• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock_reuseport.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 
132 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
133 #if HZ >= 100
134 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
135 #define TCP_ATO_MIN	((unsigned)(HZ/25))
136 #else
137 #define TCP_DELACK_MIN	4U
138 #define TCP_ATO_MIN	4U
139 #endif
140 #define TCP_RTO_MAX	((unsigned)(120*HZ))
141 #define TCP_RTO_MIN	((unsigned)(HZ/5))
142 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
143 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
144 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
145 						 * used as a fallback RTO for the
146 						 * initial data transmission if no
147 						 * valid RTT sample has been acquired,
148 						 * most likely due to retrans in 3WHS.
149 						 */
150 
151 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
152 					                 * for local resources.
153 					                 */
154 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
155 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
156 #define TCP_KEEPALIVE_INTVL	(75*HZ)
157 
158 #define MAX_TCP_KEEPIDLE	32767
159 #define MAX_TCP_KEEPINTVL	32767
160 #define MAX_TCP_KEEPCNT		127
161 #define MAX_TCP_SYNCNT		127
162 
163 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
164 
165 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
167 					 * after this time. It should be equal
168 					 * (or greater than) TCP_TIMEWAIT_LEN
169 					 * to provide reliability equal to one
170 					 * provided by timewait state.
171 					 */
172 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
173 					 * timestamps. It must be less than
174 					 * minimal timewait lifetime.
175 					 */
176 /*
177  *	TCP option
178  */
179 
180 #define TCPOPT_NOP		1	/* Padding */
181 #define TCPOPT_EOL		0	/* End of options */
182 #define TCPOPT_MSS		2	/* Segment size negotiating */
183 #define TCPOPT_WINDOW		3	/* Window scaling */
184 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
185 #define TCPOPT_SACK             5       /* SACK Block */
186 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
before(__u32 seq1,__u32 seq2)271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
tcp_out_of_memory(struct sock * sk)283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
tcp_too_many_orphans(struct sock * sk,int shift)293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 void tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 		 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 			size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 		 size_t size, int flags);
334 void tcp_release_cb(struct sock *sk);
335 void tcp_wfree(struct sk_buff *skb);
336 void tcp_write_timer_handler(struct sock *sk);
337 void tcp_delack_timer_handler(struct sock *sk);
338 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
339 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
340 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_space_adjust(struct sock *sk);
342 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
343 void tcp_twsk_destructor(struct sock *sk);
344 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
345 			struct pipe_inode_info *pipe, size_t len,
346 			unsigned int flags);
347 
348 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)349 static inline void tcp_dec_quickack_mode(struct sock *sk,
350 					 const unsigned int pkts)
351 {
352 	struct inet_connection_sock *icsk = inet_csk(sk);
353 
354 	if (icsk->icsk_ack.quick) {
355 		if (pkts >= icsk->icsk_ack.quick) {
356 			icsk->icsk_ack.quick = 0;
357 			/* Leaving quickack mode we deflate ATO. */
358 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
359 		} else
360 			icsk->icsk_ack.quick -= pkts;
361 	}
362 }
363 
364 #define	TCP_ECN_OK		1
365 #define	TCP_ECN_QUEUE_CWR	2
366 #define	TCP_ECN_DEMAND_CWR	4
367 #define	TCP_ECN_SEEN		8
368 
369 enum tcp_tw_status {
370 	TCP_TW_SUCCESS = 0,
371 	TCP_TW_RST = 1,
372 	TCP_TW_ACK = 2,
373 	TCP_TW_SYN = 3
374 };
375 
376 
377 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
378 					      struct sk_buff *skb,
379 					      const struct tcphdr *th);
380 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
381 			   struct request_sock *req, bool fastopen,
382 			   bool *lost_race);
383 int tcp_child_process(struct sock *parent, struct sock *child,
384 		      struct sk_buff *skb);
385 void tcp_enter_loss(struct sock *sk);
386 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
387 void tcp_clear_retrans(struct tcp_sock *tp);
388 void tcp_update_metrics(struct sock *sk);
389 void tcp_init_metrics(struct sock *sk);
390 void tcp_metrics_init(void);
391 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
392 void tcp_close(struct sock *sk, long timeout);
393 void tcp_init_sock(struct sock *sk);
394 void tcp_init_transfer(struct sock *sk, int bpf_op);
395 __poll_t tcp_poll(struct file *file, struct socket *sock,
396 		      struct poll_table_struct *wait);
397 int tcp_getsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, int __user *optlen);
399 int tcp_setsockopt(struct sock *sk, int level, int optname,
400 		   char __user *optval, unsigned int optlen);
401 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, int __user *optlen);
403 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
404 			  char __user *optval, unsigned int optlen);
405 void tcp_set_keepalive(struct sock *sk, int val);
406 void tcp_syn_ack_timeout(const struct request_sock *req);
407 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
408 		int flags, int *addr_len);
409 int tcp_set_rcvlowat(struct sock *sk, int val);
410 void tcp_data_ready(struct sock *sk);
411 int tcp_mmap(struct file *file, struct socket *sock,
412 	     struct vm_area_struct *vma);
413 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
414 		       struct tcp_options_received *opt_rx,
415 		       int estab, struct tcp_fastopen_cookie *foc);
416 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
417 
418 /*
419  *	TCP v4 functions exported for the inet6 API
420  */
421 
422 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
423 void tcp_v4_mtu_reduced(struct sock *sk);
424 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
425 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
426 struct sock *tcp_create_openreq_child(const struct sock *sk,
427 				      struct request_sock *req,
428 				      struct sk_buff *skb);
429 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
430 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
431 				  struct request_sock *req,
432 				  struct dst_entry *dst,
433 				  struct request_sock *req_unhash,
434 				  bool *own_req);
435 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
436 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
437 int tcp_connect(struct sock *sk);
438 enum tcp_synack_type {
439 	TCP_SYNACK_NORMAL,
440 	TCP_SYNACK_FASTOPEN,
441 	TCP_SYNACK_COOKIE,
442 };
443 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
444 				struct request_sock *req,
445 				struct tcp_fastopen_cookie *foc,
446 				enum tcp_synack_type synack_type);
447 int tcp_disconnect(struct sock *sk, int flags);
448 
449 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
450 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
451 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
452 
453 /* From syncookies.c */
454 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
455 				 struct request_sock *req,
456 				 struct dst_entry *dst, u32 tsoff);
457 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
458 		      u32 cookie);
459 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
460 #ifdef CONFIG_SYN_COOKIES
461 
462 /* Syncookies use a monotonic timer which increments every 60 seconds.
463  * This counter is used both as a hash input and partially encoded into
464  * the cookie value.  A cookie is only validated further if the delta
465  * between the current counter value and the encoded one is less than this,
466  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
467  * the counter advances immediately after a cookie is generated).
468  */
469 #define MAX_SYNCOOKIE_AGE	2
470 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
471 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
472 
473 /* syncookies: remember time of last synqueue overflow
474  * But do not dirty this field too often (once per second is enough)
475  * It is racy as we do not hold a lock, but race is very minor.
