• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4   * All Rights Reserved.
5   */
6  #include "xfs.h"
7  #include "xfs_fs.h"
8  #include "xfs_shared.h"
9  #include "xfs_format.h"
10  #include "xfs_log_format.h"
11  #include "xfs_trans_resv.h"
12  #include "xfs_mount.h"
13  #include "xfs_da_format.h"
14  #include "xfs_da_btree.h"
15  #include "xfs_inode.h"
16  #include "xfs_trans.h"
17  #include "xfs_inode_item.h"
18  #include "xfs_bmap.h"
19  #include "xfs_bmap_util.h"
20  #include "xfs_error.h"
21  #include "xfs_dir2.h"
22  #include "xfs_dir2_priv.h"
23  #include "xfs_ioctl.h"
24  #include "xfs_trace.h"
25  #include "xfs_log.h"
26  #include "xfs_icache.h"
27  #include "xfs_pnfs.h"
28  #include "xfs_iomap.h"
29  #include "xfs_reflink.h"
30  
31  #include <linux/dcache.h>
32  #include <linux/falloc.h>
33  #include <linux/pagevec.h>
34  #include <linux/backing-dev.h>
35  #include <linux/mman.h>
36  
37  static const struct vm_operations_struct xfs_file_vm_ops;
38  
39  int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)40  xfs_update_prealloc_flags(
41  	struct xfs_inode	*ip,
42  	enum xfs_prealloc_flags	flags)
43  {
44  	struct xfs_trans	*tp;
45  	int			error;
46  
47  	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
48  			0, 0, 0, &tp);
49  	if (error)
50  		return error;
51  
52  	xfs_ilock(ip, XFS_ILOCK_EXCL);
53  	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
54  
55  	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
56  		VFS_I(ip)->i_mode &= ~S_ISUID;
57  		if (VFS_I(ip)->i_mode & S_IXGRP)
58  			VFS_I(ip)->i_mode &= ~S_ISGID;
59  		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
60  	}
61  
62  	if (flags & XFS_PREALLOC_SET)
63  		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
64  	if (flags & XFS_PREALLOC_CLEAR)
65  		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
66  
67  	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
68  	if (flags & XFS_PREALLOC_SYNC)
69  		xfs_trans_set_sync(tp);
70  	return xfs_trans_commit(tp);
71  }
72  
73  /*
74   * Fsync operations on directories are much simpler than on regular files,
75   * as there is no file data to flush, and thus also no need for explicit
76   * cache flush operations, and there are no non-transaction metadata updates
77   * on directories either.
78   */
79  STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)80  xfs_dir_fsync(
81  	struct file		*file,
82  	loff_t			start,
83  	loff_t			end,
84  	int			datasync)
85  {
86  	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
87  	struct xfs_mount	*mp = ip->i_mount;
88  	xfs_lsn_t		lsn = 0;
89  
90  	trace_xfs_dir_fsync(ip);
91  
92  	xfs_ilock(ip, XFS_ILOCK_SHARED);
93  	if (xfs_ipincount(ip))
94  		lsn = ip->i_itemp->ili_last_lsn;
95  	xfs_iunlock(ip, XFS_ILOCK_SHARED);
96  
97  	if (!lsn)
98  		return 0;
99  	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
100  }
101  
102  STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)103  xfs_file_fsync(
104  	struct file		*file,
105  	loff_t			start,
106  	loff_t			end,
107  	int			datasync)
108  {
109  	struct inode		*inode = file->f_mapping->host;
110  	struct xfs_inode	*ip = XFS_I(inode);
111  	struct xfs_mount	*mp = ip->i_mount;
112  	int			error = 0;
113  	int			log_flushed = 0;
114  	xfs_lsn_t		lsn = 0;
115  
116  	trace_xfs_file_fsync(ip);
117  
118  	error = file_write_and_wait_range(file, start, end);
119  	if (error)
120  		return error;
121  
122  	if (XFS_FORCED_SHUTDOWN(mp))
123  		return -EIO;
124  
125  	xfs_iflags_clear(ip, XFS_ITRUNCATED);
126  
127  	/*
128  	 * If we have an RT and/or log subvolume we need to make sure to flush
129  	 * the write cache the device used for file data first.  This is to
130  	 * ensure newly written file data make it to disk before logging the new
131  	 * inode size in case of an extending write.
132  	 */
133  	if (XFS_IS_REALTIME_INODE(ip))
134  		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
135  	else if (mp->m_logdev_targp != mp->m_ddev_targp)
136  		xfs_blkdev_issue_flush(mp->m_ddev_targp);
137  
138  	/*
139  	 * All metadata updates are logged, which means that we just have to
140  	 * flush the log up to the latest LSN that touched the inode. If we have
141  	 * concurrent fsync/fdatasync() calls, we need them to all block on the
142  	 * log force before we clear the ili_fsync_fields field. This ensures
143  	 * that we don't get a racing sync operation that does not wait for the
144  	 * metadata to hit the journal before returning. If we race with
145  	 * clearing the ili_fsync_fields, then all that will happen is the log
146  	 * force will do nothing as the lsn will already be on disk. We can't
147  	 * race with setting ili_fsync_fields because that is done under
148  	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
149  	 * until after the ili_fsync_fields is cleared.
