• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * inode.c - NTFS kernel inode handling.
3  *
4  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
5  *
6  * This program/include file is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program/include file is distributed in the hope that it will be
12  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program (in the main directory of the Linux-NTFS
18  * distribution in the file COPYING); if not, write to the Free Software
19  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 #include <linux/buffer_head.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 
32 #include "aops.h"
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "dir.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "lcnalloc.h"
39 #include "malloc.h"
40 #include "mft.h"
41 #include "time.h"
42 #include "ntfs.h"
43 
44 /**
45  * ntfs_test_inode - compare two (possibly fake) inodes for equality
46  * @vi:		vfs inode which to test
47  * @na:		ntfs attribute which is being tested with
48  *
49  * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50  * inode @vi for equality with the ntfs attribute @na.
51  *
52  * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53  * @na->name and @na->name_len are then ignored.
54  *
55  * Return 1 if the attributes match and 0 if not.
56  *
57  * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
58  * allowed to sleep.
59  */
ntfs_test_inode(struct inode * vi,ntfs_attr * na)60 int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61 {
62 	ntfs_inode *ni;
63 
64 	if (vi->i_ino != na->mft_no)
65 		return 0;
66 	ni = NTFS_I(vi);
67 	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 	if (likely(!NInoAttr(ni))) {
69 		/* If not looking for a normal inode this is a mismatch. */
70 		if (unlikely(na->type != AT_UNUSED))
71 			return 0;
72 	} else {
73 		/* A fake inode describing an attribute. */
74 		if (ni->type != na->type)
75 			return 0;
76 		if (ni->name_len != na->name_len)
77 			return 0;
78 		if (na->name_len && memcmp(ni->name, na->name,
79 				na->name_len * sizeof(ntfschar)))
80 			return 0;
81 	}
82 	/* Match! */
83 	return 1;
84 }
85 
86 /**
87  * ntfs_init_locked_inode - initialize an inode
88  * @vi:		vfs inode to initialize
89  * @na:		ntfs attribute which to initialize @vi to
90  *
91  * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92  * order to enable ntfs_test_inode() to do its work.
93  *
94  * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95  * In that case, @na->name and @na->name_len should be set to NULL and 0,
96  * respectively. Although that is not strictly necessary as
97  * ntfs_read_locked_inode() will fill them in later.
98  *
99  * Return 0 on success and -errno on error.
100  *
101  * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102  * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103  */
ntfs_init_locked_inode(struct inode * vi,ntfs_attr * na)104 static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105 {
106 	ntfs_inode *ni = NTFS_I(vi);
107 
108 	vi->i_ino = na->mft_no;
109 
110 	ni->type = na->type;
111 	if (na->type == AT_INDEX_ALLOCATION)
112 		NInoSetMstProtected(ni);
113 
114 	ni->name = na->name;
115 	ni->name_len = na->name_len;
116 
117 	/* If initializing a normal inode, we are done. */
118 	if (likely(na->type == AT_UNUSED)) {
119 		BUG_ON(na->name);
120 		BUG_ON(na->name_len);
121 		return 0;
122 	}
123 
124 	/* It is a fake inode. */
125 	NInoSetAttr(ni);
126 
127 	/*
128 	 * We have I30 global constant as an optimization as it is the name
129 	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 	 * allocation but that is ok. And most attributes are unnamed anyway,
131 	 * thus the fraction of named attributes with name != I30 is actually
132 	 * absolutely tiny.
133 	 */
134 	if (na->name_len && na->name != I30) {
135 		unsigned int i;
136 
137 		BUG_ON(!na->name);
138 		i = na->name_len * sizeof(ntfschar);
139 		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 		if (!ni->name)
141 			return -ENOMEM;
142 		memcpy(ni->name, na->name, i);
143 		ni->name[na->name_len] = 0;
144 	}
145 	return 0;
146 }
147 
148 typedef int (*set_t)(struct inode *, void *);
149 static int ntfs_read_locked_inode(struct inode *vi);
150 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151 static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 		struct inode *vi);
153 
154 /**
155  * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156  * @sb:		super block of mounted volume
157  * @mft_no:	mft record number / inode number to obtain
158  *
159  * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160  * file or directory).
161  *
162  * If the inode is in the cache, it is just returned with an increased
163  * reference count. Otherwise, a new struct inode is allocated and initialized,
164  * and finally ntfs_read_locked_inode() is called to read in the inode and
165  * fill in the remainder of the inode structure.
166  *
167  * Return the struct inode on success. Check the return value with IS_ERR() and
168  * if true, the function failed and the error code is obtained from PTR_ERR().
169  */
ntfs_iget(struct super_block * sb,unsigned long mft_no)170 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171 {
172 	struct inode *vi;
173 	int err;
174 	ntfs_attr na;
175 
176 	na.mft_no = mft_no;
177 	na.type = AT_UNUSED;
178 	na.name = NULL;
179 	na.name_len = 0;
180 
181 	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 			(set_t)ntfs_init_locked_inode, &na);
183 	if (unlikely(!vi))
184 		return ERR_PTR(-ENOMEM);
185 
186 	err = 0;
187 
188 	/* If this is a freshly allocated inode, need to read it now. */
189 	if (vi->i_state & I_NEW) {
190 		err = ntfs_read_locked_inode(vi);
191 		unlock_new_inode(vi);
192 	}
193 	/*
194 	 * There is no point in keeping bad inodes around if the failure was
195 	 * due to ENOMEM. We want to be able to retry again later.
196 	 */
197 	if (unlikely(err == -ENOMEM)) {
198 		iput(vi);
199 		vi = ERR_PTR(err);
200 	}
201 	return vi;
202 }
203 
204 /**
205  * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206  * @base_vi:	vfs base inode containing the attribute
207  * @type:	attribute type
208  * @name:	Unicode name of the attribute (NULL if unnamed)
209  * @name_len:	length of @name in Unicode characters (0 if unnamed)
210  *
211  * Obtain the (fake) struct inode corresponding to the attribute specified by
212  * @type, @name, and @name_len, which is present in the base mft record
213  * specified by the vfs inode @base_vi.
214  *
215  * If the attribute inode is in the cache, it is just returned with an
216  * increased reference count. Otherwise, a new struct inode is allocated and
217  * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218  * attribute and fill in the inode structure.
219  *
220  * Note, for index allocation attributes, you need to use ntfs_index_iget()
221  * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222  *
223  * Return the struct inode of the attribute inode on success. Check the return
224  * value with IS_ERR() and if true, the function failed and the error code is
225  * obtained from PTR_ERR().
226  */
ntfs_attr_iget(struct inode * base_vi,ATTR_TYPE type,ntfschar * name,u32 name_len)227 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 		ntfschar *name, u32 name_len)
229 {
230 	struct inode *vi;
231 	int err;
232 	ntfs_attr na;
233 
234 	/* Make sure no one calls ntfs_attr_iget() for indices. */
235 	BUG_ON(type == AT_INDEX_ALLOCATION);
236 
237 	na.mft_no = base_vi->i_ino;
238 	na.type = type;
239 	na.name = name;
240 	na.name_len = name_len;
241 
242 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 			(set_t)ntfs_init_locked_inode, &na);
244 	if (unlikely(!vi))
245 		return ERR_PTR(-ENOMEM);
246 
247 	err = 0;
248 
249 	/* If this is a freshly allocated inode, need to read it now. */
250 	if (vi->i_state & I_NEW) {
251 		err = ntfs_read_locked_attr_inode(base_vi, vi);
252 		unlock_new_inode(vi);
253 	}
254 	/*
255 	 * There is no point in keeping bad attribute inodes around. This also
256 	 * simplifies things in that we never need to check for bad attribute
257 	 * inodes elsewhere.
258 	 */
259 	if (unlikely(err)) {
260 		iput(vi);
261 		vi = ERR_PTR(err);
262 	}
263 	return vi;
264 }
265 
266 /**
267  * ntfs_index_iget - obtain a struct inode corresponding to an index
268  * @base_vi:	vfs base inode containing the index related attributes
269  * @name:	Unicode name of the index
270  * @name_len:	length of @name in Unicode characters
271  *
272  * Obtain the (fake) struct inode corresponding to the index specified by @name
273  * and @name_len, which is present in the base mft record specified by the vfs
274  * inode @base_vi.
275  *
276  * If the index inode is in the cache, it is just returned with an increased
277  * reference count.  Otherwise, a new struct inode is allocated and
278  * initialized, and finally ntfs_read_locked_index_inode() is called to read
279  * the index related attributes and fill in the inode structure.
280  *
281  * Return the struct inode of the index inode on success. Check the return
282  * value with IS_ERR() and if true, the function failed and the error code is
283  * obtained from PTR_ERR().
284  */
ntfs_index_iget(struct inode * base_vi,ntfschar * name,u32 name_len)285 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 		u32 name_len)
287 {
288 	struct inode *vi;
289 	int err;
290 	ntfs_attr na;
291 
292 	na.mft_no = base_vi->i_ino;
293 	na.type = AT_INDEX_ALLOCATION;
294 	na.name = name;
295 	na.name_len = name_len;
296 
297 	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 			(set_t)ntfs_init_locked_inode, &na);
299 	if (unlikely(!vi))
300 		return ERR_PTR(-ENOMEM);
301 
302 	err = 0;
303 
304 	/* If this is a freshly allocated inode, need to read it now. */
305 	if (vi->i_state & I_NEW) {
306 		err = ntfs_read_locked_index_inode(base_vi, vi);
307 		unlock_new_inode(vi);
308 	}
309 	/*
310 	 * There is no point in keeping bad index inodes around.  This also
311 	 * simplifies things in that we never need to check for bad index
312 	 * inodes elsewhere.
313 	 */
314 	if (unlikely(err)) {
315 		iput(vi);
316 		vi = ERR_PTR(err);
317 	}
318 	return vi;
319 }
320 
ntfs_alloc_big_inode(struct super_block * sb)321 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322 {
323 	ntfs_inode *ni;
324 
325 	ntfs_debug("Entering.");
326 	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 	if (likely(ni != NULL)) {
328 		ni->state = 0;
329 		return VFS_I(ni);
330 	}
331 	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 	return NULL;
333 }
334 
ntfs_i_callback(struct rcu_head * head)335 static void ntfs_i_callback(struct rcu_head *head)
336 {
337 	struct inode *inode = container_of(head, struct inode, i_rcu);
338 	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
339 }
340 
ntfs_destroy_big_inode(struct inode * inode)341 void ntfs_destroy_big_inode(struct inode *inode)
342 {
343 	ntfs_inode *ni = NTFS_I(inode);
344 
345 	ntfs_debug("Entering.");
346 	BUG_ON(ni->page);
347 	if (!atomic_dec_and_test(&ni->count))
348 		BUG();
349 	call_rcu(&inode->i_rcu, ntfs_i_callback);
350 }
351 
ntfs_alloc_extent_inode(void)352 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
353 {
354 	ntfs_inode *ni;
355 
356 	ntfs_debug("Entering.");
357 	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
358 	if (likely(ni != NULL)) {
359 		ni->state = 0;
360 		return ni;
361 	}
362 	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
363 	return NULL;
364 }
365 
ntfs_destroy_extent_inode(ntfs_inode * ni)366 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
367 {
368 	ntfs_debug("Entering.");
369 	BUG_ON(ni->page);
370 	if (!atomic_dec_and_test(&ni->count))
371 		BUG();
372 	kmem_cache_free(ntfs_inode_cache, ni);
373 }
374 
375 /*
376  * The attribute runlist lock has separate locking rules from the
377  * normal runlist lock, so split the two lock-classes:
378  */
379 static struct lock_class_key attr_list_rl_lock_class;
380 
381 /**
382  * __ntfs_init_inode - initialize ntfs specific part of an inode
383  * @sb:		super block of mounted volume
384  * @ni:		freshly allocated ntfs inode which to initialize
385  *
386  * Initialize an ntfs inode to defaults.
387  *
388  * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
389  * untouched. Make sure to initialize them elsewhere.
390  *
391  * Return zero on success and -ENOMEM on error.
392  */
__ntfs_init_inode(struct super_block * sb,ntfs_inode * ni)393 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
394 {
395 	ntfs_debug("Entering.");
396 	rwlock_init(&ni->size_lock);
397 	ni->initialized_size = ni->allocated_size = 0;
398 	ni->seq_no = 0;
399 	atomic_set(&ni->count, 1);
400 	ni->vol = NTFS_SB(sb);
401 	ntfs_init_runlist(&ni->runlist);
402 	mutex_init(&ni->mrec_lock);
403 	ni->page = NULL;
404 	ni->page_ofs = 0;
405 	ni->attr_list_size = 0;
406 	ni->attr_list = NULL;
407 	ntfs_init_runlist(&ni->attr_list_rl);
408 	lockdep_set_class(&ni->attr_list_rl.lock,
409 				&attr_list_rl_lock_class);
410 	ni->itype.index.block_size = 0;
411 	ni->itype.index.vcn_size = 0;
412 	ni->itype.index.collation_rule = 0;
413 	ni->itype.index.block_size_bits = 0;
414 	ni->itype.index.vcn_size_bits = 0;
415 	mutex_init(&ni->extent_lock);
416 	ni->nr_extents = 0;
417 	ni->ext.base_ntfs_ino = NULL;
418 }
419 
420 /*
421  * Extent inodes get MFT-mapped in a nested way, while the base inode
422  * is still mapped. Teach this nesting to the lock validator by creating
423  * a separate class for nested inode's mrec_lock's:
424  */
425 static struct lock_class_key extent_inode_mrec_lock_key;
426 
ntfs_new_extent_inode(struct super_block * sb,unsigned long mft_no)427 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
428 		unsigned long mft_no)
429 {
430 	ntfs_inode *ni = ntfs_alloc_extent_inode();
431 
432 	ntfs_debug("Entering.");
433 	if (likely(ni != NULL)) {
434 		__ntfs_init_inode(sb, ni);
435 		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
436 		ni->mft_no = mft_no;
437 		ni->type = AT_UNUSED;
438 		ni->name = NULL;
439 		ni->name_len = 0;
440 	}
441 	return ni;
442 }
443 
444 /**
445  * ntfs_is_extended_system_file - check if a file is in the $Extend directory
446  * @ctx:	initialized attribute search context
447  *
448  * Search all file name attributes in the inode described by the attribute
449  * search context @ctx and check if any of the names are in the $Extend system
450  * directory.
