• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 int sysctl_hugetlb_shm_group;
59 
60 enum {
61 	Opt_size, Opt_nr_inodes,
62 	Opt_mode, Opt_uid, Opt_gid,
63 	Opt_pagesize, Opt_min_size,
64 	Opt_err,
65 };
66 
67 static const match_table_t tokens = {
68 	{Opt_size,	"size=%s"},
69 	{Opt_nr_inodes,	"nr_inodes=%s"},
70 	{Opt_mode,	"mode=%o"},
71 	{Opt_uid,	"uid=%u"},
72 	{Opt_gid,	"gid=%u"},
73 	{Opt_pagesize,	"pagesize=%s"},
74 	{Opt_min_size,	"min_size=%s"},
75 	{Opt_err,	NULL},
76 };
77 
78 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 					struct inode *inode, pgoff_t index)
81 {
82 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 							index);
84 }
85 
hugetlb_drop_vma_policy(struct vm_area_struct * vma)86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 	mpol_cond_put(vma->vm_policy);
89 }
90 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 					struct inode *inode, pgoff_t index)
93 {
94 }
95 
hugetlb_drop_vma_policy(struct vm_area_struct * vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100 
huge_pagevec_release(struct pagevec * pvec)101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 	int i;
104 
105 	for (i = 0; i < pagevec_count(pvec); ++i)
106 		put_page(pvec->pages[i]);
107 
108 	pagevec_reinit(pvec);
109 }
110 
111 /*
112  * Mask used when checking the page offset value passed in via system
113  * calls.  This value will be converted to a loff_t which is signed.
114  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115  * value.  The extra bit (- 1 in the shift value) is to take the sign
116  * bit into account.
117  */
118 #define PGOFF_LOFFT_MAX \
119 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120 
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	/*
140 	 * page based offset in vm_pgoff could be sufficiently large to
141 	 * overflow a loff_t when converted to byte offset.  This can
142 	 * only happen on architectures where sizeof(loff_t) ==
143 	 * sizeof(unsigned long).  So, only check in those instances.
144 	 */
145 	if (sizeof(unsigned long) == sizeof(loff_t)) {
146 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
147 			return -EINVAL;
148 	}
149 
150 	/* must be huge page aligned */
151 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
152 		return -EINVAL;
153 
154 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
155 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
156 	/* check for overflow */
157 	if (len < vma_len)
158 		return -EINVAL;
159 
160 	inode_lock(inode);
161 	file_accessed(file);
162 
163 	ret = -ENOMEM;
164 	if (hugetlb_reserve_pages(inode,
165 				vma->vm_pgoff >> huge_page_order(h),
166 				len >> huge_page_shift(h), vma,
167 				vma->vm_flags))
168 		goto out;
169 
170 	ret = 0;
171 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
172 		i_size_write(inode, len);
173 out:
174 	inode_unlock(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called under down_write(mmap_sem).
181  */
182 
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
184 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
186 		unsigned long len, unsigned long pgoff, unsigned long flags)
187 {
188 	struct mm_struct *mm = current->mm;
189 	struct vm_area_struct *vma;
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	if (len & ~huge_page_mask(h))
194 		return -EINVAL;
195 	if (len > TASK_SIZE)
196 		return -ENOMEM;
197 
198 	if (flags & MAP_FIXED) {
199 		if (prepare_hugepage_range(file, addr, len))
200 			return -EINVAL;
201 		return addr;
202 	}
203 
204 	if (addr) {
205 		addr = ALIGN(addr, huge_page_size(h));
206 		vma = find_vma(mm, addr);
207 		if (TASK_SIZE - len >= addr &&
208 		    (!vma || addr + len <= vm_start_gap(vma)))
209 			return addr;
210 	}
211 
212 	info.flags = 0;
213 	info.length = len;
214 	info.low_limit = TASK_UNMAPPED_BASE;
215 	info.high_limit = TASK_SIZE;
216 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
217 	info.align_offset = 0;
218 	return vm_unmapped_area(&info);
219 }
220 #endif
221 
222 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)223 hugetlbfs_read_actor(struct page *page, unsigned long offset,
224 			struct iov_iter *to, unsigned long size)
225 {
226 	size_t copied = 0;
227 	int i, chunksize;
228 
229 	/* Find which 4k chunk and offset with in that chunk */
230 	i = offset >> PAGE_SHIFT;
231 	offset = offset & ~PAGE_MASK;
232 
233 	while (size) {
234 		size_t n;
235 		chunksize = PAGE_SIZE;
236 		if (offset)
237 			chunksize -= offset;
238 		if (chunksize > size)
239 			chunksize = size;
240 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
241 		copied += n;
242 		if (n != chunksize)
243 			return copied;
244 		offset = 0;
245 		size -= chunksize;
246 		i++;
247 	}
248 	return copied;
249 }
250 
251 /*
252  * Support for read() - Find the page attached to f_mapping and copy out the
253  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254  * since it has PAGE_SIZE assumptions.
