• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * f2fs extent cache support
3  *
4  * Copyright (c) 2015 Motorola Mobility
5  * Copyright (c) 2015 Samsung Electronics
6  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7  *          Chao Yu <chao2.yu@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20 
__lookup_rb_tree_fast(struct rb_entry * cached_re,unsigned int ofs)21 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
22 							unsigned int ofs)
23 {
24 	if (cached_re) {
25 		if (cached_re->ofs <= ofs &&
26 				cached_re->ofs + cached_re->len > ofs) {
27 			return cached_re;
28 		}
29 	}
30 	return NULL;
31 }
32 
__lookup_rb_tree_slow(struct rb_root * root,unsigned int ofs)33 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root *root,
34 							unsigned int ofs)
35 {
36 	struct rb_node *node = root->rb_node;
37 	struct rb_entry *re;
38 
39 	while (node) {
40 		re = rb_entry(node, struct rb_entry, rb_node);
41 
42 		if (ofs < re->ofs)
43 			node = node->rb_left;
44 		else if (ofs >= re->ofs + re->len)
45 			node = node->rb_right;
46 		else
47 			return re;
48 	}
49 	return NULL;
50 }
51 
f2fs_lookup_rb_tree(struct rb_root * root,struct rb_entry * cached_re,unsigned int ofs)52 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
53 				struct rb_entry *cached_re, unsigned int ofs)
54 {
55 	struct rb_entry *re;
56 
57 	re = __lookup_rb_tree_fast(cached_re, ofs);
58 	if (!re)
59 		return __lookup_rb_tree_slow(root, ofs);
60 
61 	return re;
62 }
63 
f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info * sbi,struct rb_root * root,struct rb_node ** parent,unsigned int ofs)64 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
65 				struct rb_root *root, struct rb_node **parent,
66 				unsigned int ofs)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_entry *re;
70 
71 	while (*p) {
72 		*parent = *p;
73 		re = rb_entry(*parent, struct rb_entry, rb_node);
74 
75 		if (ofs < re->ofs)
76 			p = &(*p)->rb_left;
77 		else if (ofs >= re->ofs + re->len)
78 			p = &(*p)->rb_right;
79 		else
80 			f2fs_bug_on(sbi, 1);
81 	}
82 
83 	return p;
84 }
85 
86 /*
87  * lookup rb entry in position of @ofs in rb-tree,
88  * if hit, return the entry, otherwise, return NULL
89  * @prev_ex: extent before ofs
90  * @next_ex: extent after ofs
91  * @insert_p: insert point for new extent at ofs
92  * in order to simpfy the insertion after.
93  * tree must stay unchanged between lookup and insertion.
94  */
f2fs_lookup_rb_tree_ret(struct rb_root * root,struct rb_entry * cached_re,unsigned int ofs,struct rb_entry ** prev_entry,struct rb_entry ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent,bool force)95 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
96 				struct rb_entry *cached_re,
97 				unsigned int ofs,
98 				struct rb_entry **prev_entry,
99 				struct rb_entry **next_entry,
100 				struct rb_node ***insert_p,
101 				struct rb_node **insert_parent,
102 				bool force)
103 {
104 	struct rb_node **pnode = &root->rb_node;
105 	struct rb_node *parent = NULL, *tmp_node;
106 	struct rb_entry *re = cached_re;
107 
108 	*insert_p = NULL;
109 	*insert_parent = NULL;
110 	*prev_entry = NULL;
111 	*next_entry = NULL;
112 
113 	if (RB_EMPTY_ROOT(root))
114 		return NULL;
115 
116 	if (re) {
117 		if (re->ofs <= ofs && re->ofs + re->len > ofs)
118 			goto lookup_neighbors;
119 	}
120 
121 	while (*pnode) {
