• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/slab.h>
7 #include <linux/string.h>
8 #include "reiserfs.h"
9 #include <linux/buffer_head.h>
10 
11 /*
12  * To make any changes in the tree we find a node that contains item
13  * to be changed/deleted or position in the node we insert a new item
14  * to. We call this node S. To do balancing we need to decide what we
15  * will shift to left/right neighbor, or to a new node, where new item
16  * will be etc. To make this analysis simpler we build virtual
17  * node. Virtual node is an array of items, that will replace items of
18  * node S. (For instance if we are going to delete an item, virtual
19  * node does not contain it). Virtual node keeps information about
20  * item sizes and types, mergeability of first and last items, sizes
21  * of all entries in directory item. We use this array of items when
22  * calculating what we can shift to neighbors and how many nodes we
23  * have to have if we do not any shiftings, if we shift to left/right
24  * neighbor or to both.
25  */
26 
27 /*
28  * Takes item number in virtual node, returns number of item
29  * that it has in source buffer
30  */
old_item_num(int new_num,int affected_item_num,int mode)31 static inline int old_item_num(int new_num, int affected_item_num, int mode)
32 {
33 	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34 		return new_num;
35 
36 	if (mode == M_INSERT) {
37 
38 		RFALSE(new_num == 0,
39 		       "vs-8005: for INSERT mode and item number of inserted item");
40 
41 		return new_num - 1;
42 	}
43 
44 	RFALSE(mode != M_DELETE,
45 	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46 	       mode);
47 	/* delete mode */
48 	return new_num + 1;
49 }
50 
create_virtual_node(struct tree_balance * tb,int h)51 static void create_virtual_node(struct tree_balance *tb, int h)
52 {
53 	struct item_head *ih;
54 	struct virtual_node *vn = tb->tb_vn;
55 	int new_num;
56 	struct buffer_head *Sh;	/* this comes from tb->S[h] */
57 
58 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
59 
60 	/* size of changed node */
61 	vn->vn_size =
62 	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63 
64 	/* for internal nodes array if virtual items is not created */
65 	if (h) {
66 		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67 		return;
68 	}
69 
70 	/* number of items in virtual node  */
71 	vn->vn_nr_item =
72 	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73 	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
74 
75 	/* first virtual item */
76 	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77 	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78 	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79 
80 	/* first item in the node */
81 	ih = item_head(Sh, 0);
82 
83 	/* define the mergeability for 0-th item (if it is not being deleted) */
84 	if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
85 	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86 		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87 
88 	/*
89 	 * go through all items that remain in the virtual
90 	 * node (except for the new (inserted) one)
91 	 */
92 	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93 		int j;
94 		struct virtual_item *vi = vn->vn_vi + new_num;
95 		int is_affected =
96 		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97 
98 		if (is_affected && vn->vn_mode == M_INSERT)
99 			continue;
100 
101 		/* get item number in source node */
102 		j = old_item_num(new_num, vn->vn_affected_item_num,
103 				 vn->vn_mode);
104 
105 		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106 		vi->vi_ih = ih + j;
107 		vi->vi_item = ih_item_body(Sh, ih + j);
108 		vi->vi_uarea = vn->vn_free_ptr;
109 
110 		/*
111 		 * FIXME: there is no check that item operation did not
112 		 * consume too much memory
113 		 */
114 		vn->vn_free_ptr +=
115 		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116 		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117 			reiserfs_panic(tb->tb_sb, "vs-8030",
118 				       "virtual node space consumed");
119 
120 		if (!is_affected)
121 			/* this is not being changed */
122 			continue;
123 
124 		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125 			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126 			/* pointer to data which is going to be pasted */
127 			vi->vi_new_data = vn->vn_data;
128 		}
129 	}
130 
131 	/* virtual inserted item is not defined yet */
132 	if (vn->vn_mode == M_INSERT) {
133 		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134 
135 		RFALSE(vn->vn_ins_ih == NULL,
136 		       "vs-8040: item header of inserted item is not specified");
137 		vi->vi_item_len = tb->insert_size[0];
138 		vi->vi_ih = vn->vn_ins_ih;
139 		vi->vi_item = vn->vn_data;
140 		vi->vi_uarea = vn->vn_free_ptr;
141 
142 		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143 			     tb->insert_size[0]);
144 	}
145 
146 	/*
147 	 * set right merge flag we take right delimiting key and
148 	 * check whether it is a mergeable item
149 	 */
150 	if (tb->CFR[0]) {
151 		struct reiserfs_key *key;
152 
153 		key = internal_key(tb->CFR[0], tb->rkey[0]);
154 		if (op_is_left_mergeable(key, Sh->b_size)
155 		    && (vn->vn_mode != M_DELETE
156 			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157 			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158 			    VI_TYPE_RIGHT_MERGEABLE;
159 
160 #ifdef CONFIG_REISERFS_CHECK
161 		if (op_is_left_mergeable(key, Sh->b_size) &&
162 		    !(vn->vn_mode != M_DELETE
163 		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164 			/*
165 			 * we delete last item and it could be merged
166 			 * with right neighbor's first item
167 			 */
168 			if (!
169 			    (B_NR_ITEMS(Sh) == 1
170 			     && is_direntry_le_ih(item_head(Sh, 0))
171 			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
172 				/*
173 				 * node contains more than 1 item, or item
174 				 * is not directory item, or this item
175 				 * contains more than 1 entry
176 				 */
177 				print_block(Sh, 0, -1, -1);
178 				reiserfs_panic(tb->tb_sb, "vs-8045",
179 					       "rdkey %k, affected item==%d "
180 					       "(mode==%c) Must be %c",
181 					       key, vn->vn_affected_item_num,
182 					       vn->vn_mode, M_DELETE);
183 			}
184 		}
185 #endif
186 
187 	}
188 }
189 
190 /*
191  * Using virtual node check, how many items can be
192  * shifted to left neighbor
193  */
check_left(struct tree_balance * tb,int h,int cur_free)194 static void check_left(struct tree_balance *tb, int h, int cur_free)
195 {
196 	int i;
197 	struct virtual_node *vn = tb->tb_vn;
198 	struct virtual_item *vi;
199 	int d_size, ih_size;
200 
201 	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202 
203 	/* internal level */
204 	if (h > 0) {
205 		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206 		return;
207 	}
208 
209 	/* leaf level */
210 
211 	if (!cur_free || !vn->vn_nr_item) {
212 		/* no free space or nothing to move */
213 		tb->lnum[h] = 0;
214 		tb->lbytes = -1;
215 		return;
216 	}
217 
218 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219 	       "vs-8055: parent does not exist or invalid");
220 
221 	vi = vn->vn_vi;
222 	if ((unsigned int)cur_free >=
223 	    (vn->vn_size -
224 	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225 		/* all contents of S[0] fits into L[0] */
226 
227 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228 		       "vs-8055: invalid mode or balance condition failed");
229 
230 		tb->lnum[0] = vn->vn_nr_item;
231 		tb->lbytes = -1;
232 		return;
233 	}
234 
235 	d_size = 0, ih_size = IH_SIZE;
236 
237 	/* first item may be merge with last item in left neighbor */
238 	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239 		d_size = -((int)IH_SIZE), ih_size = 0;
240 
241 	tb->lnum[0] = 0;
242 	for (i = 0; i < vn->vn_nr_item;
243 	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244 		d_size += vi->vi_item_len;
245 		if (cur_free >= d_size) {
246 			/* the item can be shifted entirely */
247 			cur_free -= d_size;
248 			tb->lnum[0]++;
249 			continue;
250 		}
251 
252 		/* the item cannot be shifted entirely, try to split it */
253 		/*
254 		 * check whether L[0] can hold ih and at least one byte
255 		 * of the item body
256 		 */
257 
258 		/* cannot shift even a part of the current item */
259 		if (cur_free <= ih_size) {
260 			tb->lbytes = -1;
261 			return;
262 		}
263 		cur_free -= ih_size;
264 
265 		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266 		if (tb->lbytes != -1)
267 			/* count partially shifted item */
268 			tb->lnum[0]++;
269 
270 		break;
271 	}
272 
273 	return;
274 }
275 
276 /*
277  * Using virtual node check, how many items can be
278  * shifted to right neighbor
279  */
check_right(struct tree_balance * tb,int h,int cur_free)280 static void check_right(struct tree_balance *tb, int h, int cur_free)
281 {
282 	int i;
283 	struct virtual_node *vn = tb->tb_vn;
284 	struct virtual_item *vi;
285 	int d_size, ih_size;
286 
287 	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288 
289 	/* internal level */
290 	if (h > 0) {
291 		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292 		return;
293 	}
294 
295 	/* leaf level */
296 
297 	if (!cur_free || !vn->vn_nr_item) {
298 		/* no free space  */
299 		tb->rnum[h] = 0;
300 		tb->rbytes = -1;
301 		return;
302 	}
303 
304 	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305 	       "vs-8075: parent does not exist or invalid");
306 
307 	vi = vn->vn_vi + vn->vn_nr_item - 1;
308 	if ((unsigned int)cur_free >=
309 	    (vn->vn_size -
310 	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311 		/* all contents of S[0] fits into R[0] */
312 
313 		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314 		       "vs-8080: invalid mode or balance condition failed");
315 
316 		tb->rnum[h] = vn->vn_nr_item;
317 		tb->rbytes = -1;
318 		return;
319 	}
320 
321 	d_size = 0, ih_size = IH_SIZE;
322 
323 	/* last item may be merge with first item in right neighbor */
324 	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325 		d_size = -(int)IH_SIZE, ih_size = 0;
326 
327 	tb->rnum[0] = 0;
328 	for (i = vn->vn_nr_item - 1; i >= 0;
329 	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330 		d_size += vi->vi_item_len;
331 		if (cur_free >= d_size) {
332 			/* the item can be shifted entirely */
333 			cur_free -= d_size;
334 			tb->rnum[0]++;
335 			continue;
336 		}
337 
338 		/*
339 		 * check whether R[0] can hold ih and at least one
340 		 * byte of the item body
341 		 */
342 
343 		/* cannot shift even a part of the current item */
344 		if (cur_free <= ih_size) {
345 			tb->rbytes = -1;
346 			return;
347 		}
348 
349 		/*
350 		 * R[0] can hold the header of the item and at least
351 		 * one byte of its body
352 		 */
353 		cur_free -= ih_size;	/* cur_free is still > 0 */
354 
355 		tb->rbytes = op_check_right(vi, cur_free);
356 		if (tb->rbytes != -1)
357 			/* count partially shifted item */
358 			tb->rnum[0]++;
359 
360 		break;
361 	}
362 
363 	return;
364 }
365 
366 /*
367  * from - number of items, which are shifted to left neighbor entirely
368  * to - number of item, which are shifted to right neighbor entirely
369  * from_bytes - number of bytes of boundary item (or directory entries)
370  *              which are shifted to left neighbor
371  * to_bytes - number of bytes of boundary item (or directory entries)
372  *            which are shifted to right neighbor
373  */
get_num_ver(int mode,struct tree_balance * tb,int h,int from,int from_bytes,int to,int to_bytes,short * snum012,int flow)374 static int get_num_ver(int mode, struct tree_balance *tb, int h,
375 		       int from, int from_bytes,
376 		       int to, int to_bytes, short *snum012, int flow)
377 {
378 	int i;
379 	int cur_free;
380 	int units;
381 	struct virtual_node *vn = tb->tb_vn;
382 	int total_node_size, max_node_size, current_item_size;
383 	int needed_nodes;
384 
385 	/* position of item we start filling node from */
386 	int start_item;
387 
388 	/* position of item we finish filling node by */
389 	int end_item;
390 
391 	/*
392 	 * number of first bytes (entries for directory) of start_item-th item
393 	 * we do not include into node that is being filled
394 	 */
395 	int start_bytes;
396 
397 	/*
398 	 * number of last bytes (entries for directory) of end_item-th item
399 	 * we do node include into node that is being filled
400 	 */
401 	int end_bytes;
402 
403 	/*
404 	 * these are positions in virtual item of items, that are split
405 	 * between S[0] and S1new and S1new and S2new
406 	 */
407 	int split_item_positions[2];
408 
409 	split_item_positions[0] = -1;
410 	split_item_positions[1] = -1;
411 
412 	/*
413 	 * We only create additional nodes if we are in insert or paste mode
414 	 * or we are in replace mode at the internal level. If h is 0 and
415 	 * the mode is M_REPLACE then in fix_nodes we change the mode to
416 	 * paste or insert before we get here in the code.
