• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/blkdev.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/crc32.h>
16 #include <linux/iomap.h>
17 
18 #include "gfs2.h"
19 #include "incore.h"
20 #include "bmap.h"
21 #include "glock.h"
22 #include "inode.h"
23 #include "meta_io.h"
24 #include "quota.h"
25 #include "rgrp.h"
26 #include "log.h"
27 #include "super.h"
28 #include "trans.h"
29 #include "dir.h"
30 #include "util.h"
31 #include "aops.h"
32 #include "trace_gfs2.h"
33 
34 /* This doesn't need to be that large as max 64 bit pointers in a 4k
35  * block is 512, so __u16 is fine for that. It saves stack space to
36  * keep it small.
37  */
38 struct metapath {
39 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
40 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
41 	int mp_fheight; /* find_metapath height */
42 	int mp_aheight; /* actual height (lookup height) */
43 };
44 
45 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
46 
47 /**
48  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
49  * @ip: the inode
50  * @dibh: the dinode buffer
51  * @block: the block number that was allocated
52  * @page: The (optional) page. This is looked up if @page is NULL
53  *
54  * Returns: errno
55  */
56 
gfs2_unstuffer_page(struct gfs2_inode * ip,struct buffer_head * dibh,u64 block,struct page * page)57 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
58 			       u64 block, struct page *page)
59 {
60 	struct inode *inode = &ip->i_inode;
61 	struct buffer_head *bh;
62 	int release = 0;
63 
64 	if (!page || page->index) {
65 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
66 		if (!page)
67 			return -ENOMEM;
68 		release = 1;
69 	}
70 
71 	if (!PageUptodate(page)) {
72 		void *kaddr = kmap(page);
73 		u64 dsize = i_size_read(inode);
74 
75 		if (dsize > gfs2_max_stuffed_size(ip))
76 			dsize = gfs2_max_stuffed_size(ip);
77 
78 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
79 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
80 		kunmap(page);
81 
82 		SetPageUptodate(page);
83 	}
84 
85 	if (!page_has_buffers(page))
86 		create_empty_buffers(page, BIT(inode->i_blkbits),
87 				     BIT(BH_Uptodate));
88 
89 	bh = page_buffers(page);
90 
91 	if (!buffer_mapped(bh))
92 		map_bh(bh, inode->i_sb, block);
93 
94 	set_buffer_uptodate(bh);
95 	if (gfs2_is_jdata(ip))
96 		gfs2_trans_add_data(ip->i_gl, bh);
97 	else {
98 		mark_buffer_dirty(bh);
99 		gfs2_ordered_add_inode(ip);
100 	}
101 
102 	if (release) {
103 		unlock_page(page);
104 		put_page(page);
105 	}
106 
107 	return 0;
108 }
109 
110 /**
111  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
112  * @ip: The GFS2 inode to unstuff
113  * @page: The (optional) page. This is looked up if the @page is NULL
114  *
115  * This routine unstuffs a dinode and returns it to a "normal" state such
116  * that the height can be grown in the traditional way.
117  *
118  * Returns: errno
119  */
120 
gfs2_unstuff_dinode(struct gfs2_inode * ip,struct page * page)121 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
122 {
123 	struct buffer_head *bh, *dibh;
124 	struct gfs2_dinode *di;
125 	u64 block = 0;
126 	int isdir = gfs2_is_dir(ip);
127 	int error;
128 
129 	down_write(&ip->i_rw_mutex);
130 
131 	error = gfs2_meta_inode_buffer(ip, &dibh);
132 	if (error)
133 		goto out;
134 
135 	if (i_size_read(&ip->i_inode)) {
136 		/* Get a free block, fill it with the stuffed data,
137 		   and write it out to disk */
138 
139 		unsigned int n = 1;
140 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
141 		if (error)
142 			goto out_brelse;
143 		if (isdir) {
144 			gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1);
145 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
146 			if (error)
147 				goto out_brelse;
148 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
149 					      dibh, sizeof(struct gfs2_dinode));
150 			brelse(bh);
151 		} else {
152 			error = gfs2_unstuffer_page(ip, dibh, block, page);
153 			if (error)
154 				goto out_brelse;
155 		}
156 	}
157 
158 	/*  Set up the pointer to the new block  */
159 
160 	gfs2_trans_add_meta(ip->i_gl, dibh);
161 	di = (struct gfs2_dinode *)dibh->b_data;
162 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
163 
164 	if (i_size_read(&ip->i_inode)) {
165 		*(__be64 *)(di + 1) = cpu_to_be64(block);
166 		gfs2_add_inode_blocks(&ip->i_inode, 1);
167 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
168 	}
169 
170 	ip->i_height = 1;
171 	di->di_height = cpu_to_be16(1);
172 
173 out_brelse:
174 	brelse(dibh);
175 out:
176 	up_write(&ip->i_rw_mutex);
177 	return error;
178 }
179 
180 
181 /**
182  * find_metapath - Find path through the metadata tree
183  * @sdp: The superblock
184  * @block: The disk block to look up
185  * @mp: The metapath to return the result in
186  * @height: The pre-calculated height of the metadata tree
187  *
188  *   This routine returns a struct metapath structure that defines a path
189  *   through the metadata of inode "ip" to get to block "block".
190  *
191  *   Example:
192  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
193  *   filesystem with a blocksize of 4096.
194  *
195  *   find_metapath() would return a struct metapath structure set to:
196  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
197  *
198  *   That means that in order to get to the block containing the byte at
199  *   offset 101342453, we would load the indirect block pointed to by pointer
200  *   0 in the dinode.  We would then load the indirect block pointed to by
201  *   pointer 48 in that indirect block.  We would then load the data block
202  *   pointed to by pointer 165 in that indirect block.
203  *
204  *             ----------------------------------------
205  *             | Dinode |                             |
206  *             |        |                            4|
207  *             |        |0 1 2 3 4 5                 9|
208  *             |        |                            6|
209  *             ----------------------------------------
210  *                       |
211  *                       |
212  *                       V
213  *             ----------------------------------------
214  *             | Indirect Block                       |
215  *             |                                     5|
216  *             |            4 4 4 4 4 5 5            1|
217  *             |0           5 6 7 8 9 0 1            2|
218  *             ----------------------------------------
219  *                                |
220  *                                |
221  *                                V
222  *             ----------------------------------------
223  *             | Indirect Block                       |
224  *             |                         1 1 1 1 1   5|
225  *             |                         6 6 6 6 6   1|
226  *             |0                        3 4 5 6 7   2|
227  *             ----------------------------------------
228  *                                           |
229  *                                           |
230  *                                           V
231  *             ----------------------------------------
232  *             | Data block containing offset         |
233  *             |            101342453                 |
234  *             |                                      |
235  *             |                                      |
236  *             ----------------------------------------
237  *
238  */
239 
find_metapath(const struct gfs2_sbd * sdp,u64 block,struct metapath * mp,unsigned int height)240 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
241 			  struct metapath *mp, unsigned int height)
242 {
243 	unsigned int i;
244 
245 	mp->mp_fheight = height;
246 	for (i = height; i--;)
247 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
248 }
249 
metapath_branch_start(const struct metapath * mp)250 static inline unsigned int metapath_branch_start(const struct metapath *mp)
251 {
252 	if (mp->mp_list[0] == 0)
253 		return 2;
254 	return 1;
255 }
256 
257 /**
258  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
259  * @height: The metadata height (0 = dinode)
260  * @mp: The metapath
261  */
metaptr1(unsigned int height,const struct metapath * mp)262 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
263 {
264 	struct buffer_head *bh = mp->mp_bh[height];
265 	if (height == 0)
266 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
267 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
268 }
269 
270 /**
271  * metapointer - Return pointer to start of metadata in a buffer
272  * @height: The metadata height (0 = dinode)
273  * @mp: The metapath
274  *
275  * Return a pointer to the block number of the next height of the metadata
276  * tree given a buffer containing the pointer to the current height of the
277  * metadata tree.
278  */
279 
metapointer(unsigned int height,const struct metapath * mp)280 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
281 {
282 	__be64 *p = metaptr1(height, mp);
283 	return p + mp->mp_list[height];
284 }
285 
metaend(unsigned int height,const struct metapath * mp)286 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
287 {
288 	const struct buffer_head *bh = mp->mp_bh[height];
289 	return (const __be64 *)(bh->b_data + bh->b_size);
290 }
291 
clone_metapath(struct metapath * clone,struct metapath * mp)292 static void clone_metapath(struct metapath *clone, struct metapath *mp)
293 {
294 	unsigned int hgt;
295 
296 	*clone = *mp;
297 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
298 		get_bh(clone->mp_bh[hgt]);
299 }
300 
gfs2_metapath_ra(struct gfs2_glock * gl,__be64 * start,__be64 * end)301 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
302 {
303 	const __be64 *t;
304 
305 	for (t = start; t < end; t++) {
306 		struct buffer_head *rabh;
307 
308 		if (!*t)
309 			continue;
310 
311 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
312 		if (trylock_buffer(rabh)) {
313 			if (!buffer_uptodate(rabh)) {
314 				rabh->b_end_io = end_buffer_read_sync;
315 				submit_bh(REQ_OP_READ,
316 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
317 					  rabh);
318 				continue;
319 			}
320 			unlock_buffer(rabh);
321 		}
322 		brelse(rabh);
323 	}
324 }
325 
__fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,unsigned int x,unsigned int h)326 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
327 			     unsigned int x, unsigned int h)
328 {
329 	for (; x < h; x++) {
330 		__be64 *ptr = metapointer(x, mp);
331 		u64 dblock = be64_to_cpu(*ptr);
332 		int ret;
333 
334 		if (!dblock)
335 			break;
336 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
337 		if (ret)
338 			return ret;
339 	}
340 	mp->mp_aheight = x + 1;
341 	return 0;
342 }
343 
344 /**
345  * lookup_metapath - Walk the metadata tree to a specific point
346  * @ip: The inode
347  * @mp: The metapath
348  *
349  * Assumes that the inode's buffer has already been looked up and
350  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
351  * by find_metapath().
352  *
353  * If this function encounters part of the tree which has not been
354  * allocated, it returns the current height of the tree at the point
355  * at which it found the unallocated block. Blocks which are found are
356  * added to the mp->mp_bh[] list.