255  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
257 {
258 	struct file *file = iocb->ki_filp;
259 	struct hstate *h = hstate_file(file);
260 	struct address_space *mapping = file->f_mapping;
261 	struct inode *inode = mapping->host;
262 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
263 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
264 	unsigned long end_index;
265 	loff_t isize;
266 	ssize_t retval = 0;
267 
268 	while (iov_iter_count(to)) {
269 		struct page *page;
270 		size_t nr, copied;
271 
272 		/* nr is the maximum number of bytes to copy from this page */
273 		nr = huge_page_size(h);
274 		isize = i_size_read(inode);
275 		if (!isize)
276 			break;
277 		end_index = (isize - 1) >> huge_page_shift(h);
278 		if (index > end_index)
279 			break;
280 		if (index == end_index) {
281 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
282 			if (nr <= offset)
283 				break;
284 		}
285 		nr = nr - offset;
286 
287 		/* Find the page */
288 		page = find_lock_page(mapping, index);
289 		if (unlikely(page == NULL)) {
290 			/*
291 			 * We have a HOLE, zero out the user-buffer for the
292 			 * length of the hole or request.
293 			 */
294 			copied = iov_iter_zero(nr, to);
295 		} else {
296 			unlock_page(page);
297 
298 			/*
299 			 * We have the page, copy it to user space buffer.
300 			 */
301 			copied = hugetlbfs_read_actor(page, offset, to, nr);
302 			put_page(page);
303 		}
304 		offset += copied;
305 		retval += copied;
306 		if (copied != nr && iov_iter_count(to)) {
307 			if (!retval)
308 				retval = -EFAULT;
309 			break;
310 		}
311 		index += offset >> huge_page_shift(h);
312 		offset &= ~huge_page_mask(h);
313 	}
314 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
315 	return retval;
316 }
317 
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)318 static int hugetlbfs_write_begin(struct file *file,
319 			struct address_space *mapping,
320 			loff_t pos, unsigned len, unsigned flags,
321 			struct page **pagep, void **fsdata)
322 {
323 	return -EINVAL;
324 }
325 
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
327 			loff_t pos, unsigned len, unsigned copied,
328 			struct page *page, void *fsdata)
329 {
330 	BUG();
331 	return -EINVAL;
332 }
333 
remove_huge_page(struct page * page)334 static void remove_huge_page(struct page *page)
335 {
336 	ClearPageDirty(page);
337 	ClearPageUptodate(page);
338 	delete_from_page_cache(page);
339 }
340 
341 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end)342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
343 {
344 	struct vm_area_struct *vma;
345 
346 	/*
347 	 * end == 0 indicates that the entire range after
348 	 * start should be unmapped.
349 	 */
350 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
351 		unsigned long v_offset;
352 		unsigned long v_end;
353 
354 		/*
355 		 * Can the expression below overflow on 32-bit arches?
356 		 * No, because the interval tree returns us only those vmas
357 		 * which overlap the truncated area starting at pgoff,
358 		 * and no vma on a 32-bit arch can span beyond the 4GB.
359 		 */
360 		if (vma->vm_pgoff < start)
361 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
362 		else
363 			v_offset = 0;
364 
365 		if (!end)
366 			v_end = vma->vm_end;
367 		else {
368 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
369 							+ vma->vm_start;
370 			if (v_end > vma->vm_end)
371 				v_end = vma->vm_end;
372 		}
373 
374 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
375 									NULL);
376 	}
377 }
378 
379 /*
380  * remove_inode_hugepages handles two distinct cases: truncation and hole
381  * punch.  There are subtle differences in operation for each case.
382  *
383  * truncation is indicated by end of range being LLONG_MAX
384  *	In this case, we first scan the range and release found pages.
385  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386  *	maps and global counts.  Page faults can not race with truncation
387  *	in this routine.  hugetlb_no_page() prevents page faults in the
388  *	truncated range.  It checks i_size before allocation, and again after
389  *	with the page table lock for the page held.  The same lock must be
390  *	acquired to unmap a page.
391  * hole punch is indicated if end is not LLONG_MAX
392  *	In the hole punch case we scan the range and release found pages.
393  *	Only when releasing a page is the associated region/reserv map
394  *	deleted.  The region/reserv map for ranges without associated
395  *	pages are not modified.  Page faults can race with hole punch.
396  *	This is indicated if we find a mapped page.
397  * Note: If the passed end of range value is beyond the end of file, but
398  * not LLONG_MAX this routine still performs a hole punch operation.
399  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
401 				   loff_t lend)
402 {
403 	struct hstate *h = hstate_inode(inode);
404 	struct address_space *mapping = &inode->i_data;
405 	const pgoff_t start = lstart >> huge_page_shift(h);
406 	const pgoff_t end = lend >> huge_page_shift(h);
407 	struct vm_area_struct pseudo_vma;
408 	struct pagevec pvec;
409 	pgoff_t next, index;
410 	int i, freed = 0;
411 	bool truncate_op = (lend == LLONG_MAX);
412 
413 	vma_init(&pseudo_vma, current->mm);
414 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
415 	pagevec_init(&pvec);
416 	next = start;
417 	while (next < end) {
418 		/*
419 		 * When no more pages are found, we are done.
420 		 */
421 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
422 			break;
423 
424 		for (i = 0; i < pagevec_count(&pvec); ++i) {
425 			struct page *page = pvec.pages[i];
426 			u32 hash;
427 
428 			index = page->index;
429 			hash = hugetlb_fault_mutex_hash(h, mapping, index, 0);
430 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
431 
432 			/*
433 			 * If page is mapped, it was faulted in after being
434 			 * unmapped in caller.  Unmap (again) now after taking
435 			 * the fault mutex.  The mutex will prevent faults
436 			 * until we finish removing the page.
