• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
f2fs_filemap_fault(struct vm_fault * vmf)36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 	struct inode *inode = file_inode(vmf->vma->vm_file);
39 	vm_fault_t ret;
40 
41 	down_read(&F2FS_I(inode)->i_mmap_sem);
42 	ret = filemap_fault(vmf);
43 	up_read(&F2FS_I(inode)->i_mmap_sem);
44 
45 	return ret;
46 }
47 
f2fs_vm_page_mkwrite(struct vm_fault * vmf)48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 	struct page *page = vmf->page;
51 	struct inode *inode = file_inode(vmf->vma->vm_file);
52 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 	struct dnode_of_data dn;
54 	int err;
55 
56 	if (unlikely(f2fs_cp_error(sbi))) {
57 		err = -EIO;
58 		goto err;
59 	}
60 
61 	sb_start_pagefault(inode->i_sb);
62 
63 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64 
65 	/* block allocation */
66 	f2fs_lock_op(sbi);
67 	set_new_dnode(&dn, inode, NULL, NULL, 0);
68 	err = f2fs_reserve_block(&dn, page->index);
69 	if (err) {
70 		f2fs_unlock_op(sbi);
71 		goto out;
72 	}
73 	f2fs_put_dnode(&dn);
74 	f2fs_unlock_op(sbi);
75 
76 	f2fs_balance_fs(sbi, dn.node_changed);
77 
78 	file_update_time(vmf->vma->vm_file);
79 	down_read(&F2FS_I(inode)->i_mmap_sem);
80 	lock_page(page);
81 	if (unlikely(page->mapping != inode->i_mapping ||
82 			page_offset(page) > i_size_read(inode) ||
83 			!PageUptodate(page))) {
84 		unlock_page(page);
85 		err = -EFAULT;
86 		goto out_sem;
87 	}
88 
89 	/*
90 	 * check to see if the page is mapped already (no holes)
91 	 */
92 	if (PageMappedToDisk(page))
93 		goto mapped;
94 
95 	/* page is wholly or partially inside EOF */
96 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 						i_size_read(inode)) {
98 		loff_t offset;
99 
100 		offset = i_size_read(inode) & ~PAGE_MASK;
101 		zero_user_segment(page, offset, PAGE_SIZE);
102 	}
103 	set_page_dirty(page);
104 	if (!PageUptodate(page))
105 		SetPageUptodate(page);
106 
107 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
108 
109 	trace_f2fs_vm_page_mkwrite(page, DATA);
110 mapped:
111 	/* fill the page */
112 	f2fs_wait_on_page_writeback(page, DATA, false);
113 
114 	/* wait for GCed page writeback via META_MAPPING */
115 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
116 
117 out_sem:
118 	up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 	sb_end_pagefault(inode->i_sb);
121 	f2fs_update_time(sbi, REQ_TIME);
122 err:
123 	return block_page_mkwrite_return(err);
124 }
125 
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 	.fault		= f2fs_filemap_fault,
128 	.map_pages	= filemap_map_pages,
129 	.page_mkwrite	= f2fs_vm_page_mkwrite,
130 };
131 
get_parent_ino(struct inode * inode,nid_t * pino)132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 	struct dentry *dentry;
135 
136 	inode = igrab(inode);
137 	dentry = d_find_any_alias(inode);
138 	iput(inode);
139 	if (!dentry)
140 		return 0;
141 
142 	*pino = parent_ino(dentry);
143 	dput(dentry);
144 	return 1;
145 }
146 
need_do_checkpoint(struct inode * inode)147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
151 
152 	if (!S_ISREG(inode->i_mode))
153 		cp_reason = CP_NON_REGULAR;
154 	else if (inode->i_nlink != 1)
155 		cp_reason = CP_HARDLINK;
156 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 		cp_reason = CP_SB_NEED_CP;
158 	else if (file_wrong_pino(inode))
159 		cp_reason = CP_WRONG_PINO;
160 	else if (!f2fs_space_for_roll_forward(sbi))
161 		cp_reason = CP_NO_SPC_ROLL;
162 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 		cp_reason = CP_NODE_NEED_CP;
164 	else if (test_opt(sbi, FASTBOOT))
165 		cp_reason = CP_FASTBOOT_MODE;
166 	else if (F2FS_OPTION(sbi).active_logs == 2)
167 		cp_reason = CP_SPEC_LOG_NUM;
168 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
169 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
170 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
171 							TRANS_DIR_INO))
172 		cp_reason = CP_RECOVER_DIR;
173 
174 	return cp_reason;
175 }
176 
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)177 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
178 {
179 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
180 	bool ret = false;
181 	/* But we need to avoid that there are some inode updates */
182 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
183 		ret = true;
184 	f2fs_put_page(i, 0);
185 	return ret;
186 }
187 
try_to_fix_pino(struct inode * inode)188 static void try_to_fix_pino(struct inode *inode)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 	nid_t pino;
192 
193 	down_write(&fi->i_sem);
194 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
195 			get_parent_ino(inode, &pino)) {
196 		f2fs_i_pino_write(inode, pino);
197 		file_got_pino(inode);
198 	}
199 	up_write(&fi->i_sem);
200 }
201 
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)202 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
203 						int datasync, bool atomic)
204 {
205 	struct inode *inode = file->f_mapping->host;
206 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
207 	nid_t ino = inode->i_ino;
208 	int ret = 0;
209 	enum cp_reason_type cp_reason = 0;
210 	struct writeback_control wbc = {
211 		.sync_mode = WB_SYNC_ALL,
212 		.nr_to_write = LONG_MAX,
213 		.for_reclaim = 0,
214 	};
215 	unsigned int seq_id = 0;
216 
217 	if (unlikely(f2fs_readonly(inode->i_sb)))
218 		return 0;
219 
220 	trace_f2fs_sync_file_enter(inode);
221 
222 	if (S_ISDIR(inode->i_mode))
223 		goto go_write;
224 
225 	/* if fdatasync is triggered, let's do in-place-update */
226 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
227 		set_inode_flag(inode, FI_NEED_IPU);
228 	ret = file_write_and_wait_range(file, start, end);
229 	clear_inode_flag(inode, FI_NEED_IPU);
230 
231 	if (ret) {
232 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
233 		return ret;
234 	}
235 
236 	/* if the inode is dirty, let's recover all the time */
237 	if (!f2fs_skip_inode_update(inode, datasync)) {
238 		f2fs_write_inode(inode, NULL);
239 		goto go_write;
240 	}
241 
242 	/*
243 	 * if there is no written data, don't waste time to write recovery info.
244 	 */
245 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
246 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
247 
248 		/* it may call write_inode just prior to fsync */
249 		if (need_inode_page_update(sbi, ino))
250 			goto go_write;
251 
252 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
253 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
254 			goto flush_out;
255 		goto out;
256 	}
257 go_write:
258 	/*
259 	 * Both of fdatasync() and fsync() are able to be recovered from
260 	 * sudden-power-off.
261 	 */
262 	down_read(&F2FS_I(inode)->i_sem);
263 	cp_reason = need_do_checkpoint(inode);
264 	up_read(&F2FS_I(inode)->i_sem);
265 
266 	if (cp_reason) {
267 		/* all the dirty node pages should be flushed for POR */
268 		ret = f2fs_sync_fs(inode->i_sb, 1);
269 
270 		/*
271 		 * We've secured consistency through sync_fs. Following pino
272 		 * will be used only for fsynced inodes after checkpoint.
273 		 */
274 		try_to_fix_pino(inode);
275 		clear_inode_flag(inode, FI_APPEND_WRITE);
276 		clear_inode_flag(inode, FI_UPDATE_WRITE);
277 		goto out;
278 	}
279 sync_nodes:
280 	atomic_inc(&sbi->wb_sync_req[NODE]);
281 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
282 	atomic_dec(&sbi->wb_sync_req[NODE]);
283 	if (ret)
284 		goto out;
285 
286 	/* if cp_error was enabled, we should avoid infinite loop */
287 	if (unlikely(f2fs_cp_error(sbi))) {
288 		ret = -EIO;
289 		goto out;
290 	}
291 
292 	if (f2fs_need_inode_block_update(sbi, ino)) {
293 		f2fs_mark_inode_dirty_sync(inode, true);
294 		f2fs_write_inode(inode, NULL);
295 		goto sync_nodes;
296 	}
297 
298 	/*
299 	 * If it's atomic_write, it's just fine to keep write ordering. So
300 	 * here we don't need to wait for node write completion, since we use
301 	 * node chain which serializes node blocks. If one of node writes are
302 	 * reordered, we can see simply broken chain, resulting in stopping
303 	 * roll-forward recovery. It means we'll recover all or none node blocks
304 	 * given fsync mark.