357  *
358  * Returns: error
359  */
360 
lookup_metapath(struct gfs2_inode * ip,struct metapath * mp)361 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
362 {
363 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
364 }
365 
366 /**
367  * fillup_metapath - fill up buffers for the metadata path to a specific height
368  * @ip: The inode
369  * @mp: The metapath
370  * @h: The height to which it should be mapped
371  *
372  * Similar to lookup_metapath, but does lookups for a range of heights
373  *
374  * Returns: error or the number of buffers filled
375  */
376 
fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,int h)377 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
378 {
379 	unsigned int x = 0;
380 	int ret;
381 
382 	if (h) {
383 		/* find the first buffer we need to look up. */
384 		for (x = h - 1; x > 0; x--) {
385 			if (mp->mp_bh[x])
386 				break;
387 		}
388 	}
389 	ret = __fillup_metapath(ip, mp, x, h);
390 	if (ret)
391 		return ret;
392 	return mp->mp_aheight - x - 1;
393 }
394 
metapath_to_block(struct gfs2_sbd * sdp,struct metapath * mp)395 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
396 {
397 	sector_t factor = 1, block = 0;
398 	int hgt;
399 
400 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
401 		if (hgt < mp->mp_aheight)
402 			block += mp->mp_list[hgt] * factor;
403 		factor *= sdp->sd_inptrs;
404 	}
405 	return block;
406 }
407 
release_metapath(struct metapath * mp)408 static void release_metapath(struct metapath *mp)
409 {
410 	int i;
411 
412 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
413 		if (mp->mp_bh[i] == NULL)
414 			break;
415 		brelse(mp->mp_bh[i]);
416 		mp->mp_bh[i] = NULL;
417 	}
418 }
419 
420 /**
421  * gfs2_extent_length - Returns length of an extent of blocks
422  * @bh: The metadata block
423  * @ptr: Current position in @bh
424  * @limit: Max extent length to return
425  * @eob: Set to 1 if we hit "end of block"
426  *
427  * Returns: The length of the extent (minimum of one block)
428  */
429 
gfs2_extent_length(struct buffer_head * bh,__be64 * ptr,size_t limit,int * eob)430 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
431 {
432 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
433 	const __be64 *first = ptr;
434 	u64 d = be64_to_cpu(*ptr);
435 
436 	*eob = 0;
437 	do {
438 		ptr++;
439 		if (ptr >= end)
440 			break;
441 		d++;
442 	} while(be64_to_cpu(*ptr) == d);
443 	if (ptr >= end)
444 		*eob = 1;
445 	return ptr - first;
446 }
447 
448 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
449 
450 /*
451  * gfs2_metadata_walker - walk an indirect block
452  * @mp: Metapath to indirect block
453  * @ptrs: Number of pointers to look at
454  *
455  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
456  * indirect block to follow.
457  */
458 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
459 						   unsigned int ptrs);
460 
461 /*
462  * gfs2_walk_metadata - walk a tree of indirect blocks
463  * @inode: The inode
464  * @mp: Starting point of walk
465  * @max_len: Maximum number of blocks to walk
466  * @walker: Called during the walk
467  *
468  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
469  * past the end of metadata, and a negative error code otherwise.
470  */
471 
gfs2_walk_metadata(struct inode * inode,struct metapath * mp,u64 max_len,gfs2_metadata_walker walker)472 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
473 		u64 max_len, gfs2_metadata_walker walker)
474 {
475 	struct gfs2_inode *ip = GFS2_I(inode);
476 	struct gfs2_sbd *sdp = GFS2_SB(inode);
477 	u64 factor = 1;
478 	unsigned int hgt;
479 	int ret;
480 
481 	/*
482 	 * The walk starts in the lowest allocated indirect block, which may be
483 	 * before the position indicated by @mp.  Adjust @max_len accordingly
484 	 * to avoid a short walk.
485 	 */
486 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
487 		max_len += mp->mp_list[hgt] * factor;
488 		mp->mp_list[hgt] = 0;
489 		factor *= sdp->sd_inptrs;
490 	}
491 
492 	for (;;) {
493 		u16 start = mp->mp_list[hgt];
494 		enum walker_status status;
495 		unsigned int ptrs;
496 		u64 len;
497 
498 		/* Walk indirect block. */
499 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
500 		len = ptrs * factor;
501 		if (len > max_len)
502 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
503 		status = walker(mp, ptrs);
504 		switch (status) {
505 		case WALK_STOP:
506 			return 1;
507 		case WALK_FOLLOW:
508 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
509 			ptrs = mp->mp_list[hgt] - start;
510 			len = ptrs * factor;
511 			break;
512 		case WALK_CONTINUE:
513 			break;
514 		}
515 		if (len >= max_len)
516 			break;
517 		max_len -= len;
518 		if (status == WALK_FOLLOW)
519 			goto fill_up_metapath;
520 
521 lower_metapath:
522 		/* Decrease height of metapath. */
523 		brelse(mp->mp_bh[hgt]);
524 		mp->mp_bh[hgt] = NULL;
525 		mp->mp_list[hgt] = 0;
526 		if (!hgt)
527 			break;
528 		hgt--;
529 		factor *= sdp->sd_inptrs;
530 
531 		/* Advance in metadata tree. */
532 		(mp->mp_list[hgt])++;
533 		if (hgt) {
534 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
535 				goto lower_metapath;
536 		} else {
537 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
538 				break;
539 		}
540 
541 fill_up_metapath:
542 		/* Increase height of metapath. */
543 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
544 		if (ret < 0)
545 			return ret;
546 		hgt += ret;
547 		for (; ret; ret--)
548 			do_div(factor, sdp->sd_inptrs);
549 		mp->mp_aheight = hgt + 1;
550 	}
551 	return 0;
552 }
553 
gfs2_hole_walker(struct metapath * mp,unsigned int ptrs)554 static enum walker_status gfs2_hole_walker(struct metapath *mp,
555 					   unsigned int ptrs)
556 {
557 	const __be64 *start, *ptr, *end;
558 	unsigned int hgt;
559 
560 	hgt = mp->mp_aheight - 1;
561 	start = metapointer(hgt, mp);
562 	end = start + ptrs;
563 
564 	for (ptr = start; ptr < end; ptr++) {
565 		if (*ptr) {
566 			mp->mp_list[hgt] += ptr - start;
567 			if (mp->mp_aheight == mp->mp_fheight)
568 				return WALK_STOP;
569 			return WALK_FOLLOW;
570 		}
571 	}
572 	return WALK_CONTINUE;
573 }
574 
575 /**
576  * gfs2_hole_size - figure out the size of a hole
577  * @inode: The inode
578  * @lblock: The logical starting block number
579  * @len: How far to look (in blocks)
580  * @mp: The metapath at lblock
581  * @iomap: The iomap to store the hole size in
582  *
583  * This function modifies @mp.
584  *
585  * Returns: errno on error
586  */
gfs2_hole_size(struct inode * inode,sector_t lblock,u64 len,struct metapath * mp,struct iomap * iomap)587 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
588 			  struct metapath *mp, struct iomap *iomap)
589 {
590 	struct metapath clone;
591 	u64 hole_size;
592 	int ret;
593 
594 	clone_metapath(&clone, mp);
595 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
596 	if (ret < 0)
597 		goto out;
598 
599 	if (ret == 1)
600 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
601 	else
602 		hole_size = len;
603 	iomap->length = hole_size << inode->i_blkbits;
604 	ret = 0;
605 
606 out:
607 	release_metapath(&clone);
608 	return ret;
609 }
610 
gfs2_indirect_init(struct metapath * mp,struct gfs2_glock * gl,unsigned int i,unsigned offset,u64 bn)611 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
612 					 struct gfs2_glock *gl, unsigned int i,
613 					 unsigned offset, u64 bn)
614 {
615 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
616 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
617 				 sizeof(struct gfs2_dinode)));
618 	BUG_ON(i < 1);
619 	BUG_ON(mp->mp_bh[i] != NULL);
620 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
621 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
622 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
623 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
624 	ptr += offset;
625 	*ptr = cpu_to_be64(bn);
626 	return ptr;
627 }
628 
629 enum alloc_state {
630 	ALLOC_DATA = 0,
631 	ALLOC_GROW_DEPTH = 1,
632 	ALLOC_GROW_HEIGHT = 2,
633 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
634 };
635 
636 /**
637  * gfs2_iomap_alloc - Build a metadata tree of the requested height
638  * @inode: The GFS2 inode
639  * @iomap: The iomap structure
640  * @flags: iomap flags
641  * @mp: The metapath, with proper height information calculated
642  *
643  * In this routine we may have to alloc:
644  *   i) Indirect blocks to grow the metadata tree height
645  *  ii) Indirect blocks to fill in lower part of the metadata tree
646  * iii) Data blocks
647  *
648  * This function is called after gfs2_iomap_get, which works out the
649  * total number of blocks which we need via gfs2_alloc_size.
650  *
651  * We then do the actual allocation asking for an extent at a time (if
652  * enough contiguous free blocks are available, there will only be one
653  * allocation request per call) and uses the state machine to initialise
654  * the blocks in order.
655  *
656  * Right now, this function will allocate at most one indirect block
657  * worth of data -- with a default block size of 4K, that's slightly
658  * less than 2M.  If this limitation is ever removed to allow huge
659  * allocations, we would probably still want to limit the iomap size we
660  * return to avoid stalling other tasks during huge writes; the next
661  * iomap iteration would then find the blocks already allocated.