437 			 *
438 			 * This race can only happen in the hole punch case.
439 			 * Getting here in a truncate operation is a bug.
440 			 */
441 			if (unlikely(page_mapped(page))) {
442 				BUG_ON(truncate_op);
443 
444 				i_mmap_lock_write(mapping);
445 				hugetlb_vmdelete_list(&mapping->i_mmap,
446 					index * pages_per_huge_page(h),
447 					(index + 1) * pages_per_huge_page(h));
448 				i_mmap_unlock_write(mapping);
449 			}
450 
451 			lock_page(page);
452 			/*
453 			 * We must free the huge page and remove from page
454 			 * cache (remove_huge_page) BEFORE removing the
455 			 * region/reserve map (hugetlb_unreserve_pages).  In
456 			 * rare out of memory conditions, removal of the
457 			 * region/reserve map could fail. Correspondingly,
458 			 * the subpool and global reserve usage count can need
459 			 * to be adjusted.
460 			 */
461 			VM_BUG_ON(PagePrivate(page));
462 			remove_huge_page(page);
463 			freed++;
464 			if (!truncate_op) {
465 				if (unlikely(hugetlb_unreserve_pages(inode,
466 							index, index + 1, 1)))
467 					hugetlb_fix_reserve_counts(inode);
468 			}
469 
470 			unlock_page(page);
471 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
472 		}
473 		huge_pagevec_release(&pvec);
474 		cond_resched();
475 	}
476 
477 	if (truncate_op)
478 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
479 }
480 
hugetlbfs_evict_inode(struct inode * inode)481 static void hugetlbfs_evict_inode(struct inode *inode)
482 {
483 	struct resv_map *resv_map;
484 
485 	remove_inode_hugepages(inode, 0, LLONG_MAX);
486 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
487 	/* root inode doesn't have the resv_map, so we should check it */
488 	if (resv_map)
489 		resv_map_release(&resv_map->refs);
490 	clear_inode(inode);
491 }
492 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)493 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
494 {
495 	pgoff_t pgoff;
496 	struct address_space *mapping = inode->i_mapping;
497 	struct hstate *h = hstate_inode(inode);
498 
499 	BUG_ON(offset & ~huge_page_mask(h));
500 	pgoff = offset >> PAGE_SHIFT;
501 
502 	i_size_write(inode, offset);
503 	i_mmap_lock_write(mapping);
504 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
505 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
506 	i_mmap_unlock_write(mapping);
507 	remove_inode_hugepages(inode, offset, LLONG_MAX);
508 	return 0;
509 }
510 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)511 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
512 {
513 	struct hstate *h = hstate_inode(inode);
514 	loff_t hpage_size = huge_page_size(h);
515 	loff_t hole_start, hole_end;
516 
517 	/*
518 	 * For hole punch round up the beginning offset of the hole and
519 	 * round down the end.
520 	 */
521 	hole_start = round_up(offset, hpage_size);
522 	hole_end = round_down(offset + len, hpage_size);
523 
524 	if (hole_end > hole_start) {
525 		struct address_space *mapping = inode->i_mapping;
526 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
527 
528 		inode_lock(inode);
529 
530 		/* protected by i_mutex */
531 		if (info->seals & F_SEAL_WRITE) {
532 			inode_unlock(inode);
533 			return -EPERM;
534 		}
535 
536 		i_mmap_lock_write(mapping);
537 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
538 			hugetlb_vmdelete_list(&mapping->i_mmap,
539 						hole_start >> PAGE_SHIFT,
540 						hole_end  >> PAGE_SHIFT);
541 		i_mmap_unlock_write(mapping);
542 		remove_inode_hugepages(inode, hole_start, hole_end);
543 		inode_unlock(inode);
544 	}
545 
546 	return 0;
547 }
548 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)549 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
550 				loff_t len)
551 {
552 	struct inode *inode = file_inode(file);
553 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
554 	struct address_space *mapping = inode->i_mapping;
555 	struct hstate *h = hstate_inode(inode);
556 	struct vm_area_struct pseudo_vma;
557 	struct mm_struct *mm = current->mm;
558 	loff_t hpage_size = huge_page_size(h);
559 	unsigned long hpage_shift = huge_page_shift(h);
560 	pgoff_t start, index, end;
561 	int error;
562 	u32 hash;
563 
564 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
565 		return -EOPNOTSUPP;
566 
567 	if (mode & FALLOC_FL_PUNCH_HOLE)
568 		return hugetlbfs_punch_hole(inode, offset, len);
569 
570 	/*
571 	 * Default preallocate case.
572 	 * For this range, start is rounded down and end is rounded up
573 	 * as well as being converted to page offsets.
574 	 */
575 	start = offset >> hpage_shift;
576 	end = (offset + len + hpage_size - 1) >> hpage_shift;
577 
578 	inode_lock(inode);
579 
580 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
581 	error = inode_newsize_ok(inode, offset + len);
582 	if (error)
583 		goto out;
584 
585 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
586 		error = -EPERM;
587 		goto out;
588 	}
589 
590 	/*
591 	 * Initialize a pseudo vma as this is required by the huge page
592 	 * allocation routines.  If NUMA is configured, use page index
593 	 * as input to create an allocation policy.
