1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76
77 /*
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
81 */
82
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95
96 /* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
99 */
100 typedef struct {
101 spinlock_t slock;
102 int owned;
103 wait_queue_head_t wq;
104 /*
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
108 * the slock itself):
109 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114
115 struct sock;
116 struct proto;
117 struct net;
118
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121
122 /**
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_rx_queue_mapping: rx queue number for this connection
143 * @skc_flags: place holder for sk_flags
144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146 * @skc_incoming_cpu: record/match cpu processing incoming packets
147 * @skc_refcnt: reference count
148 *
149 * This is the minimal network layer representation of sockets, the header
150 * for struct sock and struct inet_timewait_sock.
151 */
152 struct sock_common {
153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 * address on 64bit arches : cf INET_MATCH()
155 */
156 union {
157 __addrpair skc_addrpair;
158 struct {
159 __be32 skc_daddr;
160 __be32 skc_rcv_saddr;
161 };
162 };
163 union {
164 unsigned int skc_hash;
165 __u16 skc_u16hashes[2];
166 };
167 /* skc_dport && skc_num must be grouped as well */
168 union {
169 __portpair skc_portpair;
170 struct {
171 __be16 skc_dport;
172 __u16 skc_num;
173 };
174 };
175
176 unsigned short skc_family;
177 volatile unsigned char skc_state;
178 unsigned char skc_reuse:4;
179 unsigned char skc_reuseport:1;
180 unsigned char skc_ipv6only:1;
181 unsigned char skc_net_refcnt:1;
182 int skc_bound_dev_if;
183 union {
184 struct hlist_node skc_bind_node;
185 struct hlist_node skc_portaddr_node;
186 };
187 struct proto *skc_prot;
188 possible_net_t skc_net;
189
190 #if IS_ENABLED(CONFIG_IPV6)
191 struct in6_addr skc_v6_daddr;
192 struct in6_addr skc_v6_rcv_saddr;
193 #endif
194
195 atomic64_t skc_cookie;
196
197 /* following fields are padding to force
198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 * assuming IPV6 is enabled. We use this padding differently
200 * for different kind of 'sockets'
201 */
202 union {
203 unsigned long skc_flags;
204 struct sock *skc_listener; /* request_sock */
205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 };
207 /*
208 * fields between dontcopy_begin/dontcopy_end
209 * are not copied in sock_copy()
210 */
211 /* private: */
212 int skc_dontcopy_begin[0];
213 /* public: */
214 union {
215 struct hlist_node skc_node;
216 struct hlist_nulls_node skc_nulls_node;
217 };
218 unsigned short skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 unsigned short skc_rx_queue_mapping;
221 #endif
222 union {
223 int skc_incoming_cpu;
224 u32 skc_rcv_wnd;
225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
226 };
227
228 refcount_t skc_refcnt;
229 /* private: */
230 int skc_dontcopy_end[0];
231 union {
232 u32 skc_rxhash;
233 u32 skc_window_clamp;
234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 };
236 /* public: */
237 };
238
239 /**
240 * struct sock - network layer representation of sockets
241 * @__sk_common: shared layout with inet_timewait_sock
242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244 * @sk_lock: synchronizer
245 * @sk_kern_sock: True if sock is using kernel lock classes
246 * @sk_rcvbuf: size of receive buffer in bytes
247 * @sk_wq: sock wait queue and async head
248 * @sk_rx_dst: receive input route used by early demux
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_napi_id: id of the last napi context to receive data for sk
260 * @sk_ll_usec: usecs to busypoll when there is no data
261 * @sk_allocation: allocation mode
262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265 * @sk_sndbuf: size of send buffer in bytes
266 * @__sk_flags_offset: empty field used to determine location of bitfield
267 * @sk_padding: unused element for alignment
268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269 * @sk_no_check_rx: allow zero checksum in RX packets
270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273 * @sk_gso_max_size: Maximum GSO segment size to build
274 * @sk_gso_max_segs: Maximum number of GSO segments
275 * @sk_pacing_shift: scaling factor for TCP Small Queues
276 * @sk_lingertime: %SO_LINGER l_linger setting
277 * @sk_backlog: always used with the per-socket spinlock held
278 * @sk_callback_lock: used with the callbacks in the end of this struct
279 * @sk_error_queue: rarely used
280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281 * IPV6_ADDRFORM for instance)
282 * @sk_err: last error
283 * @sk_err_soft: errors that don't cause failure but are the cause of a
284 * persistent failure not just 'timed out'
285 * @sk_drops: raw/udp drops counter
286 * @sk_ack_backlog: current listen backlog
287 * @sk_max_ack_backlog: listen backlog set in listen()
288 * @sk_uid: user id of owner
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_type: socket type (%SOCK_STREAM, etc)
291 * @sk_protocol: which protocol this socket belongs in this network family
292 * @sk_peer_pid: &struct pid for this socket's peer
293 * @sk_peer_cred: %SO_PEERCRED setting
294 * @sk_rcvlowat: %SO_RCVLOWAT setting
295 * @sk_rcvtimeo: %SO_RCVTIMEO setting
296 * @sk_sndtimeo: %SO_SNDTIMEO setting
297 * @sk_txhash: computed flow hash for use on transmit
298 * @sk_filter: socket filtering instructions
299 * @sk_timer: sock cleanup timer
300 * @sk_stamp: time stamp of last packet received
301 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
305 * @sk_socket: Identd and reporting IO signals
306 * @sk_user_data: RPC layer private data
307 * @sk_frag: cached page frag
308 * @sk_peek_off: current peek_offset value
309 * @sk_send_head: front of stuff to transmit
310 * @sk_security: used by security modules
311 * @sk_mark: generic packet mark
312 * @sk_cgrp_data: cgroup data for this cgroup
313 * @sk_memcg: this socket's memory cgroup association
314 * @sk_write_pending: a write to stream socket waits to start
315 * @sk_state_change: callback to indicate change in the state of the sock
316 * @sk_data_ready: callback to indicate there is data to be processed
317 * @sk_write_space: callback to indicate there is bf sending space available
318 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319 * @sk_backlog_rcv: callback to process the backlog
320 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 * @sk_reuseport_cb: reuseport group container
322 * @sk_rcu: used during RCU grace period
323 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
324 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
325 * @sk_txtime_unused: unused txtime flags
326 */
327 struct sock {
328 /*
329 * Now struct inet_timewait_sock also uses sock_common, so please just
330 * don't add nothing before this first member (__sk_common) --acme
331 */
332 struct sock_common __sk_common;
333 #define sk_node __sk_common.skc_node
334 #define sk_nulls_node __sk_common.skc_nulls_node
335 #define sk_refcnt __sk_common.skc_refcnt
336 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
337 #ifdef CONFIG_XPS
338 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
339 #endif
340
341 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
342 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
343 #define sk_hash __sk_common.skc_hash
344 #define sk_portpair __sk_common.skc_portpair
345 #define sk_num __sk_common.skc_num
346 #define sk_dport __sk_common.skc_dport
347 #define sk_addrpair __sk_common.skc_addrpair
348 #define sk_daddr __sk_common.skc_daddr
349 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
350 #define sk_family __sk_common.skc_family
351 #define sk_state __sk_common.skc_state
352 #define sk_reuse __sk_common.skc_reuse
353 #define sk_reuseport __sk_common.skc_reuseport
354 #define sk_ipv6only __sk_common.skc_ipv6only
355 #define sk_net_refcnt __sk_common.skc_net_refcnt
356 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
357 #define sk_bind_node __sk_common.skc_bind_node
358 #define sk_prot __sk_common.skc_prot
359 #define sk_net __sk_common.skc_net
360 #define sk_v6_daddr __sk_common.skc_v6_daddr
361 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
362 #define sk_cookie __sk_common.skc_cookie
363 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
364 #define sk_flags __sk_common.skc_flags
365 #define sk_rxhash __sk_common.skc_rxhash
366
367 socket_lock_t sk_lock;
368 atomic_t sk_drops;
369 int sk_rcvlowat;
370 struct sk_buff_head sk_error_queue;
371 struct sk_buff_head sk_receive_queue;
372 /*
373 * The backlog queue is special, it is always used with
374 * the per-socket spinlock held and requires low latency
375 * access. Therefore we special case it's implementation.
376 * Note : rmem_alloc is in this structure to fill a hole
377 * on 64bit arches, not because its logically part of
378 * backlog.
379 */
380 struct {
381 atomic_t rmem_alloc;
382 int len;
383 struct sk_buff *head;
384 struct sk_buff *tail;
385 } sk_backlog;
386 #define sk_rmem_alloc sk_backlog.rmem_alloc
387
388 int sk_forward_alloc;
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 unsigned int sk_ll_usec;
391 /* ===== mostly read cache line ===== */
392 unsigned int sk_napi_id;
393 #endif
394 int sk_rcvbuf;
395
396 struct sk_filter __rcu *sk_filter;
397 union {
398 struct socket_wq __rcu *sk_wq;
399 struct socket_wq *sk_wq_raw;
400 };
401 #ifdef CONFIG_XFRM
402 struct xfrm_policy __rcu *sk_policy[2];
403 #endif
404 struct dst_entry *sk_rx_dst;
405 struct dst_entry __rcu *sk_dst_cache;
406 atomic_t sk_omem_alloc;
407 int sk_sndbuf;
408
409 /* ===== cache line for TX ===== */
410 int sk_wmem_queued;
411 refcount_t sk_wmem_alloc;
412 unsigned long sk_tsq_flags;
413 union {
414 struct sk_buff *sk_send_head;
415 struct rb_root tcp_rtx_queue;
416 };
417 struct sk_buff_head sk_write_queue;
418 __s32 sk_peek_off;
419 int sk_write_pending;
420 __u32 sk_dst_pending_confirm;
421 u32 sk_pacing_status; /* see enum sk_pacing */
422 long sk_sndtimeo;
423 struct timer_list sk_timer;
424 __u32 sk_priority;
425 __u32 sk_mark;
426 u32 sk_pacing_rate; /* bytes per second */
427 u32 sk_max_pacing_rate;
428 struct page_frag sk_frag;
429 netdev_features_t sk_route_caps;
430 netdev_features_t sk_route_nocaps;
431 netdev_features_t sk_route_forced_caps;
432 int sk_gso_type;
433 unsigned int sk_gso_max_size;
434 gfp_t sk_allocation;
435 __u32 sk_txhash;
436
437 /*
438 * Because of non atomicity rules, all
439 * changes are protected by socket lock.