662  *
663  * Returns: errno on error
664  */
665 
gfs2_iomap_alloc(struct inode * inode,struct iomap * iomap,unsigned flags,struct metapath * mp)666 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
667 			    unsigned flags, struct metapath *mp)
668 {
669 	struct gfs2_inode *ip = GFS2_I(inode);
670 	struct gfs2_sbd *sdp = GFS2_SB(inode);
671 	struct buffer_head *dibh = mp->mp_bh[0];
672 	u64 bn;
673 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
674 	size_t dblks = iomap->length >> inode->i_blkbits;
675 	const unsigned end_of_metadata = mp->mp_fheight - 1;
676 	int ret;
677 	enum alloc_state state;
678 	__be64 *ptr;
679 	__be64 zero_bn = 0;
680 
681 	BUG_ON(mp->mp_aheight < 1);
682 	BUG_ON(dibh == NULL);
683 	BUG_ON(dblks < 1);
684 
685 	gfs2_trans_add_meta(ip->i_gl, dibh);
686 
687 	down_write(&ip->i_rw_mutex);
688 
689 	if (mp->mp_fheight == mp->mp_aheight) {
690 		/* Bottom indirect block exists */
691 		state = ALLOC_DATA;
692 	} else {
693 		/* Need to allocate indirect blocks */
694 		if (mp->mp_fheight == ip->i_height) {
695 			/* Writing into existing tree, extend tree down */
696 			iblks = mp->mp_fheight - mp->mp_aheight;
697 			state = ALLOC_GROW_DEPTH;
698 		} else {
699 			/* Building up tree height */
700 			state = ALLOC_GROW_HEIGHT;
701 			iblks = mp->mp_fheight - ip->i_height;
702 			branch_start = metapath_branch_start(mp);
703 			iblks += (mp->mp_fheight - branch_start);
704 		}
705 	}
706 
707 	/* start of the second part of the function (state machine) */
708 
709 	blks = dblks + iblks;
710 	i = mp->mp_aheight;
711 	do {
712 		n = blks - alloced;
713 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
714 		if (ret)
715 			goto out;
716 		alloced += n;
717 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
718 			gfs2_trans_add_unrevoke(sdp, bn, n);
719 		switch (state) {
720 		/* Growing height of tree */
721 		case ALLOC_GROW_HEIGHT:
722 			if (i == 1) {
723 				ptr = (__be64 *)(dibh->b_data +
724 						 sizeof(struct gfs2_dinode));
725 				zero_bn = *ptr;
726 			}
727 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
728 			     i++, n--)
729 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
730 			if (i - 1 == mp->mp_fheight - ip->i_height) {
731 				i--;
732 				gfs2_buffer_copy_tail(mp->mp_bh[i],
733 						sizeof(struct gfs2_meta_header),
734 						dibh, sizeof(struct gfs2_dinode));
735 				gfs2_buffer_clear_tail(dibh,
736 						sizeof(struct gfs2_dinode) +
737 						sizeof(__be64));
738 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
739 					sizeof(struct gfs2_meta_header));
740 				*ptr = zero_bn;
741 				state = ALLOC_GROW_DEPTH;
742 				for(i = branch_start; i < mp->mp_fheight; i++) {
743 					if (mp->mp_bh[i] == NULL)
744 						break;
745 					brelse(mp->mp_bh[i]);
746 					mp->mp_bh[i] = NULL;
747 				}
748 				i = branch_start;
749 			}
750 			if (n == 0)
751 				break;
752 		/* Branching from existing tree */
753 		case ALLOC_GROW_DEPTH:
754 			if (i > 1 && i < mp->mp_fheight)
755 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
756 			for (; i < mp->mp_fheight && n > 0; i++, n--)
757 				gfs2_indirect_init(mp, ip->i_gl, i,
758 						   mp->mp_list[i-1], bn++);
759 			if (i == mp->mp_fheight)
760 				state = ALLOC_DATA;
761 			if (n == 0)
762 				break;
763 		/* Tree complete, adding data blocks */
764 		case ALLOC_DATA:
765 			BUG_ON(n > dblks);
766 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
767 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
768 			dblks = n;
769 			ptr = metapointer(end_of_metadata, mp);
770 			iomap->addr = bn << inode->i_blkbits;
771 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
772 			while (n-- > 0)
773 				*ptr++ = cpu_to_be64(bn++);
774 			break;
775 		}
776 	} while (iomap->addr == IOMAP_NULL_ADDR);
777 
778 	iomap->type = IOMAP_MAPPED;
779 	iomap->length = (u64)dblks << inode->i_blkbits;
780 	ip->i_height = mp->mp_fheight;
781 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
782 	gfs2_dinode_out(ip, dibh->b_data);
783 out:
784 	up_write(&ip->i_rw_mutex);
785 	return ret;
786 }
787 
788 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
789 
790 /**
791  * gfs2_alloc_size - Compute the maximum allocation size
792  * @inode: The inode
793  * @mp: The metapath
794  * @size: Requested size in blocks
795  *
796  * Compute the maximum size of the next allocation at @mp.
797  *
798  * Returns: size in blocks
799  */
gfs2_alloc_size(struct inode * inode,struct metapath * mp,u64 size)800 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
801 {
802 	struct gfs2_inode *ip = GFS2_I(inode);
803 	struct gfs2_sbd *sdp = GFS2_SB(inode);
804 	const __be64 *first, *ptr, *end;
805 
806 	/*
807 	 * For writes to stuffed files, this function is called twice via
808 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
809 	 * first time needs to be large enough to get the reservation and
810 	 * allocation sizes right.  The size we return the second time must
811 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
812 	 */
813 
814 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
815 		unsigned int maxsize = mp->mp_fheight > 1 ?
816 			sdp->sd_inptrs : sdp->sd_diptrs;
817 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
818 		if (size > maxsize)
819 			size = maxsize;
820 		return size;
821 	}
822 
823 	first = metapointer(ip->i_height - 1, mp);
824 	end = metaend(ip->i_height - 1, mp);
825 	if (end - first > size)
826 		end = first + size;
827 	for (ptr = first; ptr < end; ptr++) {
828 		if (*ptr)
829 			break;
830 	}
831 	return ptr - first;
832 }
833 
834 /**
835  * gfs2_iomap_get - Map blocks from an inode to disk blocks
836  * @inode: The inode
837  * @pos: Starting position in bytes
838  * @length: Length to map, in bytes
839  * @flags: iomap flags
840  * @iomap: The iomap structure
841  * @mp: The metapath
842  *
843  * Returns: errno
844  */
gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)845 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
846 			  unsigned flags, struct iomap *iomap,
847 			  struct metapath *mp)
848 {
849 	struct gfs2_inode *ip = GFS2_I(inode);
850 	struct gfs2_sbd *sdp = GFS2_SB(inode);
851 	loff_t size = i_size_read(inode);
852 	__be64 *ptr;
853 	sector_t lblock;
854 	sector_t lblock_stop;
855 	int ret;
856 	int eob;
857 	u64 len;
858 	struct buffer_head *dibh = NULL, *bh;
859 	u8 height;
860 
861 	if (!length)
862 		return -EINVAL;
863 
864 	down_read(&ip->i_rw_mutex);
865 
866 	ret = gfs2_meta_inode_buffer(ip, &dibh);
867 	if (ret)
868 		goto unlock;
869 	mp->mp_bh[0] = dibh;
870 
871 	if (gfs2_is_stuffed(ip)) {
872 		if (flags & IOMAP_WRITE) {
873 			loff_t max_size = gfs2_max_stuffed_size(ip);
874 
875 			if (pos + length > max_size)
876 				goto unstuff;
877 			iomap->length = max_size;
878 		} else {
879 			if (pos >= size) {
880 				if (flags & IOMAP_REPORT) {
881 					ret = -ENOENT;
882 					goto unlock;
883 				} else {
884 					iomap->offset = pos;
885 					iomap->length = length;
886 					goto hole_found;
887 				}
888 			}
889 			iomap->length = size;
890 		}
891 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
892 			      sizeof(struct gfs2_dinode);
893 		iomap->type = IOMAP_INLINE;
894 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
895 		goto out;
896 	}
897 
898 unstuff:
899 	lblock = pos >> inode->i_blkbits;
900 	iomap->offset = lblock << inode->i_blkbits;
901 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
902 	len = lblock_stop - lblock + 1;
903 	iomap->length = len << inode->i_blkbits;
904 
905 	height = ip->i_height;
906 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
907 		height++;
908 	find_metapath(sdp, lblock, mp, height);
909 	if (height > ip->i_height || gfs2_is_stuffed(ip))
910 		goto do_alloc;
911 
912 	ret = lookup_metapath(ip, mp);
913 	if (ret)
914 		goto unlock;
915 
916 	if (mp->mp_aheight != ip->i_height)
917 		goto do_alloc;
918 
919 	ptr = metapointer(ip->i_height - 1, mp);
920 	if (*ptr == 0)
921 		goto do_alloc;
922 
923 	bh = mp->mp_bh[ip->i_height - 1];
924 	len = gfs2_extent_length(bh, ptr, len, &eob);
925 
926 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
927 	iomap->length = len << inode->i_blkbits;
928 	iomap->type = IOMAP_MAPPED;
929 	iomap->flags |= IOMAP_F_MERGED;
930 	if (eob)
931 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
932 
933 out:
934 	iomap->bdev = inode->i_sb->s_bdev;
935 unlock:
936 	up_read(&ip->i_rw_mutex);
937 	return ret;
938 
939 do_alloc:
940 	if (flags & IOMAP_REPORT) {
941 		if (pos >= size)
942 			ret = -ENOENT;
943 		else if (height == ip->i_height)
944 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
945 		else
946 			iomap->length = size - pos;
947 	} else if (flags & IOMAP_WRITE) {
948 		u64 alloc_size;
949 
950 		if (flags & IOMAP_DIRECT)
951 			goto out;  /* (see gfs2_file_direct_write) */
952 
953 		len = gfs2_alloc_size(inode, mp, len);
954 		alloc_size = len << inode->i_blkbits;
955 		if (alloc_size < iomap->length)
956 			iomap->length = alloc_size;
957 	} else {
958 		if (pos < size && height == ip->i_height)
959 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
960 	}
961 hole_found:
962 	iomap->addr = IOMAP_NULL_ADDR;
963 	iomap->type = IOMAP_HOLE;
964 	goto out;
965 }
966 
gfs2_write_lock(struct inode * inode)967 static int gfs2_write_lock(struct inode *inode)
968 {
969 	struct gfs2_inode *ip = GFS2_I(inode);
970 	struct gfs2_sbd *sdp = GFS2_SB(inode);
971 	int error;
972 
973 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
974 	error = gfs2_glock_nq(&ip->i_gh);
975 	if (error)
976 		goto out_uninit;
977 	if (&ip->i_inode == sdp->sd_rindex) {
978 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
979 