417 	 */
418 	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
419 	       "vs-8100: insert_size < 0 in overflow");
420 
421 	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
422 
423 	/*
424 	 * snum012 [0-2] - number of items, that lay
425 	 * to S[0], first new node and second new node
426 	 */
427 	snum012[3] = -1;	/* s1bytes */
428 	snum012[4] = -1;	/* s2bytes */
429 
430 	/* internal level */
431 	if (h > 0) {
432 		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
433 		if (i == max_node_size)
434 			return 1;
435 		return (i / max_node_size + 1);
436 	}
437 
438 	/* leaf level */
439 	needed_nodes = 1;
440 	total_node_size = 0;
441 	cur_free = max_node_size;
442 
443 	/* start from 'from'-th item */
444 	start_item = from;
445 	/* skip its first 'start_bytes' units */
446 	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
447 
448 	/* last included item is the 'end_item'-th one */
449 	end_item = vn->vn_nr_item - to - 1;
450 	/* do not count last 'end_bytes' units of 'end_item'-th item */
451 	end_bytes = (to_bytes != -1) ? to_bytes : 0;
452 
453 	/*
454 	 * go through all item beginning from the start_item-th item
455 	 * and ending by the end_item-th item. Do not count first
456 	 * 'start_bytes' units of 'start_item'-th item and last
457 	 * 'end_bytes' of 'end_item'-th item
458 	 */
459 	for (i = start_item; i <= end_item; i++) {
460 		struct virtual_item *vi = vn->vn_vi + i;
461 		int skip_from_end = ((i == end_item) ? end_bytes : 0);
462 
463 		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
464 
465 		/* get size of current item */
466 		current_item_size = vi->vi_item_len;
467 
468 		/*
469 		 * do not take in calculation head part (from_bytes)
470 		 * of from-th item
471 		 */
472 		current_item_size -=
473 		    op_part_size(vi, 0 /*from start */ , start_bytes);
474 
475 		/* do not take in calculation tail part of last item */
476 		current_item_size -=
477 		    op_part_size(vi, 1 /*from end */ , skip_from_end);
478 
479 		/* if item fits into current node entierly */
480 		if (total_node_size + current_item_size <= max_node_size) {
481 			snum012[needed_nodes - 1]++;
482 			total_node_size += current_item_size;
483 			start_bytes = 0;
484 			continue;
485 		}
486 
487 		/*
488 		 * virtual item length is longer, than max size of item in
489 		 * a node. It is impossible for direct item
490 		 */
491 		if (current_item_size > max_node_size) {
492 			RFALSE(is_direct_le_ih(vi->vi_ih),
493 			       "vs-8110: "
494 			       "direct item length is %d. It can not be longer than %d",
495 			       current_item_size, max_node_size);
496 			/* we will try to split it */
497 			flow = 1;
498 		}
499 
500 		/* as we do not split items, take new node and continue */
501 		if (!flow) {
502 			needed_nodes++;
503 			i--;
504 			total_node_size = 0;
505 			continue;
506 		}
507 
508 		/*
509 		 * calculate number of item units which fit into node being
510 		 * filled
511 		 */
512 		{
513 			int free_space;
514 
515 			free_space = max_node_size - total_node_size - IH_SIZE;
516 			units =
517 			    op_check_left(vi, free_space, start_bytes,
518 					  skip_from_end);
519 			/*
520 			 * nothing fits into current node, take new
521 			 * node and continue
522 			 */
523 			if (units == -1) {
524 				needed_nodes++, i--, total_node_size = 0;
525 				continue;
526 			}
527 		}
528 
529 		/* something fits into the current node */
530 		start_bytes += units;
531 		snum012[needed_nodes - 1 + 3] = units;
532 
533 		if (needed_nodes > 2)
534 			reiserfs_warning(tb->tb_sb, "vs-8111",
535 					 "split_item_position is out of range");
536 		snum012[needed_nodes - 1]++;
537 		split_item_positions[needed_nodes - 1] = i;
538 		needed_nodes++;
539 		/* continue from the same item with start_bytes != -1 */
540 		start_item = i;
541 		i--;
542 		total_node_size = 0;
543 	}
544 
545 	/*
546 	 * sum012[4] (if it is not -1) contains number of units of which
547 	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
548 	 * to be S1bytes and S2bytes correspondingly, so recalculate
549 	 */
550 	if (snum012[4] > 0) {
551 		int split_item_num;
552 		int bytes_to_r, bytes_to_l;
553 		int bytes_to_S1new;
554 
555 		split_item_num = split_item_positions[1];
556 		bytes_to_l =
557 		    ((from == split_item_num
558 		      && from_bytes != -1) ? from_bytes : 0);
559 		bytes_to_r =
560 		    ((end_item == split_item_num
561 		      && end_bytes != -1) ? end_bytes : 0);
562 		bytes_to_S1new =
563 		    ((split_item_positions[0] ==
564 		      split_item_positions[1]) ? snum012[3] : 0);
565 
566 		/* s2bytes */
567 		snum012[4] =
568 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
569 		    bytes_to_r - bytes_to_l - bytes_to_S1new;
570 
571 		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
572 		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
573 			reiserfs_warning(tb->tb_sb, "vs-8115",
574 					 "not directory or indirect item");
575 	}
576 
577 	/* now we know S2bytes, calculate S1bytes */
578 	if (snum012[3] > 0) {
579 		int split_item_num;
580 		int bytes_to_r, bytes_to_l;
581 		int bytes_to_S2new;
582 
583 		split_item_num = split_item_positions[0];
584 		bytes_to_l =
585 		    ((from == split_item_num
586 		      && from_bytes != -1) ? from_bytes : 0);
587 		bytes_to_r =
588 		    ((end_item == split_item_num
589 		      && end_bytes != -1) ? end_bytes : 0);
590 		bytes_to_S2new =
591 		    ((split_item_positions[0] == split_item_positions[1]
592 		      && snum012[4] != -1) ? snum012[4] : 0);
593 
594 		/* s1bytes */
595 		snum012[3] =
596 		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
597 		    bytes_to_r - bytes_to_l - bytes_to_S2new;
598 	}
599 
600 	return needed_nodes;
601 }
602 
603 
604 /*
605  * Set parameters for balancing.
606  * Performs write of results of analysis of balancing into structure tb,
607  * where it will later be used by the functions that actually do the balancing.
608  * Parameters:
609  *	tb	tree_balance structure;
610  *	h	current level of the node;
611  *	lnum	number of items from S[h] that must be shifted to L[h];
612  *	rnum	number of items from S[h] that must be shifted to R[h];
613  *	blk_num	number of blocks that S[h] will be splitted into;
614  *	s012	number of items that fall into splitted nodes.
615  *	lbytes	number of bytes which flow to the left neighbor from the
616  *              item that is not not shifted entirely
617  *	rbytes	number of bytes which flow to the right neighbor from the
618  *              item that is not not shifted entirely
619  *	s1bytes	number of bytes which flow to the first  new node when
620  *              S[0] splits (this number is contained in s012 array)
621  */
622 
set_parameters(struct tree_balance * tb,int h,int lnum,int rnum,int blk_num,short * s012,int lb,int rb)623 static void set_parameters(struct tree_balance *tb, int h, int lnum,
624 			   int rnum, int blk_num, short *s012, int lb, int rb)
625 {
626 
627 	tb->lnum[h] = lnum;
628 	tb->rnum[h] = rnum;
629 	tb->blknum[h] = blk_num;
630 
631 	/* only for leaf level */
632 	if (h == 0) {
633 		if (s012 != NULL) {
634 			tb->s0num = *s012++;
635 			tb->snum[0] = *s012++;
636 			tb->snum[1] = *s012++;
637 			tb->sbytes[0] = *s012++;
638 			tb->sbytes[1] = *s012;
639 		}
640 		tb->lbytes = lb;
641 		tb->rbytes = rb;
642 	}
643 	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
644 	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
645 
646 	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
647 	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
648 }
649 
650 /*
651  * check if node disappears if we shift tb->lnum[0] items to left
652  * neighbor and tb->rnum[0] to the right one.
653  */
is_leaf_removable(struct tree_balance * tb)654 static int is_leaf_removable(struct tree_balance *tb)
655 {
656 	struct virtual_node *vn = tb->tb_vn;
657 	int to_left, to_right;
658 	int size;
659 	int remain_items;
660 
661 	/*
662 	 * number of items that will be shifted to left (right) neighbor
663 	 * entirely
664 	 */
665 	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
666 	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
667 	remain_items = vn->vn_nr_item;
668 
669 	/* how many items remain in S[0] after shiftings to neighbors */
670 	remain_items -= (to_left + to_right);
671 
672 	/* all content of node can be shifted to neighbors */
673 	if (remain_items < 1) {
674 		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
675 			       NULL, -1, -1);
676 		return 1;
677 	}
678 
679 	/* S[0] is not removable */
680 	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
681 		return 0;
682 
683 	/* check whether we can divide 1 remaining item between neighbors */
684 
685 	/* get size of remaining item (in item units) */
686 	size = op_unit_num(&vn->vn_vi[to_left]);
687 
688 	if (tb->lbytes + tb->rbytes >= size) {
689 		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
690 			       tb->lbytes, -1);
691 		return 1;
692 	}
693 
694 	return 0;
695 }
696 
697 /* check whether L, S, R can be joined in one node */
are_leaves_removable(struct tree_balance * tb,int lfree,int rfree)698 static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
699 {
700 	struct virtual_node *vn = tb->tb_vn;
701 	int ih_size;
702 	struct buffer_head *S0;
703 
704 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
705 
706 	ih_size = 0;
707 	if (vn->vn_nr_item) {
708 		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
709 			ih_size += IH_SIZE;
710 
711 		if (vn->vn_vi[vn->vn_nr_item - 1].