122 		parent = *pnode;
123 		re = rb_entry(*pnode, struct rb_entry, rb_node);
124 
125 		if (ofs < re->ofs)
126 			pnode = &(*pnode)->rb_left;
127 		else if (ofs >= re->ofs + re->len)
128 			pnode = &(*pnode)->rb_right;
129 		else
130 			goto lookup_neighbors;
131 	}
132 
133 	*insert_p = pnode;
134 	*insert_parent = parent;
135 
136 	re = rb_entry(parent, struct rb_entry, rb_node);
137 	tmp_node = parent;
138 	if (parent && ofs > re->ofs)
139 		tmp_node = rb_next(parent);
140 	*next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
141 
142 	tmp_node = parent;
143 	if (parent && ofs < re->ofs)
144 		tmp_node = rb_prev(parent);
145 	*prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
146 	return NULL;
147 
148 lookup_neighbors:
149 	if (ofs == re->ofs || force) {
150 		/* lookup prev node for merging backward later */
151 		tmp_node = rb_prev(&re->rb_node);
152 		*prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
153 	}
154 	if (ofs == re->ofs + re->len - 1 || force) {
155 		/* lookup next node for merging frontward later */
156 		tmp_node = rb_next(&re->rb_node);
157 		*next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
158 	}
159 	return re;
160 }
161 
f2fs_check_rb_tree_consistence(struct f2fs_sb_info * sbi,struct rb_root * root)162 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
163 						struct rb_root *root)
164 {
165 #ifdef CONFIG_F2FS_CHECK_FS
166 	struct rb_node *cur = rb_first(root), *next;
167 	struct rb_entry *cur_re, *next_re;
168 
169 	if (!cur)
170 		return true;
171 
172 	while (cur) {
173 		next = rb_next(cur);
174 		if (!next)
175 			return true;
176 
177 		cur_re = rb_entry(cur, struct rb_entry, rb_node);
178 		next_re = rb_entry(next, struct rb_entry, rb_node);
179 
180 		if (cur_re->ofs + cur_re->len > next_re->ofs) {
181 			f2fs_msg(sbi->sb, KERN_INFO, "inconsistent rbtree, "
182 				"cur(%u, %u) next(%u, %u)",
183 				cur_re->ofs, cur_re->len,
184 				next_re->ofs, next_re->len);
185 			return false;
186 		}
187 
188 		cur = next;
189 	}
190 #endif
191 	return true;
192 }
193 
194 static struct kmem_cache *extent_tree_slab;
195 static struct kmem_cache *extent_node_slab;
196 
__attach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node * parent,struct rb_node ** p)197 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
198 				struct extent_tree *et, struct extent_info *ei,
199 				struct rb_node *parent, struct rb_node **p)
200 {
201 	struct extent_node *en;
202 
203 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
204 	if (!en)
205 		return NULL;
206 
207 	en->ei = *ei;
208 	INIT_LIST_HEAD(&en->list);
209 	en->et = et;
210 
211 	rb_link_node(&en->rb_node, parent, p);
212 	rb_insert_color(&en->rb_node, &et->root);
213 	atomic_inc(&et->node_cnt);
214 	atomic_inc(&sbi->total_ext_node);
215 	return en;
216 }
217 
__detach_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)218 static void __detach_extent_node(struct f2fs_sb_info *sbi,
219 				struct extent_tree *et, struct extent_node *en)
220 {
221 	rb_erase(&en->rb_node, &et->root);
222 	atomic_dec(&et->node_cnt);
223 	atomic_dec(&sbi->total_ext_node);
224 
225 	if (et->cached_en == en)
226 		et->cached_en = NULL;
227 	kmem_cache_free(extent_node_slab, en);
228 }
229 
230 /*
231  * Flow to release an extent_node:
232  * 1. list_del_init
233  * 2. __detach_extent_node
234  * 3. kmem_cache_free.
