• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
get_nr_inodes(void)79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
get_nr_inodes_unused(void)88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
get_nr_dirty_inodes(void)97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
no_open(struct inode * inode,struct file * file)117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
inode_init_always(struct super_block * sb,struct inode * inode)130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic64_set(&inode->i_sequence, 0);
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	if (sb->s_xattr)
146 		inode->i_opflags |= IOP_XATTR;
147 	i_uid_write(inode, 0);
148 	i_gid_write(inode, 0);
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 	inode->i_pipe = NULL;
156 	inode->i_bdev = NULL;
157 	inode->i_cdev = NULL;
158 	inode->i_link = NULL;
159 	inode->i_dir_seq = 0;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	inode->i_wb_frn_winner = 0;
165 	inode->i_wb_frn_avg_time = 0;
166 	inode->i_wb_frn_history = 0;
167 #endif
168 
169 	if (security_inode_alloc(inode))
170 		goto out;
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	mapping->wb_err = 0;
183 	atomic_set(&mapping->i_mmap_writable, 0);
184 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
185 	mapping->private_data = NULL;
186 	mapping->writeback_index = 0;
187 	inode->i_private = NULL;
188 	inode->i_mapping = mapping;
189 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193 
194 #ifdef CONFIG_FSNOTIFY
195 	inode->i_fsnotify_mask = 0;
196 #endif
197 	inode->i_flctx = NULL;
198 	this_cpu_inc(nr_inodes);
199 
200 	return 0;
201 out:
202 	return -ENOMEM;
203 }
204 EXPORT_SYMBOL(inode_init_always);
205 
alloc_inode(struct super_block * sb)206 static struct inode *alloc_inode(struct super_block *sb)
207 {
208 	struct inode *inode;
209 
210 	if (sb->s_op->alloc_inode)
211 		inode = sb->s_op->alloc_inode(sb);
212 	else
213 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214 
215 	if (!inode)
216 		return NULL;
217 
218 	if (unlikely(inode_init_always(sb, inode))) {
219 		if (inode->i_sb->s_op->destroy_inode)
220 			inode->i_sb->s_op->destroy_inode(inode);
221 		else
222 			kmem_cache_free(inode_cachep, inode);
223 		return NULL;
224 	}
225 
226 	return inode;
227 }
228 
free_inode_nonrcu(struct inode * inode)229 void free_inode_nonrcu(struct inode *inode)
230 {
231 	kmem_cache_free(inode_cachep, inode);
232 }
233 EXPORT_SYMBOL(free_inode_nonrcu);
234 
__destroy_inode(struct inode * inode)235 void __destroy_inode(struct inode *inode)
236 {
237 	BUG_ON(inode_has_buffers(inode));
238 	inode_detach_wb(inode);
239 	security_inode_free(inode);
240 	fsnotify_inode_delete(inode);
241 	locks_free_lock_context(inode);
242 	if (!inode->i_nlink) {
243 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
244 		atomic_long_dec(&inode->i_sb->s_remove_count);
245 	}
246 
247 #ifdef CONFIG_FS_POSIX_ACL
248 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
249 		posix_acl_release(inode->i_acl);
250 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
251 		posix_acl_release(inode->i_default_acl);
252 #endif
253 	this_cpu_dec(nr_inodes);
254 }
255 EXPORT_SYMBOL(__destroy_inode);
256 
i_callback(struct rcu_head * head)257 static void i_callback(struct rcu_head *head)
258 {
259 	struct inode *inode = container_of(head, struct inode, i_rcu);
260 	kmem_cache_free(inode_cachep, inode);
261 }
262 
destroy_inode(struct inode * inode)263 static void destroy_inode(struct inode *inode)
264 {
265 	BUG_ON(!list_empty(&inode->i_lru));
266 	__destroy_inode(inode);
267 	if (inode->i_sb->s_op->destroy_inode)
268 		inode->i_sb->s_op->destroy_inode(inode);
269 	else
270 		call_rcu(&inode->i_rcu, i_callback);
271 }
272 
273 /**
274  * drop_nlink - directly drop an inode's link count
275  * @inode: inode
276  *
277  * This is a low-level filesystem helper to replace any
278  * direct filesystem manipulation of i_nlink.  In cases
279  * where we are attempting to track writes to the
280  * filesystem, a decrement to zero means an imminent
281  * write when the file is truncated and actually unlinked
282  * on the filesystem.
283  */
drop_nlink(struct inode * inode)284 void drop_nlink(struct inode *inode)
285 {
286 	WARN_ON(inode->i_nlink == 0);
287 	inode->__i_nlink--;
288 	if (!inode->i_nlink)
289 		atomic_long_inc(&inode->i_sb->s_remove_count);
290 }
291 EXPORT_SYMBOL(drop_nlink);
292 
293 /**
294  * clear_nlink - directly zero an inode's link count
295  * @inode: inode
296  *
297  * This is a low-level filesystem helper to replace any
298  * direct filesystem manipulation of i_nlink.  See
299  * drop_nlink() for why we care about i_nlink hitting zero.
300  */
clear_nlink(struct inode * inode)301 void clear_nlink(struct inode *inode)
302 {
303 	if (inode->i_nlink) {
304 		inode->__i_nlink = 0;
305 		atomic_long_inc(&inode->i_sb->s_remove_count);
306 	}
307 }
308 EXPORT_SYMBOL(clear_nlink);
309 
310 /**
311  * set_nlink - directly set an inode's link count
312  * @inode: inode
313  * @nlink: new nlink (should be non-zero)
314  *
315  * This is a low-level filesystem helper to replace any
316  * direct filesystem manipulation of i_nlink.
317  */
set_nlink(struct inode * inode,unsigned int nlink)318 void set_nlink(struct inode *inode, unsigned int nlink)
319 {
320 	if (!nlink) {
321 		clear_nlink(inode);
322 	} else {
323 		/* Yes, some filesystems do change nlink from zero to one */
324 		if (inode->i_nlink == 0)
325 			atomic_long_dec(&inode->i_sb->s_remove_count);
326 
327 		inode->__i_nlink = nlink;
328 	}
329 }
330 EXPORT_SYMBOL(set_nlink);
331 
332 /**
333  * inc_nlink - directly increment an inode's link count
334  * @inode: inode
335  *
336  * This is a low-level filesystem helper to replace any
337  * direct filesystem manipulation of i_nlink.  Currently,
338  * it is only here for parity with dec_nlink().
339  */
inc_nlink(struct inode * inode)340 void inc_nlink(struct inode *inode)
341 {
342 	if (unlikely(inode->i_nlink == 0)) {
343 		WARN_ON(!(inode->i_state & I_LINKABLE));
344 		atomic_long_dec(&inode->i_sb->s_remove_count);
345 	}
346 
347 	inode->__i_nlink++;
348 }
349 EXPORT_SYMBOL(inc_nlink);
350 
__address_space_init_once(struct address_space * mapping)351 static void __address_space_init_once(struct address_space *mapping)
352 {
353 	INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
354 	init_rwsem(&mapping->i_mmap_rwsem);
355 	INIT_LIST_HEAD(&mapping->private_list);
356 	spin_lock_init(&mapping->private_lock);
357 	mapping->i_mmap = RB_ROOT_CACHED;
358 }
359 
address_space_init_once(struct address_space * mapping)360 void address_space_init_once(struct address_space *mapping)
361 {
362 	memset(mapping, 0, sizeof(*mapping));
363 	__address_space_init_once(mapping);
364 }
365 EXPORT_SYMBOL(address_space_init_once);
366 
367 /*
368  * These are initializations that only need to be done
369  * once, because the fields are idempotent across use
370  * of the inode, so let the slab aware of that.
371  */
inode_init_once(struct inode * inode)372 void inode_init_once(struct inode *inode)
373 {
374 	memset(inode, 0, sizeof(*inode));
375 	INIT_HLIST_NODE(&inode->i_hash);
376 	INIT_LIST_HEAD(&inode->i_devices);
377 	INIT_LIST_HEAD(&inode->i_io_list);
378 	INIT_LIST_HEAD(&inode->i_wb_list);
379 	INIT_LIST_HEAD(&inode->i_lru);
380 	__address_space_init_once(&inode->i_data);
381 	i_size_ordered_init(inode);
382 }
383 EXPORT_SYMBOL(inode_init_once);
384 
init_once(void * foo)385 static void init_once(void *foo)
386 {
387 	struct inode *inode = (struct inode *) foo;
388 
389 	inode_init_once(inode);
390 }
391 
392 /*
393  * inode->i_lock must be held
394  */
__iget(struct inode * inode)395 void __iget(struct inode *inode)
396 {
397 	atomic_inc(&inode->i_count);
398 }
399 
400 /*
401  * get additional reference to inode; caller must already hold one.
