• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76 
77 /*
78  * This structure really needs to be cleaned up.
79  * Most of it is for TCP, and not used by any of
80  * the other protocols.
81  */
82 
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 					printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95 
96 /* This is the per-socket lock.  The spinlock provides a synchronization
97  * between user contexts and software interrupt processing, whereas the
98  * mini-semaphore synchronizes multiple users amongst themselves.
99  */
100 typedef struct {
101 	spinlock_t		slock;
102 	int			owned;
103 	wait_queue_head_t	wq;
104 	/*
105 	 * We express the mutex-alike socket_lock semantics
106 	 * to the lock validator by explicitly managing
107 	 * the slock as a lock variant (in addition to
108 	 * the slock itself):
109 	 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 	struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114 
115 struct sock;
116 struct proto;
117 struct net;
118 
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121 
122 /**
123  *	struct sock_common - minimal network layer representation of sockets
124  *	@skc_daddr: Foreign IPv4 addr
125  *	@skc_rcv_saddr: Bound local IPv4 addr
126  *	@skc_hash: hash value used with various protocol lookup tables
127  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
128  *	@skc_dport: placeholder for inet_dport/tw_dport
129  *	@skc_num: placeholder for inet_num/tw_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_node: main hash linkage for various protocol lookup tables
140  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141  *	@skc_tx_queue_mapping: tx queue number for this connection
142  *	@skc_rx_queue_mapping: rx queue number for this connection
143  *	@skc_flags: place holder for sk_flags
144  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146  *	@skc_incoming_cpu: record/match cpu processing incoming packets
147  *	@skc_refcnt: reference count
148  *
149  *	This is the minimal network layer representation of sockets, the header
150  *	for struct sock and struct inet_timewait_sock.
151  */
152 struct sock_common {
153 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 	 * address on 64bit arches : cf INET_MATCH()
155 	 */
156 	union {
157 		__addrpair	skc_addrpair;
158 		struct {
159 			__be32	skc_daddr;
160 			__be32	skc_rcv_saddr;
161 		};
162 	};
163 	union  {
164 		unsigned int	skc_hash;
165 		__u16		skc_u16hashes[2];
166 	};
167 	/* skc_dport && skc_num must be grouped as well */
168 	union {
169 		__portpair	skc_portpair;
170 		struct {
171 			__be16	skc_dport;
172 			__u16	skc_num;
173 		};
174 	};
175 
176 	unsigned short		skc_family;
177 	volatile unsigned char	skc_state;
178 	unsigned char		skc_reuse:4;
179 	unsigned char		skc_reuseport:1;
180 	unsigned char		skc_ipv6only:1;
181 	unsigned char		skc_net_refcnt:1;
182 	int			skc_bound_dev_if;
183 	union {
184 		struct hlist_node	skc_bind_node;
185 		struct hlist_node	skc_portaddr_node;
186 	};
187 	struct proto		*skc_prot;
188 	possible_net_t		skc_net;
189 
190 #if IS_ENABLED(CONFIG_IPV6)
191 	struct in6_addr		skc_v6_daddr;
192 	struct in6_addr		skc_v6_rcv_saddr;
193 #endif
194 
195 	atomic64_t		skc_cookie;
196 
197 	/* following fields are padding to force
198 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 	 * assuming IPV6 is enabled. We use this padding differently
200 	 * for different kind of 'sockets'
201 	 */
202 	union {
203 		unsigned long	skc_flags;
204 		struct sock	*skc_listener; /* request_sock */
205 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 	};
207 	/*
208 	 * fields between dontcopy_begin/dontcopy_end
209 	 * are not copied in sock_copy()
210 	 */
211 	/* private: */
212 	int			skc_dontcopy_begin[0];
213 	/* public: */
214 	union {
215 		struct hlist_node	skc_node;
216 		struct hlist_nulls_node skc_nulls_node;
217 	};
218 	unsigned short		skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 	unsigned short		skc_rx_queue_mapping;
221 #endif
222 	union {
223 		int		skc_incoming_cpu;
224 		u32		skc_rcv_wnd;
225 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
226 	};
227 
228 	refcount_t		skc_refcnt;
229 	/* private: */
230 	int                     skc_dontcopy_end[0];
231 	union {
232 		u32		skc_rxhash;
233 		u32		skc_window_clamp;
234 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 	};
236 	/* public: */
237 };
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_napi_id: id of the last napi context to receive data for sk
260   *	@sk_ll_usec: usecs to busypoll when there is no data
261   *	@sk_allocation: allocation mode
262   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
264   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265   *	@sk_sndbuf: size of send buffer in bytes
266   *	@__sk_flags_offset: empty field used to determine location of bitfield
267   *	@sk_padding: unused element for alignment
268   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269   *	@sk_no_check_rx: allow zero checksum in RX packets
270   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273   *	@sk_gso_max_size: Maximum GSO segment size to build
274   *	@sk_gso_max_segs: Maximum number of GSO segments
275   *	@sk_pacing_shift: scaling factor for TCP Small Queues
276   *	@sk_lingertime: %SO_LINGER l_linger setting
277   *	@sk_backlog: always used with the per-socket spinlock held
278   *	@sk_callback_lock: used with the callbacks in the end of this struct
279   *	@sk_error_queue: rarely used
280   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281   *			  IPV6_ADDRFORM for instance)
282   *	@sk_err: last error
283   *	@sk_err_soft: errors that don't cause failure but are the cause of a
284   *		      persistent failure not just 'timed out'
285   *	@sk_drops: raw/udp drops counter
286   *	@sk_ack_backlog: current listen backlog
287   *	@sk_max_ack_backlog: listen backlog set in listen()
288   *	@sk_uid: user id of owner
289   *	@sk_priority: %SO_PRIORITY setting
290   *	@sk_type: socket type (%SOCK_STREAM, etc)
291   *	@sk_protocol: which protocol this socket belongs in this network family
292   *	@sk_peer_pid: &struct pid for this socket's peer
293   *	@sk_peer_cred: %SO_PEERCRED setting
294   *	@sk_rcvlowat: %SO_RCVLOWAT setting
295   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
296   *	@sk_sndtimeo: %SO_SNDTIMEO setting
297   *	@sk_txhash: computed flow hash for use on transmit
298   *	@sk_filter: socket filtering instructions
299   *	@sk_timer: sock cleanup timer
300   *	@sk_stamp: time stamp of last packet received
301   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302   *	@sk_tsflags: SO_TIMESTAMPING socket options
303   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
304   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
305   *	@sk_socket: Identd and reporting IO signals
306   *	@sk_user_data: RPC layer private data
307   *	@sk_frag: cached page frag
308   *	@sk_peek_off: current peek_offset value
309   *	@sk_send_head: front of stuff to transmit
310   *	@sk_security: used by security modules
311   *	@sk_mark: generic packet mark
312   *	@sk_cgrp_data: cgroup data for this cgroup
313   *	@sk_memcg: this socket's memory cgroup association
314   *	@sk_write_pending: a write to stream socket waits to start
315   *	@sk_state_change: callback to indicate change in the state of the sock
316   *	@sk_data_ready: callback to indicate there is data to be processed
317   *	@sk_write_space: callback to indicate there is bf sending space available
318   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319   *	@sk_backlog_rcv: callback to process the backlog
320   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321   *	@sk_reuseport_cb: reuseport group container
322   *	@sk_rcu: used during RCU grace period
323   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
324   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
325   *	@sk_txtime_unused: unused txtime flags
326   */
327 struct sock {
328 	/*
329 	 * Now struct inet_timewait_sock also uses sock_common, so please just
330 	 * don't add nothing before this first member (__sk_common) --acme
331 	 */
332 	struct sock_common	__sk_common;
333 #define sk_node			__sk_common.skc_node
334 #define sk_nulls_node		__sk_common.skc_nulls_node
335 #define sk_refcnt		__sk_common.skc_refcnt
336 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
337 #ifdef CONFIG_XPS
338 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
339 #endif
340 
341 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
342 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
343 #define sk_hash			__sk_common.skc_hash
344 #define sk_portpair		__sk_common.skc_portpair
345 #define sk_num			__sk_common.skc_num
346 #define sk_dport		__sk_common.skc_dport
347 #define sk_addrpair		__sk_common.skc_addrpair
348 #define sk_daddr		__sk_common.skc_daddr
349 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
350 #define sk_family		__sk_common.skc_family
351 #define sk_state		__sk_common.skc_state
352 #define sk_reuse		__sk_common.skc_reuse
353 #define sk_reuseport		__sk_common.skc_reuseport
354 #define sk_ipv6only		__sk_common.skc_ipv6only
355 #define sk_net_refcnt		__sk_common.skc_net_refcnt
356 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
357 #define sk_bind_node		__sk_common.skc_bind_node
358 #define sk_prot			__sk_common.skc_prot
359 #define sk_net			__sk_common.skc_net
360 #define sk_v6_daddr		__sk_common.skc_v6_daddr
361 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
362 #define sk_cookie		__sk_common.skc_cookie
363 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
364 #define sk_flags		__sk_common.skc_flags
365 #define sk_rxhash		__sk_common.skc_rxhash
366 
367 	socket_lock_t		sk_lock;
368 	atomic_t		sk_drops;
369 	int			sk_rcvlowat;
370 	struct sk_buff_head	sk_error_queue;
371 	struct sk_buff_head	sk_receive_queue;
372 	/*
373 	 * The backlog queue is special, it is always used with
374 	 * the per-socket spinlock held and requires low latency
375 	 * access. Therefore we special case it's implementation.
376 	 * Note : rmem_alloc is in this structure to fill a hole
377 	 * on 64bit arches, not because its logically part of
378 	 * backlog.
