• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/swap.h>
21 #include <linux/prefetch.h>
22 #include <linux/uio.h>
23 #include <linux/cleancache.h>
24 #include <linux/sched/signal.h>
25 
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31 
32 #define NUM_PREALLOC_POST_READ_CTXS	128
33 
34 static struct kmem_cache *bio_post_read_ctx_cache;
35 static mempool_t *bio_post_read_ctx_pool;
36 
__is_cp_guaranteed(struct page * page)37 static bool __is_cp_guaranteed(struct page *page)
38 {
39 	struct address_space *mapping = page->mapping;
40 	struct inode *inode;
41 	struct f2fs_sb_info *sbi;
42 
43 	if (!mapping)
44 		return false;
45 
46 	inode = mapping->host;
47 	sbi = F2FS_I_SB(inode);
48 
49 	if (inode->i_ino == F2FS_META_INO(sbi) ||
50 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
51 			S_ISDIR(inode->i_mode) ||
52 			(S_ISREG(inode->i_mode) &&
53 			is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
54 			is_cold_data(page))
55 		return true;
56 	return false;
57 }
58 
59 /* postprocessing steps for read bios */
60 enum bio_post_read_step {
61 	STEP_INITIAL = 0,
62 	STEP_DECRYPT,
63 };
64 
65 struct bio_post_read_ctx {
66 	struct bio *bio;
67 	struct work_struct work;
68 	unsigned int cur_step;
69 	unsigned int enabled_steps;
70 };
71 
__read_end_io(struct bio * bio)72 static void __read_end_io(struct bio *bio)
73 {
74 	struct page *page;
75 	struct bio_vec *bv;
76 	int i;
77 
78 	bio_for_each_segment_all(bv, bio, i) {
79 		page = bv->bv_page;
80 
81 		/* PG_error was set if any post_read step failed */
82 		if (bio->bi_status || PageError(page)) {
83 			ClearPageUptodate(page);
84 			/* will re-read again later */
85 			ClearPageError(page);
86 		} else {
87 			SetPageUptodate(page);
88 		}
89 		unlock_page(page);
90 	}
91 	if (bio->bi_private)
92 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
93 	bio_put(bio);
94 }
95 
96 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
97 
decrypt_work(struct work_struct * work)98 static void decrypt_work(struct work_struct *work)
99 {
100 	struct bio_post_read_ctx *ctx =
101 		container_of(work, struct bio_post_read_ctx, work);
102 
103 	fscrypt_decrypt_bio(ctx->bio);
104 
105 	bio_post_read_processing(ctx);
106 }
107 
bio_post_read_processing(struct bio_post_read_ctx * ctx)108 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
109 {
110 	switch (++ctx->cur_step) {
111 	case STEP_DECRYPT:
112 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
113 			INIT_WORK(&ctx->work, decrypt_work);
114 			fscrypt_enqueue_decrypt_work(&ctx->work);
115 			return;
116 		}
117 		ctx->cur_step++;
118 		/* fall-through */
119 	default:
120 		__read_end_io(ctx->bio);
121 	}
122 }
123 
f2fs_bio_post_read_required(struct bio * bio)124 static bool f2fs_bio_post_read_required(struct bio *bio)
125 {
126 	return bio->bi_private && !bio->bi_status;
127 }
128 
f2fs_read_end_io(struct bio * bio)129 static void f2fs_read_end_io(struct bio *bio)
130 {
131 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
132 		f2fs_show_injection_info(FAULT_IO);
133 		bio->bi_status = BLK_STS_IOERR;
134 	}
135 
136 	if (f2fs_bio_post_read_required(bio)) {
137 		struct bio_post_read_ctx *ctx = bio->bi_private;
138 
139 		ctx->cur_step = STEP_INITIAL;
140 		bio_post_read_processing(ctx);
141 		return;
142 	}
143 
144 	__read_end_io(bio);
145 }
146 
f2fs_write_end_io(struct bio * bio)147 static void f2fs_write_end_io(struct bio *bio)
148 {
149 	struct f2fs_sb_info *sbi = bio->bi_private;
150 	struct bio_vec *bvec;
151 	int i;
152 
153 	bio_for_each_segment_all(bvec, bio, i) {
154 		struct page *page = bvec->bv_page;
155 		enum count_type type = WB_DATA_TYPE(page);
156 
157 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
158 			set_page_private(page, (unsigned long)NULL);
159 			ClearPagePrivate(page);
160 			unlock_page(page);
161 			mempool_free(page, sbi->write_io_dummy);
162 
163 			if (unlikely(bio->bi_status))
164 				f2fs_stop_checkpoint(sbi, true);
165 			continue;
166 		}
167 
168 		fscrypt_pullback_bio_page(&page, true);
169 
170 		if (unlikely(bio->bi_status)) {
171 			mapping_set_error(page->mapping, -EIO);
172 			if (type == F2FS_WB_CP_DATA)
173 				f2fs_stop_checkpoint(sbi, true);
174 		}
175 
176 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
177 					page->index != nid_of_node(page));
178 
179 		dec_page_count(sbi, type);
180 		if (f2fs_in_warm_node_list(sbi, page))
181 			f2fs_del_fsync_node_entry(sbi, page);
182 		clear_cold_data(page);
183 		end_page_writeback(page);
184 	}
185 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
186 				wq_has_sleeper(&sbi->cp_wait))
187 		wake_up(&sbi->cp_wait);
188 
189 	bio_put(bio);
190 }
191 
192 /*
193  * Return true, if pre_bio's bdev is same as its target device.
194  */
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)195 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
196 				block_t blk_addr, struct bio *bio)
197 {
198 	struct block_device *bdev = sbi->sb->s_bdev;
199 	int i;
200 
201 	if (f2fs_is_multi_device(sbi)) {
202 		for (i = 0; i < sbi->s_ndevs; i++) {
203 			if (FDEV(i).start_blk <= blk_addr &&
204 			    FDEV(i).end_blk >= blk_addr) {
205 				blk_addr -= FDEV(i).start_blk;
206 				bdev = FDEV(i).bdev;
207 				break;
208 			}
209 		}
210 	}
211 	if (bio) {
212 		bio_set_dev(bio, bdev);
213 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
214 	}
215 	return bdev;
216 }
217 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)218 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
219 {
220 	int i;
221 
222 	if (!f2fs_is_multi_device(sbi))
223 		return 0;
224 
225 	for (i = 0; i < sbi->s_ndevs; i++)
226 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
227 			return i;
228 	return 0;
229 }
230 
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)231 static bool __same_bdev(struct f2fs_sb_info *sbi,
232 				block_t blk_addr, struct bio *bio)
233 {
234 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
235 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
236 }
237 
238 /*
239  * Low-level block read/write IO operations.
240  */
__bio_alloc(struct f2fs_sb_info * sbi,block_t blk_addr,struct writeback_control * wbc,int npages,bool is_read,enum page_type type,enum temp_type temp)241 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
242 				struct writeback_control *wbc,
243 				int npages, bool is_read,
244 				enum page_type type, enum temp_type temp)
245 {
246 	struct bio *bio;
247 
248 	bio = f2fs_bio_alloc(sbi, npages, true);
249 
250 	f2fs_target_device(sbi, blk_addr, bio);
251 	if (is_read) {
252 		bio->bi_end_io = f2fs_read_end_io;
253 		bio->bi_private = NULL;
254 	} else {
255 		bio->bi_end_io = f2fs_write_end_io;
256 		bio->bi_private = sbi;
257 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
258 	}
259 	if (wbc)
260 		wbc_init_bio(wbc, bio);
261 
262 	return bio;
263 }
264 
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)265 static inline void __submit_bio(struct f2fs_sb_info *sbi,
266 				struct bio *bio, enum page_type type)
267 {
268 	if (!is_read_io(bio_op(bio))) {
269 		unsigned int start;
270 
271 		if (type != DATA && type != NODE)
272 			goto submit_io;
273 
274 		if (test_opt(sbi, LFS) && current->plug)
275 			blk_finish_plug(current->plug);
276 
277 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
278 		start %= F2FS_IO_SIZE(sbi);
279 
280 		if (start == 0)
281 			goto submit_io;
282 
283 		/* fill dummy pages */
284 		for (; start < F2FS_IO_SIZE(sbi); start++) {
285 			struct page *page =
286 				mempool_alloc(sbi->write_io_dummy,
287 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
288 			f2fs_bug_on(sbi, !page);
289 
290 			SetPagePrivate(page);
291 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
292 			lock_page(page);
293 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
294 				f2fs_bug_on(sbi, 1);
295 		}
296 		/*
297 		 * In the NODE case, we lose next block address chain. So, we
298 		 * need to do checkpoint in f2fs_sync_file.
299 		 */
300 		if (type == NODE)
301 			set_sbi_flag(sbi, SBI_NEED_CP);
302 	}
303 submit_io:
304 	if (is_read_io(bio_op(bio)))
305 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
306 	else
307 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
308 	submit_bio(bio);
309 }
310 
__submit_merged_bio(struct f2fs_bio_info * io)311 static void __submit_merged_bio(struct f2fs_bio_info *io)
312 {
313 	struct f2fs_io_info *fio = &io->fio;
314 
315 	if (!io->bio)
316 		return;
317 
318 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
319 
320 	if (is_read_io(fio->op))
321 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
322 	else
323 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
324 
325 	__submit_bio(io->sbi, io->bio, fio->type);
326 	io->bio = NULL;
327 }
328 
__has_merged_page(struct f2fs_bio_info * io,struct inode * inode,nid_t ino,pgoff_t idx)329 static bool __has_merged_page(struct f2fs_bio_info *io,
330 				struct inode *inode, nid_t ino, pgoff_t idx)
331 {
332 	struct bio_vec *bvec;
333 	struct page *target;
334 	int i;
335 
336 	if (!io->bio)
337 		return false;
338 
339 	if (!inode && !ino)
340 		return true;
341 
342 	bio_for_each_segment_all(bvec, io->bio, i) {
343 
344 		if (bvec->bv_page->mapping)
345 			target = bvec->bv_page;
346 		else
347 			target = fscrypt_control_page(bvec->bv_page);
348 
349 		if (idx != target->index)
350 			continue;
351 
352 		if (inode && inode == target->mapping->host)
353 			return true;
354 		if (ino && ino == ino_of_node(target))
355 			return true;
356 	}
357 
358 	return false;
359 }
360 
has_merged_page(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type)361 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
362 				nid_t ino, pgoff_t idx, enum page_type type)
363 {
364 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
365 	enum temp_type temp;
366 	struct f2fs_bio_info *io;
367 	bool ret = false;
368 
369 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
370 		io = sbi->write_io[btype] + temp;
371 
372 		down_read(&io->io_rwsem);
373 		ret = __has_merged_page(io, inode, ino, idx);
374 		up_read(&io->io_rwsem);
375 
376 		/* TODO: use HOT temp only for meta pages now. */
377 		if (ret || btype == META)
378 			break;
379 	}
380 	return ret;
381 }
382 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)383 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
384 				enum page_type type, enum temp_type temp)
385 {
386 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
387 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
388 
389 	down_write(&io->io_rwsem);
390 
391 	/* change META to META_FLUSH in the checkpoint procedure */
392 	if (type >= META_FLUSH) {
393 		io->fio.type = META_FLUSH;
394 		io->fio.op = REQ_OP_WRITE;
395 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
396 		if (!test_opt(sbi, NOBARRIER))
397 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
398 	}
399 	__submit_merged_bio(io);
400 	up_write(&io->io_rwsem);
401 }
402 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type,bool force)403 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
404 				struct inode *inode, nid_t ino, pgoff_t idx,
405 				enum page_type type, bool force)
406 {
407 	enum temp_type temp;
408 
409 	if (!force && !has_merged_page(sbi, inode, ino, idx, type))
410 		return;
411 
412 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
413 
414 		__f2fs_submit_merged_write(sbi, type, temp);
415 
416 		/* TODO: use HOT temp only for meta pages now. */
417 		if (type >= META)
418 			break;
419 	}
420 }
421 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)422 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
423 {
424 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
425 }
426 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type)427 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
428 				struct inode *inode, nid_t ino, pgoff_t idx,
429 				enum page_type type)
430 {
431 	__submit_merged_write_cond(sbi, inode, ino, idx, type, false);
432 }
433 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)434 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
435 {
436 	f2fs_submit_merged_write(sbi, DATA);
437 	f2fs_submit_merged_write(sbi, NODE);
438 	f2fs_submit_merged_write(sbi, META);
439 }
440 
441 /*
442  * Fill the locked page with data located in the block address.