476  */
tcp_synq_overflow(const struct sock * sk)477 static inline void tcp_synq_overflow(const struct sock *sk)
478 {
479 	unsigned int last_overflow;
480 	unsigned int now = jiffies;
481 
482 	if (sk->sk_reuseport) {
483 		struct sock_reuseport *reuse;
484 
485 		reuse = rcu_dereference(sk->sk_reuseport_cb);
486 		if (likely(reuse)) {
487 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
488 			if (!time_between32(now, last_overflow,
489 					    last_overflow + HZ))
490 				WRITE_ONCE(reuse->synq_overflow_ts, now);
491 			return;
492 		}
493 	}
494 
495 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
496 	if (!time_between32(now, last_overflow, last_overflow + HZ))
497 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
498 }
499 
500 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)501 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
502 {
503 	unsigned int last_overflow;
504 	unsigned int now = jiffies;
505 
506 	if (sk->sk_reuseport) {
507 		struct sock_reuseport *reuse;
508 
509 		reuse = rcu_dereference(sk->sk_reuseport_cb);
510 		if (likely(reuse)) {
511 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
512 			return !time_between32(now, last_overflow - HZ,
513 					       last_overflow +
514 					       TCP_SYNCOOKIE_VALID);
515 		}
516 	}
517 
518 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
519 
520 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
521 	 * then we're under synflood. However, we have to use
522 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
523 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
524 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
525 	 * which could lead to rejecting a valid syncookie.
526 	 */
527 	return !time_between32(now, last_overflow - HZ,
528 			       last_overflow + TCP_SYNCOOKIE_VALID);
529 }
530 
tcp_cookie_time(void)531 static inline u32 tcp_cookie_time(void)
532 {
533 	u64 val = get_jiffies_64();
534 
535 	do_div(val, TCP_SYNCOOKIE_PERIOD);
536 	return val;
537 }
538 
539 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
540 			      u16 *mssp);
541 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
542 u64 cookie_init_timestamp(struct request_sock *req);
543 bool cookie_timestamp_decode(const struct net *net,
544 			     struct tcp_options_received *opt);
545 bool cookie_ecn_ok(const struct tcp_options_received *opt,
546 		   const struct net *net, const struct dst_entry *dst);
547 
548 /* From net/ipv6/syncookies.c */
549 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
550 		      u32 cookie);
551 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
552 
553 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
554 			      const struct tcphdr *th, u16 *mssp);
555 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
556 #endif
557 /* tcp_output.c */
558 
559 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
560 			       int nonagle);
561 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
562 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
563 void tcp_retransmit_timer(struct sock *sk);
564 void tcp_xmit_retransmit_queue(struct sock *);
565 void tcp_simple_retransmit(struct sock *);
566 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
567 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
568 enum tcp_queue {
569 	TCP_FRAG_IN_WRITE_QUEUE,
570 	TCP_FRAG_IN_RTX_QUEUE,
571 };
572 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
573 		 struct sk_buff *skb, u32 len,
574 		 unsigned int mss_now, gfp_t gfp);
575 
576 void tcp_send_probe0(struct sock *);
577 void tcp_send_partial(struct sock *);
578 int tcp_write_wakeup(struct sock *, int mib);
579 void tcp_send_fin(struct sock *sk);
580 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
581 int tcp_send_synack(struct sock *);
582 void tcp_push_one(struct sock *, unsigned int mss_now);
583 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
584 void tcp_send_ack(struct sock *sk);
585 void tcp_send_delayed_ack(struct sock *sk);
586 void tcp_send_loss_probe(struct sock *sk);
587 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
588 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
589 			     const struct sk_buff *next_skb);
590 
591 /* tcp_input.c */
592 void tcp_rearm_rto(struct sock *sk);
593 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
594 void tcp_reset(struct sock *sk);
595 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
596 void tcp_fin(struct sock *sk);
597 
598 /* tcp_timer.c */
599 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)600 static inline void tcp_clear_xmit_timers(struct sock *sk)
601 {
602 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
603 		__sock_put(sk);
604 
605 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
606 		__sock_put(sk);
607 
608 	inet_csk_clear_xmit_timers(sk);
609 }
610 
611 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
612 unsigned int tcp_current_mss(struct sock *sk);
613 
614 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)615 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
616 {
617 	int cutoff;
618 
619 	/* When peer uses tiny windows, there is no use in packetizing
620 	 * to sub-MSS pieces for the sake of SWS or making sure there
621 	 * are enough packets in the pipe for fast recovery.
622 	 *
623 	 * On the other hand, for extremely large MSS devices, handling
624 	 * smaller than MSS windows in this way does make sense.
625 	 */
626 	if (tp->max_window > TCP_MSS_DEFAULT)
627 		cutoff = (tp->max_window >> 1);
628 	else
629 		cutoff = tp->max_window;
630 
631 	if (cutoff && pktsize > cutoff)
632 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
633 	else
634 		return pktsize;
635 }
636 
637 /* tcp.c */
638 void tcp_get_info(struct sock *, struct tcp_info *);
639 
640 /* Read 'sendfile()'-style from a TCP socket */
641 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
642 		  sk_read_actor_t recv_actor);
643 
644 void tcp_initialize_rcv_mss(struct sock *sk);
645 
646 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
647 int tcp_mss_to_mtu(struct sock *sk, int mss);
648 void tcp_mtup_init(struct sock *sk);
649 void tcp_init_buffer_space(struct sock *sk);
650 
tcp_bound_rto(const struct sock * sk)651 static inline void tcp_bound_rto(const struct sock *sk)
652 {
653 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
654 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
655 }
656 
__tcp_set_rto(const struct tcp_sock * tp)657 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
658 {
659 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
660 }
661 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)662 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
663 {
664 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
665 			       ntohl(TCP_FLAG_ACK) |
666 			       snd_wnd);
667 }
668 
tcp_fast_path_on(struct tcp_sock * tp)669 static inline void tcp_fast_path_on(struct tcp_sock *tp)
670 {
671 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
672 }
673 
tcp_fast_path_check(struct sock * sk)674 static inline void tcp_fast_path_check(struct sock *sk)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 
678 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
679 	    tp->rcv_wnd &&
680 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
681 	    !tp->urg_data)
682 		tcp_fast_path_on(tp);
683 }
684 
685 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)686 static inline u32 tcp_rto_min(struct sock *sk)
687 {
688 	const struct dst_entry *dst = __sk_dst_get(sk);
689 	u32 rto_min = TCP_RTO_MIN;
690 
691 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
692 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
693 	return rto_min;
694 }
695 
tcp_rto_min_us(struct sock * sk)696 static inline u32 tcp_rto_min_us(struct sock *sk)
697 {
698 	return jiffies_to_usecs(tcp_rto_min(sk));
699 }
700 
tcp_ca_dst_locked(const struct dst_entry * dst)701 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
702 {
703 	return dst_metric_locked(dst, RTAX_CC_ALGO);
704 }
705 
706 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)707 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
708 {
709 	return minmax_get(&tp->rtt_min);
710 }
711 
712 /* Compute the actual receive window we are currently advertising.
713  * Rcv_nxt can be after the window if our peer push more data
714  * than the offered window.
715  */
tcp_receive_window(const struct tcp_sock * tp)716 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
717 {
718 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
719 
720 	if (win < 0)
721 		win = 0;
722 	return (u32) win;
723 }
724 
725 /* Choose a new window, without checks for shrinking, and without
726  * scaling applied to the result.  The caller does these things
727  * if necessary.  This is a "raw" window selection.
728  */
729 u32 __tcp_select_window(struct sock *sk);
730 
731 void tcp_send_window_probe(struct sock *sk);
732 
733 /* TCP uses 32bit jiffies to save some space.
734  * Note that this is different from tcp_time_stamp, which
735  * historically has been the same until linux-4.13.