980 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
981 					   GL_NOCACHE, &m_ip->i_gh);
982 		if (error)
983 			goto out_unlock;
984 	}
985 	return 0;
986 
987 out_unlock:
988 	gfs2_glock_dq(&ip->i_gh);
989 out_uninit:
990 	gfs2_holder_uninit(&ip->i_gh);
991 	return error;
992 }
993 
gfs2_write_unlock(struct inode * inode)994 static void gfs2_write_unlock(struct inode *inode)
995 {
996 	struct gfs2_inode *ip = GFS2_I(inode);
997 	struct gfs2_sbd *sdp = GFS2_SB(inode);
998 
999 	if (&ip->i_inode == sdp->sd_rindex) {
1000 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1001 
1002 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1003 	}
1004 	gfs2_glock_dq_uninit(&ip->i_gh);
1005 }
1006 
gfs2_iomap_journaled_page_done(struct inode * inode,loff_t pos,unsigned copied,struct page * page,struct iomap * iomap)1007 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos,
1008 				unsigned copied, struct page *page,
1009 				struct iomap *iomap)
1010 {
1011 	struct gfs2_inode *ip = GFS2_I(inode);
1012 
1013 	gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1014 }
1015 
gfs2_iomap_begin_write(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)1016 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1017 				  loff_t length, unsigned flags,
1018 				  struct iomap *iomap,
1019 				  struct metapath *mp)
1020 {
1021 	struct gfs2_inode *ip = GFS2_I(inode);
1022 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1023 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1024 	bool unstuff, alloc_required;
1025 	int ret;
1026 
1027 	ret = gfs2_write_lock(inode);
1028 	if (ret)
1029 		return ret;
1030 
1031 	unstuff = gfs2_is_stuffed(ip) &&
1032 		  pos + length > gfs2_max_stuffed_size(ip);
1033 
1034 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp);
1035 	if (ret)
1036 		goto out_unlock;
1037 
1038 	alloc_required = unstuff || iomap->type == IOMAP_HOLE;
1039 
1040 	if (alloc_required || gfs2_is_jdata(ip))
1041 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1042 				       &ind_blocks);
1043 
1044 	if (alloc_required) {
1045 		struct gfs2_alloc_parms ap = {
1046 			.target = data_blocks + ind_blocks
1047 		};
1048 
1049 		ret = gfs2_quota_lock_check(ip, &ap);
1050 		if (ret)
1051 			goto out_unlock;
1052 
1053 		ret = gfs2_inplace_reserve(ip, &ap);
1054 		if (ret)
1055 			goto out_qunlock;
1056 	}
1057 
1058 	rblocks = RES_DINODE + ind_blocks;
1059 	if (gfs2_is_jdata(ip))
1060 		rblocks += data_blocks;
1061 	if (ind_blocks || data_blocks)
1062 		rblocks += RES_STATFS + RES_QUOTA;
1063 	if (inode == sdp->sd_rindex)
1064 		rblocks += 2 * RES_STATFS;
1065 	if (alloc_required)
1066 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1067 
1068 	ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits);
1069 	if (ret)
1070 		goto out_trans_fail;
1071 
1072 	if (unstuff) {
1073 		ret = gfs2_unstuff_dinode(ip, NULL);
1074 		if (ret)
1075 			goto out_trans_end;
1076 		release_metapath(mp);
1077 		ret = gfs2_iomap_get(inode, iomap->offset, iomap->length,
1078 				     flags, iomap, mp);
1079 		if (ret)
1080 			goto out_trans_end;
1081 	}
1082 
1083 	if (iomap->type == IOMAP_HOLE) {
1084 		ret = gfs2_iomap_alloc(inode, iomap, flags, mp);
1085 		if (ret) {
1086 			gfs2_trans_end(sdp);
1087 			gfs2_inplace_release(ip);
1088 			punch_hole(ip, iomap->offset, iomap->length);
1089 			goto out_qunlock;
1090 		}
1091 	}
1092 	if (!gfs2_is_stuffed(ip) && gfs2_is_jdata(ip))
1093 		iomap->page_done = gfs2_iomap_journaled_page_done;
1094 	return 0;
1095 
1096 out_trans_end:
1097 	gfs2_trans_end(sdp);
1098 out_trans_fail:
1099 	if (alloc_required)
1100 		gfs2_inplace_release(ip);
1101 out_qunlock:
1102 	if (alloc_required)
1103 		gfs2_quota_unlock(ip);
1104 out_unlock:
1105 	gfs2_write_unlock(inode);
1106 	return ret;
1107 }
1108 
gfs2_iomap_begin(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap)1109 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1110 			    unsigned flags, struct iomap *iomap)
1111 {
1112 	struct gfs2_inode *ip = GFS2_I(inode);
1113 	struct metapath mp = { .mp_aheight = 1, };
1114 	int ret;
1115 
1116 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1117 
1118 	trace_gfs2_iomap_start(ip, pos, length, flags);
1119 	if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) {
1120 		ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1121 	} else {
1122 		ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1123 
1124 		/*
1125 		 * Silently fall back to buffered I/O for stuffed files or if
1126 		 * we've hot a hole (see gfs2_file_direct_write).
1127 		 */
1128 		if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) &&
1129 		    iomap->type != IOMAP_MAPPED)
1130 			ret = -ENOTBLK;
1131 	}
1132 	if (!ret) {
1133 		get_bh(mp.mp_bh[0]);
1134 		iomap->private = mp.mp_bh[0];
1135 	}
1136 	release_metapath(&mp);
1137 	trace_gfs2_iomap_end(ip, iomap, ret);
1138 	return ret;
1139 }
1140 
gfs2_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1141 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1142 			  ssize_t written, unsigned flags, struct iomap *iomap)
1143 {
1144 	struct gfs2_inode *ip = GFS2_I(inode);
1145 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1146 	struct gfs2_trans *tr = current->journal_info;
1147 	struct buffer_head *dibh = iomap->private;
1148 
1149 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE)
1150 		goto out;
1151 
1152 	if (iomap->type != IOMAP_INLINE) {
1153 		gfs2_ordered_add_inode(ip);
1154 
1155 		if (tr->tr_num_buf_new)
1156 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1157 		else
1158 			gfs2_trans_add_meta(ip->i_gl, dibh);
1159 	}
1160 
1161 	if (inode == sdp->sd_rindex) {
1162 		adjust_fs_space(inode);
1163 		sdp->sd_rindex_uptodate = 0;
1164 	}
1165 
1166 	gfs2_trans_end(sdp);
1167 	gfs2_inplace_release(ip);
1168 
1169 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1170 		/* Deallocate blocks that were just allocated. */
1171 		loff_t blockmask = i_blocksize(inode) - 1;
1172 		loff_t end = (pos + length) & ~blockmask;
1173 
1174 		pos = (pos + written + blockmask) & ~blockmask;
1175 		if (pos < end) {
1176 			truncate_pagecache_range(inode, pos, end - 1);
1177 			punch_hole(ip, pos, end - pos);
1178 		}
1179 	}
1180 
1181 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1182 		gfs2_quota_unlock(ip);
1183 	gfs2_write_unlock(inode);
1184 
1185 out:
1186 	if (dibh)
1187 		brelse(dibh);
1188 	return 0;
1189 }
1190 
1191 const struct iomap_ops gfs2_iomap_ops = {
1192 	.iomap_begin = gfs2_iomap_begin,
1193 	.iomap_end = gfs2_iomap_end,
1194 };
1195 
1196 /**
1197  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1198  * @inode: The inode
1199  * @lblock: The logical block number
1200  * @bh_map: The bh to be mapped
1201  * @create: True if its ok to alloc blocks to satify the request
1202  *
1203  * The size of the requested mapping is defined in bh_map->b_size.
1204  *
1205  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1206  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1207  * bh_map->b_size to indicate the size of the mapping when @lblock and
1208  * successive blocks are mapped, up to the requested size.
1209  *
1210  * Sets buffer_boundary() if a read of metadata will be required
1211  * before the next block can be mapped. Sets buffer_new() if new
1212  * blocks were allocated.
1213  *
1214  * Returns: errno
1215  */
1216 
gfs2_block_map(struct inode * inode,sector_t lblock,struct buffer_head * bh_map,int create)1217 int gfs2_block_map(struct inode *inode, sector_t lblock,
1218 		   struct buffer_head *bh_map, int create)
1219 {
1220 	struct gfs2_inode *ip = GFS2_I(inode);
1221 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1222 	loff_t length = bh_map->b_size;
1223 	struct metapath mp = { .mp_aheight = 1, };
1224 	struct iomap iomap = { };
1225 	int ret;
1226 
1227 	clear_buffer_mapped(bh_map);
1228 	clear_buffer_new(bh_map);
1229 	clear_buffer_boundary(bh_map);
1230 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1231 
1232 	if (create) {
1233 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1234 		if (!ret && iomap.type == IOMAP_HOLE)
1235 			ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp);
1236 		release_metapath(&mp);
1237 	} else {
1238 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1239 		release_metapath(&mp);
1240 	}
1241 	if (ret)
1242 		goto out;
1243 
1244 	if (iomap.length > bh_map->b_size) {
1245 		iomap.length = bh_map->b_size;
1246 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1247 	}
1248 	if (iomap.addr != IOMAP_NULL_ADDR)
1249 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1250 	bh_map->b_size = iomap.length;
1251 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1252 		set_buffer_boundary(bh_map);
1253 	if (iomap.flags & IOMAP_F_NEW)
1254 		set_buffer_new(bh_map);
1255 
1256 out:
1257 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1258 	return ret;
1259 }
1260 
1261 /*
1262  * Deprecated: do not use in new code
1263  */
gfs2_extent_map(struct inode * inode,u64 lblock,int * new,u64 * dblock,unsigned * extlen)1264 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1265 {
1266 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1267 	int ret;
1268 	int create = *new;
1269 
1270 	BUG_ON(!extlen);
1271 	BUG_ON(!dblock);
1272 	BUG_ON(!new);
1273 
1274 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1275 	ret = gfs2_block_map(inode, lblock, &bh, create);
1276 	*extlen = bh.b_size >> inode->i_blkbits;
1277 	*dblock = bh.b_blocknr;
1278 	if (buffer_new(&bh))
1279 		*new = 1;
1280 	else
1281 		*new = 0;
1282 	return ret;
1283 }
1284 
1285 /**
1286  * gfs2_block_zero_range - Deal with zeroing out data
1287  *
1288  * This is partly borrowed from ext3.