594 	 */
595 	vma_init(&pseudo_vma, mm);
596 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
597 	pseudo_vma.vm_file = file;
598 
599 	for (index = start; index < end; index++) {
600 		/*
601 		 * This is supposed to be the vaddr where the page is being
602 		 * faulted in, but we have no vaddr here.
603 		 */
604 		struct page *page;
605 		unsigned long addr;
606 		int avoid_reserve = 0;
607 
608 		cond_resched();
609 
610 		/*
611 		 * fallocate(2) manpage permits EINTR; we may have been
612 		 * interrupted because we are using up too much memory.
613 		 */
614 		if (signal_pending(current)) {
615 			error = -EINTR;
616 			break;
617 		}
618 
619 		/* Set numa allocation policy based on index */
620 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
621 
622 		/* addr is the offset within the file (zero based) */
623 		addr = index * hpage_size;
624 
625 		/* mutex taken here, fault path and hole punch */
626 		hash = hugetlb_fault_mutex_hash(h, mapping, index, addr);
627 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
628 
629 		/* See if already present in mapping to avoid alloc/free */
630 		page = find_get_page(mapping, index);
631 		if (page) {
632 			put_page(page);
633 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634 			hugetlb_drop_vma_policy(&pseudo_vma);
635 			continue;
636 		}
637 
638 		/* Allocate page and add to page cache */
639 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
640 		hugetlb_drop_vma_policy(&pseudo_vma);
641 		if (IS_ERR(page)) {
642 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643 			error = PTR_ERR(page);
644 			goto out;
645 		}
646 		clear_huge_page(page, addr, pages_per_huge_page(h));
647 		__SetPageUptodate(page);
648 		error = huge_add_to_page_cache(page, mapping, index);
649 		if (unlikely(error)) {
650 			put_page(page);
651 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
652 			goto out;
653 		}
654 
655 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
656 
657 		/*
658 		 * unlock_page because locked by add_to_page_cache()
659 		 * page_put due to reference from alloc_huge_page()
660 		 */
661 		unlock_page(page);
662 		put_page(page);
663 	}
664 
665 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
666 		i_size_write(inode, offset + len);
667 	inode->i_ctime = current_time(inode);
668 out:
669 	inode_unlock(inode);
670 	return error;
671 }
672 
hugetlbfs_setattr(struct dentry * dentry,struct iattr * attr)673 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
674 {
675 	struct inode *inode = d_inode(dentry);
676 	struct hstate *h = hstate_inode(inode);
677 	int error;
678 	unsigned int ia_valid = attr->ia_valid;
679 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
680 
681 	BUG_ON(!inode);
682 
683 	error = setattr_prepare(dentry, attr);
684 	if (error)
685 		return error;
686 
687 	if (ia_valid & ATTR_SIZE) {
688 		loff_t oldsize = inode->i_size;
689 		loff_t newsize = attr->ia_size;
690 
691 		if (newsize & ~huge_page_mask(h))
692 			return -EINVAL;
693 		/* protected by i_mutex */
694 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
695 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
696 			return -EPERM;
697 		error = hugetlb_vmtruncate(inode, newsize);
698 		if (error)
699 			return error;
700 	}
701 
702 	setattr_copy(inode, attr);
703 	mark_inode_dirty(inode);
704 	return 0;
705 }
706 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_config * config)707 static struct inode *hugetlbfs_get_root(struct super_block *sb,
708 					struct hugetlbfs_config *config)
709 {
710 	struct inode *inode;
711 
712 	inode = new_inode(sb);
713 	if (inode) {
714 		inode->i_ino = get_next_ino();
715 		inode->i_mode = S_IFDIR | config->mode;
716 		inode->i_uid = config->uid;
717 		inode->i_gid = config->gid;
718 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
719 		inode->i_op = &hugetlbfs_dir_inode_operations;
720 		inode->i_fop = &simple_dir_operations;
721 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
722 		inc_nlink(inode);
723 		lockdep_annotate_inode_mutex_key(inode);
724 	}
725 	return inode;
726 }
727 
728 /*
729  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
730  * be taken from reclaim -- unlike regular filesystems. This needs an
731  * annotation because huge_pmd_share() does an allocation under hugetlb's
732  * i_mmap_rwsem.
733  */
734 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
735 
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)736 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
737 					struct inode *dir,
738 					umode_t mode, dev_t dev)
739 {
740 	struct inode *inode;
741 	struct resv_map *resv_map = NULL;
742 
743 	/*
744 	 * Reserve maps are only needed for inodes that can have associated
745 	 * page allocations.