402  */
ihold(struct inode * inode)403 void ihold(struct inode *inode)
404 {
405 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
406 }
407 EXPORT_SYMBOL(ihold);
408 
inode_lru_list_add(struct inode * inode)409 static void inode_lru_list_add(struct inode *inode)
410 {
411 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
412 		this_cpu_inc(nr_unused);
413 	else
414 		inode->i_state |= I_REFERENCED;
415 }
416 
417 /*
418  * Add inode to LRU if needed (inode is unused and clean).
419  *
420  * Needs inode->i_lock held.
421  */
inode_add_lru(struct inode * inode)422 void inode_add_lru(struct inode *inode)
423 {
424 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
425 				I_FREEING | I_WILL_FREE)) &&
426 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
427 		inode_lru_list_add(inode);
428 }
429 
430 
inode_lru_list_del(struct inode * inode)431 static void inode_lru_list_del(struct inode *inode)
432 {
433 
434 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
435 		this_cpu_dec(nr_unused);
436 }
437 
438 /**
439  * inode_sb_list_add - add inode to the superblock list of inodes
440  * @inode: inode to add
441  */
inode_sb_list_add(struct inode * inode)442 void inode_sb_list_add(struct inode *inode)
443 {
444 	spin_lock(&inode->i_sb->s_inode_list_lock);
445 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
446 	spin_unlock(&inode->i_sb->s_inode_list_lock);
447 }
448 EXPORT_SYMBOL_GPL(inode_sb_list_add);
449 
inode_sb_list_del(struct inode * inode)450 static inline void inode_sb_list_del(struct inode *inode)
451 {
452 	if (!list_empty(&inode->i_sb_list)) {
453 		spin_lock(&inode->i_sb->s_inode_list_lock);
454 		list_del_init(&inode->i_sb_list);
455 		spin_unlock(&inode->i_sb->s_inode_list_lock);
456 	}
457 }
458 
hash(struct super_block * sb,unsigned long hashval)459 static unsigned long hash(struct super_block *sb, unsigned long hashval)
460 {
461 	unsigned long tmp;
462 
463 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
464 			L1_CACHE_BYTES;
465 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
466 	return tmp & i_hash_mask;
467 }
468 
469 /**
470  *	__insert_inode_hash - hash an inode
471  *	@inode: unhashed inode
472  *	@hashval: unsigned long value used to locate this object in the
473  *		inode_hashtable.
474  *
475  *	Add an inode to the inode hash for this superblock.
476  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)477 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
478 {
479 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
480 
481 	spin_lock(&inode_hash_lock);
482 	spin_lock(&inode->i_lock);
483 	hlist_add_head(&inode->i_hash, b);
484 	spin_unlock(&inode->i_lock);
485 	spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__insert_inode_hash);
488 
489 /**
490  *	__remove_inode_hash - remove an inode from the hash
491  *	@inode: inode to unhash
492  *
493  *	Remove an inode from the superblock.
494  */
__remove_inode_hash(struct inode * inode)495 void __remove_inode_hash(struct inode *inode)
496 {
497 	spin_lock(&inode_hash_lock);
498 	spin_lock(&inode->i_lock);
499 	hlist_del_init(&inode->i_hash);
500 	spin_unlock(&inode->i_lock);
501 	spin_unlock(&inode_hash_lock);
502 }
503 EXPORT_SYMBOL(__remove_inode_hash);
504 
clear_inode(struct inode * inode)505 void clear_inode(struct inode *inode)
506 {
507 	/*
508 	 * We have to cycle the i_pages lock here because reclaim can be in the
509 	 * process of removing the last page (in __delete_from_page_cache())
510 	 * and we must not free the mapping under it.
511 	 */
512 	xa_lock_irq(&inode->i_data.i_pages);
513 	BUG_ON(inode->i_data.nrpages);
514 	BUG_ON(inode->i_data.nrexceptional);
515 	xa_unlock_irq(&inode->i_data.i_pages);
516 	BUG_ON(!list_empty(&inode->i_data.private_list));
517 	BUG_ON(!(inode->i_state & I_FREEING));
518 	BUG_ON(inode->i_state & I_CLEAR);
519 	BUG_ON(!list_empty(&inode->i_wb_list));
520 	/* don't need i_lock here, no concurrent mods to i_state */
521 	inode->i_state = I_FREEING | I_CLEAR;
522 }
523 EXPORT_SYMBOL(clear_inode);
524 
525 /*
526  * Free the inode passed in, removing it from the lists it is still connected
527  * to. We remove any pages still attached to the inode and wait for any IO that
528  * is still in progress before finally destroying the inode.
529  *
530  * An inode must already be marked I_FREEING so that we avoid the inode being
531  * moved back onto lists if we race with other code that manipulates the lists
532  * (e.g. writeback_single_inode). The caller is responsible for setting this.
533  *
534  * An inode must already be removed from the LRU list before being evicted from
535  * the cache. This should occur atomically with setting the I_FREEING state
536  * flag, so no inodes here should ever be on the LRU when being evicted.
537  */
evict(struct inode * inode)538 static void evict(struct inode *inode)
539 {
540 	const struct super_operations *op = inode->i_sb->s_op;
541 
542 	BUG_ON(!(inode->i_state & I_FREEING));
543 	BUG_ON(!list_empty(&inode->i_lru));
544 
545 	if (!list_empty(&inode->i_io_list))
546 		inode_io_list_del(inode);
547 
548 	inode_sb_list_del(inode);
549 
550 	/*
551 	 * Wait for flusher thread to be done with the inode so that filesystem
552 	 * does not start destroying it while writeback is still running. Since
553 	 * the inode has I_FREEING set, flusher thread won't start new work on
554 	 * the inode.  We just have to wait for running writeback to finish.
555 	 */
556 	inode_wait_for_writeback(inode);
557 
558 	if (op->evict_inode) {
559 		op->evict_inode(inode);
560 	} else {
561 		truncate_inode_pages_final(&inode->i_data);
562 		clear_inode(inode);
563 	}
564 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
565 		bd_forget(inode);
566 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
567 		cd_forget(inode);
568 
569 	remove_inode_hash(inode);
570 
571 	spin_lock(&inode->i_lock);
572 	wake_up_bit(&inode->i_state, __I_NEW);
573 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
574 	spin_unlock(&inode->i_lock);
575 
576 	destroy_inode(inode);
577 }
578 
579 /*
580  * dispose_list - dispose of the contents of a local list
581  * @head: the head of the list to free
582  *
583  * Dispose-list gets a local list with local inodes in it, so it doesn't
584  * need to worry about list corruption and SMP locks.
585  */
dispose_list(struct list_head * head)586 static void dispose_list(struct list_head *head)
587 {
588 	while (!list_empty(head)) {
589 		struct inode *inode;
590 
591 		inode = list_first_entry(head, struct inode, i_lru);
592 		list_del_init(&inode->i_lru);
593 
594 		evict(inode);
595 		cond_resched();
596 	}
597 }
598 
599 /**
600  * evict_inodes	- evict all evictable inodes for a superblock
601  * @sb:		superblock to operate on
602  *
603  * Make sure that no inodes with zero refcount are retained.  This is
604  * called by superblock shutdown after having SB_ACTIVE flag removed,
605  * so any inode reaching zero refcount during or after that call will
606  * be immediately evicted.
607  */
evict_inodes(struct super_block * sb)608 void evict_inodes(struct super_block *sb)
609 {
610 	struct inode *inode, *next;
611 	LIST_HEAD(dispose);
612 
613 again:
614 	spin_lock(&sb->s_inode_list_lock);
615 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
616 		if (atomic_read(&inode->i_count))
617 			continue;
618 
619 		spin_lock(&inode->i_lock);
620 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
621 			spin_unlock(&inode->i_lock);
622 			continue;
623 		}
624 
625 		inode->i_state |= I_FREEING;
626 		inode_lru_list_del(inode);
627 		spin_unlock(&inode->i_lock);
628 		list_add(&inode->i_lru, &dispose);
629 
630 		/*
631 		 * We can have a ton of inodes to evict at unmount time given
632 		 * enough memory, check to see if we need to go to sleep for a
633 		 * bit so we don't livelock.