150  	 */
151  	xfs_ilock(ip, XFS_ILOCK_SHARED);
152  	if (xfs_ipincount(ip)) {
153  		if (!datasync ||
154  		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
155  			lsn = ip->i_itemp->ili_last_lsn;
156  	}
157  
158  	if (lsn) {
159  		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
160  		ip->i_itemp->ili_fsync_fields = 0;
161  	}
162  	xfs_iunlock(ip, XFS_ILOCK_SHARED);
163  
164  	/*
165  	 * If we only have a single device, and the log force about was
166  	 * a no-op we might have to flush the data device cache here.
167  	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
168  	 * an already allocated file and thus do not have any metadata to
169  	 * commit.
170  	 */
171  	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
172  	    mp->m_logdev_targp == mp->m_ddev_targp)
173  		xfs_blkdev_issue_flush(mp->m_ddev_targp);
174  
175  	return error;
176  }
177  
178  STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)179  xfs_file_dio_aio_read(
180  	struct kiocb		*iocb,
181  	struct iov_iter		*to)
182  {
183  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
184  	size_t			count = iov_iter_count(to);
185  	ssize_t			ret;
186  
187  	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
188  
189  	if (!count)
190  		return 0; /* skip atime */
191  
192  	file_accessed(iocb->ki_filp);
193  
194  	xfs_ilock(ip, XFS_IOLOCK_SHARED);
195  	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
196  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
197  
198  	return ret;
199  }
200  
201  static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)202  xfs_file_dax_read(
203  	struct kiocb		*iocb,
204  	struct iov_iter		*to)
205  {
206  	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
207  	size_t			count = iov_iter_count(to);
208  	ssize_t			ret = 0;
209  
210  	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
211  
212  	if (!count)
213  		return 0; /* skip atime */
214  
215  	if (iocb->ki_flags & IOCB_NOWAIT) {
216  		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
217  			return -EAGAIN;
218  	} else {
219  		xfs_ilock(ip, XFS_IOLOCK_SHARED);
220  	}
221  
222  	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
223  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
224  
225  	file_accessed(iocb->ki_filp);
226  	return ret;
227  }
228  
229  STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)230  xfs_file_buffered_aio_read(
231  	struct kiocb		*iocb,
232  	struct iov_iter		*to)
233  {
234  	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
235  	ssize_t			ret;
236  
237  	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
238  
239  	if (iocb->ki_flags & IOCB_NOWAIT) {
240  		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
241  			return -EAGAIN;
242  	} else {
243  		xfs_ilock(ip, XFS_IOLOCK_SHARED);
244  	}
245  	ret = generic_file_read_iter(iocb, to);
246  	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247  
248  	return ret;
249  }
250  
251  STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)252  xfs_file_read_iter(
253  	struct kiocb		*iocb,
254  	struct iov_iter		*to)
255  {
256  	struct inode		*inode = file_inode(iocb->ki_filp);
257  	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
258  	ssize_t			ret = 0;
259  
260  	XFS_STATS_INC(mp, xs_read_calls);
261  
262  	if (XFS_FORCED_SHUTDOWN(mp))
263  		return -EIO;
264  
265  	if (IS_DAX(inode))
266  		ret = xfs_file_dax_read(iocb, to);
267  	else if (iocb->ki_flags & IOCB_DIRECT)
268  		ret = xfs_file_dio_aio_read(iocb, to);
269  	else
270  		ret = xfs_file_buffered_aio_read(iocb, to);
271  
272  	if (ret > 0)
273  		XFS_STATS_ADD(mp, xs_read_bytes, ret);
274  	return ret;
275  }
276  
277  /*
278   * Common pre-write limit and setup checks.
279   *
280   * Called with the iolocked held either shared and exclusive according to
281   * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
282   * if called for a direct write beyond i_size.
283   */
284  STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)285  xfs_file_aio_write_checks(
286  	struct kiocb		*iocb,
287  	struct iov_iter		*from,
288  	int			*iolock)
289  {
290  	struct file		*file = iocb->ki_filp;
291  	struct inode		*inode = file->f_mapping->host;
292  	struct xfs_inode	*ip = XFS_I(inode);
293  	ssize_t			error = 0;
294  	size_t			count = iov_iter_count(from);
295  	bool			drained_dio = false;
296  	loff_t			isize;
297  
298  restart:
299  	error = generic_write_checks(iocb, from);
300  	if (error <= 0)
301  		return error;
302  
303  	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
304  	if (error)
305  		return error;
306  
307  	/*
308  	 * For changing security info in file_remove_privs() we need i_rwsem
309  	 * exclusively.