235  */
__release_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_node * en)236 static void __release_extent_node(struct f2fs_sb_info *sbi,
237 			struct extent_tree *et, struct extent_node *en)
238 {
239 	spin_lock(&sbi->extent_lock);
240 	f2fs_bug_on(sbi, list_empty(&en->list));
241 	list_del_init(&en->list);
242 	spin_unlock(&sbi->extent_lock);
243 
244 	__detach_extent_node(sbi, et, en);
245 }
246 
__grab_extent_tree(struct inode * inode)247 static struct extent_tree *__grab_extent_tree(struct inode *inode)
248 {
249 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 	struct extent_tree *et;
251 	nid_t ino = inode->i_ino;
252 
253 	mutex_lock(&sbi->extent_tree_lock);
254 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
255 	if (!et) {
256 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
257 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
258 		memset(et, 0, sizeof(struct extent_tree));
259 		et->ino = ino;
260 		et->root = RB_ROOT;
261 		et->cached_en = NULL;
262 		rwlock_init(&et->lock);
263 		INIT_LIST_HEAD(&et->list);
264 		atomic_set(&et->node_cnt, 0);
265 		atomic_inc(&sbi->total_ext_tree);
266 	} else {
267 		atomic_dec(&sbi->total_zombie_tree);
268 		list_del_init(&et->list);
269 	}
270 	mutex_unlock(&sbi->extent_tree_lock);
271 
272 	/* never died until evict_inode */
273 	F2FS_I(inode)->extent_tree = et;
274 
275 	return et;
276 }
277 
__init_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei)278 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
279 				struct extent_tree *et, struct extent_info *ei)
280 {
281 	struct rb_node **p = &et->root.rb_node;
282 	struct extent_node *en;
283 
284 	en = __attach_extent_node(sbi, et, ei, NULL, p);
285 	if (!en)
286 		return NULL;
287 
288 	et->largest = en->ei;
289 	et->cached_en = en;
290 	return en;
291 }
292 
__free_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et)293 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
294 					struct extent_tree *et)
295 {
296 	struct rb_node *node, *next;
297 	struct extent_node *en;
298 	unsigned int count = atomic_read(&et->node_cnt);
299 
300 	node = rb_first(&et->root);
301 	while (node) {
302 		next = rb_next(node);
303 		en = rb_entry(node, struct extent_node, rb_node);
304 		__release_extent_node(sbi, et, en);
305 		node = next;
306 	}
307 
308 	return count - atomic_read(&et->node_cnt);
309 }
310 
__drop_largest_extent(struct extent_tree * et,pgoff_t fofs,unsigned int len)311 static void __drop_largest_extent(struct extent_tree *et,
312 					pgoff_t fofs, unsigned int len)
313 {
314 	if (fofs < et->largest.fofs + et->largest.len &&
315 			fofs + len > et->largest.fofs) {
316 		et->largest.len = 0;
317 		et->largest_updated = true;
318 	}
319 }
320 
321 /* return true, if inode page is changed */
__f2fs_init_extent_tree(struct inode * inode,struct f2fs_extent * i_ext)322 static bool __f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
323 {
324 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
325 	struct extent_tree *et;
326 	struct extent_node *en;
327 	struct extent_info ei;
328 
329 	if (!f2fs_may_extent_tree(inode)) {
330 		/* drop largest extent */
331 		if (i_ext && i_ext->len) {
332 			i_ext->len = 0;
333 			return true;
334 		}
335 		return false;
336 	}
337 
338 	et = __grab_extent_tree(inode);
339 
340 	if (!i_ext || !i_ext->len)
341 		return false;
342 
343 	get_extent_info(&ei, i_ext);
344 
345 	write_lock(&et->lock);