736  */
737 #define tcp_jiffies32 ((u32)jiffies)
738 
739 /*
740  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
741  * It is no longer tied to jiffies, but to 1 ms clock.
742  * Note: double check if you want to use tcp_jiffies32 instead of this.
743  */
744 #define TCP_TS_HZ	1000
745 
tcp_clock_ns(void)746 static inline u64 tcp_clock_ns(void)
747 {
748 	return local_clock();
749 }
750 
tcp_clock_us(void)751 static inline u64 tcp_clock_us(void)
752 {
753 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
754 }
755 
756 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)757 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
758 {
759 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
760 }
761 
762 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)763 static inline u32 tcp_time_stamp_raw(void)
764 {
765 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
766 }
767 
768 
769 /* Refresh 1us clock of a TCP socket,
770  * ensuring monotically increasing values.
771  */
tcp_mstamp_refresh(struct tcp_sock * tp)772 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
773 {
774 	u64 val = tcp_clock_us();
775 
776 	if (val > tp->tcp_mstamp)
777 		tp->tcp_mstamp = val;
778 }
779 
tcp_stamp_us_delta(u64 t1,u64 t0)780 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
781 {
782 	return max_t(s64, t1 - t0, 0);
783 }
784 
tcp_skb_timestamp(const struct sk_buff * skb)785 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
786 {
787 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
788 }
789 
790 
791 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
792 
793 #define TCPHDR_FIN 0x01
794 #define TCPHDR_SYN 0x02
795 #define TCPHDR_RST 0x04
796 #define TCPHDR_PSH 0x08
797 #define TCPHDR_ACK 0x10
798 #define TCPHDR_URG 0x20
799 #define TCPHDR_ECE 0x40
800 #define TCPHDR_CWR 0x80
801 
802 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
803 
804 /* This is what the send packet queuing engine uses to pass
805  * TCP per-packet control information to the transmission code.
806  * We also store the host-order sequence numbers in here too.
807  * This is 44 bytes if IPV6 is enabled.
808  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
809  */
810 struct tcp_skb_cb {
811 	__u32		seq;		/* Starting sequence number	*/
812 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
813 	union {
814 		/* Note : tcp_tw_isn is used in input path only
815 		 *	  (isn chosen by tcp_timewait_state_process())
816 		 *
817 		 * 	  tcp_gso_segs/size are used in write queue only,
818 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
819 		 */
820 		__u32		tcp_tw_isn;
821 		struct {
822 			u16	tcp_gso_segs;
823 			u16	tcp_gso_size;
824 		};
825 	};
826 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
827 
828 	__u8		sacked;		/* State flags for SACK.	*/
829 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
830 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
831 #define TCPCB_LOST		0x04	/* SKB is lost			*/
832 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
833 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
834 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
835 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
836 				TCPCB_REPAIRED)
837 
838 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
839 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
840 			eor:1,		/* Is skb MSG_EOR marked? */
841 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
842 			unused:5;
843 	__u32		ack_seq;	/* Sequence number ACK'd	*/
844 	union {
845 		struct {
846 			/* There is space for up to 24 bytes */
847 			__u32 in_flight:30,/* Bytes in flight at transmit */
848 			      is_app_limited:1, /* cwnd not fully used? */
849 			      unused:1;
850 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
851 			__u32 delivered;
852 			/* start of send pipeline phase */
853 			u64 first_tx_mstamp;
854 			/* when we reached the "delivered" count */
855 			u64 delivered_mstamp;
856 		} tx;   /* only used for outgoing skbs */
857 		union {
858 			struct inet_skb_parm	h4;
859 #if IS_ENABLED(CONFIG_IPV6)
860 			struct inet6_skb_parm	h6;
861 #endif
862 		} header;	/* For incoming skbs */
863 		struct {
864 			__u32 flags;
865 			struct sock *sk_redir;
866 			void *data_end;
867 		} bpf;
868 	};
869 };
870 
871 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
872 
bpf_compute_data_end_sk_skb(struct sk_buff * skb)873 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
874 {
875 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
876 }
877 
878 #if IS_ENABLED(CONFIG_IPV6)
879 /* This is the variant of inet6_iif() that must be used by TCP,
880  * as TCP moves IP6CB into a different location in skb->cb[]
881  */
tcp_v6_iif(const struct sk_buff * skb)882 static inline int tcp_v6_iif(const struct sk_buff *skb)
883 {
884 	return TCP_SKB_CB(skb)->header.h6.iif;
885 }
886 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)887 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
888 {
889 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
890 
891 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
892 }
893 
894 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)895 static inline int tcp_v6_sdif(const struct sk_buff *skb)
896 {
897 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
898 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
899 		return TCP_SKB_CB(skb)->header.h6.iif;
900 #endif
901 	return 0;
902 }
903 #endif
904 
inet_exact_dif_match(struct net * net,struct sk_buff * skb)905 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
906 {
907 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
908 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
909 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
910 		return true;
911 #endif
912 	return false;
913 }
914 
915 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)916 static inline int tcp_v4_sdif(struct sk_buff *skb)
917 {
918 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
919 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
920 		return TCP_SKB_CB(skb)->header.h4.iif;
921 #endif
922 	return 0;
923 }
924 
925 /* Due to TSO, an SKB can be composed of multiple actual
926  * packets.  To keep these tracked properly, we use this.
927  */
tcp_skb_pcount(const struct sk_buff * skb)928 static inline int tcp_skb_pcount(const struct sk_buff *skb)
929 {
930 	return TCP_SKB_CB(skb)->tcp_gso_segs;
931 }
932 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)933 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
934 {
935 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
936 }
937 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)938 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
939 {
940 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
941 }
942 
943 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)944 static inline int tcp_skb_mss(const struct sk_buff *skb)
945 {
946 	return TCP_SKB_CB(skb)->tcp_gso_size;
947 }
948 
tcp_skb_can_collapse_to(const struct sk_buff * skb)949 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
950 {
951 	return likely(!TCP_SKB_CB(skb)->eor);
952 }
953 
954 /* Events passed to congestion control interface */
955 enum tcp_ca_event {
956 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
957 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
958 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
959 	CA_EVENT_LOSS,		/* loss timeout */
960 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
961 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
962 };
963 
964 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
965 enum tcp_ca_ack_event_flags {
966 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
967 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
968 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
969 };
970 
971 /*
972  * Interface for adding new TCP congestion control handlers
973  */
974 #define TCP_CA_NAME_MAX	16
975 #define TCP_CA_MAX	128
976 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
977 
978 #define TCP_CA_UNSPEC	0
979 
980 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
981 #define TCP_CONG_NON_RESTRICTED 0x1
982 /* Requires ECN/ECT set on all packets */
983 #define TCP_CONG_NEEDS_ECN	0x2
984 
985 union tcp_cc_info;
986 
987 struct ack_sample {
988 	u32 pkts_acked;
989 	s32 rtt_us;
990 	u32 in_flight;
991 };
992 
993 /* A rate sample measures the number of (original/retransmitted) data
994  * packets delivered "delivered" over an interval of time "interval_us".
995  * The tcp_rate.c code fills in the rate sample, and congestion
996  * control modules that define a cong_control function to run at the end
997  * of ACK processing can optionally chose to consult this sample when
998  * setting cwnd and pacing rate.
999  * A sample is invalid if "delivered" or "interval_us" is negative.