310  	 */
311  	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
312  		xfs_iunlock(ip, *iolock);
313  		*iolock = XFS_IOLOCK_EXCL;
314  		xfs_ilock(ip, *iolock);
315  		goto restart;
316  	}
317  	/*
318  	 * If the offset is beyond the size of the file, we need to zero any
319  	 * blocks that fall between the existing EOF and the start of this
320  	 * write.  If zeroing is needed and we are currently holding the
321  	 * iolock shared, we need to update it to exclusive which implies
322  	 * having to redo all checks before.
323  	 *
324  	 * We need to serialise against EOF updates that occur in IO
325  	 * completions here. We want to make sure that nobody is changing the
326  	 * size while we do this check until we have placed an IO barrier (i.e.
327  	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
328  	 * The spinlock effectively forms a memory barrier once we have the
329  	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
330  	 * and hence be able to correctly determine if we need to run zeroing.
331  	 */
332  	spin_lock(&ip->i_flags_lock);
333  	isize = i_size_read(inode);
334  	if (iocb->ki_pos > isize) {
335  		spin_unlock(&ip->i_flags_lock);
336  		if (!drained_dio) {
337  			if (*iolock == XFS_IOLOCK_SHARED) {
338  				xfs_iunlock(ip, *iolock);
339  				*iolock = XFS_IOLOCK_EXCL;
340  				xfs_ilock(ip, *iolock);
341  				iov_iter_reexpand(from, count);
342  			}
343  			/*
344  			 * We now have an IO submission barrier in place, but
345  			 * AIO can do EOF updates during IO completion and hence
346  			 * we now need to wait for all of them to drain. Non-AIO
347  			 * DIO will have drained before we are given the
348  			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
349  			 * no-op.
350  			 */
351  			inode_dio_wait(inode);
352  			drained_dio = true;
353  			goto restart;
354  		}
355  
356  		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
357  		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
358  				NULL, &xfs_iomap_ops);
359  		if (error)
360  			return error;
361  	} else
362  		spin_unlock(&ip->i_flags_lock);
363  
364  	/*
365  	 * Updating the timestamps will grab the ilock again from
366  	 * xfs_fs_dirty_inode, so we have to call it after dropping the
367  	 * lock above.  Eventually we should look into a way to avoid
368  	 * the pointless lock roundtrip.
369  	 */
370  	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
371  		error = file_update_time(file);
372  		if (error)
373  			return error;
374  	}
375  
376  	/*
377  	 * If we're writing the file then make sure to clear the setuid and
378  	 * setgid bits if the process is not being run by root.  This keeps
379  	 * people from modifying setuid and setgid binaries.
380  	 */
381  	if (!IS_NOSEC(inode))
382  		return file_remove_privs(file);
383  	return 0;
384  }
385  
386  static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,unsigned flags)387  xfs_dio_write_end_io(
388  	struct kiocb		*iocb,
389  	ssize_t			size,
390  	unsigned		flags)
391  {
392  	struct inode		*inode = file_inode(iocb->ki_filp);
393  	struct xfs_inode	*ip = XFS_I(inode);
394  	loff_t			offset = iocb->ki_pos;
395  	int			error = 0;
396  
397  	trace_xfs_end_io_direct_write(ip, offset, size);
398  
399  	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
400  		return -EIO;
401  
402  	if (size <= 0)
403  		return size;
404  
405  	/*
406  	 * Capture amount written on completion as we can't reliably account
407  	 * for it on submission.
408  	 */
409  	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
410  
411  	if (flags & IOMAP_DIO_COW) {
412  		error = xfs_reflink_end_cow(ip, offset, size);
413  		if (error)
414  			return error;
415  	}
416  
417  	/*
418  	 * Unwritten conversion updates the in-core isize after extent
419  	 * conversion but before updating the on-disk size. Updating isize any
420  	 * earlier allows a racing dio read to find unwritten extents before
421  	 * they are converted.
422  	 */
423  	if (flags & IOMAP_DIO_UNWRITTEN)
424  		return xfs_iomap_write_unwritten(ip, offset, size, true);
425  
426  	/*
427  	 * We need to update the in-core inode size here so that we don't end up
428  	 * with the on-disk inode size being outside the in-core inode size. We
429  	 * have no other method of updating EOF for AIO, so always do it here
430  	 * if necessary.
431  	 *
432  	 * We need to lock the test/set EOF update as we can be racing with
433  	 * other IO completions here to update the EOF. Failing to serialise
434  	 * here can result in EOF moving backwards and Bad Things Happen when
435  	 * that occurs.
436  	 */
437  	spin_lock(&ip->i_flags_lock);
438  	if (offset + size > i_size_read(inode)) {
439  		i_size_write(inode, offset + size);
440  		spin_unlock(&ip->i_flags_lock);
441  		error = xfs_setfilesize(ip, offset, size);
442  	} else {
443  		spin_unlock(&ip->i_flags_lock);
444  	}
445  
446  	return error;
447  }
448  
449  /*
450   * xfs_file_dio_aio_write - handle direct IO writes
451   *
452   * Lock the inode appropriately to prepare for and issue a direct IO write.