379 	 */
380 	struct {
381 		atomic_t	rmem_alloc;
382 		int		len;
383 		struct sk_buff	*head;
384 		struct sk_buff	*tail;
385 	} sk_backlog;
386 #define sk_rmem_alloc sk_backlog.rmem_alloc
387 
388 	int			sk_forward_alloc;
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 	unsigned int		sk_ll_usec;
391 	/* ===== mostly read cache line ===== */
392 	unsigned int		sk_napi_id;
393 #endif
394 	int			sk_rcvbuf;
395 
396 	struct sk_filter __rcu	*sk_filter;
397 	union {
398 		struct socket_wq __rcu	*sk_wq;
399 		struct socket_wq	*sk_wq_raw;
400 	};
401 #ifdef CONFIG_XFRM
402 	struct xfrm_policy __rcu *sk_policy[2];
403 #endif
404 	struct dst_entry	*sk_rx_dst;
405 	struct dst_entry __rcu	*sk_dst_cache;
406 	atomic_t		sk_omem_alloc;
407 	int			sk_sndbuf;
408 
409 	/* ===== cache line for TX ===== */
410 	int			sk_wmem_queued;
411 	refcount_t		sk_wmem_alloc;
412 	unsigned long		sk_tsq_flags;
413 	union {
414 		struct sk_buff	*sk_send_head;
415 		struct rb_root	tcp_rtx_queue;
416 	};
417 	struct sk_buff_head	sk_write_queue;
418 	__s32			sk_peek_off;
419 	int			sk_write_pending;
420 	__u32			sk_dst_pending_confirm;
421 	u32			sk_pacing_status; /* see enum sk_pacing */
422 	long			sk_sndtimeo;
423 	struct timer_list	sk_timer;
424 	__u32			sk_priority;
425 	__u32			sk_mark;
426 	u32			sk_pacing_rate; /* bytes per second */
427 	u32			sk_max_pacing_rate;
428 	struct page_frag	sk_frag;
429 	netdev_features_t	sk_route_caps;
430 	netdev_features_t	sk_route_nocaps;
431 	netdev_features_t	sk_route_forced_caps;
432 	int			sk_gso_type;
433 	unsigned int		sk_gso_max_size;
434 	gfp_t			sk_allocation;
435 	__u32			sk_txhash;
436 
437 	/*
438 	 * Because of non atomicity rules, all
439 	 * changes are protected by socket lock.
440 	 */
441 	unsigned int		__sk_flags_offset[0];
442 #ifdef __BIG_ENDIAN_BITFIELD
443 #define SK_FL_PROTO_SHIFT  16
444 #define SK_FL_PROTO_MASK   0x00ff0000
445 
446 #define SK_FL_TYPE_SHIFT   0
447 #define SK_FL_TYPE_MASK    0x0000ffff
448 #else
449 #define SK_FL_PROTO_SHIFT  8
450 #define SK_FL_PROTO_MASK   0x0000ff00
451 
452 #define SK_FL_TYPE_SHIFT   16
453 #define SK_FL_TYPE_MASK    0xffff0000
454 #endif
455 
456 	unsigned int		sk_padding : 1,
457 				sk_kern_sock : 1,
458 				sk_no_check_tx : 1,
459 				sk_no_check_rx : 1,
460 				sk_userlocks : 4,
461 				sk_protocol  : 8,
462 				sk_type      : 16;
463 #define SK_PROTOCOL_MAX U8_MAX
464 	u16			sk_gso_max_segs;
465 	u8			sk_pacing_shift;
466 	unsigned long	        sk_lingertime;
467 	struct proto		*sk_prot_creator;
468 	rwlock_t		sk_callback_lock;
469 	int			sk_err,
470 				sk_err_soft;
471 	u32			sk_ack_backlog;
472 	u32			sk_max_ack_backlog;
473 	kuid_t			sk_uid;
474 	struct pid		*sk_peer_pid;
475 	const struct cred	*sk_peer_cred;
476 	long			sk_rcvtimeo;
477 	ktime_t			sk_stamp;
478 #if BITS_PER_LONG==32
479 	seqlock_t		sk_stamp_seq;
480 #endif
481 	u16			sk_tsflags;
482 	u8			sk_shutdown;
483 	u32			sk_tskey;
484 	atomic_t		sk_zckey;
485 
486 	u8			sk_clockid;
487 	u8			sk_txtime_deadline_mode : 1,
488 				sk_txtime_report_errors : 1,
489 				sk_txtime_unused : 6;
490 
491 	struct socket		*sk_socket;
492 	void			*sk_user_data;
493 #ifdef CONFIG_SECURITY
494 	void			*sk_security;
495 #endif
496 	struct sock_cgroup_data	sk_cgrp_data;
497 	struct mem_cgroup	*sk_memcg;
498 	void			(*sk_state_change)(struct sock *sk);
499 	void			(*sk_data_ready)(struct sock *sk);
500 	void			(*sk_write_space)(struct sock *sk);
501 	void			(*sk_error_report)(struct sock *sk);
502 	int			(*sk_backlog_rcv)(struct sock *sk,
503 						  struct sk_buff *skb);
504 #ifdef CONFIG_SOCK_VALIDATE_XMIT
505 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
506 							struct net_device *dev,
507 							struct sk_buff *skb);
508 #endif
509 	void                    (*sk_destruct)(struct sock *sk);
510 	struct sock_reuseport __rcu	*sk_reuseport_cb;
511 	struct rcu_head		sk_rcu;
512 };
513 
514 enum sk_pacing {
515 	SK_PACING_NONE		= 0,
516 	SK_PACING_NEEDED	= 1,
517 	SK_PACING_FQ		= 2,
518 };
519 
520 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
521 
522 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
523 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
524 
525 /*
526  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
527  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
528  * on a socket means that the socket will reuse everybody else's port
529  * without looking at the other's sk_reuse value.
530  */
531 
532 #define SK_NO_REUSE	0
533 #define SK_CAN_REUSE	1
534 #define SK_FORCE_REUSE	2
535 
536 int sk_set_peek_off(struct sock *sk, int val);
537 
sk_peek_offset(struct sock * sk,int flags)538 static inline int sk_peek_offset(struct sock *sk, int flags)
539 {
540 	if (unlikely(flags & MSG_PEEK)) {
541 		return READ_ONCE(sk->sk_peek_off);
542 	}
543 
544 	return 0;
545 }
546 
sk_peek_offset_bwd(struct sock * sk,int val)547 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
548 {
549 	s32 off = READ_ONCE(sk->sk_peek_off);
550 
551 	if (unlikely(off >= 0)) {
552 		off = max_t(s32, off - val, 0);
553 		WRITE_ONCE(sk->sk_peek_off, off);
554 	}
555 }
556 
sk_peek_offset_fwd(struct sock * sk,int val)557 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
558 {
559 	sk_peek_offset_bwd(sk, -val);
560 }
561 
562 /*
563  * Hashed lists helper routines
564  */
sk_entry(const struct hlist_node * node)565 static inline struct sock *sk_entry(const struct hlist_node *node)
566 {
567 	return hlist_entry(node, struct sock, sk_node);
568 }
569 
__sk_head(const struct hlist_head * head)570 static inline struct sock *__sk_head(const struct hlist_head *head)
571 {
572 	return hlist_entry(head->first, struct sock, sk_node);
573 }
574 
sk_head(const struct hlist_head * head)575 static inline struct sock *sk_head(const struct hlist_head *head)
576 {
577 	return hlist_empty(head) ? NULL : __sk_head(head);
578 }
579 
__sk_nulls_head(const struct hlist_nulls_head * head)580 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
581 {
582 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
583 }
584 
sk_nulls_head(const struct hlist_nulls_head * head)585 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
586 {
587 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
588 }
589 
sk_next(const struct sock * sk)590 static inline struct sock *sk_next(const struct sock *sk)
591 {
592 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
593 }
594 
sk_nulls_next(const struct sock * sk)595 static inline struct sock *sk_nulls_next(const struct sock *sk)
596 {
597 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
598 		hlist_nulls_entry(sk->sk_nulls_node.next,
599 				  struct sock, sk_nulls_node) :
600 		NULL;
601 }
602 
sk_unhashed(const struct sock * sk)603 static inline bool sk_unhashed(const struct sock *sk)
604 {
605 	return hlist_unhashed(&sk->sk_node);
606 }
607 
sk_hashed(const struct sock * sk)608 static inline bool sk_hashed(const struct sock *sk)
609 {
610 	return !sk_unhashed(sk);
611 }
612 
sk_node_init(struct hlist_node * node)613 static inline void sk_node_init(struct hlist_node *node)
614 {
615 	node->pprev = NULL;
616 }
617 
sk_nulls_node_init(struct hlist_nulls_node * node)618 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
619 {
620 	node->pprev = NULL;
621 }
622 
__sk_del_node(struct sock * sk)623 static inline void __sk_del_node(struct sock *sk)
624 {
625 	__hlist_del(&sk->sk_node);
626 }
627 
628 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)629 static inline bool __sk_del_node_init(struct sock *sk)
630 {
631 	if (sk_hashed(sk)) {
632 		__sk_del_node(sk);
633 		sk_node_init(&sk->sk_node);
634 		return true;
635 	}
636 	return false;
637 }
638 
639 /* Grab socket reference count. This operation is valid only
640    when sk is ALREADY grabbed f.e. it is found in hash table
641    or a list and the lookup is made under lock preventing hash table
642    modifications.
643  */
644 
sock_hold(struct sock * sk)645 static __always_inline void sock_hold(struct sock *sk)
646 {
647 	refcount_inc(&sk->sk_refcnt);
648 }
649 
650 /* Ungrab socket in the context, which assumes that socket refcnt
651    cannot hit zero, f.e. it is true in context of any socketcall.