305 	 */
306 	if (!atomic) {
307 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
308 		if (ret)
309 			goto out;
310 	}
311 
312 	/* once recovery info is written, don't need to tack this */
313 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
314 	clear_inode_flag(inode, FI_APPEND_WRITE);
315 flush_out:
316 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
317 		ret = f2fs_issue_flush(sbi, inode->i_ino);
318 	if (!ret) {
319 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
320 		clear_inode_flag(inode, FI_UPDATE_WRITE);
321 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
322 	}
323 	f2fs_update_time(sbi, REQ_TIME);
324 out:
325 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
326 	f2fs_trace_ios(NULL, 1);
327 	return ret;
328 }
329 
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)330 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
331 {
332 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
333 		return -EIO;
334 	return f2fs_do_sync_file(file, start, end, datasync, false);
335 }
336 
__get_first_dirty_index(struct address_space * mapping,pgoff_t pgofs,int whence)337 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
338 						pgoff_t pgofs, int whence)
339 {
340 	struct page *page;
341 	int nr_pages;
342 
343 	if (whence != SEEK_DATA)
344 		return 0;
345 
346 	/* find first dirty page index */
347 	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
348 				      1, &page);
349 	if (!nr_pages)
350 		return ULONG_MAX;
351 	pgofs = page->index;
352 	put_page(page);
353 	return pgofs;
354 }
355 
__found_offset(struct f2fs_sb_info * sbi,block_t blkaddr,pgoff_t dirty,pgoff_t pgofs,int whence)356 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
357 				pgoff_t dirty, pgoff_t pgofs, int whence)
358 {
359 	switch (whence) {
360 	case SEEK_DATA:
361 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
362 			is_valid_data_blkaddr(sbi, blkaddr))
363 			return true;
364 		break;
365 	case SEEK_HOLE:
366 		if (blkaddr == NULL_ADDR)
367 			return true;
368 		break;
369 	}
370 	return false;
371 }
372 
f2fs_seek_block(struct file * file,loff_t offset,int whence)373 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
374 {
375 	struct inode *inode = file->f_mapping->host;
376 	loff_t maxbytes = inode->i_sb->s_maxbytes;
377 	struct dnode_of_data dn;
378 	pgoff_t pgofs, end_offset, dirty;
379 	loff_t data_ofs = offset;
380 	loff_t isize;
381 	int err = 0;
382 
383 	inode_lock(inode);
384 
385 	isize = i_size_read(inode);
386 	if (offset >= isize)
387 		goto fail;
388 
389 	/* handle inline data case */
390 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
391 		if (whence == SEEK_HOLE)
392 			data_ofs = isize;
393 		goto found;
394 	}
395 
396 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
397 
398 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
399 
400 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
401 		set_new_dnode(&dn, inode, NULL, NULL, 0);
402 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
403 		if (err && err != -ENOENT) {
404 			goto fail;
405 		} else if (err == -ENOENT) {
406 			/* direct node does not exists */
407 			if (whence == SEEK_DATA) {
408 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
409 				continue;
410 			} else {
411 				goto found;
412 			}
413 		}
414 
415 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
416 
417 		/* find data/hole in dnode block */
418 		for (; dn.ofs_in_node < end_offset;
419 				dn.ofs_in_node++, pgofs++,
420 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
421 			block_t blkaddr;
422 
423 			blkaddr = datablock_addr(dn.inode,
424 					dn.node_page, dn.ofs_in_node);
425 
426 			if (__is_valid_data_blkaddr(blkaddr) &&
427 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
428 						blkaddr, DATA_GENERIC)) {
429 				f2fs_put_dnode(&dn);
430 				goto fail;
431 			}
432 
433 			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
434 							pgofs, whence)) {
435 				f2fs_put_dnode(&dn);
436 				goto found;
437 			}
438 		}
439 		f2fs_put_dnode(&dn);
440 	}
441 
442 	if (whence == SEEK_DATA)
443 		goto fail;
444 found:
445 	if (whence == SEEK_HOLE && data_ofs > isize)
446 		data_ofs = isize;
447 	inode_unlock(inode);
448 	return vfs_setpos(file, data_ofs, maxbytes);
449 fail:
450 	inode_unlock(inode);
451 	return -ENXIO;
452 }
453 
f2fs_llseek(struct file * file,loff_t offset,int whence)454 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
455 {
456 	struct inode *inode = file->f_mapping->host;
457 	loff_t maxbytes = inode->i_sb->s_maxbytes;
458 
459 	switch (whence) {
460 	case SEEK_SET:
461 	case SEEK_CUR:
462 	case SEEK_END:
463 		return generic_file_llseek_size(file, offset, whence,
464 						maxbytes, i_size_read(inode));
465 	case SEEK_DATA:
466 	case SEEK_HOLE:
467 		if (offset < 0)
468 			return -ENXIO;
469 		return f2fs_seek_block(file, offset, whence);
470 	}
471 
472 	return -EINVAL;
473 }
474 
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)475 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
476 {
477 	struct inode *inode = file_inode(file);
478 	int err;
479 
480 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
481 		return -EIO;
482 
483 	/* we don't need to use inline_data strictly */
484 	err = f2fs_convert_inline_inode(inode);
485 	if (err)
486 		return err;
487 
488 	file_accessed(file);
489 	vma->vm_ops = &f2fs_file_vm_ops;
490 	return 0;
491 }
492 
f2fs_file_open(struct inode * inode,struct file * filp)493 static int f2fs_file_open(struct inode *inode, struct file *filp)
494 {
495 	int err = fscrypt_file_open(inode, filp);
496 
497 	if (err)
498 		return err;
499 
500 	filp->f_mode |= FMODE_NOWAIT;
501 
502 	return dquot_file_open(inode, filp);
503 }
504 
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)505 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
506 {
507 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
508 	struct f2fs_node *raw_node;
509 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
510 	__le32 *addr;
511 	int base = 0;
512 
513 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
514 		base = get_extra_isize(dn->inode);
515 
516 	raw_node = F2FS_NODE(dn->node_page);
517 	addr = blkaddr_in_node(raw_node) + base + ofs;
518 
519 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
520 		block_t blkaddr = le32_to_cpu(*addr);
521 
522 		if (blkaddr == NULL_ADDR)
523 			continue;
524 
525 		dn->data_blkaddr = NULL_ADDR;
526 		f2fs_set_data_blkaddr(dn);
527 
528 		if (__is_valid_data_blkaddr(blkaddr) &&
529 			!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
530 			continue;
531 
532 		f2fs_invalidate_blocks(sbi, blkaddr);
533 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
534 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
535 		nr_free++;
536 	}
537 
538 	if (nr_free) {
539 		pgoff_t fofs;
540 		/*
541 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
542 		 * we will invalidate all blkaddr in the whole range.
543 		 */
544 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
545 							dn->inode) + ofs;
546 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
547 		dec_valid_block_count(sbi, dn->inode, nr_free);
548 	}
549 	dn->ofs_in_node = ofs;
550 
551 	f2fs_update_time(sbi, REQ_TIME);
552 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
553 					 dn->ofs_in_node, nr_free);
554 }
555 
f2fs_truncate_data_blocks(struct dnode_of_data * dn)556 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
557 {
558 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
559 }
560 
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)561 static int truncate_partial_data_page(struct inode *inode, u64 from,
562 								bool cache_only)
563 {
564 	loff_t offset = from & (PAGE_SIZE - 1);
565 	pgoff_t index = from >> PAGE_SHIFT;
566 	struct address_space *mapping = inode->i_mapping;
567 	struct page *page;
568 
569 	if (!offset && !cache_only)
570 		return 0;
571 
572 	if (cache_only) {
573 		page = find_lock_page(mapping, index);
574 		if (page && PageUptodate(page))
575 			goto truncate_out;
576 		f2fs_put_page(page, 1);
577 		return 0;
578 	}
579 
580 	page = f2fs_get_lock_data_page(inode, index, true);
581 	if (IS_ERR(page))
582 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
583 truncate_out:
584 	f2fs_wait_on_page_writeback(page, DATA, true);
585 	zero_user(page, offset, PAGE_SIZE - offset);
586 
587 	/* An encrypted inode should have a key and truncate the last page. */
588 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
589 	if (!cache_only)
590 		set_page_dirty(page);
591 	f2fs_put_page(page, 1);
592 	return 0;
593 }
594 
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)595 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
596 {
597 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
598 	struct dnode_of_data dn;
599 	pgoff_t free_from;
600 	int count = 0, err = 0;
601 	struct page *ipage;
602 	bool truncate_page = false;
603 
604 	trace_f2fs_truncate_blocks_enter(inode, from);
605 
606 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
607 
608 	if (free_from >= sbi->max_file_blocks)
609 		goto free_partial;
610 
611 	if (lock)
612 		f2fs_lock_op(sbi);
613 
614 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
615 	if (IS_ERR(ipage)) {
616 		err = PTR_ERR(ipage);
617 		goto out;
618 	}
619 
620 	if (f2fs_has_inline_data(inode)) {
621 		f2fs_truncate_inline_inode(inode, ipage, from);
622 		f2fs_put_page(ipage, 1);
623 		truncate_page = true;
624 		goto out;
625 	}
626 
627 	set_new_dnode(&dn, inode, ipage, NULL, 0);
628 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
629 	if (err) {
630 		if (err == -ENOENT)
631 			goto free_next;
632 		goto out;
633 	}
634 
635 	count = ADDRS_PER_PAGE(dn.node_page, inode);
636 
637 	count -= dn.ofs_in_node;
638 	f2fs_bug_on(sbi, count < 0);
639 
640 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
641 		f2fs_truncate_data_blocks_range(&dn, count);
642 		free_from += count;
643 	}
644 
645 	f2fs_put_dnode(&dn);
646 free_next:
647 	err = f2fs_truncate_inode_blocks(inode, free_from);
648 out:
649 	if (lock)
650 		f2fs_unlock_op(sbi);
651 free_partial:
652 	/* lastly zero out the first data page */
653 	if (!err)
654 		err = truncate_partial_data_page(inode, from, truncate_page);
655 
656 	trace_f2fs_truncate_blocks_exit(inode, err);
657 	return err;
658 }
659 
f2fs_truncate(struct inode * inode)660 int f2fs_truncate(struct inode *inode)
661 {
662 	int err;
663 
664 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
665 		return -EIO;
666 
667 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
668 				S_ISLNK(inode->i_mode)))
669 		return 0;
670 
671 	trace_f2fs_truncate(inode);
672 
673 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
674 		f2fs_show_injection_info(FAULT_TRUNCATE);
675 		return -EIO;
676 	}
677 
678 	/* we should check inline_data size */
679 	if (!f2fs_may_inline_data(inode)) {
680 		err = f2fs_convert_inline_inode(inode);
681 		if (err)
682 			return err;
683 	}
684 
685 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
686 	if (err)
687 		return err;
688 
689 	inode->i_mtime = inode->i_ctime = current_time(inode);
690 	f2fs_mark_inode_dirty_sync(inode, false);
691 	return 0;
692 }
693 
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)694 int f2fs_getattr(const struct path *path, struct kstat *stat,
695 		 u32 request_mask, unsigned int query_flags)
696 {
697 	struct inode *inode = d_inode(path->dentry);
698 	struct f2fs_inode_info *fi = F2FS_I(inode);
699 	struct f2fs_inode *ri;
700 	unsigned int flags;
701 
702 	if (f2fs_has_extra_attr(inode) &&
703 			f2fs_sb_has_inode_crtime(inode->i_sb) &&
704 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
705 		stat->result_mask |= STATX_BTIME;
706 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
707 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
708 	}
709 
710 	flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
711 	if (flags & F2FS_APPEND_FL)
712 		stat->attributes |= STATX_ATTR_APPEND;
713 	if (flags & F2FS_COMPR_FL)
714 		stat->attributes |= STATX_ATTR_COMPRESSED;
715 	if (f2fs_encrypted_inode(inode))
716 		stat->attributes |= STATX_ATTR_ENCRYPTED;
717 	if (flags & F2FS_IMMUTABLE_FL)
718 		stat->attributes |= STATX_ATTR_IMMUTABLE;
719 	if (flags & F2FS_NODUMP_FL)
720 		stat->attributes |= STATX_ATTR_NODUMP;
721 
722 	stat->attributes_mask |= (STATX_ATTR_APPEND |
723 				  STATX_ATTR_COMPRESSED |
724 				  STATX_ATTR_ENCRYPTED |
725 				  STATX_ATTR_IMMUTABLE |
726 				  STATX_ATTR_NODUMP);
727 
728 	generic_fillattr(inode, stat);
729 
730 	/* we need to show initial sectors used for inline_data/dentries */
731 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
732 					f2fs_has_inline_dentry(inode))
733 		stat->blocks += (stat->size + 511) >> 9;
734 
735 	return 0;
736 }
737 
738 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)739 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
740 {
741 	unsigned int ia_valid = attr->ia_valid;
742 
743 	if (ia_valid & ATTR_UID)
744 		inode->i_uid = attr->ia_uid;
745 	if (ia_valid & ATTR_GID)
746 		inode->i_gid = attr->ia_gid;
747 	if (ia_valid & ATTR_ATIME)
748 		inode->i_atime = timespec64_trunc(attr->ia_atime,
749 						  inode->i_sb->s_time_gran);
750 	if (ia_valid & ATTR_MTIME)
751 		inode->i_mtime = timespec64_trunc(attr->ia_mtime,
752 						  inode->i_sb->s_time_gran);
753 	if (ia_valid & ATTR_CTIME)
754 		inode->i_ctime = timespec64_trunc(attr->ia_ctime,
755 						  inode->i_sb->s_time_gran);
756 	if (ia_valid & ATTR_MODE) {
757 		umode_t mode = attr->ia_mode;
758 
759 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
760 			mode &= ~S_ISGID;
761 		set_acl_inode(inode, mode);
762 	}
763 }
764 #else
765 #define __setattr_copy setattr_copy
766 #endif
767 
f2fs_setattr(struct dentry * dentry,struct iattr * attr)768 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
769 {
770 	struct inode *inode = d_inode(dentry);
771 	int err;
772 
773 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
774 		return -EIO;
775 
776 	err = setattr_prepare(dentry, attr);
777 	if (err)
778 		return err;
779 
780 	err = fscrypt_prepare_setattr(dentry, attr);
781 	if (err)
782 		return err;
783 
784 	if (is_quota_modification(inode, attr)) {
785 		err = dquot_initialize(inode);
786 		if (err)
787 			return err;
788 	}
789 	if ((attr->ia_valid & ATTR_UID &&
790 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
791 		(attr->ia_valid & ATTR_GID &&
792 		!gid_eq(attr->ia_gid, inode->i_gid))) {
793 		err = dquot_transfer(inode, attr);
794 		if (err)
795 			return err;
796 	}
797 
798 	if (attr->ia_valid & ATTR_SIZE) {
799 		bool to_smaller = (attr->ia_size <= i_size_read(inode));
800 
801 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
802 		down_write(&F2FS_I(inode)->i_mmap_sem);
803 
804 		truncate_setsize(inode, attr->ia_size);
805 
806 		if (to_smaller)
807 			err = f2fs_truncate(inode);
808 		/*
809 		 * do not trim all blocks after i_size if target size is
810 		 * larger than i_size.