712 		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
713 			ih_size += IH_SIZE;
714 	} else {
715 		/* there was only one item and it will be deleted */
716 		struct item_head *ih;
717 
718 		RFALSE(B_NR_ITEMS(S0) != 1,
719 		       "vs-8125: item number must be 1: it is %d",
720 		       B_NR_ITEMS(S0));
721 
722 		ih = item_head(S0, 0);
723 		if (tb->CFR[0]
724 		    && !comp_short_le_keys(&ih->ih_key,
725 					   internal_key(tb->CFR[0],
726 							  tb->rkey[0])))
727 			/*
728 			 * Directory must be in correct state here: that is
729 			 * somewhere at the left side should exist first
730 			 * directory item. But the item being deleted can
731 			 * not be that first one because its right neighbor
732 			 * is item of the same directory. (But first item
733 			 * always gets deleted in last turn). So, neighbors
734 			 * of deleted item can be merged, so we can save
735 			 * ih_size
736 			 */
737 			if (is_direntry_le_ih(ih)) {
738 				ih_size = IH_SIZE;
739 
740 				/*
741 				 * we might check that left neighbor exists
742 				 * and is of the same directory
743 				 */
744 				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
745 				       "vs-8130: first directory item can not be removed until directory is not empty");
746 			}
747 
748 	}
749 
750 	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
751 		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
752 		PROC_INFO_INC(tb->tb_sb, leaves_removable);
753 		return 1;
754 	}
755 	return 0;
756 
757 }
758 
759 /* when we do not split item, lnum and rnum are numbers of entire items */
760 #define SET_PAR_SHIFT_LEFT \
761 if (h)\
762 {\
763    int to_l;\
764    \
765    to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
766 	      (MAX_NR_KEY(Sh) + 1 - lpar);\
767 	      \
768 	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
769 }\
770 else \
771 {\
772    if (lset==LEFT_SHIFT_FLOW)\
773      set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
774 		     tb->lbytes, -1);\
775    else\
776      set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
777 		     -1, -1);\
778 }
779 
780 #define SET_PAR_SHIFT_RIGHT \
781 if (h)\
782 {\
783    int to_r;\
784    \
785    to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
786    \
787    set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
788 }\
789 else \
790 {\
791    if (rset==RIGHT_SHIFT_FLOW)\
792      set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
793 		  -1, tb->rbytes);\
794    else\
795      set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
796 		  -1, -1);\
797 }
798 
free_buffers_in_tb(struct tree_balance * tb)799 static void free_buffers_in_tb(struct tree_balance *tb)
800 {
801 	int i;
802 
803 	pathrelse(tb->tb_path);
804 
805 	for (i = 0; i < MAX_HEIGHT; i++) {
806 		brelse(tb->L[i]);
807 		brelse(tb->R[i]);
808 		brelse(tb->FL[i]);
809 		brelse(tb->FR[i]);
810 		brelse(tb->CFL[i]);
811 		brelse(tb->CFR[i]);
812 
813 		tb->L[i] = NULL;
814 		tb->R[i] = NULL;
815 		tb->FL[i] = NULL;
816 		tb->FR[i] = NULL;
817 		tb->CFL[i] = NULL;
818 		tb->CFR[i] = NULL;
819 	}
820 }
821 
822 /*
823  * Get new buffers for storing new nodes that are created while balancing.
824  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
825  *	        CARRY_ON - schedule didn't occur while the function worked;
826  *	        NO_DISK_SPACE - no disk space.
827  */
828 /* The function is NOT SCHEDULE-SAFE! */
get_empty_nodes(struct tree_balance * tb,int h)829 static int get_empty_nodes(struct tree_balance *tb, int h)
830 {
831 	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
832 	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
833 	int counter, number_of_freeblk;
834 	int  amount_needed;	/* number of needed empty blocks */
835 	int  retval = CARRY_ON;
836 	struct super_block *sb = tb->tb_sb;
837 
838 	/*
839 	 * number_of_freeblk is the number of empty blocks which have been
840 	 * acquired for use by the balancing algorithm minus the number of
841 	 * empty blocks used in the previous levels of the analysis,
842 	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
843 	 * occurs after empty blocks are acquired, and the balancing analysis
844 	 * is then restarted, amount_needed is the number needed by this
845 	 * level (h) of the balancing analysis.
846 	 *
847 	 * Note that for systems with many processes writing, it would be
848 	 * more layout optimal to calculate the total number needed by all
849 	 * levels and then to run reiserfs_new_blocks to get all of them at
850 	 * once.
851 	 */
852 
853 	/*
854 	 * Initiate number_of_freeblk to the amount acquired prior to the
855 	 * restart of the analysis or 0 if not restarted, then subtract the
856 	 * amount needed by all of the levels of the tree below h.
857 	 */
858 	/* blknum includes S[h], so we subtract 1 in this calculation */
859 	for (counter = 0, number_of_freeblk = tb->cur_blknum;
860 	     counter < h; counter++)
861 		number_of_freeblk -=
862 		    (tb->blknum[counter]) ? (tb->blknum[counter] -
863 						   1) : 0;
864 
865 	/* Allocate missing empty blocks. */
866 	/* if Sh == 0  then we are getting a new root */
867 	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
868 	/*
869 	 * Amount_needed = the amount that we need more than the
870 	 * amount that we have.
871 	 */
872 	if (amount_needed > number_of_freeblk)
873 		amount_needed -= number_of_freeblk;
874 	else	/* If we have enough already then there is nothing to do. */
875 		return CARRY_ON;
876 
877 	/*
878 	 * No need to check quota - is not allocated for blocks used
879 	 * for formatted nodes
880 	 */
881 	if (reiserfs_new_form_blocknrs(tb, blocknrs,
882 				       amount_needed) == NO_DISK_SPACE)
883 		return NO_DISK_SPACE;
884 
885 	/* for each blocknumber we just got, get a buffer and stick it on FEB */
886 	for (blocknr = blocknrs, counter = 0;
887 	     counter < amount_needed; blocknr++, counter++) {
888 
889 		RFALSE(!*blocknr,
890 		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
891 
892 		new_bh = sb_getblk(sb, *blocknr);
893 		RFALSE(buffer_dirty(new_bh) ||
894 		       buffer_journaled(new_bh) ||
895 		       buffer_journal_dirty(new_bh),
896 		       "PAP-8140: journaled or dirty buffer %b for the new block",
897 		       new_bh);
898 
899 		/* Put empty buffers into the array. */
900 		RFALSE(tb->FEB[tb->cur_blknum],
901 		       "PAP-8141: busy slot for new buffer");
902 
903 		set_buffer_journal_new(new_bh);
904 		tb->FEB[tb->cur_blknum++] = new_bh;
905 	}
906 
907 	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
908 		retval = REPEAT_SEARCH;
909 
910 	return retval;
911 }
912 
913 /*
914  * Get free space of the left neighbor, which is stored in the parent
915  * node of the left neighbor.
916  */
get_lfree(struct tree_balance * tb,int h)917 static int get_lfree(struct tree_balance *tb, int h)
918 {
919 	struct buffer_head *l, *f;
920 	int order;
921 
922 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
923 	    (l = tb->FL[h]) == NULL)
924 		return 0;
925 
926 	if (f == l)
927 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
928 	else {
929 		order = B_NR_ITEMS(l);
930 		f = l;
931 	}
932 
933 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
934 }
935 
936 /*
937  * Get free space of the right neighbor,
938  * which is stored in the parent node of the right neighbor.
939  */
get_rfree(struct tree_balance * tb,int h)940 static int get_rfree(struct tree_balance *tb, int h)
941 {
942 	struct buffer_head *r, *f;
943 	int order;
944 
945 	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
946 	    (r = tb->FR[h]) == NULL)
947 		return 0;
948 
949 	if (f == r)
950 		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
951 	else {
952 		order = 0;
953 		f = r;
954 	}
955 
956 	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
957 
958 }
959 
960 /* Check whether left neighbor is in memory. */
is_left_neighbor_in_cache(struct tree_balance * tb,int h)961 static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
962 {
963 	struct buffer_head *father, *left;
964 	struct super_block *sb = tb->tb_sb;
965 	b_blocknr_t left_neighbor_blocknr;
966 	int left_neighbor_position;
967 
968 	/* Father of the left neighbor does not exist. */
969 	if (!tb->FL[h])
970 		return 0;
971 
972 	/* Calculate father of the node to be balanced. */
973 	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
974 
975 	RFALSE(!father ||
976 	       !B_IS_IN_TREE(father) ||
977 	       !B_IS_IN_TREE(tb->FL[h]) ||
978 	       !buffer_uptodate(father) ||
979 	       !buffer_uptodate(tb->FL[h]),
980 	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
981 	       father, tb->FL[h]);
982 
983 	/*
984 	 * Get position of the pointer to the left neighbor
985 	 * into the left father.
986 	 */
987 	left_neighbor_position = (father == tb->FL[h]) ?
988 	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
989 	/* Get left neighbor block number. */
990 	left_neighbor_blocknr =
991 	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
992 	/* Look for the left neighbor in the cache. */
993 	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
994 
995 		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
996 		       "vs-8170: left neighbor (%b %z) is not in the tree",
997 		       left, left);
998 		put_bh(left);
999 		return 1;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 #define LEFT_PARENTS  'l'
1006 #define RIGHT_PARENTS 'r'
1007 
decrement_key(struct cpu_key * key)1008 static void decrement_key(struct cpu_key *key)
1009 {
1010 	/* call item specific function for this key */
1011 	item_ops[cpu_key_k_type(key)]->decrement_key(key);
1012 }
1013 
1014 /*
1015  * Calculate far left/right parent of the left/right neighbor of the
1016  * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1017  * of the parent F[h].
1018  * Calculate left/right common parent of the current node and L[h]/R[h].
1019  * Calculate left/right delimiting key position.
1020  * Returns:	PATH_INCORRECT    - path in the tree is not correct
1021  *		SCHEDULE_OCCURRED - schedule occurred while the function worked
1022  *	        CARRY_ON          - schedule didn't occur while the function
1023  *				    worked
1024  */
get_far_parent(struct tree_balance * tb,int h,struct buffer_head ** pfather,struct buffer_head ** pcom_father,char c_lr_par)1025 static int get_far_parent(struct tree_balance *tb,
1026 			  int h,
1027 			  struct buffer_head **pfather,
1028 			  struct buffer_head **pcom_father, char c_lr_par)
1029 {
1030 	struct buffer_head *parent;
1031 	INITIALIZE_PATH(s_path_to_neighbor_father);
1032 	struct treepath *path = tb->tb_path;
1033 	struct cpu_key s_lr_father_key;
1034 	int counter,
1035 	    position = INT_MAX,
1036 	    first_last_position = 0,
1037 	    path_offset = PATH_H_PATH_OFFSET(path, h);
1038 
1039 	/*
1040 	 * Starting from F[h] go upwards in the tree, and look for the common
1041 	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1042 	 */
1043 
1044 	counter = path_offset;
1045 
1046 	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1047 	       "PAP-8180: invalid path length");
1048 
1049 	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1050 		/*
1051 		 * Check whether parent of the current buffer in the path
1052 		 * is really parent in the tree.
1053 		 */
1054 		if (!B_IS_IN_TREE
1055 		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1056 			return REPEAT_SEARCH;
1057 
1058 		/* Check whether position in the parent is correct. */
1059 		if ((position =
1060 		     PATH_OFFSET_POSITION(path,
1061 					  counter - 1)) >
1062 		    B_NR_ITEMS(parent))
1063 			return REPEAT_SEARCH;
1064 
1065 		/*
1066 		 * Check whether parent at the path really points
1067 		 * to the child.
1068 		 */
1069 		if (B_N_CHILD_NUM(parent, position) !=
1070 		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1071 			return REPEAT_SEARCH;
1072 
1073 		/*
1074 		 * Return delimiting key if position in the parent is not
1075 		 * equal to first/last one.
1076 		 */
1077 		if (c_lr_par == RIGHT_PARENTS)
1078 			first_last_position = B_NR_ITEMS(parent);
1079 		if (position != first_last_position) {
1080 			*pcom_father = parent;
1081 			get_bh(*pcom_father);
1082 			/*(*pcom_father = parent)->b_count++; */
1083 			break;
1084 		}
1085 	}
1086 
1087 	/* if we are in the root of the tree, then there is no common father */
1088 	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1089 		/*
1090 		 * Check whether first buffer in the path is the
1091 		 * root of the tree.
1092 		 */
1093 		if (PATH_OFFSET_PBUFFER
1094 		    (tb->tb_path,
1095 		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1096 		    SB_ROOT_BLOCK(tb->tb_sb)) {
1097 			*pfather = *pcom_father = NULL;
1098 			return CARRY_ON;
1099 		}
1100 		return REPEAT_SEARCH;
1101 	}
1102 
1103 	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1104 	       "PAP-8185: (%b %z) level too small",
1105 	       *pcom_father, *pcom_father);
1106 
1107 	/* Check whether the common parent is locked. */
1108 
1109 	if (buffer_locked(*pcom_father)) {
1110 
1111 		/* Release the write lock while the buffer is busy */
1112 		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1113 		__wait_on_buffer(*pcom_father);
1114 		reiserfs_write_lock_nested(tb->tb_sb, depth);
1115 		if (FILESYSTEM_CHANGED_TB(tb)) {
1116 			brelse(*pcom_father);
1117 			return REPEAT_SEARCH;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * So, we got common parent of the current node and its
1123 	 * left/right neighbor.  Now we are getting the parent of the
1124 	 * left/right neighbor.