440 */
441 unsigned int __sk_flags_offset[0];
442 #ifdef __BIG_ENDIAN_BITFIELD
443 #define SK_FL_PROTO_SHIFT 16
444 #define SK_FL_PROTO_MASK 0x00ff0000
445
446 #define SK_FL_TYPE_SHIFT 0
447 #define SK_FL_TYPE_MASK 0x0000ffff
448 #else
449 #define SK_FL_PROTO_SHIFT 8
450 #define SK_FL_PROTO_MASK 0x0000ff00
451
452 #define SK_FL_TYPE_SHIFT 16
453 #define SK_FL_TYPE_MASK 0xffff0000
454 #endif
455
456 unsigned int sk_padding : 1,
457 sk_kern_sock : 1,
458 sk_no_check_tx : 1,
459 sk_no_check_rx : 1,
460 sk_userlocks : 4,
461 sk_protocol : 8,
462 sk_type : 16;
463 #define SK_PROTOCOL_MAX U8_MAX
464 u16 sk_gso_max_segs;
465 u8 sk_pacing_shift;
466 unsigned long sk_lingertime;
467 struct proto *sk_prot_creator;
468 rwlock_t sk_callback_lock;
469 int sk_err,
470 sk_err_soft;
471 u32 sk_ack_backlog;
472 u32 sk_max_ack_backlog;
473 kuid_t sk_uid;
474 struct pid *sk_peer_pid;
475 const struct cred *sk_peer_cred;
476 long sk_rcvtimeo;
477 ktime_t sk_stamp;
478 #if BITS_PER_LONG==32
479 seqlock_t sk_stamp_seq;
480 #endif
481 u16 sk_tsflags;
482 u8 sk_shutdown;
483 u32 sk_tskey;
484 atomic_t sk_zckey;
485
486 u8 sk_clockid;
487 u8 sk_txtime_deadline_mode : 1,
488 sk_txtime_report_errors : 1,
489 sk_txtime_unused : 6;
490
491 struct socket *sk_socket;
492 void *sk_user_data;
493 #ifdef CONFIG_SECURITY
494 void *sk_security;
495 #endif
496 struct sock_cgroup_data sk_cgrp_data;
497 struct mem_cgroup *sk_memcg;
498 void (*sk_state_change)(struct sock *sk);
499 void (*sk_data_ready)(struct sock *sk);
500 void (*sk_write_space)(struct sock *sk);
501 void (*sk_error_report)(struct sock *sk);
502 int (*sk_backlog_rcv)(struct sock *sk,
503 struct sk_buff *skb);
504 #ifdef CONFIG_SOCK_VALIDATE_XMIT
505 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
506 struct net_device *dev,
507 struct sk_buff *skb);
508 #endif
509 void (*sk_destruct)(struct sock *sk);
510 struct sock_reuseport __rcu *sk_reuseport_cb;
511 struct rcu_head sk_rcu;
512 };
513
514 enum sk_pacing {
515 SK_PACING_NONE = 0,
516 SK_PACING_NEEDED = 1,
517 SK_PACING_FQ = 2,
518 };
519
520 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
521
522 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
523 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
524
525 /*
526 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
527 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
528 * on a socket means that the socket will reuse everybody else's port
529 * without looking at the other's sk_reuse value.
530 */
531
532 #define SK_NO_REUSE 0
533 #define SK_CAN_REUSE 1
534 #define SK_FORCE_REUSE 2
535
536 int sk_set_peek_off(struct sock *sk, int val);
537
sk_peek_offset(struct sock * sk,int flags)538 static inline int sk_peek_offset(struct sock *sk, int flags)
539 {
540 if (unlikely(flags & MSG_PEEK)) {
541 return READ_ONCE(sk->sk_peek_off);
542 }
543
544 return 0;
545 }
546
sk_peek_offset_bwd(struct sock * sk,int val)547 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
548 {
549 s32 off = READ_ONCE(sk->sk_peek_off);
550
551 if (unlikely(off >= 0)) {
552 off = max_t(s32, off - val, 0);
553 WRITE_ONCE(sk->sk_peek_off, off);
554 }
555 }
556
sk_peek_offset_fwd(struct sock * sk,int val)557 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
558 {
559 sk_peek_offset_bwd(sk, -val);
560 }
561
562 /*
563 * Hashed lists helper routines
564 */
sk_entry(const struct hlist_node * node)565 static inline struct sock *sk_entry(const struct hlist_node *node)
566 {
567 return hlist_entry(node, struct sock, sk_node);
568 }
569
__sk_head(const struct hlist_head * head)570 static inline struct sock *__sk_head(const struct hlist_head *head)
571 {
572 return hlist_entry(head->first, struct sock, sk_node);
573 }
574
sk_head(const struct hlist_head * head)575 static inline struct sock *sk_head(const struct hlist_head *head)
576 {
577 return hlist_empty(head) ? NULL : __sk_head(head);
578 }
579
__sk_nulls_head(const struct hlist_nulls_head * head)580 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
581 {
582 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
583 }
584
sk_nulls_head(const struct hlist_nulls_head * head)585 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
586 {
587 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
588 }
589
sk_next(const struct sock * sk)590 static inline struct sock *sk_next(const struct sock *sk)
591 {
592 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
593 }
594
sk_nulls_next(const struct sock * sk)595 static inline struct sock *sk_nulls_next(const struct sock *sk)
596 {
597 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
598 hlist_nulls_entry(sk->sk_nulls_node.next,
599 struct sock, sk_nulls_node) :
600 NULL;
601 }
602
sk_unhashed(const struct sock * sk)603 static inline bool sk_unhashed(const struct sock *sk)
604 {
605 return hlist_unhashed(&sk->sk_node);
606 }
607
sk_hashed(const struct sock * sk)608 static inline bool sk_hashed(const struct sock *sk)
609 {
610 return !sk_unhashed(sk);
611 }
612
sk_node_init(struct hlist_node * node)613 static inline void sk_node_init(struct hlist_node *node)
614 {
615 node->pprev = NULL;
616 }
617
sk_nulls_node_init(struct hlist_nulls_node * node)618 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
619 {
620 node->pprev = NULL;
621 }
622
__sk_del_node(struct sock * sk)623 static inline void __sk_del_node(struct sock *sk)
624 {
625 __hlist_del(&sk->sk_node);
626 }
627
628 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)629 static inline bool __sk_del_node_init(struct sock *sk)
630 {
631 if (sk_hashed(sk)) {
632 __sk_del_node(sk);
633 sk_node_init(&sk->sk_node);
634 return true;
635 }
636 return false;
637 }
638
639 /* Grab socket reference count. This operation is valid only
640 when sk is ALREADY grabbed f.e. it is found in hash table
641 or a list and the lookup is made under lock preventing hash table
642 modifications.
643 */
644
sock_hold(struct sock * sk)645 static __always_inline void sock_hold(struct sock *sk)
646 {
647 refcount_inc(&sk->sk_refcnt);
648 }
649
650 /* Ungrab socket in the context, which assumes that socket refcnt
651 cannot hit zero, f.e. it is true in context of any socketcall.