652  */
__sock_put(struct sock * sk)653 static __always_inline void __sock_put(struct sock *sk)
654 {
655 	refcount_dec(&sk->sk_refcnt);
656 }
657 
sk_del_node_init(struct sock * sk)658 static inline bool sk_del_node_init(struct sock *sk)
659 {
660 	bool rc = __sk_del_node_init(sk);
661 
662 	if (rc) {
663 		/* paranoid for a while -acme */
664 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
665 		__sock_put(sk);
666 	}
667 	return rc;
668 }
669 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
670 
__sk_nulls_del_node_init_rcu(struct sock * sk)671 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
672 {
673 	if (sk_hashed(sk)) {
674 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
675 		return true;
676 	}
677 	return false;
678 }
679 
sk_nulls_del_node_init_rcu(struct sock * sk)680 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
681 {
682 	bool rc = __sk_nulls_del_node_init_rcu(sk);
683 
684 	if (rc) {
685 		/* paranoid for a while -acme */
686 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
687 		__sock_put(sk);
688 	}
689 	return rc;
690 }
691 
__sk_add_node(struct sock * sk,struct hlist_head * list)692 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
693 {
694 	hlist_add_head(&sk->sk_node, list);
695 }
696 
sk_add_node(struct sock * sk,struct hlist_head * list)697 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
698 {
699 	sock_hold(sk);
700 	__sk_add_node(sk, list);
701 }
702 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)703 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
704 {
705 	sock_hold(sk);
706 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
707 	    sk->sk_family == AF_INET6)
708 		hlist_add_tail_rcu(&sk->sk_node, list);
709 	else
710 		hlist_add_head_rcu(&sk->sk_node, list);
711 }
712 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)713 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
714 {
715 	sock_hold(sk);
716 	hlist_add_tail_rcu(&sk->sk_node, list);
717 }
718 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)719 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
720 {
721 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
722 }
723 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)724 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
725 {
726 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
727 }
728 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)729 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
730 {
731 	sock_hold(sk);
732 	__sk_nulls_add_node_rcu(sk, list);
733 }
734 
__sk_del_bind_node(struct sock * sk)735 static inline void __sk_del_bind_node(struct sock *sk)
736 {
737 	__hlist_del(&sk->sk_bind_node);
738 }
739 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)740 static inline void sk_add_bind_node(struct sock *sk,
741 					struct hlist_head *list)
742 {
743 	hlist_add_head(&sk->sk_bind_node, list);
744 }
745 
746 #define sk_for_each(__sk, list) \
747 	hlist_for_each_entry(__sk, list, sk_node)
748 #define sk_for_each_rcu(__sk, list) \
749 	hlist_for_each_entry_rcu(__sk, list, sk_node)
750 #define sk_nulls_for_each(__sk, node, list) \
751 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
752 #define sk_nulls_for_each_rcu(__sk, node, list) \
753 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
754 #define sk_for_each_from(__sk) \
755 	hlist_for_each_entry_from(__sk, sk_node)
756 #define sk_nulls_for_each_from(__sk, node) \
757 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
758 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
759 #define sk_for_each_safe(__sk, tmp, list) \
760 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
761 #define sk_for_each_bound(__sk, list) \
762 	hlist_for_each_entry(__sk, list, sk_bind_node)
763 
764 /**
765  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
766  * @tpos:	the type * to use as a loop cursor.
767  * @pos:	the &struct hlist_node to use as a loop cursor.
768  * @head:	the head for your list.
769  * @offset:	offset of hlist_node within the struct.
770  *
771  */
772 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
773 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
774 	     pos != NULL &&						       \
775 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
776 	     pos = rcu_dereference(hlist_next_rcu(pos)))
777 
sk_user_ns(struct sock * sk)778 static inline struct user_namespace *sk_user_ns(struct sock *sk)
779 {
780 	/* Careful only use this in a context where these parameters
781 	 * can not change and must all be valid, such as recvmsg from
782 	 * userspace.
783 	 */
784 	return sk->sk_socket->file->f_cred->user_ns;
785 }
786 
787 /* Sock flags */
788 enum sock_flags {
789 	SOCK_DEAD,
790 	SOCK_DONE,
791 	SOCK_URGINLINE,
792 	SOCK_KEEPOPEN,
793 	SOCK_LINGER,
794 	SOCK_DESTROY,
795 	SOCK_BROADCAST,
796 	SOCK_TIMESTAMP,
797 	SOCK_ZAPPED,
798 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
799 	SOCK_DBG, /* %SO_DEBUG setting */
800 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
801 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
802 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
803 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
804 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
805 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
806 	SOCK_FASYNC, /* fasync() active */
807 	SOCK_RXQ_OVFL,
808 	SOCK_ZEROCOPY, /* buffers from userspace */
809 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
810 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
811 		     * Will use last 4 bytes of packet sent from
812 		     * user-space instead.
813 		     */
814 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
815 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
816 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
817 	SOCK_TXTIME,
818 };
819 
820 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
821 
sock_copy_flags(struct sock * nsk,struct sock * osk)822 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
823 {
824 	nsk->sk_flags = osk->sk_flags;
825 }
826 
sock_set_flag(struct sock * sk,enum sock_flags flag)827 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
828 {
829 	__set_bit(flag, &sk->sk_flags);
830 }
831 
sock_reset_flag(struct sock * sk,enum sock_flags flag)832 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
833 {
834 	__clear_bit(flag, &sk->sk_flags);
835 }
836 
sock_flag(const struct sock * sk,enum sock_flags flag)837 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
838 {
839 	return test_bit(flag, &sk->sk_flags);
840 }
841 
842 #ifdef CONFIG_NET
843 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)844 static inline int sk_memalloc_socks(void)
845 {
846 	return static_branch_unlikely(&memalloc_socks_key);
847 }
848 
849 void __receive_sock(struct file *file);
850 #else
851 
sk_memalloc_socks(void)852 static inline int sk_memalloc_socks(void)
853 {
854 	return 0;
855 }
856 
__receive_sock(struct file * file)857 static inline void __receive_sock(struct file *file)
858 { }
859 #endif
860 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)861 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
862 {
863 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
864 }
865 
sk_acceptq_removed(struct sock * sk)866 static inline void sk_acceptq_removed(struct sock *sk)
867 {
868 	sk->sk_ack_backlog--;
869 }
870 
sk_acceptq_added(struct sock * sk)871 static inline void sk_acceptq_added(struct sock *sk)
872 {
873 	sk->sk_ack_backlog++;
874 }
875 
sk_acceptq_is_full(const struct sock * sk)876 static inline bool sk_acceptq_is_full(const struct sock *sk)
877 {
878 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
879 }
880 
881 /*
882  * Compute minimal free write space needed to queue new packets.
883  */
sk_stream_min_wspace(const struct sock * sk)884 static inline int sk_stream_min_wspace(const struct sock *sk)
885 {
886 	return sk->sk_wmem_queued >> 1;
887 }
888 
sk_stream_wspace(const struct sock * sk)889 static inline int sk_stream_wspace(const struct sock *sk)
890 {
891 	return sk->sk_sndbuf - sk->sk_wmem_queued;
892 }
893 
894 void sk_stream_write_space(struct sock *sk);
895 
896 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)897 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
898 {
899 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
900 	skb_dst_force(skb);
901 
902 	if (!sk->sk_backlog.tail)
903 		WRITE_ONCE(sk->sk_backlog.head, skb);
904 	else
905 		sk->sk_backlog.tail->next = skb;
906 
907 	WRITE_ONCE(sk->sk_backlog.tail, skb);
908 	skb->next = NULL;
909 }
910 
911 /*
912  * Take into account size of receive queue and backlog queue
913  * Do not take into account this skb truesize,
914  * to allow even a single big packet to come.
915  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)916 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
917 {
918 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
919 
920 	return qsize > limit;
921 }
922 
923 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)924 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
925 					      unsigned int limit)
926 {
927 	if (sk_rcvqueues_full(sk, limit))
928 		return -ENOBUFS;
929 
930 	/*
931 	 * If the skb was allocated from pfmemalloc reserves, only
932 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
933 	 * helping free memory
934 	 */
935 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
936 		return -ENOMEM;
937 
938 	__sk_add_backlog(sk, skb);
939 	sk->sk_backlog.len += skb->truesize;
940 	return 0;
941 }
942 
943 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
944 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)945 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
946 {
947 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
948 		return __sk_backlog_rcv(sk, skb);
949 
950 	return sk->sk_backlog_rcv(sk, skb);
951 }
952 
sk_incoming_cpu_update(struct sock * sk)953 static inline void sk_incoming_cpu_update(struct sock *sk)
954 {
955 	int cpu = raw_smp_processor_id();
956 
957 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
958 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
959 }
960 
sock_rps_record_flow_hash(__u32 hash)961 static inline void sock_rps_record_flow_hash(__u32 hash)
962 {
963 #ifdef CONFIG_RPS
964 	struct rps_sock_flow_table *sock_flow_table;
965 
966 	rcu_read_lock();
967 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
968 	rps_record_sock_flow(sock_flow_table, hash);
969 	rcu_read_unlock();
970 #endif
971 }
972 
sock_rps_record_flow(const struct sock * sk)973 static inline void sock_rps_record_flow(const struct sock *sk)
974 {
975 #ifdef CONFIG_RPS
976 	if (static_key_false(&rfs_needed)) {
977 		/* Reading sk->sk_rxhash might incur an expensive cache line
978 		 * miss.
979 		 *
980 		 * TCP_ESTABLISHED does cover almost all states where RFS
981 		 * might be useful, and is cheaper [1] than testing :
982 		 *	IPv4: inet_sk(sk)->inet_daddr
983 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
984 		 * OR	an additional socket flag
985 		 * [1] : sk_state and sk_prot are in the same cache line.