811 		 */
812 		up_write(&F2FS_I(inode)->i_mmap_sem);
813 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
814 
815 		if (err)
816 			return err;
817 
818 		if (!to_smaller) {
819 			/* should convert inline inode here */
820 			if (!f2fs_may_inline_data(inode)) {
821 				err = f2fs_convert_inline_inode(inode);
822 				if (err)
823 					return err;
824 			}
825 			inode->i_mtime = inode->i_ctime = current_time(inode);
826 		}
827 
828 		down_write(&F2FS_I(inode)->i_sem);
829 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
830 		up_write(&F2FS_I(inode)->i_sem);
831 	}
832 
833 	__setattr_copy(inode, attr);
834 
835 	if (attr->ia_valid & ATTR_MODE) {
836 		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
837 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
838 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
839 			clear_inode_flag(inode, FI_ACL_MODE);
840 		}
841 	}
842 
843 	/* file size may changed here */
844 	f2fs_mark_inode_dirty_sync(inode, true);
845 
846 	/* inode change will produce dirty node pages flushed by checkpoint */
847 	f2fs_balance_fs(F2FS_I_SB(inode), true);
848 
849 	return err;
850 }
851 
852 const struct inode_operations f2fs_file_inode_operations = {
853 	.getattr	= f2fs_getattr,
854 	.setattr	= f2fs_setattr,
855 	.get_acl	= f2fs_get_acl,
856 	.set_acl	= f2fs_set_acl,
857 #ifdef CONFIG_F2FS_FS_XATTR
858 	.listxattr	= f2fs_listxattr,
859 #endif
860 	.fiemap		= f2fs_fiemap,
861 };
862 
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)863 static int fill_zero(struct inode *inode, pgoff_t index,
864 					loff_t start, loff_t len)
865 {
866 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
867 	struct page *page;
868 
869 	if (!len)
870 		return 0;
871 
872 	f2fs_balance_fs(sbi, true);
873 
874 	f2fs_lock_op(sbi);
875 	page = f2fs_get_new_data_page(inode, NULL, index, false);
876 	f2fs_unlock_op(sbi);
877 
878 	if (IS_ERR(page))
879 		return PTR_ERR(page);
880 
881 	f2fs_wait_on_page_writeback(page, DATA, true);
882 	zero_user(page, start, len);
883 	set_page_dirty(page);
884 	f2fs_put_page(page, 1);
885 	return 0;
886 }
887 
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)888 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
889 {
890 	int err;
891 
892 	while (pg_start < pg_end) {
893 		struct dnode_of_data dn;
894 		pgoff_t end_offset, count;
895 
896 		set_new_dnode(&dn, inode, NULL, NULL, 0);
897 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
898 		if (err) {
899 			if (err == -ENOENT) {
900 				pg_start = f2fs_get_next_page_offset(&dn,
901 								pg_start);
902 				continue;
903 			}
904 			return err;
905 		}
906 
907 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
908 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
909 
910 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
911 
912 		f2fs_truncate_data_blocks_range(&dn, count);
913 		f2fs_put_dnode(&dn);
914 
915 		pg_start += count;
916 	}
917 	return 0;
918 }
919 
punch_hole(struct inode * inode,loff_t offset,loff_t len)920 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
921 {
922 	pgoff_t pg_start, pg_end;
923 	loff_t off_start, off_end;
924 	int ret;
925 
926 	ret = f2fs_convert_inline_inode(inode);
927 	if (ret)
928 		return ret;
929 
930 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
931 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
932 
933 	off_start = offset & (PAGE_SIZE - 1);
934 	off_end = (offset + len) & (PAGE_SIZE - 1);
935 
936 	if (pg_start == pg_end) {
937 		ret = fill_zero(inode, pg_start, off_start,
938 						off_end - off_start);
939 		if (ret)
940 			return ret;
941 	} else {
942 		if (off_start) {
943 			ret = fill_zero(inode, pg_start++, off_start,
944 						PAGE_SIZE - off_start);
945 			if (ret)
946 				return ret;
947 		}
948 		if (off_end) {
949 			ret = fill_zero(inode, pg_end, 0, off_end);
950 			if (ret)
951 				return ret;
952 		}
953 
954 		if (pg_start < pg_end) {
955 			struct address_space *mapping = inode->i_mapping;
956 			loff_t blk_start, blk_end;
957 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
958 
959 			f2fs_balance_fs(sbi, true);
960 
961 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
962 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
963 
964 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
965 			down_write(&F2FS_I(inode)->i_mmap_sem);
966 
967 			truncate_inode_pages_range(mapping, blk_start,
968 					blk_end - 1);
969 
970 			f2fs_lock_op(sbi);
971 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
972 			f2fs_unlock_op(sbi);
973 
974 			up_write(&F2FS_I(inode)->i_mmap_sem);
975 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
976 		}
977 	}
978 
979 	return ret;
980 }
981 
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)982 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
983 				int *do_replace, pgoff_t off, pgoff_t len)
984 {
985 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
986 	struct dnode_of_data dn;
987 	int ret, done, i;
988 
989 next_dnode:
990 	set_new_dnode(&dn, inode, NULL, NULL, 0);
991 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
992 	if (ret && ret != -ENOENT) {
993 		return ret;
994 	} else if (ret == -ENOENT) {
995 		if (dn.max_level == 0)
996 			return -ENOENT;
997 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
998 		blkaddr += done;
999 		do_replace += done;
1000 		goto next;
1001 	}
1002 
1003 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1004 							dn.ofs_in_node, len);
1005 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1006 		*blkaddr = datablock_addr(dn.inode,
1007 					dn.node_page, dn.ofs_in_node);
1008 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1009 
1010 			if (test_opt(sbi, LFS)) {
1011 				f2fs_put_dnode(&dn);
1012 				return -ENOTSUPP;
1013 			}
1014 
1015 			/* do not invalidate this block address */
1016 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1017 			*do_replace = 1;
1018 		}
1019 	}
1020 	f2fs_put_dnode(&dn);
1021 next:
1022 	len -= done;
1023 	off += done;
1024 	if (len)
1025 		goto next_dnode;
1026 	return 0;
1027 }
1028 
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1029 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1030 				int *do_replace, pgoff_t off, int len)
1031 {
1032 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1033 	struct dnode_of_data dn;
1034 	int ret, i;
1035 
1036 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1037 		if (*do_replace == 0)
1038 			continue;
1039 
1040 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1041 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1042 		if (ret) {
1043 			dec_valid_block_count(sbi, inode, 1);
1044 			f2fs_invalidate_blocks(sbi, *blkaddr);
1045 		} else {
1046 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1047 		}
1048 		f2fs_put_dnode(&dn);
1049 	}
1050 	return 0;
1051 }
1052 
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1053 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1054 			block_t *blkaddr, int *do_replace,
1055 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1056 {
1057 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1058 	pgoff_t i = 0;
1059 	int ret;
1060 
1061 	while (i < len) {
1062 		if (blkaddr[i] == NULL_ADDR && !full) {
1063 			i++;
1064 			continue;
1065 		}
1066 
1067 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1068 			struct dnode_of_data dn;
1069 			struct node_info ni;
1070 			size_t new_size;
1071 			pgoff_t ilen;
1072 
1073 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1074 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1075 			if (ret)
1076 				return ret;
1077 
1078 			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1079 			if (ret) {
1080 				f2fs_put_dnode(&dn);
1081 				return ret;
1082 			}
1083 
1084 			ilen = min((pgoff_t)
1085 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1086 						dn.ofs_in_node, len - i);
1087 			do {
1088 				dn.data_blkaddr = datablock_addr(dn.inode,
1089 						dn.node_page, dn.ofs_in_node);
1090 				f2fs_truncate_data_blocks_range(&dn, 1);
1091 
1092 				if (do_replace[i]) {
1093 					f2fs_i_blocks_write(src_inode,
1094 							1, false, false);
1095 					f2fs_i_blocks_write(dst_inode,
1096 							1, true, false);
1097 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1098 					blkaddr[i], ni.version, true, false);
1099 
1100 					do_replace[i] = 0;
1101 				}
1102 				dn.ofs_in_node++;
1103 				i++;
1104 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1105 				if (dst_inode->i_size < new_size)
1106 					f2fs_i_size_write(dst_inode, new_size);
1107 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1108 
1109 			f2fs_put_dnode(&dn);
1110 		} else {
1111 			struct page *psrc, *pdst;
1112 
1113 			psrc = f2fs_get_lock_data_page(src_inode,
1114 							src + i, true);
1115 			if (IS_ERR(psrc))
1116 				return PTR_ERR(psrc);
1117 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1118 								true);
1119 			if (IS_ERR(pdst)) {
1120 				f2fs_put_page(psrc, 1);
1121 				return PTR_ERR(pdst);
1122 			}
1123 			f2fs_copy_page(psrc, pdst);
1124 			set_page_dirty(pdst);
1125 			f2fs_put_page(pdst, 1);
1126 			f2fs_put_page(psrc, 1);
1127 
1128 			ret = f2fs_truncate_hole(src_inode,
1129 						src + i, src + i + 1);
1130 			if (ret)
1131 				return ret;
1132 			i++;
1133 		}
1134 	}
1135 	return 0;
1136 }
1137 
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1138 static int __exchange_data_block(struct inode *src_inode,
1139 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1140 			pgoff_t len, bool full)
1141 {
1142 	block_t *src_blkaddr;
1143 	int *do_replace;
1144 	pgoff_t olen;
1145 	int ret;
1146 
1147 	while (len) {
1148 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1149 
1150 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1151 					array_size(olen, sizeof(block_t)),
1152 					GFP_KERNEL);
1153 		if (!src_blkaddr)
1154 			return -ENOMEM;
1155 
1156 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1157 					array_size(olen, sizeof(int)),
1158 					GFP_KERNEL);
1159 		if (!do_replace) {
1160 			kvfree(src_blkaddr);
1161 			return -ENOMEM;
1162 		}
1163 
1164 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1165 					do_replace, src, olen);
1166 		if (ret)
1167 			goto roll_back;
1168 
1169 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1170 					do_replace, src, dst, olen, full);
1171 		if (ret)
1172 			goto roll_back;
1173 
1174 		src += olen;
1175 		dst += olen;
1176 		len -= olen;
1177 
1178 		kvfree(src_blkaddr);
1179 		kvfree(do_replace);
1180 	}
1181 	return 0;
1182 
1183 roll_back:
1184 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1185 	kvfree(src_blkaddr);
1186 	kvfree(do_replace);
1187 	return ret;
1188 }
1189 
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1190 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1191 {
1192 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1193 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1194 	pgoff_t start = offset >> PAGE_SHIFT;
1195 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1196 	int ret;
1197 
1198 	f2fs_balance_fs(sbi, true);
1199 
1200 	/* avoid gc operation during block exchange */
1201 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1202 	down_write(&F2FS_I(inode)->i_mmap_sem);
1203 
1204 	f2fs_lock_op(sbi);
1205 	f2fs_drop_extent_tree(inode);
1206 	truncate_pagecache(inode, offset);
1207 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1208 	f2fs_unlock_op(sbi);
1209 
1210 	up_write(&F2FS_I(inode)->i_mmap_sem);
1211 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1212 	return ret;
1213 }
1214 
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1215 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1216 {
1217 	loff_t new_size;
1218 	int ret;
1219 
1220 	if (offset + len >= i_size_read(inode))
1221 		return -EINVAL;
1222 
1223 	/* collapse range should be aligned to block size of f2fs. */
1224 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1225 		return -EINVAL;
1226 
1227 	ret = f2fs_convert_inline_inode(inode);
1228 	if (ret)
1229 		return ret;
1230 
1231 	/* write out all dirty pages from offset */
1232 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = f2fs_do_collapse(inode, offset, len);
1237 	if (ret)
1238 		return ret;
1239 
1240 	/* write out all moved pages, if possible */
1241 	down_write(&F2FS_I(inode)->i_mmap_sem);
1242 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1243 	truncate_pagecache(inode, offset);
1244 
1245 	new_size = i_size_read(inode) - len;
1246 	truncate_pagecache(inode, new_size);
1247 
1248 	ret = f2fs_truncate_blocks(inode, new_size, true);
1249 	up_write(&F2FS_I(inode)->i_mmap_sem);
1250 	if (!ret)
1251 		f2fs_i_size_write(inode, new_size);
1252 	return ret;
1253 }
1254 
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1255 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1256 								pgoff_t end)
1257 {
1258 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1259 	pgoff_t index = start;
1260 	unsigned int ofs_in_node = dn->ofs_in_node;
1261 	blkcnt_t count = 0;
1262 	int ret;
1263 
1264 	for (; index < end; index++, dn->ofs_in_node++) {
1265 		if (datablock_addr(dn->inode, dn->node_page,
1266 					dn->ofs_in_node) == NULL_ADDR)
1267 			count++;
1268 	}
1269 
1270 	dn->ofs_in_node = ofs_in_node;
1271 	ret = f2fs_reserve_new_blocks(dn, count);
1272 	if (ret)
1273 		return ret;
1274 
1275 	dn->ofs_in_node = ofs_in_node;
1276 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1277 		dn->data_blkaddr = datablock_addr(dn->inode,
1278 					dn->node_page, dn->ofs_in_node);
1279 		/*
1280 		 * f2fs_reserve_new_blocks will not guarantee entire block
1281 		 * allocation.