1000  */
1001 struct rate_sample {
1002 	u64  prior_mstamp; /* starting timestamp for interval */
1003 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1004 	s32  delivered;		/* number of packets delivered over interval */
1005 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1006 	u32 snd_interval_us;	/* snd interval for delivered packets */
1007 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1008 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1009 	int  losses;		/* number of packets marked lost upon ACK */
1010 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1011 	u32  prior_in_flight;	/* in flight before this ACK */
1012 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1013 	bool is_retrans;	/* is sample from retransmission? */
1014 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1015 };
1016 
1017 struct tcp_congestion_ops {
1018 	struct list_head	list;
1019 	u32 key;
1020 	u32 flags;
1021 
1022 	/* initialize private data (optional) */
1023 	void (*init)(struct sock *sk);
1024 	/* cleanup private data  (optional) */
1025 	void (*release)(struct sock *sk);
1026 
1027 	/* return slow start threshold (required) */
1028 	u32 (*ssthresh)(struct sock *sk);
1029 	/* do new cwnd calculation (required) */
1030 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1031 	/* call before changing ca_state (optional) */
1032 	void (*set_state)(struct sock *sk, u8 new_state);
1033 	/* call when cwnd event occurs (optional) */
1034 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1035 	/* call when ack arrives (optional) */
1036 	void (*in_ack_event)(struct sock *sk, u32 flags);
1037 	/* new value of cwnd after loss (required) */
1038 	u32  (*undo_cwnd)(struct sock *sk);
1039 	/* hook for packet ack accounting (optional) */
1040 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1041 	/* override sysctl_tcp_min_tso_segs */
1042 	u32 (*min_tso_segs)(struct sock *sk);
1043 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1044 	u32 (*sndbuf_expand)(struct sock *sk);
1045 	/* call when packets are delivered to update cwnd and pacing rate,
1046 	 * after all the ca_state processing. (optional)
1047 	 */
1048 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1049 	/* get info for inet_diag (optional) */
1050 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1051 			   union tcp_cc_info *info);
1052 
1053 	char 		name[TCP_CA_NAME_MAX];
1054 	struct module 	*owner;
1055 };
1056 
1057 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1058 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1059 
1060 void tcp_assign_congestion_control(struct sock *sk);
1061 void tcp_init_congestion_control(struct sock *sk);
1062 void tcp_cleanup_congestion_control(struct sock *sk);
1063 int tcp_set_default_congestion_control(struct net *net, const char *name);
1064 void tcp_get_default_congestion_control(struct net *net, char *name);
1065 void tcp_get_available_congestion_control(char *buf, size_t len);
1066 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1067 int tcp_set_allowed_congestion_control(char *allowed);
1068 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1069 			       bool reinit, bool cap_net_admin);
1070 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1071 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1072 
1073 u32 tcp_reno_ssthresh(struct sock *sk);
1074 u32 tcp_reno_undo_cwnd(struct sock *sk);
1075 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1076 extern struct tcp_congestion_ops tcp_reno;
1077 
1078 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1079 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1080 #ifdef CONFIG_INET
1081 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1082 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1083 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1084 {
1085 	return NULL;
1086 }
1087 #endif
1088 
tcp_ca_needs_ecn(const struct sock * sk)1089 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1090 {
1091 	const struct inet_connection_sock *icsk = inet_csk(sk);
1092 
1093 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1094 }
1095 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1096 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1097 {
1098 	struct inet_connection_sock *icsk = inet_csk(sk);
1099 
1100 	if (icsk->icsk_ca_ops->set_state)
1101 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1102 	icsk->icsk_ca_state = ca_state;
1103 }
1104 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1105 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1106 {
1107 	const struct inet_connection_sock *icsk = inet_csk(sk);
1108 
1109 	if (icsk->icsk_ca_ops->cwnd_event)
1110 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1111 }
1112 
1113 /* From tcp_rate.c */
1114 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1115 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1116 			    struct rate_sample *rs);
1117 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1118 		  bool is_sack_reneg, struct rate_sample *rs);
1119 void tcp_rate_check_app_limited(struct sock *sk);
1120 
1121 /* These functions determine how the current flow behaves in respect of SACK
1122  * handling. SACK is negotiated with the peer, and therefore it can vary
1123  * between different flows.
1124  *
1125  * tcp_is_sack - SACK enabled
1126  * tcp_is_reno - No SACK
1127  */
tcp_is_sack(const struct tcp_sock * tp)1128 static inline int tcp_is_sack(const struct tcp_sock *tp)
1129 {
1130 	return tp->rx_opt.sack_ok;
1131 }
1132 
tcp_is_reno(const struct tcp_sock * tp)1133 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1134 {
1135 	return !tcp_is_sack(tp);
1136 }
1137 
tcp_left_out(const struct tcp_sock * tp)1138 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1139 {
1140 	return tp->sacked_out + tp->lost_out;
1141 }
1142 
1143 /* This determines how many packets are "in the network" to the best
1144  * of our knowledge.  In many cases it is conservative, but where
1145  * detailed information is available from the receiver (via SACK
1146  * blocks etc.) we can make more aggressive calculations.
1147  *
1148  * Use this for decisions involving congestion control, use just
1149  * tp->packets_out to determine if the send queue is empty or not.
1150  *
1151  * Read this equation as:
1152  *
1153  *	"Packets sent once on transmission queue" MINUS
1154  *	"Packets left network, but not honestly ACKed yet" PLUS
1155  *	"Packets fast retransmitted"
1156  */
tcp_packets_in_flight(const struct tcp_sock * tp)1157 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1158 {
1159 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1160 }
1161 
1162 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1163 
tcp_in_slow_start(const struct tcp_sock * tp)1164 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1165 {
1166 	return tp->snd_cwnd < tp->snd_ssthresh;
1167 }
1168 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1169 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1170 {
1171 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1172 }
1173 
tcp_in_cwnd_reduction(const struct sock * sk)1174 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1175 {
1176 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1177 	       (1 << inet_csk(sk)->icsk_ca_state);
1178 }
1179 
1180 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1181  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1182  * ssthresh.
1183  */
tcp_current_ssthresh(const struct sock * sk)1184 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1185 {
1186 	const struct tcp_sock *tp = tcp_sk(sk);
1187 
1188 	if (tcp_in_cwnd_reduction(sk))
1189 		return tp->snd_ssthresh;
1190 	else
1191 		return max(tp->snd_ssthresh,
1192 			   ((tp->snd_cwnd >> 1) +
1193 			    (tp->snd_cwnd >> 2)));
1194 }
1195 
1196 /* Use define here intentionally to get WARN_ON location shown at the caller */
1197 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1198 
1199 void tcp_enter_cwr(struct sock *sk);
1200 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1201 
1202 /* The maximum number of MSS of available cwnd for which TSO defers
1203  * sending if not using sysctl_tcp_tso_win_divisor.
1204  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1205 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1206 {
1207 	return 3;
1208 }
1209 
1210 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1211 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1212 {
1213 	return tp->snd_una + tp->snd_wnd;
1214 }
1215 
1216 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1217  * flexible approach. The RFC suggests cwnd should not be raised unless
1218  * it was fully used previously. And that's exactly what we do in
1219  * congestion avoidance mode. But in slow start we allow cwnd to grow
1220  * as long as the application has used half the cwnd.
1221  * Example :
1222  *    cwnd is 10 (IW10), but application sends 9 frames.
1223  *    We allow cwnd to reach 18 when all frames are ACKed.