986 		 */
987 		if (sk->sk_state == TCP_ESTABLISHED)
988 			sock_rps_record_flow_hash(sk->sk_rxhash);
989 	}
990 #endif
991 }
992 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)993 static inline void sock_rps_save_rxhash(struct sock *sk,
994 					const struct sk_buff *skb)
995 {
996 #ifdef CONFIG_RPS
997 	if (unlikely(sk->sk_rxhash != skb->hash))
998 		sk->sk_rxhash = skb->hash;
999 #endif
1000 }
1001 
sock_rps_reset_rxhash(struct sock * sk)1002 static inline void sock_rps_reset_rxhash(struct sock *sk)
1003 {
1004 #ifdef CONFIG_RPS
1005 	sk->sk_rxhash = 0;
1006 #endif
1007 }
1008 
1009 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1010 	({	int __rc;						\
1011 		release_sock(__sk);					\
1012 		__rc = __condition;					\
1013 		if (!__rc) {						\
1014 			*(__timeo) = wait_woken(__wait,			\
1015 						TASK_INTERRUPTIBLE,	\
1016 						*(__timeo));		\
1017 		}							\
1018 		sched_annotate_sleep();					\
1019 		lock_sock(__sk);					\
1020 		__rc = __condition;					\
1021 		__rc;							\
1022 	})
1023 
1024 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1025 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1026 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1027 int sk_stream_error(struct sock *sk, int flags, int err);
1028 void sk_stream_kill_queues(struct sock *sk);
1029 void sk_set_memalloc(struct sock *sk);
1030 void sk_clear_memalloc(struct sock *sk);
1031 
1032 void __sk_flush_backlog(struct sock *sk);
1033 
sk_flush_backlog(struct sock * sk)1034 static inline bool sk_flush_backlog(struct sock *sk)
1035 {
1036 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1037 		__sk_flush_backlog(sk);
1038 		return true;
1039 	}
1040 	return false;
1041 }
1042 
1043 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1044 
1045 struct request_sock_ops;
1046 struct timewait_sock_ops;
1047 struct inet_hashinfo;
1048 struct raw_hashinfo;
1049 struct smc_hashinfo;
1050 struct module;
1051 
1052 /*
1053  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1054  * un-modified. Special care is taken when initializing object to zero.
1055  */
sk_prot_clear_nulls(struct sock * sk,int size)1056 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1057 {
1058 	if (offsetof(struct sock, sk_node.next) != 0)
1059 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1060 	memset(&sk->sk_node.pprev, 0,
1061 	       size - offsetof(struct sock, sk_node.pprev));
1062 }
1063 
1064 /* Networking protocol blocks we attach to sockets.
1065  * socket layer -> transport layer interface
1066  */
1067 struct proto {
1068 	void			(*close)(struct sock *sk,
1069 					long timeout);
1070 	int			(*pre_connect)(struct sock *sk,
1071 					struct sockaddr *uaddr,
1072 					int addr_len);
1073 	int			(*connect)(struct sock *sk,
1074 					struct sockaddr *uaddr,
1075 					int addr_len);
1076 	int			(*disconnect)(struct sock *sk, int flags);
1077 
1078 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1079 					  bool kern);
1080 
1081 	int			(*ioctl)(struct sock *sk, int cmd,
1082 					 unsigned long arg);
1083 	int			(*init)(struct sock *sk);
1084 	void			(*destroy)(struct sock *sk);
1085 	void			(*shutdown)(struct sock *sk, int how);
1086 	int			(*setsockopt)(struct sock *sk, int level,
1087 					int optname, char __user *optval,
1088 					unsigned int optlen);
1089 	int			(*getsockopt)(struct sock *sk, int level,
1090 					int optname, char __user *optval,
1091 					int __user *option);
1092 	void			(*keepalive)(struct sock *sk, int valbool);
1093 #ifdef CONFIG_COMPAT
1094 	int			(*compat_setsockopt)(struct sock *sk,
1095 					int level,
1096 					int optname, char __user *optval,
1097 					unsigned int optlen);
1098 	int			(*compat_getsockopt)(struct sock *sk,
1099 					int level,
1100 					int optname, char __user *optval,
1101 					int __user *option);
1102 	int			(*compat_ioctl)(struct sock *sk,
1103 					unsigned int cmd, unsigned long arg);
1104 #endif
1105 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1106 					   size_t len);
1107 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1108 					   size_t len, int noblock, int flags,
1109 					   int *addr_len);
1110 	int			(*sendpage)(struct sock *sk, struct page *page,
1111 					int offset, size_t size, int flags);
1112 	int			(*bind)(struct sock *sk,
1113 					struct sockaddr *uaddr, int addr_len);
1114 
1115 	int			(*backlog_rcv) (struct sock *sk,
1116 						struct sk_buff *skb);
1117 
1118 	void		(*release_cb)(struct sock *sk);
1119 
1120 	/* Keeping track of sk's, looking them up, and port selection methods. */
1121 	int			(*hash)(struct sock *sk);
1122 	void			(*unhash)(struct sock *sk);
1123 	void			(*rehash)(struct sock *sk);
1124 	int			(*get_port)(struct sock *sk, unsigned short snum);
1125 
1126 	/* Keeping track of sockets in use */
1127 #ifdef CONFIG_PROC_FS
1128 	unsigned int		inuse_idx;
1129 #endif
1130 
1131 	bool			(*stream_memory_free)(const struct sock *sk);
1132 	bool			(*stream_memory_read)(const struct sock *sk);
1133 	/* Memory pressure */
1134 	void			(*enter_memory_pressure)(struct sock *sk);
1135 	void			(*leave_memory_pressure)(struct sock *sk);
1136 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1137 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1138 	/*
1139 	 * Pressure flag: try to collapse.
1140 	 * Technical note: it is used by multiple contexts non atomically.
1141 	 * All the __sk_mem_schedule() is of this nature: accounting
1142 	 * is strict, actions are advisory and have some latency.
1143 	 */
1144 	unsigned long		*memory_pressure;
1145 	long			*sysctl_mem;
1146 
1147 	int			*sysctl_wmem;
1148 	int			*sysctl_rmem;
1149 	u32			sysctl_wmem_offset;
1150 	u32			sysctl_rmem_offset;
1151 
1152 	int			max_header;
1153 	bool			no_autobind;
1154 
1155 	struct kmem_cache	*slab;
1156 	unsigned int		obj_size;
1157 	slab_flags_t		slab_flags;
1158 	unsigned int		useroffset;	/* Usercopy region offset */
1159 	unsigned int		usersize;	/* Usercopy region size */
1160 
1161 	struct percpu_counter	*orphan_count;
1162 
1163 	struct request_sock_ops	*rsk_prot;
1164 	struct timewait_sock_ops *twsk_prot;
1165 
1166 	union {
1167 		struct inet_hashinfo	*hashinfo;
1168 		struct udp_table	*udp_table;
1169 		struct raw_hashinfo	*raw_hash;
1170 		struct smc_hashinfo	*smc_hash;
1171 	} h;
1172 
1173 	struct module		*owner;
1174 
1175 	char			name[32];
1176 
1177 	struct list_head	node;
1178 #ifdef SOCK_REFCNT_DEBUG
1179 	atomic_t		socks;
1180 #endif
1181 	int			(*diag_destroy)(struct sock *sk, int err);
1182 } __randomize_layout;
1183 
1184 int proto_register(struct proto *prot, int alloc_slab);
1185 void proto_unregister(struct proto *prot);
1186 int sock_load_diag_module(int family, int protocol);
1187 
1188 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1189 static inline void sk_refcnt_debug_inc(struct sock *sk)
1190 {
1191 	atomic_inc(&sk->sk_prot->socks);
1192 }
1193 
sk_refcnt_debug_dec(struct sock * sk)1194 static inline void sk_refcnt_debug_dec(struct sock *sk)
1195 {
1196 	atomic_dec(&sk->sk_prot->socks);
1197 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1198 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1199 }
1200 
sk_refcnt_debug_release(const struct sock * sk)1201 static inline void sk_refcnt_debug_release(const struct sock *sk)
1202 {
1203 	if (refcount_read(&sk->sk_refcnt) != 1)
1204 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1205 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1206 }
1207 #else /* SOCK_REFCNT_DEBUG */
1208 #define sk_refcnt_debug_inc(sk) do { } while (0)
1209 #define sk_refcnt_debug_dec(sk) do { } while (0)
1210 #define sk_refcnt_debug_release(sk) do { } while (0)
1211 #endif /* SOCK_REFCNT_DEBUG */
1212 
sk_stream_memory_free(const struct sock * sk)1213 static inline bool sk_stream_memory_free(const struct sock *sk)
1214 {
1215 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1216 		return false;
1217 
1218 	return sk->sk_prot->stream_memory_free ?
1219 		sk->sk_prot->stream_memory_free(sk) : true;
1220 }
1221 
sk_stream_is_writeable(const struct sock * sk)1222 static inline bool sk_stream_is_writeable(const struct sock *sk)
1223 {
1224 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1225 	       sk_stream_memory_free(sk);
1226 }
1227 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1228 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1229 					    struct cgroup *ancestor)
1230 {
1231 #ifdef CONFIG_SOCK_CGROUP_DATA
1232 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1233 				    ancestor);
1234 #else
1235 	return -ENOTSUPP;
1236 #endif
1237 }
1238 
sk_has_memory_pressure(const struct sock * sk)1239 static inline bool sk_has_memory_pressure(const struct sock *sk)
1240 {
1241 	return sk->sk_prot->memory_pressure != NULL;
1242 }
1243 
sk_under_memory_pressure(const struct sock * sk)1244 static inline bool sk_under_memory_pressure(const struct sock *sk)
1245 {
1246 	if (!sk->sk_prot->memory_pressure)
1247 		return false;
1248 
1249 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1250 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1251 		return true;
1252 
1253 	return !!*sk->sk_prot->memory_pressure;
1254 }
1255 
1256 static inline long
sk_memory_allocated(const struct sock * sk)1257 sk_memory_allocated(const struct sock *sk)
1258 {
1259 	return atomic_long_read(sk->sk_prot->memory_allocated);
1260 }
1261 
1262 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1263 sk_memory_allocated_add(struct sock *sk, int amt)
1264 {
1265 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1266 }
1267 
1268 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1269 sk_memory_allocated_sub(struct sock *sk, int amt)
1270 {
1271 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1272 }
1273 
sk_sockets_allocated_dec(struct sock * sk)1274 static inline void sk_sockets_allocated_dec(struct sock *sk)
1275 {
1276 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1277 }
1278 
sk_sockets_allocated_inc(struct sock * sk)1279 static inline void sk_sockets_allocated_inc(struct sock *sk)
1280 {
1281 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1282 }
1283 
1284 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1285 sk_sockets_allocated_read_positive(struct sock *sk)
1286 {
1287 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1288 }
1289 
1290 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1291 proto_sockets_allocated_sum_positive(struct proto *prot)
1292 {
1293 	return percpu_counter_sum_positive(prot->sockets_allocated);
1294 }
1295 
1296 static inline long
proto_memory_allocated(struct proto * prot)1297 proto_memory_allocated(struct proto *prot)
1298 {
1299 	return atomic_long_read(prot->memory_allocated);
1300 }
1301 
1302 static inline bool
proto_memory_pressure(struct proto * prot)1303 proto_memory_pressure(struct proto *prot)
1304 {
1305 	if (!prot->memory_pressure)
1306 		return false;
1307 	return !!*prot->memory_pressure;
1308 }
1309 
1310 
1311 #ifdef CONFIG_PROC_FS
1312 /* Called with local bh disabled */
1313 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1314 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1315 int sock_inuse_get(struct net *net);
1316 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1317 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1318 		int inc)
1319 {
1320 }
1321 #endif
1322 
1323 
1324 /* With per-bucket locks this operation is not-atomic, so that
1325  * this version is not worse.