346 	if (atomic_read(&et->node_cnt))
347 		goto out;
348 
349 	en = __init_extent_tree(sbi, et, &ei);
350 	if (en) {
351 		spin_lock(&sbi->extent_lock);
352 		list_add_tail(&en->list, &sbi->extent_list);
353 		spin_unlock(&sbi->extent_lock);
354 	}
355 out:
356 	write_unlock(&et->lock);
357 	return false;
358 }
359 
f2fs_init_extent_tree(struct inode * inode,struct f2fs_extent * i_ext)360 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
361 {
362 	bool ret =  __f2fs_init_extent_tree(inode, i_ext);
363 
364 	if (!F2FS_I(inode)->extent_tree)
365 		set_inode_flag(inode, FI_NO_EXTENT);
366 
367 	return ret;
368 }
369 
f2fs_lookup_extent_tree(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)370 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
371 							struct extent_info *ei)
372 {
373 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
374 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
375 	struct extent_node *en;
376 	bool ret = false;
377 
378 	f2fs_bug_on(sbi, !et);
379 
380 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
381 
382 	read_lock(&et->lock);
383 
384 	if (et->largest.fofs <= pgofs &&
385 			et->largest.fofs + et->largest.len > pgofs) {
386 		*ei = et->largest;
387 		ret = true;
388 		stat_inc_largest_node_hit(sbi);
389 		goto out;
390 	}
391 
392 	en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
393 				(struct rb_entry *)et->cached_en, pgofs);
394 	if (!en)
395 		goto out;
396 
397 	if (en == et->cached_en)
398 		stat_inc_cached_node_hit(sbi);
399 	else
400 		stat_inc_rbtree_node_hit(sbi);
401 
402 	*ei = en->ei;
403 	spin_lock(&sbi->extent_lock);
404 	if (!list_empty(&en->list)) {
405 		list_move_tail(&en->list, &sbi->extent_list);
406 		et->cached_en = en;
407 	}
408 	spin_unlock(&sbi->extent_lock);
409 	ret = true;
410 out:
411 	stat_inc_total_hit(sbi);
412 	read_unlock(&et->lock);
413 
414 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
415 	return ret;
416 }
417 
__try_merge_extent_node(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct extent_node * prev_ex,struct extent_node * next_ex)418 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
419 				struct extent_tree *et, struct extent_info *ei,
420 				struct extent_node *prev_ex,
421 				struct extent_node *next_ex)
422 {
423 	struct extent_node *en = NULL;
424 
425 	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
426 		prev_ex->ei.len += ei->len;
427 		ei = &prev_ex->ei;
428 		en = prev_ex;
429 	}
430 
431 	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
432 		next_ex->ei.fofs = ei->fofs;
433 		next_ex->ei.blk = ei->blk;
434 		next_ex->ei.len += ei->len;
435 		if (en)
436 			__release_extent_node(sbi, et, prev_ex);
437 
438 		en = next_ex;
439 	}
440 
441 	if (!en)
442 		return NULL;
443 
444 	__try_update_largest_extent(et, en);
445 
446 	spin_lock(&sbi->extent_lock);
447 	if (!list_empty(&en->list)) {
448 		list_move_tail(&en->list, &sbi->extent_list);
449 		et->cached_en = en;
450 	}
451 	spin_unlock(&sbi->extent_lock);
452 	return en;
453 }
454 
__insert_extent_tree(struct f2fs_sb_info * sbi,struct extent_tree * et,struct extent_info * ei,struct rb_node ** insert_p,struct rb_node * insert_parent)455 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
456 				struct extent_tree *et, struct extent_info *ei,
457 				struct rb_node **insert_p,
458 				struct rb_node *insert_parent)
459 {
460 	struct rb_node **p;
461 	struct rb_node *parent = NULL;
462 	struct extent_node *en = NULL;