1224  * This check is safe because it's as aggressive as slow start which already
1225  * risks 100% overshoot. The advantage is that we discourage application to
1226  * either send more filler packets or data to artificially blow up the cwnd
1227  * usage, and allow application-limited process to probe bw more aggressively.
1228  */
tcp_is_cwnd_limited(const struct sock * sk)1229 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1230 {
1231 	const struct tcp_sock *tp = tcp_sk(sk);
1232 
1233 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1234 	if (tcp_in_slow_start(tp))
1235 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1236 
1237 	return tp->is_cwnd_limited;
1238 }
1239 
1240 /* BBR congestion control needs pacing.
1241  * Same remark for SO_MAX_PACING_RATE.
1242  * sch_fq packet scheduler is efficiently handling pacing,
1243  * but is not always installed/used.
1244  * Return true if TCP stack should pace packets itself.
1245  */
tcp_needs_internal_pacing(const struct sock * sk)1246 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1247 {
1248 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1249 }
1250 
1251 /* Something is really bad, we could not queue an additional packet,
1252  * because qdisc is full or receiver sent a 0 window.
1253  * We do not want to add fuel to the fire, or abort too early,
1254  * so make sure the timer we arm now is at least 200ms in the future,
1255  * regardless of current icsk_rto value (as it could be ~2ms)
1256  */
tcp_probe0_base(const struct sock * sk)1257 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1258 {
1259 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1260 }
1261 
1262 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1263 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1264 					    unsigned long max_when)
1265 {
1266 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1267 
1268 	return (unsigned long)min_t(u64, when, max_when);
1269 }
1270 
tcp_check_probe_timer(struct sock * sk)1271 static inline void tcp_check_probe_timer(struct sock *sk)
1272 {
1273 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1274 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1275 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1276 }
1277 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1278 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1279 {
1280 	tp->snd_wl1 = seq;
1281 }
1282 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1283 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1284 {
1285 	tp->snd_wl1 = seq;
1286 }
1287 
1288 /*
1289  * Calculate(/check) TCP checksum
1290  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1291 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1292 				   __be32 daddr, __wsum base)
1293 {
1294 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1295 }
1296 
__tcp_checksum_complete(struct sk_buff * skb)1297 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1298 {
1299 	return __skb_checksum_complete(skb);
1300 }
1301 
tcp_checksum_complete(struct sk_buff * skb)1302 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1303 {
1304 	return !skb_csum_unnecessary(skb) &&
1305 		__tcp_checksum_complete(skb);
1306 }
1307 
1308 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1309 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1310 
1311 #undef STATE_TRACE
1312 
1313 #ifdef STATE_TRACE
1314 static const char *statename[]={
1315 	"Unused","Established","Syn Sent","Syn Recv",
1316 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1317 	"Close Wait","Last ACK","Listen","Closing"
1318 };
1319 #endif
1320 void tcp_set_state(struct sock *sk, int state);
1321 
1322 void tcp_done(struct sock *sk);
1323 
1324 int tcp_abort(struct sock *sk, int err);
1325 
tcp_sack_reset(struct tcp_options_received * rx_opt)1326 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1327 {
1328 	rx_opt->dsack = 0;
1329 	rx_opt->num_sacks = 0;
1330 }
1331 
1332 u32 tcp_default_init_rwnd(u32 mss);
1333 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1334 
tcp_slow_start_after_idle_check(struct sock * sk)1335 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1336 {
1337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1338 	struct tcp_sock *tp = tcp_sk(sk);
1339 	s32 delta;
1340 
1341 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1342 	    ca_ops->cong_control)
1343 		return;
1344 	delta = tcp_jiffies32 - tp->lsndtime;
1345 	if (delta > inet_csk(sk)->icsk_rto)
1346 		tcp_cwnd_restart(sk, delta);
1347 }
1348 
1349 /* Determine a window scaling and initial window to offer. */
1350 void tcp_select_initial_window(const struct sock *sk, int __space,
1351 			       __u32 mss, __u32 *rcv_wnd,
1352 			       __u32 *window_clamp, int wscale_ok,
1353 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1354 
tcp_win_from_space(const struct sock * sk,int space)1355 static inline int tcp_win_from_space(const struct sock *sk, int space)
1356 {
1357 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1358 
1359 	return tcp_adv_win_scale <= 0 ?
1360 		(space>>(-tcp_adv_win_scale)) :
1361 		space - (space>>tcp_adv_win_scale);
1362 }
1363 
1364 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1365 static inline int tcp_space(const struct sock *sk)
1366 {
1367 	return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1368 				  atomic_read(&sk->sk_rmem_alloc));
1369 }
1370 
tcp_full_space(const struct sock * sk)1371 static inline int tcp_full_space(const struct sock *sk)
1372 {
1373 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1374 }
1375 
1376 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1377  * If 87.5 % (7/8) of the space has been consumed, we want to override
1378  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1379  * len/truesize ratio.
1380  */
tcp_rmem_pressure(const struct sock * sk)1381 static inline bool tcp_rmem_pressure(const struct sock *sk)
1382 {
1383 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1384 	int threshold = rcvbuf - (rcvbuf >> 3);
1385 
1386 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1387 }
1388 
1389 extern void tcp_openreq_init_rwin(struct request_sock *req,
1390 				  const struct sock *sk_listener,
1391 				  const struct dst_entry *dst);
1392 
1393 void tcp_enter_memory_pressure(struct sock *sk);
1394 void tcp_leave_memory_pressure(struct sock *sk);
1395 
keepalive_intvl_when(const struct tcp_sock * tp)1396 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1397 {
1398 	struct net *net = sock_net((struct sock *)tp);
1399 
1400 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1401 }
1402 
keepalive_time_when(const struct tcp_sock * tp)1403 static inline int keepalive_time_when(const struct tcp_sock *tp)
1404 {
1405 	struct net *net = sock_net((struct sock *)tp);
1406 
1407 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1408 }
1409 
keepalive_probes(const struct tcp_sock * tp)1410 static inline int keepalive_probes(const struct tcp_sock *tp)
1411 {
1412 	struct net *net = sock_net((struct sock *)tp);
1413 
1414 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1415 }
1416 
keepalive_time_elapsed(const struct tcp_sock * tp)1417 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1418 {
1419 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1420 
1421 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1422 			  tcp_jiffies32 - tp->rcv_tstamp);
1423 }
1424 
tcp_fin_time(const struct sock * sk)1425 static inline int tcp_fin_time(const struct sock *sk)
1426 {
1427 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1428 	const int rto = inet_csk(sk)->icsk_rto;
1429 
1430 	if (fin_timeout < (rto << 2) - (rto >> 1))
1431 		fin_timeout = (rto << 2) - (rto >> 1);
1432 
1433 	return fin_timeout;
1434 }
1435 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1436 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1437 				  int paws_win)
1438 {
1439 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1440 		return true;
1441 	if (unlikely(!time_before32(ktime_get_seconds(),
1442 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1443 		return true;
1444 	/*
1445 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1446 	 * then following tcp messages have valid values. Ignore 0 value,
1447 	 * or else 'negative' tsval might forbid us to accept their packets.
1448 	 */
1449 	if (!rx_opt->ts_recent)
1450 		return true;
1451 	return false;
1452 }
1453 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1454 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1455 				   int rst)
1456 {
1457 	if (tcp_paws_check(rx_opt, 0))
1458 		return false;
1459 
1460 	/* RST segments are not recommended to carry timestamp,
1461 	   and, if they do, it is recommended to ignore PAWS because
1462 	   "their cleanup function should take precedence over timestamps."