1289  */
gfs2_block_zero_range(struct inode * inode,loff_t from,unsigned int length)1290 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1291 				 unsigned int length)
1292 {
1293 	struct address_space *mapping = inode->i_mapping;
1294 	struct gfs2_inode *ip = GFS2_I(inode);
1295 	unsigned long index = from >> PAGE_SHIFT;
1296 	unsigned offset = from & (PAGE_SIZE-1);
1297 	unsigned blocksize, iblock, pos;
1298 	struct buffer_head *bh;
1299 	struct page *page;
1300 	int err;
1301 
1302 	page = find_or_create_page(mapping, index, GFP_NOFS);
1303 	if (!page)
1304 		return 0;
1305 
1306 	blocksize = inode->i_sb->s_blocksize;
1307 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
1308 
1309 	if (!page_has_buffers(page))
1310 		create_empty_buffers(page, blocksize, 0);
1311 
1312 	/* Find the buffer that contains "offset" */
1313 	bh = page_buffers(page);
1314 	pos = blocksize;
1315 	while (offset >= pos) {
1316 		bh = bh->b_this_page;
1317 		iblock++;
1318 		pos += blocksize;
1319 	}
1320 
1321 	err = 0;
1322 
1323 	if (!buffer_mapped(bh)) {
1324 		gfs2_block_map(inode, iblock, bh, 0);
1325 		/* unmapped? It's a hole - nothing to do */
1326 		if (!buffer_mapped(bh))
1327 			goto unlock;
1328 	}
1329 
1330 	/* Ok, it's mapped. Make sure it's up-to-date */
1331 	if (PageUptodate(page))
1332 		set_buffer_uptodate(bh);
1333 
1334 	if (!buffer_uptodate(bh)) {
1335 		err = -EIO;
1336 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1337 		wait_on_buffer(bh);
1338 		/* Uhhuh. Read error. Complain and punt. */
1339 		if (!buffer_uptodate(bh))
1340 			goto unlock;
1341 		err = 0;
1342 	}
1343 
1344 	if (gfs2_is_jdata(ip))
1345 		gfs2_trans_add_data(ip->i_gl, bh);
1346 	else
1347 		gfs2_ordered_add_inode(ip);
1348 
1349 	zero_user(page, offset, length);
1350 	mark_buffer_dirty(bh);
1351 unlock:
1352 	unlock_page(page);
1353 	put_page(page);
1354 	return err;
1355 }
1356 
1357 #define GFS2_JTRUNC_REVOKES 8192
1358 
1359 /**
1360  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1361  * @inode: The inode being truncated
1362  * @oldsize: The original (larger) size
1363  * @newsize: The new smaller size
1364  *
1365  * With jdata files, we have to journal a revoke for each block which is
1366  * truncated. As a result, we need to split this into separate transactions
1367  * if the number of pages being truncated gets too large.
1368  */
1369 
gfs2_journaled_truncate(struct inode * inode,u64 oldsize,u64 newsize)1370 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1371 {
1372 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1373 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1374 	u64 chunk;
1375 	int error;
1376 
1377 	while (oldsize != newsize) {
1378 		struct gfs2_trans *tr;
1379 		unsigned int offs;
1380 
1381 		chunk = oldsize - newsize;
1382 		if (chunk > max_chunk)
1383 			chunk = max_chunk;
1384 
1385 		offs = oldsize & ~PAGE_MASK;
1386 		if (offs && chunk > PAGE_SIZE)
1387 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1388 
1389 		truncate_pagecache(inode, oldsize - chunk);
1390 		oldsize -= chunk;
1391 
1392 		tr = current->journal_info;
1393 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1394 			continue;
1395 
1396 		gfs2_trans_end(sdp);
1397 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1398 		if (error)
1399 			return error;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
trunc_start(struct inode * inode,u64 newsize)1405 static int trunc_start(struct inode *inode, u64 newsize)
1406 {
1407 	struct gfs2_inode *ip = GFS2_I(inode);
1408 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1409 	struct buffer_head *dibh = NULL;
1410 	int journaled = gfs2_is_jdata(ip);
1411 	u64 oldsize = inode->i_size;
1412 	int error;
1413 
1414 	if (journaled)
1415 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1416 	else
1417 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1418 	if (error)
1419 		return error;
1420 
1421 	error = gfs2_meta_inode_buffer(ip, &dibh);
1422 	if (error)
1423 		goto out;
1424 
1425 	gfs2_trans_add_meta(ip->i_gl, dibh);
1426 
1427 	if (gfs2_is_stuffed(ip)) {
1428 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1429 	} else {
1430 		unsigned int blocksize = i_blocksize(inode);
1431 		unsigned int offs = newsize & (blocksize - 1);
1432 		if (offs) {
1433 			error = gfs2_block_zero_range(inode, newsize,
1434 						      blocksize - offs);
1435 			if (error)
1436 				goto out;
1437 		}
1438 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1439 	}
1440 
1441 	i_size_write(inode, newsize);
1442 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1443 	gfs2_dinode_out(ip, dibh->b_data);
1444 
1445 	if (journaled)
1446 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1447 	else
1448 		truncate_pagecache(inode, newsize);
1449 
1450 out:
1451 	brelse(dibh);
1452 	if (current->journal_info)
1453 		gfs2_trans_end(sdp);
1454 	return error;
1455 }
1456 
gfs2_iomap_get_alloc(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1457 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1458 			 struct iomap *iomap)
1459 {
1460 	struct metapath mp = { .mp_aheight = 1, };
1461 	int ret;
1462 
1463 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1464 	if (!ret && iomap->type == IOMAP_HOLE)
1465 		ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp);
1466 	release_metapath(&mp);
1467 	return ret;
1468 }
1469 
1470 /**
1471  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1472  * @ip: inode
1473  * @rg_gh: holder of resource group glock
1474  * @bh: buffer head to sweep
1475  * @start: starting point in bh
1476  * @end: end point in bh
1477  * @meta: true if bh points to metadata (rather than data)
1478  * @btotal: place to keep count of total blocks freed
1479  *
1480  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1481  * free, and free them all. However, we do it one rgrp at a time. If this
1482  * block has references to multiple rgrps, we break it into individual
1483  * transactions. This allows other processes to use the rgrps while we're
1484  * focused on a single one, for better concurrency / performance.
1485  * At every transaction boundary, we rewrite the inode into the journal.
1486  * That way the bitmaps are kept consistent with the inode and we can recover
1487  * if we're interrupted by power-outages.
1488  *
1489  * Returns: 0, or return code if an error occurred.
1490  *          *btotal has the total number of blocks freed
1491  */
sweep_bh_for_rgrps(struct gfs2_inode * ip,struct gfs2_holder * rd_gh,struct buffer_head * bh,__be64 * start,__be64 * end,bool meta,u32 * btotal)1492 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1493 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1494 			      bool meta, u32 *btotal)
1495 {
1496 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1497 	struct gfs2_rgrpd *rgd;
1498 	struct gfs2_trans *tr;
1499 	__be64 *p;
1500 	int blks_outside_rgrp;
1501 	u64 bn, bstart, isize_blks;
1502 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1503 	int ret = 0;
1504 	bool buf_in_tr = false; /* buffer was added to transaction */
1505 
1506 more_rgrps:
1507 	rgd = NULL;
1508 	if (gfs2_holder_initialized(rd_gh)) {
1509 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1510 		gfs2_assert_withdraw(sdp,
1511 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1512 	}
1513 	blks_outside_rgrp = 0;
1514 	bstart = 0;
1515 	blen = 0;
1516 
1517 	for (p = start; p < end; p++) {
1518 		if (!*p)
1519 			continue;
1520 		bn = be64_to_cpu(*p);
1521 
1522 		if (rgd) {
1523 			if (!rgrp_contains_block(rgd, bn)) {
1524 				blks_outside_rgrp++;
1525 				continue;
1526 			}
1527 		} else {
1528 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1529 			if (unlikely(!rgd)) {
1530 				ret = -EIO;
1531 				goto out;
1532 			}
1533 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1534 						 0, rd_gh);
1535 			if (ret)
1536 				goto out;
1537 
1538 			/* Must be done with the rgrp glock held: */
1539 			if (gfs2_rs_active(&ip->i_res) &&
1540 			    rgd == ip->i_res.rs_rbm.rgd)
1541 				gfs2_rs_deltree(&ip->i_res);
1542 		}
1543 
1544 		/* The size of our transactions will be unknown until we
1545 		   actually process all the metadata blocks that relate to
1546 		   the rgrp. So we estimate. We know it can't be more than
1547 		   the dinode's i_blocks and we don't want to exceed the
1548 		   journal flush threshold, sd_log_thresh2. */
1549 		if (current->journal_info == NULL) {
1550 			unsigned int jblocks_rqsted, revokes;
1551 
1552 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1553 				RES_INDIRECT;
1554 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1555 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1556 				jblocks_rqsted +=
1557 					atomic_read(&sdp->sd_log_thresh2);
1558 			else
1559 				jblocks_rqsted += isize_blks;
1560 			revokes = jblocks_rqsted;
1561 			if (meta)
1562 				revokes += end - start;
1563 			else if (ip->i_depth)
1564 				revokes += sdp->sd_inptrs;
1565 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1566 			if (ret)
1567 				goto out_unlock;
1568 			down_write(&ip->i_rw_mutex);
1569 		}
1570 		/* check if we will exceed the transaction blocks requested */
1571 		tr = current->journal_info;
1572 		if (tr->tr_num_buf_new + RES_STATFS +
1573 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1574 			/* We set blks_outside_rgrp to ensure the loop will
1575 			   be repeated for the same rgrp, but with a new
1576 			   transaction. */
1577 			blks_outside_rgrp++;
1578 			/* This next part is tricky. If the buffer was added
1579 			   to the transaction, we've already set some block
1580 			   pointers to 0, so we better follow through and free
1581 			   them, or we will introduce corruption (so break).