1326  */
__sk_prot_rehash(struct sock * sk)1327 static inline int __sk_prot_rehash(struct sock *sk)
1328 {
1329 	sk->sk_prot->unhash(sk);
1330 	return sk->sk_prot->hash(sk);
1331 }
1332 
1333 /* About 10 seconds */
1334 #define SOCK_DESTROY_TIME (10*HZ)
1335 
1336 /* Sockets 0-1023 can't be bound to unless you are superuser */
1337 #define PROT_SOCK	1024
1338 
1339 #define SHUTDOWN_MASK	3
1340 #define RCV_SHUTDOWN	1
1341 #define SEND_SHUTDOWN	2
1342 
1343 #define SOCK_SNDBUF_LOCK	1
1344 #define SOCK_RCVBUF_LOCK	2
1345 #define SOCK_BINDADDR_LOCK	4
1346 #define SOCK_BINDPORT_LOCK	8
1347 
1348 struct socket_alloc {
1349 	struct socket socket;
1350 	struct inode vfs_inode;
1351 };
1352 
SOCKET_I(struct inode * inode)1353 static inline struct socket *SOCKET_I(struct inode *inode)
1354 {
1355 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1356 }
1357 
SOCK_INODE(struct socket * socket)1358 static inline struct inode *SOCK_INODE(struct socket *socket)
1359 {
1360 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1361 }
1362 
1363 /*
1364  * Functions for memory accounting
1365  */
1366 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1367 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1368 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1369 void __sk_mem_reclaim(struct sock *sk, int amount);
1370 
1371 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1372  * do not necessarily have 16x time more memory than 4KB ones.
1373  */
1374 #define SK_MEM_QUANTUM 4096
1375 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1376 #define SK_MEM_SEND	0
1377 #define SK_MEM_RECV	1
1378 
1379 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1380 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1381 {
1382 	long val = sk->sk_prot->sysctl_mem[index];
1383 
1384 #if PAGE_SIZE > SK_MEM_QUANTUM
1385 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1386 #elif PAGE_SIZE < SK_MEM_QUANTUM
1387 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1388 #endif
1389 	return val;
1390 }
1391 
sk_mem_pages(int amt)1392 static inline int sk_mem_pages(int amt)
1393 {
1394 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1395 }
1396 
sk_has_account(struct sock * sk)1397 static inline bool sk_has_account(struct sock *sk)
1398 {
1399 	/* return true if protocol supports memory accounting */
1400 	return !!sk->sk_prot->memory_allocated;
1401 }
1402 
sk_wmem_schedule(struct sock * sk,int size)1403 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1404 {
1405 	if (!sk_has_account(sk))
1406 		return true;
1407 	return size <= sk->sk_forward_alloc ||
1408 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1409 }
1410 
1411 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1412 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1413 {
1414 	if (!sk_has_account(sk))
1415 		return true;
1416 	return size<= sk->sk_forward_alloc ||
1417 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1418 		skb_pfmemalloc(skb);
1419 }
1420 
sk_mem_reclaim(struct sock * sk)1421 static inline void sk_mem_reclaim(struct sock *sk)
1422 {
1423 	if (!sk_has_account(sk))
1424 		return;
1425 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1426 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1427 }
1428 
sk_mem_reclaim_partial(struct sock * sk)1429 static inline void sk_mem_reclaim_partial(struct sock *sk)
1430 {
1431 	if (!sk_has_account(sk))
1432 		return;
1433 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1434 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1435 }
1436 
sk_mem_charge(struct sock * sk,int size)1437 static inline void sk_mem_charge(struct sock *sk, int size)
1438 {
1439 	if (!sk_has_account(sk))
1440 		return;
1441 	sk->sk_forward_alloc -= size;
1442 }
1443 
sk_mem_uncharge(struct sock * sk,int size)1444 static inline void sk_mem_uncharge(struct sock *sk, int size)
1445 {
1446 	if (!sk_has_account(sk))
1447 		return;
1448 	sk->sk_forward_alloc += size;
1449 
1450 	/* Avoid a possible overflow.
1451 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1452 	 * is not called and more than 2 GBytes are released at once.
1453 	 *
1454 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1455 	 * no need to hold that much forward allocation anyway.
1456 	 */
1457 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1458 		__sk_mem_reclaim(sk, 1 << 20);
1459 }
1460 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1461 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1462 {
1463 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1464 	sk->sk_wmem_queued -= skb->truesize;
1465 	sk_mem_uncharge(sk, skb->truesize);
1466 	__kfree_skb(skb);
1467 }
1468 
sock_release_ownership(struct sock * sk)1469 static inline void sock_release_ownership(struct sock *sk)
1470 {
1471 	if (sk->sk_lock.owned) {
1472 		sk->sk_lock.owned = 0;
1473 
1474 		/* The sk_lock has mutex_unlock() semantics: */
1475 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1476 	}
1477 }
1478 
1479 /*
1480  * Macro so as to not evaluate some arguments when
1481  * lockdep is not enabled.
1482  *
1483  * Mark both the sk_lock and the sk_lock.slock as a
1484  * per-address-family lock class.
1485  */
1486 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1487 do {									\
1488 	sk->sk_lock.owned = 0;						\
1489 	init_waitqueue_head(&sk->sk_lock.wq);				\
1490 	spin_lock_init(&(sk)->sk_lock.slock);				\
1491 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1492 			sizeof((sk)->sk_lock));				\
1493 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1494 				(skey), (sname));				\
1495 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1496 } while (0)
1497 
1498 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1499 static inline bool lockdep_sock_is_held(const struct sock *sk)
1500 {
1501 	return lockdep_is_held(&sk->sk_lock) ||
1502 	       lockdep_is_held(&sk->sk_lock.slock);
1503 }
1504 #endif
1505 
1506 void lock_sock_nested(struct sock *sk, int subclass);
1507 
lock_sock(struct sock * sk)1508 static inline void lock_sock(struct sock *sk)
1509 {
1510 	lock_sock_nested(sk, 0);
1511 }
1512 
1513 void __release_sock(struct sock *sk);
1514 void release_sock(struct sock *sk);
1515 
1516 /* BH context may only use the following locking interface. */
1517 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1518 #define bh_lock_sock_nested(__sk) \
1519 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1520 				SINGLE_DEPTH_NESTING)
1521 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1522 
1523 bool lock_sock_fast(struct sock *sk);
1524 /**
1525  * unlock_sock_fast - complement of lock_sock_fast
1526  * @sk: socket
1527  * @slow: slow mode
1528  *
1529  * fast unlock socket for user context.
1530  * If slow mode is on, we call regular release_sock()
1531  */
unlock_sock_fast(struct sock * sk,bool slow)1532 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1533 {
1534 	if (slow)
1535 		release_sock(sk);
1536 	else
1537 		spin_unlock_bh(&sk->sk_lock.slock);
1538 }
1539 
1540 /* Used by processes to "lock" a socket state, so that
1541  * interrupts and bottom half handlers won't change it
1542  * from under us. It essentially blocks any incoming
1543  * packets, so that we won't get any new data or any
1544  * packets that change the state of the socket.
1545  *
1546  * While locked, BH processing will add new packets to
1547  * the backlog queue.  This queue is processed by the
1548  * owner of the socket lock right before it is released.
1549  *
1550  * Since ~2.3.5 it is also exclusive sleep lock serializing
1551  * accesses from user process context.