634 		 */
635 		if (need_resched()) {
636 			spin_unlock(&sb->s_inode_list_lock);
637 			cond_resched();
638 			dispose_list(&dispose);
639 			goto again;
640 		}
641 	}
642 	spin_unlock(&sb->s_inode_list_lock);
643 
644 	dispose_list(&dispose);
645 }
646 EXPORT_SYMBOL_GPL(evict_inodes);
647 
648 /**
649  * invalidate_inodes	- attempt to free all inodes on a superblock
650  * @sb:		superblock to operate on
651  * @kill_dirty: flag to guide handling of dirty inodes
652  *
653  * Attempts to free all inodes for a given superblock.  If there were any
654  * busy inodes return a non-zero value, else zero.
655  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
656  * them as busy.
657  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)658 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
659 {
660 	int busy = 0;
661 	struct inode *inode, *next;
662 	LIST_HEAD(dispose);
663 
664 again:
665 	spin_lock(&sb->s_inode_list_lock);
666 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
667 		spin_lock(&inode->i_lock);
668 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
669 			spin_unlock(&inode->i_lock);
670 			continue;
671 		}
672 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
673 			spin_unlock(&inode->i_lock);
674 			busy = 1;
675 			continue;
676 		}
677 		if (atomic_read(&inode->i_count)) {
678 			spin_unlock(&inode->i_lock);
679 			busy = 1;
680 			continue;
681 		}
682 
683 		inode->i_state |= I_FREEING;
684 		inode_lru_list_del(inode);
685 		spin_unlock(&inode->i_lock);
686 		list_add(&inode->i_lru, &dispose);
687 		if (need_resched()) {
688 			spin_unlock(&sb->s_inode_list_lock);
689 			cond_resched();
690 			dispose_list(&dispose);
691 			goto again;
692 		}
693 	}
694 	spin_unlock(&sb->s_inode_list_lock);
695 
696 	dispose_list(&dispose);
697 
698 	return busy;
699 }
700 
701 /*
702  * Isolate the inode from the LRU in preparation for freeing it.
703  *
704  * Any inodes which are pinned purely because of attached pagecache have their
705  * pagecache removed.  If the inode has metadata buffers attached to
706  * mapping->private_list then try to remove them.
707  *
708  * If the inode has the I_REFERENCED flag set, then it means that it has been
709  * used recently - the flag is set in iput_final(). When we encounter such an
710  * inode, clear the flag and move it to the back of the LRU so it gets another
711  * pass through the LRU before it gets reclaimed. This is necessary because of
712  * the fact we are doing lazy LRU updates to minimise lock contention so the
713  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
714  * with this flag set because they are the inodes that are out of order.
715  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)716 static enum lru_status inode_lru_isolate(struct list_head *item,
717 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
718 {
719 	struct list_head *freeable = arg;
720 	struct inode	*inode = container_of(item, struct inode, i_lru);
721 
722 	/*
723 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
724 	 * If we fail to get the lock, just skip it.
725 	 */
726 	if (!spin_trylock(&inode->i_lock))
727 		return LRU_SKIP;
728 
729 	/*
730 	 * Referenced or dirty inodes are still in use. Give them another pass
731 	 * through the LRU as we canot reclaim them now.
732 	 */
733 	if (atomic_read(&inode->i_count) ||
734 	    (inode->i_state & ~I_REFERENCED)) {
735 		list_lru_isolate(lru, &inode->i_lru);
736 		spin_unlock(&inode->i_lock);
737 		this_cpu_dec(nr_unused);
738 		return LRU_REMOVED;
739 	}
740 
741 	/* recently referenced inodes get one more pass */
742 	if (inode->i_state & I_REFERENCED) {
743 		inode->i_state &= ~I_REFERENCED;
744 		spin_unlock(&inode->i_lock);
745 		return LRU_ROTATE;
746 	}
747 
748 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
749 		__iget(inode);
750 		spin_unlock(&inode->i_lock);
751 		spin_unlock(lru_lock);
752 		if (remove_inode_buffers(inode)) {
753 			unsigned long reap;
754 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
755 			if (current_is_kswapd())
756 				__count_vm_events(KSWAPD_INODESTEAL, reap);
757 			else
758 				__count_vm_events(PGINODESTEAL, reap);
759 			if (current->reclaim_state)
760 				current->reclaim_state->reclaimed_slab += reap;
761 		}
762 		iput(inode);
763 		spin_lock(lru_lock);
764 		return LRU_RETRY;
765 	}
766 
767 	WARN_ON(inode->i_state & I_NEW);
768 	inode->i_state |= I_FREEING;
769 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
770 	spin_unlock(&inode->i_lock);
771 
772 	this_cpu_dec(nr_unused);
773 	return LRU_REMOVED;
774 }
775 
776 /*
777  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
778  * This is called from the superblock shrinker function with a number of inodes
779  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
780  * then are freed outside inode_lock by dispose_list().
781  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)782 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
783 {
784 	LIST_HEAD(freeable);
785 	long freed;
786 
787 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
788 				     inode_lru_isolate, &freeable);
789 	dispose_list(&freeable);
790 	return freed;
791 }
792 
793 static void __wait_on_freeing_inode(struct inode *inode);
794 /*
795  * Called with the inode lock held.
796  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)797 static struct inode *find_inode(struct super_block *sb,
798 				struct hlist_head *head,
799 				int (*test)(struct inode *, void *),
800 				void *data)
801 {
802 	struct inode *inode = NULL;
803 
804 repeat:
805 	hlist_for_each_entry(inode, head, i_hash) {
806 		if (inode->i_sb != sb)
807 			continue;
808 		if (!test(inode, data))
809 			continue;
810 		spin_lock(&inode->i_lock);
811 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
812 			__wait_on_freeing_inode(inode);
813 			goto repeat;
814 		}
815 		if (unlikely(inode->i_state & I_CREATING)) {
816 			spin_unlock(&inode->i_lock);
817 			return ERR_PTR(-ESTALE);
818 		}
819 		__iget(inode);
820 		spin_unlock(&inode->i_lock);
821 		return inode;
822 	}
823 	return NULL;
824 }
825 
826 /*
827  * find_inode_fast is the fast path version of find_inode, see the comment at
828  * iget_locked for details.
829  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)830 static struct inode *find_inode_fast(struct super_block *sb,
831 				struct hlist_head *head, unsigned long ino)
832 {
833 	struct inode *inode = NULL;
834 
835 repeat:
836 	hlist_for_each_entry(inode, head, i_hash) {
837 		if (inode->i_ino != ino)
838 			continue;
839 		if (inode->i_sb != sb)
840 			continue;
841 		spin_lock(&inode->i_lock);
842 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
843 			__wait_on_freeing_inode(inode);
844 			goto repeat;
845 		}
846 		if (unlikely(inode->i_state & I_CREATING)) {
847 			spin_unlock(&inode->i_lock);
848 			return ERR_PTR(-ESTALE);
849 		}
850 		__iget(inode);
851 		spin_unlock(&inode->i_lock);
852 		return inode;
853 	}
854 	return NULL;
855 }
856 
857 /*
858  * Each cpu owns a range of LAST_INO_BATCH numbers.
859  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
860  * to renew the exhausted range.
861  *
862  * This does not significantly increase overflow rate because every CPU can
863  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
864  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
865  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
866  * overflow rate by 2x, which does not seem too significant.
867  *
868  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
869  * error if st_ino won't fit in target struct field. Use 32bit counter
870  * here to attempt to avoid that.
871  */
872 #define LAST_INO_BATCH 1024
873 static DEFINE_PER_CPU(unsigned int, last_ino);
874 
get_next_ino(void)875 unsigned int get_next_ino(void)
876 {
877 	unsigned int *p = &get_cpu_var(last_ino);
878 	unsigned int res = *p;
879 
880 #ifdef CONFIG_SMP
881 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
882 		static atomic_t shared_last_ino;
883 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
884 
885 		res = next - LAST_INO_BATCH;
886 	}
887 #endif
888 
889 	res++;
890 	/* get_next_ino should not provide a 0 inode number */
891 	if (unlikely(!res))
892 		res++;
893 	*p = res;
894 	put_cpu_var(last_ino);
895 	return res;
896 }
897 EXPORT_SYMBOL(get_next_ino);
898 
899 /**
900  *	new_inode_pseudo 	- obtain an inode
901  *	@sb: superblock
902  *
903  *	Allocates a new inode for given superblock.