453   * By separating it from the buffered write path we remove all the tricky to
454   * follow locking changes and looping.
455   *
456   * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457   * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458   * pages are flushed out.
459   *
460   * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461   * allowing them to be done in parallel with reads and other direct IO writes.
462   * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463   * needs to do sub-block zeroing and that requires serialisation against other
464   * direct IOs to the same block. In this case we need to serialise the
465   * submission of the unaligned IOs so that we don't get racing block zeroing in
466   * the dio layer.  To avoid the problem with aio, we also need to wait for
467   * outstanding IOs to complete so that unwritten extent conversion is completed
468   * before we try to map the overlapping block. This is currently implemented by
469   * hitting it with a big hammer (i.e. inode_dio_wait()).
470   *
471   * Returns with locks held indicated by @iolock and errors indicated by
472   * negative return values.
473   */
474  STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)475  xfs_file_dio_aio_write(
476  	struct kiocb		*iocb,
477  	struct iov_iter		*from)
478  {
479  	struct file		*file = iocb->ki_filp;
480  	struct address_space	*mapping = file->f_mapping;
481  	struct inode		*inode = mapping->host;
482  	struct xfs_inode	*ip = XFS_I(inode);
483  	struct xfs_mount	*mp = ip->i_mount;
484  	ssize_t			ret = 0;
485  	int			unaligned_io = 0;
486  	int			iolock;
487  	size_t			count = iov_iter_count(from);
488  	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
489  					mp->m_rtdev_targp : mp->m_ddev_targp;
490  
491  	/* DIO must be aligned to device logical sector size */
492  	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
493  		return -EINVAL;
494  
495  	/*
496  	 * Don't take the exclusive iolock here unless the I/O is unaligned to
497  	 * the file system block size.  We don't need to consider the EOF
498  	 * extension case here because xfs_file_aio_write_checks() will relock
499  	 * the inode as necessary for EOF zeroing cases and fill out the new
500  	 * inode size as appropriate.
501  	 */
502  	if ((iocb->ki_pos & mp->m_blockmask) ||
503  	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
504  		unaligned_io = 1;
505  
506  		/*
507  		 * We can't properly handle unaligned direct I/O to reflink
508  		 * files yet, as we can't unshare a partial block.
509  		 */
510  		if (xfs_is_reflink_inode(ip)) {
511  			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
512  			return -EREMCHG;
513  		}
514  		iolock = XFS_IOLOCK_EXCL;
515  	} else {
516  		iolock = XFS_IOLOCK_SHARED;
517  	}
518  
519  	if (iocb->ki_flags & IOCB_NOWAIT) {
520  		/* unaligned dio always waits, bail */
521  		if (unaligned_io)
522  			return -EAGAIN;
523  		if (!xfs_ilock_nowait(ip, iolock))
524  			return -EAGAIN;
525  	} else {
526  		xfs_ilock(ip, iolock);
527  	}
528  
529  	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
530  	if (ret)
531  		goto out;
532  	count = iov_iter_count(from);
533  
534  	/*
535  	 * If we are doing unaligned IO, we can't allow any other overlapping IO
536  	 * in-flight at the same time or we risk data corruption. Wait for all
537  	 * other IO to drain before we submit. If the IO is aligned, demote the
538  	 * iolock if we had to take the exclusive lock in
539  	 * xfs_file_aio_write_checks() for other reasons.
540  	 */
541  	if (unaligned_io) {
542  		inode_dio_wait(inode);
543  	} else if (iolock == XFS_IOLOCK_EXCL) {
544  		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
545  		iolock = XFS_IOLOCK_SHARED;
546  	}
547  
548  	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
549  	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
550  
551  	/*
552  	 * If unaligned, this is the only IO in-flight. If it has not yet
553  	 * completed, wait on it before we release the iolock to prevent
554  	 * subsequent overlapping IO.
555  	 */
556  	if (ret == -EIOCBQUEUED && unaligned_io)
557  		inode_dio_wait(inode);
558  out:
559  	xfs_iunlock(ip, iolock);
560  
561  	/*
562  	 * No fallback to buffered IO on errors for XFS, direct IO will either
563  	 * complete fully or fail.