443  * A caller needs to unlock the page on failure.
444  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)445 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
446 {
447 	struct bio *bio;
448 	struct page *page = fio->encrypted_page ?
449 			fio->encrypted_page : fio->page;
450 
451 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
452 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
453 		return -EFSCORRUPTED;
454 
455 	trace_f2fs_submit_page_bio(page, fio);
456 	f2fs_trace_ios(fio, 0);
457 
458 	/* Allocate a new bio */
459 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
460 				1, is_read_io(fio->op), fio->type, fio->temp);
461 
462 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
463 		bio_put(bio);
464 		return -EFAULT;
465 	}
466 
467 	if (fio->io_wbc && !is_read_io(fio->op))
468 		wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
469 
470 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
471 
472 	if (!is_read_io(fio->op))
473 		inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
474 
475 	__submit_bio(fio->sbi, bio, fio->type);
476 	return 0;
477 }
478 
f2fs_submit_page_write(struct f2fs_io_info * fio)479 void f2fs_submit_page_write(struct f2fs_io_info *fio)
480 {
481 	struct f2fs_sb_info *sbi = fio->sbi;
482 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
483 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
484 	struct page *bio_page;
485 
486 	f2fs_bug_on(sbi, is_read_io(fio->op));
487 
488 	down_write(&io->io_rwsem);
489 next:
490 	if (fio->in_list) {
491 		spin_lock(&io->io_lock);
492 		if (list_empty(&io->io_list)) {
493 			spin_unlock(&io->io_lock);
494 			goto out;
495 		}
496 		fio = list_first_entry(&io->io_list,
497 						struct f2fs_io_info, list);
498 		list_del(&fio->list);
499 		spin_unlock(&io->io_lock);
500 	}
501 
502 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
503 		verify_block_addr(fio, fio->old_blkaddr);
504 	verify_block_addr(fio, fio->new_blkaddr);
505 
506 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
507 
508 	/* set submitted = true as a return value */
509 	fio->submitted = true;
510 
511 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
512 
513 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
514 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
515 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
516 		__submit_merged_bio(io);
517 alloc_new:
518 	if (io->bio == NULL) {
519 		if ((fio->type == DATA || fio->type == NODE) &&
520 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
521 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
522 			fio->retry = true;
523 			goto skip;
524 		}
525 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
526 						BIO_MAX_PAGES, false,
527 						fio->type, fio->temp);
528 		io->fio = *fio;
529 	}
530 
531 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
532 		__submit_merged_bio(io);
533 		goto alloc_new;
534 	}
535 
536 	if (fio->io_wbc)
537 		wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
538 
539 	io->last_block_in_bio = fio->new_blkaddr;
540 	f2fs_trace_ios(fio, 0);
541 
542 	trace_f2fs_submit_page_write(fio->page, fio);
543 skip:
544 	if (fio->in_list)
545 		goto next;
546 out:
547 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
548 		__submit_merged_bio(io);
549 	up_write(&io->io_rwsem);
550 }
551 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag)552 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
553 					unsigned nr_pages, unsigned op_flag)
554 {
555 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
556 	struct bio *bio;
557 	struct bio_post_read_ctx *ctx;
558 	unsigned int post_read_steps = 0;
559 
560 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
561 		return ERR_PTR(-EFAULT);
562 
563 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
564 	if (!bio)
565 		return ERR_PTR(-ENOMEM);
566 	f2fs_target_device(sbi, blkaddr, bio);
567 	bio->bi_end_io = f2fs_read_end_io;
568 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
569 
570 	if (f2fs_encrypted_file(inode))
571 		post_read_steps |= 1 << STEP_DECRYPT;
572 	if (post_read_steps) {
573 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
574 		if (!ctx) {
575 			bio_put(bio);
576 			return ERR_PTR(-ENOMEM);
577 		}
578 		ctx->bio = bio;
579 		ctx->enabled_steps = post_read_steps;
580 		bio->bi_private = ctx;
581 	}
582 
583 	return bio;
584 }
585 
586 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr)587 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
588 							block_t blkaddr)
589 {
590 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
591 
592 	if (IS_ERR(bio))
593 		return PTR_ERR(bio);
594 
595 	/* wait for GCed page writeback via META_MAPPING */
596 	f2fs_wait_on_block_writeback(inode, blkaddr);
597 
598 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
599 		bio_put(bio);
600 		return -EFAULT;
601 	}
602 	ClearPageError(page);
603 	__submit_bio(F2FS_I_SB(inode), bio, DATA);
604 	return 0;
605 }
606 
__set_data_blkaddr(struct dnode_of_data * dn)607 static void __set_data_blkaddr(struct dnode_of_data *dn)
608 {
609 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
610 	__le32 *addr_array;
611 	int base = 0;
612 
613 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
614 		base = get_extra_isize(dn->inode);
615 
616 	/* Get physical address of data block */
617 	addr_array = blkaddr_in_node(rn);
618 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
619 }
620 
621 /*
622  * Lock ordering for the change of data block address:
623  * ->data_page
624  *  ->node_page
625  *    update block addresses in the node page
626  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)627 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
628 {
629 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
630 	__set_data_blkaddr(dn);
631 	if (set_page_dirty(dn->node_page))
632 		dn->node_changed = true;
633 }
634 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)635 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
636 {
637 	dn->data_blkaddr = blkaddr;
638 	f2fs_set_data_blkaddr(dn);
639 	f2fs_update_extent_cache(dn);
640 }
641 
642 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)643 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
644 {
645 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
646 	int err;
647 
648 	if (!count)
649 		return 0;
650 
651 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
652 		return -EPERM;
653 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
654 		return err;
655 
656 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
657 						dn->ofs_in_node, count);
658 
659 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
660 
661 	for (; count > 0; dn->ofs_in_node++) {
662 		block_t blkaddr = datablock_addr(dn->inode,
663 					dn->node_page, dn->ofs_in_node);
664 		if (blkaddr == NULL_ADDR) {
665 			dn->data_blkaddr = NEW_ADDR;
666 			__set_data_blkaddr(dn);
667 			count--;
668 		}
669 	}
670 
671 	if (set_page_dirty(dn->node_page))
672 		dn->node_changed = true;
673 	return 0;
674 }
675 
676 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)677 int f2fs_reserve_new_block(struct dnode_of_data *dn)
678 {
679 	unsigned int ofs_in_node = dn->ofs_in_node;
680 	int ret;
681 
682 	ret = f2fs_reserve_new_blocks(dn, 1);
683 	dn->ofs_in_node = ofs_in_node;
684 	return ret;
685 }
686 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)687 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
688 {
689 	bool need_put = dn->inode_page ? false : true;
690 	int err;
691 
692 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
693 	if (err)
694 		return err;
695 
696 	if (dn->data_blkaddr == NULL_ADDR)
697 		err = f2fs_reserve_new_block(dn);
698 	if (err || need_put)
699 		f2fs_put_dnode(dn);
700 	return err;
701 }
702 
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)703 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
704 {
705 	struct extent_info ei  = {0,0,0};
706 	struct inode *inode = dn->inode;
707 
708 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
709 		dn->data_blkaddr = ei.blk + index - ei.fofs;
710 		return 0;
711 	}
712 
713 	return f2fs_reserve_block(dn, index);
714 }
715 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)716 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
717 						int op_flags, bool for_write)
718 {
719 	struct address_space *mapping = inode->i_mapping;
720 	struct dnode_of_data dn;
721 	struct page *page;
722 	struct extent_info ei = {0,0,0};
723 	int err;
724 
725 	page = f2fs_grab_cache_page(mapping, index, for_write);
726 	if (!page)
727 		return ERR_PTR(-ENOMEM);
728 
729 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
730 		dn.data_blkaddr = ei.blk + index - ei.fofs;
731 		goto got_it;
732 	}
733 
734 	set_new_dnode(&dn, inode, NULL, NULL, 0);
735 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
736 	if (err)
737 		goto put_err;
738 	f2fs_put_dnode(&dn);
739 
740 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
741 		err = -ENOENT;
742 		goto put_err;
743 	}
744 got_it:
745 	if (PageUptodate(page)) {
746 		unlock_page(page);
747 		return page;
748 	}
749 
750 	/*
751 	 * A new dentry page is allocated but not able to be written, since its
752 	 * new inode page couldn't be allocated due to -ENOSPC.
753 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
754 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
755 	 * f2fs_init_inode_metadata.
756 	 */
757 	if (dn.data_blkaddr == NEW_ADDR) {
758 		zero_user_segment(page, 0, PAGE_SIZE);
759 		if (!PageUptodate(page))
760 			SetPageUptodate(page);
761 		unlock_page(page);
762 		return page;
763 	}
764 
765 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
766 	if (err)
767 		goto put_err;
768 	return page;
769 
770 put_err:
771 	f2fs_put_page(page, 1);
772 	return ERR_PTR(err);
773 }
774 
f2fs_find_data_page(struct inode * inode,pgoff_t index)775 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
776 {
777 	struct address_space *mapping = inode->i_mapping;
778 	struct page *page;
779 
780 	page = find_get_page(mapping, index);
781 	if (page && PageUptodate(page))
782 		return page;
783 	f2fs_put_page(page, 0);
784 
785 	page = f2fs_get_read_data_page(inode, index, 0, false);
786 	if (IS_ERR(page))
787 		return page;
788 
789 	if (PageUptodate(page))
790 		return page;
791 
792 	wait_on_page_locked(page);
793 	if (unlikely(!PageUptodate(page))) {
794 		f2fs_put_page(page, 0);
795 		return ERR_PTR(-EIO);
796 	}
797 	return page;
798 }
799 
800 /*
801  * If it tries to access a hole, return an error.