451  *
452  * Return values:
453  *	   1: file is in $Extend directory
454  *	   0: file is not in $Extend directory
455  *    -errno: failed to determine if the file is in the $Extend directory
456  */
ntfs_is_extended_system_file(ntfs_attr_search_ctx * ctx)457 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
458 {
459 	int nr_links, err;
460 
461 	/* Restart search. */
462 	ntfs_attr_reinit_search_ctx(ctx);
463 
464 	/* Get number of hard links. */
465 	nr_links = le16_to_cpu(ctx->mrec->link_count);
466 
467 	/* Loop through all hard links. */
468 	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
469 			ctx))) {
470 		FILE_NAME_ATTR *file_name_attr;
471 		ATTR_RECORD *attr = ctx->attr;
472 		u8 *p, *p2;
473 
474 		nr_links--;
475 		/*
476 		 * Maximum sanity checking as we are called on an inode that
477 		 * we suspect might be corrupt.
478 		 */
479 		p = (u8*)attr + le32_to_cpu(attr->length);
480 		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
481 				le32_to_cpu(ctx->mrec->bytes_in_use)) {
482 err_corrupt_attr:
483 			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
484 					"attribute. You should run chkdsk.");
485 			return -EIO;
486 		}
487 		if (attr->non_resident) {
488 			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
489 					"name. You should run chkdsk.");
490 			return -EIO;
491 		}
492 		if (attr->flags) {
493 			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
494 					"invalid flags. You should run "
495 					"chkdsk.");
496 			return -EIO;
497 		}
498 		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
499 			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
500 					"name. You should run chkdsk.");
501 			return -EIO;
502 		}
503 		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
504 				le16_to_cpu(attr->data.resident.value_offset));
505 		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
506 		if (p2 < (u8*)attr || p2 > p)
507 			goto err_corrupt_attr;
508 		/* This attribute is ok, but is it in the $Extend directory? */
509 		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
510 			return 1;	/* YES, it's an extended system file. */
511 	}
512 	if (unlikely(err != -ENOENT))
513 		return err;
514 	if (unlikely(nr_links)) {
515 		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
516 				"doesn't match number of name attributes. You "
517 				"should run chkdsk.");
518 		return -EIO;
519 	}
520 	return 0;	/* NO, it is not an extended system file. */
521 }
522 
523 /**
524  * ntfs_read_locked_inode - read an inode from its device
525  * @vi:		inode to read
526  *
527  * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
528  * described by @vi into memory from the device.
529  *
530  * The only fields in @vi that we need to/can look at when the function is
531  * called are i_sb, pointing to the mounted device's super block, and i_ino,
532  * the number of the inode to load.
533  *
534  * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
535  * for reading and sets up the necessary @vi fields as well as initializing
536  * the ntfs inode.
537  *
538  * Q: What locks are held when the function is called?
539  * A: i_state has I_NEW set, hence the inode is locked, also
540  *    i_count is set to 1, so it is not going to go away
541  *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
542  *    is allowed to write to them. We should of course be honouring them but
543  *    we need to do that using the IS_* macros defined in include/linux/fs.h.
544  *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
545  *
546  * Return 0 on success and -errno on error.  In the error case, the inode will
547  * have had make_bad_inode() executed on it.
548  */
ntfs_read_locked_inode(struct inode * vi)549 static int ntfs_read_locked_inode(struct inode *vi)
550 {
551 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
552 	ntfs_inode *ni;
553 	struct inode *bvi;
554 	MFT_RECORD *m;
555 	ATTR_RECORD *a;
556 	STANDARD_INFORMATION *si;
557 	ntfs_attr_search_ctx *ctx;
558 	int err = 0;
559 
560 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
561 
562 	/* Setup the generic vfs inode parts now. */
563 	vi->i_uid = vol->uid;
564 	vi->i_gid = vol->gid;
565 	vi->i_mode = 0;
566 
567 	/*
568 	 * Initialize the ntfs specific part of @vi special casing
569 	 * FILE_MFT which we need to do at mount time.
570 	 */
571 	if (vi->i_ino != FILE_MFT)
572 		ntfs_init_big_inode(vi);
573 	ni = NTFS_I(vi);
574 
575 	m = map_mft_record(ni);
576 	if (IS_ERR(m)) {
577 		err = PTR_ERR(m);
578 		goto err_out;
579 	}
580 	ctx = ntfs_attr_get_search_ctx(ni, m);
581 	if (!ctx) {
582 		err = -ENOMEM;
583 		goto unm_err_out;
584 	}
585 
586 	if (!(m->flags & MFT_RECORD_IN_USE)) {
587 		ntfs_error(vi->i_sb, "Inode is not in use!");
588 		goto unm_err_out;
589 	}
590 	if (m->base_mft_record) {
591 		ntfs_error(vi->i_sb, "Inode is an extent inode!");
592 		goto unm_err_out;
593 	}
594 
595 	/* Transfer information from mft record into vfs and ntfs inodes. */
596 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
597 
598 	/*
599 	 * FIXME: Keep in mind that link_count is two for files which have both
600 	 * a long file name and a short file name as separate entries, so if
601 	 * we are hiding short file names this will be too high. Either we need
602 	 * to account for the short file names by subtracting them or we need
603 	 * to make sure we delete files even though i_nlink is not zero which
604 	 * might be tricky due to vfs interactions. Need to think about this
605 	 * some more when implementing the unlink command.
606 	 */
607 	set_nlink(vi, le16_to_cpu(m->link_count));
608 	/*
609 	 * FIXME: Reparse points can have the directory bit set even though
610 	 * they would be S_IFLNK. Need to deal with this further below when we
611 	 * implement reparse points / symbolic links but it will do for now.
612 	 * Also if not a directory, it could be something else, rather than
613 	 * a regular file. But again, will do for now.
614 	 */
615 	/* Everyone gets all permissions. */
616 	vi->i_mode |= S_IRWXUGO;
617 	/* If read-only, no one gets write permissions. */
618 	if (IS_RDONLY(vi))
619 		vi->i_mode &= ~S_IWUGO;
620 	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
621 		vi->i_mode |= S_IFDIR;
622 		/*
623 		 * Apply the directory permissions mask set in the mount
624 		 * options.
625 		 */
626 		vi->i_mode &= ~vol->dmask;
627 		/* Things break without this kludge! */
628 		if (vi->i_nlink > 1)
629 			set_nlink(vi, 1);
630 	} else {
631 		vi->i_mode |= S_IFREG;
632 		/* Apply the file permissions mask set in the mount options. */
633 		vi->i_mode &= ~vol->fmask;
634 	}
635 	/*
636 	 * Find the standard information attribute in the mft record. At this
637 	 * stage we haven't setup the attribute list stuff yet, so this could
638 	 * in fact fail if the standard information is in an extent record, but
639 	 * I don't think this actually ever happens.
640 	 */
641 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
642 			ctx);
643 	if (unlikely(err)) {
644 		if (err == -ENOENT) {
645 			/*
646 			 * TODO: We should be performing a hot fix here (if the
647 			 * recover mount option is set) by creating a new
648 			 * attribute.
649 			 */
650 			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
651 					"is missing.");
652 		}
653 		goto unm_err_out;
654 	}
655 	a = ctx->attr;
656 	/* Get the standard information attribute value. */
657 	si = (STANDARD_INFORMATION*)((u8*)a +
658 			le16_to_cpu(a->data.resident.value_offset));
659 
660 	/* Transfer information from the standard information into vi. */
661 	/*
662 	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
663 	 * but they are close enough, and in the end it doesn't really matter
664 	 * that much...
665 	 */
666 	/*
667 	 * mtime is the last change of the data within the file. Not changed
668 	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
669 	 */
670 	vi->i_mtime = ntfs2utc(si->last_data_change_time);
671 	/*
672 	 * ctime is the last change of the metadata of the file. This obviously
673 	 * always changes, when mtime is changed. ctime can be changed on its
674 	 * own, mtime is then not changed, e.g. when a file is renamed.
675 	 */
676 	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
677 	/*
678 	 * Last access to the data within the file. Not changed during a rename
679 	 * for example but changed whenever the file is written to.
680 	 */
681 	vi->i_atime = ntfs2utc(si->last_access_time);
682 
683 	/* Find the attribute list attribute if present. */
684 	ntfs_attr_reinit_search_ctx(ctx);
685 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
686 	if (err) {
687 		if (unlikely(err != -ENOENT)) {
688 			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
689 					"attribute.");
690 			goto unm_err_out;
691 		}
692 	} else /* if (!err) */ {
693 		if (vi->i_ino == FILE_MFT)
694 			goto skip_attr_list_load;
695 		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
696 		NInoSetAttrList(ni);
697 		a = ctx->attr;
698 		if (a->flags & ATTR_COMPRESSION_MASK) {
699 			ntfs_error(vi->i_sb, "Attribute list attribute is "
700 					"compressed.");
701 			goto unm_err_out;
702 		}
703 		if (a->flags & ATTR_IS_ENCRYPTED ||
704 				a->flags & ATTR_IS_SPARSE) {
705 			if (a->non_resident) {
706 				ntfs_error(vi->i_sb, "Non-resident attribute "
707 						"list attribute is encrypted/"
708 						"sparse.");
709 				goto unm_err_out;
710 			}
711 			ntfs_warning(vi->i_sb, "Resident attribute list "
712 					"attribute in inode 0x%lx is marked "
713 					"encrypted/sparse which is not true.  "
714 					"However, Windows allows this and "
715 					"chkdsk does not detect or correct it "
716 					"so we will just ignore the invalid "
717 					"flags and pretend they are not set.",
718 					vi->i_ino);
719 		}
720 		/* Now allocate memory for the attribute list. */
721 		ni->attr_list_size = (u32)ntfs_attr_size(a);
722 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
723 		if (!ni->attr_list) {
724 			ntfs_error(vi->i_sb, "Not enough memory to allocate "
725 					"buffer for attribute list.");
726 			err = -ENOMEM;
727 			goto unm_err_out;
728 		}
729 		if (a->non_resident) {
730 			NInoSetAttrListNonResident(ni);
731 			if (a->data.non_resident.lowest_vcn) {
732 				ntfs_error(vi->i_sb, "Attribute list has non "
733 						"zero lowest_vcn.");
734 				goto unm_err_out;
735 			}
736 			/*
737 			 * Setup the runlist. No need for locking as we have
738 			 * exclusive access to the inode at this time.
739 			 */
740 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
741 					a, NULL);
742 			if (IS_ERR(ni->attr_list_rl.rl)) {
743 				err = PTR_ERR(ni->attr_list_rl.rl);
744 				ni->attr_list_rl.rl = NULL;
745 				ntfs_error(vi->i_sb, "Mapping pairs "
746 						"decompression failed.");
747 				goto unm_err_out;
748 			}
749 			/* Now load the attribute list. */
750 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
751 					ni->attr_list, ni->attr_list_size,
752 					sle64_to_cpu(a->data.non_resident.
753 					initialized_size)))) {
754 				ntfs_error(vi->i_sb, "Failed to load "
755 						"attribute list attribute.");
756 				goto unm_err_out;
757 			}
758 		} else /* if (!a->non_resident) */ {
759 			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
760 					+ le32_to_cpu(
761 					a->data.resident.value_length) >
762 					(u8*)ctx->mrec + vol->mft_record_size) {
763 				ntfs_error(vi->i_sb, "Corrupt attribute list "
764 						"in inode.");
765 				goto unm_err_out;
766 			}
767 			/* Now copy the attribute list. */
768 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
769 					a->data.resident.value_offset),
770 					le32_to_cpu(
771 					a->data.resident.value_length));
772 		}
773 	}
774 skip_attr_list_load:
775 	/*
776 	 * If an attribute list is present we now have the attribute list value
777 	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
778 	 */
779 	if (S_ISDIR(vi->i_mode)) {
780 		loff_t bvi_size;
781 		ntfs_inode *bni;
782 		INDEX_ROOT *ir;
783 		u8 *ir_end, *index_end;
784 
785 		/* It is a directory, find index root attribute. */
786 		ntfs_attr_reinit_search_ctx(ctx);
787 		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
788 				0, NULL, 0, ctx);
789 		if (unlikely(err)) {
790 			if (err == -ENOENT) {
791 				// FIXME: File is corrupt! Hot-fix with empty
792 				// index root attribute if recovery option is
793 				// set.
794 				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
795 						"is missing.");
796 			}
797 			goto unm_err_out;
798 		}
799 		a = ctx->attr;
800 		/* Set up the state. */
801 		if (unlikely(a->non_resident)) {
802 			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
803 					"resident.");
804 			goto unm_err_out;
805 		}
806 		/* Ensure the attribute name is placed before the value. */
807 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
808 				le16_to_cpu(a->data.resident.value_offset)))) {
809 			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
810 					"placed after the attribute value.");
811 			goto unm_err_out;
812 		}
813 		/*
814 		 * Compressed/encrypted index root just means that the newly
815 		 * created files in that directory should be created compressed/
816 		 * encrypted. However index root cannot be both compressed and
817 		 * encrypted.