652 */
__sock_put(struct sock * sk)653 static __always_inline void __sock_put(struct sock *sk)
654 {
655 refcount_dec(&sk->sk_refcnt);
656 }
657
sk_del_node_init(struct sock * sk)658 static inline bool sk_del_node_init(struct sock *sk)
659 {
660 bool rc = __sk_del_node_init(sk);
661
662 if (rc) {
663 /* paranoid for a while -acme */
664 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
665 __sock_put(sk);
666 }
667 return rc;
668 }
669 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
670
__sk_nulls_del_node_init_rcu(struct sock * sk)671 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
672 {
673 if (sk_hashed(sk)) {
674 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
675 return true;
676 }
677 return false;
678 }
679
sk_nulls_del_node_init_rcu(struct sock * sk)680 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
681 {
682 bool rc = __sk_nulls_del_node_init_rcu(sk);
683
684 if (rc) {
685 /* paranoid for a while -acme */
686 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
687 __sock_put(sk);
688 }
689 return rc;
690 }
691
__sk_add_node(struct sock * sk,struct hlist_head * list)692 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
693 {
694 hlist_add_head(&sk->sk_node, list);
695 }
696
sk_add_node(struct sock * sk,struct hlist_head * list)697 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
698 {
699 sock_hold(sk);
700 __sk_add_node(sk, list);
701 }
702
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)703 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
704 {
705 sock_hold(sk);
706 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
707 sk->sk_family == AF_INET6)
708 hlist_add_tail_rcu(&sk->sk_node, list);
709 else
710 hlist_add_head_rcu(&sk->sk_node, list);
711 }
712
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)713 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
714 {
715 sock_hold(sk);
716 hlist_add_tail_rcu(&sk->sk_node, list);
717 }
718
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)719 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
720 {
721 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
722 }
723
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)724 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
725 {
726 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
727 }
728
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)729 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
730 {
731 sock_hold(sk);
732 __sk_nulls_add_node_rcu(sk, list);
733 }
734
__sk_del_bind_node(struct sock * sk)735 static inline void __sk_del_bind_node(struct sock *sk)
736 {
737 __hlist_del(&sk->sk_bind_node);
738 }
739
sk_add_bind_node(struct sock * sk,struct hlist_head * list)740 static inline void sk_add_bind_node(struct sock *sk,
741 struct hlist_head *list)
742 {
743 hlist_add_head(&sk->sk_bind_node, list);
744 }
745
746 #define sk_for_each(__sk, list) \
747 hlist_for_each_entry(__sk, list, sk_node)
748 #define sk_for_each_rcu(__sk, list) \
749 hlist_for_each_entry_rcu(__sk, list, sk_node)
750 #define sk_nulls_for_each(__sk, node, list) \
751 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
752 #define sk_nulls_for_each_rcu(__sk, node, list) \
753 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
754 #define sk_for_each_from(__sk) \
755 hlist_for_each_entry_from(__sk, sk_node)
756 #define sk_nulls_for_each_from(__sk, node) \
757 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
758 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
759 #define sk_for_each_safe(__sk, tmp, list) \
760 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
761 #define sk_for_each_bound(__sk, list) \
762 hlist_for_each_entry(__sk, list, sk_bind_node)
763
764 /**
765 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
766 * @tpos: the type * to use as a loop cursor.
767 * @pos: the &struct hlist_node to use as a loop cursor.
768 * @head: the head for your list.
769 * @offset: offset of hlist_node within the struct.
770 *
771 */
772 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
773 for (pos = rcu_dereference(hlist_first_rcu(head)); \
774 pos != NULL && \
775 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
776 pos = rcu_dereference(hlist_next_rcu(pos)))
777
sk_user_ns(struct sock * sk)778 static inline struct user_namespace *sk_user_ns(struct sock *sk)
779 {
780 /* Careful only use this in a context where these parameters
781 * can not change and must all be valid, such as recvmsg from
782 * userspace.
783 */
784 return sk->sk_socket->file->f_cred->user_ns;
785 }
786
787 /* Sock flags */
788 enum sock_flags {
789 SOCK_DEAD,
790 SOCK_DONE,
791 SOCK_URGINLINE,
792 SOCK_KEEPOPEN,
793 SOCK_LINGER,
794 SOCK_DESTROY,
795 SOCK_BROADCAST,
796 SOCK_TIMESTAMP,
797 SOCK_ZAPPED,
798 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
799 SOCK_DBG, /* %SO_DEBUG setting */
800 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
801 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
802 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
803 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
804 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
805 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
806 SOCK_FASYNC, /* fasync() active */
807 SOCK_RXQ_OVFL,
808 SOCK_ZEROCOPY, /* buffers from userspace */
809 SOCK_WIFI_STATUS, /* push wifi status to userspace */
810 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
811 * Will use last 4 bytes of packet sent from
812 * user-space instead.
813 */
814 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
815 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
816 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
817 SOCK_TXTIME,
818 };
819
820 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
821
sock_copy_flags(struct sock * nsk,struct sock * osk)822 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
823 {
824 nsk->sk_flags = osk->sk_flags;
825 }
826
sock_set_flag(struct sock * sk,enum sock_flags flag)827 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
828 {
829 __set_bit(flag, &sk->sk_flags);
830 }
831
sock_reset_flag(struct sock * sk,enum sock_flags flag)832 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
833 {
834 __clear_bit(flag, &sk->sk_flags);
835 }
836
sock_flag(const struct sock * sk,enum sock_flags flag)837 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
838 {
839 return test_bit(flag, &sk->sk_flags);
840 }
841
842 #ifdef CONFIG_NET
843 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)844 static inline int sk_memalloc_socks(void)
845 {
846 return static_branch_unlikely(&memalloc_socks_key);
847 }
848
849 void __receive_sock(struct file *file);
850 #else
851
sk_memalloc_socks(void)852 static inline int sk_memalloc_socks(void)
853 {
854 return 0;
855 }
856
__receive_sock(struct file * file)857 static inline void __receive_sock(struct file *file)
858 { }
859 #endif
860
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)861 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
862 {
863 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
864 }
865
sk_acceptq_removed(struct sock * sk)866 static inline void sk_acceptq_removed(struct sock *sk)
867 {
868 sk->sk_ack_backlog--;
869 }
870
sk_acceptq_added(struct sock * sk)871 static inline void sk_acceptq_added(struct sock *sk)
872 {
873 sk->sk_ack_backlog++;
874 }
875
sk_acceptq_is_full(const struct sock * sk)876 static inline bool sk_acceptq_is_full(const struct sock *sk)
877 {
878 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
879 }
880
881 /*
882 * Compute minimal free write space needed to queue new packets.
883 */
sk_stream_min_wspace(const struct sock * sk)884 static inline int sk_stream_min_wspace(const struct sock *sk)
885 {
886 return sk->sk_wmem_queued >> 1;
887 }
888
sk_stream_wspace(const struct sock * sk)889 static inline int sk_stream_wspace(const struct sock *sk)
890 {
891 return sk->sk_sndbuf - sk->sk_wmem_queued;
892 }
893
894 void sk_stream_write_space(struct sock *sk);
895
896 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)897 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
898 {
899 /* dont let skb dst not refcounted, we are going to leave rcu lock */
900 skb_dst_force(skb);
901
902 if (!sk->sk_backlog.tail)
903 WRITE_ONCE(sk->sk_backlog.head, skb);
904 else
905 sk->sk_backlog.tail->next = skb;
906
907 WRITE_ONCE(sk->sk_backlog.tail, skb);
908 skb->next = NULL;
909 }
910
911 /*
912 * Take into account size of receive queue and backlog queue
913 * Do not take into account this skb truesize,
914 * to allow even a single big packet to come.
915 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)916 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
917 {
918 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
919
920 return qsize > limit;
921 }
922
923 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)924 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
925 unsigned int limit)
926 {
927 if (sk_rcvqueues_full(sk, limit))
928 return -ENOBUFS;
929
930 /*
931 * If the skb was allocated from pfmemalloc reserves, only
932 * allow SOCK_MEMALLOC sockets to use it as this socket is
933 * helping free memory
934 */
935 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
936 return -ENOMEM;
937
938 __sk_add_backlog(sk, skb);
939 sk->sk_backlog.len += skb->truesize;
940 return 0;
941 }
942
943 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
944
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)945 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
946 {
947 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
948 return __sk_backlog_rcv(sk, skb);
949
950 return sk->sk_backlog_rcv(sk, skb);
951 }
952
sk_incoming_cpu_update(struct sock * sk)953 static inline void sk_incoming_cpu_update(struct sock *sk)
954 {
955 int cpu = raw_smp_processor_id();
956
957 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
958 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
959 }
960
sock_rps_record_flow_hash(__u32 hash)961 static inline void sock_rps_record_flow_hash(__u32 hash)
962 {
963 #ifdef CONFIG_RPS
964 struct rps_sock_flow_table *sock_flow_table;
965
966 rcu_read_lock();
967 sock_flow_table = rcu_dereference(rps_sock_flow_table);
968 rps_record_sock_flow(sock_flow_table, hash);
969 rcu_read_unlock();
970 #endif
971 }
972
sock_rps_record_flow(const struct sock * sk)973 static inline void sock_rps_record_flow(const struct sock *sk)
974 {
975 #ifdef CONFIG_RPS
976 if (static_key_false(&rfs_needed)) {
977 /* Reading sk->sk_rxhash might incur an expensive cache line
978 * miss.
979 *
980 * TCP_ESTABLISHED does cover almost all states where RFS
981 * might be useful, and is cheaper [1] than testing :
982 * IPv4: inet_sk(sk)->inet_daddr
983 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
984 * OR an additional socket flag
985 * [1] : sk_state and sk_prot are in the same cache line.
986 */
987 if (sk->sk_state == TCP_ESTABLISHED)
988 sock_rps_record_flow_hash(sk->sk_rxhash);
989 }
990 #endif
991 }
992
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)993 static inline void sock_rps_save_rxhash(struct sock *sk,
994 const struct sk_buff *skb)
995 {
996 #ifdef CONFIG_RPS
997 if (unlikely(sk->sk_rxhash != skb->hash))
998 sk->sk_rxhash = skb->hash;
999 #endif
1000 }
1001
sock_rps_reset_rxhash(struct sock * sk)1002 static inline void sock_rps_reset_rxhash(struct sock *sk)
1003 {
1004 #ifdef CONFIG_RPS
1005 sk->sk_rxhash = 0;
1006 #endif
1007 }
1008
1009 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1010 ({ int __rc; \
1011 release_sock(__sk); \
1012 __rc = __condition; \
1013 if (!__rc) { \
1014 *(__timeo) = wait_woken(__wait, \
1015 TASK_INTERRUPTIBLE, \
1016 *(__timeo)); \
1017 } \
1018 sched_annotate_sleep(); \
1019 lock_sock(__sk); \
1020 __rc = __condition; \
1021 __rc; \
1022 })
1023
1024 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1025 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1026 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1027 int sk_stream_error(struct sock *sk, int flags, int err);
1028 void sk_stream_kill_queues(struct sock *sk);
1029 void sk_set_memalloc(struct sock *sk);
1030 void sk_clear_memalloc(struct sock *sk);
1031
1032 void __sk_flush_backlog(struct sock *sk);
1033
sk_flush_backlog(struct sock * sk)1034 static inline bool sk_flush_backlog(struct sock *sk)
1035 {
1036 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1037 __sk_flush_backlog(sk);
1038 return true;
1039 }
1040 return false;
1041 }
1042
1043 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1044
1045 struct request_sock_ops;
1046 struct timewait_sock_ops;
1047 struct inet_hashinfo;
1048 struct raw_hashinfo;
1049 struct smc_hashinfo;
1050 struct module;
1051
1052 /*
1053 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1054 * un-modified. Special care is taken when initializing object to zero.