1582 			   This may be impossible, or at least rare, but I
1583 			   decided to cover the case regardless.
1584 
1585 			   If the buffer was not added to the transaction
1586 			   (this call), doing so would exceed our transaction
1587 			   size, so we need to end the transaction and start a
1588 			   new one (so goto). */
1589 
1590 			if (buf_in_tr)
1591 				break;
1592 			goto out_unlock;
1593 		}
1594 
1595 		gfs2_trans_add_meta(ip->i_gl, bh);
1596 		buf_in_tr = true;
1597 		*p = 0;
1598 		if (bstart + blen == bn) {
1599 			blen++;
1600 			continue;
1601 		}
1602 		if (bstart) {
1603 			__gfs2_free_blocks(ip, bstart, (u32)blen, meta);
1604 			(*btotal) += blen;
1605 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1606 		}
1607 		bstart = bn;
1608 		blen = 1;
1609 	}
1610 	if (bstart) {
1611 		__gfs2_free_blocks(ip, bstart, (u32)blen, meta);
1612 		(*btotal) += blen;
1613 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1614 	}
1615 out_unlock:
1616 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1617 					    outside the rgrp we just processed,
1618 					    do it all over again. */
1619 		if (current->journal_info) {
1620 			struct buffer_head *dibh;
1621 
1622 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1623 			if (ret)
1624 				goto out;
1625 
1626 			/* Every transaction boundary, we rewrite the dinode
1627 			   to keep its di_blocks current in case of failure. */
1628 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1629 				current_time(&ip->i_inode);
1630 			gfs2_trans_add_meta(ip->i_gl, dibh);
1631 			gfs2_dinode_out(ip, dibh->b_data);
1632 			brelse(dibh);
1633 			up_write(&ip->i_rw_mutex);
1634 			gfs2_trans_end(sdp);
1635 			buf_in_tr = false;
1636 		}
1637 		gfs2_glock_dq_uninit(rd_gh);
1638 		cond_resched();
1639 		goto more_rgrps;
1640 	}
1641 out:
1642 	return ret;
1643 }
1644 
mp_eq_to_hgt(struct metapath * mp,__u16 * list,unsigned int h)1645 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1646 {
1647 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1648 		return false;
1649 	return true;
1650 }
1651 
1652 /**
1653  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1654  * @mp: starting metapath
1655  * @h: desired height to search
1656  *
1657  * Assumes the metapath is valid (with buffers) out to height h.
1658  * Returns: true if a non-null pointer was found in the metapath buffer
1659  *          false if all remaining pointers are NULL in the buffer
1660  */
find_nonnull_ptr(struct gfs2_sbd * sdp,struct metapath * mp,unsigned int h,__u16 * end_list,unsigned int end_aligned)1661 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1662 			     unsigned int h,
1663 			     __u16 *end_list, unsigned int end_aligned)
1664 {
1665 	struct buffer_head *bh = mp->mp_bh[h];
1666 	__be64 *first, *ptr, *end;
1667 
1668 	first = metaptr1(h, mp);
1669 	ptr = first + mp->mp_list[h];
1670 	end = (__be64 *)(bh->b_data + bh->b_size);
1671 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1672 		bool keep_end = h < end_aligned;
1673 		end = first + end_list[h] + keep_end;
1674 	}
1675 
1676 	while (ptr < end) {
1677 		if (*ptr) { /* if we have a non-null pointer */
1678 			mp->mp_list[h] = ptr - first;
1679 			h++;
1680 			if (h < GFS2_MAX_META_HEIGHT)
1681 				mp->mp_list[h] = 0;
1682 			return true;
1683 		}
1684 		ptr++;
1685 	}
1686 	return false;
1687 }
1688 
1689 enum dealloc_states {
1690 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1691 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1692 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1693 	DEALLOC_DONE = 3,       /* process complete */
1694 };
1695 
1696 static inline void
metapointer_range(struct metapath * mp,int height,__u16 * start_list,unsigned int start_aligned,__u16 * end_list,unsigned int end_aligned,__be64 ** start,__be64 ** end)1697 metapointer_range(struct metapath *mp, int height,
1698 		  __u16 *start_list, unsigned int start_aligned,
1699 		  __u16 *end_list, unsigned int end_aligned,
1700 		  __be64 **start, __be64 **end)
1701 {
1702 	struct buffer_head *bh = mp->mp_bh[height];
1703 	__be64 *first;
1704 
1705 	first = metaptr1(height, mp);
1706 	*start = first;
1707 	if (mp_eq_to_hgt(mp, start_list, height)) {
1708 		bool keep_start = height < start_aligned;
1709 		*start = first + start_list[height] + keep_start;
1710 	}
1711 	*end = (__be64 *)(bh->b_data + bh->b_size);
1712 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1713 		bool keep_end = height < end_aligned;
1714 		*end = first + end_list[height] + keep_end;
1715 	}
1716 }
1717 
walk_done(struct gfs2_sbd * sdp,struct metapath * mp,int height,__u16 * end_list,unsigned int end_aligned)1718 static inline bool walk_done(struct gfs2_sbd *sdp,
1719 			     struct metapath *mp, int height,
1720 			     __u16 *end_list, unsigned int end_aligned)
1721 {
1722 	__u16 end;
1723 
1724 	if (end_list) {
1725 		bool keep_end = height < end_aligned;
1726 		if (!mp_eq_to_hgt(mp, end_list, height))
1727 			return false;
1728 		end = end_list[height] + keep_end;
1729 	} else
1730 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1731 	return mp->mp_list[height] >= end;
1732 }
1733 
1734 /**
1735  * punch_hole - deallocate blocks in a file
1736  * @ip: inode to truncate
1737  * @offset: the start of the hole
1738  * @length: the size of the hole (or 0 for truncate)
1739  *
1740  * Punch a hole into a file or truncate a file at a given position.  This
1741  * function operates in whole blocks (@offset and @length are rounded
1742  * accordingly); partially filled blocks must be cleared otherwise.
1743  *
1744  * This function works from the bottom up, and from the right to the left. In
1745  * other words, it strips off the highest layer (data) before stripping any of
1746  * the metadata. Doing it this way is best in case the operation is interrupted
1747  * by power failure, etc.  The dinode is rewritten in every transaction to
1748  * guarantee integrity.
1749  */
punch_hole(struct gfs2_inode * ip,u64 offset,u64 length)1750 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1751 {
1752 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1753 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1754 	struct metapath mp = {};
1755 	struct buffer_head *dibh, *bh;
1756 	struct gfs2_holder rd_gh;
1757 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1758 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1759 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1760 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1761 	unsigned int start_aligned, uninitialized_var(end_aligned);
1762 	unsigned int strip_h = ip->i_height - 1;
1763 	u32 btotal = 0;
1764 	int ret, state;
1765 	int mp_h; /* metapath buffers are read in to this height */
1766 	u64 prev_bnr = 0;
1767 	__be64 *start, *end;
1768 
1769 	if (offset >= maxsize) {
1770 		/*
1771 		 * The starting point lies beyond the allocated meta-data;
1772 		 * there are no blocks do deallocate.
1773 		 */
1774 		return 0;
1775 	}
1776 
1777 	/*
1778 	 * The start position of the hole is defined by lblock, start_list, and
1779 	 * start_aligned.  The end position of the hole is defined by lend,
1780 	 * end_list, and end_aligned.
1781 	 *
1782 	 * start_aligned and end_aligned define down to which height the start
1783 	 * and end positions are aligned to the metadata tree (i.e., the
1784 	 * position is a multiple of the metadata granularity at the height
1785 	 * above).  This determines at which heights additional meta pointers
1786 	 * needs to be preserved for the remaining data.
1787 	 */
1788 
1789 	if (length) {
1790 		u64 end_offset = offset + length;
1791 		u64 lend;
1792 
1793 		/*
1794 		 * Clip the end at the maximum file size for the given height:
1795 		 * that's how far the metadata goes; files bigger than that
1796 		 * will have additional layers of indirection.
1797 		 */
1798 		if (end_offset > maxsize)
1799 			end_offset = maxsize;
1800 		lend = end_offset >> bsize_shift;
1801 
1802 		if (lblock >= lend)
1803 			return 0;
1804 
1805 		find_metapath(sdp, lend, &mp, ip->i_height);
1806 		end_list = __end_list;
1807 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1808 
1809 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1810 			if (end_list[mp_h])
1811 				break;
1812 		}
1813 		end_aligned = mp_h;
1814 	}
1815 
1816 	find_metapath(sdp, lblock, &mp, ip->i_height);
1817 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1818 
1819 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1820 		if (start_list[mp_h])
1821 			break;
1822 	}
1823 	start_aligned = mp_h;
1824 
1825 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1826 	if (ret)
1827 		return ret;
1828 
1829 	mp.mp_bh[0] = dibh;
1830 	ret = lookup_metapath(ip, &mp);
1831 	if (ret)
1832 		goto out_metapath;
1833 
1834 	/* issue read-ahead on metadata */
1835 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1836 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1837 				  end_list, end_aligned, &start, &end);
1838 		gfs2_metapath_ra(ip->i_gl, start, end);
1839 	}
1840 
1841 	if (mp.mp_aheight == ip->i_height)
1842 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1843 	else
1844 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1845 
1846 	ret = gfs2_rindex_update(sdp);
1847 	if (ret)
1848 		goto out_metapath;
1849 
1850 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1851 	if (ret)
1852 		goto out_metapath;
1853 	gfs2_holder_mark_uninitialized(&rd_gh);
1854 
1855 	mp_h = strip_h;
1856 
1857 	while (state != DEALLOC_DONE) {
1858 		switch (state) {
1859 		/* Truncate a full metapath at the given strip height.