746 	 */
747 	if (S_ISREG(mode) || S_ISLNK(mode)) {
748 		resv_map = resv_map_alloc();
749 		if (!resv_map)
750 			return NULL;
751 	}
752 
753 	inode = new_inode(sb);
754 	if (inode) {
755 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
756 
757 		inode->i_ino = get_next_ino();
758 		inode_init_owner(inode, dir, mode);
759 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
760 				&hugetlbfs_i_mmap_rwsem_key);
761 		inode->i_mapping->a_ops = &hugetlbfs_aops;
762 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
763 		inode->i_mapping->private_data = resv_map;
764 		info->seals = F_SEAL_SEAL;
765 		switch (mode & S_IFMT) {
766 		default:
767 			init_special_inode(inode, mode, dev);
768 			break;
769 		case S_IFREG:
770 			inode->i_op = &hugetlbfs_inode_operations;
771 			inode->i_fop = &hugetlbfs_file_operations;
772 			break;
773 		case S_IFDIR:
774 			inode->i_op = &hugetlbfs_dir_inode_operations;
775 			inode->i_fop = &simple_dir_operations;
776 
777 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
778 			inc_nlink(inode);
779 			break;
780 		case S_IFLNK:
781 			inode->i_op = &page_symlink_inode_operations;
782 			inode_nohighmem(inode);
783 			break;
784 		}
785 		lockdep_annotate_inode_mutex_key(inode);
786 	} else {
787 		if (resv_map)
788 			kref_put(&resv_map->refs, resv_map_release);
789 	}
790 
791 	return inode;
792 }
793 
794 /*
795  * File creation. Allocate an inode, and we're done..
796  */
hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)797 static int hugetlbfs_mknod(struct inode *dir,
798 			struct dentry *dentry, umode_t mode, dev_t dev)
799 {
800 	struct inode *inode;
801 	int error = -ENOSPC;
802 
803 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
804 	if (inode) {
805 		dir->i_ctime = dir->i_mtime = current_time(dir);
806 		d_instantiate(dentry, inode);
807 		dget(dentry);	/* Extra count - pin the dentry in core */
808 		error = 0;
809 	}
810 	return error;
811 }
812 
hugetlbfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)813 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
814 {
815 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
816 	if (!retval)
817 		inc_nlink(dir);
818 	return retval;
819 }
820 
hugetlbfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)821 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
822 {
823 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
824 }
825 
hugetlbfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)826 static int hugetlbfs_symlink(struct inode *dir,
827 			struct dentry *dentry, const char *symname)
828 {
829 	struct inode *inode;
830 	int error = -ENOSPC;
831 
832 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
833 	if (inode) {
834 		int l = strlen(symname)+1;
835 		error = page_symlink(inode, symname, l);
836 		if (!error) {
837 			d_instantiate(dentry, inode);
838 			dget(dentry);
839 		} else
840 			iput(inode);
841 	}
842 	dir->i_ctime = dir->i_mtime = current_time(dir);
843 
844 	return error;
845 }
846 
847 /*
848  * mark the head page dirty
849  */
hugetlbfs_set_page_dirty(struct page * page)850 static int hugetlbfs_set_page_dirty(struct page *page)
851 {
852 	struct page *head = compound_head(page);
853 
854 	SetPageDirty(head);
855 	return 0;
856 }
857 
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int hugetlbfs_migrate_page(struct address_space *mapping,
859 				struct page *newpage, struct page *page,
860 				enum migrate_mode mode)
861 {
862 	int rc;
863 
864 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
865 	if (rc != MIGRATEPAGE_SUCCESS)
866 		return rc;
867 
868 	/*
869 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
870 	 * new page.  PagePrivate is not associated with page_private for
871 	 * hugetlb pages and can not be set here as only page_huge_active
872 	 * pages can be migrated.
873 	 */
874 	if (page_private(page)) {
875 		set_page_private(newpage, page_private(page));
876 		set_page_private(page, 0);
877 	}
878 
879 	if (mode != MIGRATE_SYNC_NO_COPY)
880 		migrate_page_copy(newpage, page);
881 	else
882 		migrate_page_states(newpage, page);
883 
884 	return MIGRATEPAGE_SUCCESS;
885 }
886 
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)887 static int hugetlbfs_error_remove_page(struct address_space *mapping,
888 				struct page *page)
889 {
890 	struct inode *inode = mapping->host;
891 	pgoff_t index = page->index;
892 
893 	remove_huge_page(page);
894 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
895 		hugetlb_fix_reserve_counts(inode);
896 
897 	return 0;
898 }
899 
900 /*
901  * Display the mount options in /proc/mounts.