1055 */
sk_prot_clear_nulls(struct sock * sk,int size)1056 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1057 {
1058 if (offsetof(struct sock, sk_node.next) != 0)
1059 memset(sk, 0, offsetof(struct sock, sk_node.next));
1060 memset(&sk->sk_node.pprev, 0,
1061 size - offsetof(struct sock, sk_node.pprev));
1062 }
1063
1064 /* Networking protocol blocks we attach to sockets.
1065 * socket layer -> transport layer interface
1066 */
1067 struct proto {
1068 void (*close)(struct sock *sk,
1069 long timeout);
1070 int (*pre_connect)(struct sock *sk,
1071 struct sockaddr *uaddr,
1072 int addr_len);
1073 int (*connect)(struct sock *sk,
1074 struct sockaddr *uaddr,
1075 int addr_len);
1076 int (*disconnect)(struct sock *sk, int flags);
1077
1078 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1079 bool kern);
1080
1081 int (*ioctl)(struct sock *sk, int cmd,
1082 unsigned long arg);
1083 int (*init)(struct sock *sk);
1084 void (*destroy)(struct sock *sk);
1085 void (*shutdown)(struct sock *sk, int how);
1086 int (*setsockopt)(struct sock *sk, int level,
1087 int optname, char __user *optval,
1088 unsigned int optlen);
1089 int (*getsockopt)(struct sock *sk, int level,
1090 int optname, char __user *optval,
1091 int __user *option);
1092 void (*keepalive)(struct sock *sk, int valbool);
1093 #ifdef CONFIG_COMPAT
1094 int (*compat_setsockopt)(struct sock *sk,
1095 int level,
1096 int optname, char __user *optval,
1097 unsigned int optlen);
1098 int (*compat_getsockopt)(struct sock *sk,
1099 int level,
1100 int optname, char __user *optval,
1101 int __user *option);
1102 int (*compat_ioctl)(struct sock *sk,
1103 unsigned int cmd, unsigned long arg);
1104 #endif
1105 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1106 size_t len);
1107 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1108 size_t len, int noblock, int flags,
1109 int *addr_len);
1110 int (*sendpage)(struct sock *sk, struct page *page,
1111 int offset, size_t size, int flags);
1112 int (*bind)(struct sock *sk,
1113 struct sockaddr *uaddr, int addr_len);
1114
1115 int (*backlog_rcv) (struct sock *sk,
1116 struct sk_buff *skb);
1117
1118 void (*release_cb)(struct sock *sk);
1119
1120 /* Keeping track of sk's, looking them up, and port selection methods. */
1121 int (*hash)(struct sock *sk);
1122 void (*unhash)(struct sock *sk);
1123 void (*rehash)(struct sock *sk);
1124 int (*get_port)(struct sock *sk, unsigned short snum);
1125
1126 /* Keeping track of sockets in use */
1127 #ifdef CONFIG_PROC_FS
1128 unsigned int inuse_idx;
1129 #endif
1130
1131 bool (*stream_memory_free)(const struct sock *sk);
1132 bool (*stream_memory_read)(const struct sock *sk);
1133 /* Memory pressure */
1134 void (*enter_memory_pressure)(struct sock *sk);
1135 void (*leave_memory_pressure)(struct sock *sk);
1136 atomic_long_t *memory_allocated; /* Current allocated memory. */
1137 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1138 /*
1139 * Pressure flag: try to collapse.
1140 * Technical note: it is used by multiple contexts non atomically.
1141 * All the __sk_mem_schedule() is of this nature: accounting
1142 * is strict, actions are advisory and have some latency.
1143 */
1144 unsigned long *memory_pressure;
1145 long *sysctl_mem;
1146
1147 int *sysctl_wmem;
1148 int *sysctl_rmem;
1149 u32 sysctl_wmem_offset;
1150 u32 sysctl_rmem_offset;
1151
1152 int max_header;
1153 bool no_autobind;
1154
1155 struct kmem_cache *slab;
1156 unsigned int obj_size;
1157 slab_flags_t slab_flags;
1158 unsigned int useroffset; /* Usercopy region offset */
1159 unsigned int usersize; /* Usercopy region size */
1160
1161 struct percpu_counter *orphan_count;
1162
1163 struct request_sock_ops *rsk_prot;
1164 struct timewait_sock_ops *twsk_prot;
1165
1166 union {
1167 struct inet_hashinfo *hashinfo;
1168 struct udp_table *udp_table;
1169 struct raw_hashinfo *raw_hash;
1170 struct smc_hashinfo *smc_hash;
1171 } h;
1172
1173 struct module *owner;
1174
1175 char name[32];
1176
1177 struct list_head node;
1178 #ifdef SOCK_REFCNT_DEBUG
1179 atomic_t socks;
1180 #endif
1181 int (*diag_destroy)(struct sock *sk, int err);
1182 } __randomize_layout;
1183
1184 int proto_register(struct proto *prot, int alloc_slab);
1185 void proto_unregister(struct proto *prot);
1186 int sock_load_diag_module(int family, int protocol);
1187
1188 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1189 static inline void sk_refcnt_debug_inc(struct sock *sk)
1190 {
1191 atomic_inc(&sk->sk_prot->socks);
1192 }
1193
sk_refcnt_debug_dec(struct sock * sk)1194 static inline void sk_refcnt_debug_dec(struct sock *sk)
1195 {
1196 atomic_dec(&sk->sk_prot->socks);
1197 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1198 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1199 }
1200
sk_refcnt_debug_release(const struct sock * sk)1201 static inline void sk_refcnt_debug_release(const struct sock *sk)
1202 {
1203 if (refcount_read(&sk->sk_refcnt) != 1)
1204 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1205 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1206 }
1207 #else /* SOCK_REFCNT_DEBUG */
1208 #define sk_refcnt_debug_inc(sk) do { } while (0)
1209 #define sk_refcnt_debug_dec(sk) do { } while (0)
1210 #define sk_refcnt_debug_release(sk) do { } while (0)
1211 #endif /* SOCK_REFCNT_DEBUG */
1212
sk_stream_memory_free(const struct sock * sk)1213 static inline bool sk_stream_memory_free(const struct sock *sk)
1214 {
1215 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1216 return false;
1217
1218 return sk->sk_prot->stream_memory_free ?
1219 sk->sk_prot->stream_memory_free(sk) : true;
1220 }
1221
sk_stream_is_writeable(const struct sock * sk)1222 static inline bool sk_stream_is_writeable(const struct sock *sk)
1223 {
1224 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1225 sk_stream_memory_free(sk);
1226 }
1227
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1228 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1229 struct cgroup *ancestor)
1230 {
1231 #ifdef CONFIG_SOCK_CGROUP_DATA
1232 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1233 ancestor);
1234 #else
1235 return -ENOTSUPP;
1236 #endif
1237 }
1238
sk_has_memory_pressure(const struct sock * sk)1239 static inline bool sk_has_memory_pressure(const struct sock *sk)
1240 {
1241 return sk->sk_prot->memory_pressure != NULL;
1242 }
1243
sk_under_memory_pressure(const struct sock * sk)1244 static inline bool sk_under_memory_pressure(const struct sock *sk)
1245 {
1246 if (!sk->sk_prot->memory_pressure)
1247 return false;
1248
1249 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1250 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1251 return true;
1252
1253 return !!*sk->sk_prot->memory_pressure;
1254 }
1255
1256 static inline long
sk_memory_allocated(const struct sock * sk)1257 sk_memory_allocated(const struct sock *sk)
1258 {
1259 return atomic_long_read(sk->sk_prot->memory_allocated);
1260 }
1261
1262 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1263 sk_memory_allocated_add(struct sock *sk, int amt)
1264 {
1265 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1266 }
1267
1268 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1269 sk_memory_allocated_sub(struct sock *sk, int amt)
1270 {
1271 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1272 }
1273
sk_sockets_allocated_dec(struct sock * sk)1274 static inline void sk_sockets_allocated_dec(struct sock *sk)
1275 {
1276 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1277 }
1278
sk_sockets_allocated_inc(struct sock * sk)1279 static inline void sk_sockets_allocated_inc(struct sock *sk)
1280 {
1281 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1282 }
1283
1284 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1285 sk_sockets_allocated_read_positive(struct sock *sk)
1286 {
1287 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1288 }
1289
1290 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1291 proto_sockets_allocated_sum_positive(struct proto *prot)
1292 {
1293 return percpu_counter_sum_positive(prot->sockets_allocated);
1294 }
1295
1296 static inline long
proto_memory_allocated(struct proto * prot)1297 proto_memory_allocated(struct proto *prot)
1298 {
1299 return atomic_long_read(prot->memory_allocated);
1300 }
1301
1302 static inline bool
proto_memory_pressure(struct proto * prot)1303 proto_memory_pressure(struct proto *prot)
1304 {
1305 if (!prot->memory_pressure)
1306 return false;
1307 return !!*prot->memory_pressure;
1308 }
1309
1310
1311 #ifdef CONFIG_PROC_FS
1312 /* Called with local bh disabled */
1313 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1314 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1315 int sock_inuse_get(struct net *net);
1316 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1317 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1318 int inc)
1319 {
1320 }
1321 #endif
1322
1323
1324 /* With per-bucket locks this operation is not-atomic, so that
1325 * this version is not worse.