1125 	 */
1126 
1127 	/* Form key to get parent of the left/right neighbor. */
1128 	le_key2cpu_key(&s_lr_father_key,
1129 		       internal_key(*pcom_father,
1130 				      (c_lr_par ==
1131 				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1132 							position -
1133 							1) : (tb->rkey[h -
1134 									   1] =
1135 							      position)));
1136 
1137 	if (c_lr_par == LEFT_PARENTS)
1138 		decrement_key(&s_lr_father_key);
1139 
1140 	if (search_by_key
1141 	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1142 	     h + 1) == IO_ERROR)
1143 		/* path is released */
1144 		return IO_ERROR;
1145 
1146 	if (FILESYSTEM_CHANGED_TB(tb)) {
1147 		pathrelse(&s_path_to_neighbor_father);
1148 		brelse(*pcom_father);
1149 		return REPEAT_SEARCH;
1150 	}
1151 
1152 	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1153 
1154 	RFALSE(B_LEVEL(*pfather) != h + 1,
1155 	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1156 	RFALSE(s_path_to_neighbor_father.path_length <
1157 	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1158 
1159 	s_path_to_neighbor_father.path_length--;
1160 	pathrelse(&s_path_to_neighbor_father);
1161 	return CARRY_ON;
1162 }
1163 
1164 /*
1165  * Get parents of neighbors of node in the path(S[path_offset]) and
1166  * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1167  * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1168  * CFR[path_offset].
1169  * Calculate numbers of left and right delimiting keys position:
1170  * lkey[path_offset], rkey[path_offset].
1171  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
1172  *	        CARRY_ON - schedule didn't occur while the function worked
1173  */
get_parents(struct tree_balance * tb,int h)1174 static int get_parents(struct tree_balance *tb, int h)
1175 {
1176 	struct treepath *path = tb->tb_path;
1177 	int position,
1178 	    ret,
1179 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1180 	struct buffer_head *curf, *curcf;
1181 
1182 	/* Current node is the root of the tree or will be root of the tree */
1183 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1184 		/*
1185 		 * The root can not have parents.
1186 		 * Release nodes which previously were obtained as
1187 		 * parents of the current node neighbors.
1188 		 */
1189 		brelse(tb->FL[h]);
1190 		brelse(tb->CFL[h]);
1191 		brelse(tb->FR[h]);
1192 		brelse(tb->CFR[h]);
1193 		tb->FL[h]  = NULL;
1194 		tb->CFL[h] = NULL;
1195 		tb->FR[h]  = NULL;
1196 		tb->CFR[h] = NULL;
1197 		return CARRY_ON;
1198 	}
1199 
1200 	/* Get parent FL[path_offset] of L[path_offset]. */
1201 	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1202 	if (position) {
1203 		/* Current node is not the first child of its parent. */
1204 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1205 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1206 		get_bh(curf);
1207 		get_bh(curf);
1208 		tb->lkey[h] = position - 1;
1209 	} else {
1210 		/*
1211 		 * Calculate current parent of L[path_offset], which is the
1212 		 * left neighbor of the current node.  Calculate current
1213 		 * common parent of L[path_offset] and the current node.
1214 		 * Note that CFL[path_offset] not equal FL[path_offset] and
1215 		 * CFL[path_offset] not equal F[path_offset].
1216 		 * Calculate lkey[path_offset].
1217 		 */
1218 		if ((ret = get_far_parent(tb, h + 1, &curf,
1219 						  &curcf,
1220 						  LEFT_PARENTS)) != CARRY_ON)
1221 			return ret;
1222 	}
1223 
1224 	brelse(tb->FL[h]);
1225 	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1226 	brelse(tb->CFL[h]);
1227 	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1228 
1229 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1230 	       (curcf && !B_IS_IN_TREE(curcf)),
1231 	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1232 
1233 	/* Get parent FR[h] of R[h]. */
1234 
1235 	/* Current node is the last child of F[h]. FR[h] != F[h]. */
1236 	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1237 		/*
1238 		 * Calculate current parent of R[h], which is the right
1239 		 * neighbor of F[h].  Calculate current common parent of
1240 		 * R[h] and current node. Note that CFR[h] not equal
1241 		 * FR[path_offset] and CFR[h] not equal F[h].
1242 		 */
1243 		if ((ret =
1244 		     get_far_parent(tb, h + 1, &curf, &curcf,
1245 				    RIGHT_PARENTS)) != CARRY_ON)
1246 			return ret;
1247 	} else {
1248 		/* Current node is not the last child of its parent F[h]. */
1249 		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1250 		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1251 		get_bh(curf);
1252 		get_bh(curf);
1253 		tb->rkey[h] = position;
1254 	}
1255 
1256 	brelse(tb->FR[h]);
1257 	/* New initialization of FR[path_offset]. */
1258 	tb->FR[h] = curf;
1259 
1260 	brelse(tb->CFR[h]);
1261 	/* New initialization of CFR[path_offset]. */
1262 	tb->CFR[h] = curcf;
1263 
1264 	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1265 	       (curcf && !B_IS_IN_TREE(curcf)),
1266 	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1267 
1268 	return CARRY_ON;
1269 }
1270 
1271 /*
1272  * it is possible to remove node as result of shiftings to
1273  * neighbors even when we insert or paste item.
1274  */
can_node_be_removed(int mode,int lfree,int sfree,int rfree,struct tree_balance * tb,int h)1275 static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1276 				      struct tree_balance *tb, int h)
1277 {
1278 	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1279 	int levbytes = tb->insert_size[h];
1280 	struct item_head *ih;
1281 	struct reiserfs_key *r_key = NULL;
1282 
1283 	ih = item_head(Sh, 0);
1284 	if (tb->CFR[h])
1285 		r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1286 
1287 	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1288 	    /* shifting may merge items which might save space */
1289 	    -
1290 	    ((!h
1291 	      && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
1292 	    -
1293 	    ((!h && r_key
1294 	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1295 	    + ((h) ? KEY_SIZE : 0)) {
1296 		/* node can not be removed */
1297 		if (sfree >= levbytes) {
1298 			/* new item fits into node S[h] without any shifting */
1299 			if (!h)
1300 				tb->s0num =
1301 				    B_NR_ITEMS(Sh) +
1302 				    ((mode == M_INSERT) ? 1 : 0);
1303 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1304 			return NO_BALANCING_NEEDED;
1305 		}
1306 	}
1307 	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1308 	return !NO_BALANCING_NEEDED;
1309 }
1310 
1311 /*
1312  * Check whether current node S[h] is balanced when increasing its size by
1313  * Inserting or Pasting.
1314  * Calculate parameters for balancing for current level h.
1315  * Parameters:
1316  *	tb	tree_balance structure;
1317  *	h	current level of the node;
1318  *	inum	item number in S[h];
1319  *	mode	i - insert, p - paste;
1320  * Returns:	1 - schedule occurred;
1321  *	        0 - balancing for higher levels needed;
1322  *	       -1 - no balancing for higher levels needed;
1323  *	       -2 - no disk space.
1324  */
1325 /* ip means Inserting or Pasting */
ip_check_balance(struct tree_balance * tb,int h)1326 static int ip_check_balance(struct tree_balance *tb, int h)
1327 {
1328 	struct virtual_node *vn = tb->tb_vn;
1329 	/*
1330 	 * Number of bytes that must be inserted into (value is negative
1331 	 * if bytes are deleted) buffer which contains node being balanced.
1332 	 * The mnemonic is that the attempted change in node space used
1333 	 * level is levbytes bytes.
1334 	 */
1335 	int levbytes;
1336 	int ret;
1337 
1338 	int lfree, sfree, rfree /* free space in L, S and R */ ;
1339 
1340 	/*
1341 	 * nver is short for number of vertixes, and lnver is the number if
1342 	 * we shift to the left, rnver is the number if we shift to the
1343 	 * right, and lrnver is the number if we shift in both directions.
1344 	 * The goal is to minimize first the number of vertixes, and second,
1345 	 * the number of vertixes whose contents are changed by shifting,
1346 	 * and third the number of uncached vertixes whose contents are
1347 	 * changed by shifting and must be read from disk.
1348 	 */
1349 	int nver, lnver, rnver, lrnver;
1350 
1351 	/*
1352 	 * used at leaf level only, S0 = S[0] is the node being balanced,
1353 	 * sInum [ I = 0,1,2 ] is the number of items that will
1354 	 * remain in node SI after balancing.  S1 and S2 are new
1355 	 * nodes that might be created.
1356 	 */
1357 
1358 	/*
1359 	 * we perform 8 calls to get_num_ver().  For each call we
1360 	 * calculate five parameters.  where 4th parameter is s1bytes
1361 	 * and 5th - s2bytes
1362 	 *
1363 	 * s0num, s1num, s2num for 8 cases
1364 	 * 0,1 - do not shift and do not shift but bottle
1365 	 * 2   - shift only whole item to left
1366 	 * 3   - shift to left and bottle as much as possible
1367 	 * 4,5 - shift to right (whole items and as much as possible
1368 	 * 6,7 - shift to both directions (whole items and as much as possible)
1369 	 */
1370 	short snum012[40] = { 0, };
1371 
1372 	/* Sh is the node whose balance is currently being checked */
1373 	struct buffer_head *Sh;
1374 
1375 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1376 	levbytes = tb->insert_size[h];
1377 
1378 	/* Calculate balance parameters for creating new root. */
1379 	if (!Sh) {
1380 		if (!h)
1381 			reiserfs_panic(tb->tb_sb, "vs-8210",
1382 				       "S[0] can not be 0");
1383 		switch (ret = get_empty_nodes(tb, h)) {
1384 		/* no balancing for higher levels needed */
1385 		case CARRY_ON:
1386 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1387 			return NO_BALANCING_NEEDED;
1388 
1389 		case NO_DISK_SPACE:
1390 		case REPEAT_SEARCH:
1391 			return ret;
1392 		default:
1393 			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1394 				       "return value of get_empty_nodes");
1395 		}
1396 	}
1397 
1398 	/* get parents of S[h] neighbors. */
1399 	ret = get_parents(tb, h);
1400 	if (ret != CARRY_ON)
1401 		return ret;
1402 
1403 	sfree = B_FREE_SPACE(Sh);
1404 
1405 	/* get free space of neighbors */
1406 	rfree = get_rfree(tb, h);
1407 	lfree = get_lfree(tb, h);
1408 
1409 	/* and new item fits into node S[h] without any shifting */
1410 	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1411 	    NO_BALANCING_NEEDED)
1412 		return NO_BALANCING_NEEDED;
1413 
1414 	create_virtual_node(tb, h);
1415 
1416 	/*
1417 	 * determine maximal number of items we can shift to the left
1418 	 * neighbor (in tb structure) and the maximal number of bytes
1419 	 * that can flow to the left neighbor from the left most liquid
1420 	 * item that cannot be shifted from S[0] entirely (returned value)
1421 	 */
1422 	check_left(tb, h, lfree);
1423 
1424 	/*
1425 	 * determine maximal number of items we can shift to the right
1426 	 * neighbor (in tb structure) and the maximal number of bytes
1427 	 * that can flow to the right neighbor from the right most liquid
1428 	 * item that cannot be shifted from S[0] entirely (returned value)
1429 	 */
1430 	check_right(tb, h, rfree);
1431 
1432 	/*
1433 	 * all contents of internal node S[h] can be moved into its
1434 	 * neighbors, S[h] will be removed after balancing
1435 	 */
1436 	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1437 		int to_r;
1438 
1439 		/*
1440 		 * Since we are working on internal nodes, and our internal
1441 		 * nodes have fixed size entries, then we can balance by the
1442 		 * number of items rather than the space they consume.  In this
1443 		 * routine we set the left node equal to the right node,
1444 		 * allowing a difference of less than or equal to 1 child
1445 		 * pointer.