802  * Because, the callers, functions in dir.c and GC, should be able to know
803  * whether this page exists or not.
804  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)805 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
806 							bool for_write)
807 {
808 	struct address_space *mapping = inode->i_mapping;
809 	struct page *page;
810 repeat:
811 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
812 	if (IS_ERR(page))
813 		return page;
814 
815 	/* wait for read completion */
816 	lock_page(page);
817 	if (unlikely(page->mapping != mapping)) {
818 		f2fs_put_page(page, 1);
819 		goto repeat;
820 	}
821 	if (unlikely(!PageUptodate(page))) {
822 		f2fs_put_page(page, 1);
823 		return ERR_PTR(-EIO);
824 	}
825 	return page;
826 }
827 
828 /*
829  * Caller ensures that this data page is never allocated.
830  * A new zero-filled data page is allocated in the page cache.
831  *
832  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
833  * f2fs_unlock_op().
834  * Note that, ipage is set only by make_empty_dir, and if any error occur,
835  * ipage should be released by this function.
836  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)837 struct page *f2fs_get_new_data_page(struct inode *inode,
838 		struct page *ipage, pgoff_t index, bool new_i_size)
839 {
840 	struct address_space *mapping = inode->i_mapping;
841 	struct page *page;
842 	struct dnode_of_data dn;
843 	int err;
844 
845 	page = f2fs_grab_cache_page(mapping, index, true);
846 	if (!page) {
847 		/*
848 		 * before exiting, we should make sure ipage will be released
849 		 * if any error occur.
850 		 */
851 		f2fs_put_page(ipage, 1);
852 		return ERR_PTR(-ENOMEM);
853 	}
854 
855 	set_new_dnode(&dn, inode, ipage, NULL, 0);
856 	err = f2fs_reserve_block(&dn, index);
857 	if (err) {
858 		f2fs_put_page(page, 1);
859 		return ERR_PTR(err);
860 	}
861 	if (!ipage)
862 		f2fs_put_dnode(&dn);
863 
864 	if (PageUptodate(page))
865 		goto got_it;
866 
867 	if (dn.data_blkaddr == NEW_ADDR) {
868 		zero_user_segment(page, 0, PAGE_SIZE);
869 		if (!PageUptodate(page))
870 			SetPageUptodate(page);
871 	} else {
872 		f2fs_put_page(page, 1);
873 
874 		/* if ipage exists, blkaddr should be NEW_ADDR */
875 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
876 		page = f2fs_get_lock_data_page(inode, index, true);
877 		if (IS_ERR(page))
878 			return page;
879 	}
880 got_it:
881 	if (new_i_size && i_size_read(inode) <
882 				((loff_t)(index + 1) << PAGE_SHIFT))
883 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
884 	return page;
885 }
886 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)887 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
888 {
889 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
890 	struct f2fs_summary sum;
891 	struct node_info ni;
892 	block_t old_blkaddr;
893 	blkcnt_t count = 1;
894 	int err;
895 
896 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
897 		return -EPERM;
898 
899 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
900 	if (err)
901 		return err;
902 
903 	dn->data_blkaddr = datablock_addr(dn->inode,
904 				dn->node_page, dn->ofs_in_node);
905 	if (dn->data_blkaddr == NEW_ADDR)
906 		goto alloc;
907 
908 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
909 		return err;
910 
911 alloc:
912 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
913 	old_blkaddr = dn->data_blkaddr;
914 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
915 					&sum, seg_type, NULL, false);
916 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
917 		invalidate_mapping_pages(META_MAPPING(sbi),
918 					old_blkaddr, old_blkaddr);
919 	f2fs_set_data_blkaddr(dn);
920 
921 	/*
922 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
923 	 * data from unwritten block via dio_read.
924 	 */
925 	return 0;
926 }
927 
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)928 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
929 {
930 	struct inode *inode = file_inode(iocb->ki_filp);
931 	struct f2fs_map_blocks map;
932 	int flag;
933 	int err = 0;
934 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
935 
936 	/* convert inline data for Direct I/O*/
937 	if (direct_io) {
938 		err = f2fs_convert_inline_inode(inode);
939 		if (err)
940 			return err;
941 	}
942 
943 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
944 		return 0;
945 
946 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
947 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
948 	if (map.m_len > map.m_lblk)
949 		map.m_len -= map.m_lblk;
950 	else
951 		map.m_len = 0;
952 
953 	map.m_next_pgofs = NULL;
954 	map.m_next_extent = NULL;
955 	map.m_seg_type = NO_CHECK_TYPE;
956 
957 	if (direct_io) {
958 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
959 		flag = f2fs_force_buffered_io(inode, WRITE) ?
960 					F2FS_GET_BLOCK_PRE_AIO :
961 					F2FS_GET_BLOCK_PRE_DIO;
962 		goto map_blocks;
963 	}
964 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
965 		err = f2fs_convert_inline_inode(inode);
966 		if (err)
967 			return err;
968 	}
969 	if (f2fs_has_inline_data(inode))
970 		return err;
971 
972 	flag = F2FS_GET_BLOCK_PRE_AIO;
973 
974 map_blocks:
975 	err = f2fs_map_blocks(inode, &map, 1, flag);
976 	if (map.m_len > 0 && err == -ENOSPC) {
977 		if (!direct_io)
978 			set_inode_flag(inode, FI_NO_PREALLOC);
979 		err = 0;
980 	}
981 	return err;
982 }
983 
__do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)984 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
985 {
986 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
987 		if (lock)
988 			down_read(&sbi->node_change);
989 		else
990 			up_read(&sbi->node_change);
991 	} else {
992 		if (lock)
993 			f2fs_lock_op(sbi);
994 		else
995 			f2fs_unlock_op(sbi);
996 	}
997 }
998 
999 /*
1000  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1001  * f2fs_map_blocks structure.
1002  * If original data blocks are allocated, then give them to blockdev.
1003  * Otherwise,
1004  *     a. preallocate requested block addresses
1005  *     b. do not use extent cache for better performance
1006  *     c. give the block addresses to blockdev
1007  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1008 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1009 						int create, int flag)
1010 {
1011 	unsigned int maxblocks = map->m_len;
1012 	struct dnode_of_data dn;
1013 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
1015 	pgoff_t pgofs, end_offset, end;
1016 	int err = 0, ofs = 1;
1017 	unsigned int ofs_in_node, last_ofs_in_node;
1018 	blkcnt_t prealloc;
1019 	struct extent_info ei = {0,0,0};
1020 	block_t blkaddr;
1021 	unsigned int start_pgofs;
1022 
1023 	if (!maxblocks)
1024 		return 0;
1025 
1026 	map->m_len = 0;
1027 	map->m_flags = 0;
1028 
1029 	/* it only supports block size == page size */
1030 	pgofs =	(pgoff_t)map->m_lblk;
1031 	end = pgofs + maxblocks;
1032 
1033 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1034 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1035 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1036 		map->m_flags = F2FS_MAP_MAPPED;
1037 		if (map->m_next_extent)
1038 			*map->m_next_extent = pgofs + map->m_len;
1039 		goto out;
1040 	}
1041 
1042 next_dnode:
1043 	if (create)
1044 		__do_map_lock(sbi, flag, true);
1045 
1046 	/* When reading holes, we need its node page */
1047 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1048 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1049 	if (err) {
1050 		if (flag == F2FS_GET_BLOCK_BMAP)
1051 			map->m_pblk = 0;
1052 		if (err == -ENOENT) {
1053 			err = 0;
1054 			if (map->m_next_pgofs)
1055 				*map->m_next_pgofs =
1056 					f2fs_get_next_page_offset(&dn, pgofs);
1057 			if (map->m_next_extent)
1058 				*map->m_next_extent =
1059 					f2fs_get_next_page_offset(&dn, pgofs);
1060 		}
1061 		goto unlock_out;
1062 	}
1063 
1064 	start_pgofs = pgofs;
1065 	prealloc = 0;
1066 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1067 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1068 
1069 next_block:
1070 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1071 
1072 	if (__is_valid_data_blkaddr(blkaddr) &&
1073 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1074 		err = -EFSCORRUPTED;
1075 		goto sync_out;
1076 	}
1077 
1078 	if (!is_valid_data_blkaddr(sbi, blkaddr)) {
1079 		if (create) {
1080 			if (unlikely(f2fs_cp_error(sbi))) {
1081 				err = -EIO;
1082 				goto sync_out;
1083 			}
1084 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1085 				if (blkaddr == NULL_ADDR) {
1086 					prealloc++;
1087 					last_ofs_in_node = dn.ofs_in_node;
1088 				}
1089 			} else {
1090 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1091 					flag != F2FS_GET_BLOCK_DIO);
1092 				err = __allocate_data_block(&dn,
1093 							map->m_seg_type);
1094 				if (!err)
1095 					set_inode_flag(inode, FI_APPEND_WRITE);
1096 			}
1097 			if (err)
1098 				goto sync_out;
1099 			map->m_flags |= F2FS_MAP_NEW;
1100 			blkaddr = dn.data_blkaddr;
1101 		} else {
1102 			if (flag == F2FS_GET_BLOCK_BMAP) {
1103 				map->m_pblk = 0;
1104 				goto sync_out;
1105 			}
1106 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1107 				goto sync_out;
1108 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1109 						blkaddr == NULL_ADDR) {
1110 				if (map->m_next_pgofs)
1111 					*map->m_next_pgofs = pgofs + 1;
1112 				goto sync_out;
1113 			}
1114 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1115 				/* for defragment case */
1116 				if (map->m_next_pgofs)
1117 					*map->m_next_pgofs = pgofs + 1;
1118 				goto sync_out;
1119 			}
1120 		}
1121 	}
1122 
1123 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1124 		goto skip;
1125 
1126 	if (map->m_len == 0) {
1127 		/* preallocated unwritten block should be mapped for fiemap. */
1128 		if (blkaddr == NEW_ADDR)
1129 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1130 		map->m_flags |= F2FS_MAP_MAPPED;
1131 
1132 		map->m_pblk = blkaddr;
1133 		map->m_len = 1;
1134 	} else if ((map->m_pblk != NEW_ADDR &&
1135 			blkaddr == (map->m_pblk + ofs)) ||
1136 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1137 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1138 		ofs++;
1139 		map->m_len++;
1140 	} else {
1141 		goto sync_out;
1142 	}
1143 
1144 skip:
1145 	dn.ofs_in_node++;
1146 	pgofs++;
1147 
1148 	/* preallocate blocks in batch for one dnode page */
1149 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1150 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1151 
1152 		dn.ofs_in_node = ofs_in_node;
1153 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1154 		if (err)
1155 			goto sync_out;