1326 */
__sk_prot_rehash(struct sock * sk)1327 static inline int __sk_prot_rehash(struct sock *sk)
1328 {
1329 sk->sk_prot->unhash(sk);
1330 return sk->sk_prot->hash(sk);
1331 }
1332
1333 /* About 10 seconds */
1334 #define SOCK_DESTROY_TIME (10*HZ)
1335
1336 /* Sockets 0-1023 can't be bound to unless you are superuser */
1337 #define PROT_SOCK 1024
1338
1339 #define SHUTDOWN_MASK 3
1340 #define RCV_SHUTDOWN 1
1341 #define SEND_SHUTDOWN 2
1342
1343 #define SOCK_SNDBUF_LOCK 1
1344 #define SOCK_RCVBUF_LOCK 2
1345 #define SOCK_BINDADDR_LOCK 4
1346 #define SOCK_BINDPORT_LOCK 8
1347
1348 struct socket_alloc {
1349 struct socket socket;
1350 struct inode vfs_inode;
1351 };
1352
SOCKET_I(struct inode * inode)1353 static inline struct socket *SOCKET_I(struct inode *inode)
1354 {
1355 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1356 }
1357
SOCK_INODE(struct socket * socket)1358 static inline struct inode *SOCK_INODE(struct socket *socket)
1359 {
1360 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1361 }
1362
1363 /*
1364 * Functions for memory accounting
1365 */
1366 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1367 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1368 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1369 void __sk_mem_reclaim(struct sock *sk, int amount);
1370
1371 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1372 * do not necessarily have 16x time more memory than 4KB ones.
1373 */
1374 #define SK_MEM_QUANTUM 4096
1375 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1376 #define SK_MEM_SEND 0
1377 #define SK_MEM_RECV 1
1378
1379 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1380 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1381 {
1382 long val = sk->sk_prot->sysctl_mem[index];
1383
1384 #if PAGE_SIZE > SK_MEM_QUANTUM
1385 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1386 #elif PAGE_SIZE < SK_MEM_QUANTUM
1387 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1388 #endif
1389 return val;
1390 }
1391
sk_mem_pages(int amt)1392 static inline int sk_mem_pages(int amt)
1393 {
1394 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1395 }
1396
sk_has_account(struct sock * sk)1397 static inline bool sk_has_account(struct sock *sk)
1398 {
1399 /* return true if protocol supports memory accounting */
1400 return !!sk->sk_prot->memory_allocated;
1401 }
1402
sk_wmem_schedule(struct sock * sk,int size)1403 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1404 {
1405 if (!sk_has_account(sk))
1406 return true;
1407 return size <= sk->sk_forward_alloc ||
1408 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1409 }
1410
1411 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1412 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1413 {
1414 if (!sk_has_account(sk))
1415 return true;
1416 return size<= sk->sk_forward_alloc ||
1417 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1418 skb_pfmemalloc(skb);
1419 }
1420
sk_mem_reclaim(struct sock * sk)1421 static inline void sk_mem_reclaim(struct sock *sk)
1422 {
1423 if (!sk_has_account(sk))
1424 return;
1425 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1426 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1427 }
1428
sk_mem_reclaim_partial(struct sock * sk)1429 static inline void sk_mem_reclaim_partial(struct sock *sk)
1430 {
1431 if (!sk_has_account(sk))
1432 return;
1433 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1434 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1435 }
1436
sk_mem_charge(struct sock * sk,int size)1437 static inline void sk_mem_charge(struct sock *sk, int size)
1438 {
1439 if (!sk_has_account(sk))
1440 return;
1441 sk->sk_forward_alloc -= size;
1442 }
1443
sk_mem_uncharge(struct sock * sk,int size)1444 static inline void sk_mem_uncharge(struct sock *sk, int size)
1445 {
1446 if (!sk_has_account(sk))
1447 return;
1448 sk->sk_forward_alloc += size;
1449
1450 /* Avoid a possible overflow.
1451 * TCP send queues can make this happen, if sk_mem_reclaim()
1452 * is not called and more than 2 GBytes are released at once.
1453 *
1454 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1455 * no need to hold that much forward allocation anyway.
1456 */
1457 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1458 __sk_mem_reclaim(sk, 1 << 20);
1459 }
1460
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1461 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1462 {
1463 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1464 sk->sk_wmem_queued -= skb->truesize;
1465 sk_mem_uncharge(sk, skb->truesize);
1466 __kfree_skb(skb);
1467 }
1468
sock_release_ownership(struct sock * sk)1469 static inline void sock_release_ownership(struct sock *sk)
1470 {
1471 if (sk->sk_lock.owned) {
1472 sk->sk_lock.owned = 0;
1473
1474 /* The sk_lock has mutex_unlock() semantics: */
1475 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1476 }
1477 }
1478
1479 /*
1480 * Macro so as to not evaluate some arguments when
1481 * lockdep is not enabled.
1482 *
1483 * Mark both the sk_lock and the sk_lock.slock as a
1484 * per-address-family lock class.
1485 */
1486 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1487 do { \
1488 sk->sk_lock.owned = 0; \
1489 init_waitqueue_head(&sk->sk_lock.wq); \
1490 spin_lock_init(&(sk)->sk_lock.slock); \
1491 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1492 sizeof((sk)->sk_lock)); \
1493 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1494 (skey), (sname)); \
1495 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1496 } while (0)
1497
1498 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1499 static inline bool lockdep_sock_is_held(const struct sock *sk)
1500 {
1501 return lockdep_is_held(&sk->sk_lock) ||
1502 lockdep_is_held(&sk->sk_lock.slock);
1503 }
1504 #endif
1505
1506 void lock_sock_nested(struct sock *sk, int subclass);
1507
lock_sock(struct sock * sk)1508 static inline void lock_sock(struct sock *sk)
1509 {
1510 lock_sock_nested(sk, 0);
1511 }
1512
1513 void __release_sock(struct sock *sk);
1514 void release_sock(struct sock *sk);
1515
1516 /* BH context may only use the following locking interface. */
1517 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1518 #define bh_lock_sock_nested(__sk) \
1519 spin_lock_nested(&((__sk)->sk_lock.slock), \
1520 SINGLE_DEPTH_NESTING)
1521 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1522
1523 bool lock_sock_fast(struct sock *sk);
1524 /**
1525 * unlock_sock_fast - complement of lock_sock_fast
1526 * @sk: socket
1527 * @slow: slow mode
1528 *
1529 * fast unlock socket for user context.
1530 * If slow mode is on, we call regular release_sock()
1531 */
unlock_sock_fast(struct sock * sk,bool slow)1532 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1533 {
1534 if (slow)
1535 release_sock(sk);
1536 else
1537 spin_unlock_bh(&sk->sk_lock.slock);
1538 }
1539
1540 /* Used by processes to "lock" a socket state, so that
1541 * interrupts and bottom half handlers won't change it
1542 * from under us. It essentially blocks any incoming
1543 * packets, so that we won't get any new data or any
1544 * packets that change the state of the socket.
1545 *
1546 * While locked, BH processing will add new packets to
1547 * the backlog queue. This queue is processed by the
1548 * owner of the socket lock right before it is released.
1549 *
1550 * Since ~2.3.5 it is also exclusive sleep lock serializing
1551 * accesses from user process context.
1552 */
1553
sock_owned_by_me(const struct sock * sk)1554 static inline void sock_owned_by_me(const struct sock *sk)
1555 {
1556 #ifdef CONFIG_LOCKDEP
1557 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1558 #endif
1559 }
1560
sock_owned_by_user(const struct sock * sk)1561 static inline bool sock_owned_by_user(const struct sock *sk)
1562 {
1563 sock_owned_by_me(sk);
1564 return sk->sk_lock.owned;
1565 }
1566
sock_owned_by_user_nocheck(const struct sock * sk)1567 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1568 {
1569 return sk->sk_lock.owned;
1570 }
1571
1572 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1573 static inline bool sock_allow_reclassification(const struct sock *csk)
1574 {
1575 struct sock *sk = (struct sock *)csk;
1576
1577 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1578 }
1579
1580 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1581 struct proto *prot, int kern);
1582 void sk_free(struct sock *sk);
1583 void sk_destruct(struct sock *sk);
1584 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1585 void sk_free_unlock_clone(struct sock *sk);
1586
1587 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1588 gfp_t priority);
1589 void __sock_wfree(struct sk_buff *skb);
1590 void sock_wfree(struct sk_buff *skb);
1591 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1592 gfp_t priority);
1593 void skb_orphan_partial(struct sk_buff *skb);
1594 void sock_rfree(struct sk_buff *skb);
1595 void sock_efree(struct sk_buff *skb);
1596 #ifdef CONFIG_INET
1597 void sock_edemux(struct sk_buff *skb);
1598 #else
1599 #define sock_edemux sock_efree
1600 #endif
1601
1602 int sock_setsockopt(struct socket *sock, int level, int op,
1603 char __user *optval, unsigned int optlen);
1604
1605 int sock_getsockopt(struct socket *sock, int level, int op,
1606 char __user *optval, int __user *optlen);
1607 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1608 int noblock, int *errcode);
1609 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1610 unsigned long data_len, int noblock,
1611 int *errcode, int max_page_order);
1612 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1613 void sock_kfree_s(struct sock *sk, void *mem, int size);
1614 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1615 void sk_send_sigurg(struct sock *sk);
1616
1617 struct sockcm_cookie {
1618 u64 transmit_time;
1619 u32 mark;
1620 u16 tsflags;
1621 };
1622
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1623 static inline void sockcm_init(struct sockcm_cookie *sockc,
1624 const struct sock *sk)
1625 {
1626 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1627 }
1628
1629 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1630 struct sockcm_cookie *sockc);
1631 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1632 struct sockcm_cookie *sockc);
1633
1634 /*
1635 * Functions to fill in entries in struct proto_ops when a protocol
1636 * does not implement a particular function.
