• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	enum writeback_sync_modes sync_mode;
49 	unsigned int tagged_writepages:1;
50 	unsigned int for_kupdate:1;
51 	unsigned int range_cyclic:1;
52 	unsigned int for_background:1;
53 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
54 	unsigned int auto_free:1;	/* free on completion */
55 	enum wb_reason reason;		/* why was writeback initiated? */
56 
57 	struct list_head list;		/* pending work list */
58 	struct wb_completion *done;	/* set if the caller waits */
59 };
60 
61 /*
62  * If one wants to wait for one or more wb_writeback_works, each work's
63  * ->done should be set to a wb_completion defined using the following
64  * macro.  Once all work items are issued with wb_queue_work(), the caller
65  * can wait for the completion of all using wb_wait_for_completion().  Work
66  * items which are waited upon aren't freed automatically on completion.
67  */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
69 	struct wb_completion cmpl = {					\
70 		.cnt		= ATOMIC_INIT(1),			\
71 	}
72 
73 
74 /*
75  * If an inode is constantly having its pages dirtied, but then the
76  * updates stop dirtytime_expire_interval seconds in the past, it's
77  * possible for the worst case time between when an inode has its
78  * timestamps updated and when they finally get written out to be two
79  * dirtytime_expire_intervals.  We set the default to 12 hours (in
80  * seconds), which means most of the time inodes will have their
81  * timestamps written to disk after 12 hours, but in the worst case a
82  * few inodes might not their timestamps updated for 24 hours.
83  */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85 
wb_inode(struct list_head * head)86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88 	return list_entry(head, struct inode, i_io_list);
89 }
90 
91 /*
92  * Include the creation of the trace points after defining the
93  * wb_writeback_work structure and inline functions so that the definition
94  * remains local to this file.
95  */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100 
wb_io_lists_populated(struct bdi_writeback * wb)101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103 	if (wb_has_dirty_io(wb)) {
104 		return false;
105 	} else {
106 		set_bit(WB_has_dirty_io, &wb->state);
107 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 		atomic_long_add(wb->avg_write_bandwidth,
109 				&wb->bdi->tot_write_bandwidth);
110 		return true;
111 	}
112 }
113 
wb_io_lists_depopulated(struct bdi_writeback * wb)114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 		clear_bit(WB_has_dirty_io, &wb->state);
119 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 					&wb->bdi->tot_write_bandwidth) < 0);
121 	}
122 }
123 
124 /**
125  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126  * @inode: inode to be moved
127  * @wb: target bdi_writeback
128  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
129  *
130  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131  * Returns %true if @inode is the first occupant of the !dirty_time IO
132  * lists; otherwise, %false.
133  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)134 static bool inode_io_list_move_locked(struct inode *inode,
135 				      struct bdi_writeback *wb,
136 				      struct list_head *head)
137 {
138 	assert_spin_locked(&wb->list_lock);
139 
140 	list_move(&inode->i_io_list, head);
141 
142 	/* dirty_time doesn't count as dirty_io until expiration */
143 	if (head != &wb->b_dirty_time)
144 		return wb_io_lists_populated(wb);
145 
146 	wb_io_lists_depopulated(wb);
147 	return false;
148 }
149 
150 /**
151  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152  * @inode: inode to be removed
153  * @wb: bdi_writeback @inode is being removed from
154  *
155  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156  * clear %WB_has_dirty_io if all are empty afterwards.
157  */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)158 static void inode_io_list_del_locked(struct inode *inode,
159 				     struct bdi_writeback *wb)
160 {
161 	assert_spin_locked(&wb->list_lock);
162 	assert_spin_locked(&inode->i_lock);
163 
164 	inode->i_state &= ~I_SYNC_QUEUED;
165 	list_del_init(&inode->i_io_list);
166 	wb_io_lists_depopulated(wb);
167 }
168 
wb_wakeup(struct bdi_writeback * wb)169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 	spin_lock_bh(&wb->work_lock);
172 	if (test_bit(WB_registered, &wb->state))
173 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)177 static void finish_writeback_work(struct bdi_writeback *wb,
178 				  struct wb_writeback_work *work)
179 {
180 	struct wb_completion *done = work->done;
181 
182 	if (work->auto_free)
183 		kfree(work);
184 	if (done && atomic_dec_and_test(&done->cnt))
185 		wake_up_all(&wb->bdi->wb_waitq);
186 }
187 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)188 static void wb_queue_work(struct bdi_writeback *wb,
189 			  struct wb_writeback_work *work)
190 {
191 	trace_writeback_queue(wb, work);
192 
193 	if (work->done)
194 		atomic_inc(&work->done->cnt);
195 
196 	spin_lock_bh(&wb->work_lock);
197 
198 	if (test_bit(WB_registered, &wb->state)) {
199 		list_add_tail(&work->list, &wb->work_list);
200 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 	} else
202 		finish_writeback_work(wb, work);
203 
204 	spin_unlock_bh(&wb->work_lock);
205 }
206 
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 				   struct wb_completion *done)
220 {
221 	atomic_dec(&done->cnt);		/* put down the initial count */
222 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224 
225 #ifdef CONFIG_CGROUP_WRITEBACK
226 
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
232 
233 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 					/* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
237 					/* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 					/* one round can affect upto 5 slots */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
__inode_attach_wb(struct inode * inode,struct page * page)244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274 
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 	__releases(&inode->i_lock)
286 	__acquires(&wb->list_lock)
287 {
288 	while (true) {
289 		struct bdi_writeback *wb = inode_to_wb(inode);
290 
291 		/*
292 		 * inode_to_wb() association is protected by both
293 		 * @inode->i_lock and @wb->list_lock but list_lock nests
294 		 * outside i_lock.  Drop i_lock and verify that the
295 		 * association hasn't changed after acquiring list_lock.
296 		 */
297 		wb_get(wb);
298 		spin_unlock(&inode->i_lock);
299 		spin_lock(&wb->list_lock);
300 
301 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 		if (likely(wb == inode->i_wb)) {
303 			wb_put(wb);	/* @inode already has ref */
304 			return wb;
305 		}
306 
307 		spin_unlock(&wb->list_lock);
308 		wb_put(wb);
309 		cpu_relax();
310 		spin_lock(&inode->i_lock);
311 	}
312 }
313 
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
inode_to_wb_and_lock_list(struct inode * inode)321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 	__acquires(&wb->list_lock)
323 {
324 	spin_lock(&inode->i_lock);
325 	return locked_inode_to_wb_and_lock_list(inode);
326 }
327 
328 struct inode_switch_wbs_context {
329 	struct inode		*inode;
330 	struct bdi_writeback	*new_wb;
331 
332 	struct rcu_head		rcu_head;
333 	struct work_struct	work;
334 };
335 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 	down_write(&bdi->wb_switch_rwsem);
339 }
340 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	up_write(&bdi->wb_switch_rwsem);
344 }
345 
inode_switch_wbs_work_fn(struct work_struct * work)346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 	struct inode_switch_wbs_context *isw =
349 		container_of(work, struct inode_switch_wbs_context, work);
350 	struct inode *inode = isw->inode;
351 	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 	struct address_space *mapping = inode->i_mapping;
353 	struct bdi_writeback *old_wb = inode->i_wb;
354 	struct bdi_writeback *new_wb = isw->new_wb;
355 	struct radix_tree_iter iter;
356 	bool switched = false;
357 	void **slot;
358 
359 	/*
360 	 * If @inode switches cgwb membership while sync_inodes_sb() is
361 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
362 	 */
363 	down_read(&bdi->wb_switch_rwsem);
364 
365 	/*
366 	 * By the time control reaches here, RCU grace period has passed
367 	 * since I_WB_SWITCH assertion and all wb stat update transactions
368 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 	 * synchronizing against the i_pages lock.
370 	 *
371 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 	 * gives us exclusion against all wb related operations on @inode
373 	 * including IO list manipulations and stat updates.
374 	 */
375 	if (old_wb < new_wb) {
376 		spin_lock(&old_wb->list_lock);
377 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 	} else {
379 		spin_lock(&new_wb->list_lock);
380 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 	}
382 	spin_lock(&inode->i_lock);
383 	xa_lock_irq(&mapping->i_pages);
384 
385 	/*
386 	 * Once I_FREEING is visible under i_lock, the eviction path owns
387 	 * the inode and we shouldn't modify ->i_io_list.
388 	 */
389 	if (unlikely(inode->i_state & I_FREEING))
390 		goto skip_switch;
391 
392 	/*
393 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 	 * pages actually under writeback.
396 	 */
397 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
398 				   PAGECACHE_TAG_DIRTY) {
399 		struct page *page = radix_tree_deref_slot_protected(slot,
400 						&mapping->i_pages.xa_lock);
401 		if (likely(page) && PageDirty(page)) {
402 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
403 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
404 		}
405 	}
406 
407 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
408 				   PAGECACHE_TAG_WRITEBACK) {
409 		struct page *page = radix_tree_deref_slot_protected(slot,
410 						&mapping->i_pages.xa_lock);
411 		if (likely(page)) {
412 			WARN_ON_ONCE(!PageWriteback(page));
413 			dec_wb_stat(old_wb, WB_WRITEBACK);
414 			inc_wb_stat(new_wb, WB_WRITEBACK);
415 		}
416 	}
417 
418 	wb_get(new_wb);
419 
420 	/*
421 	 * Transfer to @new_wb's IO list if necessary.  The specific list
422 	 * @inode was on is ignored and the inode is put on ->b_dirty which
423 	 * is always correct including from ->b_dirty_time.  The transfer
424 	 * preserves @inode->dirtied_when ordering.