1446 		 */
1447 		to_r =
1448 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1449 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1450 						tb->rnum[h]);
1451 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1452 			       -1, -1);
1453 		return CARRY_ON;
1454 	}
1455 
1456 	/*
1457 	 * this checks balance condition, that any two neighboring nodes
1458 	 * can not fit in one node
1459 	 */
1460 	RFALSE(h &&
1461 	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1462 		tb->rnum[h] >= vn->vn_nr_item + 1),
1463 	       "vs-8220: tree is not balanced on internal level");
1464 	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1465 		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1466 	       "vs-8225: tree is not balanced on leaf level");
1467 
1468 	/*
1469 	 * all contents of S[0] can be moved into its neighbors
1470 	 * S[0] will be removed after balancing.
1471 	 */
1472 	if (!h && is_leaf_removable(tb))
1473 		return CARRY_ON;
1474 
1475 	/*
1476 	 * why do we perform this check here rather than earlier??
1477 	 * Answer: we can win 1 node in some cases above. Moreover we
1478 	 * checked it above, when we checked, that S[0] is not removable
1479 	 * in principle
1480 	 */
1481 
1482 	 /* new item fits into node S[h] without any shifting */
1483 	if (sfree >= levbytes) {
1484 		if (!h)
1485 			tb->s0num = vn->vn_nr_item;
1486 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1487 		return NO_BALANCING_NEEDED;
1488 	}
1489 
1490 	{
1491 		int lpar, rpar, nset, lset, rset, lrset;
1492 		/* regular overflowing of the node */
1493 
1494 		/*
1495 		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1496 		 * lpar, rpar - number of items we can shift to left/right
1497 		 *              neighbor (including splitting item)
1498 		 * nset, lset, rset, lrset - shows, whether flowing items
1499 		 *                           give better packing
1500 		 */
1501 #define FLOW 1
1502 #define NO_FLOW 0		/* do not any splitting */
1503 
1504 		/* we choose one of the following */
1505 #define NOTHING_SHIFT_NO_FLOW	0
1506 #define NOTHING_SHIFT_FLOW	5
1507 #define LEFT_SHIFT_NO_FLOW	10
1508 #define LEFT_SHIFT_FLOW		15
1509 #define RIGHT_SHIFT_NO_FLOW	20
1510 #define RIGHT_SHIFT_FLOW	25
1511 #define LR_SHIFT_NO_FLOW	30
1512 #define LR_SHIFT_FLOW		35
1513 
1514 		lpar = tb->lnum[h];
1515 		rpar = tb->rnum[h];
1516 
1517 		/*
1518 		 * calculate number of blocks S[h] must be split into when
1519 		 * nothing is shifted to the neighbors, as well as number of
1520 		 * items in each part of the split node (s012 numbers),
1521 		 * and number of bytes (s1bytes) of the shared drop which
1522 		 * flow to S1 if any
1523 		 */
1524 		nset = NOTHING_SHIFT_NO_FLOW;
1525 		nver = get_num_ver(vn->vn_mode, tb, h,
1526 				   0, -1, h ? vn->vn_nr_item : 0, -1,
1527 				   snum012, NO_FLOW);
1528 
1529 		if (!h) {
1530 			int nver1;
1531 
1532 			/*
1533 			 * note, that in this case we try to bottle
1534 			 * between S[0] and S1 (S1 - the first new node)
1535 			 */
1536 			nver1 = get_num_ver(vn->vn_mode, tb, h,
1537 					    0, -1, 0, -1,
1538 					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1539 			if (nver > nver1)
1540 				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1541 		}
1542 
1543 		/*
1544 		 * calculate number of blocks S[h] must be split into when
1545 		 * l_shift_num first items and l_shift_bytes of the right
1546 		 * most liquid item to be shifted are shifted to the left
1547 		 * neighbor, as well as number of items in each part of the
1548 		 * splitted node (s012 numbers), and number of bytes
1549 		 * (s1bytes) of the shared drop which flow to S1 if any
1550 		 */
1551 		lset = LEFT_SHIFT_NO_FLOW;
1552 		lnver = get_num_ver(vn->vn_mode, tb, h,
1553 				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1554 				    -1, h ? vn->vn_nr_item : 0, -1,
1555 				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1556 		if (!h) {
1557 			int lnver1;
1558 
1559 			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1560 					     lpar -
1561 					     ((tb->lbytes != -1) ? 1 : 0),
1562 					     tb->lbytes, 0, -1,
1563 					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1564 			if (lnver > lnver1)
1565 				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1566 		}
1567 
1568 		/*
1569 		 * calculate number of blocks S[h] must be split into when
1570 		 * r_shift_num first items and r_shift_bytes of the left most
1571 		 * liquid item to be shifted are shifted to the right neighbor,
1572 		 * as well as number of items in each part of the splitted
1573 		 * node (s012 numbers), and number of bytes (s1bytes) of the
1574 		 * shared drop which flow to S1 if any
1575 		 */
1576 		rset = RIGHT_SHIFT_NO_FLOW;
1577 		rnver = get_num_ver(vn->vn_mode, tb, h,
1578 				    0, -1,
1579 				    h ? (vn->vn_nr_item - rpar) : (rpar -
1580 								   ((tb->
1581 								     rbytes !=
1582 								     -1) ? 1 :
1583 								    0)), -1,
1584 				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1585 		if (!h) {
1586 			int rnver1;
1587 
1588 			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1589 					     0, -1,
1590 					     (rpar -
1591 					      ((tb->rbytes != -1) ? 1 : 0)),
1592 					     tb->rbytes,
1593 					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1594 
1595 			if (rnver > rnver1)
1596 				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1597 		}
1598 
1599 		/*
1600 		 * calculate number of blocks S[h] must be split into when
1601 		 * items are shifted in both directions, as well as number
1602 		 * of items in each part of the splitted node (s012 numbers),
1603 		 * and number of bytes (s1bytes) of the shared drop which
1604 		 * flow to S1 if any
1605 		 */
1606 		lrset = LR_SHIFT_NO_FLOW;
1607 		lrnver = get_num_ver(vn->vn_mode, tb, h,
1608 				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1609 				     -1,
1610 				     h ? (vn->vn_nr_item - rpar) : (rpar -
1611 								    ((tb->
1612 								      rbytes !=
1613 								      -1) ? 1 :
1614 								     0)), -1,
1615 				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1616 		if (!h) {
1617 			int lrnver1;
1618 
1619 			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1620 					      lpar -
1621 					      ((tb->lbytes != -1) ? 1 : 0),
1622 					      tb->lbytes,
1623 					      (rpar -
1624 					       ((tb->rbytes != -1) ? 1 : 0)),
1625 					      tb->rbytes,
1626 					      snum012 + LR_SHIFT_FLOW, FLOW);
1627 			if (lrnver > lrnver1)
1628 				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1629 		}
1630 
1631 		/*
1632 		 * Our general shifting strategy is:
1633 		 * 1) to minimized number of new nodes;
1634 		 * 2) to minimized number of neighbors involved in shifting;
1635 		 * 3) to minimized number of disk reads;
1636 		 */
1637 
1638 		/* we can win TWO or ONE nodes by shifting in both directions */
1639 		if (lrnver < lnver && lrnver < rnver) {
1640 			RFALSE(h &&
1641 			       (tb->lnum[h] != 1 ||
1642 				tb->rnum[h] != 1 ||
1643 				lrnver != 1 || rnver != 2 || lnver != 2
1644 				|| h != 1), "vs-8230: bad h");
1645 			if (lrset == LR_SHIFT_FLOW)
1646 				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1647 					       lrnver, snum012 + lrset,
1648 					       tb->lbytes, tb->rbytes);
1649 			else
1650 				set_parameters(tb, h,
1651 					       tb->lnum[h] -
1652 					       ((tb->lbytes == -1) ? 0 : 1),
1653 					       tb->rnum[h] -
1654 					       ((tb->rbytes == -1) ? 0 : 1),
1655 					       lrnver, snum012 + lrset, -1, -1);
1656 
1657 			return CARRY_ON;
1658 		}
1659 
1660 		/*
1661 		 * if shifting doesn't lead to better packing
1662 		 * then don't shift
1663 		 */
1664 		if (nver == lrnver) {
1665 			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1666 				       -1);
1667 			return CARRY_ON;
1668 		}
1669 
1670 		/*
1671 		 * now we know that for better packing shifting in only one
1672 		 * direction either to the left or to the right is required
1673 		 */
1674 
1675 		/*
1676 		 * if shifting to the left is better than
1677 		 * shifting to the right
1678 		 */
1679 		if (lnver < rnver) {
1680 			SET_PAR_SHIFT_LEFT;
1681 			return CARRY_ON;
1682 		}
1683 
1684 		/*
1685 		 * if shifting to the right is better than
1686 		 * shifting to the left
1687 		 */
1688 		if (lnver > rnver) {
1689 			SET_PAR_SHIFT_RIGHT;
1690 			return CARRY_ON;
1691 		}
1692 
1693 		/*
1694 		 * now shifting in either direction gives the same number
1695 		 * of nodes and we can make use of the cached neighbors
1696 		 */
1697 		if (is_left_neighbor_in_cache(tb, h)) {
1698 			SET_PAR_SHIFT_LEFT;
1699 			return CARRY_ON;
1700 		}
1701 
1702 		/*
1703 		 * shift to the right independently on whether the
1704 		 * right neighbor in cache or not
1705 		 */
1706 		SET_PAR_SHIFT_RIGHT;
1707 		return CARRY_ON;
1708 	}
1709 }
1710 
1711 /*
1712  * Check whether current node S[h] is balanced when Decreasing its size by
1713  * Deleting or Cutting for INTERNAL node of S+tree.
1714  * Calculate parameters for balancing for current level h.
1715  * Parameters:
1716  *	tb	tree_balance structure;
1717  *	h	current level of the node;
1718  *	inum	item number in S[h];
1719  *	mode	i - insert, p - paste;
1720  * Returns:	1 - schedule occurred;
1721  *	        0 - balancing for higher levels needed;
1722  *	       -1 - no balancing for higher levels needed;
1723  *	       -2 - no disk space.
1724  *
1725  * Note: Items of internal nodes have fixed size, so the balance condition for
1726  * the internal part of S+tree is as for the B-trees.
1727  */
dc_check_balance_internal(struct tree_balance * tb,int h)1728 static int dc_check_balance_internal(struct tree_balance *tb, int h)
1729 {
1730 	struct virtual_node *vn = tb->tb_vn;
1731 
1732 	/*
1733 	 * Sh is the node whose balance is currently being checked,
1734 	 * and Fh is its father.
1735 	 */
1736 	struct buffer_head *Sh, *Fh;
1737 	int maxsize, ret;
1738 	int lfree, rfree /* free space in L and R */ ;
1739 
1740 	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1741 	Fh = PATH_H_PPARENT(tb->tb_path, h);
1742 
1743 	maxsize = MAX_CHILD_SIZE(Sh);
1744 
1745 	/*
1746 	 * using tb->insert_size[h], which is negative in this case,
1747 	 * create_virtual_node calculates:
1748 	 * new_nr_item = number of items node would have if operation is
1749 	 * performed without balancing (new_nr_item);
1750 	 */
1751 	create_virtual_node(tb, h);
1752 
1753 	if (!Fh) {		/* S[h] is the root. */
1754 		/* no balancing for higher levels needed */
1755 		if (vn->vn_nr_item > 0) {
1756 			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1757 			return NO_BALANCING_NEEDED;
1758 		}
1759 		/*
1760 		 * new_nr_item == 0.