1637 */
1638 int sock_no_bind(struct socket *, struct sockaddr *, int);
1639 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1640 int sock_no_socketpair(struct socket *, struct socket *);
1641 int sock_no_accept(struct socket *, struct socket *, int, bool);
1642 int sock_no_getname(struct socket *, struct sockaddr *, int);
1643 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1644 int sock_no_listen(struct socket *, int);
1645 int sock_no_shutdown(struct socket *, int);
1646 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1647 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1648 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1649 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1650 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1651 int sock_no_mmap(struct file *file, struct socket *sock,
1652 struct vm_area_struct *vma);
1653 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1654 size_t size, int flags);
1655 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1656 int offset, size_t size, int flags);
1657
1658 /*
1659 * Functions to fill in entries in struct proto_ops when a protocol
1660 * uses the inet style.
1661 */
1662 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1663 char __user *optval, int __user *optlen);
1664 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1665 int flags);
1666 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1667 char __user *optval, unsigned int optlen);
1668 int compat_sock_common_getsockopt(struct socket *sock, int level,
1669 int optname, char __user *optval, int __user *optlen);
1670 int compat_sock_common_setsockopt(struct socket *sock, int level,
1671 int optname, char __user *optval, unsigned int optlen);
1672
1673 void sk_common_release(struct sock *sk);
1674
1675 /*
1676 * Default socket callbacks and setup code
1677 */
1678
1679 /* Initialise core socket variables */
1680 void sock_init_data(struct socket *sock, struct sock *sk);
1681
1682 /*
1683 * Socket reference counting postulates.
1684 *
1685 * * Each user of socket SHOULD hold a reference count.
1686 * * Each access point to socket (an hash table bucket, reference from a list,
1687 * running timer, skb in flight MUST hold a reference count.
1688 * * When reference count hits 0, it means it will never increase back.
1689 * * When reference count hits 0, it means that no references from
1690 * outside exist to this socket and current process on current CPU
1691 * is last user and may/should destroy this socket.
1692 * * sk_free is called from any context: process, BH, IRQ. When
1693 * it is called, socket has no references from outside -> sk_free
1694 * may release descendant resources allocated by the socket, but
1695 * to the time when it is called, socket is NOT referenced by any
1696 * hash tables, lists etc.
1697 * * Packets, delivered from outside (from network or from another process)
1698 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1699 * when they sit in queue. Otherwise, packets will leak to hole, when
1700 * socket is looked up by one cpu and unhasing is made by another CPU.
1701 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1702 * (leak to backlog). Packet socket does all the processing inside
1703 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1704 * use separate SMP lock, so that they are prone too.
1705 */
1706
1707 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1708 static inline void sock_put(struct sock *sk)
1709 {
1710 if (refcount_dec_and_test(&sk->sk_refcnt))
1711 sk_free(sk);
1712 }
1713 /* Generic version of sock_put(), dealing with all sockets
1714 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1715 */
1716 void sock_gen_put(struct sock *sk);
1717
1718 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1719 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1720 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1721 const int nested)
1722 {
1723 return __sk_receive_skb(sk, skb, nested, 1, true);
1724 }
1725
sk_tx_queue_set(struct sock * sk,int tx_queue)1726 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1727 {
1728 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1729 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1730 return;
1731 sk->sk_tx_queue_mapping = tx_queue;
1732 }
1733
1734 #define NO_QUEUE_MAPPING USHRT_MAX
1735
sk_tx_queue_clear(struct sock * sk)1736 static inline void sk_tx_queue_clear(struct sock *sk)
1737 {
1738 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1739 }
1740
sk_tx_queue_get(const struct sock * sk)1741 static inline int sk_tx_queue_get(const struct sock *sk)
1742 {
1743 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1744 return sk->sk_tx_queue_mapping;
1745
1746 return -1;
1747 }
1748
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1749 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1750 {
1751 #ifdef CONFIG_XPS
1752 if (skb_rx_queue_recorded(skb)) {
1753 u16 rx_queue = skb_get_rx_queue(skb);
1754
1755 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1756 return;
1757
1758 sk->sk_rx_queue_mapping = rx_queue;
1759 }
1760 #endif
1761 }
1762
sk_rx_queue_clear(struct sock * sk)1763 static inline void sk_rx_queue_clear(struct sock *sk)
1764 {
1765 #ifdef CONFIG_XPS
1766 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1767 #endif
1768 }
1769
1770 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1771 static inline int sk_rx_queue_get(const struct sock *sk)
1772 {
1773 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1774 return sk->sk_rx_queue_mapping;
1775
1776 return -1;
1777 }
1778 #endif
1779
sk_set_socket(struct sock * sk,struct socket * sock)1780 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1781 {
1782 sk->sk_socket = sock;
1783 }
1784
sk_sleep(struct sock * sk)1785 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1786 {
1787 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1788 return &rcu_dereference_raw(sk->sk_wq)->wait;
1789 }
1790 /* Detach socket from process context.
1791 * Announce socket dead, detach it from wait queue and inode.
1792 * Note that parent inode held reference count on this struct sock,
1793 * we do not release it in this function, because protocol
1794 * probably wants some additional cleanups or even continuing
1795 * to work with this socket (TCP).
1796 */
sock_orphan(struct sock * sk)1797 static inline void sock_orphan(struct sock *sk)
1798 {
1799 write_lock_bh(&sk->sk_callback_lock);
1800 sock_set_flag(sk, SOCK_DEAD);
1801 sk_set_socket(sk, NULL);
1802 sk->sk_wq = NULL;
1803 write_unlock_bh(&sk->sk_callback_lock);
1804 }
1805
sock_graft(struct sock * sk,struct socket * parent)1806 static inline void sock_graft(struct sock *sk, struct socket *parent)
1807 {
1808 WARN_ON(parent->sk);
1809 write_lock_bh(&sk->sk_callback_lock);
1810 rcu_assign_pointer(sk->sk_wq, parent->wq);
1811 parent->sk = sk;
1812 sk_set_socket(sk, parent);
1813 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1814 security_sock_graft(sk, parent);
1815 write_unlock_bh(&sk->sk_callback_lock);
1816 }
1817
1818 kuid_t sock_i_uid(struct sock *sk);
1819 unsigned long sock_i_ino(struct sock *sk);
1820
sock_net_uid(const struct net * net,const struct sock * sk)1821 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1822 {
1823 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1824 }
1825
net_tx_rndhash(void)1826 static inline u32 net_tx_rndhash(void)
1827 {
1828 u32 v = prandom_u32();
1829
1830 return v ?: 1;
1831 }
1832
sk_set_txhash(struct sock * sk)1833 static inline void sk_set_txhash(struct sock *sk)
1834 {
1835 sk->sk_txhash = net_tx_rndhash();
1836 }
1837
sk_rethink_txhash(struct sock * sk)1838 static inline void sk_rethink_txhash(struct sock *sk)
1839 {
1840 if (sk->sk_txhash)
1841 sk_set_txhash(sk);
1842 }
1843
1844 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1845 __sk_dst_get(struct sock *sk)
1846 {
1847 return rcu_dereference_check(sk->sk_dst_cache,
1848 lockdep_sock_is_held(sk));
1849 }
1850
1851 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1852 sk_dst_get(struct sock *sk)
1853 {
1854 struct dst_entry *dst;
1855
1856 rcu_read_lock();
1857 dst = rcu_dereference(sk->sk_dst_cache);
1858 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1859 dst = NULL;
1860 rcu_read_unlock();
1861 return dst;
1862 }
1863
dst_negative_advice(struct sock * sk)1864 static inline void dst_negative_advice(struct sock *sk)
1865 {
1866 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1867
1868 sk_rethink_txhash(sk);
1869
1870 if (dst && dst->ops->negative_advice) {
1871 ndst = dst->ops->negative_advice(dst);
1872
1873 if (ndst != dst) {
1874 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1875 sk_tx_queue_clear(sk);
1876 sk->sk_dst_pending_confirm = 0;
1877 }
1878 }
1879 }
1880
1881 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1882 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1883 {
1884 struct dst_entry *old_dst;
1885
1886 sk_tx_queue_clear(sk);
1887 sk->sk_dst_pending_confirm = 0;
1888 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1889 lockdep_sock_is_held(sk));
1890 rcu_assign_pointer(sk->sk_dst_cache, dst);
1891 dst_release(old_dst);
1892 }
1893
1894 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1895 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1896 {
1897 struct dst_entry *old_dst;
1898
1899 sk_tx_queue_clear(sk);
1900 sk->sk_dst_pending_confirm = 0;
1901 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1902 dst_release(old_dst);
1903 }
1904
1905 static inline void
__sk_dst_reset(struct sock * sk)1906 __sk_dst_reset(struct sock *sk)
1907 {
1908 __sk_dst_set(sk, NULL);
1909 }
1910
1911 static inline void
sk_dst_reset(struct sock * sk)1912 sk_dst_reset(struct sock *sk)
1913 {
1914 sk_dst_set(sk, NULL);
1915 }
1916
1917 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1918