818 		 */
819 		if (a->flags & ATTR_COMPRESSION_MASK)
820 			NInoSetCompressed(ni);
821 		if (a->flags & ATTR_IS_ENCRYPTED) {
822 			if (a->flags & ATTR_COMPRESSION_MASK) {
823 				ntfs_error(vi->i_sb, "Found encrypted and "
824 						"compressed attribute.");
825 				goto unm_err_out;
826 			}
827 			NInoSetEncrypted(ni);
828 		}
829 		if (a->flags & ATTR_IS_SPARSE)
830 			NInoSetSparse(ni);
831 		ir = (INDEX_ROOT*)((u8*)a +
832 				le16_to_cpu(a->data.resident.value_offset));
833 		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
834 		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
835 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
836 					"corrupt.");
837 			goto unm_err_out;
838 		}
839 		index_end = (u8*)&ir->index +
840 				le32_to_cpu(ir->index.index_length);
841 		if (index_end > ir_end) {
842 			ntfs_error(vi->i_sb, "Directory index is corrupt.");
843 			goto unm_err_out;
844 		}
845 		if (ir->type != AT_FILE_NAME) {
846 			ntfs_error(vi->i_sb, "Indexed attribute is not "
847 					"$FILE_NAME.");
848 			goto unm_err_out;
849 		}
850 		if (ir->collation_rule != COLLATION_FILE_NAME) {
851 			ntfs_error(vi->i_sb, "Index collation rule is not "
852 					"COLLATION_FILE_NAME.");
853 			goto unm_err_out;
854 		}
855 		ni->itype.index.collation_rule = ir->collation_rule;
856 		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
857 		if (ni->itype.index.block_size &
858 				(ni->itype.index.block_size - 1)) {
859 			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
860 					"power of two.",
861 					ni->itype.index.block_size);
862 			goto unm_err_out;
863 		}
864 		if (ni->itype.index.block_size > PAGE_SIZE) {
865 			ntfs_error(vi->i_sb, "Index block size (%u) > "
866 					"PAGE_SIZE (%ld) is not "
867 					"supported.  Sorry.",
868 					ni->itype.index.block_size,
869 					PAGE_SIZE);
870 			err = -EOPNOTSUPP;
871 			goto unm_err_out;
872 		}
873 		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
874 			ntfs_error(vi->i_sb, "Index block size (%u) < "
875 					"NTFS_BLOCK_SIZE (%i) is not "
876 					"supported.  Sorry.",
877 					ni->itype.index.block_size,
878 					NTFS_BLOCK_SIZE);
879 			err = -EOPNOTSUPP;
880 			goto unm_err_out;
881 		}
882 		ni->itype.index.block_size_bits =
883 				ffs(ni->itype.index.block_size) - 1;
884 		/* Determine the size of a vcn in the directory index. */
885 		if (vol->cluster_size <= ni->itype.index.block_size) {
886 			ni->itype.index.vcn_size = vol->cluster_size;
887 			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
888 		} else {
889 			ni->itype.index.vcn_size = vol->sector_size;
890 			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
891 		}
892 
893 		/* Setup the index allocation attribute, even if not present. */
894 		NInoSetMstProtected(ni);
895 		ni->type = AT_INDEX_ALLOCATION;
896 		ni->name = I30;
897 		ni->name_len = 4;
898 
899 		if (!(ir->index.flags & LARGE_INDEX)) {
900 			/* No index allocation. */
901 			vi->i_size = ni->initialized_size =
902 					ni->allocated_size = 0;
903 			/* We are done with the mft record, so we release it. */
904 			ntfs_attr_put_search_ctx(ctx);
905 			unmap_mft_record(ni);
906 			m = NULL;
907 			ctx = NULL;
908 			goto skip_large_dir_stuff;
909 		} /* LARGE_INDEX: Index allocation present. Setup state. */
910 		NInoSetIndexAllocPresent(ni);
911 		/* Find index allocation attribute. */
912 		ntfs_attr_reinit_search_ctx(ctx);
913 		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
914 				CASE_SENSITIVE, 0, NULL, 0, ctx);
915 		if (unlikely(err)) {
916 			if (err == -ENOENT)
917 				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
918 						"attribute is not present but "
919 						"$INDEX_ROOT indicated it is.");
920 			else
921 				ntfs_error(vi->i_sb, "Failed to lookup "
922 						"$INDEX_ALLOCATION "
923 						"attribute.");
924 			goto unm_err_out;
925 		}
926 		a = ctx->attr;
927 		if (!a->non_resident) {
928 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
929 					"is resident.");
930 			goto unm_err_out;
931 		}
932 		/*
933 		 * Ensure the attribute name is placed before the mapping pairs
934 		 * array.
935 		 */
936 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
937 				le16_to_cpu(
938 				a->data.non_resident.mapping_pairs_offset)))) {
939 			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
940 					"is placed after the mapping pairs "
941 					"array.");
942 			goto unm_err_out;
943 		}
944 		if (a->flags & ATTR_IS_ENCRYPTED) {
945 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
946 					"is encrypted.");
947 			goto unm_err_out;
948 		}
949 		if (a->flags & ATTR_IS_SPARSE) {
950 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
951 					"is sparse.");
952 			goto unm_err_out;
953 		}
954 		if (a->flags & ATTR_COMPRESSION_MASK) {
955 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
956 					"is compressed.");
957 			goto unm_err_out;
958 		}
959 		if (a->data.non_resident.lowest_vcn) {
960 			ntfs_error(vi->i_sb, "First extent of "
961 					"$INDEX_ALLOCATION attribute has non "
962 					"zero lowest_vcn.");
963 			goto unm_err_out;
964 		}
965 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
966 		ni->initialized_size = sle64_to_cpu(
967 				a->data.non_resident.initialized_size);
968 		ni->allocated_size = sle64_to_cpu(
969 				a->data.non_resident.allocated_size);
970 		/*
971 		 * We are done with the mft record, so we release it. Otherwise
972 		 * we would deadlock in ntfs_attr_iget().
973 		 */
974 		ntfs_attr_put_search_ctx(ctx);
975 		unmap_mft_record(ni);
976 		m = NULL;
977 		ctx = NULL;
978 		/* Get the index bitmap attribute inode. */
979 		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
980 		if (IS_ERR(bvi)) {
981 			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
982 			err = PTR_ERR(bvi);
983 			goto unm_err_out;
984 		}
985 		bni = NTFS_I(bvi);
986 		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
987 				NInoSparse(bni)) {
988 			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
989 					"and/or encrypted and/or sparse.");
990 			goto iput_unm_err_out;
991 		}
992 		/* Consistency check bitmap size vs. index allocation size. */
993 		bvi_size = i_size_read(bvi);
994 		if ((bvi_size << 3) < (vi->i_size >>
995 				ni->itype.index.block_size_bits)) {
996 			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
997 					"for index allocation (0x%llx).",
998 					bvi_size << 3, vi->i_size);
999 			goto iput_unm_err_out;
1000 		}
1001 		/* No longer need the bitmap attribute inode. */
1002 		iput(bvi);
1003 skip_large_dir_stuff:
1004 		/* Setup the operations for this inode. */
1005 		vi->i_op = &ntfs_dir_inode_ops;
1006 		vi->i_fop = &ntfs_dir_ops;
1007 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1008 	} else {
1009 		/* It is a file. */
1010 		ntfs_attr_reinit_search_ctx(ctx);
1011 
1012 		/* Setup the data attribute, even if not present. */
1013 		ni->type = AT_DATA;
1014 		ni->name = NULL;
1015 		ni->name_len = 0;
1016 
1017 		/* Find first extent of the unnamed data attribute. */
1018 		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1019 		if (unlikely(err)) {
1020 			vi->i_size = ni->initialized_size =
1021 					ni->allocated_size = 0;
1022 			if (err != -ENOENT) {
1023 				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1024 						"attribute.");
1025 				goto unm_err_out;
1026 			}
1027 			/*
1028 			 * FILE_Secure does not have an unnamed $DATA
1029 			 * attribute, so we special case it here.
1030 			 */
1031 			if (vi->i_ino == FILE_Secure)
1032 				goto no_data_attr_special_case;
1033 			/*
1034 			 * Most if not all the system files in the $Extend
1035 			 * system directory do not have unnamed data
1036 			 * attributes so we need to check if the parent
1037 			 * directory of the file is FILE_Extend and if it is
1038 			 * ignore this error. To do this we need to get the
1039 			 * name of this inode from the mft record as the name
1040 			 * contains the back reference to the parent directory.
1041 			 */
1042 			if (ntfs_is_extended_system_file(ctx) > 0)
1043 				goto no_data_attr_special_case;
1044 			// FIXME: File is corrupt! Hot-fix with empty data
1045 			// attribute if recovery option is set.
1046 			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1047 			goto unm_err_out;
1048 		}
1049 		a = ctx->attr;
1050 		/* Setup the state. */
1051 		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1052 			if (a->flags & ATTR_COMPRESSION_MASK) {
1053 				NInoSetCompressed(ni);
1054 				if (vol->cluster_size > 4096) {
1055 					ntfs_error(vi->i_sb, "Found "
1056 							"compressed data but "
1057 							"compression is "
1058 							"disabled due to "
1059 							"cluster size (%i) > "
1060 							"4kiB.",
1061 							vol->cluster_size);
1062 					goto unm_err_out;
1063 				}
1064 				if ((a->flags & ATTR_COMPRESSION_MASK)
1065 						!= ATTR_IS_COMPRESSED) {
1066 					ntfs_error(vi->i_sb, "Found unknown "
1067 							"compression method "
1068 							"or corrupt file.");
1069 					goto unm_err_out;
1070 				}
1071 			}
1072 			if (a->flags & ATTR_IS_SPARSE)
1073 				NInoSetSparse(ni);
1074 		}
1075 		if (a->flags & ATTR_IS_ENCRYPTED) {
1076 			if (NInoCompressed(ni)) {
1077 				ntfs_error(vi->i_sb, "Found encrypted and "
1078 						"compressed data.");
1079 				goto unm_err_out;
1080 			}
1081 			NInoSetEncrypted(ni);
1082 		}
1083 		if (a->non_resident) {
1084 			NInoSetNonResident(ni);
1085 			if (NInoCompressed(ni) || NInoSparse(ni)) {
1086 				if (NInoCompressed(ni) && a->data.non_resident.
1087 						compression_unit != 4) {
1088 					ntfs_error(vi->i_sb, "Found "
1089 							"non-standard "
1090 							"compression unit (%u "
1091 							"instead of 4).  "
1092 							"Cannot handle this.",
1093 							a->data.non_resident.
1094 							compression_unit);
1095 					err = -EOPNOTSUPP;
1096 					goto unm_err_out;
1097 				}
1098 				if (a->data.non_resident.compression_unit) {
1099 					ni->itype.compressed.block_size = 1U <<
1100 							(a->data.non_resident.
1101 							compression_unit +
1102 							vol->cluster_size_bits);
1103 					ni->itype.compressed.block_size_bits =
1104 							ffs(ni->itype.
1105 							compressed.
1106 							block_size) - 1;
1107 					ni->itype.compressed.block_clusters =
1108 							1U << a->data.
1109 							non_resident.
1110 							compression_unit;
1111 				} else {
1112 					ni->itype.compressed.block_size = 0;
1113 					ni->itype.compressed.block_size_bits =
1114 							0;
1115 					ni->itype.compressed.block_clusters =
1116 							0;
1117 				}
1118 				ni->itype.compressed.size = sle64_to_cpu(
1119 						a->data.non_resident.
1120 						compressed_size);
1121 			}
1122 			if (a->data.non_resident.lowest_vcn) {
1123 				ntfs_error(vi->i_sb, "First extent of $DATA "
1124 						"attribute has non zero "
1125 						"lowest_vcn.");
1126 				goto unm_err_out;
1127 			}
1128 			vi->i_size = sle64_to_cpu(
1129 					a->data.non_resident.data_size);
1130 			ni->initialized_size = sle64_to_cpu(
1131 					a->data.non_resident.initialized_size);
1132 			ni->allocated_size = sle64_to_cpu(
1133 					a->data.non_resident.allocated_size);
1134 		} else { /* Resident attribute. */
1135 			vi->i_size = ni->initialized_size = le32_to_cpu(
1136 					a->data.resident.value_length);
1137 			ni->allocated_size = le32_to_cpu(a->length) -
1138 					le16_to_cpu(
1139 					a->data.resident.value_offset);
1140 			if (vi->i_size > ni->allocated_size) {
1141 				ntfs_error(vi->i_sb, "Resident data attribute "
1142 						"is corrupt (size exceeds "
1143 						"allocation).");
1144 				goto unm_err_out;
1145 			}
1146 		}
1147 no_data_attr_special_case:
1148 		/* We are done with the mft record, so we release it. */
1149 		ntfs_attr_put_search_ctx(ctx);
1150 		unmap_mft_record(ni);
1151 		m = NULL;
1152 		ctx = NULL;
1153 		/* Setup the operations for this inode. */
1154 		vi->i_op = &ntfs_file_inode_ops;
1155 		vi->i_fop = &ntfs_file_ops;
1156 		vi->i_mapping->a_ops = &ntfs_normal_aops;
1157 		if (NInoMstProtected(ni))
1158 			vi->i_mapping->a_ops = &ntfs_mst_aops;
1159 		else if (NInoCompressed(ni))
1160 			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1161 	}
1162 	/*
1163 	 * The number of 512-byte blocks used on disk (for stat). This is in so
1164 	 * far inaccurate as it doesn't account for any named streams or other
1165 	 * special non-resident attributes, but that is how Windows works, too,
1166 	 * so we are at least consistent with Windows, if not entirely
1167 	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1168 	 * significant slowdown as it would involve iterating over all
1169 	 * attributes in the mft record and adding the allocated/compressed
1170 	 * sizes of all non-resident attributes present to give us the Linux
1171 	 * correct size that should go into i_blocks (after division by 512).
1172 	 */
1173 	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1174 		vi->i_blocks = ni->itype.compressed.size >> 9;
1175 	else
1176 		vi->i_blocks = ni->allocated_size >> 9;
1177 	ntfs_debug("Done.");
1178 	return 0;
1179 iput_unm_err_out:
1180 	iput(bvi);
1181 unm_err_out:
1182 	if (!err)
1183 		err = -EIO;
1184 	if (ctx)
1185 		ntfs_attr_put_search_ctx(ctx);
1186 	if (m)
1187 		unmap_mft_record(ni);
1188 err_out:
1189 	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1190 			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1191 	make_bad_inode(vi);
1192 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1193 		NVolSetErrors(vol);
1194 	return err;
1195 }
1196 
1197 /**
1198  * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1199  * @base_vi:	base inode
1200  * @vi:		attribute inode to read
1201  *
1202  * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1203  * attribute inode described by @vi into memory from the base mft record
1204  * described by @base_ni.
1205  *
1206  * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1207  * reading and looks up the attribute described by @vi before setting up the
1208  * necessary fields in @vi as well as initializing the ntfs inode.
1209  *
1210  * Q: What locks are held when the function is called?
1211  * A: i_state has I_NEW set, hence the inode is locked, also
1212  *    i_count is set to 1, so it is not going to go away
1213  *
1214  * Return 0 on success and -errno on error.  In the error case, the inode will
1215  * have had make_bad_inode() executed on it.
1216  *
1217  * Note this cannot be called for AT_INDEX_ALLOCATION.