425 	 */
426 	if (!list_empty(&inode->i_io_list)) {
427 		struct inode *pos;
428 
429 		inode_io_list_del_locked(inode, old_wb);
430 		inode->i_wb = new_wb;
431 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 			if (time_after_eq(inode->dirtied_when,
433 					  pos->dirtied_when))
434 				break;
435 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 	} else {
437 		inode->i_wb = new_wb;
438 	}
439 
440 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 	inode->i_wb_frn_winner = 0;
442 	inode->i_wb_frn_avg_time = 0;
443 	inode->i_wb_frn_history = 0;
444 	switched = true;
445 skip_switch:
446 	/*
447 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 	 */
450 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451 
452 	xa_unlock_irq(&mapping->i_pages);
453 	spin_unlock(&inode->i_lock);
454 	spin_unlock(&new_wb->list_lock);
455 	spin_unlock(&old_wb->list_lock);
456 
457 	up_read(&bdi->wb_switch_rwsem);
458 
459 	if (switched) {
460 		wb_wakeup(new_wb);
461 		wb_put(old_wb);
462 	}
463 	wb_put(new_wb);
464 
465 	iput(inode);
466 	kfree(isw);
467 
468 	atomic_dec(&isw_nr_in_flight);
469 }
470 
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 				struct inode_switch_wbs_context, rcu_head);
475 
476 	/* needs to grab bh-unsafe locks, bounce to work item */
477 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 	queue_work(isw_wq, &isw->work);
479 }
480 
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
inode_switch_wbs(struct inode * inode,int new_wb_id)489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 	struct backing_dev_info *bdi = inode_to_bdi(inode);
492 	struct cgroup_subsys_state *memcg_css;
493 	struct inode_switch_wbs_context *isw;
494 
495 	/* noop if seems to be already in progress */
496 	if (inode->i_state & I_WB_SWITCH)
497 		return;
498 
499 	/*
500 	 * Avoid starting new switches while sync_inodes_sb() is in
501 	 * progress.  Otherwise, if the down_write protected issue path
502 	 * blocks heavily, we might end up starting a large number of
503 	 * switches which will block on the rwsem.
504 	 */
505 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
506 		return;
507 
508 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509 	if (!isw)
510 		goto out_unlock;
511 
512 	/* find and pin the new wb */
513 	rcu_read_lock();
514 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515 	if (memcg_css)
516 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
517 	rcu_read_unlock();
518 	if (!isw->new_wb)
519 		goto out_free;
520 
521 	/* while holding I_WB_SWITCH, no one else can update the association */
522 	spin_lock(&inode->i_lock);
523 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
524 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
525 	    inode_to_wb(inode) == isw->new_wb) {
526 		spin_unlock(&inode->i_lock);
527 		goto out_free;
528 	}
529 	inode->i_state |= I_WB_SWITCH;
530 	__iget(inode);
531 	spin_unlock(&inode->i_lock);
532 
533 	isw->inode = inode;
534 
535 	/*
536 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
537 	 * the RCU protected stat update paths to grab the i_page
538 	 * lock so that stat transfer can synchronize against them.
539 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
540 	 */
541 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
542 
543 	atomic_inc(&isw_nr_in_flight);
544 
545 	goto out_unlock;
546 
547 out_free:
548 	if (isw->new_wb)
549 		wb_put(isw->new_wb);
550 	kfree(isw);
551 out_unlock:
552 	up_read(&bdi->wb_switch_rwsem);
553 }
554 
555 /**
556  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
557  * @wbc: writeback_control of interest
558  * @inode: target inode
559  *
560  * @inode is locked and about to be written back under the control of @wbc.
561  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
562  * writeback completion, wbc_detach_inode() should be called.  This is used
563  * to track the cgroup writeback context.
564  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)565 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
566 				 struct inode *inode)
567 {
568 	if (!inode_cgwb_enabled(inode)) {
569 		spin_unlock(&inode->i_lock);
570 		return;
571 	}
572 
573 	wbc->wb = inode_to_wb(inode);
574 	wbc->inode = inode;
575 
576 	wbc->wb_id = wbc->wb->memcg_css->id;
577 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
578 	wbc->wb_tcand_id = 0;
579 	wbc->wb_bytes = 0;
580 	wbc->wb_lcand_bytes = 0;
581 	wbc->wb_tcand_bytes = 0;
582 
583 	wb_get(wbc->wb);
584 	spin_unlock(&inode->i_lock);
585 
586 	/*
587 	 * A dying wb indicates that either the blkcg associated with the
588 	 * memcg changed or the associated memcg is dying.  In the first
589 	 * case, a replacement wb should already be available and we should
590 	 * refresh the wb immediately.  In the second case, trying to
591 	 * refresh will keep failing.
592 	 */
593 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
594 		inode_switch_wbs(inode, wbc->wb_id);
595 }
596 
597 /**
598  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599  * @wbc: writeback_control of the just finished writeback
600  *
601  * To be called after a writeback attempt of an inode finishes and undoes
602  * wbc_attach_and_unlock_inode().  Can be called under any context.
603  *
604  * As concurrent write sharing of an inode is expected to be very rare and
605  * memcg only tracks page ownership on first-use basis severely confining
606  * the usefulness of such sharing, cgroup writeback tracks ownership
607  * per-inode.  While the support for concurrent write sharing of an inode
608  * is deemed unnecessary, an inode being written to by different cgroups at
609  * different points in time is a lot more common, and, more importantly,
610  * charging only by first-use can too readily lead to grossly incorrect
611  * behaviors (single foreign page can lead to gigabytes of writeback to be
612  * incorrectly attributed).
613  *
614  * To resolve this issue, cgroup writeback detects the majority dirtier of
615  * an inode and transfers the ownership to it.  To avoid unnnecessary
616  * oscillation, the detection mechanism keeps track of history and gives
617  * out the switch verdict only if the foreign usage pattern is stable over
618  * a certain amount of time and/or writeback attempts.
619  *
620  * On each writeback attempt, @wbc tries to detect the majority writer
621  * using Boyer-Moore majority vote algorithm.  In addition to the byte
622  * count from the majority voting, it also counts the bytes written for the
623  * current wb and the last round's winner wb (max of last round's current
624  * wb, the winner from two rounds ago, and the last round's majority
625  * candidate).  Keeping track of the historical winner helps the algorithm
626  * to semi-reliably detect the most active writer even when it's not the
627  * absolute majority.
628  *
629  * Once the winner of the round is determined, whether the winner is
630  * foreign or not and how much IO time the round consumed is recorded in
631  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
632  * over a certain threshold, the switch verdict is given.
633  */
wbc_detach_inode(struct writeback_control * wbc)634 void wbc_detach_inode(struct writeback_control *wbc)
635 {
636 	struct bdi_writeback *wb = wbc->wb;
637 	struct inode *inode = wbc->inode;
638 	unsigned long avg_time, max_bytes, max_time;
639 	u16 history;
640 	int max_id;
641 
642 	if (!wb)
643 		return;
644 
645 	history = inode->i_wb_frn_history;
646 	avg_time = inode->i_wb_frn_avg_time;
647 
648 	/* pick the winner of this round */
649 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
650 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
651 		max_id = wbc->wb_id;
652 		max_bytes = wbc->wb_bytes;
653 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
654 		max_id = wbc->wb_lcand_id;
655 		max_bytes = wbc->wb_lcand_bytes;
656 	} else {
657 		max_id = wbc->wb_tcand_id;
658 		max_bytes = wbc->wb_tcand_bytes;
659 	}
660 
661 	/*
662 	 * Calculate the amount of IO time the winner consumed and fold it
663 	 * into the running average kept per inode.  If the consumed IO
664 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665 	 * deciding whether to switch or not.  This is to prevent one-off
666 	 * small dirtiers from skewing the verdict.
667 	 */
668 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
669 				wb->avg_write_bandwidth);
670 	if (avg_time)
671 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
672 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
673 	else
674 		avg_time = max_time;	/* immediate catch up on first run */
675 
676 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
677 		int slots;
678 
679 		/*
680 		 * The switch verdict is reached if foreign wb's consume
681 		 * more than a certain proportion of IO time in a
682 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
683 		 * history mask where each bit represents one sixteenth of
684 		 * the period.  Determine the number of slots to shift into
685 		 * history from @max_time.
686 		 */
687 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
688 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
689 		history <<= slots;
690 		if (wbc->wb_id != max_id)
691 			history |= (1U << slots) - 1;
692 
693 		/*
694 		 * Switch if the current wb isn't the consistent winner.
695 		 * If there are multiple closely competing dirtiers, the
696 		 * inode may switch across them repeatedly over time, which
697 		 * is okay.  The main goal is avoiding keeping an inode on
698 		 * the wrong wb for an extended period of time.
699 		 */
700 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
701 			inode_switch_wbs(inode, max_id);
702 	}
703 
704 	/*
705 	 * Multiple instances of this function may race to update the
706 	 * following fields but we don't mind occassional inaccuracies.
707 	 */
708 	inode->i_wb_frn_winner = max_id;
709 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
710 	inode->i_wb_frn_history = history;
711 
712 	wb_put(wbc->wb);
713 	wbc->wb = NULL;
714 }
715 
716 /**
717  * wbc_account_io - account IO issued during writeback
718  * @wbc: writeback_control of the writeback in progress
719  * @page: page being written out
720  * @bytes: number of bytes being written out
721  *
722  * @bytes from @page are about to written out during the writeback
723  * controlled by @wbc.  Keep the book for foreign inode detection.  See
724  * wbc_detach_inode().
725  */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)726 void wbc_account_io(struct writeback_control *wbc, struct page *page,
727 		    size_t bytes)
728 {
729 	struct cgroup_subsys_state *css;
730 	int id;
731 
732 	/*
733 	 * pageout() path doesn't attach @wbc to the inode being written
734 	 * out.  This is intentional as we don't want the function to block
735 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
736 	 * regular writeback instead of writing things out itself.
737 	 */
738 	if (!wbc->wb)
739 		return;
740 
741 	css = mem_cgroup_css_from_page(page);
742 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
743 	if (!(css->flags & CSS_ONLINE))
744 		return;
745 
746 	id = css->id;
747 
748 	if (id == wbc->wb_id) {
749 		wbc->wb_bytes += bytes;
750 		return;
751 	}
752 
753 	if (id == wbc->wb_lcand_id)
754 		wbc->wb_lcand_bytes += bytes;
755 
756 	/* Boyer-Moore majority vote algorithm */
757 	if (!wbc->wb_tcand_bytes)
758 		wbc->wb_tcand_id = id;
759 	if (id == wbc->wb_tcand_id)
760 		wbc->wb_tcand_bytes += bytes;
761 	else
762 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
763 }
764 EXPORT_SYMBOL_GPL(wbc_account_io);
765 
766 /**
767  * inode_congested - test whether an inode is congested
768  * @inode: inode to test for congestion (may be NULL)
769  * @cong_bits: mask of WB_[a]sync_congested bits to test
770  *
771  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
772  * bits to test and the return value is the mask of set bits.