902  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)903 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
904 {
905 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
906 	struct hugepage_subpool *spool = sbinfo->spool;
907 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
908 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
909 	char mod;
910 
911 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
912 		seq_printf(m, ",uid=%u",
913 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
914 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
915 		seq_printf(m, ",gid=%u",
916 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
917 	if (sbinfo->mode != 0755)
918 		seq_printf(m, ",mode=%o", sbinfo->mode);
919 	if (sbinfo->max_inodes != -1)
920 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
921 
922 	hpage_size /= 1024;
923 	mod = 'K';
924 	if (hpage_size >= 1024) {
925 		hpage_size /= 1024;
926 		mod = 'M';
927 	}
928 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
929 	if (spool) {
930 		if (spool->max_hpages != -1)
931 			seq_printf(m, ",size=%llu",
932 				   (unsigned long long)spool->max_hpages << hpage_shift);
933 		if (spool->min_hpages != -1)
934 			seq_printf(m, ",min_size=%llu",
935 				   (unsigned long long)spool->min_hpages << hpage_shift);
936 	}
937 	return 0;
938 }
939 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)940 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
941 {
942 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
943 	struct hstate *h = hstate_inode(d_inode(dentry));
944 
945 	buf->f_type = HUGETLBFS_MAGIC;
946 	buf->f_bsize = huge_page_size(h);
947 	if (sbinfo) {
948 		spin_lock(&sbinfo->stat_lock);
949 		/* If no limits set, just report 0 for max/free/used
950 		 * blocks, like simple_statfs() */
951 		if (sbinfo->spool) {
952 			long free_pages;
953 
954 			spin_lock(&sbinfo->spool->lock);
955 			buf->f_blocks = sbinfo->spool->max_hpages;
956 			free_pages = sbinfo->spool->max_hpages
957 				- sbinfo->spool->used_hpages;
958 			buf->f_bavail = buf->f_bfree = free_pages;
959 			spin_unlock(&sbinfo->spool->lock);
960 			buf->f_files = sbinfo->max_inodes;
961 			buf->f_ffree = sbinfo->free_inodes;
962 		}
963 		spin_unlock(&sbinfo->stat_lock);
964 	}
965 	buf->f_namelen = NAME_MAX;
966 	return 0;
967 }
968 
hugetlbfs_put_super(struct super_block * sb)969 static void hugetlbfs_put_super(struct super_block *sb)
970 {
971 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
972 
973 	if (sbi) {
974 		sb->s_fs_info = NULL;
975 
976 		if (sbi->spool)
977 			hugepage_put_subpool(sbi->spool);
978 
979 		kfree(sbi);
980 	}
981 }
982 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)983 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
984 {
985 	if (sbinfo->free_inodes >= 0) {
986 		spin_lock(&sbinfo->stat_lock);
987 		if (unlikely(!sbinfo->free_inodes)) {
988 			spin_unlock(&sbinfo->stat_lock);
989 			return 0;
990 		}
991 		sbinfo->free_inodes--;
992 		spin_unlock(&sbinfo->stat_lock);
993 	}
994 
995 	return 1;
996 }
997 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)998 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
999 {
1000 	if (sbinfo->free_inodes >= 0) {
1001 		spin_lock(&sbinfo->stat_lock);
1002 		sbinfo->free_inodes++;
1003 		spin_unlock(&sbinfo->stat_lock);
1004 	}
1005 }
1006 
1007 
1008 static struct kmem_cache *hugetlbfs_inode_cachep;
1009 
hugetlbfs_alloc_inode(struct super_block * sb)1010 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1011 {
1012 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1013 	struct hugetlbfs_inode_info *p;
1014 
1015 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1016 		return NULL;
1017 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1018 	if (unlikely(!p)) {
1019 		hugetlbfs_inc_free_inodes(sbinfo);
1020 		return NULL;
1021 	}
1022 
1023 	/*
1024 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1025 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1026 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1027 	 * in case of a quick call to destroy.
1028 	 *
1029 	 * Note that the policy is initialized even if we are creating a
1030 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1031 	 */
1032 	mpol_shared_policy_init(&p->policy, NULL);
1033 
1034 	return &p->vfs_inode;
1035 }
1036 
hugetlbfs_i_callback(struct rcu_head * head)1037 static void hugetlbfs_i_callback(struct rcu_head *head)
1038 {
1039 	struct inode *inode = container_of(head, struct inode, i_rcu);
1040 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1041 }
1042 
hugetlbfs_destroy_inode(struct inode * inode)1043 static void hugetlbfs_destroy_inode(struct inode *inode)
1044 {
1045 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1046 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1047 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1048 }
1049 
1050 static const struct address_space_operations hugetlbfs_aops = {
1051 	.write_begin	= hugetlbfs_write_begin,
1052 	.write_end	= hugetlbfs_write_end,
1053 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1054 	.migratepage    = hugetlbfs_migrate_page,
1055 	.error_remove_page	= hugetlbfs_error_remove_page,
1056 };
1057 
1058 
init_once(void * foo)1059 static void init_once(void *foo)
1060 {
1061 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1062 
1063 	inode_init_once(&ei->vfs_inode);
1064 }
1065 
1066 const struct file_operations hugetlbfs_file_operations = {
1067 	.read_iter		= hugetlbfs_read_iter,
1068 	.mmap			= hugetlbfs_file_mmap,
1069 	.fsync			= noop_fsync,
1070 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1071 	.llseek			= default_llseek,
1072 	.fallocate		= hugetlbfs_fallocate,
1073 };
1074 
1075 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1076 	.create		= hugetlbfs_create,
1077 	.lookup		= simple_lookup,
1078 	.link		= simple_link,
1079 	.unlink		= simple_unlink,
1080 	.symlink	= hugetlbfs_symlink,