1218  */
ntfs_read_locked_attr_inode(struct inode * base_vi,struct inode * vi)1219 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1220 {
1221 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1222 	ntfs_inode *ni, *base_ni;
1223 	MFT_RECORD *m;
1224 	ATTR_RECORD *a;
1225 	ntfs_attr_search_ctx *ctx;
1226 	int err = 0;
1227 
1228 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1229 
1230 	ntfs_init_big_inode(vi);
1231 
1232 	ni	= NTFS_I(vi);
1233 	base_ni = NTFS_I(base_vi);
1234 
1235 	/* Just mirror the values from the base inode. */
1236 	vi->i_uid	= base_vi->i_uid;
1237 	vi->i_gid	= base_vi->i_gid;
1238 	set_nlink(vi, base_vi->i_nlink);
1239 	vi->i_mtime	= base_vi->i_mtime;
1240 	vi->i_ctime	= base_vi->i_ctime;
1241 	vi->i_atime	= base_vi->i_atime;
1242 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1243 
1244 	/* Set inode type to zero but preserve permissions. */
1245 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1246 
1247 	m = map_mft_record(base_ni);
1248 	if (IS_ERR(m)) {
1249 		err = PTR_ERR(m);
1250 		goto err_out;
1251 	}
1252 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1253 	if (!ctx) {
1254 		err = -ENOMEM;
1255 		goto unm_err_out;
1256 	}
1257 	/* Find the attribute. */
1258 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1259 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1260 	if (unlikely(err))
1261 		goto unm_err_out;
1262 	a = ctx->attr;
1263 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1264 		if (a->flags & ATTR_COMPRESSION_MASK) {
1265 			NInoSetCompressed(ni);
1266 			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1267 					ni->name_len)) {
1268 				ntfs_error(vi->i_sb, "Found compressed "
1269 						"non-data or named data "
1270 						"attribute.  Please report "
1271 						"you saw this message to "
1272 						"linux-ntfs-dev@lists."
1273 						"sourceforge.net");
1274 				goto unm_err_out;
1275 			}
1276 			if (vol->cluster_size > 4096) {
1277 				ntfs_error(vi->i_sb, "Found compressed "
1278 						"attribute but compression is "
1279 						"disabled due to cluster size "
1280 						"(%i) > 4kiB.",
1281 						vol->cluster_size);
1282 				goto unm_err_out;
1283 			}
1284 			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1285 					ATTR_IS_COMPRESSED) {
1286 				ntfs_error(vi->i_sb, "Found unknown "
1287 						"compression method.");
1288 				goto unm_err_out;
1289 			}
1290 		}
1291 		/*
1292 		 * The compressed/sparse flag set in an index root just means
1293 		 * to compress all files.
1294 		 */
1295 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1296 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1297 					"but the attribute is %s.  Please "
1298 					"report you saw this message to "
1299 					"linux-ntfs-dev@lists.sourceforge.net",
1300 					NInoCompressed(ni) ? "compressed" :
1301 					"sparse");
1302 			goto unm_err_out;
1303 		}
1304 		if (a->flags & ATTR_IS_SPARSE)
1305 			NInoSetSparse(ni);
1306 	}
1307 	if (a->flags & ATTR_IS_ENCRYPTED) {
1308 		if (NInoCompressed(ni)) {
1309 			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1310 					"data.");
1311 			goto unm_err_out;
1312 		}
1313 		/*
1314 		 * The encryption flag set in an index root just means to
1315 		 * encrypt all files.
1316 		 */
1317 		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1318 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1319 					"but the attribute is encrypted.  "
1320 					"Please report you saw this message "
1321 					"to linux-ntfs-dev@lists.sourceforge."
1322 					"net");
1323 			goto unm_err_out;
1324 		}
1325 		if (ni->type != AT_DATA) {
1326 			ntfs_error(vi->i_sb, "Found encrypted non-data "
1327 					"attribute.");
1328 			goto unm_err_out;
1329 		}
1330 		NInoSetEncrypted(ni);
1331 	}
1332 	if (!a->non_resident) {
1333 		/* Ensure the attribute name is placed before the value. */
1334 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1335 				le16_to_cpu(a->data.resident.value_offset)))) {
1336 			ntfs_error(vol->sb, "Attribute name is placed after "
1337 					"the attribute value.");
1338 			goto unm_err_out;
1339 		}
1340 		if (NInoMstProtected(ni)) {
1341 			ntfs_error(vi->i_sb, "Found mst protected attribute "
1342 					"but the attribute is resident.  "
1343 					"Please report you saw this message to "
1344 					"linux-ntfs-dev@lists.sourceforge.net");
1345 			goto unm_err_out;
1346 		}
1347 		vi->i_size = ni->initialized_size = le32_to_cpu(
1348 				a->data.resident.value_length);
1349 		ni->allocated_size = le32_to_cpu(a->length) -
1350 				le16_to_cpu(a->data.resident.value_offset);
1351 		if (vi->i_size > ni->allocated_size) {
1352 			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1353 					"(size exceeds allocation).");
1354 			goto unm_err_out;
1355 		}
1356 	} else {
1357 		NInoSetNonResident(ni);
1358 		/*
1359 		 * Ensure the attribute name is placed before the mapping pairs
1360 		 * array.
1361 		 */
1362 		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1363 				le16_to_cpu(
1364 				a->data.non_resident.mapping_pairs_offset)))) {
1365 			ntfs_error(vol->sb, "Attribute name is placed after "
1366 					"the mapping pairs array.");
1367 			goto unm_err_out;
1368 		}
1369 		if (NInoCompressed(ni) || NInoSparse(ni)) {
1370 			if (NInoCompressed(ni) && a->data.non_resident.
1371 					compression_unit != 4) {
1372 				ntfs_error(vi->i_sb, "Found non-standard "
1373 						"compression unit (%u instead "
1374 						"of 4).  Cannot handle this.",
1375 						a->data.non_resident.
1376 						compression_unit);
1377 				err = -EOPNOTSUPP;
1378 				goto unm_err_out;
1379 			}
1380 			if (a->data.non_resident.compression_unit) {
1381 				ni->itype.compressed.block_size = 1U <<
1382 						(a->data.non_resident.
1383 						compression_unit +
1384 						vol->cluster_size_bits);
1385 				ni->itype.compressed.block_size_bits =
1386 						ffs(ni->itype.compressed.
1387 						block_size) - 1;
1388 				ni->itype.compressed.block_clusters = 1U <<
1389 						a->data.non_resident.
1390 						compression_unit;
1391 			} else {
1392 				ni->itype.compressed.block_size = 0;
1393 				ni->itype.compressed.block_size_bits = 0;
1394 				ni->itype.compressed.block_clusters = 0;
1395 			}
1396 			ni->itype.compressed.size = sle64_to_cpu(
1397 					a->data.non_resident.compressed_size);
1398 		}
1399 		if (a->data.non_resident.lowest_vcn) {
1400 			ntfs_error(vi->i_sb, "First extent of attribute has "
1401 					"non-zero lowest_vcn.");
1402 			goto unm_err_out;
1403 		}
1404 		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1405 		ni->initialized_size = sle64_to_cpu(
1406 				a->data.non_resident.initialized_size);
1407 		ni->allocated_size = sle64_to_cpu(
1408 				a->data.non_resident.allocated_size);
1409 	}
1410 	vi->i_mapping->a_ops = &ntfs_normal_aops;
1411 	if (NInoMstProtected(ni))
1412 		vi->i_mapping->a_ops = &ntfs_mst_aops;
1413 	else if (NInoCompressed(ni))
1414 		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1415 	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1416 		vi->i_blocks = ni->itype.compressed.size >> 9;
1417 	else
1418 		vi->i_blocks = ni->allocated_size >> 9;
1419 	/*
1420 	 * Make sure the base inode does not go away and attach it to the
1421 	 * attribute inode.
1422 	 */
1423 	igrab(base_vi);
1424 	ni->ext.base_ntfs_ino = base_ni;
1425 	ni->nr_extents = -1;
1426 
1427 	ntfs_attr_put_search_ctx(ctx);
1428 	unmap_mft_record(base_ni);
1429 
1430 	ntfs_debug("Done.");
1431 	return 0;
1432 
1433 unm_err_out:
1434 	if (!err)
1435 		err = -EIO;
1436 	if (ctx)
1437 		ntfs_attr_put_search_ctx(ctx);
1438 	unmap_mft_record(base_ni);
1439 err_out:
1440 	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1441 			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1442 			"Marking corrupt inode and base inode 0x%lx as bad.  "
1443 			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1444 			base_vi->i_ino);
1445 	make_bad_inode(vi);
1446 	if (err != -ENOMEM)
1447 		NVolSetErrors(vol);
1448 	return err;
1449 }
1450 
1451 /**
1452  * ntfs_read_locked_index_inode - read an index inode from its base inode
1453  * @base_vi:	base inode
1454  * @vi:		index inode to read
1455  *
1456  * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1457  * index inode described by @vi into memory from the base mft record described
1458  * by @base_ni.
1459  *
1460  * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1461  * reading and looks up the attributes relating to the index described by @vi
1462  * before setting up the necessary fields in @vi as well as initializing the
1463  * ntfs inode.
1464  *
1465  * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1466  * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1467  * are setup like directory inodes since directories are a special case of
1468  * indices ao they need to be treated in much the same way.  Most importantly,
1469  * for small indices the index allocation attribute might not actually exist.
1470  * However, the index root attribute always exists but this does not need to
1471  * have an inode associated with it and this is why we define a new inode type
1472  * index.  Also, like for directories, we need to have an attribute inode for
1473  * the bitmap attribute corresponding to the index allocation attribute and we
1474  * can store this in the appropriate field of the inode, just like we do for
1475  * normal directory inodes.
1476  *
1477  * Q: What locks are held when the function is called?
1478  * A: i_state has I_NEW set, hence the inode is locked, also
1479  *    i_count is set to 1, so it is not going to go away
1480  *
1481  * Return 0 on success and -errno on error.  In the error case, the inode will
1482  * have had make_bad_inode() executed on it.
1483  */
ntfs_read_locked_index_inode(struct inode * base_vi,struct inode * vi)1484 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1485 {
1486 	loff_t bvi_size;
1487 	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1488 	ntfs_inode *ni, *base_ni, *bni;
1489 	struct inode *bvi;
1490 	MFT_RECORD *m;
1491 	ATTR_RECORD *a;
1492 	ntfs_attr_search_ctx *ctx;
1493 	INDEX_ROOT *ir;
1494 	u8 *ir_end, *index_end;
1495 	int err = 0;
1496 
1497 	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1498 	ntfs_init_big_inode(vi);
1499 	ni	= NTFS_I(vi);
1500 	base_ni = NTFS_I(base_vi);
1501 	/* Just mirror the values from the base inode. */
1502 	vi->i_uid	= base_vi->i_uid;
1503 	vi->i_gid	= base_vi->i_gid;
1504 	set_nlink(vi, base_vi->i_nlink);
1505 	vi->i_mtime	= base_vi->i_mtime;
1506 	vi->i_ctime	= base_vi->i_ctime;
1507 	vi->i_atime	= base_vi->i_atime;
1508 	vi->i_generation = ni->seq_no = base_ni->seq_no;
1509 	/* Set inode type to zero but preserve permissions. */
1510 	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1511 	/* Map the mft record for the base inode. */
1512 	m = map_mft_record(base_ni);
1513 	if (IS_ERR(m)) {
1514 		err = PTR_ERR(m);
1515 		goto err_out;
1516 	}
1517 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1518 	if (!ctx) {
1519 		err = -ENOMEM;
1520 		goto unm_err_out;
1521 	}
1522 	/* Find the index root attribute. */
1523 	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1524 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1525 	if (unlikely(err)) {
1526 		if (err == -ENOENT)
1527 			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1528 					"missing.");
1529 		goto unm_err_out;
1530 	}
1531 	a = ctx->attr;
1532 	/* Set up the state. */
1533 	if (unlikely(a->non_resident)) {
1534 		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1535 		goto unm_err_out;
1536 	}
1537 	/* Ensure the attribute name is placed before the value. */
1538 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1539 			le16_to_cpu(a->data.resident.value_offset)))) {
1540 		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1541 				"after the attribute value.");
1542 		goto unm_err_out;
1543 	}
1544 	/*
1545 	 * Compressed/encrypted/sparse index root is not allowed, except for
1546 	 * directories of course but those are not dealt with here.
1547 	 */
1548 	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1549 			ATTR_IS_SPARSE)) {
1550 		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1551 				"root attribute.");
1552 		goto unm_err_out;
1553 	}
1554 	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1555 	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1556 	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1557 		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1558 		goto unm_err_out;
1559 	}
1560 	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1561 	if (index_end > ir_end) {
1562 		ntfs_error(vi->i_sb, "Index is corrupt.");
1563 		goto unm_err_out;
1564 	}
1565 	if (ir->type) {
1566 		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1567 				le32_to_cpu(ir->type));
1568 		goto unm_err_out;
1569 	}
1570 	ni->itype.index.collation_rule = ir->collation_rule;
1571 	ntfs_debug("Index collation rule is 0x%x.",
1572 			le32_to_cpu(ir->collation_rule));
1573 	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1574 	if (!is_power_of_2(ni->itype.index.block_size)) {
1575 		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1576 				"two.", ni->itype.index.block_size);
1577 		goto unm_err_out;
1578 	}
1579 	if (ni->itype.index.block_size > PAGE_SIZE) {
1580 		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1581 				"(%ld) is not supported.  Sorry.",
1582 				ni->itype.index.block_size, PAGE_SIZE);
1583 		err = -EOPNOTSUPP;
1584 		goto unm_err_out;
1585 	}
1586 	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1587 		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1588 				"(%i) is not supported.  Sorry.",
1589 				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1590 		err = -EOPNOTSUPP;
1591 		goto unm_err_out;
1592 	}
1593 	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1594 	/* Determine the size of a vcn in the index. */
1595 	if (vol->cluster_size <= ni->itype.index.block_size) {
1596 		ni->itype.index.vcn_size = vol->cluster_size;
1597 		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1598 	} else {
1599 		ni->itype.index.vcn_size = vol->sector_size;
1600 		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1601 	}
1602 	/* Check for presence of index allocation attribute. */
1603 	if (!(ir->index.flags & LARGE_INDEX)) {
1604 		/* No index allocation. */
1605 		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1606 		/* We are done with the mft record, so we release it. */
1607 		ntfs_attr_put_search_ctx(ctx);
1608 		unmap_mft_record(base_ni);
1609 		m = NULL;
1610 		ctx = NULL;
1611 		goto skip_large_index_stuff;
1612 	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1613 	NInoSetIndexAllocPresent(ni);
1614 	/* Find index allocation attribute. */
1615 	ntfs_attr_reinit_search_ctx(ctx);
1616 	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1617 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1618 	if (unlikely(err)) {
1619 		if (err == -ENOENT)
1620 			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1621 					"not present but $INDEX_ROOT "
1622 					"indicated it is.");
1623 		else
1624 			ntfs_error(vi->i_sb, "Failed to lookup "
1625 					"$INDEX_ALLOCATION attribute.");
1626 		goto unm_err_out;
1627 	}
1628 	a = ctx->attr;
1629 	if (!a->non_resident) {
1630 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1631 				"resident.");
1632 		goto unm_err_out;
1633 	}
1634 	/*
1635 	 * Ensure the attribute name is placed before the mapping pairs array.