1860 		 * Note that strip_h == mp_h in order to be in this state. */
1861 		case DEALLOC_MP_FULL:
1862 			bh = mp.mp_bh[mp_h];
1863 			gfs2_assert_withdraw(sdp, bh);
1864 			if (gfs2_assert_withdraw(sdp,
1865 						 prev_bnr != bh->b_blocknr)) {
1866 				printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, "
1867 				       "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n",
1868 				       sdp->sd_fsname,
1869 				       (unsigned long long)ip->i_no_addr,
1870 				       prev_bnr, ip->i_height, strip_h, mp_h);
1871 			}
1872 			prev_bnr = bh->b_blocknr;
1873 
1874 			if (gfs2_metatype_check(sdp, bh,
1875 						(mp_h ? GFS2_METATYPE_IN :
1876 							GFS2_METATYPE_DI))) {
1877 				ret = -EIO;
1878 				goto out;
1879 			}
1880 
1881 			/*
1882 			 * Below, passing end_aligned as 0 gives us the
1883 			 * metapointer range excluding the end point: the end
1884 			 * point is the first metapath we must not deallocate!
1885 			 */
1886 
1887 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1888 					  end_list, 0 /* end_aligned */,
1889 					  &start, &end);
1890 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1891 						 start, end,
1892 						 mp_h != ip->i_height - 1,
1893 						 &btotal);
1894 
1895 			/* If we hit an error or just swept dinode buffer,
1896 			   just exit. */
1897 			if (ret || !mp_h) {
1898 				state = DEALLOC_DONE;
1899 				break;
1900 			}
1901 			state = DEALLOC_MP_LOWER;
1902 			break;
1903 
1904 		/* lower the metapath strip height */
1905 		case DEALLOC_MP_LOWER:
1906 			/* We're done with the current buffer, so release it,
1907 			   unless it's the dinode buffer. Then back up to the
1908 			   previous pointer. */
1909 			if (mp_h) {
1910 				brelse(mp.mp_bh[mp_h]);
1911 				mp.mp_bh[mp_h] = NULL;
1912 			}
1913 			/* If we can't get any lower in height, we've stripped
1914 			   off all we can. Next step is to back up and start
1915 			   stripping the previous level of metadata. */
1916 			if (mp_h == 0) {
1917 				strip_h--;
1918 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1919 				mp_h = strip_h;
1920 				state = DEALLOC_FILL_MP;
1921 				break;
1922 			}
1923 			mp.mp_list[mp_h] = 0;
1924 			mp_h--; /* search one metadata height down */
1925 			mp.mp_list[mp_h]++;
1926 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1927 				break;
1928 			/* Here we've found a part of the metapath that is not
1929 			 * allocated. We need to search at that height for the
1930 			 * next non-null pointer. */
1931 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1932 				state = DEALLOC_FILL_MP;
1933 				mp_h++;
1934 			}
1935 			/* No more non-null pointers at this height. Back up
1936 			   to the previous height and try again. */
1937 			break; /* loop around in the same state */
1938 
1939 		/* Fill the metapath with buffers to the given height. */
1940 		case DEALLOC_FILL_MP:
1941 			/* Fill the buffers out to the current height. */
1942 			ret = fillup_metapath(ip, &mp, mp_h);
1943 			if (ret < 0)
1944 				goto out;
1945 
1946 			/* On the first pass, issue read-ahead on metadata. */
1947 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1948 				unsigned int height = mp.mp_aheight - 1;
1949 
1950 				/* No read-ahead for data blocks. */
1951 				if (mp.mp_aheight - 1 == strip_h)
1952 					height--;
1953 
1954 				for (; height >= mp.mp_aheight - ret; height--) {
1955 					metapointer_range(&mp, height,
1956 							  start_list, start_aligned,
1957 							  end_list, end_aligned,
1958 							  &start, &end);
1959 					gfs2_metapath_ra(ip->i_gl, start, end);
1960 				}
1961 			}
1962 
1963 			/* If buffers found for the entire strip height */
1964 			if (mp.mp_aheight - 1 == strip_h) {
1965 				state = DEALLOC_MP_FULL;
1966 				break;
1967 			}
1968 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1969 				mp_h = mp.mp_aheight - 1;
1970 
1971 			/* If we find a non-null block pointer, crawl a bit
1972 			   higher up in the metapath and try again, otherwise
1973 			   we need to look lower for a new starting point. */
1974 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1975 				mp_h++;
1976 			else
1977 				state = DEALLOC_MP_LOWER;
1978 			break;
1979 		}
1980 	}
1981 
1982 	if (btotal) {
1983 		if (current->journal_info == NULL) {
1984 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1985 					       RES_QUOTA, 0);
1986 			if (ret)
1987 				goto out;
1988 			down_write(&ip->i_rw_mutex);
1989 		}
1990 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1991 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1992 				  ip->i_inode.i_gid);
1993 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1994 		gfs2_trans_add_meta(ip->i_gl, dibh);
1995 		gfs2_dinode_out(ip, dibh->b_data);
1996 		up_write(&ip->i_rw_mutex);
1997 		gfs2_trans_end(sdp);
1998 	}
1999 
2000 out:
2001 	if (gfs2_holder_initialized(&rd_gh))
2002 		gfs2_glock_dq_uninit(&rd_gh);
2003 	if (current->journal_info) {
2004 		up_write(&ip->i_rw_mutex);
2005 		gfs2_trans_end(sdp);
2006 		cond_resched();
2007 	}
2008 	gfs2_quota_unhold(ip);
2009 out_metapath:
2010 	release_metapath(&mp);
2011 	return ret;
2012 }
2013 
trunc_end(struct gfs2_inode * ip)2014 static int trunc_end(struct gfs2_inode *ip)
2015 {
2016 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2017 	struct buffer_head *dibh;
2018 	int error;
2019 
2020 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2021 	if (error)
2022 		return error;
2023 
2024 	down_write(&ip->i_rw_mutex);
2025 
2026 	error = gfs2_meta_inode_buffer(ip, &dibh);
2027 	if (error)
2028 		goto out;
2029 
2030 	if (!i_size_read(&ip->i_inode)) {
2031 		ip->i_height = 0;
2032 		ip->i_goal = ip->i_no_addr;
2033 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2034 		gfs2_ordered_del_inode(ip);
2035 	}
2036 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2037 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2038 
2039 	gfs2_trans_add_meta(ip->i_gl, dibh);
2040 	gfs2_dinode_out(ip, dibh->b_data);
2041 	brelse(dibh);
2042 
2043 out:
2044 	up_write(&ip->i_rw_mutex);
2045 	gfs2_trans_end(sdp);
2046 	return error;
2047 }
2048 
2049 /**
2050  * do_shrink - make a file smaller
2051  * @inode: the inode
2052  * @newsize: the size to make the file
2053  *
2054  * Called with an exclusive lock on @inode. The @size must
2055  * be equal to or smaller than the current inode size.
2056  *
2057  * Returns: errno
2058  */
2059 
do_shrink(struct inode * inode,u64 newsize)2060 static int do_shrink(struct inode *inode, u64 newsize)
2061 {
2062 	struct gfs2_inode *ip = GFS2_I(inode);
2063 	int error;
2064 
2065 	error = trunc_start(inode, newsize);
2066 	if (error < 0)
2067 		return error;
2068 	if (gfs2_is_stuffed(ip))
2069 		return 0;
2070 
2071 	error = punch_hole(ip, newsize, 0);
2072 	if (error == 0)
2073 		error = trunc_end(ip);
2074 
2075 	return error;
2076 }
2077 
gfs2_trim_blocks(struct inode * inode)2078 void gfs2_trim_blocks(struct inode *inode)
2079 {
2080 	int ret;
2081 
2082 	ret = do_shrink(inode, inode->i_size);
2083 	WARN_ON(ret != 0);
2084 }
2085 
2086 /**
2087  * do_grow - Touch and update inode size
2088  * @inode: The inode
2089  * @size: The new size
2090  *
2091  * This function updates the timestamps on the inode and
2092  * may also increase the size of the inode. This function
2093  * must not be called with @size any smaller than the current
2094  * inode size.
2095  *
2096  * Although it is not strictly required to unstuff files here,
2097  * earlier versions of GFS2 have a bug in the stuffed file reading
2098  * code which will result in a buffer overrun if the size is larger
2099  * than the max stuffed file size. In order to prevent this from
2100  * occurring, such files are unstuffed, but in other cases we can
2101  * just update the inode size directly.
2102  *
2103  * Returns: 0 on success, or -ve on error
2104  */
2105 
do_grow(struct inode * inode,u64 size)2106 static int do_grow(struct inode *inode, u64 size)
2107 {
2108 	struct gfs2_inode *ip = GFS2_I(inode);
2109 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2110 	struct gfs2_alloc_parms ap = { .target = 1, };
2111 	struct buffer_head *dibh;
2112 	int error;
2113 	int unstuff = 0;
2114 
2115 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2116 		error = gfs2_quota_lock_check(ip, &ap);
2117 		if (error)
2118 			return error;
2119 
2120 		error = gfs2_inplace_reserve(ip, &ap);
2121 		if (error)
2122 			goto do_grow_qunlock;
2123 		unstuff = 1;
2124 	}
2125 
2126 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2127 				 (unstuff &&
2128 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2129 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2130 				  0 : RES_QUOTA), 0);
2131 	if (error)
2132 		goto do_grow_release;
2133 
2134 	if (unstuff) {
2135 		error = gfs2_unstuff_dinode(ip, NULL);
2136 		if (error)
2137 			goto do_end_trans;
2138 	}
2139 
2140 	error = gfs2_meta_inode_buffer(ip, &dibh);
2141 	if (error)
2142 		goto do_end_trans;
2143 
2144 	i_size_write(inode, size);
2145 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2146 	gfs2_trans_add_meta(ip->i_gl, dibh);
2147 	gfs2_dinode_out(ip, dibh->b_data);
2148 	brelse(dibh);
2149 
2150 do_end_trans:
2151 	gfs2_trans_end(sdp);
2152 do_grow_release:
2153 	if (unstuff) {
2154 		gfs2_inplace_release(ip);
2155 do_grow_qunlock:
2156 		gfs2_quota_unlock(ip);
2157 	}
2158 	return error;
2159 }
2160 
2161 /**
2162  * gfs2_setattr_size - make a file a given size
2163  * @inode: the inode
2164  * @newsize: the size to make the file
2165  *
2166  * The file size can grow, shrink, or stay the same size. This
2167  * is called holding i_rwsem and an exclusive glock on the inode
2168  * in question.