1156 
1157 		map->m_len += dn.ofs_in_node - ofs_in_node;
1158 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1159 			err = -ENOSPC;
1160 			goto sync_out;
1161 		}
1162 		dn.ofs_in_node = end_offset;
1163 	}
1164 
1165 	if (pgofs >= end)
1166 		goto sync_out;
1167 	else if (dn.ofs_in_node < end_offset)
1168 		goto next_block;
1169 
1170 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1171 		if (map->m_flags & F2FS_MAP_MAPPED) {
1172 			unsigned int ofs = start_pgofs - map->m_lblk;
1173 
1174 			f2fs_update_extent_cache_range(&dn,
1175 				start_pgofs, map->m_pblk + ofs,
1176 				map->m_len - ofs);
1177 		}
1178 	}
1179 
1180 	f2fs_put_dnode(&dn);
1181 
1182 	if (create) {
1183 		__do_map_lock(sbi, flag, false);
1184 		f2fs_balance_fs(sbi, dn.node_changed);
1185 	}
1186 	goto next_dnode;
1187 
1188 sync_out:
1189 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1190 		if (map->m_flags & F2FS_MAP_MAPPED) {
1191 			unsigned int ofs = start_pgofs - map->m_lblk;
1192 
1193 			f2fs_update_extent_cache_range(&dn,
1194 				start_pgofs, map->m_pblk + ofs,
1195 				map->m_len - ofs);
1196 		}
1197 		if (map->m_next_extent)
1198 			*map->m_next_extent = pgofs + 1;
1199 	}
1200 	f2fs_put_dnode(&dn);
1201 unlock_out:
1202 	if (create) {
1203 		__do_map_lock(sbi, flag, false);
1204 		f2fs_balance_fs(sbi, dn.node_changed);
1205 	}
1206 out:
1207 	trace_f2fs_map_blocks(inode, map, err);
1208 	return err;
1209 }
1210 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1211 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1212 {
1213 	struct f2fs_map_blocks map;
1214 	block_t last_lblk;
1215 	int err;
1216 
1217 	if (pos + len > i_size_read(inode))
1218 		return false;
1219 
1220 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1221 	map.m_next_pgofs = NULL;
1222 	map.m_next_extent = NULL;
1223 	map.m_seg_type = NO_CHECK_TYPE;
1224 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1225 
1226 	while (map.m_lblk < last_lblk) {
1227 		map.m_len = last_lblk - map.m_lblk;
1228 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1229 		if (err || map.m_len == 0)
1230 			return false;
1231 		map.m_lblk += map.m_len;
1232 	}
1233 	return true;
1234 }
1235 
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type)1236 static int __get_data_block(struct inode *inode, sector_t iblock,
1237 			struct buffer_head *bh, int create, int flag,
1238 			pgoff_t *next_pgofs, int seg_type)
1239 {
1240 	struct f2fs_map_blocks map;
1241 	int err;
1242 
1243 	map.m_lblk = iblock;
1244 	map.m_len = bh->b_size >> inode->i_blkbits;
1245 	map.m_next_pgofs = next_pgofs;
1246 	map.m_next_extent = NULL;
1247 	map.m_seg_type = seg_type;
1248 
1249 	err = f2fs_map_blocks(inode, &map, create, flag);
1250 	if (!err) {
1251 		map_bh(bh, inode->i_sb, map.m_pblk);
1252 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1253 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1254 	}
1255 	return err;
1256 }
1257 
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1258 static int get_data_block(struct inode *inode, sector_t iblock,
1259 			struct buffer_head *bh_result, int create, int flag,
1260 			pgoff_t *next_pgofs)
1261 {
1262 	return __get_data_block(inode, iblock, bh_result, create,
1263 							flag, next_pgofs,
1264 							NO_CHECK_TYPE);
1265 }
1266 
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1267 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1268 			struct buffer_head *bh_result, int create)
1269 {
1270 	return __get_data_block(inode, iblock, bh_result, create,
1271 						F2FS_GET_BLOCK_DIO, NULL,
1272 						f2fs_rw_hint_to_seg_type(
1273 							inode->i_write_hint));
1274 }
1275 
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1276 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1277 			struct buffer_head *bh_result, int create)
1278 {
1279 	/* Block number less than F2FS MAX BLOCKS */
1280 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1281 		return -EFBIG;
1282 
1283 	return __get_data_block(inode, iblock, bh_result, create,
1284 						F2FS_GET_BLOCK_BMAP, NULL,
1285 						NO_CHECK_TYPE);
1286 }
1287 
logical_to_blk(struct inode * inode,loff_t offset)1288 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1289 {
1290 	return (offset >> inode->i_blkbits);
1291 }
1292 
blk_to_logical(struct inode * inode,sector_t blk)1293 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1294 {
1295 	return (blk << inode->i_blkbits);
1296 }
1297 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1298 static int f2fs_xattr_fiemap(struct inode *inode,
1299 				struct fiemap_extent_info *fieinfo)
1300 {
1301 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1302 	struct page *page;
1303 	struct node_info ni;
1304 	__u64 phys = 0, len;
1305 	__u32 flags;
1306 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1307 	int err = 0;
1308 
1309 	if (f2fs_has_inline_xattr(inode)) {
1310 		int offset;
1311 
1312 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1313 						inode->i_ino, false);
1314 		if (!page)
1315 			return -ENOMEM;
1316 
1317 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1318 		if (err) {
1319 			f2fs_put_page(page, 1);
1320 			return err;
1321 		}
1322 
1323 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1324 		offset = offsetof(struct f2fs_inode, i_addr) +
1325 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1326 					get_inline_xattr_addrs(inode));
1327 
1328 		phys += offset;
1329 		len = inline_xattr_size(inode);
1330 
1331 		f2fs_put_page(page, 1);
1332 
1333 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1334 
1335 		if (!xnid)
1336 			flags |= FIEMAP_EXTENT_LAST;
1337 
1338 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1339 		if (err || err == 1)
1340 			return err;
1341 	}
1342 
1343 	if (xnid) {
1344 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1345 		if (!page)
1346 			return -ENOMEM;
1347 
1348 		err = f2fs_get_node_info(sbi, xnid, &ni);
1349 		if (err) {
1350 			f2fs_put_page(page, 1);
1351 			return err;
1352 		}
1353 
1354 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1355 		len = inode->i_sb->s_blocksize;
1356 
1357 		f2fs_put_page(page, 1);
1358 
1359 		flags = FIEMAP_EXTENT_LAST;
1360 	}
1361 
1362 	if (phys)
1363 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1364 
1365 	return (err < 0 ? err : 0);
1366 }
1367 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1368 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1369 		u64 start, u64 len)
1370 {
1371 	struct buffer_head map_bh;
1372 	sector_t start_blk, last_blk;
1373 	pgoff_t next_pgofs;
1374 	u64 logical = 0, phys = 0, size = 0;
1375 	u32 flags = 0;
1376 	int ret = 0;
1377 
1378 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1379 		ret = f2fs_precache_extents(inode);
1380 		if (ret)
1381 			return ret;
1382 	}
1383 
1384 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1385 	if (ret)
1386 		return ret;
1387 
1388 	inode_lock(inode);
1389 
1390 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1391 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1392 		goto out;
1393 	}
1394 
1395 	if (f2fs_has_inline_data(inode)) {
1396 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1397 		if (ret != -EAGAIN)
1398 			goto out;
1399 	}
1400 
1401 	if (logical_to_blk(inode, len) == 0)
1402 		len = blk_to_logical(inode, 1);
1403 
1404 	start_blk = logical_to_blk(inode, start);
1405 	last_blk = logical_to_blk(inode, start + len - 1);
1406 
1407 next:
1408 	memset(&map_bh, 0, sizeof(struct buffer_head));
1409 	map_bh.b_size = len;
1410 
1411 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1412 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1413 	if (ret)
1414 		goto out;
1415 
1416 	/* HOLE */
1417 	if (!buffer_mapped(&map_bh)) {
1418 		start_blk = next_pgofs;
1419 
1420 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1421 					F2FS_I_SB(inode)->max_file_blocks))
1422 			goto prep_next;
1423 
1424 		flags |= FIEMAP_EXTENT_LAST;
1425 	}
1426 
1427 	if (size) {
1428 		if (f2fs_encrypted_inode(inode))
1429 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1430 
1431 		ret = fiemap_fill_next_extent(fieinfo, logical,
1432 				phys, size, flags);
1433 	}
1434 
1435 	if (start_blk > last_blk || ret)
1436 		goto out;
1437 
1438 	logical = blk_to_logical(inode, start_blk);
1439 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1440 	size = map_bh.b_size;
1441 	flags = 0;
1442 	if (buffer_unwritten(&map_bh))
1443 		flags = FIEMAP_EXTENT_UNWRITTEN;
1444 
1445 	start_blk += logical_to_blk(inode, size);
1446 
1447 prep_next:
1448 	cond_resched();
1449 	if (fatal_signal_pending(current))
1450 		ret = -EINTR;
1451 	else
1452 		goto next;
1453 out:
1454 	if (ret == 1)
1455 		ret = 0;
1456 
1457 	inode_unlock(inode);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1463  * Major change was from block_size == page_size in f2fs by default.
1464  *
1465  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1466  * this function ever deviates from doing just read-ahead, it should either
1467  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1468  * from read-ahead.
1469  */
f2fs_mpage_readpages(struct address_space * mapping,struct list_head * pages,struct page * page,unsigned nr_pages,bool is_readahead)1470 static int f2fs_mpage_readpages(struct address_space *mapping,
1471 			struct list_head *pages, struct page *page,
1472 			unsigned nr_pages, bool is_readahead)
1473 {
1474 	struct bio *bio = NULL;
1475 	sector_t last_block_in_bio = 0;
1476 	struct inode *inode = mapping->host;
1477 	const unsigned blkbits = inode->i_blkbits;
1478 	const unsigned blocksize = 1 << blkbits;
1479 	sector_t block_in_file;
1480 	sector_t last_block;
1481 	sector_t last_block_in_file;
1482 	sector_t block_nr;
1483 	struct f2fs_map_blocks map;
1484 
1485 	map.m_pblk = 0;
1486 	map.m_lblk = 0;
1487 	map.m_len = 0;
1488 	map.m_flags = 0;
1489 	map.m_next_pgofs = NULL;
1490 	map.m_next_extent = NULL;
1491 	map.m_seg_type = NO_CHECK_TYPE;
1492 
1493 	for (; nr_pages; nr_pages--) {
1494 		if (pages) {
1495 			page = list_last_entry(pages, struct page, lru);
1496 
1497 			prefetchw(&page->flags);
1498 			list_del(&page->lru);
1499 			if (add_to_page_cache_lru(page, mapping,
1500 						  page_index(page),
1501 						  readahead_gfp_mask(mapping)))
1502 				goto next_page;
1503 		}
1504 
1505 		block_in_file = (sector_t)page_index(page);
1506 		last_block = block_in_file + nr_pages;
1507 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1508 								blkbits;
1509 		if (last_block > last_block_in_file)
1510 			last_block = last_block_in_file;
1511 
1512 		/*
1513 		 * Map blocks using the previous result first.