1282 		 */
1283 		if (dn->data_blkaddr == NULL_ADDR) {
1284 			ret = -ENOSPC;
1285 			break;
1286 		}
1287 		if (dn->data_blkaddr != NEW_ADDR) {
1288 			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1289 			dn->data_blkaddr = NEW_ADDR;
1290 			f2fs_set_data_blkaddr(dn);
1291 		}
1292 	}
1293 
1294 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1295 
1296 	return ret;
1297 }
1298 
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1299 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1300 								int mode)
1301 {
1302 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1303 	struct address_space *mapping = inode->i_mapping;
1304 	pgoff_t index, pg_start, pg_end;
1305 	loff_t new_size = i_size_read(inode);
1306 	loff_t off_start, off_end;
1307 	int ret = 0;
1308 
1309 	ret = inode_newsize_ok(inode, (len + offset));
1310 	if (ret)
1311 		return ret;
1312 
1313 	ret = f2fs_convert_inline_inode(inode);
1314 	if (ret)
1315 		return ret;
1316 
1317 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1318 	if (ret)
1319 		return ret;
1320 
1321 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1322 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1323 
1324 	off_start = offset & (PAGE_SIZE - 1);
1325 	off_end = (offset + len) & (PAGE_SIZE - 1);
1326 
1327 	if (pg_start == pg_end) {
1328 		ret = fill_zero(inode, pg_start, off_start,
1329 						off_end - off_start);
1330 		if (ret)
1331 			return ret;
1332 
1333 		new_size = max_t(loff_t, new_size, offset + len);
1334 	} else {
1335 		if (off_start) {
1336 			ret = fill_zero(inode, pg_start++, off_start,
1337 						PAGE_SIZE - off_start);
1338 			if (ret)
1339 				return ret;
1340 
1341 			new_size = max_t(loff_t, new_size,
1342 					(loff_t)pg_start << PAGE_SHIFT);
1343 		}
1344 
1345 		for (index = pg_start; index < pg_end;) {
1346 			struct dnode_of_data dn;
1347 			unsigned int end_offset;
1348 			pgoff_t end;
1349 
1350 			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1351 			down_write(&F2FS_I(inode)->i_mmap_sem);
1352 
1353 			truncate_pagecache_range(inode,
1354 				(loff_t)index << PAGE_SHIFT,
1355 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1356 
1357 			f2fs_lock_op(sbi);
1358 
1359 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1360 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1361 			if (ret) {
1362 				f2fs_unlock_op(sbi);
1363 				up_write(&F2FS_I(inode)->i_mmap_sem);
1364 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1365 				goto out;
1366 			}
1367 
1368 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1369 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1370 
1371 			ret = f2fs_do_zero_range(&dn, index, end);
1372 			f2fs_put_dnode(&dn);
1373 
1374 			f2fs_unlock_op(sbi);
1375 			up_write(&F2FS_I(inode)->i_mmap_sem);
1376 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1377 
1378 			f2fs_balance_fs(sbi, dn.node_changed);
1379 
1380 			if (ret)
1381 				goto out;
1382 
1383 			index = end;
1384 			new_size = max_t(loff_t, new_size,
1385 					(loff_t)index << PAGE_SHIFT);
1386 		}
1387 
1388 		if (off_end) {
1389 			ret = fill_zero(inode, pg_end, 0, off_end);
1390 			if (ret)
1391 				goto out;
1392 
1393 			new_size = max_t(loff_t, new_size, offset + len);
1394 		}
1395 	}
1396 
1397 out:
1398 	if (new_size > i_size_read(inode)) {
1399 		if (mode & FALLOC_FL_KEEP_SIZE)
1400 			file_set_keep_isize(inode);
1401 		else
1402 			f2fs_i_size_write(inode, new_size);
1403 	}
1404 	return ret;
1405 }
1406 
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1407 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1408 {
1409 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1410 	pgoff_t nr, pg_start, pg_end, delta, idx;
1411 	loff_t new_size;
1412 	int ret = 0;
1413 
1414 	new_size = i_size_read(inode) + len;
1415 	ret = inode_newsize_ok(inode, new_size);
1416 	if (ret)
1417 		return ret;
1418 
1419 	if (offset >= i_size_read(inode))
1420 		return -EINVAL;
1421 
1422 	/* insert range should be aligned to block size of f2fs. */
1423 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1424 		return -EINVAL;
1425 
1426 	ret = f2fs_convert_inline_inode(inode);
1427 	if (ret)
1428 		return ret;
1429 
1430 	f2fs_balance_fs(sbi, true);
1431 
1432 	down_write(&F2FS_I(inode)->i_mmap_sem);
1433 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1434 	up_write(&F2FS_I(inode)->i_mmap_sem);
1435 	if (ret)
1436 		return ret;
1437 
1438 	/* write out all dirty pages from offset */
1439 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1440 	if (ret)
1441 		return ret;
1442 
1443 	pg_start = offset >> PAGE_SHIFT;
1444 	pg_end = (offset + len) >> PAGE_SHIFT;
1445 	delta = pg_end - pg_start;
1446 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1447 
1448 	/* avoid gc operation during block exchange */
1449 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1450 	down_write(&F2FS_I(inode)->i_mmap_sem);
1451 	truncate_pagecache(inode, offset);
1452 
1453 	while (!ret && idx > pg_start) {
1454 		nr = idx - pg_start;
1455 		if (nr > delta)
1456 			nr = delta;
1457 		idx -= nr;
1458 
1459 		f2fs_lock_op(sbi);
1460 		f2fs_drop_extent_tree(inode);
1461 
1462 		ret = __exchange_data_block(inode, inode, idx,
1463 					idx + delta, nr, false);
1464 		f2fs_unlock_op(sbi);
1465 	}
1466 	up_write(&F2FS_I(inode)->i_mmap_sem);
1467 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1468 
1469 	/* write out all moved pages, if possible */
1470 	down_write(&F2FS_I(inode)->i_mmap_sem);
1471 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1472 	truncate_pagecache(inode, offset);
1473 	up_write(&F2FS_I(inode)->i_mmap_sem);
1474 
1475 	if (!ret)
1476 		f2fs_i_size_write(inode, new_size);
1477 	return ret;
1478 }
1479 
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1480 static int expand_inode_data(struct inode *inode, loff_t offset,
1481 					loff_t len, int mode)
1482 {
1483 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1484 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1485 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1486 	pgoff_t pg_end;
1487 	loff_t new_size = i_size_read(inode);
1488 	loff_t off_end;
1489 	int err;
1490 
1491 	err = inode_newsize_ok(inode, (len + offset));
1492 	if (err)
1493 		return err;
1494 
1495 	err = f2fs_convert_inline_inode(inode);
1496 	if (err)
1497 		return err;
1498 
1499 	f2fs_balance_fs(sbi, true);
1500 
1501 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1502 	off_end = (offset + len) & (PAGE_SIZE - 1);
1503 
1504 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1505 	map.m_len = pg_end - map.m_lblk;
1506 	if (off_end)
1507 		map.m_len++;
1508 
1509 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1510 	if (err) {
1511 		pgoff_t last_off;
1512 
1513 		if (!map.m_len)
1514 			return err;
1515 
1516 		last_off = map.m_lblk + map.m_len - 1;
1517 
1518 		/* update new size to the failed position */
1519 		new_size = (last_off == pg_end) ? offset + len :
1520 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1521 	} else {
1522 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1523 	}
1524 
1525 	if (new_size > i_size_read(inode)) {
1526 		if (mode & FALLOC_FL_KEEP_SIZE)
1527 			file_set_keep_isize(inode);
1528 		else
1529 			f2fs_i_size_write(inode, new_size);
1530 	}
1531 
1532 	return err;
1533 }
1534 
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1535 static long f2fs_fallocate(struct file *file, int mode,
1536 				loff_t offset, loff_t len)
1537 {
1538 	struct inode *inode = file_inode(file);
1539 	long ret = 0;
1540 
1541 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1542 		return -EIO;
1543 
1544 	/* f2fs only support ->fallocate for regular file */
1545 	if (!S_ISREG(inode->i_mode))
1546 		return -EINVAL;
1547 
1548 	if (f2fs_encrypted_inode(inode) &&
1549 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1550 		return -EOPNOTSUPP;
1551 
1552 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1553 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1554 			FALLOC_FL_INSERT_RANGE))
1555 		return -EOPNOTSUPP;
1556 
1557 	inode_lock(inode);
1558 
1559 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1560 		if (offset >= inode->i_size)
1561 			goto out;
1562 
1563 		ret = punch_hole(inode, offset, len);
1564 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1565 		ret = f2fs_collapse_range(inode, offset, len);
1566 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1567 		ret = f2fs_zero_range(inode, offset, len, mode);
1568 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1569 		ret = f2fs_insert_range(inode, offset, len);
1570 	} else {
1571 		ret = expand_inode_data(inode, offset, len, mode);
1572 	}
1573 
1574 	if (!ret) {
1575 		inode->i_mtime = inode->i_ctime = current_time(inode);
1576 		f2fs_mark_inode_dirty_sync(inode, false);
1577 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1578 	}
1579 
1580 out:
1581 	inode_unlock(inode);
1582 
1583 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1584 	return ret;
1585 }
1586 
f2fs_release_file(struct inode * inode,struct file * filp)1587 static int f2fs_release_file(struct inode *inode, struct file *filp)
1588 {
1589 	/*
1590 	 * f2fs_relase_file is called at every close calls. So we should
1591 	 * not drop any inmemory pages by close called by other process.