564  	 */
565  	ASSERT(ret < 0 || ret == count);
566  	return ret;
567  }
568  
569  static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)570  xfs_file_dax_write(
571  	struct kiocb		*iocb,
572  	struct iov_iter		*from)
573  {
574  	struct inode		*inode = iocb->ki_filp->f_mapping->host;
575  	struct xfs_inode	*ip = XFS_I(inode);
576  	int			iolock = XFS_IOLOCK_EXCL;
577  	ssize_t			ret, error = 0;
578  	size_t			count;
579  	loff_t			pos;
580  
581  	if (iocb->ki_flags & IOCB_NOWAIT) {
582  		if (!xfs_ilock_nowait(ip, iolock))
583  			return -EAGAIN;
584  	} else {
585  		xfs_ilock(ip, iolock);
586  	}
587  
588  	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
589  	if (ret)
590  		goto out;
591  
592  	pos = iocb->ki_pos;
593  	count = iov_iter_count(from);
594  
595  	trace_xfs_file_dax_write(ip, count, pos);
596  	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
597  	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
598  		i_size_write(inode, iocb->ki_pos);
599  		error = xfs_setfilesize(ip, pos, ret);
600  	}
601  out:
602  	xfs_iunlock(ip, iolock);
603  	if (error)
604  		return error;
605  
606  	if (ret > 0) {
607  		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
608  
609  		/* Handle various SYNC-type writes */
610  		ret = generic_write_sync(iocb, ret);
611  	}
612  	return ret;
613  }
614  
615  STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)616  xfs_file_buffered_aio_write(
617  	struct kiocb		*iocb,
618  	struct iov_iter		*from)
619  {
620  	struct file		*file = iocb->ki_filp;
621  	struct address_space	*mapping = file->f_mapping;
622  	struct inode		*inode = mapping->host;
623  	struct xfs_inode	*ip = XFS_I(inode);
624  	ssize_t			ret;
625  	int			enospc = 0;
626  	int			iolock;
627  
628  	if (iocb->ki_flags & IOCB_NOWAIT)
629  		return -EOPNOTSUPP;
630  
631  write_retry:
632  	iolock = XFS_IOLOCK_EXCL;
633  	xfs_ilock(ip, iolock);
634  
635  	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
636  	if (ret)
637  		goto out;
638  
639  	/* We can write back this queue in page reclaim */
640  	current->backing_dev_info = inode_to_bdi(inode);
641  
642  	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
643  	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
644  	if (likely(ret >= 0))
645  		iocb->ki_pos += ret;
646  
647  	/*
648  	 * If we hit a space limit, try to free up some lingering preallocated
649  	 * space before returning an error. In the case of ENOSPC, first try to
650  	 * write back all dirty inodes to free up some of the excess reserved
651  	 * metadata space. This reduces the chances that the eofblocks scan
652  	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
653  	 * also behaves as a filter to prevent too many eofblocks scans from
654  	 * running at the same time.
655  	 */
656  	if (ret == -EDQUOT && !enospc) {
657  		xfs_iunlock(ip, iolock);
658  		enospc = xfs_inode_free_quota_eofblocks(ip);
659  		if (enospc)
660  			goto write_retry;
661  		enospc = xfs_inode_free_quota_cowblocks(ip);
662  		if (enospc)
663  			goto write_retry;
664  		iolock = 0;
665  	} else if (ret == -ENOSPC && !enospc) {
666  		struct xfs_eofblocks eofb = {0};
667  
668  		enospc = 1;
669  		xfs_flush_inodes(ip->i_mount);
670  
671  		xfs_iunlock(ip, iolock);
672  		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
673  		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
674  		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
675  		goto write_retry;
676  	}
677  
678  	current->backing_dev_info = NULL;
679  out:
680  	if (iolock)
681  		xfs_iunlock(ip, iolock);
682  
683  	if (ret > 0) {
684  		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
685  		/* Handle various SYNC-type writes */
686  		ret = generic_write_sync(iocb, ret);
687  	}
688  	return ret;
689  }
690  
691  STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)692  xfs_file_write_iter(
693  	struct kiocb		*iocb,
694  	struct iov_iter		*from)
695  {
696  	struct file		*file = iocb->ki_filp;
697  	struct address_space	*mapping = file->f_mapping;
698  	struct inode		*inode = mapping->host;
699  	struct xfs_inode	*ip = XFS_I(inode);
700  	ssize_t			ret;
701  	size_t			ocount = iov_iter_count(from);
702  
703  	XFS_STATS_INC(ip->i_mount, xs_write_calls);
704  
705  	if (ocount == 0)
706  		return 0;
707  
708  	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
709  		return -EIO;
710  
711  	if (IS_DAX(inode))
712  		return xfs_file_dax_write(iocb, from);
713  
714  	if (iocb->ki_flags & IOCB_DIRECT) {
715  		/*
716  		 * Allow a directio write to fall back to a buffered
717  		 * write *only* in the case that we're doing a reflink
718  		 * CoW.  In all other directio scenarios we do not
719  		 * allow an operation to fall back to buffered mode.