1919 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1920
sk_dst_confirm(struct sock * sk)1921 static inline void sk_dst_confirm(struct sock *sk)
1922 {
1923 if (!sk->sk_dst_pending_confirm)
1924 sk->sk_dst_pending_confirm = 1;
1925 }
1926
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)1927 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1928 {
1929 if (skb_get_dst_pending_confirm(skb)) {
1930 struct sock *sk = skb->sk;
1931 unsigned long now = jiffies;
1932
1933 /* avoid dirtying neighbour */
1934 if (n->confirmed != now)
1935 n->confirmed = now;
1936 if (sk && sk->sk_dst_pending_confirm)
1937 sk->sk_dst_pending_confirm = 0;
1938 }
1939 }
1940
1941 bool sk_mc_loop(struct sock *sk);
1942
sk_can_gso(const struct sock * sk)1943 static inline bool sk_can_gso(const struct sock *sk)
1944 {
1945 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1946 }
1947
1948 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1949
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1950 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1951 {
1952 sk->sk_route_nocaps |= flags;
1953 sk->sk_route_caps &= ~flags;
1954 }
1955
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1956 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1957 struct iov_iter *from, char *to,
1958 int copy, int offset)
1959 {
1960 if (skb->ip_summed == CHECKSUM_NONE) {
1961 __wsum csum = 0;
1962 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1963 return -EFAULT;
1964 skb->csum = csum_block_add(skb->csum, csum, offset);
1965 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1966 if (!copy_from_iter_full_nocache(to, copy, from))
1967 return -EFAULT;
1968 } else if (!copy_from_iter_full(to, copy, from))
1969 return -EFAULT;
1970
1971 return 0;
1972 }
1973
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1974 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1975 struct iov_iter *from, int copy)
1976 {
1977 int err, offset = skb->len;
1978
1979 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1980 copy, offset);
1981 if (err)
1982 __skb_trim(skb, offset);
1983
1984 return err;
1985 }
1986
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)1987 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1988 struct sk_buff *skb,
1989 struct page *page,
1990 int off, int copy)
1991 {
1992 int err;
1993
1994 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1995 copy, skb->len);
1996 if (err)
1997 return err;
1998
1999 skb->len += copy;
2000 skb->data_len += copy;
2001 skb->truesize += copy;
2002 sk->sk_wmem_queued += copy;
2003 sk_mem_charge(sk, copy);
2004 return 0;
2005 }
2006
2007 /**
2008 * sk_wmem_alloc_get - returns write allocations
2009 * @sk: socket
2010 *
2011 * Returns sk_wmem_alloc minus initial offset of one
2012 */
sk_wmem_alloc_get(const struct sock * sk)2013 static inline int sk_wmem_alloc_get(const struct sock *sk)
2014 {
2015 return refcount_read(&sk->sk_wmem_alloc) - 1;
2016 }
2017
2018 /**
2019 * sk_rmem_alloc_get - returns read allocations
2020 * @sk: socket
2021 *
2022 * Returns sk_rmem_alloc
2023 */
sk_rmem_alloc_get(const struct sock * sk)2024 static inline int sk_rmem_alloc_get(const struct sock *sk)
2025 {
2026 return atomic_read(&sk->sk_rmem_alloc);
2027 }
2028
2029 /**
2030 * sk_has_allocations - check if allocations are outstanding
2031 * @sk: socket
2032 *
2033 * Returns true if socket has write or read allocations
2034 */
sk_has_allocations(const struct sock * sk)2035 static inline bool sk_has_allocations(const struct sock *sk)
2036 {
2037 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2038 }
2039
2040 /**
2041 * skwq_has_sleeper - check if there are any waiting processes
2042 * @wq: struct socket_wq
2043 *
2044 * Returns true if socket_wq has waiting processes
2045 *
2046 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2047 * barrier call. They were added due to the race found within the tcp code.
2048 *
2049 * Consider following tcp code paths::
2050 *
2051 * CPU1 CPU2
2052 * sys_select receive packet
2053 * ... ...
2054 * __add_wait_queue update tp->rcv_nxt
2055 * ... ...
2056 * tp->rcv_nxt check sock_def_readable
2057 * ... {
2058 * schedule rcu_read_lock();
2059 * wq = rcu_dereference(sk->sk_wq);
2060 * if (wq && waitqueue_active(&wq->wait))
2061 * wake_up_interruptible(&wq->wait)
2062 * ...
2063 * }
2064 *
2065 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2066 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2067 * could then endup calling schedule and sleep forever if there are no more
2068 * data on the socket.
2069 *
2070 */
skwq_has_sleeper(struct socket_wq * wq)2071 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2072 {
2073 return wq && wq_has_sleeper(&wq->wait);
2074 }
2075
2076 /**
2077 * sock_poll_wait - place memory barrier behind the poll_wait call.
2078 * @filp: file
2079 * @sock: socket to wait on
2080 * @p: poll_table
2081 *
2082 * See the comments in the wq_has_sleeper function.
2083 *
2084 * Do not derive sock from filp->private_data here. An SMC socket establishes
2085 * an internal TCP socket that is used in the fallback case. All socket
2086 * operations on the SMC socket are then forwarded to the TCP socket. In case of
2087 * poll, the filp->private_data pointer references the SMC socket because the
2088 * TCP socket has no file assigned.
2089 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2090 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2091 poll_table *p)
2092 {
2093 if (!poll_does_not_wait(p)) {
2094 poll_wait(filp, &sock->wq->wait, p);
2095 /* We need to be sure we are in sync with the
2096 * socket flags modification.
2097 *
2098 * This memory barrier is paired in the wq_has_sleeper.
2099 */
2100 smp_mb();
2101 }
2102 }
2103
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2104 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2105 {
2106 if (sk->sk_txhash) {
2107 skb->l4_hash = 1;
2108 skb->hash = sk->sk_txhash;
2109 }
2110 }
2111
2112 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2113
2114 /*
2115 * Queue a received datagram if it will fit. Stream and sequenced
2116 * protocols can't normally use this as they need to fit buffers in
2117 * and play with them.
2118 *
2119 * Inlined as it's very short and called for pretty much every
2120 * packet ever received.
2121 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2122 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2123 {
2124 skb_orphan(skb);
2125 skb->sk = sk;
2126 skb->destructor = sock_rfree;
2127 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2128 sk_mem_charge(sk, skb->truesize);
2129 }
2130
2131 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2132 unsigned long expires);
2133
2134 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2135
2136 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2137 struct sk_buff *skb, unsigned int flags,
2138 void (*destructor)(struct sock *sk,
2139 struct sk_buff *skb));
2140 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2141 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2142
2143 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2144 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2145
2146 /*
2147 * Recover an error report and clear atomically
2148 */
2149
sock_error(struct sock * sk)2150 static inline int sock_error(struct sock *sk)
2151 {
2152 int err;
2153 if (likely(!sk->sk_err))
2154 return 0;
2155 err = xchg(&sk->sk_err, 0);
2156 return -err;
2157 }
2158
sock_wspace(struct sock * sk)2159 static inline unsigned long sock_wspace(struct sock *sk)
2160 {
2161 int amt = 0;
2162
2163 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2164 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2165 if (amt < 0)
2166 amt = 0;
2167 }
2168 return amt;
2169 }
2170
2171 /* Note:
2172 * We use sk->sk_wq_raw, from contexts knowing this
2173 * pointer is not NULL and cannot disappear/change.
2174 */
sk_set_bit(int nr,struct sock * sk)2175 static inline void sk_set_bit(int nr, struct sock *sk)
2176 {
2177 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2178 !sock_flag(sk, SOCK_FASYNC))
2179 return;
2180
2181 set_bit(nr, &sk->sk_wq_raw->flags);
2182 }
2183
sk_clear_bit(int nr,struct sock * sk)2184 static inline void sk_clear_bit(int nr, struct sock *sk)
2185 {
2186 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2187 !sock_flag(sk, SOCK_FASYNC))
2188 return;
2189
2190 clear_bit(nr, &sk->sk_wq_raw->flags);
2191 }
2192
sk_wake_async(const struct sock * sk,int how,int band)2193 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2194 {
2195 if (sock_flag(sk, SOCK_FASYNC)) {
2196 rcu_read_lock();
2197 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2198 rcu_read_unlock();
2199 }
2200 }
2201
2202 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2203 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2204 * Note: for send buffers, TCP works better if we can build two skbs at
2205 * minimum.
2206 */
2207 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2208
2209 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2210 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2211
sk_stream_moderate_sndbuf(struct sock * sk)2212 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2213 {
2214 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2215 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2216 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2217 }
2218 }
2219
2220 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2221 bool force_schedule);
2222
2223 /**
2224 * sk_page_frag - return an appropriate page_frag
2225 * @sk: socket
2226 *
2227 * Use the per task page_frag instead of the per socket one for
2228 * optimization when we know that we're in the normal context and owns
2229 * everything that's associated with %current.