1592 	 */
1593 	if (!(filp->f_mode & FMODE_WRITE) ||
1594 			atomic_read(&inode->i_writecount) != 1)
1595 		return 0;
1596 
1597 	/* some remained atomic pages should discarded */
1598 	if (f2fs_is_atomic_file(inode))
1599 		f2fs_drop_inmem_pages(inode);
1600 	if (f2fs_is_volatile_file(inode)) {
1601 		set_inode_flag(inode, FI_DROP_CACHE);
1602 		filemap_fdatawrite(inode->i_mapping);
1603 		clear_inode_flag(inode, FI_DROP_CACHE);
1604 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1605 		stat_dec_volatile_write(inode);
1606 	}
1607 	return 0;
1608 }
1609 
f2fs_file_flush(struct file * file,fl_owner_t id)1610 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1611 {
1612 	struct inode *inode = file_inode(file);
1613 
1614 	/*
1615 	 * If the process doing a transaction is crashed, we should do
1616 	 * roll-back. Otherwise, other reader/write can see corrupted database
1617 	 * until all the writers close its file. Since this should be done
1618 	 * before dropping file lock, it needs to do in ->flush.
1619 	 */
1620 	if (f2fs_is_atomic_file(inode) &&
1621 			F2FS_I(inode)->inmem_task == current)
1622 		f2fs_drop_inmem_pages(inode);
1623 	return 0;
1624 }
1625 
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1626 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1627 {
1628 	struct inode *inode = file_inode(filp);
1629 	struct f2fs_inode_info *fi = F2FS_I(inode);
1630 	unsigned int flags = fi->i_flags;
1631 
1632 	if (f2fs_encrypted_inode(inode))
1633 		flags |= F2FS_ENCRYPT_FL;
1634 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1635 		flags |= F2FS_INLINE_DATA_FL;
1636 
1637 	flags &= F2FS_FL_USER_VISIBLE;
1638 
1639 	return put_user(flags, (int __user *)arg);
1640 }
1641 
__f2fs_ioc_setflags(struct inode * inode,unsigned int flags)1642 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1643 {
1644 	struct f2fs_inode_info *fi = F2FS_I(inode);
1645 	unsigned int oldflags;
1646 
1647 	/* Is it quota file? Do not allow user to mess with it */
1648 	if (IS_NOQUOTA(inode))
1649 		return -EPERM;
1650 
1651 	flags = f2fs_mask_flags(inode->i_mode, flags);
1652 
1653 	oldflags = fi->i_flags;
1654 
1655 	if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1656 		if (!capable(CAP_LINUX_IMMUTABLE))
1657 			return -EPERM;
1658 
1659 	flags = flags & F2FS_FL_USER_MODIFIABLE;
1660 	flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1661 	fi->i_flags = flags;
1662 
1663 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1664 		set_inode_flag(inode, FI_PROJ_INHERIT);
1665 	else
1666 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1667 
1668 	inode->i_ctime = current_time(inode);
1669 	f2fs_set_inode_flags(inode);
1670 	f2fs_mark_inode_dirty_sync(inode, true);
1671 	return 0;
1672 }
1673 
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1674 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1675 {
1676 	struct inode *inode = file_inode(filp);
1677 	unsigned int flags;
1678 	int ret;
1679 
1680 	if (!inode_owner_or_capable(inode))
1681 		return -EACCES;
1682 
1683 	if (get_user(flags, (int __user *)arg))
1684 		return -EFAULT;
1685 
1686 	ret = mnt_want_write_file(filp);
1687 	if (ret)
1688 		return ret;
1689 
1690 	inode_lock(inode);
1691 
1692 	ret = __f2fs_ioc_setflags(inode, flags);
1693 
1694 	inode_unlock(inode);
1695 	mnt_drop_write_file(filp);
1696 	return ret;
1697 }
1698 
f2fs_ioc_getversion(struct file * filp,unsigned long arg)1699 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1700 {
1701 	struct inode *inode = file_inode(filp);
1702 
1703 	return put_user(inode->i_generation, (int __user *)arg);
1704 }
1705 
f2fs_ioc_start_atomic_write(struct file * filp)1706 static int f2fs_ioc_start_atomic_write(struct file *filp)
1707 {
1708 	struct inode *inode = file_inode(filp);
1709 	int ret;
1710 
1711 	if (!inode_owner_or_capable(inode))
1712 		return -EACCES;
1713 
1714 	if (!S_ISREG(inode->i_mode))
1715 		return -EINVAL;
1716 
1717 	ret = mnt_want_write_file(filp);
1718 	if (ret)
1719 		return ret;
1720 
1721 	inode_lock(inode);
1722 
1723 	if (f2fs_is_atomic_file(inode)) {
1724 		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1725 			ret = -EINVAL;
1726 		goto out;
1727 	}
1728 
1729 	ret = f2fs_convert_inline_inode(inode);
1730 	if (ret)
1731 		goto out;
1732 
1733 	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1734 
1735 	/*
1736 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
1737 	 * f2fs_is_atomic_file.
1738 	 */
1739 	if (get_dirty_pages(inode))
1740 		f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1741 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1742 					inode->i_ino, get_dirty_pages(inode));
1743 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1744 	if (ret) {
1745 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1746 		goto out;
1747 	}
1748 
1749 	set_inode_flag(inode, FI_ATOMIC_FILE);
1750 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1751 	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1752 
1753 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1754 	F2FS_I(inode)->inmem_task = current;
1755 	stat_inc_atomic_write(inode);
1756 	stat_update_max_atomic_write(inode);
1757 out:
1758 	inode_unlock(inode);
1759 	mnt_drop_write_file(filp);
1760 	return ret;
1761 }
1762 
f2fs_ioc_commit_atomic_write(struct file * filp)1763 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1764 {
1765 	struct inode *inode = file_inode(filp);
1766 	int ret;
1767 
1768 	if (!inode_owner_or_capable(inode))
1769 		return -EACCES;
1770 
1771 	ret = mnt_want_write_file(filp);
1772 	if (ret)
1773 		return ret;
1774 
1775 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1776 
1777 	inode_lock(inode);
1778 
1779 	if (f2fs_is_volatile_file(inode)) {
1780 		ret = -EINVAL;
1781 		goto err_out;
1782 	}
1783 
1784 	if (f2fs_is_atomic_file(inode)) {
1785 		ret = f2fs_commit_inmem_pages(inode);
1786 		if (ret)
1787 			goto err_out;
1788 
1789 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1790 		if (!ret) {
1791 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1792 			F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1793 			stat_dec_atomic_write(inode);
1794 		}
1795 	} else {
1796 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1797 	}
1798 err_out:
1799 	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1800 		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1801 		ret = -EINVAL;
1802 	}
1803 	inode_unlock(inode);
1804 	mnt_drop_write_file(filp);
1805 	return ret;
1806 }
1807 
f2fs_ioc_start_volatile_write(struct file * filp)1808 static int f2fs_ioc_start_volatile_write(struct file *filp)
1809 {
1810 	struct inode *inode = file_inode(filp);
1811 	int ret;
1812 
1813 	if (!inode_owner_or_capable(inode))
1814 		return -EACCES;
1815 
1816 	if (!S_ISREG(inode->i_mode))
1817 		return -EINVAL;
1818 
1819 	ret = mnt_want_write_file(filp);
1820 	if (ret)
1821 		return ret;
1822 
1823 	inode_lock(inode);
1824 
1825 	if (f2fs_is_volatile_file(inode))
1826 		goto out;
1827 
1828 	ret = f2fs_convert_inline_inode(inode);
1829 	if (ret)
1830 		goto out;
1831 
1832 	stat_inc_volatile_write(inode);
1833 	stat_update_max_volatile_write(inode);
1834 
1835 	set_inode_flag(inode, FI_VOLATILE_FILE);
1836 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1837 out:
1838 	inode_unlock(inode);
1839 	mnt_drop_write_file(filp);
1840 	return ret;
1841 }
1842 
f2fs_ioc_release_volatile_write(struct file * filp)1843 static int f2fs_ioc_release_volatile_write(struct file *filp)
1844 {
1845 	struct inode *inode = file_inode(filp);
1846 	int ret;
1847 
1848 	if (!inode_owner_or_capable(inode))
1849 		return -EACCES;
1850 
1851 	ret = mnt_want_write_file(filp);
1852 	if (ret)
1853 		return ret;
1854 
1855 	inode_lock(inode);
1856 
1857 	if (!f2fs_is_volatile_file(inode))
1858 		goto out;
1859 
1860 	if (!f2fs_is_first_block_written(inode)) {
1861 		ret = truncate_partial_data_page(inode, 0, true);
1862 		goto out;
1863 	}
1864 
1865 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1866 out:
1867 	inode_unlock(inode);
1868 	mnt_drop_write_file(filp);
1869 	return ret;
1870 }
1871 
f2fs_ioc_abort_volatile_write(struct file * filp)1872 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1873 {
1874 	struct inode *inode = file_inode(filp);
1875 	int ret;
1876 
1877 	if (!inode_owner_or_capable(inode))
1878 		return -EACCES;
1879 
1880 	ret = mnt_want_write_file(filp);
1881 	if (ret)
1882 		return ret;
1883 
1884 	inode_lock(inode);
1885 
1886 	if (f2fs_is_atomic_file(inode))
1887 		f2fs_drop_inmem_pages(inode);
1888 	if (f2fs_is_volatile_file(inode)) {
1889 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1890 		stat_dec_volatile_write(inode);
1891 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1892 	}
1893 
1894 	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1895 
1896 	inode_unlock(inode);
1897 
1898 	mnt_drop_write_file(filp);
1899 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1900 	return ret;
1901 }
1902 
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)1903 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1904 {
1905 	struct inode *inode = file_inode(filp);
1906 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1907 	struct super_block *sb = sbi->sb;
1908 	__u32 in;
1909 	int ret = 0;
1910 
1911 	if (!capable(CAP_SYS_ADMIN))
1912 		return -EPERM;
1913 
1914 	if (get_user(in, (__u32 __user *)arg))
1915 		return -EFAULT;
1916 
1917 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
1918 		ret = mnt_want_write_file(filp);
1919 		if (ret)
1920 			return ret;
1921 	}
1922 
1923 	switch (in) {
1924 	case F2FS_GOING_DOWN_FULLSYNC:
1925 		sb = freeze_bdev(sb->s_bdev);
1926 		if (IS_ERR(sb)) {
1927 			ret = PTR_ERR(sb);
1928 			goto out;
1929 		}
1930 		if (sb) {
1931 			f2fs_stop_checkpoint(sbi, false);
1932 			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1933 			thaw_bdev(sb->s_bdev, sb);
1934 		}
1935 		break;
1936 	case F2FS_GOING_DOWN_METASYNC:
1937 		/* do checkpoint only */
1938 		ret = f2fs_sync_fs(sb, 1);
1939 		if (ret)
1940 			goto out;
1941 		f2fs_stop_checkpoint(sbi, false);
1942 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1943 		break;
1944 	case F2FS_GOING_DOWN_NOSYNC:
1945 		f2fs_stop_checkpoint(sbi, false);
1946 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1947 		break;
1948 	case F2FS_GOING_DOWN_METAFLUSH:
1949 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1950 		f2fs_stop_checkpoint(sbi, false);
1951 		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
1952 		break;
1953 	default:
1954 		ret = -EINVAL;
1955 		goto out;
1956 	}
1957 
1958 	f2fs_stop_gc_thread(sbi);
1959 	f2fs_stop_discard_thread(sbi);
1960 
1961 	f2fs_drop_discard_cmd(sbi);
1962 	clear_opt(sbi, DISCARD);
1963 
1964 	f2fs_update_time(sbi, REQ_TIME);
1965 out:
1966 	if (in != F2FS_GOING_DOWN_FULLSYNC)
1967 		mnt_drop_write_file(filp);
1968 	return ret;
1969 }
1970 