1081 	.mkdir		= hugetlbfs_mkdir,
1082 	.rmdir		= simple_rmdir,
1083 	.mknod		= hugetlbfs_mknod,
1084 	.rename		= simple_rename,
1085 	.setattr	= hugetlbfs_setattr,
1086 };
1087 
1088 static const struct inode_operations hugetlbfs_inode_operations = {
1089 	.setattr	= hugetlbfs_setattr,
1090 };
1091 
1092 static const struct super_operations hugetlbfs_ops = {
1093 	.alloc_inode    = hugetlbfs_alloc_inode,
1094 	.destroy_inode  = hugetlbfs_destroy_inode,
1095 	.evict_inode	= hugetlbfs_evict_inode,
1096 	.statfs		= hugetlbfs_statfs,
1097 	.put_super	= hugetlbfs_put_super,
1098 	.show_options	= hugetlbfs_show_options,
1099 };
1100 
1101 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1102 
1103 /*
1104  * Convert size option passed from command line to number of huge pages
1105  * in the pool specified by hstate.  Size option could be in bytes
1106  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1107  */
1108 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1109 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1110 			 enum hugetlbfs_size_type val_type)
1111 {
1112 	if (val_type == NO_SIZE)
1113 		return -1;
1114 
1115 	if (val_type == SIZE_PERCENT) {
1116 		size_opt <<= huge_page_shift(h);
1117 		size_opt *= h->max_huge_pages;
1118 		do_div(size_opt, 100);
1119 	}
1120 
1121 	size_opt >>= huge_page_shift(h);
1122 	return size_opt;
1123 }
1124 
1125 static int
hugetlbfs_parse_options(char * options,struct hugetlbfs_config * pconfig)1126 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1127 {
1128 	char *p, *rest;
1129 	substring_t args[MAX_OPT_ARGS];
1130 	int option;
1131 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1132 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1133 
1134 	if (!options)
1135 		return 0;
1136 
1137 	while ((p = strsep(&options, ",")) != NULL) {
1138 		int token;
1139 		if (!*p)
1140 			continue;
1141 
1142 		token = match_token(p, tokens, args);
1143 		switch (token) {
1144 		case Opt_uid:
1145 			if (match_int(&args[0], &option))
1146  				goto bad_val;
1147 			pconfig->uid = make_kuid(current_user_ns(), option);
1148 			if (!uid_valid(pconfig->uid))
1149 				goto bad_val;
1150 			break;
1151 
1152 		case Opt_gid:
1153 			if (match_int(&args[0], &option))
1154  				goto bad_val;
1155 			pconfig->gid = make_kgid(current_user_ns(), option);
1156 			if (!gid_valid(pconfig->gid))
1157 				goto bad_val;
1158 			break;
1159 
1160 		case Opt_mode:
1161 			if (match_octal(&args[0], &option))
1162  				goto bad_val;
1163 			pconfig->mode = option & 01777U;
1164 			break;
1165 
1166 		case Opt_size: {
1167 			/* memparse() will accept a K/M/G without a digit */
1168 			if (!isdigit(*args[0].from))
1169 				goto bad_val;
1170 			max_size_opt = memparse(args[0].from, &rest);
1171 			max_val_type = SIZE_STD;
1172 			if (*rest == '%')
1173 				max_val_type = SIZE_PERCENT;
1174 			break;
1175 		}
1176 
1177 		case Opt_nr_inodes:
1178 			/* memparse() will accept a K/M/G without a digit */
1179 			if (!isdigit(*args[0].from))
1180 				goto bad_val;
1181 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1182 			break;
1183 
1184 		case Opt_pagesize: {
1185 			unsigned long ps;
1186 			ps = memparse(args[0].from, &rest);
1187 			pconfig->hstate = size_to_hstate(ps);
1188 			if (!pconfig->hstate) {
1189 				pr_err("Unsupported page size %lu MB\n",
1190 					ps >> 20);
1191 				return -EINVAL;
1192 			}
1193 			break;
1194 		}
1195 
1196 		case Opt_min_size: {
1197 			/* memparse() will accept a K/M/G without a digit */
1198 			if (!isdigit(*args[0].from))
1199 				goto bad_val;
1200 			min_size_opt = memparse(args[0].from, &rest);
1201 			min_val_type = SIZE_STD;
1202 			if (*rest == '%')
1203 				min_val_type = SIZE_PERCENT;
1204 			break;
1205 		}
1206 
1207 		default:
1208 			pr_err("Bad mount option: \"%s\"\n", p);
1209 			return -EINVAL;
1210 			break;
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * Use huge page pool size (in hstate) to convert the size
1216 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1217 	 */
1218 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1219 						max_size_opt, max_val_type);
1220 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1221 						min_size_opt, min_val_type);
1222 
1223 	/*
1224 	 * If max_size was specified, then min_size must be smaller
1225 	 */
1226 	if (max_val_type > NO_SIZE &&
1227 	    pconfig->min_hpages > pconfig->max_hpages) {
1228 		pr_err("minimum size can not be greater than maximum size\n");
1229 		return -EINVAL;
1230 	}
1231 
1232 	return 0;
1233 
1234 bad_val:
1235 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1236  	return -EINVAL;
1237 }
1238 
1239 static int
hugetlbfs_fill_super(struct super_block * sb,void * data,int silent)1240 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1241 {
1242 	int ret;
1243 	struct hugetlbfs_config config;
1244 	struct hugetlbfs_sb_info *sbinfo;
1245 
1246 	config.max_hpages = -1; /* No limit on size by default */
1247 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1248 	config.uid = current_fsuid();
1249 	config.gid = current_fsgid();
1250 	config.mode = 0755;
1251 	config.hstate = &default_hstate;
1252 	config.min_hpages = -1; /* No default minimum size */
1253 	ret = hugetlbfs_parse_options(data, &config);
1254 	if (ret)
1255 		return ret;
1256 
1257 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1258 	if (!sbinfo)
1259 		return -ENOMEM;
1260 	sb->s_fs_info = sbinfo;
1261 	sbinfo->hstate = config.hstate;
1262 	spin_lock_init(&sbinfo->stat_lock);
1263 	sbinfo->max_inodes = config.nr_inodes;
1264 	sbinfo->free_inodes = config.nr_inodes;
1265 	sbinfo->spool = NULL;
1266 	sbinfo->uid = config.uid;
1267 	sbinfo->gid = config.gid;
1268 	sbinfo->mode = config.mode;
1269 
1270 	/*
1271 	 * Allocate and initialize subpool if maximum or minimum size is
1272 	 * specified.  Any needed reservations (for minimim size) are taken
1273 	 * taken when the subpool is created.