1761 		 * Current root will be deleted resulting in
1762 		 * decrementing the tree height.
1763 		 */
1764 		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1765 		return CARRY_ON;
1766 	}
1767 
1768 	if ((ret = get_parents(tb, h)) != CARRY_ON)
1769 		return ret;
1770 
1771 	/* get free space of neighbors */
1772 	rfree = get_rfree(tb, h);
1773 	lfree = get_lfree(tb, h);
1774 
1775 	/* determine maximal number of items we can fit into neighbors */
1776 	check_left(tb, h, lfree);
1777 	check_right(tb, h, rfree);
1778 
1779 	/*
1780 	 * Balance condition for the internal node is valid.
1781 	 * In this case we balance only if it leads to better packing.
1782 	 */
1783 	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1784 		/*
1785 		 * Here we join S[h] with one of its neighbors,
1786 		 * which is impossible with greater values of new_nr_item.
1787 		 */
1788 		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1789 			/* All contents of S[h] can be moved to L[h]. */
1790 			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1791 				int n;
1792 				int order_L;
1793 
1794 				order_L =
1795 				    ((n =
1796 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1797 							  h)) ==
1798 				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1799 				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1800 				    (DC_SIZE + KEY_SIZE);
1801 				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1802 					       -1);
1803 				return CARRY_ON;
1804 			}
1805 
1806 			/* All contents of S[h] can be moved to R[h]. */
1807 			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1808 				int n;
1809 				int order_R;
1810 
1811 				order_R =
1812 				    ((n =
1813 				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1814 							  h)) ==
1815 				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1816 				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1817 				    (DC_SIZE + KEY_SIZE);
1818 				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1819 					       -1);
1820 				return CARRY_ON;
1821 			}
1822 		}
1823 
1824 		/*
1825 		 * All contents of S[h] can be moved to the neighbors
1826 		 * (L[h] & R[h]).
1827 		 */
1828 		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1829 			int to_r;
1830 
1831 			to_r =
1832 			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1833 			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1834 			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1835 			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1836 				       0, NULL, -1, -1);
1837 			return CARRY_ON;
1838 		}
1839 
1840 		/* Balancing does not lead to better packing. */
1841 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1842 		return NO_BALANCING_NEEDED;
1843 	}
1844 
1845 	/*
1846 	 * Current node contain insufficient number of items.
1847 	 * Balancing is required.
1848 	 */
1849 	/* Check whether we can merge S[h] with left neighbor. */
1850 	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1851 		if (is_left_neighbor_in_cache(tb, h)
1852 		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1853 			int n;
1854 			int order_L;
1855 
1856 			order_L =
1857 			    ((n =
1858 			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1859 						  h)) ==
1860 			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1861 			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1862 								      KEY_SIZE);
1863 			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1864 			return CARRY_ON;
1865 		}
1866 
1867 	/* Check whether we can merge S[h] with right neighbor. */
1868 	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1869 		int n;
1870 		int order_R;
1871 
1872 		order_R =
1873 		    ((n =
1874 		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1875 					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1876 		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1877 							      KEY_SIZE);
1878 		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1879 		return CARRY_ON;
1880 	}
1881 
1882 	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1883 	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1884 		int to_r;
1885 
1886 		to_r =
1887 		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1888 		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1889 						tb->rnum[h]);
1890 		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1891 			       -1, -1);
1892 		return CARRY_ON;
1893 	}
1894 
1895 	/* For internal nodes try to borrow item from a neighbor */
1896 	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1897 
1898 	/* Borrow one or two items from caching neighbor */
1899 	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1900 		int from_l;
1901 
1902 		from_l =
1903 		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1904 		     1) / 2 - (vn->vn_nr_item + 1);
1905 		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1906 		return CARRY_ON;
1907 	}
1908 
1909 	set_parameters(tb, h, 0,
1910 		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1911 			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1912 	return CARRY_ON;
1913 }
1914 
1915 /*
1916  * Check whether current node S[h] is balanced when Decreasing its size by
1917  * Deleting or Truncating for LEAF node of S+tree.
1918  * Calculate parameters for balancing for current level h.
1919  * Parameters:
1920  *	tb	tree_balance structure;
1921  *	h	current level of the node;
1922  *	inum	item number in S[h];
1923  *	mode	i - insert, p - paste;
1924  * Returns:	1 - schedule occurred;
1925  *	        0 - balancing for higher levels needed;
1926  *	       -1 - no balancing for higher levels needed;
1927  *	       -2 - no disk space.
1928  */
dc_check_balance_leaf(struct tree_balance * tb,int h)1929 static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1930 {
1931 	struct virtual_node *vn = tb->tb_vn;
1932 
1933 	/*
1934 	 * Number of bytes that must be deleted from
1935 	 * (value is negative if bytes are deleted) buffer which
1936 	 * contains node being balanced.  The mnemonic is that the
1937 	 * attempted change in node space used level is levbytes bytes.
1938 	 */
1939 	int levbytes;
1940 
1941 	/* the maximal item size */
1942 	int maxsize, ret;
1943 
1944 	/*
1945 	 * S0 is the node whose balance is currently being checked,
1946 	 * and F0 is its father.
1947 	 */
1948 	struct buffer_head *S0, *F0;
1949 	int lfree, rfree /* free space in L and R */ ;
1950 
1951 	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1952 	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1953 
1954 	levbytes = tb->insert_size[h];
1955 
1956 	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1957 
1958 	if (!F0) {		/* S[0] is the root now. */
1959 
1960 		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1961 		       "vs-8240: attempt to create empty buffer tree");
1962 
1963 		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1964 		return NO_BALANCING_NEEDED;
1965 	}
1966 
1967 	if ((ret = get_parents(tb, h)) != CARRY_ON)
1968 		return ret;
1969 
1970 	/* get free space of neighbors */
1971 	rfree = get_rfree(tb, h);
1972 	lfree = get_lfree(tb, h);
1973 
1974 	create_virtual_node(tb, h);
1975 
1976 	/* if 3 leaves can be merge to one, set parameters and return */
1977 	if (are_leaves_removable(tb, lfree, rfree))
1978 		return CARRY_ON;
1979 
1980 	/*
1981 	 * determine maximal number of items we can shift to the left/right
1982 	 * neighbor and the maximal number of bytes that can flow to the
1983 	 * left/right neighbor from the left/right most liquid item that
1984 	 * cannot be shifted from S[0] entirely
1985 	 */
1986 	check_left(tb, h, lfree);
1987 	check_right(tb, h, rfree);
1988 
1989 	/* check whether we can merge S with left neighbor. */
1990 	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1991 		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1992 		    !tb->FR[h]) {
1993 
1994 			RFALSE(!tb->FL[h],
1995 			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1996 
1997 			/* set parameter to merge S[0] with its left neighbor */
1998 			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1999 			return CARRY_ON;
2000 		}
2001 
2002 	/* check whether we can merge S[0] with right neighbor. */
2003 	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2004 		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2005 		return CARRY_ON;
2006 	}
2007 
2008 	/*
2009 	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2010 	 * Set parameters and return
2011 	 */
2012 	if (is_leaf_removable(tb))
2013 		return CARRY_ON;
2014 
2015 	/* Balancing is not required. */
2016 	tb->s0num = vn->vn_nr_item;
2017 	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2018 	return NO_BALANCING_NEEDED;
2019 }
2020 
2021 /*
2022  * Check whether current node S[h] is balanced when Decreasing its size by
2023  * Deleting or Cutting.
2024  * Calculate parameters for balancing for current level h.
2025  * Parameters:
2026  *	tb	tree_balance structure;
2027  *	h	current level of the node;
2028  *	inum	item number in S[h];
2029  *	mode	d - delete, c - cut.
2030  * Returns:	1 - schedule occurred;
2031  *	        0 - balancing for higher levels needed;
2032  *	       -1 - no balancing for higher levels needed;
2033  *	       -2 - no disk space.
2034  */
dc_check_balance(struct tree_balance * tb,int h)2035 static int dc_check_balance(struct tree_balance *tb, int h)
2036 {
2037 	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2038 	       "vs-8250: S is not initialized");
2039 
2040 	if (h)
2041 		return dc_check_balance_internal(tb, h);
2042 	else
2043 		return dc_check_balance_leaf(tb, h);
2044 }
2045 
2046 /*
2047  * Check whether current node S[h] is balanced.
2048  * Calculate parameters for balancing for current level h.
2049  * Parameters:
2050  *
2051  *	tb	tree_balance structure:
2052  *
2053  *              tb is a large structure that must be read about in the header
2054  *		file at the same time as this procedure if the reader is
2055  *		to successfully understand this procedure
2056  *
2057  *	h	current level of the node;
2058  *	inum	item number in S[h];
2059  *	mode	i - insert, p - paste, d - delete, c - cut.
2060  * Returns:	1 - schedule occurred;
2061  *	        0 - balancing for higher levels needed;
2062  *	       -1 - no balancing for higher levels needed;
2063  *	       -2 - no disk space.
2064  */
check_balance(int mode,struct tree_balance * tb,int h,int inum,int pos_in_item,struct item_head * ins_ih,const void * data)2065 static int check_balance(int mode,
2066 			 struct tree_balance *tb,
2067 			 int h,
2068 			 int inum,
2069 			 int pos_in_item,
2070 			 struct item_head *ins_ih, const void *data)
2071 {
2072 	struct virtual_node *vn;
2073 
2074 	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2075 	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2076 	vn->vn_mode = mode;
2077 	vn->vn_affected_item_num = inum;
2078 	vn->vn_pos_in_item = pos_in_item;
2079 	vn->vn_ins_ih = ins_ih;
2080 	vn->vn_data = data;
2081 
2082 	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2083 	       "vs-8255: ins_ih can not be 0 in insert mode");
2084 
2085 	/* Calculate balance parameters when size of node is increasing. */
2086 	if (tb->insert_size[h] > 0)
2087 		return ip_check_balance(tb, h);
2088 
2089 	/* Calculate balance parameters when  size of node is decreasing. */
2090 	return dc_check_balance(tb, h);
2091 }
2092 
2093 /* Check whether parent at the path is the really parent of the current node.*/
get_direct_parent(struct tree_balance * tb,int h)2094 static int get_direct_parent(struct tree_balance *tb, int h)
2095 {
2096 	struct buffer_head *bh;
2097 	struct treepath *path = tb->tb_path;
2098 	int position,
2099 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2100 
2101 	/* We are in the root or in the new root. */
2102 	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2103 
2104 		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2105 		       "PAP-8260: invalid offset in the path");
2106 
2107 		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2108 		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2109 			/* Root is not changed. */
2110 			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2111 			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2112 			return CARRY_ON;
2113 		}
2114 		/* Root is changed and we must recalculate the path. */
2115 		return REPEAT_SEARCH;
2116 	}
2117 
2118 	/* Parent in the path is not in the tree. */
2119 	if (!B_IS_IN_TREE
2120 	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2121 		return REPEAT_SEARCH;
2122 
2123 	if ((position =
2124 	     PATH_OFFSET_POSITION(path,
2125 				  path_offset - 1)) > B_NR_ITEMS(bh))
2126 		return REPEAT_SEARCH;
2127 
2128 	/* Parent in the path is not parent of the current node in the tree. */
2129 	if (B_N_CHILD_NUM(bh, position) !=
2130 	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2131 		return REPEAT_SEARCH;
2132 
2133 	if (buffer_locked(bh)) {
2134 		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2135 		__wait_on_buffer(bh);
2136 		reiserfs_write_lock_nested(tb->tb_sb, depth);
2137 		if (FILESYSTEM_CHANGED_TB(tb))
2138 			return REPEAT_SEARCH;
2139 	}
2140 
2141 	/*
2142 	 * Parent in the path is unlocked and really parent
2143 	 * of the current node.