1636 	 */
1637 	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1638 			le16_to_cpu(
1639 			a->data.non_resident.mapping_pairs_offset)))) {
1640 		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1641 				"placed after the mapping pairs array.");
1642 		goto unm_err_out;
1643 	}
1644 	if (a->flags & ATTR_IS_ENCRYPTED) {
1645 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1646 				"encrypted.");
1647 		goto unm_err_out;
1648 	}
1649 	if (a->flags & ATTR_IS_SPARSE) {
1650 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1651 		goto unm_err_out;
1652 	}
1653 	if (a->flags & ATTR_COMPRESSION_MASK) {
1654 		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655 				"compressed.");
1656 		goto unm_err_out;
1657 	}
1658 	if (a->data.non_resident.lowest_vcn) {
1659 		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1660 				"attribute has non zero lowest_vcn.");
1661 		goto unm_err_out;
1662 	}
1663 	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1664 	ni->initialized_size = sle64_to_cpu(
1665 			a->data.non_resident.initialized_size);
1666 	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1667 	/*
1668 	 * We are done with the mft record, so we release it.  Otherwise
1669 	 * we would deadlock in ntfs_attr_iget().
1670 	 */
1671 	ntfs_attr_put_search_ctx(ctx);
1672 	unmap_mft_record(base_ni);
1673 	m = NULL;
1674 	ctx = NULL;
1675 	/* Get the index bitmap attribute inode. */
1676 	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1677 	if (IS_ERR(bvi)) {
1678 		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1679 		err = PTR_ERR(bvi);
1680 		goto unm_err_out;
1681 	}
1682 	bni = NTFS_I(bvi);
1683 	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1684 			NInoSparse(bni)) {
1685 		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1686 				"encrypted and/or sparse.");
1687 		goto iput_unm_err_out;
1688 	}
1689 	/* Consistency check bitmap size vs. index allocation size. */
1690 	bvi_size = i_size_read(bvi);
1691 	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1692 		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1693 				"index allocation (0x%llx).", bvi_size << 3,
1694 				vi->i_size);
1695 		goto iput_unm_err_out;
1696 	}
1697 	iput(bvi);
1698 skip_large_index_stuff:
1699 	/* Setup the operations for this index inode. */
1700 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1701 	vi->i_blocks = ni->allocated_size >> 9;
1702 	/*
1703 	 * Make sure the base inode doesn't go away and attach it to the
1704 	 * index inode.
1705 	 */
1706 	igrab(base_vi);
1707 	ni->ext.base_ntfs_ino = base_ni;
1708 	ni->nr_extents = -1;
1709 
1710 	ntfs_debug("Done.");
1711 	return 0;
1712 iput_unm_err_out:
1713 	iput(bvi);
1714 unm_err_out:
1715 	if (!err)
1716 		err = -EIO;
1717 	if (ctx)
1718 		ntfs_attr_put_search_ctx(ctx);
1719 	if (m)
1720 		unmap_mft_record(base_ni);
1721 err_out:
1722 	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1723 			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1724 			ni->name_len);
1725 	make_bad_inode(vi);
1726 	if (err != -EOPNOTSUPP && err != -ENOMEM)
1727 		NVolSetErrors(vol);
1728 	return err;
1729 }
1730 
1731 /*
1732  * The MFT inode has special locking, so teach the lock validator
1733  * about this by splitting off the locking rules of the MFT from
1734  * the locking rules of other inodes. The MFT inode can never be
1735  * accessed from the VFS side (or even internally), only by the
1736  * map_mft functions.
1737  */
1738 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1739 
1740 /**
1741  * ntfs_read_inode_mount - special read_inode for mount time use only
1742  * @vi:		inode to read
1743  *
1744  * Read inode FILE_MFT at mount time, only called with super_block lock
1745  * held from within the read_super() code path.
1746  *
1747  * This function exists because when it is called the page cache for $MFT/$DATA
1748  * is not initialized and hence we cannot get at the contents of mft records
1749  * by calling map_mft_record*().
1750  *
1751  * Further it needs to cope with the circular references problem, i.e. cannot
1752  * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1753  * we do not know where the other extent mft records are yet and again, because
1754  * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1755  * attribute list is actually present in $MFT inode.
1756  *
1757  * We solve these problems by starting with the $DATA attribute before anything
1758  * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1759  * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1760  * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1761  * sufficient information for the next step to complete.
1762  *
1763  * This should work but there are two possible pit falls (see inline comments
1764  * below), but only time will tell if they are real pits or just smoke...
1765  */
ntfs_read_inode_mount(struct inode * vi)1766 int ntfs_read_inode_mount(struct inode *vi)
1767 {
1768 	VCN next_vcn, last_vcn, highest_vcn;
1769 	s64 block;
1770 	struct super_block *sb = vi->i_sb;
1771 	ntfs_volume *vol = NTFS_SB(sb);
1772 	struct buffer_head *bh;
1773 	ntfs_inode *ni;
1774 	MFT_RECORD *m = NULL;
1775 	ATTR_RECORD *a;
1776 	ntfs_attr_search_ctx *ctx;
1777 	unsigned int i, nr_blocks;
1778 	int err;
1779 
1780 	ntfs_debug("Entering.");
1781 
1782 	/* Initialize the ntfs specific part of @vi. */
1783 	ntfs_init_big_inode(vi);
1784 
1785 	ni = NTFS_I(vi);
1786 
1787 	/* Setup the data attribute. It is special as it is mst protected. */
1788 	NInoSetNonResident(ni);
1789 	NInoSetMstProtected(ni);
1790 	NInoSetSparseDisabled(ni);
1791 	ni->type = AT_DATA;
1792 	ni->name = NULL;
1793 	ni->name_len = 0;
1794 	/*
1795 	 * This sets up our little cheat allowing us to reuse the async read io
1796 	 * completion handler for directories.
1797 	 */
1798 	ni->itype.index.block_size = vol->mft_record_size;
1799 	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1800 
1801 	/* Very important! Needed to be able to call map_mft_record*(). */
1802 	vol->mft_ino = vi;
1803 
1804 	/* Allocate enough memory to read the first mft record. */
1805 	if (vol->mft_record_size > 64 * 1024) {
1806 		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1807 				vol->mft_record_size);
1808 		goto err_out;
1809 	}
1810 	i = vol->mft_record_size;
1811 	if (i < sb->s_blocksize)
1812 		i = sb->s_blocksize;
1813 	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1814 	if (!m) {
1815 		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1816 		goto err_out;
1817 	}
1818 
1819 	/* Determine the first block of the $MFT/$DATA attribute. */
1820 	block = vol->mft_lcn << vol->cluster_size_bits >>
1821 			sb->s_blocksize_bits;
1822 	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1823 	if (!nr_blocks)
1824 		nr_blocks = 1;
1825 
1826 	/* Load $MFT/$DATA's first mft record. */
1827 	for (i = 0; i < nr_blocks; i++) {
1828 		bh = sb_bread(sb, block++);
1829 		if (!bh) {
1830 			ntfs_error(sb, "Device read failed.");
1831 			goto err_out;
1832 		}
1833 		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1834 				sb->s_blocksize);
1835 		brelse(bh);
1836 	}
1837 
1838 	if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1839 		ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1840 				le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1841 		goto err_out;
1842 	}
1843 
1844 	/* Apply the mst fixups. */
1845 	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1846 		/* FIXME: Try to use the $MFTMirr now. */
1847 		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1848 		goto err_out;
1849 	}
1850 
1851 	/* Need this to sanity check attribute list references to $MFT. */
1852 	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1853 
1854 	/* Provides readpage() for map_mft_record(). */
1855 	vi->i_mapping->a_ops = &ntfs_mst_aops;
1856 
1857 	ctx = ntfs_attr_get_search_ctx(ni, m);
1858 	if (!ctx) {
1859 		err = -ENOMEM;
1860 		goto err_out;
1861 	}
1862 
1863 	/* Find the attribute list attribute if present. */
1864 	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1865 	if (err) {
1866 		if (unlikely(err != -ENOENT)) {
1867 			ntfs_error(sb, "Failed to lookup attribute list "
1868 					"attribute. You should run chkdsk.");
1869 			goto put_err_out;
1870 		}
1871 	} else /* if (!err) */ {
1872 		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1873 		u8 *al_end;
1874 		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1875 				"You should run chkdsk.";
1876 
1877 		ntfs_debug("Attribute list attribute found in $MFT.");
1878 		NInoSetAttrList(ni);
1879 		a = ctx->attr;
1880 		if (a->flags & ATTR_COMPRESSION_MASK) {
1881 			ntfs_error(sb, "Attribute list attribute is "
1882 					"compressed.%s", es);
1883 			goto put_err_out;
1884 		}
1885 		if (a->flags & ATTR_IS_ENCRYPTED ||
1886 				a->flags & ATTR_IS_SPARSE) {
1887 			if (a->non_resident) {
1888 				ntfs_error(sb, "Non-resident attribute list "
1889 						"attribute is encrypted/"
1890 						"sparse.%s", es);
1891 				goto put_err_out;
1892 			}
1893 			ntfs_warning(sb, "Resident attribute list attribute "
1894 					"in $MFT system file is marked "
1895 					"encrypted/sparse which is not true.  "
1896 					"However, Windows allows this and "
1897 					"chkdsk does not detect or correct it "
1898 					"so we will just ignore the invalid "
1899 					"flags and pretend they are not set.");
1900 		}
1901 		/* Now allocate memory for the attribute list. */
1902 		ni->attr_list_size = (u32)ntfs_attr_size(a);
1903 		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1904 		if (!ni->attr_list) {
1905 			ntfs_error(sb, "Not enough memory to allocate buffer "
1906 					"for attribute list.");
1907 			goto put_err_out;
1908 		}
1909 		if (a->non_resident) {
1910 			NInoSetAttrListNonResident(ni);
1911 			if (a->data.non_resident.lowest_vcn) {
1912 				ntfs_error(sb, "Attribute list has non zero "
1913 						"lowest_vcn. $MFT is corrupt. "
1914 						"You should run chkdsk.");
1915 				goto put_err_out;
1916 			}
1917 			/* Setup the runlist. */
1918 			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1919 					a, NULL);
1920 			if (IS_ERR(ni->attr_list_rl.rl)) {
1921 				err = PTR_ERR(ni->attr_list_rl.rl);
1922 				ni->attr_list_rl.rl = NULL;
1923 				ntfs_error(sb, "Mapping pairs decompression "
1924 						"failed with error code %i.",
1925 						-err);
1926 				goto put_err_out;
1927 			}
1928 			/* Now load the attribute list. */
1929 			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1930 					ni->attr_list, ni->attr_list_size,
1931 					sle64_to_cpu(a->data.
1932 					non_resident.initialized_size)))) {
1933 				ntfs_error(sb, "Failed to load attribute list "
1934 						"attribute with error code %i.",
1935 						-err);
1936 				goto put_err_out;
1937 			}
1938 		} else /* if (!ctx.attr->non_resident) */ {
1939 			if ((u8*)a + le16_to_cpu(
1940 					a->data.resident.value_offset) +
1941 					le32_to_cpu(
1942 					a->data.resident.value_length) >
1943 					(u8*)ctx->mrec + vol->mft_record_size) {
1944 				ntfs_error(sb, "Corrupt attribute list "
1945 						"attribute.");
1946 				goto put_err_out;
1947 			}
1948 			/* Now copy the attribute list. */
1949 			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1950 					a->data.resident.value_offset),
1951 					le32_to_cpu(
1952 					a->data.resident.value_length));
1953 		}
1954 		/* The attribute list is now setup in memory. */
1955 		/*
1956 		 * FIXME: I don't know if this case is actually possible.
1957 		 * According to logic it is not possible but I have seen too
1958 		 * many weird things in MS software to rely on logic... Thus we
1959 		 * perform a manual search and make sure the first $MFT/$DATA
1960 		 * extent is in the base inode. If it is not we abort with an
1961 		 * error and if we ever see a report of this error we will need
1962 		 * to do some magic in order to have the necessary mft record
1963 		 * loaded and in the right place in the page cache. But
1964 		 * hopefully logic will prevail and this never happens...
1965 		 */
1966 		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1967 		al_end = (u8*)al_entry + ni->attr_list_size;
1968 		for (;; al_entry = next_al_entry) {
1969 			/* Out of bounds check. */
1970 			if ((u8*)al_entry < ni->attr_list ||
1971 					(u8*)al_entry > al_end)
1972 				goto em_put_err_out;
1973 			/* Catch the end of the attribute list. */
1974 			if ((u8*)al_entry == al_end)
1975 				goto em_put_err_out;
1976 			if (!al_entry->length)
1977 				goto em_put_err_out;
1978 			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1979 					le16_to_cpu(al_entry->length) > al_end)
1980 				goto em_put_err_out;
1981 			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1982 					le16_to_cpu(al_entry->length));
1983 			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1984 				goto em_put_err_out;
1985 			if (AT_DATA != al_entry->type)
1986 				continue;
1987 			/* We want an unnamed attribute. */
1988 			if (al_entry->name_length)
1989 				goto em_put_err_out;
1990 			/* Want the first entry, i.e. lowest_vcn == 0. */
1991 			if (al_entry->lowest_vcn)
1992 				goto em_put_err_out;
1993 			/* First entry has to be in the base mft record. */
1994 			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1995 				/* MFT references do not match, logic fails. */
1996 				ntfs_error(sb, "BUG: The first $DATA extent "
1997 						"of $MFT is not in the base "
1998 						"mft record. Please report "
1999 						"you saw this message to "
2000 						"linux-ntfs-dev@lists."