904  *	Inode wont be chained in superblock s_inodes list
905  *	This means :
906  *	- fs can't be unmount
907  *	- quotas, fsnotify, writeback can't work
908  */
new_inode_pseudo(struct super_block * sb)909 struct inode *new_inode_pseudo(struct super_block *sb)
910 {
911 	struct inode *inode = alloc_inode(sb);
912 
913 	if (inode) {
914 		spin_lock(&inode->i_lock);
915 		inode->i_state = 0;
916 		spin_unlock(&inode->i_lock);
917 		INIT_LIST_HEAD(&inode->i_sb_list);
918 	}
919 	return inode;
920 }
921 
922 /**
923  *	new_inode 	- obtain an inode
924  *	@sb: superblock
925  *
926  *	Allocates a new inode for given superblock. The default gfp_mask
927  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
928  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
929  *	for the page cache are not reclaimable or migratable,
930  *	mapping_set_gfp_mask() must be called with suitable flags on the
931  *	newly created inode's mapping
932  *
933  */
new_inode(struct super_block * sb)934 struct inode *new_inode(struct super_block *sb)
935 {
936 	struct inode *inode;
937 
938 	spin_lock_prefetch(&sb->s_inode_list_lock);
939 
940 	inode = new_inode_pseudo(sb);
941 	if (inode)
942 		inode_sb_list_add(inode);
943 	return inode;
944 }
945 EXPORT_SYMBOL(new_inode);
946 
947 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)948 void lockdep_annotate_inode_mutex_key(struct inode *inode)
949 {
950 	if (S_ISDIR(inode->i_mode)) {
951 		struct file_system_type *type = inode->i_sb->s_type;
952 
953 		/* Set new key only if filesystem hasn't already changed it */
954 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
955 			/*
956 			 * ensure nobody is actually holding i_mutex
957 			 */
958 			// mutex_destroy(&inode->i_mutex);
959 			init_rwsem(&inode->i_rwsem);
960 			lockdep_set_class(&inode->i_rwsem,
961 					  &type->i_mutex_dir_key);
962 		}
963 	}
964 }
965 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
966 #endif
967 
968 /**
969  * unlock_new_inode - clear the I_NEW state and wake up any waiters
970  * @inode:	new inode to unlock
971  *
972  * Called when the inode is fully initialised to clear the new state of the
973  * inode and wake up anyone waiting for the inode to finish initialisation.
974  */
unlock_new_inode(struct inode * inode)975 void unlock_new_inode(struct inode *inode)
976 {
977 	lockdep_annotate_inode_mutex_key(inode);
978 	spin_lock(&inode->i_lock);
979 	WARN_ON(!(inode->i_state & I_NEW));
980 	inode->i_state &= ~I_NEW & ~I_CREATING;
981 	smp_mb();
982 	wake_up_bit(&inode->i_state, __I_NEW);
983 	spin_unlock(&inode->i_lock);
984 }
985 EXPORT_SYMBOL(unlock_new_inode);
986 
discard_new_inode(struct inode * inode)987 void discard_new_inode(struct inode *inode)
988 {
989 	lockdep_annotate_inode_mutex_key(inode);
990 	spin_lock(&inode->i_lock);
991 	WARN_ON(!(inode->i_state & I_NEW));
992 	inode->i_state &= ~I_NEW;
993 	smp_mb();
994 	wake_up_bit(&inode->i_state, __I_NEW);
995 	spin_unlock(&inode->i_lock);
996 	iput(inode);
997 }
998 EXPORT_SYMBOL(discard_new_inode);
999 
1000 /**
1001  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1002  *
1003  * Lock any non-NULL argument that is not a directory.
1004  * Zero, one or two objects may be locked by this function.
1005  *
1006  * @inode1: first inode to lock
1007  * @inode2: second inode to lock
1008  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1009 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1010 {
1011 	if (inode1 > inode2)
1012 		swap(inode1, inode2);
1013 
1014 	if (inode1 && !S_ISDIR(inode1->i_mode))
1015 		inode_lock(inode1);
1016 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1017 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1018 }
1019 EXPORT_SYMBOL(lock_two_nondirectories);
1020 
1021 /**
1022  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1023  * @inode1: first inode to unlock
1024  * @inode2: second inode to unlock
1025  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1026 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027 {
1028 	if (inode1 && !S_ISDIR(inode1->i_mode))
1029 		inode_unlock(inode1);
1030 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1031 		inode_unlock(inode2);
1032 }
1033 EXPORT_SYMBOL(unlock_two_nondirectories);
1034 
1035 /**
1036  * inode_insert5 - obtain an inode from a mounted file system
1037  * @inode:	pre-allocated inode to use for insert to cache
1038  * @hashval:	hash value (usually inode number) to get
1039  * @test:	callback used for comparisons between inodes
1040  * @set:	callback used to initialize a new struct inode
1041  * @data:	opaque data pointer to pass to @test and @set
1042  *
1043  * Search for the inode specified by @hashval and @data in the inode cache,
1044  * and if present it is return it with an increased reference count. This is
1045  * a variant of iget5_locked() for callers that don't want to fail on memory
1046  * allocation of inode.
1047  *
1048  * If the inode is not in cache, insert the pre-allocated inode to cache and
1049  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1050  * to fill it in before unlocking it via unlock_new_inode().
1051  *
1052  * Note both @test and @set are called with the inode_hash_lock held, so can't
1053  * sleep.
1054  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1055 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1056 			    int (*test)(struct inode *, void *),
1057 			    int (*set)(struct inode *, void *), void *data)
1058 {
1059 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1060 	struct inode *old;
1061 	bool creating = inode->i_state & I_CREATING;
1062 
1063 again:
1064 	spin_lock(&inode_hash_lock);
1065 	old = find_inode(inode->i_sb, head, test, data);
1066 	if (unlikely(old)) {
1067 		/*
1068 		 * Uhhuh, somebody else created the same inode under us.
1069 		 * Use the old inode instead of the preallocated one.
1070 		 */
1071 		spin_unlock(&inode_hash_lock);
1072 		if (IS_ERR(old))
1073 			return NULL;
1074 		wait_on_inode(old);
1075 		if (unlikely(inode_unhashed(old))) {
1076 			iput(old);
1077 			goto again;
1078 		}
1079 		return old;
1080 	}
1081 
1082 	if (set && unlikely(set(inode, data))) {
1083 		inode = NULL;
1084 		goto unlock;
1085 	}
1086 
1087 	/*
1088 	 * Return the locked inode with I_NEW set, the
1089 	 * caller is responsible for filling in the contents
1090 	 */
1091 	spin_lock(&inode->i_lock);
1092 	inode->i_state |= I_NEW;
1093 	hlist_add_head(&inode->i_hash, head);
1094 	spin_unlock(&inode->i_lock);
1095 	if (!creating)
1096 		inode_sb_list_add(inode);
1097 unlock:
1098 	spin_unlock(&inode_hash_lock);
1099 
1100 	return inode;
1101 }
1102 EXPORT_SYMBOL(inode_insert5);
1103 
1104 /**
1105  * iget5_locked - obtain an inode from a mounted file system
1106  * @sb:		super block of file system
1107  * @hashval:	hash value (usually inode number) to get
1108  * @test:	callback used for comparisons between inodes
1109  * @set:	callback used to initialize a new struct inode
1110  * @data:	opaque data pointer to pass to @test and @set
1111  *
1112  * Search for the inode specified by @hashval and @data in the inode cache,
1113  * and if present it is return it with an increased reference count. This is
1114  * a generalized version of iget_locked() for file systems where the inode
1115  * number is not sufficient for unique identification of an inode.
1116  *
1117  * If the inode is not in cache, allocate a new inode and return it locked,
1118  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1119  * before unlocking it via unlock_new_inode().
1120  *
1121  * Note both @test and @set are called with the inode_hash_lock held, so can't
1122  * sleep.
1123  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1124 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1125 		int (*test)(struct inode *, void *),
1126 		int (*set)(struct inode *, void *), void *data)
1127 {
1128 	struct inode *inode = ilookup5(sb, hashval, test, data);
1129 
1130 	if (!inode) {
1131 		struct inode *new = alloc_inode(sb);
1132 
1133 		if (new) {
1134 			new->i_state = 0;
1135 			inode = inode_insert5(new, hashval, test, set, data);
1136 			if (unlikely(inode != new))
1137 				destroy_inode(new);
1138 		}
1139 	}
1140 	return inode;
1141 }
1142 EXPORT_SYMBOL(iget5_locked);
1143 
1144 /**
1145  * iget_locked - obtain an inode from a mounted file system
1146  * @sb:		super block of file system
1147  * @ino:	inode number to get
1148  *
1149  * Search for the inode specified by @ino in the inode cache and if present
1150  * return it with an increased reference count. This is for file systems
1151  * where the inode number is sufficient for unique identification of an inode.
1152  *
1153  * If the inode is not in cache, allocate a new inode and return it locked,
1154  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1155  * before unlocking it via unlock_new_inode().