1463 	   Certainly, it is mistake. It is necessary to understand the reasons
1464 	   of this constraint to relax it: if peer reboots, clock may go
1465 	   out-of-sync and half-open connections will not be reset.
1466 	   Actually, the problem would be not existing if all
1467 	   the implementations followed draft about maintaining clock
1468 	   via reboots. Linux-2.2 DOES NOT!
1469 
1470 	   However, we can relax time bounds for RST segments to MSL.
1471 	 */
1472 	if (rst && !time_before32(ktime_get_seconds(),
1473 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1474 		return false;
1475 	return true;
1476 }
1477 
1478 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1479 			  int mib_idx, u32 *last_oow_ack_time);
1480 
tcp_mib_init(struct net * net)1481 static inline void tcp_mib_init(struct net *net)
1482 {
1483 	/* See RFC 2012 */
1484 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1485 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1486 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1487 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1488 }
1489 
1490 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1491 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1492 {
1493 	tp->lost_skb_hint = NULL;
1494 }
1495 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1496 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1497 {
1498 	tcp_clear_retrans_hints_partial(tp);
1499 	tp->retransmit_skb_hint = NULL;
1500 }
1501 
1502 union tcp_md5_addr {
1503 	struct in_addr  a4;
1504 #if IS_ENABLED(CONFIG_IPV6)
1505 	struct in6_addr	a6;
1506 #endif
1507 };
1508 
1509 /* - key database */
1510 struct tcp_md5sig_key {
1511 	struct hlist_node	node;
1512 	u8			keylen;
1513 	u8			family; /* AF_INET or AF_INET6 */
1514 	union tcp_md5_addr	addr;
1515 	u8			prefixlen;
1516 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1517 	struct rcu_head		rcu;
1518 };
1519 
1520 /* - sock block */
1521 struct tcp_md5sig_info {
1522 	struct hlist_head	head;
1523 	struct rcu_head		rcu;
1524 };
1525 
1526 /* - pseudo header */
1527 struct tcp4_pseudohdr {
1528 	__be32		saddr;
1529 	__be32		daddr;
1530 	__u8		pad;
1531 	__u8		protocol;
1532 	__be16		len;
1533 };
1534 
1535 struct tcp6_pseudohdr {
1536 	struct in6_addr	saddr;
1537 	struct in6_addr daddr;
1538 	__be32		len;
1539 	__be32		protocol;	/* including padding */
1540 };
1541 
1542 union tcp_md5sum_block {
1543 	struct tcp4_pseudohdr ip4;
1544 #if IS_ENABLED(CONFIG_IPV6)
1545 	struct tcp6_pseudohdr ip6;
1546 #endif
1547 };
1548 
1549 /* - pool: digest algorithm, hash description and scratch buffer */
1550 struct tcp_md5sig_pool {
1551 	struct ahash_request	*md5_req;
1552 	void			*scratch;
1553 };
1554 
1555 /* - functions */
1556 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1557 			const struct sock *sk, const struct sk_buff *skb);
1558 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1559 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1560 		   gfp_t gfp);
1561 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1562 		   int family, u8 prefixlen);
1563 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1564 					 const struct sock *addr_sk);
1565 
1566 #ifdef CONFIG_TCP_MD5SIG
1567 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1568 					 const union tcp_md5_addr *addr,
1569 					 int family);
1570 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1571 #else
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1572 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1573 					 const union tcp_md5_addr *addr,
1574 					 int family)
1575 {
1576 	return NULL;
1577 }
1578 #define tcp_twsk_md5_key(twsk)	NULL
1579 #endif
1580 
1581 bool tcp_alloc_md5sig_pool(void);
1582 
1583 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1584 static inline void tcp_put_md5sig_pool(void)
1585 {
1586 	local_bh_enable();
1587 }
1588 
1589 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1590 			  unsigned int header_len);
1591 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1592 		     const struct tcp_md5sig_key *key);
1593 
1594 /* From tcp_fastopen.c */
1595 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1596 			    struct tcp_fastopen_cookie *cookie);
1597 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1598 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1599 			    u16 try_exp);
1600 struct tcp_fastopen_request {
1601 	/* Fast Open cookie. Size 0 means a cookie request */
1602 	struct tcp_fastopen_cookie	cookie;
1603 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1604 	size_t				size;
1605 	int				copied;	/* queued in tcp_connect() */
1606 };
1607 void tcp_free_fastopen_req(struct tcp_sock *tp);
1608 void tcp_fastopen_destroy_cipher(struct sock *sk);
1609 void tcp_fastopen_ctx_destroy(struct net *net);
1610 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1611 			      void *key, unsigned int len);
1612 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1613 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1614 			      struct request_sock *req,
1615 			      struct tcp_fastopen_cookie *foc,
1616 			      const struct dst_entry *dst);
1617 void tcp_fastopen_init_key_once(struct net *net);
1618 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1619 			     struct tcp_fastopen_cookie *cookie);
1620 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1621 #define TCP_FASTOPEN_KEY_LENGTH 16
1622 
1623 /* Fastopen key context */
1624 struct tcp_fastopen_context {
1625 	struct crypto_cipher	*tfm;
1626 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1627 	struct rcu_head		rcu;
1628 };
1629 
1630 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1631 void tcp_fastopen_active_disable(struct sock *sk);
1632 bool tcp_fastopen_active_should_disable(struct sock *sk);
1633 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1634 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1635 
1636 /* Latencies incurred by various limits for a sender. They are
1637  * chronograph-like stats that are mutually exclusive.