2001 						"sourceforge.net");
2002 				goto put_err_out;
2003 			} else {
2004 				/* Sequence numbers must match. */
2005 				if (MSEQNO_LE(al_entry->mft_reference) !=
2006 						ni->seq_no)
2007 					goto em_put_err_out;
2008 				/* Got it. All is ok. We can stop now. */
2009 				break;
2010 			}
2011 		}
2012 	}
2013 
2014 	ntfs_attr_reinit_search_ctx(ctx);
2015 
2016 	/* Now load all attribute extents. */
2017 	a = NULL;
2018 	next_vcn = last_vcn = highest_vcn = 0;
2019 	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2020 			ctx))) {
2021 		runlist_element *nrl;
2022 
2023 		/* Cache the current attribute. */
2024 		a = ctx->attr;
2025 		/* $MFT must be non-resident. */
2026 		if (!a->non_resident) {
2027 			ntfs_error(sb, "$MFT must be non-resident but a "
2028 					"resident extent was found. $MFT is "
2029 					"corrupt. Run chkdsk.");
2030 			goto put_err_out;
2031 		}
2032 		/* $MFT must be uncompressed and unencrypted. */
2033 		if (a->flags & ATTR_COMPRESSION_MASK ||
2034 				a->flags & ATTR_IS_ENCRYPTED ||
2035 				a->flags & ATTR_IS_SPARSE) {
2036 			ntfs_error(sb, "$MFT must be uncompressed, "
2037 					"non-sparse, and unencrypted but a "
2038 					"compressed/sparse/encrypted extent "
2039 					"was found. $MFT is corrupt. Run "
2040 					"chkdsk.");
2041 			goto put_err_out;
2042 		}
2043 		/*
2044 		 * Decompress the mapping pairs array of this extent and merge
2045 		 * the result into the existing runlist. No need for locking
2046 		 * as we have exclusive access to the inode at this time and we
2047 		 * are a mount in progress task, too.
2048 		 */
2049 		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2050 		if (IS_ERR(nrl)) {
2051 			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2052 					"failed with error code %ld.  $MFT is "
2053 					"corrupt.", PTR_ERR(nrl));
2054 			goto put_err_out;
2055 		}
2056 		ni->runlist.rl = nrl;
2057 
2058 		/* Are we in the first extent? */
2059 		if (!next_vcn) {
2060 			if (a->data.non_resident.lowest_vcn) {
2061 				ntfs_error(sb, "First extent of $DATA "
2062 						"attribute has non zero "
2063 						"lowest_vcn. $MFT is corrupt. "
2064 						"You should run chkdsk.");
2065 				goto put_err_out;
2066 			}
2067 			/* Get the last vcn in the $DATA attribute. */
2068 			last_vcn = sle64_to_cpu(
2069 					a->data.non_resident.allocated_size)
2070 					>> vol->cluster_size_bits;
2071 			/* Fill in the inode size. */
2072 			vi->i_size = sle64_to_cpu(
2073 					a->data.non_resident.data_size);
2074 			ni->initialized_size = sle64_to_cpu(
2075 					a->data.non_resident.initialized_size);
2076 			ni->allocated_size = sle64_to_cpu(
2077 					a->data.non_resident.allocated_size);
2078 			/*
2079 			 * Verify the number of mft records does not exceed
2080 			 * 2^32 - 1.
2081 			 */
2082 			if ((vi->i_size >> vol->mft_record_size_bits) >=
2083 					(1ULL << 32)) {
2084 				ntfs_error(sb, "$MFT is too big! Aborting.");
2085 				goto put_err_out;
2086 			}
2087 			/*
2088 			 * We have got the first extent of the runlist for
2089 			 * $MFT which means it is now relatively safe to call
2090 			 * the normal ntfs_read_inode() function.
2091 			 * Complete reading the inode, this will actually
2092 			 * re-read the mft record for $MFT, this time entering
2093 			 * it into the page cache with which we complete the
2094 			 * kick start of the volume. It should be safe to do
2095 			 * this now as the first extent of $MFT/$DATA is
2096 			 * already known and we would hope that we don't need
2097 			 * further extents in order to find the other
2098 			 * attributes belonging to $MFT. Only time will tell if
2099 			 * this is really the case. If not we will have to play
2100 			 * magic at this point, possibly duplicating a lot of
2101 			 * ntfs_read_inode() at this point. We will need to
2102 			 * ensure we do enough of its work to be able to call
2103 			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2104 			 * hope this never happens...
2105 			 */
2106 			ntfs_read_locked_inode(vi);
2107 			if (is_bad_inode(vi)) {
2108 				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2109 						"failed. BUG or corrupt $MFT. "
2110 						"Run chkdsk and if no errors "
2111 						"are found, please report you "
2112 						"saw this message to "
2113 						"linux-ntfs-dev@lists."
2114 						"sourceforge.net");
2115 				ntfs_attr_put_search_ctx(ctx);
2116 				/* Revert to the safe super operations. */
2117 				ntfs_free(m);
2118 				return -1;
2119 			}
2120 			/*
2121 			 * Re-initialize some specifics about $MFT's inode as
2122 			 * ntfs_read_inode() will have set up the default ones.
2123 			 */
2124 			/* Set uid and gid to root. */
2125 			vi->i_uid = GLOBAL_ROOT_UID;
2126 			vi->i_gid = GLOBAL_ROOT_GID;
2127 			/* Regular file. No access for anyone. */
2128 			vi->i_mode = S_IFREG;
2129 			/* No VFS initiated operations allowed for $MFT. */
2130 			vi->i_op = &ntfs_empty_inode_ops;
2131 			vi->i_fop = &ntfs_empty_file_ops;
2132 		}
2133 
2134 		/* Get the lowest vcn for the next extent. */
2135 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2136 		next_vcn = highest_vcn + 1;
2137 
2138 		/* Only one extent or error, which we catch below. */
2139 		if (next_vcn <= 0)
2140 			break;
2141 
2142 		/* Avoid endless loops due to corruption. */
2143 		if (next_vcn < sle64_to_cpu(
2144 				a->data.non_resident.lowest_vcn)) {
2145 			ntfs_error(sb, "$MFT has corrupt attribute list "
2146 					"attribute. Run chkdsk.");
2147 			goto put_err_out;
2148 		}
2149 	}
2150 	if (err != -ENOENT) {
2151 		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2152 				"$MFT is corrupt. Run chkdsk.");
2153 		goto put_err_out;
2154 	}
2155 	if (!a) {
2156 		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2157 				"corrupt. Run chkdsk.");
2158 		goto put_err_out;
2159 	}
2160 	if (highest_vcn && highest_vcn != last_vcn - 1) {
2161 		ntfs_error(sb, "Failed to load the complete runlist for "
2162 				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2163 				"Run chkdsk.");
2164 		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2165 				(unsigned long long)highest_vcn,
2166 				(unsigned long long)last_vcn - 1);
2167 		goto put_err_out;
2168 	}
2169 	ntfs_attr_put_search_ctx(ctx);
2170 	ntfs_debug("Done.");
2171 	ntfs_free(m);
2172 
2173 	/*
2174 	 * Split the locking rules of the MFT inode from the
2175 	 * locking rules of other inodes:
2176 	 */
2177 	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2178 	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2179 
2180 	return 0;
2181 
2182 em_put_err_out:
2183 	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2184 			"attribute list. $MFT is corrupt. Run chkdsk.");
2185 put_err_out:
2186 	ntfs_attr_put_search_ctx(ctx);
2187 err_out:
2188 	ntfs_error(sb, "Failed. Marking inode as bad.");
2189 	make_bad_inode(vi);
2190 	ntfs_free(m);
2191 	return -1;
2192 }
2193 
__ntfs_clear_inode(ntfs_inode * ni)2194 static void __ntfs_clear_inode(ntfs_inode *ni)
2195 {
2196 	/* Free all alocated memory. */
2197 	down_write(&ni->runlist.lock);
2198 	if (ni->runlist.rl) {
2199 		ntfs_free(ni->runlist.rl);
2200 		ni->runlist.rl = NULL;
2201 	}
2202 	up_write(&ni->runlist.lock);
2203 
2204 	if (ni->attr_list) {
2205 		ntfs_free(ni->attr_list);
2206 		ni->attr_list = NULL;
2207 	}
2208 
2209 	down_write(&ni->attr_list_rl.lock);
2210 	if (ni->attr_list_rl.rl) {
2211 		ntfs_free(ni->attr_list_rl.rl);
2212 		ni->attr_list_rl.rl = NULL;
2213 	}
2214 	up_write(&ni->attr_list_rl.lock);
2215 
2216 	if (ni->name_len && ni->name != I30) {
2217 		/* Catch bugs... */
2218 		BUG_ON(!ni->name);
2219 		kfree(ni->name);
2220 	}
2221 }
2222 
ntfs_clear_extent_inode(ntfs_inode * ni)2223 void ntfs_clear_extent_inode(ntfs_inode *ni)
2224 {
2225 	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2226 
2227 	BUG_ON(NInoAttr(ni));
2228 	BUG_ON(ni->nr_extents != -1);
2229 
2230 #ifdef NTFS_RW
2231 	if (NInoDirty(ni)) {
2232 		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2233 			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2234 					"Losing data!  This is a BUG!!!");
2235 		// FIXME:  Do something!!!
2236 	}
2237 #endif /* NTFS_RW */
2238 
2239 	__ntfs_clear_inode(ni);
2240 
2241 	/* Bye, bye... */
2242 	ntfs_destroy_extent_inode(ni);
2243 }
2244 
2245 /**
2246  * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2247  * @vi:		vfs inode pending annihilation
2248  *
2249  * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2250  * is called, which deallocates all memory belonging to the NTFS specific part
2251  * of the inode and returns.
2252  *
2253  * If the MFT record is dirty, we commit it before doing anything else.
2254  */
ntfs_evict_big_inode(struct inode * vi)2255 void ntfs_evict_big_inode(struct inode *vi)
2256 {
2257 	ntfs_inode *ni = NTFS_I(vi);
2258 
2259 	truncate_inode_pages_final(&vi->i_data);
2260 	clear_inode(vi);
2261 
2262 #ifdef NTFS_RW
2263 	if (NInoDirty(ni)) {
2264 		bool was_bad = (is_bad_inode(vi));
2265 
2266 		/* Committing the inode also commits all extent inodes. */
2267 		ntfs_commit_inode(vi);
2268 
2269 		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2270 			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2271 					"0x%lx.  Losing data!", vi->i_ino);
2272 			// FIXME:  Do something!!!
2273 		}
2274 	}
2275 #endif /* NTFS_RW */
2276 
2277 	/* No need to lock at this stage as no one else has a reference. */
2278 	if (ni->nr_extents > 0) {
2279 		int i;
2280 
2281 		for (i = 0; i < ni->nr_extents; i++)
2282 			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2283 		kfree(ni->ext.extent_ntfs_inos);
2284 	}
2285 
2286 	__ntfs_clear_inode(ni);
2287 
2288 	if (NInoAttr(ni)) {
2289 		/* Release the base inode if we are holding it. */
2290 		if (ni->nr_extents == -1) {
2291 			iput(VFS_I(ni->ext.base_ntfs_ino));
2292 			ni->nr_extents = 0;
2293 			ni->ext.base_ntfs_ino = NULL;
2294 		}
2295 	}
2296 	return;
2297 }
2298 
2299 /**
2300  * ntfs_show_options - show mount options in /proc/mounts
2301  * @sf:		seq_file in which to write our mount options
2302  * @root:	root of the mounted tree whose mount options to display
2303  *
2304  * Called by the VFS once for each mounted ntfs volume when someone reads
2305  * /proc/mounts in order to display the NTFS specific mount options of each
2306  * mount. The mount options of fs specified by @root are written to the seq file
2307  * @sf and success is returned.
2308  */
ntfs_show_options(struct seq_file * sf,struct dentry * root)2309 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2310 {
2311 	ntfs_volume *vol = NTFS_SB(root->d_sb);
2312 	int i;
2313 
2314 	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2315 	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2316 	if (vol->fmask == vol->dmask)
2317 		seq_printf(sf, ",umask=0%o", vol->fmask);
2318 	else {
2319 		seq_printf(sf, ",fmask=0%o", vol->fmask);
2320 		seq_printf(sf, ",dmask=0%o", vol->dmask);
2321 	}
2322 	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2323 	if (NVolCaseSensitive(vol))
2324 		seq_printf(sf, ",case_sensitive");
2325 	if (NVolShowSystemFiles(vol))
2326 		seq_printf(sf, ",show_sys_files");
2327 	if (!NVolSparseEnabled(vol))
2328 		seq_printf(sf, ",disable_sparse");
2329 	for (i = 0; on_errors_arr[i].val; i++) {
2330 		if (on_errors_arr[i].val & vol->on_errors)
2331 			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2332 	}
2333 	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2334 	return 0;
2335 }
2336 
2337 #ifdef NTFS_RW
2338 
2339 static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2340 		"chkdsk.";
2341 
2342 /**
2343  * ntfs_truncate - called when the i_size of an ntfs inode is changed
2344  * @vi:		inode for which the i_size was changed
2345  *
2346  * We only support i_size changes for normal files at present, i.e. not
2347  * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2348  * below.
2349  *
2350  * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2351  * that the change is allowed.
2352  *
2353  * This implies for us that @vi is a file inode rather than a directory, index,
2354  * or attribute inode as well as that @vi is a base inode.
2355  *
2356  * Returns 0 on success or -errno on error.
2357  *
2358  * Called with ->i_mutex held.
2359  */
ntfs_truncate(struct inode * vi)2360 int ntfs_truncate(struct inode *vi)
2361 {
2362 	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2363 	VCN highest_vcn;
2364 	unsigned long flags;
2365 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2366 	ntfs_volume *vol = ni->vol;
2367 	ntfs_attr_search_ctx *ctx;
2368 	MFT_RECORD *m;
2369 	ATTR_RECORD *a;
2370 	const char *te = "  Leaving file length out of sync with i_size.";
2371 	int err, mp_size, size_change, alloc_change;
2372 	u32 attr_len;
2373 
2374 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2375 	BUG_ON(NInoAttr(ni));
2376 	BUG_ON(S_ISDIR(vi->i_mode));
2377 	BUG_ON(NInoMstProtected(ni));
2378 	BUG_ON(ni->nr_extents < 0);
2379 retry_truncate:
2380 	/*
2381 	 * Lock the runlist for writing and map the mft record to ensure it is
2382 	 * safe to mess with the attribute runlist and sizes.
