate */
2598 if (PageDirty(page))
2599 return 0;
2600
2601 /* This is atomic written page, keep Private */
2602 if (IS_ATOMIC_WRITTEN_PAGE(page))
2603 return 0;
2604
2605 clear_cold_data(page);
2606 set_page_private(page, 0);
2607 ClearPagePrivate(page);
2608 return 1;
2609 }
2610
f2fs_set_data_page_dirty(struct page * page)2611 static int f2fs_set_data_page_dirty(struct page *page)
2612 {
2613 struct inode *inode = page_file_mapping(page)->host;
2614
2615 trace_f2fs_set_page_dirty(page, DATA);
2616
2617 if (!PageUptodate(page))
2618 SetPageUptodate(page);
2619 if (PageSwapCache(page))
2620 return __set_page_dirty_nobuffers(page);
2621
2622 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2623 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2624 f2fs_register_inmem_page(inode, page);
2625 return 1;
2626 }
2627 /*
2628 * Previously, this page has been registered, we just
2629 * return here.
2630 */
2631 return 0;
2632 }
2633
2634 if (!PageDirty(page)) {
2635 __set_page_dirty_nobuffers(page);
2636 f2fs_update_dirty_page(inode, page);
2637 return 1;
2638 }
2639 return 0;
2640 }
2641
f2fs_bmap(struct address_space * mapping,sector_t block)2642 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2643 {
2644 struct inode *inode = mapping->host;
2645
2646 if (f2fs_has_inline_data(inode))
2647 return 0;
2648
2649 /* make sure allocating whole blocks */
2650 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2651 filemap_write_and_wait(mapping);
2652
2653 return generic_block_bmap(mapping, block, get_data_block_bmap);
2654 }
2655
2656 #ifdef CONFIG_MIGRATION
2657 #include <linux/migrate.h>
2658
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2659 int f2fs_migrate_page(struct address_space *mapping,
2660 struct page *newpage, struct page *page, enum migrate_mode mode)
2661 {
2662 int rc, extra_count;
2663 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2664 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2665
2666 BUG_ON(PageWriteback(page));
2667
2668 /* migrating an atomic written page is safe with the inmem_lock hold */
2669 if (atomic_written) {
2670 if (mode != MIGRATE_SYNC)
2671 return -EBUSY;
2672 if (!mutex_trylock(&fi->inmem_lock))
2673 return -EAGAIN;
2674 }
2675
2676 /*
2677 * A reference is expected if PagePrivate set when move mapping,
2678 * however F2FS breaks this for maintaining dirty page counts when
2679 * truncating pages. So here adjusting the 'extra_count' make it work.
2680 */
2681 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2682 rc = migrate_page_move_mapping(mapping, newpage,
2683 page, NULL, mode, extra_count);
2684 if (rc != MIGRATEPAGE_SUCCESS) {
2685 if (atomic_written)
2686 mutex_unlock(&fi->inmem_lock);
2687 return rc;
2688 }
2689
2690 if (atomic_written) {
2691 struct inmem_pages *cur;
2692 list_for_each_entry(cur, &fi->inmem_pages, list)
2693 if (cur->page == page) {
2694 cur->page = newpage;
2695 break;
2696 }
2697 mutex_unlock(&fi->inmem_lock);
2698 put_page(page);
2699 get_page(newpage);
2700 }
2701
2702 if (PagePrivate(page))
2703 SetPagePrivate(newpage);
2704 set_page_private(newpage, page_private(page));
2705
2706 if (mode != MIGRATE_SYNC_NO_COPY)
2707 migrate_page_copy(newpage, page);
2708 else
2709 migrate_page_states(newpage, page);
2710
2711 return MIGRATEPAGE_SUCCESS;
2712 }
2713 #endif
2714
2715 #ifdef CONFIG_SWAP
2716 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct file * swap_file,unsigned int max)2717 static int check_swap_activate(struct file *swap_file, unsigned int max)
2718 {
2719 struct address_space *mapping = swap_file->f_mapping;
2720 struct inode *inode = mapping->host;
2721 unsigned blocks_per_page;
2722 unsigned long page_no;
2723 unsigned blkbits;
2724 sector_t probe_block;
2725 sector_t last_block;
2726 sector_t lowest_block = -1;
2727 sector_t highest_block = 0;
2728
2729 blkbits = inode->i_blkbits;
2730 blocks_per_page = PAGE_SIZE >> blkbits;
2731
2732 /*
2733 * Map all the blocks into the extent list. This code doesn't try
2734 * to be very smart.