1514 		 */
1515 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1516 				block_in_file > map.m_lblk &&
1517 				block_in_file < (map.m_lblk + map.m_len))
1518 			goto got_it;
1519 
1520 		/*
1521 		 * Then do more f2fs_map_blocks() calls until we are
1522 		 * done with this page.
1523 		 */
1524 		map.m_flags = 0;
1525 
1526 		if (block_in_file < last_block) {
1527 			map.m_lblk = block_in_file;
1528 			map.m_len = last_block - block_in_file;
1529 
1530 			if (f2fs_map_blocks(inode, &map, 0,
1531 						F2FS_GET_BLOCK_DEFAULT))
1532 				goto set_error_page;
1533 		}
1534 got_it:
1535 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1536 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1537 			SetPageMappedToDisk(page);
1538 
1539 			if (!PageUptodate(page) && (!PageSwapCache(page) &&
1540 						!cleancache_get_page(page))) {
1541 				SetPageUptodate(page);
1542 				goto confused;
1543 			}
1544 
1545 			if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1546 								DATA_GENERIC))
1547 				goto set_error_page;
1548 		} else {
1549 			zero_user_segment(page, 0, PAGE_SIZE);
1550 			if (!PageUptodate(page))
1551 				SetPageUptodate(page);
1552 			unlock_page(page);
1553 			goto next_page;
1554 		}
1555 
1556 		/*
1557 		 * This page will go to BIO.  Do we need to send this
1558 		 * BIO off first?
1559 		 */
1560 		if (bio && (last_block_in_bio != block_nr - 1 ||
1561 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1562 submit_and_realloc:
1563 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1564 			bio = NULL;
1565 		}
1566 		if (bio == NULL) {
1567 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1568 					is_readahead ? REQ_RAHEAD : 0);
1569 			if (IS_ERR(bio)) {
1570 				bio = NULL;
1571 				goto set_error_page;
1572 			}
1573 		}
1574 
1575 		/*
1576 		 * If the page is under writeback, we need to wait for
1577 		 * its completion to see the correct decrypted data.
1578 		 */
1579 		f2fs_wait_on_block_writeback(inode, block_nr);
1580 
1581 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1582 			goto submit_and_realloc;
1583 
1584 		ClearPageError(page);
1585 		last_block_in_bio = block_nr;
1586 		goto next_page;
1587 set_error_page:
1588 		SetPageError(page);
1589 		zero_user_segment(page, 0, PAGE_SIZE);
1590 		unlock_page(page);
1591 		goto next_page;
1592 confused:
1593 		if (bio) {
1594 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1595 			bio = NULL;
1596 		}
1597 		unlock_page(page);
1598 next_page:
1599 		if (pages)
1600 			put_page(page);
1601 	}
1602 	BUG_ON(pages && !list_empty(pages));
1603 	if (bio)
1604 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1605 	return 0;
1606 }
1607 
f2fs_read_data_page(struct file * file,struct page * page)1608 static int f2fs_read_data_page(struct file *file, struct page *page)
1609 {
1610 	struct inode *inode = page_file_mapping(page)->host;
1611 	int ret = -EAGAIN;
1612 
1613 	trace_f2fs_readpage(page, DATA);
1614 
1615 	/* If the file has inline data, try to read it directly */
1616 	if (f2fs_has_inline_data(inode))
1617 		ret = f2fs_read_inline_data(inode, page);
1618 	if (ret == -EAGAIN)
1619 		ret = f2fs_mpage_readpages(page_file_mapping(page),
1620 						NULL, page, 1, false);
1621 	return ret;
1622 }
1623 
f2fs_read_data_pages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1624 static int f2fs_read_data_pages(struct file *file,
1625 			struct address_space *mapping,
1626 			struct list_head *pages, unsigned nr_pages)
1627 {
1628 	struct inode *inode = mapping->host;
1629 	struct page *page = list_last_entry(pages, struct page, lru);
1630 
1631 	trace_f2fs_readpages(inode, page, nr_pages);
1632 
1633 	/* If the file has inline data, skip readpages */
1634 	if (f2fs_has_inline_data(inode))
1635 		return 0;
1636 
1637 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1638 }
1639 
encrypt_one_page(struct f2fs_io_info * fio)1640 static int encrypt_one_page(struct f2fs_io_info *fio)
1641 {
1642 	struct inode *inode = fio->page->mapping->host;
1643 	struct page *mpage;
1644 	gfp_t gfp_flags = GFP_NOFS;
1645 
1646 	if (!f2fs_encrypted_file(inode))
1647 		return 0;
1648 
1649 	/* wait for GCed page writeback via META_MAPPING */
1650 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1651 
1652 retry_encrypt:
1653 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1654 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1655 	if (IS_ERR(fio->encrypted_page)) {
1656 		/* flush pending IOs and wait for a while in the ENOMEM case */
1657 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1658 			f2fs_flush_merged_writes(fio->sbi);
1659 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1660 			gfp_flags |= __GFP_NOFAIL;
1661 			goto retry_encrypt;
1662 		}
1663 		return PTR_ERR(fio->encrypted_page);
1664 	}
1665 
1666 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1667 	if (mpage) {
1668 		if (PageUptodate(mpage))
1669 			memcpy(page_address(mpage),
1670 				page_address(fio->encrypted_page), PAGE_SIZE);
1671 		f2fs_put_page(mpage, 1);
1672 	}
1673 	return 0;
1674 }
1675 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)1676 static inline bool check_inplace_update_policy(struct inode *inode,
1677 				struct f2fs_io_info *fio)
1678 {
1679 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1680 	unsigned int policy = SM_I(sbi)->ipu_policy;
1681 
1682 	if (policy & (0x1 << F2FS_IPU_FORCE))
1683 		return true;
1684 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1685 		return true;
1686 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1687 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1688 		return true;
1689 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1690 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1691 		return true;
1692 
1693 	/*
1694 	 * IPU for rewrite async pages
1695 	 */
1696 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1697 			fio && fio->op == REQ_OP_WRITE &&
1698 			!(fio->op_flags & REQ_SYNC) &&
1699 			!f2fs_encrypted_inode(inode))
1700 		return true;
1701 
1702 	/* this is only set during fdatasync */
1703 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1704 			is_inode_flag_set(inode, FI_NEED_IPU))
1705 		return true;
1706 
1707 	return false;
1708 }
1709 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)1710 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1711 {
1712 	if (f2fs_is_pinned_file(inode))
1713 		return true;
1714 
1715 	/* if this is cold file, we should overwrite to avoid fragmentation */
1716 	if (file_is_cold(inode))
1717 		return true;
1718 
1719 	return check_inplace_update_policy(inode, fio);
1720 }
1721 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)1722 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1723 {
1724 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1725 
1726 	if (test_opt(sbi, LFS))
1727 		return true;
1728 	if (S_ISDIR(inode->i_mode))
1729 		return true;
1730 	if (f2fs_is_atomic_file(inode))
1731 		return true;
1732 	if (fio) {
1733 		if (is_cold_data(fio->page))
1734 			return true;
1735 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1736 			return true;
1737 	}
1738 	return false;
1739 }
1740 
need_inplace_update(struct f2fs_io_info * fio)1741 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1742 {
1743 	struct inode *inode = fio->page->mapping->host;
1744 
1745 	if (f2fs_should_update_outplace(inode, fio))
1746 		return false;
1747 
1748 	return f2fs_should_update_inplace(inode, fio);
1749 }
1750 
f2fs_do_write_data_page(struct f2fs_io_info * fio)1751 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1752 {
1753 	struct page *page = fio->page;
1754 	struct inode *inode = page->mapping->host;
1755 	struct dnode_of_data dn;
1756 	struct extent_info ei = {0,0,0};
1757 	struct node_info ni;
1758 	bool ipu_force = false;
1759 	int err = 0;
1760 
1761 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1762 	if (need_inplace_update(fio) &&
1763 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1764 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1765 
1766 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1767 							DATA_GENERIC))
1768 			return -EFSCORRUPTED;
1769 
1770 		ipu_force = true;
1771 		fio->need_lock = LOCK_DONE;
1772 		goto got_it;
1773 	}
1774 
1775 	/* Deadlock due to between page->lock and f2fs_lock_op */
1776 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1777 		return -EAGAIN;
1778 
1779 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1780 	if (err)
1781 		goto out;
1782 
1783 	fio->old_blkaddr = dn.data_blkaddr;
1784 
1785 	/* This page is already truncated */
1786 	if (fio->old_blkaddr == NULL_ADDR) {
1787 		ClearPageUptodate(page);
1788 		clear_cold_data(page);
1789 		goto out_writepage;
1790 	}
1791 got_it:
1792 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1793 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1794 							DATA_GENERIC)) {
1795 		err = -EFSCORRUPTED;
1796 		goto out_writepage;
1797 	}
1798 	/*
1799 	 * If current allocation needs SSR,
1800 	 * it had better in-place writes for updated data.
1801 	 */
1802 	if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1803 					need_inplace_update(fio))) {
1804 		err = encrypt_one_page(fio);
1805 		if (err)
1806 			goto out_writepage;
1807 
1808 		set_page_writeback(page);
1809 		ClearPageError(page);
1810 		f2fs_put_dnode(&dn);
1811 		if (fio->need_lock == LOCK_REQ)
1812 			f2fs_unlock_op(fio->sbi);
1813 		err = f2fs_inplace_write_data(fio);
1814 		trace_f2fs_do_write_data_page(fio->page, IPU);
1815 		set_inode_flag(inode, FI_UPDATE_WRITE);
1816 		return err;
1817 	}
1818 
1819 	if (fio->need_lock == LOCK_RETRY) {
1820 		if (!f2fs_trylock_op(fio->sbi)) {
1821 			err = -EAGAIN;
1822 			goto out_writepage;
1823 		}
1824 		fio->need_lock = LOCK_REQ;
1825 	}
1826 
1827 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1828 	if (err)
1829 		goto out_writepage;
1830 
1831 	fio->version = ni.version;
1832 
1833 	err = encrypt_one_page(fio);
1834 	if (err)
1835 		goto out_writepage;
1836 
1837 	set_page_writeback(page);
1838 	ClearPageError(page);
1839 
1840 	/* LFS mode write path */
1841 	f2fs_outplace_write_data(&dn, fio);
1842 	trace_f2fs_do_write_data_page(page, OPU);
1843 	set_inode_flag(inode, FI_APPEND_WRITE);
1844 	if (page->index == 0)
1845 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1846 out_writepage:
1847 	f2fs_put_dnode(&dn);
1848 out:
1849 	if (fio->need_lock == LOCK_REQ)
1850 		f2fs_unlock_op(fio->sbi);
1851 	return err;
1852 }
1853 
__write_data_page(struct page * page,bool * submitted,struct writeback_control * wbc,enum iostat_type io_type)1854 static int __write_data_page(struct page *page, bool *submitted,
1855 				struct writeback_control *wbc,
1856 				enum iostat_type io_type)
1857 {
1858 	struct inode *inode = page->mapping->host;
1859 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1860 	loff_t i_size = i_size_read(inode);
1861 	const pgoff_t end_index = ((unsigned long long) i_size)
1862 							>> PAGE_SHIFT;
1863 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1864 	unsigned offset = 0;
1865 	bool need_balance_fs = false;
1866 	int err = 0;
1867 	struct f2fs_io_info fio = {
1868 		.sbi = sbi,
1869 		.ino = inode->i_ino,
1870 		.type = DATA,
1871 		.op = REQ_OP_WRITE,
1872 		.op_flags = wbc_to_write_flags(wbc),
1873 		.old_blkaddr = NULL_ADDR,
1874 		.page = page,
1875 		.encrypted_page = NULL,
1876 		.submitted = false,
1877 		.need_lock = LOCK_RETRY,
1878 		.io_type = io_type,
1879 		.io_wbc = wbc,
1880 	};
1881 
1882 	trace_f2fs_writepage(page, DATA);
1883 
1884 	/* we should bypass data pages to proceed the kworkder jobs */
1885 	if (unlikely(f2fs_cp_error(sbi))) {
1886 		mapping_set_error(page->mapping, -EIO);
1887 		/*
1888 		 * don't drop any dirty dentry pages for keeping lastest
1889 		 * directory structure.