2383 	 */
2384 	down_write(&ni->runlist.lock);
2385 	if (!NInoAttr(ni))
2386 		base_ni = ni;
2387 	else
2388 		base_ni = ni->ext.base_ntfs_ino;
2389 	m = map_mft_record(base_ni);
2390 	if (IS_ERR(m)) {
2391 		err = PTR_ERR(m);
2392 		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2393 				"(error code %d).%s", vi->i_ino, err, te);
2394 		ctx = NULL;
2395 		m = NULL;
2396 		goto old_bad_out;
2397 	}
2398 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2399 	if (unlikely(!ctx)) {
2400 		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2401 				"inode 0x%lx (not enough memory).%s",
2402 				vi->i_ino, te);
2403 		err = -ENOMEM;
2404 		goto old_bad_out;
2405 	}
2406 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2407 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2408 	if (unlikely(err)) {
2409 		if (err == -ENOENT) {
2410 			ntfs_error(vi->i_sb, "Open attribute is missing from "
2411 					"mft record.  Inode 0x%lx is corrupt.  "
2412 					"Run chkdsk.%s", vi->i_ino, te);
2413 			err = -EIO;
2414 		} else
2415 			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2416 					"inode 0x%lx (error code %d).%s",
2417 					vi->i_ino, err, te);
2418 		goto old_bad_out;
2419 	}
2420 	m = ctx->mrec;
2421 	a = ctx->attr;
2422 	/*
2423 	 * The i_size of the vfs inode is the new size for the attribute value.
2424 	 */
2425 	new_size = i_size_read(vi);
2426 	/* The current size of the attribute value is the old size. */
2427 	old_size = ntfs_attr_size(a);
2428 	/* Calculate the new allocated size. */
2429 	if (NInoNonResident(ni))
2430 		new_alloc_size = (new_size + vol->cluster_size - 1) &
2431 				~(s64)vol->cluster_size_mask;
2432 	else
2433 		new_alloc_size = (new_size + 7) & ~7;
2434 	/* The current allocated size is the old allocated size. */
2435 	read_lock_irqsave(&ni->size_lock, flags);
2436 	old_alloc_size = ni->allocated_size;
2437 	read_unlock_irqrestore(&ni->size_lock, flags);
2438 	/*
2439 	 * The change in the file size.  This will be 0 if no change, >0 if the
2440 	 * size is growing, and <0 if the size is shrinking.
2441 	 */
2442 	size_change = -1;
2443 	if (new_size - old_size >= 0) {
2444 		size_change = 1;
2445 		if (new_size == old_size)
2446 			size_change = 0;
2447 	}
2448 	/* As above for the allocated size. */
2449 	alloc_change = -1;
2450 	if (new_alloc_size - old_alloc_size >= 0) {
2451 		alloc_change = 1;
2452 		if (new_alloc_size == old_alloc_size)
2453 			alloc_change = 0;
2454 	}
2455 	/*
2456 	 * If neither the size nor the allocation are being changed there is
2457 	 * nothing to do.
2458 	 */
2459 	if (!size_change && !alloc_change)
2460 		goto unm_done;
2461 	/* If the size is changing, check if new size is allowed in $AttrDef. */
2462 	if (size_change) {
2463 		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2464 		if (unlikely(err)) {
2465 			if (err == -ERANGE) {
2466 				ntfs_error(vol->sb, "Truncate would cause the "
2467 						"inode 0x%lx to %simum size "
2468 						"for its attribute type "
2469 						"(0x%x).  Aborting truncate.",
2470 						vi->i_ino,
2471 						new_size > old_size ? "exceed "
2472 						"the max" : "go under the min",
2473 						le32_to_cpu(ni->type));
2474 				err = -EFBIG;
2475 			} else {
2476 				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2477 						"attribute type 0x%x.  "
2478 						"Aborting truncate.",
2479 						vi->i_ino,
2480 						le32_to_cpu(ni->type));
2481 				err = -EIO;
2482 			}
2483 			/* Reset the vfs inode size to the old size. */
2484 			i_size_write(vi, old_size);
2485 			goto err_out;
2486 		}
2487 	}
2488 	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2489 		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2490 				"supported yet for %s files, ignoring.",
2491 				NInoCompressed(ni) ? "compressed" :
2492 				"encrypted");
2493 		err = -EOPNOTSUPP;
2494 		goto bad_out;
2495 	}
2496 	if (a->non_resident)
2497 		goto do_non_resident_truncate;
2498 	BUG_ON(NInoNonResident(ni));
2499 	/* Resize the attribute record to best fit the new attribute size. */
2500 	if (new_size < vol->mft_record_size &&
2501 			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2502 		/* The resize succeeded! */
2503 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2504 		mark_mft_record_dirty(ctx->ntfs_ino);
2505 		write_lock_irqsave(&ni->size_lock, flags);
2506 		/* Update the sizes in the ntfs inode and all is done. */
2507 		ni->allocated_size = le32_to_cpu(a->length) -
2508 				le16_to_cpu(a->data.resident.value_offset);
2509 		/*
2510 		 * Note ntfs_resident_attr_value_resize() has already done any
2511 		 * necessary data clearing in the attribute record.  When the
2512 		 * file is being shrunk vmtruncate() will already have cleared
2513 		 * the top part of the last partial page, i.e. since this is
2514 		 * the resident case this is the page with index 0.  However,
2515 		 * when the file is being expanded, the page cache page data
2516 		 * between the old data_size, i.e. old_size, and the new_size
2517 		 * has not been zeroed.  Fortunately, we do not need to zero it
2518 		 * either since on one hand it will either already be zero due
2519 		 * to both readpage and writepage clearing partial page data
2520 		 * beyond i_size in which case there is nothing to do or in the
2521 		 * case of the file being mmap()ped at the same time, POSIX
2522 		 * specifies that the behaviour is unspecified thus we do not
2523 		 * have to do anything.  This means that in our implementation
2524 		 * in the rare case that the file is mmap()ped and a write
2525 		 * occurred into the mmap()ped region just beyond the file size
2526 		 * and writepage has not yet been called to write out the page
2527 		 * (which would clear the area beyond the file size) and we now
2528 		 * extend the file size to incorporate this dirty region
2529 		 * outside the file size, a write of the page would result in
2530 		 * this data being written to disk instead of being cleared.
2531 		 * Given both POSIX and the Linux mmap(2) man page specify that
2532 		 * this corner case is undefined, we choose to leave it like
2533 		 * that as this is much simpler for us as we cannot lock the
2534 		 * relevant page now since we are holding too many ntfs locks
2535 		 * which would result in a lock reversal deadlock.
2536 		 */
2537 		ni->initialized_size = new_size;
2538 		write_unlock_irqrestore(&ni->size_lock, flags);
2539 		goto unm_done;
2540 	}
2541 	/* If the above resize failed, this must be an attribute extension. */
2542 	BUG_ON(size_change < 0);
2543 	/*
2544 	 * We have to drop all the locks so we can call
2545 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2546 	 * locking the first page cache page and only if that fails dropping
2547 	 * the locks, locking the page, and redoing all the locking and
2548 	 * lookups.  While this would be a huge optimisation, it is not worth
2549 	 * it as this is definitely a slow code path as it only ever can happen
2550 	 * once for any given file.
2551 	 */
2552 	ntfs_attr_put_search_ctx(ctx);
2553 	unmap_mft_record(base_ni);
2554 	up_write(&ni->runlist.lock);
2555 	/*
2556 	 * Not enough space in the mft record, try to make the attribute
2557 	 * non-resident and if successful restart the truncation process.
2558 	 */
2559 	err = ntfs_attr_make_non_resident(ni, old_size);
2560 	if (likely(!err))
2561 		goto retry_truncate;
2562 	/*
2563 	 * Could not make non-resident.  If this is due to this not being
2564 	 * permitted for this attribute type or there not being enough space,
2565 	 * try to make other attributes non-resident.  Otherwise fail.
2566 	 */
2567 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2568 		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2569 				"type 0x%x, because the conversion from "
2570 				"resident to non-resident attribute failed "
2571 				"with error code %i.", vi->i_ino,
2572 				(unsigned)le32_to_cpu(ni->type), err);
2573 		if (err != -ENOMEM)
2574 			err = -EIO;
2575 		goto conv_err_out;
2576 	}
2577 	/* TODO: Not implemented from here, abort. */
2578 	if (err == -ENOSPC)
2579 		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2580 				"disk for the non-resident attribute value.  "
2581 				"This case is not implemented yet.");
2582 	else /* if (err == -EPERM) */
2583 		ntfs_error(vol->sb, "This attribute type may not be "
2584 				"non-resident.  This case is not implemented "
2585 				"yet.");
2586 	err = -EOPNOTSUPP;
2587 	goto conv_err_out;
2588 #if 0
2589 	// TODO: Attempt to make other attributes non-resident.
2590 	if (!err)
2591 		goto do_resident_extend;
2592 	/*
2593 	 * Both the attribute list attribute and the standard information
2594 	 * attribute must remain in the base inode.  Thus, if this is one of
2595 	 * these attributes, we have to try to move other attributes out into
2596 	 * extent mft records instead.
2597 	 */
2598 	if (ni->type == AT_ATTRIBUTE_LIST ||
2599 			ni->type == AT_STANDARD_INFORMATION) {
2600 		// TODO: Attempt to move other attributes into extent mft
2601 		// records.
2602 		err = -EOPNOTSUPP;
2603 		if (!err)
2604 			goto do_resident_extend;
2605 		goto err_out;
2606 	}
2607 	// TODO: Attempt to move this attribute to an extent mft record, but
2608 	// only if it is not already the only attribute in an mft record in
2609 	// which case there would be nothing to gain.
2610 	err = -EOPNOTSUPP;
2611 	if (!err)
2612 		goto do_resident_extend;
2613 	/* There is nothing we can do to make enough space. )-: */
2614 	goto err_out;
2615 #endif
2616 do_non_resident_truncate:
2617 	BUG_ON(!NInoNonResident(ni));
2618 	if (alloc_change < 0) {
2619 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2620 		if (highest_vcn > 0 &&
2621 				old_alloc_size >> vol->cluster_size_bits >
2622 				highest_vcn + 1) {
2623 			/*
2624 			 * This attribute has multiple extents.  Not yet
2625 			 * supported.
2626 			 */
2627 			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2628 					"attribute type 0x%x, because the "
2629 					"attribute is highly fragmented (it "
2630 					"consists of multiple extents) and "
2631 					"this case is not implemented yet.",
2632 					vi->i_ino,
2633 					(unsigned)le32_to_cpu(ni->type));
2634 			err = -EOPNOTSUPP;
2635 			goto bad_out;
2636 		}
2637 	}
2638 	/*
2639 	 * If the size is shrinking, need to reduce the initialized_size and
2640 	 * the data_size before reducing the allocation.
2641 	 */
2642 	if (size_change < 0) {
2643 		/*
2644 		 * Make the valid size smaller (i_size is already up-to-date).
2645 		 */
2646 		write_lock_irqsave(&ni->size_lock, flags);
2647 		if (new_size < ni->initialized_size) {
2648 			ni->initialized_size = new_size;
2649 			a->data.non_resident.initialized_size =
2650 					cpu_to_sle64(new_size);
2651 		}
2652 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2653 		write_unlock_irqrestore(&ni->size_lock, flags);
2654 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2655 		mark_mft_record_dirty(ctx->ntfs_ino);
2656 		/* If the allocated size is not changing, we are done. */
2657 		if (!alloc_change)
2658 			goto unm_done;
2659 		/*
2660 		 * If the size is shrinking it makes no sense for the
2661 		 * allocation to be growing.
2662 		 */
2663 		BUG_ON(alloc_change > 0);
2664 	} else /* if (size_change >= 0) */ {
2665 		/*
2666 		 * The file size is growing or staying the same but the
2667 		 * allocation can be shrinking, growing or staying the same.
2668 		 */
2669 		if (alloc_change > 0) {
2670 			/*
2671 			 * We need to extend the allocation and possibly update
2672 			 * the data size.  If we are updating the data size,
2673 			 * since we are not touching the initialized_size we do
2674 			 * not need to worry about the actual data on disk.
2675 			 * And as far as the page cache is concerned, there
2676 			 * will be no pages beyond the old data size and any
2677 			 * partial region in the last page between the old and
2678 			 * new data size (or the end of the page if the new
2679 			 * data size is outside the page) does not need to be
2680 			 * modified as explained above for the resident
2681 			 * attribute truncate case.  To do this, we simply drop
2682 			 * the locks we hold and leave all the work to our
2683 			 * friendly helper ntfs_attr_extend_allocation().
2684 			 */
2685 			ntfs_attr_put_search_ctx(ctx);
2686 			unmap_mft_record(base_ni);
2687 			up_write(&ni->runlist.lock);
2688 			err = ntfs_attr_extend_allocation(ni, new_size,
2689 					size_change > 0 ? new_size : -1, -1);
2690 			/*
2691 			 * ntfs_attr_extend_allocation() will have done error
2692 			 * output already.
2693 			 */
2694 			goto done;
2695 		}
2696 		if (!alloc_change)
2697 			goto alloc_done;
2698 	}
2699 	/* alloc_change < 0 */
2700 	/* Free the clusters. */
2701 	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2702 			vol->cluster_size_bits, -1, ctx);
2703 	m = ctx->mrec;
2704 	a = ctx->attr;
2705 	if (unlikely(nr_freed < 0)) {
2706 		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2707 				"%lli).  Unmount and run chkdsk to recover "
2708 				"the lost cluster(s).", (long long)nr_freed);
2709 		NVolSetErrors(vol);
2710 		nr_freed = 0;
2711 	}
2712 	/* Truncate the runlist. */
2713 	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2714 			new_alloc_size >> vol->cluster_size_bits);
2715 	/*
2716 	 * If the runlist truncation failed and/or the search context is no
2717 	 * longer valid, we cannot resize the attribute record or build the
2718 	 * mapping pairs array thus we mark the inode bad so that no access to
2719 	 * the freed clusters can happen.
2720 	 */
2721 	if (unlikely(err || IS_ERR(m))) {
2722 		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2723 				IS_ERR(m) ?
2724 				"restore attribute search context" :
2725 				"truncate attribute runlist",
2726 				IS_ERR(m) ? PTR_ERR(m) : err, es);
2727 		err = -EIO;
2728 		goto bad_out;
2729 	}
2730 	/* Get the size for the shrunk mapping pairs array for the runlist. */
2731 	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2732 	if (unlikely(mp_size <= 0)) {
2733 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2734 				"attribute type 0x%x, because determining the "
2735 				"size for the mapping pairs failed with error "
2736 				"code %i.%s", vi->i_ino,
2737 				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2738 		err = -EIO;
2739 		goto bad_out;
2740 	}
2741 	/*
2742 	 * Shrink the attribute record for the new mapping pairs array.  Note,
2743 	 * this cannot fail since we are making the attribute smaller thus by
2744 	 * definition there is enough space to do so.