2144 	 */
2145 	return CARRY_ON;
2146 }
2147 
2148 /*
2149  * Using lnum[h] and rnum[h] we should determine what neighbors
2150  * of S[h] we
2151  * need in order to balance S[h], and get them if necessary.
2152  * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
2153  *	        CARRY_ON - schedule didn't occur while the function worked;
2154  */
get_neighbors(struct tree_balance * tb,int h)2155 static int get_neighbors(struct tree_balance *tb, int h)
2156 {
2157 	int child_position,
2158 	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2159 	unsigned long son_number;
2160 	struct super_block *sb = tb->tb_sb;
2161 	struct buffer_head *bh;
2162 	int depth;
2163 
2164 	PROC_INFO_INC(sb, get_neighbors[h]);
2165 
2166 	if (tb->lnum[h]) {
2167 		/* We need left neighbor to balance S[h]. */
2168 		PROC_INFO_INC(sb, need_l_neighbor[h]);
2169 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2170 
2171 		RFALSE(bh == tb->FL[h] &&
2172 		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2173 		       "PAP-8270: invalid position in the parent");
2174 
2175 		child_position =
2176 		    (bh ==
2177 		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2178 								       FL[h]);
2179 		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2180 		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2181 		bh = sb_bread(sb, son_number);
2182 		reiserfs_write_lock_nested(tb->tb_sb, depth);
2183 		if (!bh)
2184 			return IO_ERROR;
2185 		if (FILESYSTEM_CHANGED_TB(tb)) {
2186 			brelse(bh);
2187 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2188 			return REPEAT_SEARCH;
2189 		}
2190 
2191 		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2192 		       child_position > B_NR_ITEMS(tb->FL[h]) ||
2193 		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
2194 		       bh->b_blocknr, "PAP-8275: invalid parent");
2195 		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2196 		RFALSE(!h &&
2197 		       B_FREE_SPACE(bh) !=
2198 		       MAX_CHILD_SIZE(bh) -
2199 		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
2200 		       "PAP-8290: invalid child size of left neighbor");
2201 
2202 		brelse(tb->L[h]);
2203 		tb->L[h] = bh;
2204 	}
2205 
2206 	/* We need right neighbor to balance S[path_offset]. */
2207 	if (tb->rnum[h]) {
2208 		PROC_INFO_INC(sb, need_r_neighbor[h]);
2209 		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2210 
2211 		RFALSE(bh == tb->FR[h] &&
2212 		       PATH_OFFSET_POSITION(tb->tb_path,
2213 					    path_offset) >=
2214 		       B_NR_ITEMS(bh),
2215 		       "PAP-8295: invalid position in the parent");
2216 
2217 		child_position =
2218 		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2219 		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2220 		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2221 		bh = sb_bread(sb, son_number);
2222 		reiserfs_write_lock_nested(tb->tb_sb, depth);
2223 		if (!bh)
2224 			return IO_ERROR;
2225 		if (FILESYSTEM_CHANGED_TB(tb)) {
2226 			brelse(bh);
2227 			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2228 			return REPEAT_SEARCH;
2229 		}
2230 		brelse(tb->R[h]);
2231 		tb->R[h] = bh;
2232 
2233 		RFALSE(!h
2234 		       && B_FREE_SPACE(bh) !=
2235 		       MAX_CHILD_SIZE(bh) -
2236 		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2237 		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2238 		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2239 		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2240 
2241 	}
2242 	return CARRY_ON;
2243 }
2244 
get_virtual_node_size(struct super_block * sb,struct buffer_head * bh)2245 static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2246 {
2247 	int max_num_of_items;
2248 	int max_num_of_entries;
2249 	unsigned long blocksize = sb->s_blocksize;
2250 
2251 #define MIN_NAME_LEN 1
2252 
2253 	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2254 	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2255 	    (DEH_SIZE + MIN_NAME_LEN);
2256 
2257 	return sizeof(struct virtual_node) +
2258 	    max(max_num_of_items * sizeof(struct virtual_item),
2259 		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2260 		(max_num_of_entries - 1) * sizeof(__u16));
2261 }
2262 
2263 /*
2264  * maybe we should fail balancing we are going to perform when kmalloc
2265  * fails several times. But now it will loop until kmalloc gets
2266  * required memory
2267  */
get_mem_for_virtual_node(struct tree_balance * tb)2268 static int get_mem_for_virtual_node(struct tree_balance *tb)
2269 {
2270 	int check_fs = 0;
2271 	int size;
2272 	char *buf;
2273 
2274 	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2275 
2276 	/* we have to allocate more memory for virtual node */
2277 	if (size > tb->vn_buf_size) {
2278 		if (tb->vn_buf) {
2279 			/* free memory allocated before */
2280 			kfree(tb->vn_buf);
2281 			/* this is not needed if kfree is atomic */
2282 			check_fs = 1;
2283 		}
2284 
2285 		/* virtual node requires now more memory */
2286 		tb->vn_buf_size = size;
2287 
2288 		/* get memory for virtual item */
2289 		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2290 		if (!buf) {
2291 			/*
2292 			 * getting memory with GFP_KERNEL priority may involve
2293 			 * balancing now (due to indirect_to_direct conversion
2294 			 * on dcache shrinking). So, release path and collected
2295 			 * resources here
2296 			 */
2297 			free_buffers_in_tb(tb);
2298 			buf = kmalloc(size, GFP_NOFS);
2299 			if (!buf) {
2300 				tb->vn_buf_size = 0;
2301 			}
2302 			tb->vn_buf = buf;
2303 			schedule();
2304 			return REPEAT_SEARCH;
2305 		}
2306 
2307 		tb->vn_buf = buf;
2308 	}
2309 
2310 	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2311 		return REPEAT_SEARCH;
2312 
2313 	return CARRY_ON;
2314 }
2315 
2316 #ifdef CONFIG_REISERFS_CHECK
tb_buffer_sanity_check(struct super_block * sb,struct buffer_head * bh,const char * descr,int level)2317 static void tb_buffer_sanity_check(struct super_block *sb,
2318 				   struct buffer_head *bh,
2319 				   const char *descr, int level)
2320 {
2321 	if (bh) {
2322 		if (atomic_read(&(bh->b_count)) <= 0)
2323 
2324 			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2325 				       "reference counter for buffer %s[%d] "
2326 				       "(%b)", descr, level, bh);
2327 
2328 		if (!buffer_uptodate(bh))
2329 			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2330 				       "to date %s[%d] (%b)",
2331 				       descr, level, bh);
2332 
2333 		if (!B_IS_IN_TREE(bh))
2334 			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2335 				       "in tree %s[%d] (%b)",
2336 				       descr, level, bh);
2337 
2338 		if (bh->b_bdev != sb->s_bdev)
2339 			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2340 				       "device %s[%d] (%b)",
2341 				       descr, level, bh);
2342 
2343 		if (bh->b_size != sb->s_blocksize)
2344 			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2345 				       "blocksize %s[%d] (%b)",
2346 				       descr, level, bh);
2347 
2348 		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2349 			reiserfs_panic(sb, "jmacd-6", "buffer block "
2350 				       "number too high %s[%d] (%b)",
2351 				       descr, level, bh);
2352 	}
2353 }
2354 #else
tb_buffer_sanity_check(struct super_block * sb,struct buffer_head * bh,const char * descr,int level)2355 static void tb_buffer_sanity_check(struct super_block *sb,
2356 				   struct buffer_head *bh,
2357 				   const char *descr, int level)
2358 {;
2359 }
2360 #endif
2361 
clear_all_dirty_bits(struct super_block * s,struct buffer_head * bh)2362 static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2363 {
2364 	return reiserfs_prepare_for_journal(s, bh, 0);
2365 }
2366 
wait_tb_buffers_until_unlocked(struct tree_balance * tb)2367 static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2368 {
2369 	struct buffer_head *locked;
2370 #ifdef CONFIG_REISERFS_CHECK
2371 	int repeat_counter = 0;
2372 #endif
2373 	int i;
2374 
2375 	do {
2376 
2377 		locked = NULL;
2378 
2379 		for (i = tb->tb_path->path_length;
2380 		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2381 			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2382 				/*
2383 				 * if I understand correctly, we can only
2384 				 * be sure the last buffer in the path is
2385 				 * in the tree --clm
2386 				 */
2387 #ifdef CONFIG_REISERFS_CHECK
2388 				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2389 				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2390 					tb_buffer_sanity_check(tb->tb_sb,
2391 							       PATH_OFFSET_PBUFFER
2392 							       (tb->tb_path,
2393 								i), "S",
2394 							       tb->tb_path->
2395 							       path_length - i);
2396 #endif
2397 				if (!clear_all_dirty_bits(tb->tb_sb,
2398 							  PATH_OFFSET_PBUFFER
2399 							  (tb->tb_path,
2400 							   i))) {
2401 					locked =
2402 					    PATH_OFFSET_PBUFFER(tb->tb_path,
2403 								i);
2404 				}
2405 			}
2406 		}
2407 
2408 		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2409 		     i++) {
2410 
2411 			if (tb->lnum[i]) {
2412 
2413 				if (tb->L[i]) {
2414 					tb_buffer_sanity_check(tb->tb_sb,
2415 							       tb->L[i],
2416 							       "L", i);
2417 					if (!clear_all_dirty_bits
2418 					    (tb->tb_sb, tb->L[i]))
2419 						locked = tb->L[i];
2420 				}
2421 
2422 				if (!locked && tb->FL[i]) {
2423 					tb_buffer_sanity_check(tb->tb_sb,
2424 							       tb->FL[i],
2425 							       "FL", i);
2426 					if (!clear_all_dirty_bits
2427 					    (tb->tb_sb, tb->FL[i]))
2428 						locked = tb->FL[i];
2429 				}
2430 
2431 				if (!locked && tb->CFL[i]) {
2432 					tb_buffer_sanity_check(tb->tb_sb,
2433 							       tb->CFL[i],
2434 							       "CFL", i);
2435 					if (!clear_all_dirty_bits
2436 					    (tb->tb_sb, tb->CFL[i]))
2437 						locked = tb->CFL[i];
2438 				}
2439 
2440 			}
2441 
2442 			if (!locked && (tb->rnum[i])) {
2443 
2444 				if (tb->R[i]) {
2445 					tb_buffer_sanity_check(tb->tb_sb,
2446 							       tb->R[i],
2447 							       "R", i);
2448 					if (!clear_all_dirty_bits
2449 					    (tb->tb_sb, tb->R[i]))
2450 						locked = tb->R[i];
2451 				}
2452 
2453 				if (!locked && tb->FR[i]) {
2454 					tb_buffer_sanity_check(tb->tb_sb,
2455 							       tb->FR[i],
2456 							       "FR", i);
2457 					if (!clear_all_dirty_bits
2458 					    (tb->tb_sb, tb->FR[i]))
2459 						locked = tb->FR[i];
2460 				}
2461 
2462 				if (!locked && tb->CFR[i]) {
2463 					tb_buffer_sanity_check(tb->tb_sb,
2464 							       tb->CFR[i],
2465 							       "CFR", i);
2466 					if (!clear_all_dirty_bits
2467 					    (tb->tb_sb, tb->CFR[i]))
2468 						locked = tb->CFR[i];
2469 				}
2470 			}
2471 		}
2472 
2473 		/*
2474 		 * as far as I can tell, this is not required.  The FEB list
2475 		 * seems to be full of newly allocated nodes, which will
2476 		 * never be locked, dirty, or anything else.
2477 		 * To be safe, I'm putting in the checks and waits in.
2478 		 * For the moment, they are needed to keep the code in
2479 		 * journal.c from complaining about the buffer.