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)1971 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1972 {
1973 	struct inode *inode = file_inode(filp);
1974 	struct super_block *sb = inode->i_sb;
1975 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1976 	struct fstrim_range range;
1977 	int ret;
1978 
1979 	if (!capable(CAP_SYS_ADMIN))
1980 		return -EPERM;
1981 
1982 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
1983 		return -EOPNOTSUPP;
1984 
1985 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1986 				sizeof(range)))
1987 		return -EFAULT;
1988 
1989 	ret = mnt_want_write_file(filp);
1990 	if (ret)
1991 		return ret;
1992 
1993 	range.minlen = max((unsigned int)range.minlen,
1994 				q->limits.discard_granularity);
1995 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1996 	mnt_drop_write_file(filp);
1997 	if (ret < 0)
1998 		return ret;
1999 
2000 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2001 				sizeof(range)))
2002 		return -EFAULT;
2003 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2004 	return 0;
2005 }
2006 
uuid_is_nonzero(__u8 u[16])2007 static bool uuid_is_nonzero(__u8 u[16])
2008 {
2009 	int i;
2010 
2011 	for (i = 0; i < 16; i++)
2012 		if (u[i])
2013 			return true;
2014 	return false;
2015 }
2016 
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2017 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2018 {
2019 	struct inode *inode = file_inode(filp);
2020 
2021 	if (!f2fs_sb_has_encrypt(inode->i_sb))
2022 		return -EOPNOTSUPP;
2023 
2024 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2025 
2026 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2027 }
2028 
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2029 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2030 {
2031 	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
2032 		return -EOPNOTSUPP;
2033 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2034 }
2035 
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2036 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2037 {
2038 	struct inode *inode = file_inode(filp);
2039 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2040 	int err;
2041 
2042 	if (!f2fs_sb_has_encrypt(inode->i_sb))
2043 		return -EOPNOTSUPP;
2044 
2045 	err = mnt_want_write_file(filp);
2046 	if (err)
2047 		return err;
2048 
2049 	down_write(&sbi->sb_lock);
2050 
2051 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2052 		goto got_it;
2053 
2054 	/* update superblock with uuid */
2055 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2056 
2057 	err = f2fs_commit_super(sbi, false);
2058 	if (err) {
2059 		/* undo new data */
2060 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2061 		goto out_err;
2062 	}
2063 got_it:
2064 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2065 									16))
2066 		err = -EFAULT;
2067 out_err:
2068 	up_write(&sbi->sb_lock);
2069 	mnt_drop_write_file(filp);
2070 	return err;
2071 }
2072 
f2fs_ioc_gc(struct file * filp,unsigned long arg)2073 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2074 {
2075 	struct inode *inode = file_inode(filp);
2076 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2077 	__u32 sync;
2078 	int ret;
2079 
2080 	if (!capable(CAP_SYS_ADMIN))
2081 		return -EPERM;
2082 
2083 	if (get_user(sync, (__u32 __user *)arg))
2084 		return -EFAULT;
2085 
2086 	if (f2fs_readonly(sbi->sb))
2087 		return -EROFS;
2088 
2089 	ret = mnt_want_write_file(filp);
2090 	if (ret)
2091 		return ret;
2092 
2093 	if (!sync) {
2094 		if (!mutex_trylock(&sbi->gc_mutex)) {
2095 			ret = -EBUSY;
2096 			goto out;
2097 		}
2098 	} else {
2099 		mutex_lock(&sbi->gc_mutex);
2100 	}
2101 
2102 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2103 out:
2104 	mnt_drop_write_file(filp);
2105 	return ret;
2106 }
2107 
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2108 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2109 {
2110 	struct inode *inode = file_inode(filp);
2111 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2112 	struct f2fs_gc_range range;
2113 	u64 end;
2114 	int ret;
2115 
2116 	if (!capable(CAP_SYS_ADMIN))
2117 		return -EPERM;
2118 
2119 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2120 							sizeof(range)))
2121 		return -EFAULT;
2122 
2123 	if (f2fs_readonly(sbi->sb))
2124 		return -EROFS;
2125 
2126 	end = range.start + range.len;
2127 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2128 		return -EINVAL;
2129 	}
2130 
2131 	ret = mnt_want_write_file(filp);
2132 	if (ret)
2133 		return ret;
2134 
2135 do_more:
2136 	if (!range.sync) {
2137 		if (!mutex_trylock(&sbi->gc_mutex)) {
2138 			ret = -EBUSY;
2139 			goto out;
2140 		}
2141 	} else {
2142 		mutex_lock(&sbi->gc_mutex);
2143 	}
2144 
2145 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2146 	range.start += BLKS_PER_SEC(sbi);
2147 	if (range.start <= end)
2148 		goto do_more;
2149 out:
2150 	mnt_drop_write_file(filp);
2151 	return ret;
2152 }
2153 
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2154 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2155 {
2156 	struct inode *inode = file_inode(filp);
2157 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2158 	int ret;
2159 
2160 	if (!capable(CAP_SYS_ADMIN))
2161 		return -EPERM;
2162 
2163 	if (f2fs_readonly(sbi->sb))
2164 		return -EROFS;
2165 
2166 	ret = mnt_want_write_file(filp);
2167 	if (ret)
2168 		return ret;
2169 
2170 	ret = f2fs_sync_fs(sbi->sb, 1);
2171 
2172 	mnt_drop_write_file(filp);
2173 	return ret;
2174 }
2175 
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2176 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2177 					struct file *filp,
2178 					struct f2fs_defragment *range)
2179 {
2180 	struct inode *inode = file_inode(filp);
2181 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2182 					.m_seg_type = NO_CHECK_TYPE };
2183 	struct extent_info ei = {0, 0, 0};
2184 	pgoff_t pg_start, pg_end, next_pgofs;
2185 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2186 	unsigned int total = 0, sec_num;
2187 	block_t blk_end = 0;
2188 	bool fragmented = false;
2189 	int err;
2190 
2191 	/* if in-place-update policy is enabled, don't waste time here */
2192 	if (f2fs_should_update_inplace(inode, NULL))
2193 		return -EINVAL;
2194 
2195 	pg_start = range->start >> PAGE_SHIFT;
2196 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2197 
2198 	f2fs_balance_fs(sbi, true);
2199 
2200 	inode_lock(inode);
2201 
2202 	/* writeback all dirty pages in the range */
2203 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2204 						range->start + range->len - 1);
2205 	if (err)
2206 		goto out;
2207 
2208 	/*
2209 	 * lookup mapping info in extent cache, skip defragmenting if physical
2210 	 * block addresses are continuous.
2211 	 */
2212 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2213 		if (ei.fofs + ei.len >= pg_end)
2214 			goto out;
2215 	}
2216 
2217 	map.m_lblk = pg_start;
2218 	map.m_next_pgofs = &next_pgofs;
2219 
2220 	/*
2221 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2222 	 * physical block addresses are continuous even if there are hole(s)
2223 	 * in logical blocks.
2224 	 */
2225 	while (map.m_lblk < pg_end) {
2226 		map.m_len = pg_end - map.m_lblk;
2227 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2228 		if (err)
2229 			goto out;
2230 
2231 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2232 			map.m_lblk = next_pgofs;
2233 			continue;
2234 		}
2235 
2236 		if (blk_end && blk_end != map.m_pblk)
2237 			fragmented = true;
2238 
2239 		/* record total count of block that we're going to move */
2240 		total += map.m_len;
2241 
2242 		blk_end = map.m_pblk + map.m_len;
2243 
2244 		map.m_lblk += map.m_len;
2245 	}
2246 
2247 	if (!fragmented)
2248 		goto out;
2249 
2250 	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2251 
2252 	/*
2253 	 * make sure there are enough free section for LFS allocation, this can
2254 	 * avoid defragment running in SSR mode when free section are allocated
2255 	 * intensively
2256 	 */
2257 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2258 		err = -EAGAIN;
2259 		goto out;
2260 	}
2261 
2262 	map.m_lblk = pg_start;
2263 	map.m_len = pg_end - pg_start;
2264 	total = 0;
2265 
2266 	while (map.m_lblk < pg_end) {
2267 		pgoff_t idx;
2268 		int cnt = 0;
2269 
2270 do_map:
2271 		map.m_len = pg_end - map.m_lblk;
2272 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2273 		if (err)
2274 			goto clear_out;
2275 
2276 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2277 			map.m_lblk = next_pgofs;
2278 			continue;
2279 		}
2280 
2281 		set_inode_flag(inode, FI_DO_DEFRAG);
2282 
2283 		idx = map.m_lblk;
2284 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2285 			struct page *page;
2286 
2287 			page = f2fs_get_lock_data_page(inode, idx, true);
2288 			if (IS_ERR(page)) {
2289 				err = PTR_ERR(page);
2290 				goto clear_out;
2291 			}
2292 
2293 			set_page_dirty(page);
2294 			f2fs_put_page(page, 1);
2295 
2296 			idx++;
2297 			cnt++;
2298 			total++;
2299 		}
2300 
2301 		map.m_lblk = idx;
2302 
2303 		if (idx < pg_end && cnt < blk_per_seg)
2304 			goto do_map;
2305 
2306 		clear_inode_flag(inode, FI_DO_DEFRAG);
2307 
2308 		err = filemap_fdatawrite(inode->i_mapping);
2309 		if (err)
2310 			goto out;
2311 	}
2312 clear_out:
2313 	clear_inode_flag(inode, FI_DO_DEFRAG);
2314 out:
2315 	inode_unlock(inode);
2316 	if (!err)
2317 		range->len = (u64)total << PAGE_SHIFT;
2318 	return err;
2319 }
2320 
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2321 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2322 {
2323 	struct inode *inode = file_inode(filp);
2324 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2325 	struct f2fs_defragment range;
2326 	int err;
2327 
2328 	if (!capable(CAP_SYS_ADMIN))
2329 		return -EPERM;
2330 
2331 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2332 		return -EINVAL;
2333 
2334 	if (f2fs_readonly(sbi->sb))
2335 		return -EROFS;
2336 
2337 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2338 							sizeof(range)))
2339 		return -EFAULT;
2340 
2341 	/* verify alignment of offset & size */
2342 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2343 		return -EINVAL;
2344 
2345 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2346 					sbi->max_file_blocks))
2347 		return -EINVAL;
2348 
2349 	err = mnt_want_write_file(filp);
2350 	if (err)
2351 		return err;
2352 
2353 	err = f2fs_defragment_range(sbi, filp, &range);
2354 	mnt_drop_write_file(filp);
2355 
2356 	f2fs_update_time(sbi, REQ_TIME);
2357 	if (err < 0)
2358 		return err;
2359 
2360 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2361 							sizeof(range)))
2362 		return -EFAULT;
2363 
2364 	return 0;
2365 }
2366 
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2367 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2368 			struct file *file_out, loff_t pos_out, size_t len)
2369 {
2370 	struct inode *src = file_inode(file_in);