773  *
774  * If cgroup writeback is enabled for @inode, the congestion state is
775  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
776  * associated with @inode is congested; otherwise, the root wb's congestion
777  * state is used.
778  *
779  * @inode is allowed to be NULL as this function is often called on
780  * mapping->host which is NULL for the swapper space.
781  */
inode_congested(struct inode * inode,int cong_bits)782 int inode_congested(struct inode *inode, int cong_bits)
783 {
784 	/*
785 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
786 	 * Start transaction iff ->i_wb is visible.
787 	 */
788 	if (inode && inode_to_wb_is_valid(inode)) {
789 		struct bdi_writeback *wb;
790 		struct wb_lock_cookie lock_cookie = {};
791 		bool congested;
792 
793 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
794 		congested = wb_congested(wb, cong_bits);
795 		unlocked_inode_to_wb_end(inode, &lock_cookie);
796 		return congested;
797 	}
798 
799 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
800 }
801 EXPORT_SYMBOL_GPL(inode_congested);
802 
803 /**
804  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
805  * @wb: target bdi_writeback to split @nr_pages to
806  * @nr_pages: number of pages to write for the whole bdi
807  *
808  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
809  * relation to the total write bandwidth of all wb's w/ dirty inodes on
810  * @wb->bdi.
811  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)812 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
813 {
814 	unsigned long this_bw = wb->avg_write_bandwidth;
815 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
816 
817 	if (nr_pages == LONG_MAX)
818 		return LONG_MAX;
819 
820 	/*
821 	 * This may be called on clean wb's and proportional distribution
822 	 * may not make sense, just use the original @nr_pages in those
823 	 * cases.  In general, we wanna err on the side of writing more.
824 	 */
825 	if (!tot_bw || this_bw >= tot_bw)
826 		return nr_pages;
827 	else
828 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
829 }
830 
831 /**
832  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
833  * @bdi: target backing_dev_info
834  * @base_work: wb_writeback_work to issue
835  * @skip_if_busy: skip wb's which already have writeback in progress
836  *
837  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
838  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
839  * distributed to the busy wbs according to each wb's proportion in the
840  * total active write bandwidth of @bdi.
841  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)842 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
843 				  struct wb_writeback_work *base_work,
844 				  bool skip_if_busy)
845 {
846 	struct bdi_writeback *last_wb = NULL;
847 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
848 					      struct bdi_writeback, bdi_node);
849 
850 	might_sleep();
851 restart:
852 	rcu_read_lock();
853 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
854 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
855 		struct wb_writeback_work fallback_work;
856 		struct wb_writeback_work *work;
857 		long nr_pages;
858 
859 		if (last_wb) {
860 			wb_put(last_wb);
861 			last_wb = NULL;
862 		}
863 
864 		/* SYNC_ALL writes out I_DIRTY_TIME too */
865 		if (!wb_has_dirty_io(wb) &&
866 		    (base_work->sync_mode == WB_SYNC_NONE ||
867 		     list_empty(&wb->b_dirty_time)))
868 			continue;
869 		if (skip_if_busy && writeback_in_progress(wb))
870 			continue;
871 
872 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
873 
874 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
875 		if (work) {
876 			*work = *base_work;
877 			work->nr_pages = nr_pages;
878 			work->auto_free = 1;
879 			wb_queue_work(wb, work);
880 			continue;
881 		}
882 
883 		/* alloc failed, execute synchronously using on-stack fallback */
884 		work = &fallback_work;
885 		*work = *base_work;
886 		work->nr_pages = nr_pages;
887 		work->auto_free = 0;
888 		work->done = &fallback_work_done;
889 
890 		wb_queue_work(wb, work);
891 
892 		/*
893 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
894 		 * continuing iteration from @wb after dropping and
895 		 * regrabbing rcu read lock.
896 		 */
897 		wb_get(wb);
898 		last_wb = wb;
899 
900 		rcu_read_unlock();
901 		wb_wait_for_completion(bdi, &fallback_work_done);
902 		goto restart;
903 	}
904 	rcu_read_unlock();
905 
906 	if (last_wb)
907 		wb_put(last_wb);
908 }
909 
910 /**
911  * cgroup_writeback_umount - flush inode wb switches for umount
912  *
913  * This function is called when a super_block is about to be destroyed and
914  * flushes in-flight inode wb switches.  An inode wb switch goes through
915  * RCU and then workqueue, so the two need to be flushed in order to ensure
916  * that all previously scheduled switches are finished.  As wb switches are
917  * rare occurrences and synchronize_rcu() can take a while, perform
918  * flushing iff wb switches are in flight.
919  */
cgroup_writeback_umount(void)920 void cgroup_writeback_umount(void)
921 {
922 	if (atomic_read(&isw_nr_in_flight)) {
923 		/*
924 		 * Use rcu_barrier() to wait for all pending callbacks to
925 		 * ensure that all in-flight wb switches are in the workqueue.
926 		 */
927 		rcu_barrier();
928 		flush_workqueue(isw_wq);
929 	}
930 }
931 
cgroup_writeback_init(void)932 static int __init cgroup_writeback_init(void)
933 {
934 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
935 	if (!isw_wq)
936 		return -ENOMEM;
937 	return 0;
938 }
939 fs_initcall(cgroup_writeback_init);
940 
941 #else	/* CONFIG_CGROUP_WRITEBACK */
942 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)943 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)944 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
945 
946 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)947 locked_inode_to_wb_and_lock_list(struct inode *inode)
948 	__releases(&inode->i_lock)
949 	__acquires(&wb->list_lock)
950 {
951 	struct bdi_writeback *wb = inode_to_wb(inode);
952 
953 	spin_unlock(&inode->i_lock);
954 	spin_lock(&wb->list_lock);
955 	return wb;
956 }
957 
inode_to_wb_and_lock_list(struct inode * inode)958 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
959 	__acquires(&wb->list_lock)
960 {
961 	struct bdi_writeback *wb = inode_to_wb(inode);
962 
963 	spin_lock(&wb->list_lock);
964 	return wb;
965 }
966 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)967 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
968 {
969 	return nr_pages;
970 }
971 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)972 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
973 				  struct wb_writeback_work *base_work,
974 				  bool skip_if_busy)
975 {
976 	might_sleep();
977 
978 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
979 		base_work->auto_free = 0;
980 		wb_queue_work(&bdi->wb, base_work);
981 	}
982 }
983 
984 #endif	/* CONFIG_CGROUP_WRITEBACK */
985 
986 /*
987  * Add in the number of potentially dirty inodes, because each inode
988  * write can dirty pagecache in the underlying blockdev.
989  */
get_nr_dirty_pages(void)990 static unsigned long get_nr_dirty_pages(void)
991 {
992 	return global_node_page_state(NR_FILE_DIRTY) +
993 		global_node_page_state(NR_UNSTABLE_NFS) +
994 		get_nr_dirty_inodes();
995 }
996 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)997 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
998 {
999 	if (!wb_has_dirty_io(wb))
1000 		return;
1001 
1002 	/*
1003 	 * All callers of this function want to start writeback of all
1004 	 * dirty pages. Places like vmscan can call this at a very
1005 	 * high frequency, causing pointless allocations of tons of
1006 	 * work items and keeping the flusher threads busy retrieving
1007 	 * that work. Ensure that we only allow one of them pending and
1008 	 * inflight at the time.
1009 	 */
1010 	if (test_bit(WB_start_all, &wb->state) ||
1011 	    test_and_set_bit(WB_start_all, &wb->state))
1012 		return;
1013 
1014 	wb->start_all_reason = reason;
1015 	wb_wakeup(wb);
1016 }
1017 
1018 /**
1019  * wb_start_background_writeback - start background writeback
1020  * @wb: bdi_writback to write from
1021  *
1022  * Description:
1023  *   This makes sure WB_SYNC_NONE background writeback happens. When
1024  *   this function returns, it is only guaranteed that for given wb
1025  *   some IO is happening if we are over background dirty threshold.
1026  *   Caller need not hold sb s_umount semaphore.
1027  */
wb_start_background_writeback(struct bdi_writeback * wb)1028 void wb_start_background_writeback(struct bdi_writeback *wb)
1029 {
1030 	/*
1031 	 * We just wake up the flusher thread. It will perform background
1032 	 * writeback as soon as there is no other work to do.
1033 	 */
1034 	trace_writeback_wake_background(wb);
1035 	wb_wakeup(wb);
1036 }
1037 
1038 /*
1039  * Remove the inode from the writeback list it is on.
1040  */
inode_io_list_del(struct inode * inode)1041 void inode_io_list_del(struct inode *inode)
1042 {
1043 	struct bdi_writeback *wb;
1044 
1045 	wb = inode_to_wb_and_lock_list(inode);
1046 	spin_lock(&inode->i_lock);
1047 	inode_io_list_del_locked(inode, wb);
1048 	spin_unlock(&inode->i_lock);
1049 	spin_unlock(&wb->list_lock);
1050 }
1051 
1052 /*
1053  * mark an inode as under writeback on the sb
1054  */
sb_mark_inode_writeback(struct inode * inode)1055 void sb_mark_inode_writeback(struct inode *inode)
1056 {
1057 	struct super_block *sb = inode->i_sb;
1058 	unsigned long flags;
1059 
1060 	if (list_empty(&inode->i_wb_list)) {
1061 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1062 		if (list_empty(&inode->i_wb_list)) {
1063 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1064 			trace_sb_mark_inode_writeback(inode);
1065 		}
1066 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1067 	}
1068 }
1069 
1070 /*
1071  * clear an inode as under writeback on the sb
1072  */
sb_clear_inode_writeback(struct inode * inode)1073 void sb_clear_inode_writeback(struct inode *inode)
1074 {
1075 	struct super_block *sb = inode->i_sb;
1076 	unsigned long flags;
1077 
1078 	if (!list_empty(&inode->i_wb_list)) {
1079 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1080 		if (!list_empty(&inode->i_wb_list)) {
1081 			list_del_init(&inode->i_wb_list);
1082 			trace_sb_clear_inode_writeback(inode);
1083 		}
1084 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1085 	}
1086 }
1087 
1088 /*
1089  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1090  * furthest end of its superblock's dirty-inode list.