1638  */
1639 enum tcp_chrono {
1640 	TCP_CHRONO_UNSPEC,
1641 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1642 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1643 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1644 	__TCP_CHRONO_MAX,
1645 };
1646 
1647 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1648 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1649 
1650 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1651  * the same memory storage than skb->destructor/_skb_refdst
1652  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1653 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1654 {
1655 	skb->destructor = NULL;
1656 	skb->_skb_refdst = 0UL;
1657 }
1658 
1659 #define tcp_skb_tsorted_save(skb) {		\
1660 	unsigned long _save = skb->_skb_refdst;	\
1661 	skb->_skb_refdst = 0UL;
1662 
1663 #define tcp_skb_tsorted_restore(skb)		\
1664 	skb->_skb_refdst = _save;		\
1665 }
1666 
1667 void tcp_write_queue_purge(struct sock *sk);
1668 
tcp_rtx_queue_head(const struct sock * sk)1669 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1670 {
1671 	return skb_rb_first(&sk->tcp_rtx_queue);
1672 }
1673 
tcp_rtx_queue_tail(const struct sock * sk)1674 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1675 {
1676 	return skb_rb_last(&sk->tcp_rtx_queue);
1677 }
1678 
tcp_write_queue_head(const struct sock * sk)1679 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1680 {
1681 	return skb_peek(&sk->sk_write_queue);
1682 }
1683 
tcp_write_queue_tail(const struct sock * sk)1684 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1685 {
1686 	return skb_peek_tail(&sk->sk_write_queue);
1687 }
1688 
1689 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1690 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1691 
tcp_send_head(const struct sock * sk)1692 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1693 {
1694 	return skb_peek(&sk->sk_write_queue);
1695 }
1696 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1697 static inline bool tcp_skb_is_last(const struct sock *sk,
1698 				   const struct sk_buff *skb)
1699 {
1700 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1701 }
1702 
tcp_write_queue_empty(const struct sock * sk)1703 static inline bool tcp_write_queue_empty(const struct sock *sk)
1704 {
1705 	return skb_queue_empty(&sk->sk_write_queue);
1706 }
1707 
tcp_rtx_queue_empty(const struct sock * sk)1708 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1709 {
1710 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1711 }
1712 
tcp_rtx_and_write_queues_empty(const struct sock * sk)1713 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1714 {
1715 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1716 }
1717 
tcp_check_send_head(struct sock * sk,struct sk_buff * skb_unlinked)1718 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1719 {
1720 	if (tcp_write_queue_empty(sk))
1721 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1722 }
1723 
__tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1724 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1725 {
1726 	__skb_queue_tail(&sk->sk_write_queue, skb);
1727 }
1728 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1729 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1730 {
1731 	__tcp_add_write_queue_tail(sk, skb);
1732 
1733 	/* Queue it, remembering where we must start sending. */
1734 	if (sk->sk_write_queue.next == skb)
1735 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1736 }
1737 
1738 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1739 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1740 						  struct sk_buff *skb,
1741 						  struct sock *sk)
1742 {
1743 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1744 }
1745 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1746 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1747 {
1748 	tcp_skb_tsorted_anchor_cleanup(skb);
1749 	__skb_unlink(skb, &sk->sk_write_queue);
1750 }
1751 
1752 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1753 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1754 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1755 {
1756 	tcp_skb_tsorted_anchor_cleanup(skb);
1757 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1758 }
1759 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1760 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1761 {
1762 	list_del(&skb->tcp_tsorted_anchor);
1763 	tcp_rtx_queue_unlink(skb, sk);
1764 	sk_wmem_free_skb(sk, skb);
1765 }
1766 
tcp_push_pending_frames(struct sock * sk)1767 static inline void tcp_push_pending_frames(struct sock *sk)
1768 {
1769 	if (tcp_send_head(sk)) {
1770 		struct tcp_sock *tp = tcp_sk(sk);
1771 
1772 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1773 	}
1774 }
1775 
1776 /* Start sequence of the skb just after the highest skb with SACKed
1777  * bit, valid only if sacked_out > 0 or when the caller has ensured
1778  * validity by itself.
1779  */
tcp_highest_sack_seq(struct tcp_sock * tp)1780 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1781 {
1782 	if (!tp->sacked_out)
1783 		return tp->snd_una;
1784 
1785 	if (tp->highest_sack == NULL)
1786 		return tp->snd_nxt;
1787 
1788 	return TCP_SKB_CB(tp->highest_sack)->seq;
1789 }
1790 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1791 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1792 {
1793 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1794 }
1795 
tcp_highest_sack(struct sock * sk)1796 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1797 {
1798 	return tcp_sk(sk)->highest_sack;
1799 }
1800 
tcp_highest_sack_reset(struct sock * sk)1801 static inline void tcp_highest_sack_reset(struct sock *sk)
1802 {
1803 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1804 }
1805 
1806 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1807 static inline void tcp_highest_sack_replace(struct sock *sk,
1808 					    struct sk_buff *old,
1809 					    struct sk_buff *new)
1810 {
1811 	if (old == tcp_highest_sack(sk))
1812 		tcp_sk(sk)->highest_sack = new;
1813 }
1814 
1815 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1816 static inline bool inet_sk_transparent(const struct sock *sk)
1817 {
1818 	switch (sk->sk_state) {
1819 	case TCP_TIME_WAIT:
1820 		return inet_twsk(sk)->tw_transparent;
1821 	case TCP_NEW_SYN_RECV:
1822 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1823 	}
1824 	return inet_sk(sk)->transparent;
1825 }
1826 
1827 /* Determines whether this is a thin stream (which may suffer from
1828  * increased latency). Used to trigger latency-reducing mechanisms.
1829  */
tcp_stream_is_thin(struct tcp_sock * tp)1830 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1831 {
1832 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1833 }
1834 
1835 /* /proc */
1836 enum tcp_seq_states {
1837 	TCP_SEQ_STATE_LISTENING,
1838 	TCP_SEQ_STATE_ESTABLISHED,
1839 };
1840 
1841 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1842 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1843 void tcp_seq_stop(struct seq_file *seq, void *v);
1844 
1845 struct tcp_seq_afinfo {
1846 	sa_family_t			family;
1847 };
1848 
1849 struct tcp_iter_state {
1850 	struct seq_net_private	p;
1851 	enum tcp_seq_states	state;
1852 	struct sock		*syn_wait_sk;
1853 	int			bucket, offset, sbucket, num;
1854 	loff_t			last_pos;
1855 };
1856 
1857 extern struct request_sock_ops tcp_request_sock_ops;
1858 extern struct request_sock_ops tcp6_request_sock_ops;
1859 
1860 void tcp_v4_destroy_sock(struct sock *sk);
1861 
1862 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1863 				netdev_features_t features);
1864 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1865 int tcp_gro_complete(struct sk_buff *skb);
1866 
1867 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1868 
tcp_notsent_lowat(const struct tcp_sock * tp)1869 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1870 {
1871 	struct net *net = sock_net((struct sock *)tp);
1872 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1873 }
1874 
tcp_stream_memory_free(const struct sock * sk)1875 static inline bool tcp_stream_memory_free(const struct sock *sk)
1876 {
1877 	const struct tcp_sock *tp = tcp_sk(sk);
1878 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1879 
1880 	return notsent_bytes < tcp_notsent_lowat(tp);
1881 }
1882 
1883 #ifdef CONFIG_PROC_FS
1884 int tcp4_proc_init(void);
1885 void tcp4_proc_exit(void);
1886 #endif
1887 
1888 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1889 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1890 		     const struct tcp_request_sock_ops *af_ops,
1891 		     struct sock *sk, struct sk_buff *skb);
1892 
1893 /* TCP af-specific functions */
1894 struct tcp_sock_af_ops {
1895 #ifdef CONFIG_TCP_MD5SIG
1896 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1897 						const struct sock *addr_sk);
1898 	int		(*calc_md5_hash)(char *location,
1899 					 const struct tcp_md5sig_key *md5,
1900 					 const struct sock *sk,
1901 					 const struct sk_buff *skb);
1902 	int		(*md5_parse)(struct sock *sk,
1903 				     int optname,
1904 				     char __user *optval,
1905 				     int optlen);
1906 #endif
1907 };
1908 
1909 struct tcp_request_sock_ops {
1910 	u16 mss_clamp;
1911 #ifdef CONFIG_TCP_MD5SIG
1912 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1913 						 const struct sock *addr_sk);
1914 	int		(*calc_md5_hash) (char *location,
1915 					  const struct tcp_md5sig_key *md5,
1916 					  const struct sock *sk,
1917 					  const struct sk_buff *skb);
1918 #endif
1919 	void (*init_req)(struct request_sock *req,
1920 			 const struct sock *sk_listener,
1921 			 struct sk_buff *skb);
1922 #ifdef CONFIG_SYN_COOKIES
1923 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1924 				 __u16 *mss);
1925 #endif
1926 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1927 				       const struct request_sock *req);
1928 	u32 (*init_seq)(const struct sk_buff *skb);
1929 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1930 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1931 			   struct flowi *fl, struct request_sock *req,
1932 			   struct tcp_fastopen_cookie *foc,
1933 			   enum tcp_synack_type synack_type);
1934 };
1935 
1936 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1937 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1938 					 const struct sock *sk, struct sk_buff *skb,
1939 					 __u16 *mss)
1940 {
1941 	tcp_synq_overflow(sk);
1942 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1943 	return ops->cookie_init_seq(skb, mss);
1944 }
1945 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1946 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1947 					 const struct sock *sk, struct sk_buff *skb,
1948 					 __u16 *mss)
1949 {
1950 	return 0;
1951 }
1952 #endif
1953 
1954 int tcpv4_offload_init(void);
1955 
1956 void tcp_v4_init(void);
1957 void tcp_init(void);
1958 
1959 /* tcp_recovery.c */
1960 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1961 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1962 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1963 				u32 reo_wnd);
1964 extern void tcp_rack_mark_lost(struct sock *sk);
1965 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1966 			     u64 xmit_time);
1967 extern void tcp_rack_reo_timeout(struct sock *sk);
1968 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1969 
1970 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)1971 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1972 {
1973 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1974 	u32 rto = inet_csk(sk)->icsk_rto;
1975 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1976 
1977 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1978 }
1979 
1980 /*
1981  * Save and compile IPv4 options, return a pointer to it
1982  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)1983 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1984 							 struct sk_buff *skb)
1985 {
1986 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1987 	struct ip_options_rcu *dopt = NULL;
1988 
1989 	if (opt->optlen) {
1990 		int opt_size = sizeof(*dopt) + opt->optlen;
1991 
1992 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1993 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1994 			kfree(dopt);
1995 			dopt = NULL;
1996 		}
1997 	}
1998 	return dopt;
1999 }
2000 
2001 /* locally generated TCP pure ACKs have skb->truesize == 2
2002  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2003  * This is much faster than dissecting the packet to find out.