2371 	struct inode *dst = file_inode(file_out);
2372 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2373 	size_t olen = len, dst_max_i_size = 0;
2374 	size_t dst_osize;
2375 	int ret;
2376 
2377 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2378 				src->i_sb != dst->i_sb)
2379 		return -EXDEV;
2380 
2381 	if (unlikely(f2fs_readonly(src->i_sb)))
2382 		return -EROFS;
2383 
2384 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2385 		return -EINVAL;
2386 
2387 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2388 		return -EOPNOTSUPP;
2389 
2390 	if (src == dst) {
2391 		if (pos_in == pos_out)
2392 			return 0;
2393 		if (pos_out > pos_in && pos_out < pos_in + len)
2394 			return -EINVAL;
2395 	}
2396 
2397 	inode_lock(src);
2398 	if (src != dst) {
2399 		ret = -EBUSY;
2400 		if (!inode_trylock(dst))
2401 			goto out;
2402 	}
2403 
2404 	ret = -EINVAL;
2405 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2406 		goto out_unlock;
2407 	if (len == 0)
2408 		olen = len = src->i_size - pos_in;
2409 	if (pos_in + len == src->i_size)
2410 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2411 	if (len == 0) {
2412 		ret = 0;
2413 		goto out_unlock;
2414 	}
2415 
2416 	dst_osize = dst->i_size;
2417 	if (pos_out + olen > dst->i_size)
2418 		dst_max_i_size = pos_out + olen;
2419 
2420 	/* verify the end result is block aligned */
2421 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2422 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2423 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2424 		goto out_unlock;
2425 
2426 	ret = f2fs_convert_inline_inode(src);
2427 	if (ret)
2428 		goto out_unlock;
2429 
2430 	ret = f2fs_convert_inline_inode(dst);
2431 	if (ret)
2432 		goto out_unlock;
2433 
2434 	/* write out all dirty pages from offset */
2435 	ret = filemap_write_and_wait_range(src->i_mapping,
2436 					pos_in, pos_in + len);
2437 	if (ret)
2438 		goto out_unlock;
2439 
2440 	ret = filemap_write_and_wait_range(dst->i_mapping,
2441 					pos_out, pos_out + len);
2442 	if (ret)
2443 		goto out_unlock;
2444 
2445 	f2fs_balance_fs(sbi, true);
2446 
2447 	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2448 	if (src != dst) {
2449 		ret = -EBUSY;
2450 		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2451 			goto out_src;
2452 	}
2453 
2454 	f2fs_lock_op(sbi);
2455 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2456 				pos_out >> F2FS_BLKSIZE_BITS,
2457 				len >> F2FS_BLKSIZE_BITS, false);
2458 
2459 	if (!ret) {
2460 		if (dst_max_i_size)
2461 			f2fs_i_size_write(dst, dst_max_i_size);
2462 		else if (dst_osize != dst->i_size)
2463 			f2fs_i_size_write(dst, dst_osize);
2464 	}
2465 	f2fs_unlock_op(sbi);
2466 
2467 	if (src != dst)
2468 		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2469 out_src:
2470 	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2471 out_unlock:
2472 	if (src != dst)
2473 		inode_unlock(dst);
2474 out:
2475 	inode_unlock(src);
2476 	return ret;
2477 }
2478 
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2479 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2480 {
2481 	struct f2fs_move_range range;
2482 	struct fd dst;
2483 	int err;
2484 
2485 	if (!(filp->f_mode & FMODE_READ) ||
2486 			!(filp->f_mode & FMODE_WRITE))
2487 		return -EBADF;
2488 
2489 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2490 							sizeof(range)))
2491 		return -EFAULT;
2492 
2493 	dst = fdget(range.dst_fd);
2494 	if (!dst.file)
2495 		return -EBADF;
2496 
2497 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2498 		err = -EBADF;
2499 		goto err_out;
2500 	}
2501 
2502 	err = mnt_want_write_file(filp);
2503 	if (err)
2504 		goto err_out;
2505 
2506 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2507 					range.pos_out, range.len);
2508 
2509 	mnt_drop_write_file(filp);
2510 	if (err)
2511 		goto err_out;
2512 
2513 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2514 						&range, sizeof(range)))
2515 		err = -EFAULT;
2516 err_out:
2517 	fdput(dst);
2518 	return err;
2519 }
2520 
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2521 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2522 {
2523 	struct inode *inode = file_inode(filp);
2524 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2525 	struct sit_info *sm = SIT_I(sbi);
2526 	unsigned int start_segno = 0, end_segno = 0;
2527 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2528 	struct f2fs_flush_device range;
2529 	int ret;
2530 
2531 	if (!capable(CAP_SYS_ADMIN))
2532 		return -EPERM;
2533 
2534 	if (f2fs_readonly(sbi->sb))
2535 		return -EROFS;
2536 
2537 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2538 							sizeof(range)))
2539 		return -EFAULT;
2540 
2541 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2542 			sbi->segs_per_sec != 1) {
2543 		f2fs_msg(sbi->sb, KERN_WARNING,
2544 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2545 				range.dev_num, sbi->s_ndevs,
2546 				sbi->segs_per_sec);
2547 		return -EINVAL;
2548 	}
2549 
2550 	ret = mnt_want_write_file(filp);
2551 	if (ret)
2552 		return ret;
2553 
2554 	if (range.dev_num != 0)
2555 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2556 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2557 
2558 	start_segno = sm->last_victim[FLUSH_DEVICE];
2559 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2560 		start_segno = dev_start_segno;
2561 	end_segno = min(start_segno + range.segments, dev_end_segno);
2562 
2563 	while (start_segno < end_segno) {
2564 		if (!mutex_trylock(&sbi->gc_mutex)) {
2565 			ret = -EBUSY;
2566 			goto out;
2567 		}
2568 		sm->last_victim[GC_CB] = end_segno + 1;
2569 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2570 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2571 		ret = f2fs_gc(sbi, true, true, start_segno);
2572 		if (ret == -EAGAIN)
2573 			ret = 0;
2574 		else if (ret < 0)
2575 			break;
2576 		start_segno++;
2577 	}
2578 out:
2579 	mnt_drop_write_file(filp);
2580 	return ret;
2581 }
2582 
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2583 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2584 {
2585 	struct inode *inode = file_inode(filp);
2586 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2587 
2588 	/* Must validate to set it with SQLite behavior in Android. */
2589 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2590 
2591 	return put_user(sb_feature, (u32 __user *)arg);
2592 }
2593 
2594 #ifdef CONFIG_QUOTA
f2fs_ioc_setproject(struct file * filp,__u32 projid)2595 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2596 {
2597 	struct inode *inode = file_inode(filp);
2598 	struct f2fs_inode_info *fi = F2FS_I(inode);
2599 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2600 	struct super_block *sb = sbi->sb;
2601 	struct dquot *transfer_to[MAXQUOTAS] = {};
2602 	struct page *ipage;
2603 	kprojid_t kprojid;
2604 	int err;
2605 
2606 	if (!f2fs_sb_has_project_quota(sb)) {
2607 		if (projid != F2FS_DEF_PROJID)
2608 			return -EOPNOTSUPP;
2609 		else
2610 			return 0;
2611 	}
2612 
2613 	if (!f2fs_has_extra_attr(inode))
2614 		return -EOPNOTSUPP;
2615 
2616 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2617 
2618 	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2619 		return 0;
2620 
2621 	err = -EPERM;
2622 	/* Is it quota file? Do not allow user to mess with it */
2623 	if (IS_NOQUOTA(inode))
2624 		return err;
2625 
2626 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2627 	if (IS_ERR(ipage))
2628 		return PTR_ERR(ipage);
2629 
2630 	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2631 								i_projid)) {
2632 		err = -EOVERFLOW;
2633 		f2fs_put_page(ipage, 1);
2634 		return err;
2635 	}
2636 	f2fs_put_page(ipage, 1);
2637 
2638 	err = dquot_initialize(inode);
2639 	if (err)
2640 		return err;
2641 
2642 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2643 	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2644 		err = __dquot_transfer(inode, transfer_to);
2645 		dqput(transfer_to[PRJQUOTA]);
2646 		if (err)
2647 			goto out_dirty;
2648 	}
2649 
2650 	F2FS_I(inode)->i_projid = kprojid;
2651 	inode->i_ctime = current_time(inode);
2652 out_dirty:
2653 	f2fs_mark_inode_dirty_sync(inode, true);
2654 	return err;
2655 }
2656 #else
f2fs_ioc_setproject(struct file * filp,__u32 projid)2657 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2658 {
2659 	if (projid != F2FS_DEF_PROJID)
2660 		return -EOPNOTSUPP;
2661 	return 0;
2662 }
2663 #endif
2664 
2665 /* Transfer internal flags to xflags */
f2fs_iflags_to_xflags(unsigned long iflags)2666 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2667 {
2668 	__u32 xflags = 0;
2669 
2670 	if (iflags & F2FS_SYNC_FL)
2671 		xflags |= FS_XFLAG_SYNC;
2672 	if (iflags & F2FS_IMMUTABLE_FL)
2673 		xflags |= FS_XFLAG_IMMUTABLE;
2674 	if (iflags & F2FS_APPEND_FL)
2675 		xflags |= FS_XFLAG_APPEND;
2676 	if (iflags & F2FS_NODUMP_FL)
2677 		xflags |= FS_XFLAG_NODUMP;
2678 	if (iflags & F2FS_NOATIME_FL)
2679 		xflags |= FS_XFLAG_NOATIME;
2680 	if (iflags & F2FS_PROJINHERIT_FL)
2681 		xflags |= FS_XFLAG_PROJINHERIT;
2682 	return xflags;
2683 }
2684 
2685 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2686 				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2687 				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2688 
2689 /* Transfer xflags flags to internal */
f2fs_xflags_to_iflags(__u32 xflags)2690 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2691 {
2692 	unsigned long iflags = 0;
2693 
2694 	if (xflags & FS_XFLAG_SYNC)
2695 		iflags |= F2FS_SYNC_FL;
2696 	if (xflags & FS_XFLAG_IMMUTABLE)
2697 		iflags |= F2FS_IMMUTABLE_FL;
2698 	if (xflags & FS_XFLAG_APPEND)
2699 		iflags |= F2FS_APPEND_FL;
2700 	if (xflags & FS_XFLAG_NODUMP)
2701 		iflags |= F2FS_NODUMP_FL;
2702 	if (xflags & FS_XFLAG_NOATIME)
2703 		iflags |= F2FS_NOATIME_FL;
2704 	if (xflags & FS_XFLAG_PROJINHERIT)
2705 		iflags |= F2FS_PROJINHERIT_FL;
2706 
2707 	return iflags;
2708 }
2709 
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)2710 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2711 {
2712 	struct inode *inode = file_inode(filp);
2713 	struct f2fs_inode_info *fi = F2FS_I(inode);
2714 	struct fsxattr fa;
2715 
2716 	memset(&fa, 0, sizeof(struct fsxattr));
2717 	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2718 				F2FS_FL_USER_VISIBLE);
2719 
2720 	if (f2fs_sb_has_project_quota(inode->i_sb))
2721 		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2722 							fi->i_projid);
2723 
2724 	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2725 		return -EFAULT;
2726 	return 0;
2727 }
2728 
f2fs_ioctl_check_project(struct inode * inode,struct fsxattr * fa)2729 static int f2fs_ioctl_check_project(struct inode *inode, struct fsxattr *fa)
2730 {
2731 	/*
2732 	 * Project Quota ID state is only allowed to change from within the init
2733 	 * namespace. Enforce that restriction only if we are trying to change
2734 	 * the quota ID state. Everything else is allowed in user namespaces.