1156  */
iget_locked(struct super_block * sb,unsigned long ino)1157 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1158 {
1159 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1160 	struct inode *inode;
1161 again:
1162 	spin_lock(&inode_hash_lock);
1163 	inode = find_inode_fast(sb, head, ino);
1164 	spin_unlock(&inode_hash_lock);
1165 	if (inode) {
1166 		if (IS_ERR(inode))
1167 			return NULL;
1168 		wait_on_inode(inode);
1169 		if (unlikely(inode_unhashed(inode))) {
1170 			iput(inode);
1171 			goto again;
1172 		}
1173 		return inode;
1174 	}
1175 
1176 	inode = alloc_inode(sb);
1177 	if (inode) {
1178 		struct inode *old;
1179 
1180 		spin_lock(&inode_hash_lock);
1181 		/* We released the lock, so.. */
1182 		old = find_inode_fast(sb, head, ino);
1183 		if (!old) {
1184 			inode->i_ino = ino;
1185 			spin_lock(&inode->i_lock);
1186 			inode->i_state = I_NEW;
1187 			hlist_add_head(&inode->i_hash, head);
1188 			spin_unlock(&inode->i_lock);
1189 			inode_sb_list_add(inode);
1190 			spin_unlock(&inode_hash_lock);
1191 
1192 			/* Return the locked inode with I_NEW set, the
1193 			 * caller is responsible for filling in the contents
1194 			 */
1195 			return inode;
1196 		}
1197 
1198 		/*
1199 		 * Uhhuh, somebody else created the same inode under
1200 		 * us. Use the old inode instead of the one we just
1201 		 * allocated.
1202 		 */
1203 		spin_unlock(&inode_hash_lock);
1204 		destroy_inode(inode);
1205 		if (IS_ERR(old))
1206 			return NULL;
1207 		inode = old;
1208 		wait_on_inode(inode);
1209 		if (unlikely(inode_unhashed(inode))) {
1210 			iput(inode);
1211 			goto again;
1212 		}
1213 	}
1214 	return inode;
1215 }
1216 EXPORT_SYMBOL(iget_locked);
1217 
1218 /*
1219  * search the inode cache for a matching inode number.
1220  * If we find one, then the inode number we are trying to
1221  * allocate is not unique and so we should not use it.
1222  *
1223  * Returns 1 if the inode number is unique, 0 if it is not.
1224  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1225 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1226 {
1227 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1228 	struct inode *inode;
1229 
1230 	spin_lock(&inode_hash_lock);
1231 	hlist_for_each_entry(inode, b, i_hash) {
1232 		if (inode->i_ino == ino && inode->i_sb == sb) {
1233 			spin_unlock(&inode_hash_lock);
1234 			return 0;
1235 		}
1236 	}
1237 	spin_unlock(&inode_hash_lock);
1238 
1239 	return 1;
1240 }
1241 
1242 /**
1243  *	iunique - get a unique inode number
1244  *	@sb: superblock
1245  *	@max_reserved: highest reserved inode number
1246  *
1247  *	Obtain an inode number that is unique on the system for a given
1248  *	superblock. This is used by file systems that have no natural
1249  *	permanent inode numbering system. An inode number is returned that
1250  *	is higher than the reserved limit but unique.
1251  *
1252  *	BUGS:
1253  *	With a large number of inodes live on the file system this function
1254  *	currently becomes quite slow.
1255  */
iunique(struct super_block * sb,ino_t max_reserved)1256 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1257 {
1258 	/*
1259 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1260 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1261 	 * here to attempt to avoid that.
1262 	 */
1263 	static DEFINE_SPINLOCK(iunique_lock);
1264 	static unsigned int counter;
1265 	ino_t res;
1266 
1267 	spin_lock(&iunique_lock);
1268 	do {
1269 		if (counter <= max_reserved)
1270 			counter = max_reserved + 1;
1271 		res = counter++;
1272 	} while (!test_inode_iunique(sb, res));
1273 	spin_unlock(&iunique_lock);
1274 
1275 	return res;
1276 }
1277 EXPORT_SYMBOL(iunique);
1278 
igrab(struct inode * inode)1279 struct inode *igrab(struct inode *inode)
1280 {
1281 	spin_lock(&inode->i_lock);
1282 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1283 		__iget(inode);
1284 		spin_unlock(&inode->i_lock);
1285 	} else {
1286 		spin_unlock(&inode->i_lock);
1287 		/*
1288 		 * Handle the case where s_op->clear_inode is not been
1289 		 * called yet, and somebody is calling igrab
1290 		 * while the inode is getting freed.
1291 		 */
1292 		inode = NULL;
1293 	}
1294 	return inode;
1295 }
1296 EXPORT_SYMBOL(igrab);
1297 
1298 /**
1299  * ilookup5_nowait - search for an inode in the inode cache
1300  * @sb:		super block of file system to search
1301  * @hashval:	hash value (usually inode number) to search for
1302  * @test:	callback used for comparisons between inodes
1303  * @data:	opaque data pointer to pass to @test
1304  *
1305  * Search for the inode specified by @hashval and @data in the inode cache.
1306  * If the inode is in the cache, the inode is returned with an incremented
1307  * reference count.
1308  *
1309  * Note: I_NEW is not waited upon so you have to be very careful what you do
1310  * with the returned inode.  You probably should be using ilookup5() instead.
1311  *
1312  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1313  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1314 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1315 		int (*test)(struct inode *, void *), void *data)
1316 {
1317 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1318 	struct inode *inode;
1319 
1320 	spin_lock(&inode_hash_lock);
1321 	inode = find_inode(sb, head, test, data);
1322 	spin_unlock(&inode_hash_lock);
1323 
1324 	return IS_ERR(inode) ? NULL : inode;
1325 }
1326 EXPORT_SYMBOL(ilookup5_nowait);
1327 
1328 /**
1329  * ilookup5 - search for an inode in the inode cache
1330  * @sb:		super block of file system to search
1331  * @hashval:	hash value (usually inode number) to search for
1332  * @test:	callback used for comparisons between inodes
1333  * @data:	opaque data pointer to pass to @test
1334  *
1335  * Search for the inode specified by @hashval and @data in the inode cache,
1336  * and if the inode is in the cache, return the inode with an incremented
1337  * reference count.  Waits on I_NEW before returning the inode.
1338  * returned with an incremented reference count.
1339  *
1340  * This is a generalized version of ilookup() for file systems where the
1341  * inode number is not sufficient for unique identification of an inode.
1342  *
1343  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1344  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1345 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1346 		int (*test)(struct inode *, void *), void *data)
1347 {
1348 	struct inode *inode;
1349 again:
1350 	inode = ilookup5_nowait(sb, hashval, test, data);
1351 	if (inode) {
1352 		wait_on_inode(inode);
1353 		if (unlikely(inode_unhashed(inode))) {
1354 			iput(inode);
1355 			goto again;
1356 		}
1357 	}
1358 	return inode;
1359 }
1360 EXPORT_SYMBOL(ilookup5);
1361 
1362 /**
1363  * ilookup - search for an inode in the inode cache
1364  * @sb:		super block of file system to search
1365  * @ino:	inode number to search for
1366  *
1367  * Search for the inode @ino in the inode cache, and if the inode is in the
1368  * cache, the inode is returned with an incremented reference count.
1369  */
ilookup(struct super_block * sb,unsigned long ino)1370 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1371 {
1372 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1373 	struct inode *inode;
1374 again:
1375 	spin_lock(&inode_hash_lock);
1376 	inode = find_inode_fast(sb, head, ino);
1377 	spin_unlock(&inode_hash_lock);
1378 
1379 	if (inode) {
1380 		if (IS_ERR(inode))
1381 			return NULL;
1382 		wait_on_inode(inode);
1383 		if (unlikely(inode_unhashed(inode))) {
1384 			iput(inode);
1385 			goto again;
1386 		}
1387 	}
1388 	return inode;
1389 }
1390 EXPORT_SYMBOL(ilookup);
1391 
1392 /**
1393  * find_inode_nowait - find an inode in the inode cache
1394  * @sb:		super block of file system to search
1395  * @hashval:	hash value (usually inode number) to search for
1396  * @match:	callback used for comparisons between inodes
1397  * @data:	opaque data pointer to pass to @match
1398  *
1399  * Search for the inode specified by @hashval and @data in the inode
1400  * cache, where the helper function @match will return 0 if the inode
1401  * does not match, 1 if the inode does match, and -1 if the search
1402  * should be stopped.  The @match function must be responsible for
1403  * taking the i_lock spin_lock and checking i_state for an inode being
1404  * freed or being initialized, and incrementing the reference count
1405  * before returning 1.  It also must not sleep, since it is called with
1406  * the inode_hash_lock spinlock held.