720  		 */
721  		ret = xfs_file_dio_aio_write(iocb, from);
722  		if (ret != -EREMCHG)
723  			return ret;
724  	}
725  
726  	return xfs_file_buffered_aio_write(iocb, from);
727  }
728  
729  static void
xfs_wait_dax_page(struct inode * inode)730  xfs_wait_dax_page(
731  	struct inode		*inode)
732  {
733  	struct xfs_inode        *ip = XFS_I(inode);
734  
735  	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
736  	schedule();
737  	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
738  }
739  
740  static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)741  xfs_break_dax_layouts(
742  	struct inode		*inode,
743  	bool			*retry)
744  {
745  	struct page		*page;
746  
747  	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
748  
749  	page = dax_layout_busy_page(inode->i_mapping);
750  	if (!page)
751  		return 0;
752  
753  	*retry = true;
754  	return ___wait_var_event(&page->_refcount,
755  			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
756  			0, 0, xfs_wait_dax_page(inode));
757  }
758  
759  int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)760  xfs_break_layouts(
761  	struct inode		*inode,
762  	uint			*iolock,
763  	enum layout_break_reason reason)
764  {
765  	bool			retry;
766  	int			error;
767  
768  	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
769  
770  	do {
771  		retry = false;
772  		switch (reason) {
773  		case BREAK_UNMAP:
774  			error = xfs_break_dax_layouts(inode, &retry);
775  			if (error || retry)
776  				break;
777  			/* fall through */
778  		case BREAK_WRITE:
779  			error = xfs_break_leased_layouts(inode, iolock, &retry);
780  			break;
781  		default:
782  			WARN_ON_ONCE(1);
783  			error = -EINVAL;
784  		}
785  	} while (error == 0 && retry);
786  
787  	return error;
788  }
789  
790  #define	XFS_FALLOC_FL_SUPPORTED						\
791  		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
792  		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
793  		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
794  
795  STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)796  xfs_file_fallocate(
797  	struct file		*file,
798  	int			mode,
799  	loff_t			offset,
800  	loff_t			len)
801  {
802  	struct inode		*inode = file_inode(file);
803  	struct xfs_inode	*ip = XFS_I(inode);
804  	long			error;
805  	enum xfs_prealloc_flags	flags = 0;
806  	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
807  	loff_t			new_size = 0;
808  	bool			do_file_insert = false;
809  
810  	if (!S_ISREG(inode->i_mode))
811  		return -EINVAL;
812  	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
813  		return -EOPNOTSUPP;
814  
815  	xfs_ilock(ip, iolock);
816  	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
817  	if (error)
818  		goto out_unlock;
819  
820  	if (mode & FALLOC_FL_PUNCH_HOLE) {
821  		error = xfs_free_file_space(ip, offset, len);
822  		if (error)
823  			goto out_unlock;
824  	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
825  		unsigned int blksize_mask = i_blocksize(inode) - 1;
826  
827  		if (offset & blksize_mask || len & blksize_mask) {
828  			error = -EINVAL;
829  			goto out_unlock;
830  		}
831  
832  		/*
833  		 * There is no need to overlap collapse range with EOF,
834  		 * in which case it is effectively a truncate operation
835  		 */
836  		if (offset + len >= i_size_read(inode)) {
837  			error = -EINVAL;
838  			goto out_unlock;
839  		}
840  
841  		new_size = i_size_read(inode) - len;
842  
843  		error = xfs_collapse_file_space(ip, offset, len);
844  		if (error)
845  			goto out_unlock;
846  	} else if (mode & FALLOC_FL_INSERT_RANGE) {
847  		unsigned int	blksize_mask = i_blocksize(inode) - 1;
848  		loff_t		isize = i_size_read(inode);
849  
850  		if (offset & blksize_mask || len & blksize_mask) {
851  			error = -EINVAL;
852  			goto out_unlock;
853  		}
854  
855  		/*
856  		 * New inode size must not exceed ->s_maxbytes, accounting for
857  		 * possible signed overflow.
858  		 */
859  		if (inode->i_sb->s_maxbytes - isize < len) {
860  			error = -EFBIG;
861  			goto out_unlock;
862  		}
863  		new_size = isize + len;
864  
865  		/* Offset should be less than i_size */
866  		if (offset >= isize) {
867  			error = -EINVAL;
868  			goto out_unlock;
869  		}
870  		do_file_insert = true;
871  	} else {
872  		flags |= XFS_PREALLOC_SET;
873  
874  		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
875  		    offset + len > i_size_read(inode)) {
876  			new_size = offset + len;
877  			error = inode_newsize_ok(inode, new_size);
878  			if (error)
879  				goto out_unlock;
880  		}
881  
882  		if (mode & FALLOC_FL_ZERO_RANGE)
883  			error = xfs_zero_file_space(ip, offset, len);
884  		else {
885  			if (mode & FALLOC_FL_UNSHARE_RANGE) {
886  				error = xfs_reflink_unshare(ip, offset, len);
887  				if (error)
888  					goto out_unlock;
889  			}
890  			error = xfs_alloc_file_space(ip, offset, len,
891  						     XFS_BMAPI_PREALLOC);
892  		}
893  		if (error)
894  			goto out_unlock;
895  	}
896  
897  	if (file->f_flags & O_DSYNC)
898  		flags |= XFS_PREALLOC_SYNC;
899  
900  	error = xfs_update_prealloc_flags(ip, flags);
901  	if (error)
902  		goto out_unlock;
903  
904  	/* Change file size if needed */
905  	if (new_size) {
906  		struct iattr iattr;
907  
908  		iattr.ia_valid = ATTR_SIZE;
909  		iattr.ia_size = new_size;
910  		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
911  		if (error)
912  			goto out_unlock;
913  	}
914  
915  	/*
916  	 * Perform hole insertion now that the file size has been
917  	 * updated so that if we crash during the operation we don't
918  	 * leave shifted extents past EOF and hence losing access to
919  	 * the data that is contained within them.