1091  *
1092  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1093  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1094  * the case then the inode must have been redirtied while it was being written
1095  * out and we don't reset its dirtied_when.
1096  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1097 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1098 {
1099 	assert_spin_locked(&inode->i_lock);
1100 
1101 	if (!list_empty(&wb->b_dirty)) {
1102 		struct inode *tail;
1103 
1104 		tail = wb_inode(wb->b_dirty.next);
1105 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1106 			inode->dirtied_when = jiffies;
1107 	}
1108 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1109 	inode->i_state &= ~I_SYNC_QUEUED;
1110 }
1111 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1112 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1113 {
1114 	spin_lock(&inode->i_lock);
1115 	redirty_tail_locked(inode, wb);
1116 	spin_unlock(&inode->i_lock);
1117 }
1118 
1119 /*
1120  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1121  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1122 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1123 {
1124 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1125 }
1126 
inode_sync_complete(struct inode * inode)1127 static void inode_sync_complete(struct inode *inode)
1128 {
1129 	inode->i_state &= ~I_SYNC;
1130 	/* If inode is clean an unused, put it into LRU now... */
1131 	inode_add_lru(inode);
1132 	/* Waiters must see I_SYNC cleared before being woken up */
1133 	smp_mb();
1134 	wake_up_bit(&inode->i_state, __I_SYNC);
1135 }
1136 
inode_dirtied_after(struct inode * inode,unsigned long t)1137 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1138 {
1139 	bool ret = time_after(inode->dirtied_when, t);
1140 #ifndef CONFIG_64BIT
1141 	/*
1142 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1143 	 * It _appears_ to be in the future, but is actually in distant past.
1144 	 * This test is necessary to prevent such wrapped-around relative times
1145 	 * from permanently stopping the whole bdi writeback.
1146 	 */
1147 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1148 #endif
1149 	return ret;
1150 }
1151 
1152 #define EXPIRE_DIRTY_ATIME 0x0001
1153 
1154 /*
1155  * Move expired (dirtied before dirtied_before) dirty inodes from
1156  * @delaying_queue to @dispatch_queue.
1157  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,int flags,unsigned long dirtied_before)1158 static int move_expired_inodes(struct list_head *delaying_queue,
1159 			       struct list_head *dispatch_queue,
1160 			       int flags, unsigned long dirtied_before)
1161 {
1162 	LIST_HEAD(tmp);
1163 	struct list_head *pos, *node;
1164 	struct super_block *sb = NULL;
1165 	struct inode *inode;
1166 	int do_sb_sort = 0;
1167 	int moved = 0;
1168 
1169 	while (!list_empty(delaying_queue)) {
1170 		inode = wb_inode(delaying_queue->prev);
1171 		if (inode_dirtied_after(inode, dirtied_before))
1172 			break;
1173 		list_move(&inode->i_io_list, &tmp);
1174 		moved++;
1175 		spin_lock(&inode->i_lock);
1176 		if (flags & EXPIRE_DIRTY_ATIME)
1177 			inode->i_state |= I_DIRTY_TIME_EXPIRED;
1178 		inode->i_state |= I_SYNC_QUEUED;
1179 		spin_unlock(&inode->i_lock);
1180 		if (sb_is_blkdev_sb(inode->i_sb))
1181 			continue;
1182 		if (sb && sb != inode->i_sb)
1183 			do_sb_sort = 1;
1184 		sb = inode->i_sb;
1185 	}
1186 
1187 	/* just one sb in list, splice to dispatch_queue and we're done */
1188 	if (!do_sb_sort) {
1189 		list_splice(&tmp, dispatch_queue);
1190 		goto out;
1191 	}
1192 
1193 	/* Move inodes from one superblock together */
1194 	while (!list_empty(&tmp)) {
1195 		sb = wb_inode(tmp.prev)->i_sb;
1196 		list_for_each_prev_safe(pos, node, &tmp) {
1197 			inode = wb_inode(pos);
1198 			if (inode->i_sb == sb)
1199 				list_move(&inode->i_io_list, dispatch_queue);
1200 		}
1201 	}
1202 out:
1203 	return moved;
1204 }
1205 
1206 /*
1207  * Queue all expired dirty inodes for io, eldest first.
1208  * Before
1209  *         newly dirtied     b_dirty    b_io    b_more_io
1210  *         =============>    gf         edc     BA
1211  * After
1212  *         newly dirtied     b_dirty    b_io    b_more_io
1213  *         =============>    g          fBAedc
1214  *                                           |
1215  *                                           +--> dequeue for IO
1216  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1217 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1218 		     unsigned long dirtied_before)
1219 {
1220 	int moved;
1221 	unsigned long time_expire_jif = dirtied_before;
1222 
1223 	assert_spin_locked(&wb->list_lock);
1224 	list_splice_init(&wb->b_more_io, &wb->b_io);
1225 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, dirtied_before);
1226 	if (!work->for_sync)
1227 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1228 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1229 				     EXPIRE_DIRTY_ATIME, time_expire_jif);
1230 	if (moved)
1231 		wb_io_lists_populated(wb);
1232 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1233 }
1234 
write_inode(struct inode * inode,struct writeback_control * wbc)1235 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1236 {
1237 	int ret;
1238 
1239 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1240 		trace_writeback_write_inode_start(inode, wbc);
1241 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1242 		trace_writeback_write_inode(inode, wbc);
1243 		return ret;
1244 	}
1245 	return 0;
1246 }
1247 
1248 /*
1249  * Wait for writeback on an inode to complete. Called with i_lock held.
1250  * Caller must make sure inode cannot go away when we drop i_lock.
1251  */
__inode_wait_for_writeback(struct inode * inode)1252 static void __inode_wait_for_writeback(struct inode *inode)
1253 	__releases(inode->i_lock)
1254 	__acquires(inode->i_lock)
1255 {
1256 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1257 	wait_queue_head_t *wqh;
1258 
1259 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1260 	while (inode->i_state & I_SYNC) {
1261 		spin_unlock(&inode->i_lock);
1262 		__wait_on_bit(wqh, &wq, bit_wait,
1263 			      TASK_UNINTERRUPTIBLE);
1264 		spin_lock(&inode->i_lock);
1265 	}
1266 }
1267 
1268 /*
1269  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1270  */
inode_wait_for_writeback(struct inode * inode)1271 void inode_wait_for_writeback(struct inode *inode)
1272 {
1273 	spin_lock(&inode->i_lock);
1274 	__inode_wait_for_writeback(inode);
1275 	spin_unlock(&inode->i_lock);
1276 }
1277 
1278 /*
1279  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1280  * held and drops it. It is aimed for callers not holding any inode reference
1281  * so once i_lock is dropped, inode can go away.
1282  */
inode_sleep_on_writeback(struct inode * inode)1283 static void inode_sleep_on_writeback(struct inode *inode)
1284 	__releases(inode->i_lock)
1285 {
1286 	DEFINE_WAIT(wait);
1287 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1288 	int sleep;
1289 
1290 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1291 	sleep = inode->i_state & I_SYNC;
1292 	spin_unlock(&inode->i_lock);
1293 	if (sleep)
1294 		schedule();
1295 	finish_wait(wqh, &wait);
1296 }
1297 
1298 /*
1299  * Find proper writeback list for the inode depending on its current state and
1300  * possibly also change of its state while we were doing writeback.  Here we
1301  * handle things such as livelock prevention or fairness of writeback among
1302  * inodes. This function can be called only by flusher thread - noone else
1303  * processes all inodes in writeback lists and requeueing inodes behind flusher
1304  * thread's back can have unexpected consequences.
1305  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1306 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1307 			  struct writeback_control *wbc)
1308 {
1309 	if (inode->i_state & I_FREEING)
1310 		return;
1311 
1312 	/*
1313 	 * Sync livelock prevention. Each inode is tagged and synced in one
1314 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1315 	 * the dirty time to prevent enqueue and sync it again.
1316 	 */
1317 	if ((inode->i_state & I_DIRTY) &&
1318 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1319 		inode->dirtied_when = jiffies;
1320 
1321 	if (wbc->pages_skipped) {
1322 		/*
1323 		 * writeback is not making progress due to locked
1324 		 * buffers. Skip this inode for now.
1325 		 */
1326 		redirty_tail_locked(inode, wb);
1327 		return;
1328 	}
1329 
1330 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1331 		/*
1332 		 * We didn't write back all the pages.  nfs_writepages()
1333 		 * sometimes bales out without doing anything.
1334 		 */
1335 		if (wbc->nr_to_write <= 0) {
1336 			/* Slice used up. Queue for next turn. */
1337 			requeue_io(inode, wb);
1338 		} else {
1339 			/*
1340 			 * Writeback blocked by something other than
1341 			 * congestion. Delay the inode for some time to
1342 			 * avoid spinning on the CPU (100% iowait)
1343 			 * retrying writeback of the dirty page/inode
1344 			 * that cannot be performed immediately.
1345 			 */
1346 			redirty_tail_locked(inode, wb);
1347 		}
1348 	} else if (inode->i_state & I_DIRTY) {
1349 		/*
1350 		 * Filesystems can dirty the inode during writeback operations,
1351 		 * such as delayed allocation during submission or metadata
1352 		 * updates after data IO completion.
1353 		 */
1354 		redirty_tail_locked(inode, wb);
1355 	} else if (inode->i_state & I_DIRTY_TIME) {
1356 		inode->dirtied_when = jiffies;
1357 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1358 		inode->i_state &= ~I_SYNC_QUEUED;
1359 	} else {
1360 		/* The inode is clean. Remove from writeback lists. */
1361 		inode_io_list_del_locked(inode, wb);
1362 	}
1363 }
1364 
1365 /*
1366  * Write out an inode and its dirty pages. Do not update the writeback list
1367  * linkage. That is left to the caller. The caller is also responsible for
1368  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1369  */
1370 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1371 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1372 {
1373 	struct address_space *mapping = inode->i_mapping;
1374 	long nr_to_write = wbc->nr_to_write;
1375 	unsigned dirty;
1376 	int ret;
1377 
1378 	WARN_ON(!(inode->i_state & I_SYNC));
1379 
1380 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1381 
1382 	ret = do_writepages(mapping, wbc);
1383 
1384 	/*
1385 	 * Make sure to wait on the data before writing out the metadata.