1407  *
1408  * This is a even more generalized version of ilookup5() when the
1409  * function must never block --- find_inode() can block in
1410  * __wait_on_freeing_inode() --- or when the caller can not increment
1411  * the reference count because the resulting iput() might cause an
1412  * inode eviction.  The tradeoff is that the @match funtion must be
1413  * very carefully implemented.
1414  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1415 struct inode *find_inode_nowait(struct super_block *sb,
1416 				unsigned long hashval,
1417 				int (*match)(struct inode *, unsigned long,
1418 					     void *),
1419 				void *data)
1420 {
1421 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1422 	struct inode *inode, *ret_inode = NULL;
1423 	int mval;
1424 
1425 	spin_lock(&inode_hash_lock);
1426 	hlist_for_each_entry(inode, head, i_hash) {
1427 		if (inode->i_sb != sb)
1428 			continue;
1429 		mval = match(inode, hashval, data);
1430 		if (mval == 0)
1431 			continue;
1432 		if (mval == 1)
1433 			ret_inode = inode;
1434 		goto out;
1435 	}
1436 out:
1437 	spin_unlock(&inode_hash_lock);
1438 	return ret_inode;
1439 }
1440 EXPORT_SYMBOL(find_inode_nowait);
1441 
insert_inode_locked(struct inode * inode)1442 int insert_inode_locked(struct inode *inode)
1443 {
1444 	struct super_block *sb = inode->i_sb;
1445 	ino_t ino = inode->i_ino;
1446 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1447 
1448 	while (1) {
1449 		struct inode *old = NULL;
1450 		spin_lock(&inode_hash_lock);
1451 		hlist_for_each_entry(old, head, i_hash) {
1452 			if (old->i_ino != ino)
1453 				continue;
1454 			if (old->i_sb != sb)
1455 				continue;
1456 			spin_lock(&old->i_lock);
1457 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1458 				spin_unlock(&old->i_lock);
1459 				continue;
1460 			}
1461 			break;
1462 		}
1463 		if (likely(!old)) {
1464 			spin_lock(&inode->i_lock);
1465 			inode->i_state |= I_NEW | I_CREATING;
1466 			hlist_add_head(&inode->i_hash, head);
1467 			spin_unlock(&inode->i_lock);
1468 			spin_unlock(&inode_hash_lock);
1469 			return 0;
1470 		}
1471 		if (unlikely(old->i_state & I_CREATING)) {
1472 			spin_unlock(&old->i_lock);
1473 			spin_unlock(&inode_hash_lock);
1474 			return -EBUSY;
1475 		}
1476 		__iget(old);
1477 		spin_unlock(&old->i_lock);
1478 		spin_unlock(&inode_hash_lock);
1479 		wait_on_inode(old);
1480 		if (unlikely(!inode_unhashed(old))) {
1481 			iput(old);
1482 			return -EBUSY;
1483 		}
1484 		iput(old);
1485 	}
1486 }
1487 EXPORT_SYMBOL(insert_inode_locked);
1488 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1489 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1490 		int (*test)(struct inode *, void *), void *data)
1491 {
1492 	struct inode *old;
1493 
1494 	inode->i_state |= I_CREATING;
1495 	old = inode_insert5(inode, hashval, test, NULL, data);
1496 
1497 	if (old != inode) {
1498 		iput(old);
1499 		return -EBUSY;
1500 	}
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL(insert_inode_locked4);
1504 
1505 
generic_delete_inode(struct inode * inode)1506 int generic_delete_inode(struct inode *inode)
1507 {
1508 	return 1;
1509 }
1510 EXPORT_SYMBOL(generic_delete_inode);
1511 
1512 /*
1513  * Called when we're dropping the last reference
1514  * to an inode.
1515  *
1516  * Call the FS "drop_inode()" function, defaulting to
1517  * the legacy UNIX filesystem behaviour.  If it tells
1518  * us to evict inode, do so.  Otherwise, retain inode
1519  * in cache if fs is alive, sync and evict if fs is
1520  * shutting down.
1521  */
iput_final(struct inode * inode)1522 static void iput_final(struct inode *inode)
1523 {
1524 	struct super_block *sb = inode->i_sb;
1525 	const struct super_operations *op = inode->i_sb->s_op;
1526 	int drop;
1527 
1528 	WARN_ON(inode->i_state & I_NEW);
1529 
1530 	if (op->drop_inode)
1531 		drop = op->drop_inode(inode);
1532 	else
1533 		drop = generic_drop_inode(inode);
1534 
1535 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1536 		inode_add_lru(inode);
1537 		spin_unlock(&inode->i_lock);
1538 		return;
1539 	}
1540 
1541 	if (!drop) {
1542 		inode->i_state |= I_WILL_FREE;
1543 		spin_unlock(&inode->i_lock);
1544 		write_inode_now(inode, 1);
1545 		spin_lock(&inode->i_lock);
1546 		WARN_ON(inode->i_state & I_NEW);
1547 		inode->i_state &= ~I_WILL_FREE;
1548 	}
1549 
1550 	inode->i_state |= I_FREEING;
1551 	if (!list_empty(&inode->i_lru))
1552 		inode_lru_list_del(inode);
1553 	spin_unlock(&inode->i_lock);
1554 
1555 	evict(inode);
1556 }
1557 
1558 /**
1559  *	iput	- put an inode
1560  *	@inode: inode to put
1561  *
1562  *	Puts an inode, dropping its usage count. If the inode use count hits
1563  *	zero, the inode is then freed and may also be destroyed.
1564  *
1565  *	Consequently, iput() can sleep.
1566  */
iput(struct inode * inode)1567 void iput(struct inode *inode)
1568 {
1569 	if (!inode)
1570 		return;
1571 	BUG_ON(inode->i_state & I_CLEAR);
1572 retry:
1573 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1574 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1575 			atomic_inc(&inode->i_count);
1576 			spin_unlock(&inode->i_lock);
1577 			trace_writeback_lazytime_iput(inode);
1578 			mark_inode_dirty_sync(inode);
1579 			goto retry;
1580 		}
1581 		iput_final(inode);
1582 	}
1583 }
1584 EXPORT_SYMBOL(iput);
1585 
1586 /**
1587  *	bmap	- find a block number in a file
1588  *	@inode: inode of file
1589  *	@block: block to find
1590  *
1591  *	Returns the block number on the device holding the inode that
1592  *	is the disk block number for the block of the file requested.
1593  *	That is, asked for block 4 of inode 1 the function will return the
1594  *	disk block relative to the disk start that holds that block of the
1595  *	file.
1596  */
bmap(struct inode * inode,sector_t block)1597 sector_t bmap(struct inode *inode, sector_t block)
1598 {
1599 	sector_t res = 0;
1600 	if (inode->i_mapping->a_ops->bmap)
1601 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1602 	return res;
1603 }
1604 EXPORT_SYMBOL(bmap);
1605 
1606 /*
1607  * With relative atime, only update atime if the previous atime is
1608  * earlier than either the ctime or mtime or if at least a day has
1609  * passed since the last atime update.
1610  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1611 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1612 			     struct timespec now)
1613 {
1614 
1615 	if (!(mnt->mnt_flags & MNT_RELATIME))
1616 		return 1;
1617 	/*
1618 	 * Is mtime younger than atime? If yes, update atime:
1619 	 */
1620 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1621 		return 1;
1622 	/*
1623 	 * Is ctime younger than atime? If yes, update atime:
1624 	 */
1625 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1626 		return 1;
1627 
1628 	/*
1629 	 * Is the previous atime value older than a day? If yes,
1630 	 * update atime:
1631 	 */
1632 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1633 		return 1;
1634 	/*
1635 	 * Good, we can skip the atime update:
1636 	 */
1637 	return 0;
1638 }
1639 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1640 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1641 {
1642 	int iflags = I_DIRTY_TIME;
1643 	bool dirty = false;
1644 
1645 	if (flags & S_ATIME)
1646 		inode->i_atime = *time;
1647 	if (flags & S_VERSION)
1648 		dirty = inode_maybe_inc_iversion(inode, false);
1649 	if (flags & S_CTIME)
1650 		inode->i_ctime = *time;
1651 	if (flags & S_MTIME)
1652 		inode->i_mtime = *time;
1653 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1654 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1655 		dirty = true;
1656 
1657 	if (dirty)
1658 		iflags |= I_DIRTY_SYNC;
1659 	__mark_inode_dirty(inode, iflags);
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL(generic_update_time);
1663 
1664 /*
1665  * This does the actual work of updating an inodes time or version.  Must have
1666  * had called mnt_want_write() before calling this.