463 
464 	if (insert_p && insert_parent) {
465 		parent = insert_parent;
466 		p = insert_p;
467 		goto do_insert;
468 	}
469 
470 	p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent, ei->fofs);
471 do_insert:
472 	en = __attach_extent_node(sbi, et, ei, parent, p);
473 	if (!en)
474 		return NULL;
475 
476 	__try_update_largest_extent(et, en);
477 
478 	/* update in global extent list */
479 	spin_lock(&sbi->extent_lock);
480 	list_add_tail(&en->list, &sbi->extent_list);
481 	et->cached_en = en;
482 	spin_unlock(&sbi->extent_lock);
483 	return en;
484 }
485 
f2fs_update_extent_tree_range(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int len)486 static void f2fs_update_extent_tree_range(struct inode *inode,
487 				pgoff_t fofs, block_t blkaddr, unsigned int len)
488 {
489 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
490 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
491 	struct extent_node *en = NULL, *en1 = NULL;
492 	struct extent_node *prev_en = NULL, *next_en = NULL;
493 	struct extent_info ei, dei, prev;
494 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
495 	unsigned int end = fofs + len;
496 	unsigned int pos = (unsigned int)fofs;
497 	bool updated = false;
498 
499 	if (!et)
500 		return;
501 
502 	trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
503 
504 	write_lock(&et->lock);
505 
506 	if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
507 		write_unlock(&et->lock);
508 		return;
509 	}
510 
511 	prev = et->largest;
512 	dei.len = 0;
513 
514 	/*
515 	 * drop largest extent before lookup, in case it's already
516 	 * been shrunk from extent tree
517 	 */
518 	__drop_largest_extent(et, fofs, len);
519 
520 	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
521 	en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
522 					(struct rb_entry *)et->cached_en, fofs,
523 					(struct rb_entry **)&prev_en,
524 					(struct rb_entry **)&next_en,
525 					&insert_p, &insert_parent, false);
526 	if (!en)
527 		en = next_en;
528 
529 	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
530 	while (en && en->ei.fofs < end) {
531 		unsigned int org_end;
532 		int parts = 0;	/* # of parts current extent split into */
533 
534 		next_en = en1 = NULL;
535 
536 		dei = en->ei;
537 		org_end = dei.fofs + dei.len;
538 		f2fs_bug_on(sbi, pos >= org_end);
539 
540 		if (pos > dei.fofs &&	pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
541 			en->ei.len = pos - en->ei.fofs;
542 			prev_en = en;
543 			parts = 1;
544 		}
545 
546 		if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
547 			if (parts) {
548 				set_extent_info(&ei, end,
549 						end - dei.fofs + dei.blk,
550 						org_end - end);
551 				en1 = __insert_extent_tree(sbi, et, &ei,
552 							NULL, NULL);
553 				next_en = en1;
554 			} else {
555 				en->ei.fofs = end;
556 				en->ei.blk += end - dei.fofs;
557 				en->ei.len -= end - dei.fofs;
558 				next_en = en;
559 			}
560 			parts++;
561 		}
562 
563 		if (!next_en) {
564 			struct rb_node *node = rb_next(&en->rb_node);
565 
566 			next_en = rb_entry_safe(node, struct extent_node,
567 						rb_node);
568 		}
569 
570 		if (parts)
571 			__try_update_largest_extent(et, en);
572 		else
573 			__release_extent_node(sbi, et, en);
574 
575 		/*
576 		 * if original extent is split into zero or two parts, extent
577 		 * tree has been altered by deletion or insertion, therefore
578 		 * invalidate pointers regard to tree.