1890 		 */
1891 		if (S_ISDIR(inode->i_mode))
1892 			goto redirty_out;
1893 		goto out;
1894 	}
1895 
1896 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1897 		goto redirty_out;
1898 
1899 	if (page->index < end_index)
1900 		goto write;
1901 
1902 	/*
1903 	 * If the offset is out-of-range of file size,
1904 	 * this page does not have to be written to disk.
1905 	 */
1906 	offset = i_size & (PAGE_SIZE - 1);
1907 	if ((page->index >= end_index + 1) || !offset)
1908 		goto out;
1909 
1910 	zero_user_segment(page, offset, PAGE_SIZE);
1911 write:
1912 	if (f2fs_is_drop_cache(inode))
1913 		goto out;
1914 	/* we should not write 0'th page having journal header */
1915 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1916 			(!wbc->for_reclaim &&
1917 			f2fs_available_free_memory(sbi, BASE_CHECK))))
1918 		goto redirty_out;
1919 
1920 	/* Dentry blocks are controlled by checkpoint */
1921 	if (S_ISDIR(inode->i_mode)) {
1922 		fio.need_lock = LOCK_DONE;
1923 		err = f2fs_do_write_data_page(&fio);
1924 		goto done;
1925 	}
1926 
1927 	if (!wbc->for_reclaim)
1928 		need_balance_fs = true;
1929 	else if (has_not_enough_free_secs(sbi, 0, 0))
1930 		goto redirty_out;
1931 	else
1932 		set_inode_flag(inode, FI_HOT_DATA);
1933 
1934 	err = -EAGAIN;
1935 	if (f2fs_has_inline_data(inode)) {
1936 		err = f2fs_write_inline_data(inode, page);
1937 		if (!err)
1938 			goto out;
1939 	}
1940 
1941 	if (err == -EAGAIN) {
1942 		err = f2fs_do_write_data_page(&fio);
1943 		if (err == -EAGAIN) {
1944 			fio.need_lock = LOCK_REQ;
1945 			err = f2fs_do_write_data_page(&fio);
1946 		}
1947 	}
1948 
1949 	if (err) {
1950 		file_set_keep_isize(inode);
1951 	} else {
1952 		down_write(&F2FS_I(inode)->i_sem);
1953 		if (F2FS_I(inode)->last_disk_size < psize)
1954 			F2FS_I(inode)->last_disk_size = psize;
1955 		up_write(&F2FS_I(inode)->i_sem);
1956 	}
1957 
1958 done:
1959 	if (err && err != -ENOENT)
1960 		goto redirty_out;
1961 
1962 out:
1963 	inode_dec_dirty_pages(inode);
1964 	if (err) {
1965 		ClearPageUptodate(page);
1966 		clear_cold_data(page);
1967 	}
1968 
1969 	if (wbc->for_reclaim) {
1970 		f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1971 		clear_inode_flag(inode, FI_HOT_DATA);
1972 		f2fs_remove_dirty_inode(inode);
1973 		submitted = NULL;
1974 	}
1975 
1976 	unlock_page(page);
1977 	if (!S_ISDIR(inode->i_mode))
1978 		f2fs_balance_fs(sbi, need_balance_fs);
1979 
1980 	if (unlikely(f2fs_cp_error(sbi))) {
1981 		f2fs_submit_merged_write(sbi, DATA);
1982 		submitted = NULL;
1983 	}
1984 
1985 	if (submitted)
1986 		*submitted = fio.submitted;
1987 
1988 	return 0;
1989 
1990 redirty_out:
1991 	redirty_page_for_writepage(wbc, page);
1992 	/*
1993 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1994 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1995 	 * file_write_and_wait_range() will see EIO error, which is critical
1996 	 * to return value of fsync() followed by atomic_write failure to user.
1997 	 */
1998 	if (!err || wbc->for_reclaim)
1999 		return AOP_WRITEPAGE_ACTIVATE;
2000 	unlock_page(page);
2001 	return err;
2002 }
2003 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2004 static int f2fs_write_data_page(struct page *page,
2005 					struct writeback_control *wbc)
2006 {
2007 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2008 }
2009 
2010 /*
2011  * This function was copied from write_cche_pages from mm/page-writeback.c.
2012  * The major change is making write step of cold data page separately from
2013  * warm/hot data page.
2014  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2015 static int f2fs_write_cache_pages(struct address_space *mapping,
2016 					struct writeback_control *wbc,
2017 					enum iostat_type io_type)
2018 {
2019 	int ret = 0;
2020 	int done = 0;
2021 	struct pagevec pvec;
2022 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2023 	int nr_pages;
2024 	pgoff_t uninitialized_var(writeback_index);
2025 	pgoff_t index;
2026 	pgoff_t end;		/* Inclusive */
2027 	pgoff_t done_index;
2028 	pgoff_t last_idx = ULONG_MAX;
2029 	int cycled;
2030 	int range_whole = 0;
2031 	int tag;
2032 
2033 	pagevec_init(&pvec);
2034 
2035 	if (get_dirty_pages(mapping->host) <=
2036 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2037 		set_inode_flag(mapping->host, FI_HOT_DATA);
2038 	else
2039 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2040 
2041 	if (wbc->range_cyclic) {
2042 		writeback_index = mapping->writeback_index; /* prev offset */
2043 		index = writeback_index;
2044 		if (index == 0)
2045 			cycled = 1;
2046 		else
2047 			cycled = 0;
2048 		end = -1;
2049 	} else {
2050 		index = wbc->range_start >> PAGE_SHIFT;
2051 		end = wbc->range_end >> PAGE_SHIFT;
2052 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2053 			range_whole = 1;
2054 		cycled = 1; /* ignore range_cyclic tests */
2055 	}
2056 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2057 		tag = PAGECACHE_TAG_TOWRITE;
2058 	else
2059 		tag = PAGECACHE_TAG_DIRTY;
2060 retry:
2061 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2062 		tag_pages_for_writeback(mapping, index, end);
2063 	done_index = index;
2064 	while (!done && (index <= end)) {
2065 		int i;
2066 
2067 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2068 				tag);
2069 		if (nr_pages == 0)
2070 			break;
2071 
2072 		for (i = 0; i < nr_pages; i++) {
2073 			struct page *page = pvec.pages[i];
2074 			bool submitted = false;
2075 
2076 			/* give a priority to WB_SYNC threads */
2077 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2078 					wbc->sync_mode == WB_SYNC_NONE) {
2079 				done = 1;
2080 				break;
2081 			}
2082 
2083 			done_index = page->index;
2084 retry_write:
2085 			lock_page(page);
2086 
2087 			if (unlikely(page->mapping != mapping)) {
2088 continue_unlock:
2089 				unlock_page(page);
2090 				continue;
2091 			}
2092 
2093 			if (!PageDirty(page)) {
2094 				/* someone wrote it for us */
2095 				goto continue_unlock;
2096 			}
2097 
2098 			if (PageWriteback(page)) {
2099 				if (wbc->sync_mode != WB_SYNC_NONE)
2100 					f2fs_wait_on_page_writeback(page,
2101 								DATA, true);
2102 				else
2103 					goto continue_unlock;
2104 			}
2105 
2106 			BUG_ON(PageWriteback(page));
2107 			if (!clear_page_dirty_for_io(page))
2108 				goto continue_unlock;
2109 
2110 			ret = __write_data_page(page, &submitted, wbc, io_type);
2111 			if (unlikely(ret)) {
2112 				/*
2113 				 * keep nr_to_write, since vfs uses this to
2114 				 * get # of written pages.
2115 				 */
2116 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2117 					unlock_page(page);
2118 					ret = 0;
2119 					continue;
2120 				} else if (ret == -EAGAIN) {
2121 					ret = 0;
2122 					if (wbc->sync_mode == WB_SYNC_ALL) {
2123 						cond_resched();
2124 						congestion_wait(BLK_RW_ASYNC,
2125 									HZ/50);
2126 						goto retry_write;
2127 					}
2128 					continue;
2129 				}
2130 				done_index = page->index + 1;
2131 				done = 1;
2132 				break;
2133 			} else if (submitted) {
2134 				last_idx = page->index;
2135 			}
2136 
2137 			if (--wbc->nr_to_write <= 0 &&
2138 					wbc->sync_mode == WB_SYNC_NONE) {
2139 				done = 1;
2140 				break;
2141 			}
2142 		}
2143 		pagevec_release(&pvec);
2144 		cond_resched();
2145 	}
2146 
2147 	if (!cycled && !done) {
2148 		cycled = 1;
2149 		index = 0;
2150 		end = writeback_index - 1;
2151 		goto retry;
2152 	}
2153 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2154 		mapping->writeback_index = done_index;
2155 
2156 	if (last_idx != ULONG_MAX)
2157 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2158 						0, last_idx, DATA);
2159 
2160 	return ret;
2161 }
2162 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)2163 static inline bool __should_serialize_io(struct inode *inode,
2164 					struct writeback_control *wbc)
2165 {
2166 	if (!S_ISREG(inode->i_mode))
2167 		return false;
2168 	if (wbc->sync_mode != WB_SYNC_ALL)
2169 		return true;
2170 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2171 		return true;
2172 	return false;
2173 }
2174 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2175 static int __f2fs_write_data_pages(struct address_space *mapping,
2176 						struct writeback_control *wbc,
2177 						enum iostat_type io_type)
2178 {
2179 	struct inode *inode = mapping->host;
2180 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2181 	struct blk_plug plug;
2182 	int ret;
2183 	bool locked = false;
2184 
2185 	/* deal with chardevs and other special file */
2186 	if (!mapping->a_ops->writepage)
2187 		return 0;
2188 
2189 	/* skip writing if there is no dirty page in this inode */
2190 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2191 		return 0;
2192 
2193 	/* during POR, we don't need to trigger writepage at all. */
2194 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2195 		goto skip_write;
2196 
2197 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2198 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2199 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2200 		goto skip_write;
2201 
2202 	/* skip writing during file defragment */
2203 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2204 		goto skip_write;
2205 
2206 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2207 
2208 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2209 	if (wbc->sync_mode == WB_SYNC_ALL)
2210 		atomic_inc(&sbi->wb_sync_req[DATA]);
2211 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2212 		goto skip_write;
2213 
2214 	if (__should_serialize_io(inode, wbc)) {
2215 		mutex_lock(&sbi->writepages);
2216 		locked = true;
2217 	}
2218 
2219 	blk_start_plug(&plug);
2220 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2221 	blk_finish_plug(&plug);
2222 
2223 	if (locked)
2224 		mutex_unlock(&sbi->writepages);
2225 
2226 	if (wbc->sync_mode == WB_SYNC_ALL)
2227 		atomic_dec(&sbi->wb_sync_req[DATA]);
2228 	/*
2229 	 * if some pages were truncated, we cannot guarantee its mapping->host
2230 	 * to detect pending bios.