1667  */
update_time(struct inode * inode,struct timespec64 * time,int flags)1668 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1669 {
1670 	int (*update_time)(struct inode *, struct timespec64 *, int);
1671 
1672 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1673 		generic_update_time;
1674 
1675 	return update_time(inode, time, flags);
1676 }
1677 
1678 /**
1679  *	touch_atime	-	update the access time
1680  *	@path: the &struct path to update
1681  *	@inode: inode to update
1682  *
1683  *	Update the accessed time on an inode and mark it for writeback.
1684  *	This function automatically handles read only file systems and media,
1685  *	as well as the "noatime" flag and inode specific "noatime" markers.
1686  */
atime_needs_update(const struct path * path,struct inode * inode)1687 bool atime_needs_update(const struct path *path, struct inode *inode)
1688 {
1689 	struct vfsmount *mnt = path->mnt;
1690 	struct timespec64 now;
1691 
1692 	if (inode->i_flags & S_NOATIME)
1693 		return false;
1694 
1695 	/* Atime updates will likely cause i_uid and i_gid to be written
1696 	 * back improprely if their true value is unknown to the vfs.
1697 	 */
1698 	if (HAS_UNMAPPED_ID(inode))
1699 		return false;
1700 
1701 	if (IS_NOATIME(inode))
1702 		return false;
1703 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1704 		return false;
1705 
1706 	if (mnt->mnt_flags & MNT_NOATIME)
1707 		return false;
1708 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1709 		return false;
1710 
1711 	now = current_time(inode);
1712 
1713 	if (!relatime_need_update(mnt, inode, timespec64_to_timespec(now)))
1714 		return false;
1715 
1716 	if (timespec64_equal(&inode->i_atime, &now))
1717 		return false;
1718 
1719 	return true;
1720 }
1721 
touch_atime(const struct path * path)1722 void touch_atime(const struct path *path)
1723 {
1724 	struct vfsmount *mnt = path->mnt;
1725 	struct inode *inode = d_inode(path->dentry);
1726 	struct timespec64 now;
1727 
1728 	if (!atime_needs_update(path, inode))
1729 		return;
1730 
1731 	if (!sb_start_write_trylock(inode->i_sb))
1732 		return;
1733 
1734 	if (__mnt_want_write(mnt) != 0)
1735 		goto skip_update;
1736 	/*
1737 	 * File systems can error out when updating inodes if they need to
1738 	 * allocate new space to modify an inode (such is the case for
1739 	 * Btrfs), but since we touch atime while walking down the path we
1740 	 * really don't care if we failed to update the atime of the file,
1741 	 * so just ignore the return value.
1742 	 * We may also fail on filesystems that have the ability to make parts
1743 	 * of the fs read only, e.g. subvolumes in Btrfs.
1744 	 */
1745 	now = current_time(inode);
1746 	update_time(inode, &now, S_ATIME);
1747 	__mnt_drop_write(mnt);
1748 skip_update:
1749 	sb_end_write(inode->i_sb);
1750 }
1751 EXPORT_SYMBOL(touch_atime);
1752 
1753 /*
1754  * The logic we want is
1755  *
1756  *	if suid or (sgid and xgrp)
1757  *		remove privs
1758  */
should_remove_suid(struct dentry * dentry)1759 int should_remove_suid(struct dentry *dentry)
1760 {
1761 	umode_t mode = d_inode(dentry)->i_mode;
1762 	int kill = 0;
1763 
1764 	/* suid always must be killed */
1765 	if (unlikely(mode & S_ISUID))
1766 		kill = ATTR_KILL_SUID;
1767 
1768 	/*
1769 	 * sgid without any exec bits is just a mandatory locking mark; leave
1770 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1771 	 */
1772 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1773 		kill |= ATTR_KILL_SGID;
1774 
1775 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1776 		return kill;
1777 
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL(should_remove_suid);
1781 
1782 /*
1783  * Return mask of changes for notify_change() that need to be done as a
1784  * response to write or truncate. Return 0 if nothing has to be changed.
1785  * Negative value on error (change should be denied).
1786  */
dentry_needs_remove_privs(struct dentry * dentry)1787 int dentry_needs_remove_privs(struct dentry *dentry)
1788 {
1789 	struct inode *inode = d_inode(dentry);
1790 	int mask = 0;
1791 	int ret;
1792 
1793 	if (IS_NOSEC(inode))
1794 		return 0;
1795 
1796 	mask = should_remove_suid(dentry);
1797 	ret = security_inode_need_killpriv(dentry);
1798 	if (ret < 0)
1799 		return ret;
1800 	if (ret)
1801 		mask |= ATTR_KILL_PRIV;
1802 	return mask;
1803 }
1804 
__remove_privs(struct dentry * dentry,int kill)1805 static int __remove_privs(struct dentry *dentry, int kill)
1806 {
1807 	struct iattr newattrs;
1808 
1809 	newattrs.ia_valid = ATTR_FORCE | kill;
1810 	/*
1811 	 * Note we call this on write, so notify_change will not
1812 	 * encounter any conflicting delegations:
1813 	 */
1814 	return notify_change(dentry, &newattrs, NULL);
1815 }
1816 
1817 /*
1818  * Remove special file priviledges (suid, capabilities) when file is written
1819  * to or truncated.
1820  */
file_remove_privs(struct file * file)1821 int file_remove_privs(struct file *file)
1822 {
1823 	struct dentry *dentry = file_dentry(file);
1824 	struct inode *inode = file_inode(file);
1825 	int kill;
1826 	int error = 0;
1827 
1828 	/*
1829 	 * Fast path for nothing security related.
1830 	 * As well for non-regular files, e.g. blkdev inodes.
1831 	 * For example, blkdev_write_iter() might get here
1832 	 * trying to remove privs which it is not allowed to.
1833 	 */
1834 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1835 		return 0;
1836 
1837 	kill = dentry_needs_remove_privs(dentry);
1838 	if (kill < 0)
1839 		return kill;
1840 	if (kill)
1841 		error = __remove_privs(dentry, kill);
1842 	if (!error)
1843 		inode_has_no_xattr(inode);
1844 
1845 	return error;
1846 }
1847 EXPORT_SYMBOL(file_remove_privs);
1848 
1849 /**
1850  *	file_update_time	-	update mtime and ctime time
1851  *	@file: file accessed
1852  *
1853  *	Update the mtime and ctime members of an inode and mark the inode
1854  *	for writeback.  Note that this function is meant exclusively for
1855  *	usage in the file write path of filesystems, and filesystems may
1856  *	choose to explicitly ignore update via this function with the
1857  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1858  *	timestamps are handled by the server.  This can return an error for
1859  *	file systems who need to allocate space in order to update an inode.
1860  */
1861 
file_update_time(struct file * file)1862 int file_update_time(struct file *file)
1863 {
1864 	struct inode *inode = file_inode(file);
1865 	struct timespec64 now;
1866 	int sync_it = 0;
1867 	int ret;
1868 
1869 	/* First try to exhaust all avenues to not sync */
1870 	if (IS_NOCMTIME(inode))
1871 		return 0;
1872 
1873 	now = current_time(inode);
1874 	if (!timespec64_equal(&inode->i_mtime, &now))
1875 		sync_it = S_MTIME;
1876 
1877 	if (!timespec64_equal(&inode->i_ctime, &now))
1878 		sync_it |= S_CTIME;
1879 
1880 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1881 		sync_it |= S_VERSION;
1882 
1883 	if (!sync_it)
1884 		return 0;
1885 
1886 	/* Finally allowed to write? Takes lock. */
1887 	if (__mnt_want_write_file(file))
1888 		return 0;
1889 
1890 	ret = update_time(inode, &now, sync_it);
1891 	__mnt_drop_write_file(file);
1892 
1893 	return ret;
1894 }
1895 EXPORT_SYMBOL(file_update_time);
1896 
inode_needs_sync(struct inode * inode)1897 int inode_needs_sync(struct inode *inode)
1898 {
1899 	if (IS_SYNC(inode))
1900 		return 1;
1901 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1902 		return 1;
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL(inode_needs_sync);
1906 
1907 /*
1908  * If we try to find an inode in the inode hash while it is being
1909  * deleted, we have to wait until the filesystem completes its
1910  * deletion before reporting that it isn't found.  This function waits
1911  * until the deletion _might_ have completed.  Callers are responsible
1912  * to recheck inode state.
1913  *
1914  * It doesn't matter if I_NEW is not set initially, a call to
1915  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1916  * will DTRT.