1552  */
1553 
sock_owned_by_me(const struct sock * sk)1554 static inline void sock_owned_by_me(const struct sock *sk)
1555 {
1556 #ifdef CONFIG_LOCKDEP
1557 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1558 #endif
1559 }
1560 
sock_owned_by_user(const struct sock * sk)1561 static inline bool sock_owned_by_user(const struct sock *sk)
1562 {
1563 	sock_owned_by_me(sk);
1564 	return sk->sk_lock.owned;
1565 }
1566 
sock_owned_by_user_nocheck(const struct sock * sk)1567 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1568 {
1569 	return sk->sk_lock.owned;
1570 }
1571 
1572 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1573 static inline bool sock_allow_reclassification(const struct sock *csk)
1574 {
1575 	struct sock *sk = (struct sock *)csk;
1576 
1577 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1578 }
1579 
1580 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1581 		      struct proto *prot, int kern);
1582 void sk_free(struct sock *sk);
1583 void sk_destruct(struct sock *sk);
1584 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1585 void sk_free_unlock_clone(struct sock *sk);
1586 
1587 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1588 			     gfp_t priority);
1589 void __sock_wfree(struct sk_buff *skb);
1590 void sock_wfree(struct sk_buff *skb);
1591 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1592 			     gfp_t priority);
1593 void skb_orphan_partial(struct sk_buff *skb);
1594 void sock_rfree(struct sk_buff *skb);
1595 void sock_efree(struct sk_buff *skb);
1596 #ifdef CONFIG_INET
1597 void sock_edemux(struct sk_buff *skb);
1598 #else
1599 #define sock_edemux sock_efree
1600 #endif
1601 
1602 int sock_setsockopt(struct socket *sock, int level, int op,
1603 		    char __user *optval, unsigned int optlen);
1604 
1605 int sock_getsockopt(struct socket *sock, int level, int op,
1606 		    char __user *optval, int __user *optlen);
1607 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1608 				    int noblock, int *errcode);
1609 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1610 				     unsigned long data_len, int noblock,
1611 				     int *errcode, int max_page_order);
1612 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1613 void sock_kfree_s(struct sock *sk, void *mem, int size);
1614 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1615 void sk_send_sigurg(struct sock *sk);
1616 
1617 struct sockcm_cookie {
1618 	u64 transmit_time;
1619 	u32 mark;
1620 	u16 tsflags;
1621 };
1622 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1623 static inline void sockcm_init(struct sockcm_cookie *sockc,
1624 			       const struct sock *sk)
1625 {
1626 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1627 }
1628 
1629 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1630 		     struct sockcm_cookie *sockc);
1631 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1632 		   struct sockcm_cookie *sockc);
1633 
1634 /*
1635  * Functions to fill in entries in struct proto_ops when a protocol
1636  * does not implement a particular function.
1637  */
1638 int sock_no_bind(struct socket *, struct sockaddr *, int);
1639 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1640 int sock_no_socketpair(struct socket *, struct socket *);
1641 int sock_no_accept(struct socket *, struct socket *, int, bool);
1642 int sock_no_getname(struct socket *, struct sockaddr *, int);
1643 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1644 int sock_no_listen(struct socket *, int);
1645 int sock_no_shutdown(struct socket *, int);
1646 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1647 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1648 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1649 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1650 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1651 int sock_no_mmap(struct file *file, struct socket *sock,
1652 		 struct vm_area_struct *vma);
1653 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1654 			 size_t size, int flags);
1655 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1656 				int offset, size_t size, int flags);
1657 
1658 /*
1659  * Functions to fill in entries in struct proto_ops when a protocol
1660  * uses the inet style.
1661  */
1662 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1663 				  char __user *optval, int __user *optlen);
1664 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1665 			int flags);
1666 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1667 				  char __user *optval, unsigned int optlen);
1668 int compat_sock_common_getsockopt(struct socket *sock, int level,
1669 		int optname, char __user *optval, int __user *optlen);
1670 int compat_sock_common_setsockopt(struct socket *sock, int level,
1671 		int optname, char __user *optval, unsigned int optlen);
1672 
1673 void sk_common_release(struct sock *sk);
1674 
1675 /*
1676  *	Default socket callbacks and setup code
1677  */
1678 
1679 /* Initialise core socket variables */
1680 void sock_init_data(struct socket *sock, struct sock *sk);
1681 
1682 /*
1683  * Socket reference counting postulates.
1684  *
1685  * * Each user of socket SHOULD hold a reference count.
1686  * * Each access point to socket (an hash table bucket, reference from a list,
1687  *   running timer, skb in flight MUST hold a reference count.
1688  * * When reference count hits 0, it means it will never increase back.
1689  * * When reference count hits 0, it means that no references from
1690  *   outside exist to this socket and current process on current CPU
1691  *   is last user and may/should destroy this socket.
1692  * * sk_free is called from any context: process, BH, IRQ. When
1693  *   it is called, socket has no references from outside -> sk_free
1694  *   may release descendant resources allocated by the socket, but
1695  *   to the time when it is called, socket is NOT referenced by any
1696  *   hash tables, lists etc.
1697  * * Packets, delivered from outside (from network or from another process)
1698  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1699  *   when they sit in queue. Otherwise, packets will leak to hole, when
1700  *   socket is looked up by one cpu and unhasing is made by another CPU.
1701  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1702  *   (leak to backlog). Packet socket does all the processing inside
1703  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1704  *   use separate SMP lock, so that they are prone too.
1705  */
1706 
1707 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1708 static inline void sock_put(struct sock *sk)
1709 {
1710 	if (refcount_dec_and_test(&sk->sk_refcnt))
1711 		sk_free(sk);
1712 }
1713 /* Generic version of sock_put(), dealing with all sockets
1714  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1715  */
1716 void sock_gen_put(struct sock *sk);
1717 
1718 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1719 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1720 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1721 				 const int nested)
1722 {
1723 	return __sk_receive_skb(sk, skb, nested, 1, true);
1724 }
1725 
sk_tx_queue_set(struct sock * sk,int tx_queue)1726 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1727 {
1728 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1729 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1730 		return;
1731 	sk->sk_tx_queue_mapping = tx_queue;
1732 }
1733 
1734 #define NO_QUEUE_MAPPING	USHRT_MAX
1735 
sk_tx_queue_clear(struct sock * sk)1736 static inline void sk_tx_queue_clear(struct sock *sk)
1737 {
1738 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1739 }
1740 
sk_tx_queue_get(const struct sock * sk)1741 static inline int sk_tx_queue_get(const struct sock *sk)
1742 {
1743 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1744 		return sk->sk_tx_queue_mapping;
1745 
1746 	return -1;
1747 }
1748 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1749 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1750 {
1751 #ifdef CONFIG_XPS
1752 	if (skb_rx_queue_recorded(skb)) {
1753 		u16 rx_queue = skb_get_rx_queue(skb);
1754 
1755 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1756 			return;
1757 
1758 		sk->sk_rx_queue_mapping = rx_queue;
1759 	}
1760 #endif
1761 }
1762 
sk_rx_queue_clear(struct sock * sk)1763 static inline void sk_rx_queue_clear(struct sock *sk)
1764 {
1765 #ifdef CONFIG_XPS
1766 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1767 #endif
1768 }
1769 
1770 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1771 static inline int sk_rx_queue_get(const struct sock *sk)
1772 {
1773 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1774 		return sk->sk_rx_queue_mapping;
1775 
1776 	return -1;
1777 }
1778 #endif
1779 
sk_set_socket(struct sock * sk,struct socket * sock)1780 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1781 {
1782 	sk->sk_socket = sock;
1783 }
1784 
sk_sleep(struct sock * sk)1785 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1786 {
1787 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1788 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1789 }
1790 /* Detach socket from process context.
1791  * Announce socket dead, detach it from wait queue and inode.
1792  * Note that parent inode held reference count on this struct sock,
1793  * we do not release it in this function, because protocol
1794  * probably wants some additional cleanups or even continuing
1795  * to work with this socket (TCP).