2169  *
2170  * Returns: errno
2171  */
2172 
gfs2_setattr_size(struct inode * inode,u64 newsize)2173 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2174 {
2175 	struct gfs2_inode *ip = GFS2_I(inode);
2176 	int ret;
2177 
2178 	BUG_ON(!S_ISREG(inode->i_mode));
2179 
2180 	ret = inode_newsize_ok(inode, newsize);
2181 	if (ret)
2182 		return ret;
2183 
2184 	inode_dio_wait(inode);
2185 
2186 	ret = gfs2_rsqa_alloc(ip);
2187 	if (ret)
2188 		goto out;
2189 
2190 	if (newsize >= inode->i_size) {
2191 		ret = do_grow(inode, newsize);
2192 		goto out;
2193 	}
2194 
2195 	ret = do_shrink(inode, newsize);
2196 out:
2197 	gfs2_rsqa_delete(ip, NULL);
2198 	return ret;
2199 }
2200 
gfs2_truncatei_resume(struct gfs2_inode * ip)2201 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2202 {
2203 	int error;
2204 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2205 	if (!error)
2206 		error = trunc_end(ip);
2207 	return error;
2208 }
2209 
gfs2_file_dealloc(struct gfs2_inode * ip)2210 int gfs2_file_dealloc(struct gfs2_inode *ip)
2211 {
2212 	return punch_hole(ip, 0, 0);
2213 }
2214 
2215 /**
2216  * gfs2_free_journal_extents - Free cached journal bmap info
2217  * @jd: The journal
2218  *
2219  */
2220 
gfs2_free_journal_extents(struct gfs2_jdesc * jd)2221 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2222 {
2223 	struct gfs2_journal_extent *jext;
2224 
2225 	while(!list_empty(&jd->extent_list)) {
2226 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2227 		list_del(&jext->list);
2228 		kfree(jext);
2229 	}
2230 }
2231 
2232 /**
2233  * gfs2_add_jextent - Add or merge a new extent to extent cache
2234  * @jd: The journal descriptor
2235  * @lblock: The logical block at start of new extent
2236  * @dblock: The physical block at start of new extent
2237  * @blocks: Size of extent in fs blocks
2238  *
2239  * Returns: 0 on success or -ENOMEM
2240  */
2241 
gfs2_add_jextent(struct gfs2_jdesc * jd,u64 lblock,u64 dblock,u64 blocks)2242 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2243 {
2244 	struct gfs2_journal_extent *jext;
2245 
2246 	if (!list_empty(&jd->extent_list)) {
2247 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2248 		if ((jext->dblock + jext->blocks) == dblock) {
2249 			jext->blocks += blocks;
2250 			return 0;
2251 		}
2252 	}
2253 
2254 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2255 	if (jext == NULL)
2256 		return -ENOMEM;
2257 	jext->dblock = dblock;
2258 	jext->lblock = lblock;
2259 	jext->blocks = blocks;
2260 	list_add_tail(&jext->list, &jd->extent_list);
2261 	jd->nr_extents++;
2262 	return 0;
2263 }
2264 
2265 /**
2266  * gfs2_map_journal_extents - Cache journal bmap info
2267  * @sdp: The super block
2268  * @jd: The journal to map
2269  *
2270  * Create a reusable "extent" mapping from all logical
2271  * blocks to all physical blocks for the given journal.  This will save
2272  * us time when writing journal blocks.  Most journals will have only one
2273  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2274  * arranges the journal blocks sequentially to maximize performance.
2275  * So the extent would map the first block for the entire file length.
2276  * However, gfs2_jadd can happen while file activity is happening, so
2277  * those journals may not be sequential.  Less likely is the case where
2278  * the users created their own journals by mounting the metafs and
2279  * laying it out.  But it's still possible.  These journals might have
2280  * several extents.
2281  *
2282  * Returns: 0 on success, or error on failure
2283  */
2284 
gfs2_map_journal_extents(struct gfs2_sbd * sdp,struct gfs2_jdesc * jd)2285 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2286 {
2287 	u64 lblock = 0;
2288 	u64 lblock_stop;
2289 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2290 	struct buffer_head bh;
2291 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2292 	u64 size;
2293 	int rc;
2294 
2295 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2296 	size = (lblock_stop - lblock) << shift;
2297 	jd->nr_extents = 0;
2298 	WARN_ON(!list_empty(&jd->extent_list));
2299 
2300 	do {
2301 		bh.b_state = 0;
2302 		bh.b_blocknr = 0;
2303 		bh.b_size = size;
2304 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2305 		if (rc || !buffer_mapped(&bh))
2306 			goto fail;
2307 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2308 		if (rc)
2309 			goto fail;
2310 		size -= bh.b_size;
2311 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2312 	} while(size > 0);
2313 
2314 	fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid,
2315 		jd->nr_extents);
2316 	return 0;
2317 
2318 fail:
2319 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2320 		rc, jd->jd_jid,
2321 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2322 		jd->nr_extents);
2323 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2324 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2325 		bh.b_state, (unsigned long long)bh.b_size);
2326 	gfs2_free_journal_extents(jd);
2327 	return rc;
2328 }
2329 
2330 /**
2331  * gfs2_write_alloc_required - figure out if a write will require an allocation
2332  * @ip: the file being written to
2333  * @offset: the offset to write to
2334  * @len: the number of bytes being written
2335  *
2336  * Returns: 1 if an alloc is required, 0 otherwise
2337  */
2338 
gfs2_write_alloc_required(struct gfs2_inode * ip,u64 offset,unsigned int len)2339 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2340 			      unsigned int len)
2341 {
2342 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2343 	struct buffer_head bh;
2344 	unsigned int shift;
2345 	u64 lblock, lblock_stop, size;
2346 	u64 end_of_file;
2347 
2348 	if (!len)
2349 		return 0;
2350 
2351 	if (gfs2_is_stuffed(ip)) {
2352 		if (offset + len > gfs2_max_stuffed_size(ip))
2353 			return 1;
2354 		return 0;
2355 	}
2356 
2357 	shift = sdp->sd_sb.sb_bsize_shift;
2358 	BUG_ON(gfs2_is_dir(ip));
2359 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2360 	lblock = offset >> shift;
2361 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2362 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2363 		return 1;
2364 
2365 	size = (lblock_stop - lblock) << shift;
2366 	do {
2367 		bh.b_state = 0;
2368 		bh.b_size = size;
2369 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2370 		if (!buffer_mapped(&bh))
2371 			return 1;
2372 		size -= bh.b_size;
2373 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2374 	} while(size > 0);
2375 
2376 	return 0;
2377 }
2378 
stuffed_zero_range(struct inode * inode,loff_t offset,loff_t length)2379 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2380 {
2381 	struct gfs2_inode *ip = GFS2_I(inode);
2382 	struct buffer_head *dibh;
2383 	int error;
2384 
2385 	if (offset >= inode->i_size)
2386 		return 0;
2387 	if (offset + length > inode->i_size)
2388 		length = inode->i_size - offset;
2389 
2390 	error = gfs2_meta_inode_buffer(ip, &dibh);
2391 	if (error)
2392 		return error;
2393 	gfs2_trans_add_meta(ip->i_gl, dibh);
2394 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2395 	       length);
2396 	brelse(dibh);
2397 	return 0;
2398 }
2399 
gfs2_journaled_truncate_range(struct inode * inode,loff_t offset,loff_t length)2400 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2401 					 loff_t length)
2402 {
2403 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2404 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2405 	int error;
2406 
2407 	while (length) {
2408 		struct gfs2_trans *tr;
2409 		loff_t chunk;
2410 		unsigned int offs;
2411 
2412 		chunk = length;
2413 		if (chunk > max_chunk)
2414 			chunk = max_chunk;
2415 
2416 		offs = offset & ~PAGE_MASK;
2417 		if (offs && chunk > PAGE_SIZE)
2418 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2419 
2420 		truncate_pagecache_range(inode, offset, chunk);
2421 		offset += chunk;
2422 		length -= chunk;
2423 
2424 		tr = current->journal_info;
2425 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2426 			continue;
2427 
2428 		gfs2_trans_end(sdp);
2429 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2430 		if (error)
2431 			return error;
2432 	}
2433 	return 0;
2434 }
2435 
__gfs2_punch_hole(struct file * file,loff_t offset,loff_t length)2436 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2437 {
2438 	struct inode *inode = file_inode(file);
2439 	struct gfs2_inode *ip = GFS2_I(inode);
2440 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2441 	int error;
2442 
2443 	if (gfs2_is_jdata(ip))
2444 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2445 					 GFS2_JTRUNC_REVOKES);
2446 	else
2447 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2448 	if (error)
2449 		return error;
2450 
2451 	if (gfs2_is_stuffed(ip)) {
2452 		error = stuffed_zero_range(inode, offset, length);
2453 		if (error)
2454 			goto out;
2455 	} else {
2456 		unsigned int start_off, end_len, blocksize;
2457 
2458 		blocksize = i_blocksize(inode);
2459 		start_off = offset & (blocksize - 1);
2460 		end_len = (offset + length) & (blocksize - 1);
2461 		if (start_off) {
2462 			unsigned int len = length;
2463 			if (length > blocksize - start_off)
2464 				len = blocksize - start_off;
2465 			error = gfs2_block_zero_range(inode, offset, len);
2466 			if (error)
2467 				goto out;
2468 			if (start_off + length < blocksize)
2469 				end_len = 0;
2470 		}
2471 		if (end_len) {
2472 			error = gfs2_block_zero_range(inode,
2473 				offset + length - end_len, end_len);
2474 			if (error)
2475 				goto out;
2476 		}
2477 	}
2478 
2479 	if (gfs2_is_jdata(ip)) {
2480 		BUG_ON(!current->journal_info);
2481 		gfs2_journaled_truncate_range(inode, offset, length);
2482 	} else
2483 		truncate_pagecache_range(inode, offset, offset + length - 1);
2484 
2485 	file_update_time(file);
2486 	mark_inode_dirty(inode);
2487 
2488 	if (current->journal_info)
2489 		gfs2_trans_end(sdp);
2490 
2491 	if (!gfs2_is_stuffed(ip))
2492 		error = punch_hole(ip, offset, length);
2493 
2494 out:
2495 	if (current->journal_info)
2496 		gfs2_trans_end(sdp);
2497 	return error;
2498 }
2499