920  	 */
921  	if (do_file_insert)
922  		error = xfs_insert_file_space(ip, offset, len);
923  
924  out_unlock:
925  	xfs_iunlock(ip, iolock);
926  	return error;
927  }
928  
929  STATIC int
xfs_file_clone_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)930  xfs_file_clone_range(
931  	struct file	*file_in,
932  	loff_t		pos_in,
933  	struct file	*file_out,
934  	loff_t		pos_out,
935  	u64		len)
936  {
937  	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
938  				     len, false);
939  }
940  
941  STATIC int
xfs_file_dedupe_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)942  xfs_file_dedupe_range(
943  	struct file	*file_in,
944  	loff_t		pos_in,
945  	struct file	*file_out,
946  	loff_t		pos_out,
947  	u64		len)
948  {
949  	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
950  				     len, true);
951  }
952  
953  STATIC int
xfs_file_open(struct inode * inode,struct file * file)954  xfs_file_open(
955  	struct inode	*inode,
956  	struct file	*file)
957  {
958  	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
959  		return -EFBIG;
960  	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
961  		return -EIO;
962  	file->f_mode |= FMODE_NOWAIT;
963  	return 0;
964  }
965  
966  STATIC int
xfs_dir_open(struct inode * inode,struct file * file)967  xfs_dir_open(
968  	struct inode	*inode,
969  	struct file	*file)
970  {
971  	struct xfs_inode *ip = XFS_I(inode);
972  	int		mode;
973  	int		error;
974  
975  	error = xfs_file_open(inode, file);
976  	if (error)
977  		return error;
978  
979  	/*
980  	 * If there are any blocks, read-ahead block 0 as we're almost
981  	 * certain to have the next operation be a read there.
982  	 */
983  	mode = xfs_ilock_data_map_shared(ip);
984  	if (ip->i_d.di_nextents > 0)
985  		error = xfs_dir3_data_readahead(ip, 0, -1);
986  	xfs_iunlock(ip, mode);
987  	return error;
988  }
989  
990  STATIC int
xfs_file_release(struct inode * inode,struct file * filp)991  xfs_file_release(
992  	struct inode	*inode,
993  	struct file	*filp)
994  {
995  	return xfs_release(XFS_I(inode));
996  }
997  
998  STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)999  xfs_file_readdir(
1000  	struct file	*file,
1001  	struct dir_context *ctx)
1002  {
1003  	struct inode	*inode = file_inode(file);
1004  	xfs_inode_t	*ip = XFS_I(inode);
1005  	size_t		bufsize;
1006  
1007  	/*
1008  	 * The Linux API doesn't pass down the total size of the buffer
1009  	 * we read into down to the filesystem.  With the filldir concept
1010  	 * it's not needed for correct information, but the XFS dir2 leaf
1011  	 * code wants an estimate of the buffer size to calculate it's
1012  	 * readahead window and size the buffers used for mapping to
1013  	 * physical blocks.
1014  	 *
1015  	 * Try to give it an estimate that's good enough, maybe at some
1016  	 * point we can change the ->readdir prototype to include the
1017  	 * buffer size.  For now we use the current glibc buffer size.