1796  */
sock_orphan(struct sock * sk)1797 static inline void sock_orphan(struct sock *sk)
1798 {
1799 	write_lock_bh(&sk->sk_callback_lock);
1800 	sock_set_flag(sk, SOCK_DEAD);
1801 	sk_set_socket(sk, NULL);
1802 	sk->sk_wq  = NULL;
1803 	write_unlock_bh(&sk->sk_callback_lock);
1804 }
1805 
sock_graft(struct sock * sk,struct socket * parent)1806 static inline void sock_graft(struct sock *sk, struct socket *parent)
1807 {
1808 	WARN_ON(parent->sk);
1809 	write_lock_bh(&sk->sk_callback_lock);
1810 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1811 	parent->sk = sk;
1812 	sk_set_socket(sk, parent);
1813 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1814 	security_sock_graft(sk, parent);
1815 	write_unlock_bh(&sk->sk_callback_lock);
1816 }
1817 
1818 kuid_t sock_i_uid(struct sock *sk);
1819 unsigned long sock_i_ino(struct sock *sk);
1820 
sock_net_uid(const struct net * net,const struct sock * sk)1821 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1822 {
1823 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1824 }
1825 
net_tx_rndhash(void)1826 static inline u32 net_tx_rndhash(void)
1827 {
1828 	u32 v = prandom_u32();
1829 
1830 	return v ?: 1;
1831 }
1832 
sk_set_txhash(struct sock * sk)1833 static inline void sk_set_txhash(struct sock *sk)
1834 {
1835 	sk->sk_txhash = net_tx_rndhash();
1836 }
1837 
sk_rethink_txhash(struct sock * sk)1838 static inline void sk_rethink_txhash(struct sock *sk)
1839 {
1840 	if (sk->sk_txhash)
1841 		sk_set_txhash(sk);
1842 }
1843 
1844 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1845 __sk_dst_get(struct sock *sk)
1846 {
1847 	return rcu_dereference_check(sk->sk_dst_cache,
1848 				     lockdep_sock_is_held(sk));
1849 }
1850 
1851 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1852 sk_dst_get(struct sock *sk)
1853 {
1854 	struct dst_entry *dst;
1855 
1856 	rcu_read_lock();
1857 	dst = rcu_dereference(sk->sk_dst_cache);
1858 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1859 		dst = NULL;
1860 	rcu_read_unlock();
1861 	return dst;
1862 }
1863 
dst_negative_advice(struct sock * sk)1864 static inline void dst_negative_advice(struct sock *sk)
1865 {
1866 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1867 
1868 	sk_rethink_txhash(sk);
1869 
1870 	if (dst && dst->ops->negative_advice) {
1871 		ndst = dst->ops->negative_advice(dst);
1872 
1873 		if (ndst != dst) {
1874 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1875 			sk_tx_queue_clear(sk);
1876 			sk->sk_dst_pending_confirm = 0;
1877 		}
1878 	}
1879 }
1880 
1881 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1882 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1883 {
1884 	struct dst_entry *old_dst;
1885 
1886 	sk_tx_queue_clear(sk);
1887 	sk->sk_dst_pending_confirm = 0;
1888 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1889 					    lockdep_sock_is_held(sk));
1890 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1891 	dst_release(old_dst);
1892 }
1893 
1894 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1895 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1896 {
1897 	struct dst_entry *old_dst;
1898 
1899 	sk_tx_queue_clear(sk);
1900 	sk->sk_dst_pending_confirm = 0;
1901 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1902 	dst_release(old_dst);
1903 }
1904 
1905 static inline void
__sk_dst_reset(struct sock * sk)1906 __sk_dst_reset(struct sock *sk)
1907 {
1908 	__sk_dst_set(sk, NULL);
1909 }
1910 
1911 static inline void
sk_dst_reset(struct sock * sk)1912 sk_dst_reset(struct sock *sk)
1913 {
1914 	sk_dst_set(sk, NULL);
1915 }
1916 
1917 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1918 
1919 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1920 
sk_dst_confirm(struct sock * sk)1921 static inline void sk_dst_confirm(struct sock *sk)
1922 {
1923 	if (!sk->sk_dst_pending_confirm)
1924 		sk->sk_dst_pending_confirm = 1;
1925 }
1926 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)1927 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1928 {
1929 	if (skb_get_dst_pending_confirm(skb)) {
1930 		struct sock *sk = skb->sk;
1931 		unsigned long now = jiffies;
1932 
1933 		/* avoid dirtying neighbour */
1934 		if (n->confirmed != now)
1935 			n->confirmed = now;
1936 		if (sk && sk->sk_dst_pending_confirm)
1937 			sk->sk_dst_pending_confirm = 0;
1938 	}
1939 }
1940 
1941 bool sk_mc_loop(struct sock *sk);
1942 
sk_can_gso(const struct sock * sk)1943 static inline bool sk_can_gso(const struct sock *sk)
1944 {
1945 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1946 }
1947 
1948 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1949 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1950 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1951 {
1952 	sk->sk_route_nocaps |= flags;
1953 	sk->sk_route_caps &= ~flags;
1954 }
1955 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1956 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1957 					   struct iov_iter *from, char *to,
1958 					   int copy, int offset)
1959 {
1960 	if (skb->ip_summed == CHECKSUM_NONE) {
1961 		__wsum csum = 0;
1962 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1963 			return -EFAULT;
1964 		skb->csum = csum_block_add(skb->csum, csum, offset);
1965 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1966 		if (!copy_from_iter_full_nocache(to, copy, from))
1967 			return -EFAULT;
1968 	} else if (!copy_from_iter_full(to, copy, from))
1969 		return -EFAULT;
1970 
1971 	return 0;
1972 }
1973 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1974 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1975 				       struct iov_iter *from, int copy)
1976 {
1977 	int err, offset = skb->len;
1978 
1979 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1980 				       copy, offset);
1981 	if (err)
1982 		__skb_trim(skb, offset);
1983 
1984 	return err;
1985 }
1986 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)1987 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1988 					   struct sk_buff *skb,
1989 					   struct page *page,
1990 					   int off, int copy)
1991 {
1992 	int err;
1993 
1994 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1995 				       copy, skb->len);
1996 	if (err)
1997 		return err;
1998 
1999 	skb->len	     += copy;
2000 	skb->data_len	     += copy;
2001 	skb->truesize	     += copy;
2002 	sk->sk_wmem_queued   += copy;
2003 	sk_mem_charge(sk, copy);
2004 	return 0;
2005 }
2006 
2007 /**
2008  * sk_wmem_alloc_get - returns write allocations
2009  * @sk: socket
2010  *
2011  * Returns sk_wmem_alloc minus initial offset of one
2012  */
sk_wmem_alloc_get(const struct sock * sk)2013 static inline int sk_wmem_alloc_get(const struct sock *sk)
2014 {
2015 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2016 }
2017 
2018 /**
2019  * sk_rmem_alloc_get - returns read allocations
2020  * @sk: socket
2021  *
2022  * Returns sk_rmem_alloc
2023  */
sk_rmem_alloc_get(const struct sock * sk)2024 static inline int sk_rmem_alloc_get(const struct sock *sk)
2025 {
2026 	return atomic_read(&sk->sk_rmem_alloc);
2027 }
2028 
2029 /**
2030  * sk_has_allocations - check if allocations are outstanding
2031  * @sk: socket
2032  *
2033  * Returns true if socket has write or read allocations
2034  */
sk_has_allocations(const struct sock * sk)2035 static inline bool sk_has_allocations(const struct sock *sk)
2036 {
2037 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2038 }
2039 
2040 /**
2041  * skwq_has_sleeper - check if there are any waiting processes
2042  * @wq: struct socket_wq
2043  *
2044  * Returns true if socket_wq has waiting processes
2045  *
2046  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2047  * barrier call. They were added due to the race found within the tcp code.
2048  *
2049  * Consider following tcp code paths::
2050  *
2051  *   CPU1                CPU2
2052  *   sys_select          receive packet
2053  *   ...                 ...
2054  *   __add_wait_queue    update tp->rcv_nxt
2055  *   ...                 ...
2056  *   tp->rcv_nxt check   sock_def_readable
2057  *   ...                 {
2058  *   schedule               rcu_read_lock();
2059  *                          wq = rcu_dereference(sk->sk_wq);
2060  *                          if (wq && waitqueue_active(&wq->wait))
2061  *                              wake_up_interruptible(&wq->wait)
2062  *                          ...
2063  *                       }
2064  *
2065  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2066  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2067  * could then endup calling schedule and sleep forever if there are no more
2068  * data on the socket.
2069  *
2070  */
skwq_has_sleeper(struct socket_wq * wq)2071 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2072 {
2073 	return wq && wq_has_sleeper(&wq->wait);
2074 }
2075 
2076 /**
2077  * sock_poll_wait - place memory barrier behind the poll_wait call.
2078  * @filp:           file
2079  * @sock:           socket to wait on
2080  * @p:              poll_table
2081  *
2082  * See the comments in the wq_has_sleeper function.
2083  *
2084  * Do not derive sock from filp->private_data here. An SMC socket establishes
2085  * an internal TCP socket that is used in the fallback case. All socket
2086  * operations on the SMC socket are then forwarded to the TCP socket. In case of
2087  * poll, the filp->private_data pointer references the SMC socket because the
2088  * TCP socket has no file assigned.
2089  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2090 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2091 				  poll_table *p)
2092 {
2093 	if (!poll_does_not_wait(p)) {
2094 		poll_wait(filp, &sock->wq->wait, p);
2095 		/* We need to be sure we are in sync with the
2096 		 * socket flags modification.
2097 		 *
2098 		 * This memory barrier is paired in the wq_has_sleeper.
2099 		 */
2100 		smp_mb();
2101 	}
2102 }
2103 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2104 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2105 {
2106 	if (sk->sk_txhash) {
2107 		skb->l4_hash = 1;
2108 		skb->hash = sk->sk_txhash;
2109 	}
2110 }
2111 
2112 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2113 
2114 /*
2115  *	Queue a received datagram if it will fit. Stream and sequenced
2116  *	protocols can't normally use this as they need to fit buffers in
2117  *	and play with them.
2118  *
2119  *	Inlined as it's very short and called for pretty much every
2120  *	packet ever received.
2121  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2122 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2123 {
2124 	skb_orphan(skb);
2125 	skb->sk = sk;
2126 	skb->destructor = sock_rfree;
2127 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2128 	sk_mem_charge(sk, skb->truesize);
2129 }
2130 
2131 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2132 		    unsigned long expires);
2133 
2134 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2135 
2136 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2137 			struct sk_buff *skb, unsigned int flags,
2138 			void (*destructor)(struct sock *sk,
2139 					   struct sk_buff *skb));
2140 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2141 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2142 
2143 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2144 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2145 
2146 /*
2147  *	Recover an error report and clear atomically
2148  */
2149 
sock_error(struct sock * sk)2150 static inline int sock_error(struct sock *sk)
2151 {
2152 	int err;
2153 	if (likely(!sk->sk_err))
2154 		return 0;
2155 	err = xchg(&sk->sk_err, 0);
2156 	return -err;
2157 }
2158 
sock_wspace(struct sock * sk)2159 static inline unsigned long sock_wspace(struct sock *sk)
2160 {
2161 	int amt = 0;
2162 
2163 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2164 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2165 		if (amt < 0)
2166 			amt = 0;
2167 	}
2168 	return amt;
2169 }
2170 
2171 /* Note:
2172  *  We use sk->sk_wq_raw, from contexts knowing this
2173  *  pointer is not NULL and cannot disappear/change.
2174  */
sk_set_bit(int nr,struct sock * sk)2175 static inline void sk_set_bit(int nr, struct sock *sk)
2176 {
2177 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2178 	    !sock_flag(sk, SOCK_FASYNC))
2179 		return;
2180 
2181 	set_bit(nr, &sk->sk_wq_raw->flags);
2182 }
2183 
sk_clear_bit(int nr,struct sock * sk)2184 static inline void sk_clear_bit(int nr, struct sock *sk)
2185 {
2186 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2187 	    !sock_flag(sk, SOCK_FASYNC))
2188 		return;
2189 
2190 	clear_bit(nr, &sk->sk_wq_raw->flags);
2191 }
2192 
sk_wake_async(const struct sock * sk,int how,int band)2193 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2194 {
2195 	if (sock_flag(sk, SOCK_FASYNC)) {
2196 		rcu_read_lock();
2197 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2198 		rcu_read_unlock();
2199 	}
2200 }
2201 
2202 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2203  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2204  * Note: for send buffers, TCP works better if we can build two skbs at
2205  * minimum.