2735 	 */
2736 	if (current_user_ns() == &init_user_ns)
2737 		return 0;
2738 
2739 	if (__kprojid_val(F2FS_I(inode)->i_projid) != fa->fsx_projid)
2740 		return -EINVAL;
2741 
2742 	if (F2FS_I(inode)->i_flags & F2FS_PROJINHERIT_FL) {
2743 		if (!(fa->fsx_xflags & FS_XFLAG_PROJINHERIT))
2744 			return -EINVAL;
2745 	} else {
2746 		if (fa->fsx_xflags & FS_XFLAG_PROJINHERIT)
2747 			return -EINVAL;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)2753 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2754 {
2755 	struct inode *inode = file_inode(filp);
2756 	struct f2fs_inode_info *fi = F2FS_I(inode);
2757 	struct fsxattr fa;
2758 	unsigned int flags;
2759 	int err;
2760 
2761 	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2762 		return -EFAULT;
2763 
2764 	/* Make sure caller has proper permission */
2765 	if (!inode_owner_or_capable(inode))
2766 		return -EACCES;
2767 
2768 	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2769 		return -EOPNOTSUPP;
2770 
2771 	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2772 	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2773 		return -EOPNOTSUPP;
2774 
2775 	err = mnt_want_write_file(filp);
2776 	if (err)
2777 		return err;
2778 
2779 	inode_lock(inode);
2780 	err = f2fs_ioctl_check_project(inode, &fa);
2781 	if (err)
2782 		goto out;
2783 	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2784 				(flags & F2FS_FL_XFLAG_VISIBLE);
2785 	err = __f2fs_ioc_setflags(inode, flags);
2786 	if (err)
2787 		goto out;
2788 
2789 	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2790 out:
2791 	inode_unlock(inode);
2792 	mnt_drop_write_file(filp);
2793 	return err;
2794 }
2795 
f2fs_pin_file_control(struct inode * inode,bool inc)2796 int f2fs_pin_file_control(struct inode *inode, bool inc)
2797 {
2798 	struct f2fs_inode_info *fi = F2FS_I(inode);
2799 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2800 
2801 	/* Use i_gc_failures for normal file as a risk signal. */
2802 	if (inc)
2803 		f2fs_i_gc_failures_write(inode,
2804 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2805 
2806 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2807 		f2fs_msg(sbi->sb, KERN_WARNING,
2808 			"%s: Enable GC = ino %lx after %x GC trials\n",
2809 			__func__, inode->i_ino,
2810 			fi->i_gc_failures[GC_FAILURE_PIN]);
2811 		clear_inode_flag(inode, FI_PIN_FILE);
2812 		return -EAGAIN;
2813 	}
2814 	return 0;
2815 }
2816 
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)2817 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2818 {
2819 	struct inode *inode = file_inode(filp);
2820 	__u32 pin;
2821 	int ret = 0;
2822 
2823 	if (!inode_owner_or_capable(inode))
2824 		return -EACCES;
2825 
2826 	if (get_user(pin, (__u32 __user *)arg))
2827 		return -EFAULT;
2828 
2829 	if (!S_ISREG(inode->i_mode))
2830 		return -EINVAL;
2831 
2832 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2833 		return -EROFS;
2834 
2835 	ret = mnt_want_write_file(filp);
2836 	if (ret)
2837 		return ret;
2838 
2839 	inode_lock(inode);
2840 
2841 	if (f2fs_should_update_outplace(inode, NULL)) {
2842 		ret = -EINVAL;
2843 		goto out;
2844 	}
2845 
2846 	if (!pin) {
2847 		clear_inode_flag(inode, FI_PIN_FILE);
2848 		f2fs_i_gc_failures_write(inode, 0);
2849 		goto done;
2850 	}
2851 
2852 	if (f2fs_pin_file_control(inode, false)) {
2853 		ret = -EAGAIN;
2854 		goto out;
2855 	}
2856 	ret = f2fs_convert_inline_inode(inode);
2857 	if (ret)
2858 		goto out;
2859 
2860 	set_inode_flag(inode, FI_PIN_FILE);
2861 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2862 done:
2863 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2864 out:
2865 	inode_unlock(inode);
2866 	mnt_drop_write_file(filp);
2867 	return ret;
2868 }
2869 
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)2870 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2871 {
2872 	struct inode *inode = file_inode(filp);
2873 	__u32 pin = 0;
2874 
2875 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2876 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2877 	return put_user(pin, (u32 __user *)arg);
2878 }
2879 
f2fs_precache_extents(struct inode * inode)2880 int f2fs_precache_extents(struct inode *inode)
2881 {
2882 	struct f2fs_inode_info *fi = F2FS_I(inode);
2883 	struct f2fs_map_blocks map;
2884 	pgoff_t m_next_extent;
2885 	loff_t end;
2886 	int err;
2887 
2888 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2889 		return -EOPNOTSUPP;
2890 
2891 	map.m_lblk = 0;
2892 	map.m_next_pgofs = NULL;
2893 	map.m_next_extent = &m_next_extent;
2894 	map.m_seg_type = NO_CHECK_TYPE;
2895 	end = F2FS_I_SB(inode)->max_file_blocks;
2896 
2897 	while (map.m_lblk < end) {
2898 		map.m_len = end - map.m_lblk;
2899 
2900 		down_write(&fi->i_gc_rwsem[WRITE]);
2901 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2902 		up_write(&fi->i_gc_rwsem[WRITE]);
2903 		if (err)
2904 			return err;
2905 
2906 		map.m_lblk = m_next_extent;
2907 	}
2908 
2909 	return err;
2910 }
2911 
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)2912 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2913 {
2914 	return f2fs_precache_extents(file_inode(filp));
2915 }
2916 
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2917 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2918 {
2919 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2920 		return -EIO;
2921 
2922 	switch (cmd) {
2923 	case F2FS_IOC_GETFLAGS:
2924 		return f2fs_ioc_getflags(filp, arg);
2925 	case F2FS_IOC_SETFLAGS:
2926 		return f2fs_ioc_setflags(filp, arg);
2927 	case F2FS_IOC_GETVERSION:
2928 		return f2fs_ioc_getversion(filp, arg);
2929 	case F2FS_IOC_START_ATOMIC_WRITE:
2930 		return f2fs_ioc_start_atomic_write(filp);
2931 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2932 		return f2fs_ioc_commit_atomic_write(filp);
2933 	case F2FS_IOC_START_VOLATILE_WRITE:
2934 		return f2fs_ioc_start_volatile_write(filp);
2935 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2936 		return f2fs_ioc_release_volatile_write(filp);
2937 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2938 		return f2fs_ioc_abort_volatile_write(filp);
2939 	case F2FS_IOC_SHUTDOWN:
2940 		return f2fs_ioc_shutdown(filp, arg);
2941 	case FITRIM:
2942 		return f2fs_ioc_fitrim(filp, arg);
2943 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2944 		return f2fs_ioc_set_encryption_policy(filp, arg);
2945 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2946 		return f2fs_ioc_get_encryption_policy(filp, arg);
2947 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2948 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2949 	case F2FS_IOC_GARBAGE_COLLECT:
2950 		return f2fs_ioc_gc(filp, arg);
2951 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2952 		return f2fs_ioc_gc_range(filp, arg);
2953 	case F2FS_IOC_WRITE_CHECKPOINT:
2954 		return f2fs_ioc_write_checkpoint(filp, arg);
2955 	case F2FS_IOC_DEFRAGMENT:
2956 		return f2fs_ioc_defragment(filp, arg);
2957 	case F2FS_IOC_MOVE_RANGE:
2958 		return f2fs_ioc_move_range(filp, arg);
2959 	case F2FS_IOC_FLUSH_DEVICE:
2960 		return f2fs_ioc_flush_device(filp, arg);
2961 	case F2FS_IOC_GET_FEATURES:
2962 		return f2fs_ioc_get_features(filp, arg);
2963 	case F2FS_IOC_FSGETXATTR:
2964 		return f2fs_ioc_fsgetxattr(filp, arg);
2965 	case F2FS_IOC_FSSETXATTR:
2966 		return f2fs_ioc_fssetxattr(filp, arg);
2967 	case F2FS_IOC_GET_PIN_FILE:
2968 		return f2fs_ioc_get_pin_file(filp, arg);
2969 	case F2FS_IOC_SET_PIN_FILE:
2970 		return f2fs_ioc_set_pin_file(filp, arg);
2971 	case F2FS_IOC_PRECACHE_EXTENTS:
2972 		return f2fs_ioc_precache_extents(filp, arg);
2973 	default:
2974 		return -ENOTTY;
2975 	}
2976 }
2977 
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2978 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2979 {
2980 	struct file *file = iocb->ki_filp;
2981 	struct inode *inode = file_inode(file);
2982 	ssize_t ret;
2983 
2984 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2985 		return -EIO;
2986 
2987 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2988 		return -EINVAL;
2989 
2990 	if (!inode_trylock(inode)) {
2991 		if (iocb->ki_flags & IOCB_NOWAIT)
2992 			return -EAGAIN;
2993 		inode_lock(inode);
2994 	}
2995 
2996 	ret = generic_write_checks(iocb, from);
2997 	if (ret > 0) {
2998 		bool preallocated = false;
2999 		size_t target_size = 0;
3000 		int err;
3001 
3002 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3003 			set_inode_flag(inode, FI_NO_PREALLOC);
3004 
3005 		if ((iocb->ki_flags & IOCB_NOWAIT) &&
3006 			(iocb->ki_flags & IOCB_DIRECT)) {
3007 				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3008 						iov_iter_count(from)) ||
3009 					f2fs_has_inline_data(inode) ||
3010 					f2fs_force_buffered_io(inode, WRITE)) {
3011 						clear_inode_flag(inode,
3012 								FI_NO_PREALLOC);
3013 						inode_unlock(inode);
3014 						return -EAGAIN;
3015 				}
3016 
3017 		} else {
3018 			preallocated = true;
3019 			target_size = iocb->ki_pos + iov_iter_count(from);
3020 
3021 			err = f2fs_preallocate_blocks(iocb, from);
3022 			if (err) {
3023 				clear_inode_flag(inode, FI_NO_PREALLOC);
3024 				inode_unlock(inode);
3025 				return err;
3026 			}
3027 		}
3028 		ret = __generic_file_write_iter(iocb, from);
3029 		clear_inode_flag(inode, FI_NO_PREALLOC);
3030 
3031 		/* if we couldn't write data, we should deallocate blocks. */
3032 		if (preallocated && i_size_read(inode) < target_size)
3033 			f2fs_truncate(inode);
3034 
3035 		if (ret > 0)
3036 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3037 	}
3038 	inode_unlock(inode);
3039 
3040 	if (ret > 0)
3041 		ret = generic_write_sync(iocb, ret);
3042 	return ret;
3043 }
3044 
3045 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3046 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3047 {
3048 	switch (cmd) {
3049 	case F2FS_IOC32_GETFLAGS:
3050 		cmd = F2FS_IOC_GETFLAGS;
3051 		break;
3052 	case F2FS_IOC32_SETFLAGS:
3053 		cmd = F2FS_IOC_SETFLAGS;
3054 		break;
3055 	case F2FS_IOC32_GETVERSION:
3056 		cmd = F2FS_IOC_GETVERSION;
3057 		break;
3058 	case F2FS_IOC_START_ATOMIC_WRITE:
3059 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3060 	case F2FS_IOC_START_VOLATILE_WRITE:
3061 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3062 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3063 	case F2FS_IOC_SHUTDOWN:
3064 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3065 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3066 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3067 	case F2FS_IOC_GARBAGE_COLLECT:
3068 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3069 	case F2FS_IOC_WRITE_CHECKPOINT:
3070 	case F2FS_IOC_DEFRAGMENT:
3071 	case F2FS_IOC_MOVE_RANGE:
3072 	case F2FS_IOC_FLUSH_DEVICE:
3073 	case F2FS_IOC_GET_FEATURES:
3074 	case F2FS_IOC_FSGETXATTR:
3075 	case F2FS_IOC_FSSETXATTR:
3076 	case F2FS_IOC_GET_PIN_FILE:
3077 	case F2FS_IOC_SET_PIN_FILE:
3078 	case F2FS_IOC_PRECACHE_EXTENTS:
3079 		break;
3080 	default:
3081 		return -ENOIOCTLCMD;
3082 	}
3083 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3084 }
3085 #endif
3086 
3087 const struct file_operations f2fs_file_operations = {
3088 	.llseek		= f2fs_llseek,
3089 	.read_iter	= generic_file_read_iter,
3090 	.write_iter	= f2fs_file_write_iter,
3091 	.open		= f2fs_file_open,
3092 	.release	= f2fs_release_file,
3093 	.mmap		= f2fs_file_mmap,
3094 	.flush		= f2fs_file_flush,
3095 	.fsync		= f2fs_sync_file,
3096 	.fallocate	= f2fs_fallocate,
3097 	.unlocked_ioctl	= f2fs_ioctl,
3098 #ifdef CONFIG_COMPAT
3099 	.compat_ioctl	= f2fs_compat_ioctl,
3100 #endif
3101 	.splice_read	= generic_file_splice_read,
3102 	.splice_write	= iter_file_splice_write,
3103 };
3104