1386 	 * This is important for filesystems that modify metadata on data
1387 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1388 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1389 	 * inode metadata is written back correctly.
1390 	 */
1391 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1392 		int err = filemap_fdatawait(mapping);
1393 		if (ret == 0)
1394 			ret = err;
1395 	}
1396 
1397 	/*
1398 	 * Some filesystems may redirty the inode during the writeback
1399 	 * due to delalloc, clear dirty metadata flags right before
1400 	 * write_inode()
1401 	 */
1402 	spin_lock(&inode->i_lock);
1403 
1404 	dirty = inode->i_state & I_DIRTY;
1405 	if (inode->i_state & I_DIRTY_TIME) {
1406 		if ((dirty & I_DIRTY_INODE) ||
1407 		    wbc->sync_mode == WB_SYNC_ALL ||
1408 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1409 		    unlikely(time_after(jiffies,
1410 					(inode->dirtied_time_when +
1411 					 dirtytime_expire_interval * HZ)))) {
1412 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1413 			trace_writeback_lazytime(inode);
1414 		}
1415 	} else
1416 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1417 	inode->i_state &= ~dirty;
1418 
1419 	/*
1420 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1421 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1422 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1423 	 * inode.
1424 	 *
1425 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1426 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1427 	 * necessary.  This guarantees that either __mark_inode_dirty()
1428 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1429 	 */
1430 	smp_mb();
1431 
1432 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1433 		inode->i_state |= I_DIRTY_PAGES;
1434 
1435 	spin_unlock(&inode->i_lock);
1436 
1437 	if (dirty & I_DIRTY_TIME)
1438 		mark_inode_dirty_sync(inode);
1439 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1440 	if (dirty & ~I_DIRTY_PAGES) {
1441 		int err = write_inode(inode, wbc);
1442 		if (ret == 0)
1443 			ret = err;
1444 	}
1445 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1446 	return ret;
1447 }
1448 
1449 /*
1450  * Write out an inode's dirty pages. Either the caller has an active reference
1451  * on the inode or the inode has I_WILL_FREE set.
1452  *
1453  * This function is designed to be called for writing back one inode which
1454  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1455  * and does more profound writeback list handling in writeback_sb_inodes().
1456  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1457 static int writeback_single_inode(struct inode *inode,
1458 				  struct writeback_control *wbc)
1459 {
1460 	struct bdi_writeback *wb;
1461 	int ret = 0;
1462 
1463 	spin_lock(&inode->i_lock);
1464 	if (!atomic_read(&inode->i_count))
1465 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1466 	else
1467 		WARN_ON(inode->i_state & I_WILL_FREE);
1468 
1469 	if (inode->i_state & I_SYNC) {
1470 		if (wbc->sync_mode != WB_SYNC_ALL)
1471 			goto out;
1472 		/*
1473 		 * It's a data-integrity sync. We must wait. Since callers hold
1474 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1475 		 * away under us.
1476 		 */
1477 		__inode_wait_for_writeback(inode);
1478 	}
1479 	WARN_ON(inode->i_state & I_SYNC);
1480 	/*
1481 	 * Skip inode if it is clean and we have no outstanding writeback in
1482 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1483 	 * function since flusher thread may be doing for example sync in
1484 	 * parallel and if we move the inode, it could get skipped. So here we
1485 	 * make sure inode is on some writeback list and leave it there unless
1486 	 * we have completely cleaned the inode.
1487 	 */
1488 	if (!(inode->i_state & I_DIRTY_ALL) &&
1489 	    (wbc->sync_mode != WB_SYNC_ALL ||
1490 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1491 		goto out;
1492 	inode->i_state |= I_SYNC;
1493 	wbc_attach_and_unlock_inode(wbc, inode);
1494 
1495 	ret = __writeback_single_inode(inode, wbc);
1496 
1497 	wbc_detach_inode(wbc);
1498 
1499 	wb = inode_to_wb_and_lock_list(inode);
1500 	spin_lock(&inode->i_lock);
1501 	/*
1502 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1503 	 * touch it. See comment above for explanation.
1504 	 */
1505 	if (!(inode->i_state & I_DIRTY_ALL))
1506 		inode_io_list_del_locked(inode, wb);
1507 	spin_unlock(&wb->list_lock);
1508 	inode_sync_complete(inode);
1509 out:
1510 	spin_unlock(&inode->i_lock);
1511 	return ret;
1512 }
1513 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1514 static long writeback_chunk_size(struct bdi_writeback *wb,
1515 				 struct wb_writeback_work *work)
1516 {
1517 	long pages;
1518 
1519 	/*
1520 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1521 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1522 	 * here avoids calling into writeback_inodes_wb() more than once.
1523 	 *
1524 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1525 	 *
1526 	 *      wb_writeback()
1527 	 *          writeback_sb_inodes()       <== called only once
1528 	 *              write_cache_pages()     <== called once for each inode
1529 	 *                   (quickly) tag currently dirty pages
1530 	 *                   (maybe slowly) sync all tagged pages
1531 	 */
1532 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1533 		pages = LONG_MAX;
1534 	else {
1535 		pages = min(wb->avg_write_bandwidth / 2,
1536 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1537 		pages = min(pages, work->nr_pages);
1538 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1539 				   MIN_WRITEBACK_PAGES);
1540 	}
1541 
1542 	return pages;
1543 }
1544 
1545 /*
1546  * Write a portion of b_io inodes which belong to @sb.
1547  *
1548  * Return the number of pages and/or inodes written.
1549  *
1550  * NOTE! This is called with wb->list_lock held, and will
1551  * unlock and relock that for each inode it ends up doing
1552  * IO for.
1553  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1554 static long writeback_sb_inodes(struct super_block *sb,
1555 				struct bdi_writeback *wb,
1556 				struct wb_writeback_work *work)
1557 {
1558 	struct writeback_control wbc = {
1559 		.sync_mode		= work->sync_mode,
1560 		.tagged_writepages	= work->tagged_writepages,
1561 		.for_kupdate		= work->for_kupdate,
1562 		.for_background		= work->for_background,
1563 		.for_sync		= work->for_sync,
1564 		.range_cyclic		= work->range_cyclic,
1565 		.range_start		= 0,
1566 		.range_end		= LLONG_MAX,
1567 	};
1568 	unsigned long start_time = jiffies;
1569 	long write_chunk;
1570 	long wrote = 0;  /* count both pages and inodes */
1571 
1572 	while (!list_empty(&wb->b_io)) {
1573 		struct inode *inode = wb_inode(wb->b_io.prev);
1574 		struct bdi_writeback *tmp_wb;
1575 
1576 		if (inode->i_sb != sb) {
1577 			if (work->sb) {
1578 				/*
1579 				 * We only want to write back data for this
1580 				 * superblock, move all inodes not belonging
1581 				 * to it back onto the dirty list.
1582 				 */
1583 				redirty_tail(inode, wb);
1584 				continue;
1585 			}
1586 
1587 			/*
1588 			 * The inode belongs to a different superblock.
1589 			 * Bounce back to the caller to unpin this and
1590 			 * pin the next superblock.
1591 			 */
1592 			break;
1593 		}
1594 
1595 		/*
1596 		 * Don't bother with new inodes or inodes being freed, first
1597 		 * kind does not need periodic writeout yet, and for the latter
1598 		 * kind writeout is handled by the freer.
1599 		 */
1600 		spin_lock(&inode->i_lock);
1601 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1602 			redirty_tail_locked(inode, wb);
1603 			spin_unlock(&inode->i_lock);
1604 			continue;
1605 		}
1606 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1607 			/*
1608 			 * If this inode is locked for writeback and we are not
1609 			 * doing writeback-for-data-integrity, move it to
1610 			 * b_more_io so that writeback can proceed with the
1611 			 * other inodes on s_io.
1612 			 *
1613 			 * We'll have another go at writing back this inode
1614 			 * when we completed a full scan of b_io.
1615 			 */
1616 			spin_unlock(&inode->i_lock);
1617 			requeue_io(inode, wb);
1618 			trace_writeback_sb_inodes_requeue(inode);
1619 			continue;
1620 		}
1621 		spin_unlock(&wb->list_lock);
1622 
1623 		/*
1624 		 * We already requeued the inode if it had I_SYNC set and we
1625 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1626 		 * WB_SYNC_ALL case.
1627 		 */
1628 		if (inode->i_state & I_SYNC) {
1629 			/* Wait for I_SYNC. This function drops i_lock... */
1630 			inode_sleep_on_writeback(inode);
1631 			/* Inode may be gone, start again */
1632 			spin_lock(&wb->list_lock);
1633 			continue;
1634 		}
1635 		inode->i_state |= I_SYNC;
1636 		wbc_attach_and_unlock_inode(&wbc, inode);
1637 
1638 		write_chunk = writeback_chunk_size(wb, work);
1639 		wbc.nr_to_write = write_chunk;
1640 		wbc.pages_skipped = 0;
1641 
1642 		/*
1643 		 * We use I_SYNC to pin the inode in memory. While it is set
1644 		 * evict_inode() will wait so the inode cannot be freed.
1645 		 */
1646 		__writeback_single_inode(inode, &wbc);
1647 
1648 		wbc_detach_inode(&wbc);
1649 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1650 		wrote += write_chunk - wbc.nr_to_write;
1651 
1652 		if (need_resched()) {
1653 			/*
1654 			 * We're trying to balance between building up a nice
1655 			 * long list of IOs to improve our merge rate, and
1656 			 * getting those IOs out quickly for anyone throttling
1657 			 * in balance_dirty_pages().  cond_resched() doesn't
1658 			 * unplug, so get our IOs out the door before we
1659 			 * give up the CPU.