579 		 */
580 		if (parts != 1) {
581 			insert_p = NULL;
582 			insert_parent = NULL;
583 		}
584 		en = next_en;
585 	}
586 
587 	/* 3. update extent in extent cache */
588 	if (blkaddr) {
589 
590 		set_extent_info(&ei, fofs, blkaddr, len);
591 		if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
592 			__insert_extent_tree(sbi, et, &ei,
593 						insert_p, insert_parent);
594 
595 		/* give up extent_cache, if split and small updates happen */
596 		if (dei.len >= 1 &&
597 				prev.len < F2FS_MIN_EXTENT_LEN &&
598 				et->largest.len < F2FS_MIN_EXTENT_LEN) {
599 			et->largest.len = 0;
600 			et->largest_updated = true;
601 			set_inode_flag(inode, FI_NO_EXTENT);
602 		}
603 	}
604 
605 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
606 		__free_extent_tree(sbi, et);
607 
608 	if (et->largest_updated) {
609 		et->largest_updated = false;
610 		updated = true;
611 	}
612 
613 	write_unlock(&et->lock);
614 
615 	if (updated)
616 		f2fs_mark_inode_dirty_sync(inode, true);
617 }
618 
f2fs_shrink_extent_tree(struct f2fs_sb_info * sbi,int nr_shrink)619 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
620 {
621 	struct extent_tree *et, *next;
622 	struct extent_node *en;
623 	unsigned int node_cnt = 0, tree_cnt = 0;
624 	int remained;
625 
626 	if (!test_opt(sbi, EXTENT_CACHE))
627 		return 0;
628 
629 	if (!atomic_read(&sbi->total_zombie_tree))
630 		goto free_node;
631 
632 	if (!mutex_trylock(&sbi->extent_tree_lock))
633 		goto out;
634 
635 	/* 1. remove unreferenced extent tree */
636 	list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
637 		if (atomic_read(&et->node_cnt)) {
638 			write_lock(&et->lock);
639 			node_cnt += __free_extent_tree(sbi, et);
640 			write_unlock(&et->lock);
641 		}
642 		f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
643 		list_del_init(&et->list);
644 		radix_tree_delete(&sbi->extent_tree_root, et->ino);
645 		kmem_cache_free(extent_tree_slab, et);
646 		atomic_dec(&sbi->total_ext_tree);
647 		atomic_dec(&sbi->total_zombie_tree);
648 		tree_cnt++;
649 
650 		if (node_cnt + tree_cnt >= nr_shrink)
651 			goto unlock_out;
652 		cond_resched();
653 	}
654 	mutex_unlock(&sbi->extent_tree_lock);
655 
656 free_node:
657 	/* 2. remove LRU extent entries */
658 	if (!mutex_trylock(&sbi->extent_tree_lock))
659 		goto out;
660 
661 	remained = nr_shrink - (node_cnt + tree_cnt);
662 
663 	spin_lock(&sbi->extent_lock);
664 	for (; remained > 0; remained--) {
665 		if (list_empty(&sbi->extent_list))
666 			break;
667 		en = list_first_entry(&sbi->extent_list,
668 					struct extent_node, list);
669 		et = en->et;
670 		if (!write_trylock(&et->lock)) {
671 			/* refresh this extent node's position in extent list */
672 			list_move_tail(&en->list, &sbi->extent_list);
673 			continue;
674 		}
675 
676 		list_del_init(&en->list);
677 		spin_unlock(&sbi->extent_lock);
678 
679 		__detach_extent_node(sbi, et, en);
680 
681 		write_unlock(&et->lock);
682 		node_cnt++;
683 		spin_lock(&sbi->extent_lock);
684 	}
685 	spin_unlock(&sbi->extent_lock);
686 
687 unlock_out:
688 	mutex_unlock(&sbi->extent_tree_lock);
689 out:
690 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
691 
692 	return node_cnt + tree_cnt;
693 }
694 
f2fs_destroy_extent_node(struct inode * inode)695 unsigned int f2fs_destroy_extent_node(struct inode *inode)
696 {
697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
698 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
699 	unsigned int node_cnt = 0;
700 
701 	if (!et || !atomic_read(&et->node_cnt))
702 		return 0;
703 
704 	write_lock(&et->lock);
705 	node_cnt = __free_extent_tree(sbi, et);
706 	write_unlock(&et->lock);
707 
708 	return node_cnt;
709 }
710 
f2fs_drop_extent_tree(struct inode * inode)711 void f2fs_drop_extent_tree(struct inode *inode)
712 {
713 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