1018  	 */
1019  	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1020  
1021  	return xfs_readdir(NULL, ip, ctx, bufsize);
1022  }
1023  
1024  STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1025  xfs_file_llseek(
1026  	struct file	*file,
1027  	loff_t		offset,
1028  	int		whence)
1029  {
1030  	struct inode		*inode = file->f_mapping->host;
1031  
1032  	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1033  		return -EIO;
1034  
1035  	switch (whence) {
1036  	default:
1037  		return generic_file_llseek(file, offset, whence);
1038  	case SEEK_HOLE:
1039  		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1040  		break;
1041  	case SEEK_DATA:
1042  		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1043  		break;
1044  	}
1045  
1046  	if (offset < 0)
1047  		return offset;
1048  	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1049  }
1050  
1051  /*
1052   * Locking for serialisation of IO during page faults. This results in a lock
1053   * ordering of:
1054   *
1055   * mmap_sem (MM)
1056   *   sb_start_pagefault(vfs, freeze)
1057   *     i_mmaplock (XFS - truncate serialisation)
1058   *       page_lock (MM)
1059   *         i_lock (XFS - extent map serialisation)
1060   */
1061  static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1062  __xfs_filemap_fault(
1063  	struct vm_fault		*vmf,
1064  	enum page_entry_size	pe_size,
1065  	bool			write_fault)
1066  {
1067  	struct inode		*inode = file_inode(vmf->vma->vm_file);
1068  	struct xfs_inode	*ip = XFS_I(inode);
1069  	vm_fault_t		ret;
1070  
1071  	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1072  
1073  	if (write_fault) {
1074  		sb_start_pagefault(inode->i_sb);
1075  		file_update_time(vmf->vma->vm_file);
1076  	}
1077  
1078  	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1079  	if (IS_DAX(inode)) {
1080  		pfn_t pfn;
1081  
1082  		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1083  		if (ret & VM_FAULT_NEEDDSYNC)
1084  			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1085  	} else {
1086  		if (write_fault)
1087  			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1088  		else
1089  			ret = filemap_fault(vmf);
1090  	}
1091  	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1092  
1093  	if (write_fault)
1094  		sb_end_pagefault(inode->i_sb);
1095  	return ret;
1096  }
1097  
1098  static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1099  xfs_is_write_fault(
1100  	struct vm_fault		*vmf)
1101  {
1102  	return (vmf->flags & FAULT_FLAG_WRITE) &&
1103  	       (vmf->vma->vm_flags & VM_SHARED);
1104  }
1105  
1106  static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1107  xfs_filemap_fault(
1108  	struct vm_fault		*vmf)
1109  {
1110  	/* DAX can shortcut the normal fault path on write faults! */
1111  	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1112  			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1113  			xfs_is_write_fault(vmf));
1114  }
1115  
1116  static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1117  xfs_filemap_huge_fault(
1118  	struct vm_fault		*vmf,
1119  	enum page_entry_size	pe_size)
1120  {
1121  	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1122  		return VM_FAULT_FALLBACK;
1123  
1124  	/* DAX can shortcut the normal fault path on write faults! */
1125  	return __xfs_filemap_fault(vmf, pe_size,
1126  			xfs_is_write_fault(vmf));
1127  }
1128  
1129  static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1130  xfs_filemap_page_mkwrite(
1131  	struct vm_fault		*vmf)
1132  {
1133  	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1134  }
1135  
1136  /*
1137   * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1138   * on write faults. In reality, it needs to serialise against truncate and
1139   * prepare memory for writing so handle is as standard write fault.
1140   */
1141  static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1142  xfs_filemap_pfn_mkwrite(
1143  	struct vm_fault		*vmf)
1144  {
1145  
1146  	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1147  }
1148  
1149  static const struct vm_operations_struct xfs_file_vm_ops = {
1150  	.fault		= xfs_filemap_fault,
1151  	.huge_fault	= xfs_filemap_huge_fault,
1152  	.map_pages	= filemap_map_pages,
1153  	.page_mkwrite	= xfs_filemap_page_mkwrite,
1154  	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1155  };
1156  
1157  STATIC int
xfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1158  xfs_file_mmap(
1159  	struct file	*filp,
1160  	struct vm_area_struct *vma)
1161  {
1162  	/*
1163  	 * We don't support synchronous mappings for non-DAX files. At least
1164  	 * until someone comes with a sensible use case.
1165  	 */
1166  	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1167  		return -EOPNOTSUPP;
1168  
1169  	file_accessed(filp);
1170  	vma->vm_ops = &xfs_file_vm_ops;
1171  	if (IS_DAX(file_inode(filp)))
1172  		vma->vm_flags |= VM_HUGEPAGE;
1173  	return 0;
1174  }
1175  
1176  const struct file_operations xfs_file_operations = {
1177  	.llseek		= xfs_file_llseek,
1178  	.read_iter	= xfs_file_read_iter,
1179  	.write_iter	= xfs_file_write_iter,
1180  	.splice_read	= generic_file_splice_read,
1181  	.splice_write	= iter_file_splice_write,
1182  	.unlocked_ioctl	= xfs_file_ioctl,
1183  #ifdef CONFIG_COMPAT
1184  	.compat_ioctl	= xfs_file_compat_ioctl,
1185  #endif
1186  	.mmap		= xfs_file_mmap,
1187  	.mmap_supported_flags = MAP_SYNC,
1188  	.open		= xfs_file_open,
1189  	.release	= xfs_file_release,
1190  	.fsync		= xfs_file_fsync,
1191  	.get_unmapped_area = thp_get_unmapped_area,
1192  	.fallocate	= xfs_file_fallocate,
1193  	.clone_file_range = xfs_file_clone_range,
1194  	.dedupe_file_range = xfs_file_dedupe_range,
1195  };
1196  
1197  const struct file_operations xfs_dir_file_operations = {
1198  	.open		= xfs_dir_open,
1199  	.read		= generic_read_dir,
1200  	.iterate_shared	= xfs_file_readdir,
1201  	.llseek		= generic_file_llseek,
1202  	.unlocked_ioctl	= xfs_file_ioctl,
1203  #ifdef CONFIG_COMPAT
1204  	.compat_ioctl	= xfs_file_compat_ioctl,
1205  #endif
1206  	.fsync		= xfs_dir_fsync,
1207  };
1208