2231 	 */
2232 
2233 	f2fs_remove_dirty_inode(inode);
2234 	return ret;
2235 
2236 skip_write:
2237 	wbc->pages_skipped += get_dirty_pages(inode);
2238 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2239 	return 0;
2240 }
2241 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)2242 static int f2fs_write_data_pages(struct address_space *mapping,
2243 			    struct writeback_control *wbc)
2244 {
2245 	struct inode *inode = mapping->host;
2246 
2247 	return __f2fs_write_data_pages(mapping, wbc,
2248 			F2FS_I(inode)->cp_task == current ?
2249 			FS_CP_DATA_IO : FS_DATA_IO);
2250 }
2251 
f2fs_write_failed(struct address_space * mapping,loff_t to)2252 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2253 {
2254 	struct inode *inode = mapping->host;
2255 	loff_t i_size = i_size_read(inode);
2256 
2257 	if (to > i_size) {
2258 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2259 		down_write(&F2FS_I(inode)->i_mmap_sem);
2260 
2261 		truncate_pagecache(inode, i_size);
2262 		f2fs_truncate_blocks(inode, i_size, true);
2263 
2264 		up_write(&F2FS_I(inode)->i_mmap_sem);
2265 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2266 	}
2267 }
2268 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)2269 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2270 			struct page *page, loff_t pos, unsigned len,
2271 			block_t *blk_addr, bool *node_changed)
2272 {
2273 	struct inode *inode = page->mapping->host;
2274 	pgoff_t index = page->index;
2275 	struct dnode_of_data dn;
2276 	struct page *ipage;
2277 	bool locked = false;
2278 	struct extent_info ei = {0,0,0};
2279 	int err = 0;
2280 	int flag;
2281 
2282 	/*
2283 	 * we already allocated all the blocks, so we don't need to get
2284 	 * the block addresses when there is no need to fill the page.
2285 	 */
2286 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2287 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2288 		return 0;
2289 
2290 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2291 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2292 		flag = F2FS_GET_BLOCK_DEFAULT;
2293 	else
2294 		flag = F2FS_GET_BLOCK_PRE_AIO;
2295 
2296 	if (f2fs_has_inline_data(inode) ||
2297 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2298 		__do_map_lock(sbi, flag, true);
2299 		locked = true;
2300 	}
2301 restart:
2302 	/* check inline_data */
2303 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2304 	if (IS_ERR(ipage)) {
2305 		err = PTR_ERR(ipage);
2306 		goto unlock_out;
2307 	}
2308 
2309 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2310 
2311 	if (f2fs_has_inline_data(inode)) {
2312 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2313 			f2fs_do_read_inline_data(page, ipage);
2314 			set_inode_flag(inode, FI_DATA_EXIST);
2315 			if (inode->i_nlink)
2316 				set_inline_node(ipage);
2317 		} else {
2318 			err = f2fs_convert_inline_page(&dn, page);
2319 			if (err)
2320 				goto out;
2321 			if (dn.data_blkaddr == NULL_ADDR)
2322 				err = f2fs_get_block(&dn, index);
2323 		}
2324 	} else if (locked) {
2325 		err = f2fs_get_block(&dn, index);
2326 	} else {
2327 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2328 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2329 		} else {
2330 			/* hole case */
2331 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2332 			if (err || dn.data_blkaddr == NULL_ADDR) {
2333 				f2fs_put_dnode(&dn);
2334 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2335 								true);
2336 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2337 				locked = true;
2338 				goto restart;
2339 			}
2340 		}
2341 	}
2342 
2343 	/* convert_inline_page can make node_changed */
2344 	*blk_addr = dn.data_blkaddr;
2345 	*node_changed = dn.node_changed;
2346 out:
2347 	f2fs_put_dnode(&dn);
2348 unlock_out:
2349 	if (locked)
2350 		__do_map_lock(sbi, flag, false);
2351 	return err;
2352 }
2353 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2354 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2355 		loff_t pos, unsigned len, unsigned flags,
2356 		struct page **pagep, void **fsdata)
2357 {
2358 	struct inode *inode = mapping->host;
2359 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2360 	struct page *page = NULL;
2361 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2362 	bool need_balance = false, drop_atomic = false;
2363 	block_t blkaddr = NULL_ADDR;
2364 	int err = 0;
2365 
2366 	trace_f2fs_write_begin(inode, pos, len, flags);
2367 
2368 	if ((f2fs_is_atomic_file(inode) &&
2369 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2370 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2371 		err = -ENOMEM;
2372 		drop_atomic = true;
2373 		goto fail;
2374 	}
2375 
2376 	/*
2377 	 * We should check this at this moment to avoid deadlock on inode page
2378 	 * and #0 page. The locking rule for inline_data conversion should be:
2379 	 * lock_page(page #0) -> lock_page(inode_page)
2380 	 */
2381 	if (index != 0) {
2382 		err = f2fs_convert_inline_inode(inode);
2383 		if (err)
2384 			goto fail;
2385 	}
2386 repeat:
2387 	/*
2388 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2389 	 * wait_for_stable_page. Will wait that below with our IO control.
2390 	 */
2391 	page = f2fs_pagecache_get_page(mapping, index,
2392 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2393 	if (!page) {
2394 		err = -ENOMEM;
2395 		goto fail;
2396 	}
2397 
2398 	*pagep = page;
2399 
2400 	err = prepare_write_begin(sbi, page, pos, len,
2401 					&blkaddr, &need_balance);
2402 	if (err)
2403 		goto fail;
2404 
2405 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2406 		unlock_page(page);
2407 		f2fs_balance_fs(sbi, true);
2408 		lock_page(page);
2409 		if (page->mapping != mapping) {
2410 			/* The page got truncated from under us */
2411 			f2fs_put_page(page, 1);
2412 			goto repeat;
2413 		}
2414 	}
2415 
2416 	f2fs_wait_on_page_writeback(page, DATA, false);
2417 
2418 	if (len == PAGE_SIZE || PageUptodate(page))
2419 		return 0;
2420 
2421 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2422 		zero_user_segment(page, len, PAGE_SIZE);
2423 		return 0;
2424 	}
2425 
2426 	if (blkaddr == NEW_ADDR) {
2427 		zero_user_segment(page, 0, PAGE_SIZE);
2428 		SetPageUptodate(page);
2429 	} else {
2430 		err = f2fs_submit_page_read(inode, page, blkaddr);
2431 		if (err)
2432 			goto fail;
2433 
2434 		lock_page(page);
2435 		if (unlikely(page->mapping != mapping)) {
2436 			f2fs_put_page(page, 1);
2437 			goto repeat;
2438 		}
2439 		if (unlikely(!PageUptodate(page))) {
2440 			err = -EIO;
2441 			goto fail;
2442 		}
2443 	}
2444 	return 0;
2445 
2446 fail:
2447 	f2fs_put_page(page, 1);
2448 	f2fs_write_failed(mapping, pos + len);
2449 	if (drop_atomic)
2450 		f2fs_drop_inmem_pages_all(sbi, false);
2451 	return err;
2452 }
2453 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2454 static int f2fs_write_end(struct file *file,
2455 			struct address_space *mapping,
2456 			loff_t pos, unsigned len, unsigned copied,
2457 			struct page *page, void *fsdata)
2458 {
2459 	struct inode *inode = page->mapping->host;
2460 
2461 	trace_f2fs_write_end(inode, pos, len, copied);
2462 
2463 	/*
2464 	 * This should be come from len == PAGE_SIZE, and we expect copied
2465 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2466 	 * let generic_perform_write() try to copy data again through copied=0.
2467 	 */
2468 	if (!PageUptodate(page)) {
2469 		if (unlikely(copied != len))
2470 			copied = 0;
2471 		else
2472 			SetPageUptodate(page);
2473 	}
2474 	if (!copied)
2475 		goto unlock_out;
2476 
2477 	set_page_dirty(page);
2478 
2479 	if (pos + copied > i_size_read(inode))
2480 		f2fs_i_size_write(inode, pos + copied);
2481 unlock_out:
2482 	f2fs_put_page(page, 1);
2483 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2484 	return copied;
2485 }
2486 
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)2487 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2488 			   loff_t offset)
2489 {
2490 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2491 	unsigned blkbits = i_blkbits;
2492 	unsigned blocksize_mask = (1 << blkbits) - 1;
2493 	unsigned long align = offset | iov_iter_alignment(iter);
2494 	struct block_device *bdev = inode->i_sb->s_bdev;
2495 
2496 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
2497 		return 1;
2498 
2499 	if (align & blocksize_mask) {
2500 		if (bdev)
2501 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2502 		blocksize_mask = (1 << blkbits) - 1;
2503 		if (align & blocksize_mask)
2504 			return -EINVAL;
2505 		return 1;
2506 	}
2507 	return 0;
2508 }
2509 
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2510 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2511 {
2512 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2513 	struct inode *inode = mapping->host;
2514 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2515 	size_t count = iov_iter_count(iter);
2516 	loff_t offset = iocb->ki_pos;
2517 	int rw = iov_iter_rw(iter);
2518 	int err;
2519 	enum rw_hint hint = iocb->ki_hint;
2520 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2521 
2522 	err = check_direct_IO(inode, iter, offset);
2523 	if (err)
2524 		return err < 0 ? err : 0;
2525 
2526 	if (f2fs_force_buffered_io(inode, rw))
2527 		return 0;
2528 
2529 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2530 
2531 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2532 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2533 
2534 	if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2535 		if (iocb->ki_flags & IOCB_NOWAIT) {
2536 			iocb->ki_hint = hint;
2537 			err = -EAGAIN;
2538 			goto out;
2539 		}
2540 		down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2541 	}
2542 
2543 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2544 	up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2545 
2546 	if (rw == WRITE) {
2547 		if (whint_mode == WHINT_MODE_OFF)
2548 			iocb->ki_hint = hint;
2549 		if (err > 0) {
2550 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2551 									err);
2552 			set_inode_flag(inode, FI_UPDATE_WRITE);
2553 		} else if (err < 0) {
2554 			f2fs_write_failed(mapping, offset + count);
2555 		}
2556 	}
2557 
2558 out:
2559 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2560 
2561 	return err;
2562 }
2563 
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)2564 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2565 							unsigned int length)
2566 {
2567 	struct inode *inode = page->mapping->host;
2568 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2569 
2570 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2571 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2572 		return;
2573 
2574 	if (PageDirty(page)) {
2575 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2576 			dec_page_count(sbi, F2FS_DIRTY_META);
2577 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2578 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2579 		} else {
2580 			inode_dec_dirty_pages(inode);
2581 			f2fs_remove_dirty_inode(inode);
2582 		}
2583 	}
2584 
2585 	clear_cold_data(page);
2586 
2587 	/* This is atomic written page, keep Private */
2588 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2589 		return f2fs_drop_inmem_page(inode, page);
2590 
2591 	set_page_private(page, 0);
2592 	ClearPagePrivate(page);
2593 }
2594 
f2fs_release_page(struct page * page,gfp_t wait)2595 int f2fs_release_page(struct page *page, gfp_t wait)
2596 {
2597 	/* If this is dirty page, keep PagePrivate */
2598 	if (PageDirty(page))
2599 		return 0;
2600 
2601 	/* This is atomic written page, keep Private */
2602 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2603 		return 0;
2604 
2605 	clear_cold_data(page);
2606 	set_page_private(page, 0);
2607 	ClearPagePrivate(page);
2608 	return 1;
2609 }
2610 
f2fs_set_data_page_dirty(struct page * page)2611 static int f2fs_set_data_page_dirty(struct page *page)
2612 {
2613 	struct inode *inode = page_file_mapping(page)->host;
2614 
2615 	trace_f2fs_set_page_dirty(page, DATA);
2616 
2617 	if (!PageUptodate(page))
2618 		SetPageUptodate(page);
2619 	if (PageSwapCache(page))
2620 		return __set_page_dirty_nobuffers(page);
2621 
2622 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2623 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2624 			f2fs_register_inmem_page(inode, page);
2625 			return 1;
2626 		}
2627 		/*
2628 		 * Previously, this page has been registered, we just
2629 		 * return here.