2206  */
2207 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2208 
2209 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2210 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2211 
sk_stream_moderate_sndbuf(struct sock * sk)2212 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2213 {
2214 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2215 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2216 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2217 	}
2218 }
2219 
2220 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2221 				    bool force_schedule);
2222 
2223 /**
2224  * sk_page_frag - return an appropriate page_frag
2225  * @sk: socket
2226  *
2227  * Use the per task page_frag instead of the per socket one for
2228  * optimization when we know that we're in the normal context and owns
2229  * everything that's associated with %current.
2230  *
2231  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2232  * inside other socket operations and end up recursing into sk_page_frag()
2233  * while it's already in use.
2234  */
sk_page_frag(struct sock * sk)2235 static inline struct page_frag *sk_page_frag(struct sock *sk)
2236 {
2237 	if (gfpflags_normal_context(sk->sk_allocation))
2238 		return &current->task_frag;
2239 
2240 	return &sk->sk_frag;
2241 }
2242 
2243 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2244 
2245 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2246 		int sg_start, int *sg_curr, unsigned int *sg_size,
2247 		int first_coalesce);
2248 
2249 /*
2250  *	Default write policy as shown to user space via poll/select/SIGIO
2251  */
sock_writeable(const struct sock * sk)2252 static inline bool sock_writeable(const struct sock *sk)
2253 {
2254 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2255 }
2256 
gfp_any(void)2257 static inline gfp_t gfp_any(void)
2258 {
2259 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2260 }
2261 
sock_rcvtimeo(const struct sock * sk,bool noblock)2262 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2263 {
2264 	return noblock ? 0 : sk->sk_rcvtimeo;
2265 }
2266 
sock_sndtimeo(const struct sock * sk,bool noblock)2267 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2268 {
2269 	return noblock ? 0 : sk->sk_sndtimeo;
2270 }
2271 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2272 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2273 {
2274 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2275 }
2276 
2277 /* Alas, with timeout socket operations are not restartable.
2278  * Compare this to poll().
2279  */
sock_intr_errno(long timeo)2280 static inline int sock_intr_errno(long timeo)
2281 {
2282 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2283 }
2284 
2285 struct sock_skb_cb {
2286 	u32 dropcount;
2287 };
2288 
2289 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2290  * using skb->cb[] would keep using it directly and utilize its
2291  * alignement guarantee.
2292  */
2293 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2294 			    sizeof(struct sock_skb_cb)))
2295 
2296 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2297 			    SOCK_SKB_CB_OFFSET))
2298 
2299 #define sock_skb_cb_check_size(size) \
2300 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2301 
2302 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2303 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2304 {
2305 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2306 						atomic_read(&sk->sk_drops) : 0;
2307 }
2308 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2309 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2310 {
2311 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2312 
2313 	atomic_add(segs, &sk->sk_drops);
2314 }
2315 
sock_read_timestamp(struct sock * sk)2316 static inline ktime_t sock_read_timestamp(struct sock *sk)
2317 {
2318 #if BITS_PER_LONG==32
2319 	unsigned int seq;
2320 	ktime_t kt;
2321 
2322 	do {
2323 		seq = read_seqbegin(&sk->sk_stamp_seq);
2324 		kt = sk->sk_stamp;
2325 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2326 
2327 	return kt;
2328 #else
2329 	return READ_ONCE(sk->sk_stamp);
2330 #endif
2331 }
2332 
sock_write_timestamp(struct sock * sk,ktime_t kt)2333 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2334 {
2335 #if BITS_PER_LONG==32
2336 	write_seqlock(&sk->sk_stamp_seq);
2337 	sk->sk_stamp = kt;
2338 	write_sequnlock(&sk->sk_stamp_seq);
2339 #else
2340 	WRITE_ONCE(sk->sk_stamp, kt);
2341 #endif
2342 }
2343 
2344 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2345 			   struct sk_buff *skb);
2346 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2347 			     struct sk_buff *skb);
2348 
2349 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2350 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2351 {
2352 	ktime_t kt = skb->tstamp;
2353 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2354 
2355 	/*
2356 	 * generate control messages if
2357 	 * - receive time stamping in software requested
2358 	 * - software time stamp available and wanted
2359 	 * - hardware time stamps available and wanted
2360 	 */
2361 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2362 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2363 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2364 	    (hwtstamps->hwtstamp &&
2365 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2366 		__sock_recv_timestamp(msg, sk, skb);
2367 	else
2368 		sock_write_timestamp(sk, kt);
2369 
2370 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2371 		__sock_recv_wifi_status(msg, sk, skb);
2372 }
2373 
2374 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2375 			      struct sk_buff *skb);
2376 
2377 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2378 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2379 					  struct sk_buff *skb)
2380 {
2381 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2382 			   (1UL << SOCK_RCVTSTAMP))
2383 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2384 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2385 
2386 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2387 		__sock_recv_ts_and_drops(msg, sk, skb);
2388 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2389 		sock_write_timestamp(sk, skb->tstamp);
2390 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2391 		sock_write_timestamp(sk, 0);
2392 }
2393 
2394 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2395 
2396 /**
2397  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2398  * @sk:		socket sending this packet
2399  * @tsflags:	timestamping flags to use
2400  * @tx_flags:	completed with instructions for time stamping
2401  *
2402  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2403  */
sock_tx_timestamp(const struct sock * sk,__u16 tsflags,__u8 * tx_flags)2404 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2405 				     __u8 *tx_flags)
2406 {
2407 	if (unlikely(tsflags))
2408 		__sock_tx_timestamp(tsflags, tx_flags);
2409 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2410 		*tx_flags |= SKBTX_WIFI_STATUS;
2411 }
2412 
2413 /**
2414  * sk_eat_skb - Release a skb if it is no longer needed
2415  * @sk: socket to eat this skb from
2416  * @skb: socket buffer to eat
2417  *
2418  * This routine must be called with interrupts disabled or with the socket
2419  * locked so that the sk_buff queue operation is ok.
2420 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2421 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2422 {
2423 	__skb_unlink(skb, &sk->sk_receive_queue);
2424 	__kfree_skb(skb);
2425 }
2426 
2427 static inline
sock_net(const struct sock * sk)2428 struct net *sock_net(const struct sock *sk)
2429 {
2430 	return read_pnet(&sk->sk_net);
2431 }
2432 
2433 static inline
sock_net_set(struct sock * sk,struct net * net)2434 void sock_net_set(struct sock *sk, struct net *net)
2435 {
2436 	write_pnet(&sk->sk_net, net);
2437 }
2438 
skb_steal_sock(struct sk_buff * skb)2439 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2440 {
2441 	if (skb->sk) {
2442 		struct sock *sk = skb->sk;
2443 
2444 		skb->destructor = NULL;
2445 		skb->sk = NULL;
2446 		return sk;
2447 	}
2448 	return NULL;
2449 }
2450 
2451 /* This helper checks if a socket is a full socket,
2452  * ie _not_ a timewait or request socket.
2453  */
sk_fullsock(const struct sock * sk)2454 static inline bool sk_fullsock(const struct sock *sk)
2455 {
2456 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2457 }
2458 
2459 /* Checks if this SKB belongs to an HW offloaded socket
2460  * and whether any SW fallbacks are required based on dev.
2461  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2462 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2463 						   struct net_device *dev)
2464 {
2465 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2466 	struct sock *sk = skb->sk;
2467 
2468 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2469 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2470 #endif
2471 
2472 	return skb;
2473 }
2474 
2475 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2476  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2477  */
sk_listener(const struct sock * sk)2478 static inline bool sk_listener(const struct sock *sk)
2479 {
2480 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2481 }
2482 
2483 void sock_enable_timestamp(struct sock *sk, int flag);
2484 int sock_get_timestamp(struct sock *, struct timeval __user *);
2485 int sock_get_timestampns(struct sock *, struct timespec __user *);
2486 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2487 		       int type);
2488 
2489 bool sk_ns_capable(const struct sock *sk,
2490 		   struct user_namespace *user_ns, int cap);
2491 bool sk_capable(const struct sock *sk, int cap);
2492 bool sk_net_capable(const struct sock *sk, int cap);
2493 
2494 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2495 
2496 /* Take into consideration the size of the struct sk_buff overhead in the
2497  * determination of these values, since that is non-constant across
2498  * platforms.  This makes socket queueing behavior and performance
2499  * not depend upon such differences.
2500  */
2501 #define _SK_MEM_PACKETS		256
2502 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2503 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2504 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2505 
2506 extern __u32 sysctl_wmem_max;
2507 extern __u32 sysctl_rmem_max;
2508 
2509 extern int sysctl_tstamp_allow_data;
2510 extern int sysctl_optmem_max;
2511 
2512 extern __u32 sysctl_wmem_default;
2513 extern __u32 sysctl_rmem_default;
2514 
2515 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2516 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2517 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2518 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2519 {
2520 	/* Does this proto have per netns sysctl_wmem ? */
2521 	if (proto->sysctl_wmem_offset)
2522 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2523 
2524 	return *proto->sysctl_wmem;
2525 }
2526 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2527 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2528 {
2529 	/* Does this proto have per netns sysctl_rmem ? */
2530 	if (proto->sysctl_rmem_offset)
2531 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2532 
2533 	return *proto->sysctl_rmem;
2534 }
2535 
2536 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2537  * Some wifi drivers need to tweak it to get more chunks.
2538  * They can use this helper from their ndo_start_xmit()
2539  */
sk_pacing_shift_update(struct sock * sk,int val)2540 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2541 {
2542 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2543 		return;
2544 	sk->sk_pacing_shift = val;
2545 }
2546 
2547 /* if a socket is bound to a device, check that the given device
2548  * index is either the same or that the socket is bound to an L3
2549  * master device and the given device index is also enslaved to
2550  * that L3 master
2551  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2552 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2553 {
2554 	int mdif;
2555 
2556 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2557 		return true;
2558 
2559 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2560 	if (mdif && mdif == sk->sk_bound_dev_if)
2561 		return true;
2562 
2563 	return false;
2564 }
2565 
2566 #endif	/* _SOCK_H */
2567