2745 	 */
2746 	attr_len = le32_to_cpu(a->length);
2747 	err = ntfs_attr_record_resize(m, a, mp_size +
2748 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2749 	BUG_ON(err);
2750 	/*
2751 	 * Generate the mapping pairs array directly into the attribute record.
2752 	 */
2753 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2754 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2755 			mp_size, ni->runlist.rl, 0, -1, NULL);
2756 	if (unlikely(err)) {
2757 		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2758 				"attribute type 0x%x, because building the "
2759 				"mapping pairs failed with error code %i.%s",
2760 				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2761 				err, es);
2762 		err = -EIO;
2763 		goto bad_out;
2764 	}
2765 	/* Update the allocated/compressed size as well as the highest vcn. */
2766 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2767 			vol->cluster_size_bits) - 1);
2768 	write_lock_irqsave(&ni->size_lock, flags);
2769 	ni->allocated_size = new_alloc_size;
2770 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2771 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2772 		if (nr_freed) {
2773 			ni->itype.compressed.size -= nr_freed <<
2774 					vol->cluster_size_bits;
2775 			BUG_ON(ni->itype.compressed.size < 0);
2776 			a->data.non_resident.compressed_size = cpu_to_sle64(
2777 					ni->itype.compressed.size);
2778 			vi->i_blocks = ni->itype.compressed.size >> 9;
2779 		}
2780 	} else
2781 		vi->i_blocks = new_alloc_size >> 9;
2782 	write_unlock_irqrestore(&ni->size_lock, flags);
2783 	/*
2784 	 * We have shrunk the allocation.  If this is a shrinking truncate we
2785 	 * have already dealt with the initialized_size and the data_size above
2786 	 * and we are done.  If the truncate is only changing the allocation
2787 	 * and not the data_size, we are also done.  If this is an extending
2788 	 * truncate, need to extend the data_size now which is ensured by the
2789 	 * fact that @size_change is positive.
2790 	 */
2791 alloc_done:
2792 	/*
2793 	 * If the size is growing, need to update it now.  If it is shrinking,
2794 	 * we have already updated it above (before the allocation change).
2795 	 */
2796 	if (size_change > 0)
2797 		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2798 	/* Ensure the modified mft record is written out. */
2799 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2800 	mark_mft_record_dirty(ctx->ntfs_ino);
2801 unm_done:
2802 	ntfs_attr_put_search_ctx(ctx);
2803 	unmap_mft_record(base_ni);
2804 	up_write(&ni->runlist.lock);
2805 done:
2806 	/* Update the mtime and ctime on the base inode. */
2807 	/* normally ->truncate shouldn't update ctime or mtime,
2808 	 * but ntfs did before so it got a copy & paste version
2809 	 * of file_update_time.  one day someone should fix this
2810 	 * for real.
2811 	 */
2812 	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2813 		struct timespec64 now = current_time(VFS_I(base_ni));
2814 		int sync_it = 0;
2815 
2816 		if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2817 		    !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2818 			sync_it = 1;
2819 		VFS_I(base_ni)->i_mtime = now;
2820 		VFS_I(base_ni)->i_ctime = now;
2821 
2822 		if (sync_it)
2823 			mark_inode_dirty_sync(VFS_I(base_ni));
2824 	}
2825 
2826 	if (likely(!err)) {
2827 		NInoClearTruncateFailed(ni);
2828 		ntfs_debug("Done.");
2829 	}
2830 	return err;
2831 old_bad_out:
2832 	old_size = -1;
2833 bad_out:
2834 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2835 		NVolSetErrors(vol);
2836 	if (err != -EOPNOTSUPP)
2837 		NInoSetTruncateFailed(ni);
2838 	else if (old_size >= 0)
2839 		i_size_write(vi, old_size);
2840 err_out:
2841 	if (ctx)
2842 		ntfs_attr_put_search_ctx(ctx);
2843 	if (m)
2844 		unmap_mft_record(base_ni);
2845 	up_write(&ni->runlist.lock);
2846 out:
2847 	ntfs_debug("Failed.  Returning error code %i.", err);
2848 	return err;
2849 conv_err_out:
2850 	if (err != -ENOMEM && err != -EOPNOTSUPP)
2851 		NVolSetErrors(vol);
2852 	if (err != -EOPNOTSUPP)
2853 		NInoSetTruncateFailed(ni);
2854 	else
2855 		i_size_write(vi, old_size);
2856 	goto out;
2857 }
2858 
2859 /**
2860  * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2861  * @vi:		inode for which the i_size was changed
2862  *
2863  * Wrapper for ntfs_truncate() that has no return value.
2864  *
2865  * See ntfs_truncate() description above for details.
2866  */
2867 #ifdef NTFS_RW
ntfs_truncate_vfs(struct inode * vi)2868 void ntfs_truncate_vfs(struct inode *vi) {
2869 	ntfs_truncate(vi);
2870 }
2871 #endif
2872 
2873 /**
2874  * ntfs_setattr - called from notify_change() when an attribute is being changed
2875  * @dentry:	dentry whose attributes to change
2876  * @attr:	structure describing the attributes and the changes
2877  *
2878  * We have to trap VFS attempts to truncate the file described by @dentry as
2879  * soon as possible, because we do not implement changes in i_size yet.  So we
2880  * abort all i_size changes here.
2881  *
2882  * We also abort all changes of user, group, and mode as we do not implement
2883  * the NTFS ACLs yet.
2884  *
2885  * Called with ->i_mutex held.
2886  */
ntfs_setattr(struct dentry * dentry,struct iattr * attr)2887 int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2888 {
2889 	struct inode *vi = d_inode(dentry);
2890 	int err;
2891 	unsigned int ia_valid = attr->ia_valid;
2892 
2893 	err = setattr_prepare(dentry, attr);
2894 	if (err)
2895 		goto out;
2896 	/* We do not support NTFS ACLs yet. */
2897 	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2898 		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2899 				"supported yet, ignoring.");
2900 		err = -EOPNOTSUPP;
2901 		goto out;
2902 	}
2903 	if (ia_valid & ATTR_SIZE) {
2904 		if (attr->ia_size != i_size_read(vi)) {
2905 			ntfs_inode *ni = NTFS_I(vi);
2906 			/*
2907 			 * FIXME: For now we do not support resizing of
2908 			 * compressed or encrypted files yet.
2909 			 */
2910 			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2911 				ntfs_warning(vi->i_sb, "Changes in inode size "
2912 						"are not supported yet for "
2913 						"%s files, ignoring.",
2914 						NInoCompressed(ni) ?
2915 						"compressed" : "encrypted");
2916 				err = -EOPNOTSUPP;
2917 			} else {
2918 				truncate_setsize(vi, attr->ia_size);
2919 				ntfs_truncate_vfs(vi);
2920 			}
2921 			if (err || ia_valid == ATTR_SIZE)
2922 				goto out;
2923 		} else {
2924 			/*
2925 			 * We skipped the truncate but must still update
2926 			 * timestamps.
2927 			 */
2928 			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2929 		}
2930 	}
2931 	if (ia_valid & ATTR_ATIME)
2932 		vi->i_atime = timespec64_trunc(attr->ia_atime,
2933 					       vi->i_sb->s_time_gran);
2934 	if (ia_valid & ATTR_MTIME)
2935 		vi->i_mtime = timespec64_trunc(attr->ia_mtime,
2936 					       vi->i_sb->s_time_gran);
2937 	if (ia_valid & ATTR_CTIME)
2938 		vi->i_ctime = timespec64_trunc(attr->ia_ctime,
2939 					       vi->i_sb->s_time_gran);
2940 	mark_inode_dirty(vi);
2941 out:
2942 	return err;
2943 }
2944 
2945 /**
2946  * ntfs_write_inode - write out a dirty inode
2947  * @vi:		inode to write out
2948  * @sync:	if true, write out synchronously
2949  *
2950  * Write out a dirty inode to disk including any extent inodes if present.
2951  *
2952  * If @sync is true, commit the inode to disk and wait for io completion.  This
2953  * is done using write_mft_record().
2954  *
2955  * If @sync is false, just schedule the write to happen but do not wait for i/o
2956  * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2957  * marking the page (and in this case mft record) dirty but we do not implement
2958  * this yet as write_mft_record() largely ignores the @sync parameter and
2959  * always performs synchronous writes.
2960  *
2961  * Return 0 on success and -errno on error.
2962  */
__ntfs_write_inode(struct inode * vi,int sync)2963 int __ntfs_write_inode(struct inode *vi, int sync)
2964 {
2965 	sle64 nt;
2966 	ntfs_inode *ni = NTFS_I(vi);
2967 	ntfs_attr_search_ctx *ctx;
2968 	MFT_RECORD *m;
2969 	STANDARD_INFORMATION *si;
2970 	int err = 0;
2971 	bool modified = false;
2972 
2973 	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2974 			vi->i_ino);
2975 	/*
2976 	 * Dirty attribute inodes are written via their real inodes so just
2977 	 * clean them here.  Access time updates are taken care off when the
2978 	 * real inode is written.
2979 	 */
2980 	if (NInoAttr(ni)) {
2981 		NInoClearDirty(ni);
2982 		ntfs_debug("Done.");
2983 		return 0;
2984 	}
2985 	/* Map, pin, and lock the mft record belonging to the inode. */
2986 	m = map_mft_record(ni);
2987 	if (IS_ERR(m)) {
2988 		err = PTR_ERR(m);
2989 		goto err_out;
2990 	}
2991 	/* Update the access times in the standard information attribute. */
2992 	ctx = ntfs_attr_get_search_ctx(ni, m);
2993 	if (unlikely(!ctx)) {
2994 		err = -ENOMEM;
2995 		goto unm_err_out;
2996 	}
2997 	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2998 			CASE_SENSITIVE, 0, NULL, 0, ctx);
2999 	if (unlikely(err)) {
3000 		ntfs_attr_put_search_ctx(ctx);
3001 		goto unm_err_out;
3002 	}
3003 	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3004 			le16_to_cpu(ctx->attr->data.resident.value_offset));
3005 	/* Update the access times if they have changed. */
3006 	nt = utc2ntfs(vi->i_mtime);
3007 	if (si->last_data_change_time != nt) {
3008 		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3009 				"new = 0x%llx", vi->i_ino, (long long)
3010 				sle64_to_cpu(si->last_data_change_time),
3011 				(long long)sle64_to_cpu(nt));
3012 		si->last_data_change_time = nt;
3013 		modified = true;
3014 	}
3015 	nt = utc2ntfs(vi->i_ctime);
3016 	if (si->last_mft_change_time != nt) {
3017 		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3018 				"new = 0x%llx", vi->i_ino, (long long)
3019 				sle64_to_cpu(si->last_mft_change_time),
3020 				(long long)sle64_to_cpu(nt));
3021 		si->last_mft_change_time = nt;
3022 		modified = true;
3023 	}
3024 	nt = utc2ntfs(vi->i_atime);
3025 	if (si->last_access_time != nt) {
3026 		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3027 				"new = 0x%llx", vi->i_ino,
3028 				(long long)sle64_to_cpu(si->last_access_time),
3029 				(long long)sle64_to_cpu(nt));
3030 		si->last_access_time = nt;
3031 		modified = true;
3032 	}
3033 	/*
3034 	 * If we just modified the standard information attribute we need to
3035 	 * mark the mft record it is in dirty.  We do this manually so that
3036 	 * mark_inode_dirty() is not called which would redirty the inode and
3037 	 * hence result in an infinite loop of trying to write the inode.
3038 	 * There is no need to mark the base inode nor the base mft record
3039 	 * dirty, since we are going to write this mft record below in any case
3040 	 * and the base mft record may actually not have been modified so it
3041 	 * might not need to be written out.
3042 	 * NOTE: It is not a problem when the inode for $MFT itself is being
3043 	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3044 	 * on the $MFT inode and hence ntfs_write_inode() will not be
3045 	 * re-invoked because of it which in turn is ok since the dirtied mft
3046 	 * record will be cleaned and written out to disk below, i.e. before
3047 	 * this function returns.
3048 	 */
3049 	if (modified) {
3050 		flush_dcache_mft_record_page(ctx->ntfs_ino);
3051 		if (!NInoTestSetDirty(ctx->ntfs_ino))
3052 			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3053 					ctx->ntfs_ino->page_ofs);
3054 	}
3055 	ntfs_attr_put_search_ctx(ctx);
3056 	/* Now the access times are updated, write the base mft record. */
3057 	if (NInoDirty(ni))
3058 		err = write_mft_record(ni, m, sync);
3059 	/* Write all attached extent mft records. */
3060 	mutex_lock(&ni->extent_lock);
3061 	if (ni->nr_extents > 0) {
3062 		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3063 		int i;
3064 
3065 		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3066 		for (i = 0; i < ni->nr_extents; i++) {
3067 			ntfs_inode *tni = extent_nis[i];
3068 
3069 			if (NInoDirty(tni)) {
3070 				MFT_RECORD *tm = map_mft_record(tni);
3071 				int ret;
3072 
3073 				if (IS_ERR(tm)) {
3074 					if (!err || err == -ENOMEM)
3075 						err = PTR_ERR(tm);
3076 					continue;
3077 				}
3078 				ret = write_mft_record(tni, tm, sync);
3079 				unmap_mft_record(tni);
3080 				if (unlikely(ret)) {
3081 					if (!err || err == -ENOMEM)
3082 						err = ret;
3083 				}
3084 			}
3085 		}
3086 	}
3087 	mutex_unlock(&ni->extent_lock);
3088 	unmap_mft_record(ni);
3089 	if (unlikely(err))
3090 		goto err_out;
3091 	ntfs_debug("Done.");
3092 	return 0;
3093 unm_err_out:
3094 	unmap_mft_record(ni);
3095 err_out:
3096 	if (err == -ENOMEM) {
3097 		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3098 				"Marking the inode dirty again, so the VFS "
3099 				"retries later.");
3100 		mark_inode_dirty(vi);
3101 	} else {
3102 		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3103 		NVolSetErrors(ni->vol);
3104 	}
3105 	return err;
3106 }
3107 
3108 #endif /* NTFS_RW */
3109