1917  */
__wait_on_freeing_inode(struct inode * inode)1918 static void __wait_on_freeing_inode(struct inode *inode)
1919 {
1920 	wait_queue_head_t *wq;
1921 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1922 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1923 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1924 	spin_unlock(&inode->i_lock);
1925 	spin_unlock(&inode_hash_lock);
1926 	schedule();
1927 	finish_wait(wq, &wait.wq_entry);
1928 	spin_lock(&inode_hash_lock);
1929 }
1930 
1931 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1932 static int __init set_ihash_entries(char *str)
1933 {
1934 	if (!str)
1935 		return 0;
1936 	ihash_entries = simple_strtoul(str, &str, 0);
1937 	return 1;
1938 }
1939 __setup("ihash_entries=", set_ihash_entries);
1940 
1941 /*
1942  * Initialize the waitqueues and inode hash table.
1943  */
inode_init_early(void)1944 void __init inode_init_early(void)
1945 {
1946 	/* If hashes are distributed across NUMA nodes, defer
1947 	 * hash allocation until vmalloc space is available.
1948 	 */
1949 	if (hashdist)
1950 		return;
1951 
1952 	inode_hashtable =
1953 		alloc_large_system_hash("Inode-cache",
1954 					sizeof(struct hlist_head),
1955 					ihash_entries,
1956 					14,
1957 					HASH_EARLY | HASH_ZERO,
1958 					&i_hash_shift,
1959 					&i_hash_mask,
1960 					0,
1961 					0);
1962 }
1963 
inode_init(void)1964 void __init inode_init(void)
1965 {
1966 	/* inode slab cache */
1967 	inode_cachep = kmem_cache_create("inode_cache",
1968 					 sizeof(struct inode),
1969 					 0,
1970 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1971 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1972 					 init_once);
1973 
1974 	/* Hash may have been set up in inode_init_early */
1975 	if (!hashdist)
1976 		return;
1977 
1978 	inode_hashtable =
1979 		alloc_large_system_hash("Inode-cache",
1980 					sizeof(struct hlist_head),
1981 					ihash_entries,
1982 					14,
1983 					HASH_ZERO,
1984 					&i_hash_shift,
1985 					&i_hash_mask,
1986 					0,
1987 					0);
1988 }
1989 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1990 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1991 {
1992 	inode->i_mode = mode;
1993 	if (S_ISCHR(mode)) {
1994 		inode->i_fop = &def_chr_fops;
1995 		inode->i_rdev = rdev;
1996 	} else if (S_ISBLK(mode)) {
1997 		inode->i_fop = &def_blk_fops;
1998 		inode->i_rdev = rdev;
1999 	} else if (S_ISFIFO(mode))
2000 		inode->i_fop = &pipefifo_fops;
2001 	else if (S_ISSOCK(mode))
2002 		;	/* leave it no_open_fops */
2003 	else
2004 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2005 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2006 				  inode->i_ino);
2007 }
2008 EXPORT_SYMBOL(init_special_inode);
2009 
2010 /**
2011  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2012  * @inode: New inode
2013  * @dir: Directory inode
2014  * @mode: mode of the new inode
2015  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2016 void inode_init_owner(struct inode *inode, const struct inode *dir,
2017 			umode_t mode)
2018 {
2019 	inode->i_uid = current_fsuid();
2020 	if (dir && dir->i_mode & S_ISGID) {
2021 		inode->i_gid = dir->i_gid;
2022 
2023 		/* Directories are special, and always inherit S_ISGID */
2024 		if (S_ISDIR(mode))
2025 			mode |= S_ISGID;
2026 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2027 			 !in_group_p(inode->i_gid) &&
2028 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2029 			mode &= ~S_ISGID;
2030 	} else
2031 		inode->i_gid = current_fsgid();
2032 	inode->i_mode = mode;
2033 }
2034 EXPORT_SYMBOL(inode_init_owner);
2035 
2036 /**
2037  * inode_owner_or_capable - check current task permissions to inode
2038  * @inode: inode being checked
2039  *
2040  * Return true if current either has CAP_FOWNER in a namespace with the
2041  * inode owner uid mapped, or owns the file.
2042  */
inode_owner_or_capable(const struct inode * inode)2043 bool inode_owner_or_capable(const struct inode *inode)
2044 {
2045 	struct user_namespace *ns;
2046 
2047 	if (uid_eq(current_fsuid(), inode->i_uid))
2048 		return true;
2049 
2050 	ns = current_user_ns();
2051 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2052 		return true;
2053 	return false;
2054 }
2055 EXPORT_SYMBOL(inode_owner_or_capable);
2056 
2057 /*
2058  * Direct i/o helper functions
2059  */
__inode_dio_wait(struct inode * inode)2060 static void __inode_dio_wait(struct inode *inode)
2061 {
2062 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2063 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2064 
2065 	do {
2066 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2067 		if (atomic_read(&inode->i_dio_count))
2068 			schedule();
2069 	} while (atomic_read(&inode->i_dio_count));
2070 	finish_wait(wq, &q.wq_entry);
2071 }
2072 
2073 /**
2074  * inode_dio_wait - wait for outstanding DIO requests to finish
2075  * @inode: inode to wait for
2076  *
2077  * Waits for all pending direct I/O requests to finish so that we can
2078  * proceed with a truncate or equivalent operation.
2079  *
2080  * Must be called under a lock that serializes taking new references
2081  * to i_dio_count, usually by inode->i_mutex.
2082  */
inode_dio_wait(struct inode * inode)2083 void inode_dio_wait(struct inode *inode)
2084 {
2085 	if (atomic_read(&inode->i_dio_count))
2086 		__inode_dio_wait(inode);
2087 }
2088 EXPORT_SYMBOL(inode_dio_wait);
2089 
2090 /*
2091  * inode_set_flags - atomically set some inode flags
2092  *
2093  * Note: the caller should be holding i_mutex, or else be sure that
2094  * they have exclusive access to the inode structure (i.e., while the
2095  * inode is being instantiated).  The reason for the cmpxchg() loop
2096  * --- which wouldn't be necessary if all code paths which modify
2097  * i_flags actually followed this rule, is that there is at least one
2098  * code path which doesn't today so we use cmpxchg() out of an abundance
2099  * of caution.
2100  *
2101  * In the long run, i_mutex is overkill, and we should probably look
2102  * at using the i_lock spinlock to protect i_flags, and then make sure
2103  * it is so documented in include/linux/fs.h and that all code follows
2104  * the locking convention!!
2105  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2106 void inode_set_flags(struct inode *inode, unsigned int flags,
2107 		     unsigned int mask)
2108 {
2109 	unsigned int old_flags, new_flags;
2110 
2111 	WARN_ON_ONCE(flags & ~mask);
2112 	do {
2113 		old_flags = READ_ONCE(inode->i_flags);
2114 		new_flags = (old_flags & ~mask) | flags;
2115 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2116 				  new_flags) != old_flags));
2117 }
2118 EXPORT_SYMBOL(inode_set_flags);
2119 
inode_nohighmem(struct inode * inode)2120 void inode_nohighmem(struct inode *inode)
2121 {
2122 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2123 }
2124 EXPORT_SYMBOL(inode_nohighmem);
2125 
2126 /**
2127  * timespec64_trunc - Truncate timespec64 to a granularity
2128  * @t: Timespec64
2129  * @gran: Granularity in ns.
2130  *
2131  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2132  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2133  */
timespec64_trunc(struct timespec64 t,unsigned gran)2134 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2135 {
2136 	/* Avoid division in the common cases 1 ns and 1 s. */
2137 	if (gran == 1) {
2138 		/* nothing */
2139 	} else if (gran == NSEC_PER_SEC) {
2140 		t.tv_nsec = 0;
2141 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2142 		t.tv_nsec -= t.tv_nsec % gran;
2143 	} else {
2144 		WARN(1, "illegal file time granularity: %u", gran);
2145 	}
2146 	return t;
2147 }
2148 EXPORT_SYMBOL(timespec64_trunc);
2149 
2150 /**
2151  * current_time - Return FS time
2152  * @inode: inode.
2153  *
2154  * Return the current time truncated to the time granularity supported by
2155  * the fs.
2156  *
2157  * Note that inode and inode->sb cannot be NULL.
2158  * Otherwise, the function warns and returns time without truncation.
2159  */
current_time(struct inode * inode)2160 struct timespec64 current_time(struct inode *inode)
2161 {
2162 	struct timespec64 now = current_kernel_time64();
2163 
2164 	if (unlikely(!inode->i_sb)) {
2165 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2166 		return now;
2167 	}
2168 
2169 	return timespec64_trunc(now, inode->i_sb->s_time_gran);
2170 }
2171 EXPORT_SYMBOL(current_time);
2172