2630 		 */
2631 		return 0;
2632 	}
2633 
2634 	if (!PageDirty(page)) {
2635 		__set_page_dirty_nobuffers(page);
2636 		f2fs_update_dirty_page(inode, page);
2637 		return 1;
2638 	}
2639 	return 0;
2640 }
2641 
f2fs_bmap(struct address_space * mapping,sector_t block)2642 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2643 {
2644 	struct inode *inode = mapping->host;
2645 
2646 	if (f2fs_has_inline_data(inode))
2647 		return 0;
2648 
2649 	/* make sure allocating whole blocks */
2650 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2651 		filemap_write_and_wait(mapping);
2652 
2653 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2654 }
2655 
2656 #ifdef CONFIG_MIGRATION
2657 #include <linux/migrate.h>
2658 
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2659 int f2fs_migrate_page(struct address_space *mapping,
2660 		struct page *newpage, struct page *page, enum migrate_mode mode)
2661 {
2662 	int rc, extra_count;
2663 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2664 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2665 
2666 	BUG_ON(PageWriteback(page));
2667 
2668 	/* migrating an atomic written page is safe with the inmem_lock hold */
2669 	if (atomic_written) {
2670 		if (mode != MIGRATE_SYNC)
2671 			return -EBUSY;
2672 		if (!mutex_trylock(&fi->inmem_lock))
2673 			return -EAGAIN;
2674 	}
2675 
2676 	/*
2677 	 * A reference is expected if PagePrivate set when move mapping,
2678 	 * however F2FS breaks this for maintaining dirty page counts when
2679 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2680 	 */
2681 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2682 	rc = migrate_page_move_mapping(mapping, newpage,
2683 				page, NULL, mode, extra_count);
2684 	if (rc != MIGRATEPAGE_SUCCESS) {
2685 		if (atomic_written)
2686 			mutex_unlock(&fi->inmem_lock);
2687 		return rc;
2688 	}
2689 
2690 	if (atomic_written) {
2691 		struct inmem_pages *cur;
2692 		list_for_each_entry(cur, &fi->inmem_pages, list)
2693 			if (cur->page == page) {
2694 				cur->page = newpage;
2695 				break;
2696 			}
2697 		mutex_unlock(&fi->inmem_lock);
2698 		put_page(page);
2699 		get_page(newpage);
2700 	}
2701 
2702 	if (PagePrivate(page))
2703 		SetPagePrivate(newpage);
2704 	set_page_private(newpage, page_private(page));
2705 
2706 	if (mode != MIGRATE_SYNC_NO_COPY)
2707 		migrate_page_copy(newpage, page);
2708 	else
2709 		migrate_page_states(newpage, page);
2710 
2711 	return MIGRATEPAGE_SUCCESS;
2712 }
2713 #endif
2714 
2715 #ifdef CONFIG_SWAP
2716 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct file * swap_file,unsigned int max)2717 static int check_swap_activate(struct file *swap_file, unsigned int max)
2718 {
2719 	struct address_space *mapping = swap_file->f_mapping;
2720 	struct inode *inode = mapping->host;
2721 	unsigned blocks_per_page;
2722 	unsigned long page_no;
2723 	unsigned blkbits;
2724 	sector_t probe_block;
2725 	sector_t last_block;
2726 	sector_t lowest_block = -1;
2727 	sector_t highest_block = 0;
2728 
2729 	blkbits = inode->i_blkbits;
2730 	blocks_per_page = PAGE_SIZE >> blkbits;
2731 
2732 	/*
2733 	 * Map all the blocks into the extent list.  This code doesn't try
2734 	 * to be very smart.
2735 	 */
2736 	probe_block = 0;
2737 	page_no = 0;
2738 	last_block = i_size_read(inode) >> blkbits;
2739 	while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
2740 		unsigned block_in_page;
2741 		sector_t first_block;
2742 
2743 		cond_resched();
2744 
2745 		first_block = bmap(inode, probe_block);
2746 		if (first_block == 0)
2747 			goto bad_bmap;
2748 
2749 		/*
2750 		 * It must be PAGE_SIZE aligned on-disk
2751 		 */
2752 		if (first_block & (blocks_per_page - 1)) {
2753 			probe_block++;
2754 			goto reprobe;
2755 		}
2756 
2757 		for (block_in_page = 1; block_in_page < blocks_per_page;
2758 					block_in_page++) {
2759 			sector_t block;
2760 
2761 			block = bmap(inode, probe_block + block_in_page);
2762 			if (block == 0)
2763 				goto bad_bmap;
2764 			if (block != first_block + block_in_page) {
2765 				/* Discontiguity */
2766 				probe_block++;
2767 				goto reprobe;
2768 			}
2769 		}
2770 
2771 		first_block >>= (PAGE_SHIFT - blkbits);
2772 		if (page_no) {	/* exclude the header page */
2773 			if (first_block < lowest_block)
2774 				lowest_block = first_block;
2775 			if (first_block > highest_block)
2776 				highest_block = first_block;
2777 		}
2778 
2779 		page_no++;
2780 		probe_block += blocks_per_page;
2781 reprobe:
2782 		continue;
2783 	}
2784 	return 0;
2785 
2786 bad_bmap:
2787 	pr_err("swapon: swapfile has holes\n");
2788 	return -EINVAL;
2789 }
2790 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)2791 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
2792 				sector_t *span)
2793 {
2794 	struct inode *inode = file_inode(file);
2795 	int ret;
2796 
2797 	if (!S_ISREG(inode->i_mode))
2798 		return -EINVAL;
2799 
2800 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2801 		return -EROFS;
2802 
2803 	ret = f2fs_convert_inline_inode(inode);
2804 	if (ret)
2805 		return ret;
2806 
2807 	ret = check_swap_activate(file, sis->max);
2808 	if (ret)
2809 		return ret;
2810 
2811 	set_inode_flag(inode, FI_PIN_FILE);
2812 	f2fs_precache_extents(inode);
2813 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2814 	return 0;
2815 }
2816 
f2fs_swap_deactivate(struct file * file)2817 static void f2fs_swap_deactivate(struct file *file)
2818 {
2819 	struct inode *inode = file_inode(file);
2820 
2821 	clear_inode_flag(inode, FI_PIN_FILE);
2822 }
2823 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)2824 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
2825 				sector_t *span)
2826 {
2827 	return -EOPNOTSUPP;
2828 }
2829 
f2fs_swap_deactivate(struct file * file)2830 static void f2fs_swap_deactivate(struct file *file)
2831 {
2832 }
2833 #endif
2834 
2835 const struct address_space_operations f2fs_dblock_aops = {
2836 	.readpage	= f2fs_read_data_page,
2837 	.readpages	= f2fs_read_data_pages,
2838 	.writepage	= f2fs_write_data_page,
2839 	.writepages	= f2fs_write_data_pages,
2840 	.write_begin	= f2fs_write_begin,
2841 	.write_end	= f2fs_write_end,
2842 	.set_page_dirty	= f2fs_set_data_page_dirty,
2843 	.invalidatepage	= f2fs_invalidate_page,
2844 	.releasepage	= f2fs_release_page,
2845 	.direct_IO	= f2fs_direct_IO,
2846 	.bmap		= f2fs_bmap,
2847 	.swap_activate  = f2fs_swap_activate,
2848 	.swap_deactivate = f2fs_swap_deactivate,
2849 #ifdef CONFIG_MIGRATION
2850 	.migratepage    = f2fs_migrate_page,
2851 #endif
2852 };
2853 
f2fs_clear_radix_tree_dirty_tag(struct page * page)2854 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2855 {
2856 	struct address_space *mapping = page_mapping(page);
2857 	unsigned long flags;
2858 
2859 	xa_lock_irqsave(&mapping->i_pages, flags);
2860 	radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2861 						PAGECACHE_TAG_DIRTY);
2862 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2863 }
2864 
f2fs_init_post_read_processing(void)2865 int __init f2fs_init_post_read_processing(void)
2866 {
2867 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2868 	if (!bio_post_read_ctx_cache)
2869 		goto fail;
2870 	bio_post_read_ctx_pool =
2871 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2872 					 bio_post_read_ctx_cache);
2873 	if (!bio_post_read_ctx_pool)
2874 		goto fail_free_cache;
2875 	return 0;
2876 
2877 fail_free_cache:
2878 	kmem_cache_destroy(bio_post_read_ctx_cache);
2879 fail:
2880 	return -ENOMEM;
2881 }
2882 
f2fs_destroy_post_read_processing(void)2883 void __exit f2fs_destroy_post_read_processing(void)
2884 {
2885 	mempool_destroy(bio_post_read_ctx_pool);
2886 	kmem_cache_destroy(bio_post_read_ctx_cache);
2887 }
2888