2735 */
2736 probe_block = 0;
2737 page_no = 0;
2738 last_block = i_size_read(inode) >> blkbits;
2739 while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
2740 unsigned block_in_page;
2741 sector_t first_block;
2742
2743 cond_resched();
2744
2745 first_block = bmap(inode, probe_block);
2746 if (first_block == 0)
2747 goto bad_bmap;
2748
2749 /*
2750 * It must be PAGE_SIZE aligned on-disk
2751 */
2752 if (first_block & (blocks_per_page - 1)) {
2753 probe_block++;
2754 goto reprobe;
2755 }
2756
2757 for (block_in_page = 1; block_in_page < blocks_per_page;
2758 block_in_page++) {
2759 sector_t block;
2760
2761 block = bmap(inode, probe_block + block_in_page);
2762 if (block == 0)
2763 goto bad_bmap;
2764 if (block != first_block + block_in_page) {
2765 /* Discontiguity */
2766 probe_block++;
2767 goto reprobe;
2768 }
2769 }
2770
2771 first_block >>= (PAGE_SHIFT - blkbits);
2772 if (page_no) { /* exclude the header page */
2773 if (first_block < lowest_block)
2774 lowest_block = first_block;
2775 if (first_block > highest_block)
2776 highest_block = first_block;
2777 }
2778
2779 page_no++;
2780 probe_block += blocks_per_page;
2781 reprobe:
2782 continue;
2783 }
2784 return 0;
2785
2786 bad_bmap:
2787 pr_err("swapon: swapfile has holes\n");
2788 return -EINVAL;
2789 }
2790
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)2791 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
2792 sector_t *span)
2793 {
2794 struct inode *inode = file_inode(file);
2795 int ret;
2796
2797 if (!S_ISREG(inode->i_mode))
2798 return -EINVAL;
2799
2800 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2801 return -EROFS;
2802
2803 ret = f2fs_convert_inline_inode(inode);
2804 if (ret)
2805 return ret;
2806
2807 ret = check_swap_activate(file, sis->max);
2808 if (ret)
2809 return ret;
2810
2811 set_inode_flag(inode, FI_PIN_FILE);
2812 f2fs_precache_extents(inode);
2813 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2814 return 0;
2815 }
2816
f2fs_swap_deactivate(struct file * file)2817 static void f2fs_swap_deactivate(struct file *file)
2818 {
2819 struct inode *inode = file_inode(file);
2820
2821 clear_inode_flag(inode, FI_PIN_FILE);
2822 }
2823 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)2824 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
2825 sector_t *span)
2826 {
2827 return -EOPNOTSUPP;
2828 }
2829
f2fs_swap_deactivate(struct file * file)2830 static void f2fs_swap_deactivate(struct file *file)
2831 {
2832 }
2833 #endif
2834
2835 const struct address_space_operations f2fs_dblock_aops = {
2836 .readpage = f2fs_read_data_page,
2837 .readpages = f2fs_read_data_pages,
2838 .writepage = f2fs_write_data_page,
2839 .writepages = f2fs_write_data_pages,
2840 .write_begin = f2fs_write_begin,
2841 .write_end = f2fs_write_end,
2842 .set_page_dirty = f2fs_set_data_page_dirty,
2843 .invalidatepage = f2fs_invalidate_page,
2844 .releasepage = f2fs_release_page,
2845 .direct_IO = f2fs_direct_IO,
2846 .bmap = f2fs_bmap,
2847 .swap_activate = f2fs_swap_activate,
2848 .swap_deactivate = f2fs_swap_deactivate,
2849 #ifdef CONFIG_MIGRATION
2850 .migratepage = f2fs_migrate_page,
2851 #endif
2852 };
2853
f2fs_clear_radix_tree_dirty_tag(struct page * page)2854 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2855 {
2856 struct address_space *mapping = page_mapping(page);
2857 unsigned long flags;
2858
2859 xa_lock_irqsave(&mapping->i_pages, flags);
2860 radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2861 PAGECACHE_TAG_DIRTY);
2862 xa_unlock_irqrestore(&mapping->i_pages, flags);
2863 }
2864
f2fs_init_post_read_processing(void)2865 int __init f2fs_init_post_read_processing(void)
2866 {
2867 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2868 if (!bio_post_read_ctx_cache)
2869 goto fail;
2870 bio_post_read_ctx_pool =
2871 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2872 bio_post_read_ctx_cache);
2873 if (!bio_post_read_ctx_pool)
2874 goto fail_free_cache;
2875 return 0;
2876
2877 fail_free_cache:
2878 kmem_cache_destroy(bio_post_read_ctx_cache);
2879 fail:
2880 return -ENOMEM;
2881 }
2882
f2fs_destroy_post_read_processing(void)2883 void __exit f2fs_destroy_post_read_processing(void)
2884 {
2885 mempool_destroy(bio_post_read_ctx_pool);
2886 kmem_cache_destroy(bio_post_read_ctx_cache);
2887 }
2888