2230 *
2231 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2232 * inside other socket operations and end up recursing into sk_page_frag()
2233 * while it's already in use.
2234 */
sk_page_frag(struct sock * sk)2235 static inline struct page_frag *sk_page_frag(struct sock *sk)
2236 {
2237 if (gfpflags_normal_context(sk->sk_allocation))
2238 return ¤t->task_frag;
2239
2240 return &sk->sk_frag;
2241 }
2242
2243 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2244
2245 int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2246 int sg_start, int *sg_curr, unsigned int *sg_size,
2247 int first_coalesce);
2248
2249 /*
2250 * Default write policy as shown to user space via poll/select/SIGIO
2251 */
sock_writeable(const struct sock * sk)2252 static inline bool sock_writeable(const struct sock *sk)
2253 {
2254 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2255 }
2256
gfp_any(void)2257 static inline gfp_t gfp_any(void)
2258 {
2259 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2260 }
2261
sock_rcvtimeo(const struct sock * sk,bool noblock)2262 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2263 {
2264 return noblock ? 0 : sk->sk_rcvtimeo;
2265 }
2266
sock_sndtimeo(const struct sock * sk,bool noblock)2267 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2268 {
2269 return noblock ? 0 : sk->sk_sndtimeo;
2270 }
2271
sock_rcvlowat(const struct sock * sk,int waitall,int len)2272 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2273 {
2274 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2275 }
2276
2277 /* Alas, with timeout socket operations are not restartable.
2278 * Compare this to poll().
2279 */
sock_intr_errno(long timeo)2280 static inline int sock_intr_errno(long timeo)
2281 {
2282 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2283 }
2284
2285 struct sock_skb_cb {
2286 u32 dropcount;
2287 };
2288
2289 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2290 * using skb->cb[] would keep using it directly and utilize its
2291 * alignement guarantee.
2292 */
2293 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2294 sizeof(struct sock_skb_cb)))
2295
2296 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2297 SOCK_SKB_CB_OFFSET))
2298
2299 #define sock_skb_cb_check_size(size) \
2300 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2301
2302 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2303 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2304 {
2305 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2306 atomic_read(&sk->sk_drops) : 0;
2307 }
2308
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2309 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2310 {
2311 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2312
2313 atomic_add(segs, &sk->sk_drops);
2314 }
2315
sock_read_timestamp(struct sock * sk)2316 static inline ktime_t sock_read_timestamp(struct sock *sk)
2317 {
2318 #if BITS_PER_LONG==32
2319 unsigned int seq;
2320 ktime_t kt;
2321
2322 do {
2323 seq = read_seqbegin(&sk->sk_stamp_seq);
2324 kt = sk->sk_stamp;
2325 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2326
2327 return kt;
2328 #else
2329 return READ_ONCE(sk->sk_stamp);
2330 #endif
2331 }
2332
sock_write_timestamp(struct sock * sk,ktime_t kt)2333 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2334 {
2335 #if BITS_PER_LONG==32
2336 write_seqlock(&sk->sk_stamp_seq);
2337 sk->sk_stamp = kt;
2338 write_sequnlock(&sk->sk_stamp_seq);
2339 #else
2340 WRITE_ONCE(sk->sk_stamp, kt);
2341 #endif
2342 }
2343
2344 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2345 struct sk_buff *skb);
2346 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2347 struct sk_buff *skb);
2348
2349 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2350 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2351 {
2352 ktime_t kt = skb->tstamp;
2353 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2354
2355 /*
2356 * generate control messages if
2357 * - receive time stamping in software requested
2358 * - software time stamp available and wanted
2359 * - hardware time stamps available and wanted
2360 */
2361 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2362 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2363 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2364 (hwtstamps->hwtstamp &&
2365 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2366 __sock_recv_timestamp(msg, sk, skb);
2367 else
2368 sock_write_timestamp(sk, kt);
2369
2370 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2371 __sock_recv_wifi_status(msg, sk, skb);
2372 }
2373
2374 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2375 struct sk_buff *skb);
2376
2377 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2378 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2379 struct sk_buff *skb)
2380 {
2381 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2382 (1UL << SOCK_RCVTSTAMP))
2383 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2384 SOF_TIMESTAMPING_RAW_HARDWARE)
2385
2386 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2387 __sock_recv_ts_and_drops(msg, sk, skb);
2388 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2389 sock_write_timestamp(sk, skb->tstamp);
2390 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2391 sock_write_timestamp(sk, 0);
2392 }
2393
2394 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2395
2396 /**
2397 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2398 * @sk: socket sending this packet
2399 * @tsflags: timestamping flags to use
2400 * @tx_flags: completed with instructions for time stamping
2401 *
2402 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2403 */
sock_tx_timestamp(const struct sock * sk,__u16 tsflags,__u8 * tx_flags)2404 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2405 __u8 *tx_flags)
2406 {
2407 if (unlikely(tsflags))
2408 __sock_tx_timestamp(tsflags, tx_flags);
2409 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2410 *tx_flags |= SKBTX_WIFI_STATUS;
2411 }
2412
2413 /**
2414 * sk_eat_skb - Release a skb if it is no longer needed
2415 * @sk: socket to eat this skb from
2416 * @skb: socket buffer to eat
2417 *
2418 * This routine must be called with interrupts disabled or with the socket
2419 * locked so that the sk_buff queue operation is ok.
2420 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2421 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2422 {
2423 __skb_unlink(skb, &sk->sk_receive_queue);
2424 __kfree_skb(skb);
2425 }
2426
2427 static inline
sock_net(const struct sock * sk)2428 struct net *sock_net(const struct sock *sk)
2429 {
2430 return read_pnet(&sk->sk_net);
2431 }
2432
2433 static inline
sock_net_set(struct sock * sk,struct net * net)2434 void sock_net_set(struct sock *sk, struct net *net)
2435 {
2436 write_pnet(&sk->sk_net, net);
2437 }
2438
skb_steal_sock(struct sk_buff * skb)2439 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2440 {
2441 if (skb->sk) {
2442 struct sock *sk = skb->sk;
2443
2444 skb->destructor = NULL;
2445 skb->sk = NULL;
2446 return sk;
2447 }
2448 return NULL;
2449 }
2450
2451 /* This helper checks if a socket is a full socket,
2452 * ie _not_ a timewait or request socket.
2453 */
sk_fullsock(const struct sock * sk)2454 static inline bool sk_fullsock(const struct sock *sk)
2455 {
2456 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2457 }
2458
2459 /* Checks if this SKB belongs to an HW offloaded socket
2460 * and whether any SW fallbacks are required based on dev.
2461 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2462 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2463 struct net_device *dev)
2464 {
2465 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2466 struct sock *sk = skb->sk;
2467
2468 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2469 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2470 #endif
2471
2472 return skb;
2473 }
2474
2475 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2476 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2477 */
sk_listener(const struct sock * sk)2478 static inline bool sk_listener(const struct sock *sk)
2479 {
2480 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2481 }
2482
2483 void sock_enable_timestamp(struct sock *sk, int flag);
2484 int sock_get_timestamp(struct sock *, struct timeval __user *);
2485 int sock_get_timestampns(struct sock *, struct timespec __user *);
2486 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2487 int type);
2488
2489 bool sk_ns_capable(const struct sock *sk,
2490 struct user_namespace *user_ns, int cap);
2491 bool sk_capable(const struct sock *sk, int cap);
2492 bool sk_net_capable(const struct sock *sk, int cap);
2493
2494 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2495
2496 /* Take into consideration the size of the struct sk_buff overhead in the
2497 * determination of these values, since that is non-constant across
2498 * platforms. This makes socket queueing behavior and performance
2499 * not depend upon such differences.
2500 */
2501 #define _SK_MEM_PACKETS 256
2502 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2503 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2504 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2505
2506 extern __u32 sysctl_wmem_max;
2507 extern __u32 sysctl_rmem_max;
2508
2509 extern int sysctl_tstamp_allow_data;
2510 extern int sysctl_optmem_max;
2511
2512 extern __u32 sysctl_wmem_default;
2513 extern __u32 sysctl_rmem_default;
2514
2515 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2516 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2517
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2518 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2519 {
2520 /* Does this proto have per netns sysctl_wmem ? */
2521 if (proto->sysctl_wmem_offset)
2522 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2523
2524 return *proto->sysctl_wmem;
2525 }
2526
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2527 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2528 {
2529 /* Does this proto have per netns sysctl_rmem ? */
2530 if (proto->sysctl_rmem_offset)
2531 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2532
2533 return *proto->sysctl_rmem;
2534 }
2535
2536 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2537 * Some wifi drivers need to tweak it to get more chunks.
2538 * They can use this helper from their ndo_start_xmit()
2539 */
sk_pacing_shift_update(struct sock * sk,int val)2540 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2541 {
2542 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2543 return;
2544 sk->sk_pacing_shift = val;
2545 }
2546
2547 /* if a socket is bound to a device, check that the given device
2548 * index is either the same or that the socket is bound to an L3
2549 * master device and the given device index is also enslaved to
2550 * that L3 master
2551 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2552 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2553 {
2554 int mdif;
2555
2556 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2557 return true;
2558
2559 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2560 if (mdif && mdif == sk->sk_bound_dev_if)
2561 return true;
2562
2563 return false;
2564 }
2565
2566 #endif /* _SOCK_H */
2567