1660 			 */
1661 			blk_flush_plug(current);
1662 			cond_resched();
1663 		}
1664 
1665 		/*
1666 		 * Requeue @inode if still dirty.  Be careful as @inode may
1667 		 * have been switched to another wb in the meantime.
1668 		 */
1669 		tmp_wb = inode_to_wb_and_lock_list(inode);
1670 		spin_lock(&inode->i_lock);
1671 		if (!(inode->i_state & I_DIRTY_ALL))
1672 			wrote++;
1673 		requeue_inode(inode, tmp_wb, &wbc);
1674 		inode_sync_complete(inode);
1675 		spin_unlock(&inode->i_lock);
1676 
1677 		if (unlikely(tmp_wb != wb)) {
1678 			spin_unlock(&tmp_wb->list_lock);
1679 			spin_lock(&wb->list_lock);
1680 		}
1681 
1682 		/*
1683 		 * bail out to wb_writeback() often enough to check
1684 		 * background threshold and other termination conditions.
1685 		 */
1686 		if (wrote) {
1687 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1688 				break;
1689 			if (work->nr_pages <= 0)
1690 				break;
1691 		}
1692 	}
1693 	return wrote;
1694 }
1695 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1696 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1697 				  struct wb_writeback_work *work)
1698 {
1699 	unsigned long start_time = jiffies;
1700 	long wrote = 0;
1701 
1702 	while (!list_empty(&wb->b_io)) {
1703 		struct inode *inode = wb_inode(wb->b_io.prev);
1704 		struct super_block *sb = inode->i_sb;
1705 
1706 		if (!trylock_super(sb)) {
1707 			/*
1708 			 * trylock_super() may fail consistently due to
1709 			 * s_umount being grabbed by someone else. Don't use
1710 			 * requeue_io() to avoid busy retrying the inode/sb.
1711 			 */
1712 			redirty_tail(inode, wb);
1713 			continue;
1714 		}
1715 		wrote += writeback_sb_inodes(sb, wb, work);
1716 		up_read(&sb->s_umount);
1717 
1718 		/* refer to the same tests at the end of writeback_sb_inodes */
1719 		if (wrote) {
1720 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1721 				break;
1722 			if (work->nr_pages <= 0)
1723 				break;
1724 		}
1725 	}
1726 	/* Leave any unwritten inodes on b_io */
1727 	return wrote;
1728 }
1729 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1730 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1731 				enum wb_reason reason)
1732 {
1733 	struct wb_writeback_work work = {
1734 		.nr_pages	= nr_pages,
1735 		.sync_mode	= WB_SYNC_NONE,
1736 		.range_cyclic	= 1,
1737 		.reason		= reason,
1738 	};
1739 	struct blk_plug plug;
1740 
1741 	blk_start_plug(&plug);
1742 	spin_lock(&wb->list_lock);
1743 	if (list_empty(&wb->b_io))
1744 		queue_io(wb, &work, jiffies);
1745 	__writeback_inodes_wb(wb, &work);
1746 	spin_unlock(&wb->list_lock);
1747 	blk_finish_plug(&plug);
1748 
1749 	return nr_pages - work.nr_pages;
1750 }
1751 
1752 /*
1753  * Explicit flushing or periodic writeback of "old" data.
1754  *
1755  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1756  * dirtying-time in the inode's address_space.  So this periodic writeback code
1757  * just walks the superblock inode list, writing back any inodes which are
1758  * older than a specific point in time.
1759  *
1760  * Try to run once per dirty_writeback_interval.  But if a writeback event
1761  * takes longer than a dirty_writeback_interval interval, then leave a
1762  * one-second gap.
1763  *
1764  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1765  * all dirty pages if they are all attached to "old" mappings.
1766  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1767 static long wb_writeback(struct bdi_writeback *wb,
1768 			 struct wb_writeback_work *work)
1769 {
1770 	unsigned long wb_start = jiffies;
1771 	long nr_pages = work->nr_pages;
1772 	unsigned long dirtied_before = jiffies;
1773 	struct inode *inode;
1774 	long progress;
1775 	struct blk_plug plug;
1776 
1777 	blk_start_plug(&plug);
1778 	spin_lock(&wb->list_lock);
1779 	for (;;) {
1780 		/*
1781 		 * Stop writeback when nr_pages has been consumed
1782 		 */
1783 		if (work->nr_pages <= 0)
1784 			break;
1785 
1786 		/*
1787 		 * Background writeout and kupdate-style writeback may
1788 		 * run forever. Stop them if there is other work to do
1789 		 * so that e.g. sync can proceed. They'll be restarted
1790 		 * after the other works are all done.
1791 		 */
1792 		if ((work->for_background || work->for_kupdate) &&
1793 		    !list_empty(&wb->work_list))
1794 			break;
1795 
1796 		/*
1797 		 * For background writeout, stop when we are below the
1798 		 * background dirty threshold
1799 		 */
1800 		if (work->for_background && !wb_over_bg_thresh(wb))
1801 			break;
1802 
1803 		/*
1804 		 * Kupdate and background works are special and we want to
1805 		 * include all inodes that need writing. Livelock avoidance is
1806 		 * handled by these works yielding to any other work so we are
1807 		 * safe.
1808 		 */
1809 		if (work->for_kupdate) {
1810 			dirtied_before = jiffies -
1811 				msecs_to_jiffies(dirty_expire_interval * 10);
1812 		} else if (work->for_background)
1813 			dirtied_before = jiffies;
1814 
1815 		trace_writeback_start(wb, work);
1816 		if (list_empty(&wb->b_io))
1817 			queue_io(wb, work, dirtied_before);
1818 		if (work->sb)
1819 			progress = writeback_sb_inodes(work->sb, wb, work);
1820 		else
1821 			progress = __writeback_inodes_wb(wb, work);
1822 		trace_writeback_written(wb, work);
1823 
1824 		wb_update_bandwidth(wb, wb_start);
1825 
1826 		/*
1827 		 * Did we write something? Try for more
1828 		 *
1829 		 * Dirty inodes are moved to b_io for writeback in batches.
1830 		 * The completion of the current batch does not necessarily
1831 		 * mean the overall work is done. So we keep looping as long
1832 		 * as made some progress on cleaning pages or inodes.
1833 		 */
1834 		if (progress)
1835 			continue;
1836 		/*
1837 		 * No more inodes for IO, bail
1838 		 */
1839 		if (list_empty(&wb->b_more_io))
1840 			break;
1841 		/*
1842 		 * Nothing written. Wait for some inode to
1843 		 * become available for writeback. Otherwise
1844 		 * we'll just busyloop.
1845 		 */
1846 		trace_writeback_wait(wb, work);
1847 		inode = wb_inode(wb->b_more_io.prev);
1848 		spin_lock(&inode->i_lock);
1849 		spin_unlock(&wb->list_lock);
1850 		/* This function drops i_lock... */
1851 		inode_sleep_on_writeback(inode);
1852 		spin_lock(&wb->list_lock);
1853 	}
1854 	spin_unlock(&wb->list_lock);
1855 	blk_finish_plug(&plug);
1856 
1857 	return nr_pages - work->nr_pages;
1858 }
1859 
1860 /*
1861  * Return the next wb_writeback_work struct that hasn't been processed yet.
1862  */
get_next_work_item(struct bdi_writeback * wb)1863 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1864 {
1865 	struct wb_writeback_work *work = NULL;
1866 
1867 	spin_lock_bh(&wb->work_lock);
1868 	if (!list_empty(&wb->work_list)) {
1869 		work = list_entry(wb->work_list.next,
1870 				  struct wb_writeback_work, list);
1871 		list_del_init(&work->list);
1872 	}
1873 	spin_unlock_bh(&wb->work_lock);
1874 	return work;
1875 }
1876 
wb_check_background_flush(struct bdi_writeback * wb)1877 static long wb_check_background_flush(struct bdi_writeback *wb)
1878 {
1879 	if (wb_over_bg_thresh(wb)) {
1880 
1881 		struct wb_writeback_work work = {
1882 			.nr_pages	= LONG_MAX,
1883 			.sync_mode	= WB_SYNC_NONE,
1884 			.for_background	= 1,
1885 			.range_cyclic	= 1,
1886 			.reason		= WB_REASON_BACKGROUND,
1887 		};
1888 
1889 		return wb_writeback(wb, &work);
1890 	}
1891 
1892 	return 0;
1893 }
1894 
wb_check_old_data_flush(struct bdi_writeback * wb)1895 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1896 {
1897 	unsigned long expired;
1898 	long nr_pages;
1899 
1900 	/*
1901 	 * When set to zero, disable periodic writeback
1902 	 */
1903 	if (!dirty_writeback_interval)
1904 		return 0;
1905 
1906 	expired = wb->last_old_flush +
1907 			msecs_to_jiffies(dirty_writeback_interval * 10);
1908 	if (time_before(jiffies, expired))
1909 		return 0;
1910 
1911 	wb->last_old_flush = jiffies;
1912 	nr_pages = get_nr_dirty_pages();
1913 
1914 	if (nr_pages) {
1915 		struct wb_writeback_work work = {
1916 			.nr_pages	= nr_pages,
1917 			.sync_mode	= WB_SYNC_NONE,
1918 			.for_kupdate	= 1,
1919 			.range_cyclic	= 1,
1920 			.reason		= WB_REASON_PERIODIC,
1921 		};
1922 
1923 		return wb_writeback(wb, &work);
1924 	}
1925 
1926 	return 0;
1927 }
1928 
wb_check_start_all(struct bdi_writeback * wb)1929 static long wb_check_start_all(struct bdi_writeback *wb)
1930 {
1931 	long nr_pages;
1932 
1933 	if (!test_bit(WB_start_all, &wb->state))
1934 		return 0;
1935 
1936 	nr_pages = get_nr_dirty_pages();
1937 	if (nr_pages) {
1938 		struct wb_writeback_work work = {
1939 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1940 			.sync_mode	= WB_SYNC_NONE,
1941 			.range_cyclic	= 1,
1942 			.reason		= wb->start_all_reason,
1943 		};
1944 
1945 		nr_pages = wb_writeback(wb, &work);
1946 	}
1947 
1948 	clear_bit(WB_start_all, &wb->state);
1949 	return nr_pages;
1950 }
1951 
1952 
1953 /*
1954  * Retrieve work items and do the writeback they describe
1955  */
wb_do_writeback(struct bdi_writeback * wb)1956 static long wb_do_writeback(struct bdi_writeback *wb)
1957 {
1958 	struct wb_writeback_work *work;
1959 	long wrote = 0;
1960 
1961 	set_bit(WB_writeback_running, &wb->state);
1962 	while ((work = get_next_work_item(wb)) != NULL) {
1963 		trace_writeback_exec(wb, work);
1964 		wrote += wb_writeback(wb, work);
1965 		finish_writeback_work(wb, work);
1966 	}
1967 
1968 	/*
1969 	 * Check for a flush-everything request
1970 	 */
1971 	wrote += wb_check_start_all(wb);
1972 
1973 	/*
1974 	 * Check for periodic writeback, kupdated() style
1975 	 */
1976 	wrote += wb_check_old_data_flush(wb);
1977 	wrote += wb_check_background_flush(wb);
1978 	clear_bit(WB_writeback_running, &wb->state);
1979 
1980 	return wrote;
1981 }
1982 
1983 /*
1984  * Handle writeback of dirty data for the device backed by this bdi. Also
1985  * reschedules periodically and does kupdated style flushing.