714 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
715 	bool updated = false;
716 
717 	if (!f2fs_may_extent_tree(inode))
718 		return;
719 
720 	set_inode_flag(inode, FI_NO_EXTENT);
721 
722 	write_lock(&et->lock);
723 	__free_extent_tree(sbi, et);
724 	if (et->largest.len) {
725 		et->largest.len = 0;
726 		updated = true;
727 	}
728 	write_unlock(&et->lock);
729 	if (updated)
730 		f2fs_mark_inode_dirty_sync(inode, true);
731 }
732 
f2fs_destroy_extent_tree(struct inode * inode)733 void f2fs_destroy_extent_tree(struct inode *inode)
734 {
735 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
737 	unsigned int node_cnt = 0;
738 
739 	if (!et)
740 		return;
741 
742 	if (inode->i_nlink && !is_bad_inode(inode) &&
743 					atomic_read(&et->node_cnt)) {
744 		mutex_lock(&sbi->extent_tree_lock);
745 		list_add_tail(&et->list, &sbi->zombie_list);
746 		atomic_inc(&sbi->total_zombie_tree);
747 		mutex_unlock(&sbi->extent_tree_lock);
748 		return;
749 	}
750 
751 	/* free all extent info belong to this extent tree */
752 	node_cnt = f2fs_destroy_extent_node(inode);
753 
754 	/* delete extent tree entry in radix tree */
755 	mutex_lock(&sbi->extent_tree_lock);
756 	f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
757 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
758 	kmem_cache_free(extent_tree_slab, et);
759 	atomic_dec(&sbi->total_ext_tree);
760 	mutex_unlock(&sbi->extent_tree_lock);
761 
762 	F2FS_I(inode)->extent_tree = NULL;
763 
764 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
765 }
766 
f2fs_lookup_extent_cache(struct inode * inode,pgoff_t pgofs,struct extent_info * ei)767 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
768 					struct extent_info *ei)
769 {
770 	if (!f2fs_may_extent_tree(inode))
771 		return false;
772 
773 	return f2fs_lookup_extent_tree(inode, pgofs, ei);
774 }
775 
f2fs_update_extent_cache(struct dnode_of_data * dn)776 void f2fs_update_extent_cache(struct dnode_of_data *dn)
777 {
778 	pgoff_t fofs;
779 	block_t blkaddr;
780 
781 	if (!f2fs_may_extent_tree(dn->inode))
782 		return;
783 
784 	if (dn->data_blkaddr == NEW_ADDR)
785 		blkaddr = NULL_ADDR;
786 	else
787 		blkaddr = dn->data_blkaddr;
788 
789 	fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
790 								dn->ofs_in_node;
791 	f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
792 }
793 
f2fs_update_extent_cache_range(struct dnode_of_data * dn,pgoff_t fofs,block_t blkaddr,unsigned int len)794 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
795 				pgoff_t fofs, block_t blkaddr, unsigned int len)
796 
797 {
798 	if (!f2fs_may_extent_tree(dn->inode))
799 		return;
800 
801 	f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
802 }
803 
f2fs_init_extent_cache_info(struct f2fs_sb_info * sbi)804 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
805 {
806 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
807 	mutex_init(&sbi->extent_tree_lock);
808 	INIT_LIST_HEAD(&sbi->extent_list);
809 	spin_lock_init(&sbi->extent_lock);
810 	atomic_set(&sbi->total_ext_tree, 0);
811 	INIT_LIST_HEAD(&sbi->zombie_list);
812 	atomic_set(&sbi->total_zombie_tree, 0);
813 	atomic_set(&sbi->total_ext_node, 0);
814 }
815 
f2fs_create_extent_cache(void)816 int __init f2fs_create_extent_cache(void)
817 {
818 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
819 			sizeof(struct extent_tree));
820 	if (!extent_tree_slab)
821 		return -ENOMEM;
822 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
823 			sizeof(struct extent_node));
824 	if (!extent_node_slab) {
825 		kmem_cache_destroy(extent_tree_slab);
826 		return -ENOMEM;
827 	}
828 	return 0;
829 }
830 
f2fs_destroy_extent_cache(void)831 void f2fs_destroy_extent_cache(void)
832 {
833 	kmem_cache_destroy(extent_node_slab);
834 	kmem_cache_destroy(extent_tree_slab);
835 }
836