1274 	 */
1275 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1276 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1277 							config.max_hpages,
1278 							config.min_hpages);
1279 		if (!sbinfo->spool)
1280 			goto out_free;
1281 	}
1282 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1283 	sb->s_blocksize = huge_page_size(config.hstate);
1284 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1285 	sb->s_magic = HUGETLBFS_MAGIC;
1286 	sb->s_op = &hugetlbfs_ops;
1287 	sb->s_time_gran = 1;
1288 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1289 	if (!sb->s_root)
1290 		goto out_free;
1291 	return 0;
1292 out_free:
1293 	kfree(sbinfo->spool);
1294 	kfree(sbinfo);
1295 	return -ENOMEM;
1296 }
1297 
hugetlbfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1298 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1299 	int flags, const char *dev_name, void *data)
1300 {
1301 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1302 }
1303 
1304 static struct file_system_type hugetlbfs_fs_type = {
1305 	.name		= "hugetlbfs",
1306 	.mount		= hugetlbfs_mount,
1307 	.kill_sb	= kill_litter_super,
1308 };
1309 
1310 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1311 
can_do_hugetlb_shm(void)1312 static int can_do_hugetlb_shm(void)
1313 {
1314 	kgid_t shm_group;
1315 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1316 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1317 }
1318 
get_hstate_idx(int page_size_log)1319 static int get_hstate_idx(int page_size_log)
1320 {
1321 	struct hstate *h = hstate_sizelog(page_size_log);
1322 
1323 	if (!h)
1324 		return -1;
1325 	return h - hstates;
1326 }
1327 
1328 /*
1329  * Note that size should be aligned to proper hugepage size in caller side,
1330  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1331  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct user_struct ** user,int creat_flags,int page_size_log)1332 struct file *hugetlb_file_setup(const char *name, size_t size,
1333 				vm_flags_t acctflag, struct user_struct **user,
1334 				int creat_flags, int page_size_log)
1335 {
1336 	struct inode *inode;
1337 	struct vfsmount *mnt;
1338 	int hstate_idx;
1339 	struct file *file;
1340 
1341 	hstate_idx = get_hstate_idx(page_size_log);
1342 	if (hstate_idx < 0)
1343 		return ERR_PTR(-ENODEV);
1344 
1345 	*user = NULL;
1346 	mnt = hugetlbfs_vfsmount[hstate_idx];
1347 	if (!mnt)
1348 		return ERR_PTR(-ENOENT);
1349 
1350 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1351 		*user = current_user();
1352 		if (user_shm_lock(size, *user)) {
1353 			task_lock(current);
1354 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1355 				current->comm, current->pid);
1356 			task_unlock(current);
1357 		} else {
1358 			*user = NULL;
1359 			return ERR_PTR(-EPERM);
1360 		}
1361 	}
1362 
1363 	file = ERR_PTR(-ENOSPC);
1364 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1365 	if (!inode)
1366 		goto out;
1367 	if (creat_flags == HUGETLB_SHMFS_INODE)
1368 		inode->i_flags |= S_PRIVATE;
1369 
1370 	inode->i_size = size;
1371 	clear_nlink(inode);
1372 
1373 	if (hugetlb_reserve_pages(inode, 0,
1374 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1375 			acctflag))
1376 		file = ERR_PTR(-ENOMEM);
1377 	else
1378 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1379 					&hugetlbfs_file_operations);
1380 	if (!IS_ERR(file))
1381 		return file;
1382 
1383 	iput(inode);
1384 out:
1385 	if (*user) {
1386 		user_shm_unlock(size, *user);
1387 		*user = NULL;
1388 	}
1389 	return file;
1390 }
1391 
init_hugetlbfs_fs(void)1392 static int __init init_hugetlbfs_fs(void)
1393 {
1394 	struct hstate *h;
1395 	int error;
1396 	int i;
1397 
1398 	if (!hugepages_supported()) {
1399 		pr_info("disabling because there are no supported hugepage sizes\n");
1400 		return -ENOTSUPP;
1401 	}
1402 
1403 	error = -ENOMEM;
1404 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1405 					sizeof(struct hugetlbfs_inode_info),
1406 					0, SLAB_ACCOUNT, init_once);
1407 	if (hugetlbfs_inode_cachep == NULL)
1408 		goto out2;
1409 
1410 	error = register_filesystem(&hugetlbfs_fs_type);
1411 	if (error)
1412 		goto out;
1413 
1414 	i = 0;
1415 	for_each_hstate(h) {
1416 		char buf[50];
1417 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1418 
1419 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1420 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1421 							buf);
1422 
1423 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1424 			pr_err("Cannot mount internal hugetlbfs for "
1425 				"page size %uK", ps_kb);
1426 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1427 			hugetlbfs_vfsmount[i] = NULL;
1428 		}
1429 		i++;
1430 	}
1431 	/* Non default hstates are optional */
1432 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1433 		return 0;
1434 
1435  out:
1436 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1437  out2:
1438 	return error;
1439 }
1440 fs_initcall(init_hugetlbfs_fs)
1441