1986  */
wb_workfn(struct work_struct * work)1987 void wb_workfn(struct work_struct *work)
1988 {
1989 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1990 						struct bdi_writeback, dwork);
1991 	long pages_written;
1992 
1993 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1994 	current->flags |= PF_SWAPWRITE;
1995 
1996 	if (likely(!current_is_workqueue_rescuer() ||
1997 		   !test_bit(WB_registered, &wb->state))) {
1998 		/*
1999 		 * The normal path.  Keep writing back @wb until its
2000 		 * work_list is empty.  Note that this path is also taken
2001 		 * if @wb is shutting down even when we're running off the
2002 		 * rescuer as work_list needs to be drained.
2003 		 */
2004 		do {
2005 			pages_written = wb_do_writeback(wb);
2006 			trace_writeback_pages_written(pages_written);
2007 		} while (!list_empty(&wb->work_list));
2008 	} else {
2009 		/*
2010 		 * bdi_wq can't get enough workers and we're running off
2011 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2012 		 * enough for efficient IO.
2013 		 */
2014 		pages_written = writeback_inodes_wb(wb, 1024,
2015 						    WB_REASON_FORKER_THREAD);
2016 		trace_writeback_pages_written(pages_written);
2017 	}
2018 
2019 	if (!list_empty(&wb->work_list))
2020 		wb_wakeup(wb);
2021 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2022 		wb_wakeup_delayed(wb);
2023 
2024 	current->flags &= ~PF_SWAPWRITE;
2025 }
2026 
2027 /*
2028  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2029  * write back the whole world.
2030  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2031 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2032 					 enum wb_reason reason)
2033 {
2034 	struct bdi_writeback *wb;
2035 
2036 	if (!bdi_has_dirty_io(bdi))
2037 		return;
2038 
2039 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2040 		wb_start_writeback(wb, reason);
2041 }
2042 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2043 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2044 				enum wb_reason reason)
2045 {
2046 	rcu_read_lock();
2047 	__wakeup_flusher_threads_bdi(bdi, reason);
2048 	rcu_read_unlock();
2049 }
2050 
2051 /*
2052  * Wakeup the flusher threads to start writeback of all currently dirty pages
2053  */
wakeup_flusher_threads(enum wb_reason reason)2054 void wakeup_flusher_threads(enum wb_reason reason)
2055 {
2056 	struct backing_dev_info *bdi;
2057 
2058 	/*
2059 	 * If we are expecting writeback progress we must submit plugged IO.
2060 	 */
2061 	if (blk_needs_flush_plug(current))
2062 		blk_schedule_flush_plug(current);
2063 
2064 	rcu_read_lock();
2065 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2066 		__wakeup_flusher_threads_bdi(bdi, reason);
2067 	rcu_read_unlock();
2068 }
2069 
2070 /*
2071  * Wake up bdi's periodically to make sure dirtytime inodes gets
2072  * written back periodically.  We deliberately do *not* check the
2073  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2074  * kernel to be constantly waking up once there are any dirtytime
2075  * inodes on the system.  So instead we define a separate delayed work
2076  * function which gets called much more rarely.  (By default, only
2077  * once every 12 hours.)
2078  *
2079  * If there is any other write activity going on in the file system,
2080  * this function won't be necessary.  But if the only thing that has
2081  * happened on the file system is a dirtytime inode caused by an atime
2082  * update, we need this infrastructure below to make sure that inode
2083  * eventually gets pushed out to disk.
2084  */
2085 static void wakeup_dirtytime_writeback(struct work_struct *w);
2086 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2087 
wakeup_dirtytime_writeback(struct work_struct * w)2088 static void wakeup_dirtytime_writeback(struct work_struct *w)
2089 {
2090 	struct backing_dev_info *bdi;
2091 
2092 	rcu_read_lock();
2093 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2094 		struct bdi_writeback *wb;
2095 
2096 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2097 			if (!list_empty(&wb->b_dirty_time))
2098 				wb_wakeup(wb);
2099 	}
2100 	rcu_read_unlock();
2101 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2102 }
2103 
start_dirtytime_writeback(void)2104 static int __init start_dirtytime_writeback(void)
2105 {
2106 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2107 	return 0;
2108 }
2109 __initcall(start_dirtytime_writeback);
2110 
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2111 int dirtytime_interval_handler(struct ctl_table *table, int write,
2112 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2113 {
2114 	int ret;
2115 
2116 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2117 	if (ret == 0 && write)
2118 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2119 	return ret;
2120 }
2121 
block_dump___mark_inode_dirty(struct inode * inode)2122 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2123 {
2124 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2125 		struct dentry *dentry;
2126 		const char *name = "?";
2127 
2128 		dentry = d_find_alias(inode);
2129 		if (dentry) {
2130 			spin_lock(&dentry->d_lock);
2131 			name = (const char *) dentry->d_name.name;
2132 		}
2133 		printk(KERN_DEBUG
2134 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2135 		       current->comm, task_pid_nr(current), inode->i_ino,
2136 		       name, inode->i_sb->s_id);
2137 		if (dentry) {
2138 			spin_unlock(&dentry->d_lock);
2139 			dput(dentry);
2140 		}
2141 	}
2142 }
2143 
2144 /**
2145  * __mark_inode_dirty -	internal function
2146  *
2147  * @inode: inode to mark
2148  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2149  *
2150  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2151  * mark_inode_dirty_sync.
2152  *
2153  * Put the inode on the super block's dirty list.
2154  *
2155  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2156  * dirty list only if it is hashed or if it refers to a blockdev.
2157  * If it was not hashed, it will never be added to the dirty list
2158  * even if it is later hashed, as it will have been marked dirty already.
2159  *
2160  * In short, make sure you hash any inodes _before_ you start marking
2161  * them dirty.
2162  *
2163  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2164  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2165  * the kernel-internal blockdev inode represents the dirtying time of the
2166  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2167  * page->mapping->host, so the page-dirtying time is recorded in the internal
2168  * blockdev inode.
2169  */
__mark_inode_dirty(struct inode * inode,int flags)2170 void __mark_inode_dirty(struct inode *inode, int flags)
2171 {
2172 	struct super_block *sb = inode->i_sb;
2173 	int dirtytime;
2174 
2175 	trace_writeback_mark_inode_dirty(inode, flags);
2176 
2177 	/*
2178 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2179 	 * dirty the inode itself
2180 	 */
2181 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2182 		trace_writeback_dirty_inode_start(inode, flags);
2183 
2184 		if (sb->s_op->dirty_inode)
2185 			sb->s_op->dirty_inode(inode, flags);
2186 
2187 		trace_writeback_dirty_inode(inode, flags);
2188 	}
2189 	if (flags & I_DIRTY_INODE)
2190 		flags &= ~I_DIRTY_TIME;
2191 	dirtytime = flags & I_DIRTY_TIME;
2192 
2193 	/*
2194 	 * Paired with smp_mb() in __writeback_single_inode() for the
2195 	 * following lockless i_state test.  See there for details.
2196 	 */
2197 	smp_mb();
2198 
2199 	if (((inode->i_state & flags) == flags) ||
2200 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2201 		return;
2202 
2203 	if (unlikely(block_dump))
2204 		block_dump___mark_inode_dirty(inode);
2205 
2206 	spin_lock(&inode->i_lock);
2207 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2208 		goto out_unlock_inode;
2209 	if ((inode->i_state & flags) != flags) {
2210 		const int was_dirty = inode->i_state & I_DIRTY;
2211 
2212 		inode_attach_wb(inode, NULL);
2213 
2214 		if (flags & I_DIRTY_INODE)
2215 			inode->i_state &= ~I_DIRTY_TIME;
2216 		inode->i_state |= flags;
2217 
2218 		/*
2219 		 * If the inode is queued for writeback by flush worker, just
2220 		 * update its dirty state. Once the flush worker is done with
2221 		 * the inode it will place it on the appropriate superblock
2222 		 * list, based upon its state.
2223 		 */
2224 		if (inode->i_state & I_SYNC_QUEUED)
2225 			goto out_unlock_inode;
2226 
2227 		/*
2228 		 * Only add valid (hashed) inodes to the superblock's
2229 		 * dirty list.  Add blockdev inodes as well.
2230 		 */
2231 		if (!S_ISBLK(inode->i_mode)) {
2232 			if (inode_unhashed(inode))
2233 				goto out_unlock_inode;
2234 		}
2235 		if (inode->i_state & I_FREEING)
2236 			goto out_unlock_inode;
2237 
2238 		/*
2239 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2240 		 * reposition it (that would break b_dirty time-ordering).