2480 		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
2481 		 */
2482 		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2483 			if (tb->FEB[i]) {
2484 				if (!clear_all_dirty_bits
2485 				    (tb->tb_sb, tb->FEB[i]))
2486 					locked = tb->FEB[i];
2487 			}
2488 		}
2489 
2490 		if (locked) {
2491 			int depth;
2492 #ifdef CONFIG_REISERFS_CHECK
2493 			repeat_counter++;
2494 			if ((repeat_counter % 10000) == 0) {
2495 				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2496 						 "too many iterations waiting "
2497 						 "for buffer to unlock "
2498 						 "(%b)", locked);
2499 
2500 				/* Don't loop forever.  Try to recover from possible error. */
2501 
2502 				return (FILESYSTEM_CHANGED_TB(tb)) ?
2503 				    REPEAT_SEARCH : CARRY_ON;
2504 			}
2505 #endif
2506 			depth = reiserfs_write_unlock_nested(tb->tb_sb);
2507 			__wait_on_buffer(locked);
2508 			reiserfs_write_lock_nested(tb->tb_sb, depth);
2509 			if (FILESYSTEM_CHANGED_TB(tb))
2510 				return REPEAT_SEARCH;
2511 		}
2512 
2513 	} while (locked);
2514 
2515 	return CARRY_ON;
2516 }
2517 
2518 /*
2519  * Prepare for balancing, that is
2520  *	get all necessary parents, and neighbors;
2521  *	analyze what and where should be moved;
2522  *	get sufficient number of new nodes;
2523  * Balancing will start only after all resources will be collected at a time.
2524  *
2525  * When ported to SMP kernels, only at the last moment after all needed nodes
2526  * are collected in cache, will the resources be locked using the usual
2527  * textbook ordered lock acquisition algorithms.  Note that ensuring that
2528  * this code neither write locks what it does not need to write lock nor locks
2529  * out of order will be a pain in the butt that could have been avoided.
2530  * Grumble grumble. -Hans
2531  *
2532  * fix is meant in the sense of render unchanging
2533  *
2534  * Latency might be improved by first gathering a list of what buffers
2535  * are needed and then getting as many of them in parallel as possible? -Hans
2536  *
2537  * Parameters:
2538  *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2539  *	tb	tree_balance structure;
2540  *	inum	item number in S[h];
2541  *      pos_in_item - comment this if you can
2542  *      ins_ih	item head of item being inserted
2543  *	data	inserted item or data to be pasted
2544  * Returns:	1 - schedule occurred while the function worked;
2545  *	        0 - schedule didn't occur while the function worked;
2546  *             -1 - if no_disk_space
2547  */
2548 
fix_nodes(int op_mode,struct tree_balance * tb,struct item_head * ins_ih,const void * data)2549 int fix_nodes(int op_mode, struct tree_balance *tb,
2550 	      struct item_head *ins_ih, const void *data)
2551 {
2552 	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2553 	int pos_in_item;
2554 
2555 	/*
2556 	 * we set wait_tb_buffers_run when we have to restore any dirty
2557 	 * bits cleared during wait_tb_buffers_run
2558 	 */
2559 	int wait_tb_buffers_run = 0;
2560 	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2561 
2562 	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2563 
2564 	pos_in_item = tb->tb_path->pos_in_item;
2565 
2566 	tb->fs_gen = get_generation(tb->tb_sb);
2567 
2568 	/*
2569 	 * we prepare and log the super here so it will already be in the
2570 	 * transaction when do_balance needs to change it.
2571 	 * This way do_balance won't have to schedule when trying to prepare
2572 	 * the super for logging
2573 	 */
2574 	reiserfs_prepare_for_journal(tb->tb_sb,
2575 				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2576 	journal_mark_dirty(tb->transaction_handle,
2577 			   SB_BUFFER_WITH_SB(tb->tb_sb));
2578 	if (FILESYSTEM_CHANGED_TB(tb))
2579 		return REPEAT_SEARCH;
2580 
2581 	/* if it possible in indirect_to_direct conversion */
2582 	if (buffer_locked(tbS0)) {
2583 		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2584 		__wait_on_buffer(tbS0);
2585 		reiserfs_write_lock_nested(tb->tb_sb, depth);
2586 		if (FILESYSTEM_CHANGED_TB(tb))
2587 			return REPEAT_SEARCH;
2588 	}
2589 #ifdef CONFIG_REISERFS_CHECK
2590 	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2591 		print_cur_tb("fix_nodes");
2592 		reiserfs_panic(tb->tb_sb, "PAP-8305",
2593 			       "there is pending do_balance");
2594 	}
2595 
2596 	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2597 		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2598 			       "not uptodate at the beginning of fix_nodes "
2599 			       "or not in tree (mode %c)",
2600 			       tbS0, tbS0, op_mode);
2601 
2602 	/* Check parameters. */
2603 	switch (op_mode) {
2604 	case M_INSERT:
2605 		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2606 			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2607 				       "item number %d (in S0 - %d) in case "
2608 				       "of insert", item_num,
2609 				       B_NR_ITEMS(tbS0));
2610 		break;
2611 	case M_PASTE:
2612 	case M_DELETE:
2613 	case M_CUT:
2614 		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2615 			print_block(tbS0, 0, -1, -1);
2616 			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2617 				       "item number(%d); mode = %c "
2618 				       "insert_size = %d",
2619 				       item_num, op_mode,
2620 				       tb->insert_size[0]);
2621 		}
2622 		break;
2623 	default:
2624 		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2625 			       "of operation");
2626 	}
2627 #endif
2628 
2629 	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2630 		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2631 		return REPEAT_SEARCH;
2632 
2633 	/* Starting from the leaf level; for all levels h of the tree. */
2634 	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2635 		ret = get_direct_parent(tb, h);
2636 		if (ret != CARRY_ON)
2637 			goto repeat;
2638 
2639 		ret = check_balance(op_mode, tb, h, item_num,
2640 				    pos_in_item, ins_ih, data);
2641 		if (ret != CARRY_ON) {
2642 			if (ret == NO_BALANCING_NEEDED) {
2643 				/* No balancing for higher levels needed. */
2644 				ret = get_neighbors(tb, h);
2645 				if (ret != CARRY_ON)
2646 					goto repeat;
2647 				if (h != MAX_HEIGHT - 1)
2648 					tb->insert_size[h + 1] = 0;
2649 				/*
2650 				 * ok, analysis and resource gathering
2651 				 * are complete
2652 				 */
2653 				break;
2654 			}
2655 			goto repeat;
2656 		}
2657 
2658 		ret = get_neighbors(tb, h);
2659 		if (ret != CARRY_ON)
2660 			goto repeat;
2661 
2662 		/*
2663 		 * No disk space, or schedule occurred and analysis may be
2664 		 * invalid and needs to be redone.
2665 		 */
2666 		ret = get_empty_nodes(tb, h);
2667 		if (ret != CARRY_ON)
2668 			goto repeat;
2669 
2670 		/*
2671 		 * We have a positive insert size but no nodes exist on this
2672 		 * level, this means that we are creating a new root.
2673 		 */
2674 		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2675 
2676 			RFALSE(tb->blknum[h] != 1,
2677 			       "PAP-8350: creating new empty root");
2678 
2679 			if (h < MAX_HEIGHT - 1)
2680 				tb->insert_size[h + 1] = 0;
2681 		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2682 			/*
2683 			 * The tree needs to be grown, so this node S[h]
2684 			 * which is the root node is split into two nodes,
2685 			 * and a new node (S[h+1]) will be created to
2686 			 * become the root node.
2687 			 */
2688 			if (tb->blknum[h] > 1) {
2689 
2690 				RFALSE(h == MAX_HEIGHT - 1,
2691 				       "PAP-8355: attempt to create too high of a tree");
2692 
2693 				tb->insert_size[h + 1] =
2694 				    (DC_SIZE +
2695 				     KEY_SIZE) * (tb->blknum[h] - 1) +
2696 				    DC_SIZE;
2697 			} else if (h < MAX_HEIGHT - 1)
2698 				tb->insert_size[h + 1] = 0;
2699 		} else
2700 			tb->insert_size[h + 1] =
2701 			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2702 	}
2703 
2704 	ret = wait_tb_buffers_until_unlocked(tb);
2705 	if (ret == CARRY_ON) {
2706 		if (FILESYSTEM_CHANGED_TB(tb)) {
2707 			wait_tb_buffers_run = 1;
2708 			ret = REPEAT_SEARCH;
2709 			goto repeat;
2710 		} else {
2711 			return CARRY_ON;
2712 		}
2713 	} else {
2714 		wait_tb_buffers_run = 1;
2715 		goto repeat;
2716 	}
2717 
2718 repeat:
2719 	/*
2720 	 * fix_nodes was unable to perform its calculation due to
2721 	 * filesystem got changed under us, lack of free disk space or i/o
2722 	 * failure. If the first is the case - the search will be
2723 	 * repeated. For now - free all resources acquired so far except
2724 	 * for the new allocated nodes
2725 	 */
2726 	{
2727 		int i;
2728 
2729 		/* Release path buffers. */
2730 		if (wait_tb_buffers_run) {
2731 			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2732 		} else {
2733 			pathrelse(tb->tb_path);
2734 		}
2735 		/* brelse all resources collected for balancing */
2736 		for (i = 0; i < MAX_HEIGHT; i++) {
2737 			if (wait_tb_buffers_run) {
2738 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2739 								 tb->L[i]);
2740 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2741 								 tb->R[i]);
2742 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2743 								 tb->FL[i]);
2744 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2745 								 tb->FR[i]);
2746 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2747 								 tb->
2748 								 CFL[i]);
2749 				reiserfs_restore_prepared_buffer(tb->tb_sb,
2750 								 tb->
2751 								 CFR[i]);
2752 			}
2753 
2754 			brelse(tb->L[i]);
2755 			brelse(tb->R[i]);
2756 			brelse(tb->FL[i]);
2757 			brelse(tb->FR[i]);
2758 			brelse(tb->CFL[i]);
2759 			brelse(tb->CFR[i]);
2760 
2761 			tb->L[i] = NULL;
2762 			tb->R[i] = NULL;
2763 			tb->FL[i] = NULL;
2764 			tb->FR[i] = NULL;
2765 			tb->CFL[i] = NULL;
2766 			tb->CFR[i] = NULL;
2767 		}
2768 
2769 		if (wait_tb_buffers_run) {
2770 			for (i = 0; i < MAX_FEB_SIZE; i++) {
2771 				if (tb->FEB[i])
2772 					reiserfs_restore_prepared_buffer
2773 					    (tb->tb_sb, tb->FEB[i]);
2774 			}
2775 		}
2776 		return ret;
2777 	}
2778 
2779 }
2780 
unfix_nodes(struct tree_balance * tb)2781 void unfix_nodes(struct tree_balance *tb)
2782 {
2783 	int i;
2784 
2785 	/* Release path buffers. */
2786 	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2787 
2788 	/* brelse all resources collected for balancing */
2789 	for (i = 0; i < MAX_HEIGHT; i++) {
2790 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2791 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2792 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2793 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2794 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2795 		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2796 
2797 		brelse(tb->L[i]);
2798 		brelse(tb->R[i]);
2799 		brelse(tb->FL[i]);
2800 		brelse(tb->FR[i]);
2801 		brelse(tb->CFL[i]);
2802 		brelse(tb->CFR[i]);
2803 	}
2804 
2805 	/* deal with list of allocated (used and unused) nodes */
2806 	for (i = 0; i < MAX_FEB_SIZE; i++) {
2807 		if (tb->FEB[i]) {
2808 			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2809 			/*
2810 			 * de-allocated block which was not used by
2811 			 * balancing and bforget about buffer for it
2812 			 */
2813 			brelse(tb->FEB[i]);
2814 			reiserfs_free_block(tb->transaction_handle, NULL,
2815 					    blocknr, 0);
2816 		}
2817 		if (tb->used[i]) {
2818 			/* release used as new nodes including a new root */
2819 			brelse(tb->used[i]);
2820 		}
2821 	}
2822 
2823 	kfree(tb->vn_buf);
2824 
2825 }
2826