2004  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2005  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2006 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2007 {
2008 	return skb->truesize == 2;
2009 }
2010 
skb_set_tcp_pure_ack(struct sk_buff * skb)2011 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2012 {
2013 	skb->truesize = 2;
2014 }
2015 
tcp_inq(struct sock * sk)2016 static inline int tcp_inq(struct sock *sk)
2017 {
2018 	struct tcp_sock *tp = tcp_sk(sk);
2019 	int answ;
2020 
2021 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2022 		answ = 0;
2023 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2024 		   !tp->urg_data ||
2025 		   before(tp->urg_seq, tp->copied_seq) ||
2026 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2027 
2028 		answ = tp->rcv_nxt - tp->copied_seq;
2029 
2030 		/* Subtract 1, if FIN was received */
2031 		if (answ && sock_flag(sk, SOCK_DONE))
2032 			answ--;
2033 	} else {
2034 		answ = tp->urg_seq - tp->copied_seq;
2035 	}
2036 
2037 	return answ;
2038 }
2039 
2040 int tcp_peek_len(struct socket *sock);
2041 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2042 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2043 {
2044 	u16 segs_in;
2045 
2046 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2047 	tp->segs_in += segs_in;
2048 	if (skb->len > tcp_hdrlen(skb))
2049 		tp->data_segs_in += segs_in;
2050 }
2051 
2052 /*
2053  * TCP listen path runs lockless.
2054  * We forced "struct sock" to be const qualified to make sure
2055  * we don't modify one of its field by mistake.
2056  * Here, we increment sk_drops which is an atomic_t, so we can safely
2057  * make sock writable again.
2058  */
tcp_listendrop(const struct sock * sk)2059 static inline void tcp_listendrop(const struct sock *sk)
2060 {
2061 	atomic_inc(&((struct sock *)sk)->sk_drops);
2062 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2063 }
2064 
2065 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2066 
2067 /*
2068  * Interface for adding Upper Level Protocols over TCP
2069  */
2070 
2071 #define TCP_ULP_NAME_MAX	16
2072 #define TCP_ULP_MAX		128
2073 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2074 
2075 enum {
2076 	TCP_ULP_TLS,
2077 	TCP_ULP_BPF,
2078 };
2079 
2080 struct tcp_ulp_ops {
2081 	struct list_head	list;
2082 
2083 	/* initialize ulp */
2084 	int (*init)(struct sock *sk);
2085 	/* cleanup ulp */
2086 	void (*release)(struct sock *sk);
2087 
2088 	int		uid;
2089 	char		name[TCP_ULP_NAME_MAX];
2090 	bool		user_visible;
2091 	struct module	*owner;
2092 };
2093 int tcp_register_ulp(struct tcp_ulp_ops *type);
2094 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2095 int tcp_set_ulp(struct sock *sk, const char *name);
2096 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2097 void tcp_get_available_ulp(char *buf, size_t len);
2098 void tcp_cleanup_ulp(struct sock *sk);
2099 
2100 #define MODULE_ALIAS_TCP_ULP(name)				\
2101 	__MODULE_INFO(alias, alias_userspace, name);		\
2102 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2103 
2104 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2105  * is < 0, then the BPF op failed (for example if the loaded BPF
2106  * program does not support the chosen operation or there is no BPF
2107  * program loaded).
2108  */
2109 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2110 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2111 {
2112 	struct bpf_sock_ops_kern sock_ops;
2113 	int ret;
2114 
2115 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2116 	if (sk_fullsock(sk)) {
2117 		sock_ops.is_fullsock = 1;
2118 		sock_owned_by_me(sk);
2119 	}
2120 
2121 	sock_ops.sk = sk;
2122 	sock_ops.op = op;
2123 	if (nargs > 0)
2124 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2125 
2126 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2127 	if (ret == 0)
2128 		ret = sock_ops.reply;
2129 	else
2130 		ret = -1;
2131 	return ret;
2132 }
2133 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2134 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2135 {
2136 	u32 args[2] = {arg1, arg2};
2137 
2138 	return tcp_call_bpf(sk, op, 2, args);
2139 }
2140 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2141 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2142 				    u32 arg3)
2143 {
2144 	u32 args[3] = {arg1, arg2, arg3};
2145 
2146 	return tcp_call_bpf(sk, op, 3, args);
2147 }
2148 
2149 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2150 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2151 {
2152 	return -EPERM;
2153 }
2154 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2155 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2156 {
2157 	return -EPERM;
2158 }
2159 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2160 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2161 				    u32 arg3)
2162 {
2163 	return -EPERM;
2164 }
2165 
2166 #endif
2167 
tcp_timeout_init(struct sock * sk)2168 static inline u32 tcp_timeout_init(struct sock *sk)
2169 {
2170 	int timeout;
2171 
2172 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2173 
2174 	if (timeout <= 0)
2175 		timeout = TCP_TIMEOUT_INIT;
2176 	return timeout;
2177 }
2178 
tcp_rwnd_init_bpf(struct sock * sk)2179 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2180 {
2181 	int rwnd;
2182 
2183 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2184 
2185 	if (rwnd < 0)
2186 		rwnd = 0;
2187 	return rwnd;
2188 }
2189 
tcp_bpf_ca_needs_ecn(struct sock * sk)2190 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2191 {
2192 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2193 }
2194 
2195 #if IS_ENABLED(CONFIG_SMC)
2196 extern struct static_key_false tcp_have_smc;
2197 #endif
2198 
2199 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2200 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2201 			     void (*cad)(struct sock *sk, u32 ack_seq));
2202 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2203 
2204 #endif
2205 
2206 #endif	/* _TCP_H */
2207