2241 		 */
2242 		if (!was_dirty) {
2243 			struct bdi_writeback *wb;
2244 			struct list_head *dirty_list;
2245 			bool wakeup_bdi = false;
2246 
2247 			wb = locked_inode_to_wb_and_lock_list(inode);
2248 
2249 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2250 			     !test_bit(WB_registered, &wb->state),
2251 			     "bdi-%s not registered\n", wb->bdi->name);
2252 
2253 			inode->dirtied_when = jiffies;
2254 			if (dirtytime)
2255 				inode->dirtied_time_when = jiffies;
2256 
2257 			if (inode->i_state & I_DIRTY)
2258 				dirty_list = &wb->b_dirty;
2259 			else
2260 				dirty_list = &wb->b_dirty_time;
2261 
2262 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2263 							       dirty_list);
2264 
2265 			spin_unlock(&wb->list_lock);
2266 			trace_writeback_dirty_inode_enqueue(inode);
2267 
2268 			/*
2269 			 * If this is the first dirty inode for this bdi,
2270 			 * we have to wake-up the corresponding bdi thread
2271 			 * to make sure background write-back happens
2272 			 * later.
2273 			 */
2274 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2275 				wb_wakeup_delayed(wb);
2276 			return;
2277 		}
2278 	}
2279 out_unlock_inode:
2280 	spin_unlock(&inode->i_lock);
2281 }
2282 EXPORT_SYMBOL(__mark_inode_dirty);
2283 
2284 /*
2285  * The @s_sync_lock is used to serialise concurrent sync operations
2286  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2287  * Concurrent callers will block on the s_sync_lock rather than doing contending
2288  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2289  * has been issued up to the time this function is enter is guaranteed to be
2290  * completed by the time we have gained the lock and waited for all IO that is
2291  * in progress regardless of the order callers are granted the lock.
2292  */
wait_sb_inodes(struct super_block * sb)2293 static void wait_sb_inodes(struct super_block *sb)
2294 {
2295 	LIST_HEAD(sync_list);
2296 
2297 	/*
2298 	 * We need to be protected against the filesystem going from
2299 	 * r/o to r/w or vice versa.
2300 	 */
2301 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2302 
2303 	mutex_lock(&sb->s_sync_lock);
2304 
2305 	/*
2306 	 * Splice the writeback list onto a temporary list to avoid waiting on
2307 	 * inodes that have started writeback after this point.
2308 	 *
2309 	 * Use rcu_read_lock() to keep the inodes around until we have a
2310 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2311 	 * the local list because inodes can be dropped from either by writeback
2312 	 * completion.
2313 	 */
2314 	rcu_read_lock();
2315 	spin_lock_irq(&sb->s_inode_wblist_lock);
2316 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2317 
2318 	/*
2319 	 * Data integrity sync. Must wait for all pages under writeback, because
2320 	 * there may have been pages dirtied before our sync call, but which had
2321 	 * writeout started before we write it out.  In which case, the inode
2322 	 * may not be on the dirty list, but we still have to wait for that
2323 	 * writeout.
2324 	 */
2325 	while (!list_empty(&sync_list)) {
2326 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2327 						       i_wb_list);
2328 		struct address_space *mapping = inode->i_mapping;
2329 
2330 		/*
2331 		 * Move each inode back to the wb list before we drop the lock
2332 		 * to preserve consistency between i_wb_list and the mapping
2333 		 * writeback tag. Writeback completion is responsible to remove
2334 		 * the inode from either list once the writeback tag is cleared.
2335 		 */
2336 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2337 
2338 		/*
2339 		 * The mapping can appear untagged while still on-list since we
2340 		 * do not have the mapping lock. Skip it here, wb completion
2341 		 * will remove it.
2342 		 */
2343 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2344 			continue;
2345 
2346 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2347 
2348 		spin_lock(&inode->i_lock);
2349 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2350 			spin_unlock(&inode->i_lock);
2351 
2352 			spin_lock_irq(&sb->s_inode_wblist_lock);
2353 			continue;
2354 		}
2355 		__iget(inode);
2356 		spin_unlock(&inode->i_lock);
2357 		rcu_read_unlock();
2358 
2359 		/*
2360 		 * We keep the error status of individual mapping so that
2361 		 * applications can catch the writeback error using fsync(2).
2362 		 * See filemap_fdatawait_keep_errors() for details.
2363 		 */
2364 		filemap_fdatawait_keep_errors(mapping);
2365 
2366 		cond_resched();
2367 
2368 		iput(inode);
2369 
2370 		rcu_read_lock();
2371 		spin_lock_irq(&sb->s_inode_wblist_lock);
2372 	}
2373 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2374 	rcu_read_unlock();
2375 	mutex_unlock(&sb->s_sync_lock);
2376 }
2377 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2378 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2379 				     enum wb_reason reason, bool skip_if_busy)
2380 {
2381 	DEFINE_WB_COMPLETION_ONSTACK(done);
2382 	struct wb_writeback_work work = {
2383 		.sb			= sb,
2384 		.sync_mode		= WB_SYNC_NONE,
2385 		.tagged_writepages	= 1,
2386 		.done			= &done,
2387 		.nr_pages		= nr,
2388 		.reason			= reason,
2389 	};
2390 	struct backing_dev_info *bdi = sb->s_bdi;
2391 
2392 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2393 		return;
2394 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2395 
2396 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2397 	wb_wait_for_completion(bdi, &done);
2398 }
2399 
2400 /**
2401  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2402  * @sb: the superblock
2403  * @nr: the number of pages to write
2404  * @reason: reason why some writeback work initiated
2405  *
2406  * Start writeback on some inodes on this super_block. No guarantees are made
2407  * on how many (if any) will be written, and this function does not wait
2408  * for IO completion of submitted IO.
2409  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2410 void writeback_inodes_sb_nr(struct super_block *sb,
2411 			    unsigned long nr,
2412 			    enum wb_reason reason)
2413 {
2414 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2415 }
2416 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2417 
2418 /**
2419  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2420  * @sb: the superblock
2421  * @reason: reason why some writeback work was initiated
2422  *
2423  * Start writeback on some inodes on this super_block. No guarantees are made
2424  * on how many (if any) will be written, and this function does not wait
2425  * for IO completion of submitted IO.
2426  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2427 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2428 {
2429 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2430 }
2431 EXPORT_SYMBOL(writeback_inodes_sb);
2432 
2433 /**
2434  * try_to_writeback_inodes_sb - try to start writeback if none underway
2435  * @sb: the superblock
2436  * @reason: reason why some writeback work was initiated
2437  *
2438  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2439  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2440 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2441 {
2442 	if (!down_read_trylock(&sb->s_umount))
2443 		return;
2444 
2445 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2446 	up_read(&sb->s_umount);
2447 }
2448 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2449 
2450 /**
2451  * sync_inodes_sb	-	sync sb inode pages
2452  * @sb: the superblock
2453  *
2454  * This function writes and waits on any dirty inode belonging to this
2455  * super_block.
2456  */
sync_inodes_sb(struct super_block * sb)2457 void sync_inodes_sb(struct super_block *sb)
2458 {
2459 	DEFINE_WB_COMPLETION_ONSTACK(done);
2460 	struct wb_writeback_work work = {
2461 		.sb		= sb,
2462 		.sync_mode	= WB_SYNC_ALL,
2463 		.nr_pages	= LONG_MAX,
2464 		.range_cyclic	= 0,
2465 		.done		= &done,
2466 		.reason		= WB_REASON_SYNC,
2467 		.for_sync	= 1,
2468 	};
2469 	struct backing_dev_info *bdi = sb->s_bdi;
2470 
2471 	/*
2472 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2473 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2474 	 * bdi_has_dirty() need to be written out too.
2475 	 */
2476 	if (bdi == &noop_backing_dev_info)
2477 		return;
2478 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2479 
2480 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2481 	bdi_down_write_wb_switch_rwsem(bdi);
2482 	bdi_split_work_to_wbs(bdi, &work, false);
2483 	wb_wait_for_completion(bdi, &done);
2484 	bdi_up_write_wb_switch_rwsem(bdi);
2485 
2486 	wait_sb_inodes(sb);
2487 }
2488 EXPORT_SYMBOL(sync_inodes_sb);
2489 
2490 /**
2491  * write_inode_now	-	write an inode to disk
2492  * @inode: inode to write to disk
2493  * @sync: whether the write should be synchronous or not
2494  *
2495  * This function commits an inode to disk immediately if it is dirty. This is
2496  * primarily needed by knfsd.
2497  *
2498  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2499  */
write_inode_now(struct inode * inode,int sync)2500 int write_inode_now(struct inode *inode, int sync)
2501 {
2502 	struct writeback_control wbc = {
2503 		.nr_to_write = LONG_MAX,
2504 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2505 		.range_start = 0,
2506 		.range_end = LLONG_MAX,
2507 	};
2508 
2509 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2510 		wbc.nr_to_write = 0;
2511 
2512 	might_sleep();
2513 	return writeback_single_inode(inode, &wbc);
2514 }
2515 EXPORT_SYMBOL(write_inode_now);
2516 
2517 /**
2518  * sync_inode - write an inode and its pages to disk.
2519  * @inode: the inode to sync
2520  * @wbc: controls the writeback mode
2521  *
2522  * sync_inode() will write an inode and its pages to disk.  It will also
2523  * correctly update the inode on its superblock's dirty inode lists and will
2524  * update inode->i_state.
2525  *
2526  * The caller must have a ref on the inode.
2527  */
sync_inode(struct inode * inode,struct writeback_control * wbc)2528 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2529 {
2530 	return writeback_single_inode(inode, wbc);
2531 }
2532 EXPORT_SYMBOL(sync_inode);
2533 
2534 /**
2535  * sync_inode_metadata - write an inode to disk
2536  * @inode: the inode to sync
2537  * @wait: wait for I/O to complete.
2538  *
2539  * Write an inode to disk and adjust its dirty state after completion.
2540  *
2541  * Note: only writes the actual inode, no associated data or other metadata.
2542  */
sync_inode_metadata(struct inode * inode,int wait)2543 int sync_inode_metadata(struct inode *inode, int wait)
2544 {
2545 	struct writeback_control wbc = {
2546 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2547 		.nr_to_write = 0, /* metadata-only */
2548 	};
2549 
2550 	return sync_inode(inode, &wbc);
2551 }
2552 EXPORT_SYMBOL(sync_inode_metadata);
2553